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ABSTRACT 
 

 

IMPLEMENTATION OF STANAG 4285 HF MODEM SOFTWARE 

ON TMS320C54X DIGITAL SIGNAL PROCESSOR 

 

 

Örümlü, Erhan 

 

 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Buyurman Baykal 

 

August 2004, 84 pages 

 

 

 

In this research, STANAG 4285 HF modem software is implemented on 

TMS320C54x fixed point digital signal processor. The software is optimized in 

order to meet real-time operation requirements. A fractionally spaced least mean 

square (LMS) decision feedback equalizer (DFE) is employed for the receiver. In 

order to improve the convergence of the LMS algorithm a multipass technique is 

utilized. Based on Watterson’s model, an HF channel simulator is employed for 

evaluating the performance of the modem. The simulation results show that the 

convergence of the LMS algorithm is improved by using multipass technique. It is 

also shown that the software meets the real-time operation requirements. 

 

Keywords: STANAG 4285, HF Modem, TMS320C54x, DFE, Watterson’s Model 
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ÖZ 
 

 

STANAG 4285 HF MODEM YAZILIMININ TMS320C54X 

SAYISAL ��ARET ��LEMC�S� ÜZER�NDE GERÇEKLENMES� 

 

 

Örümlü, Erhan 

 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü 

Tez Yöneticisi: Prof. Dr. Buyurman Baykal 

 

A�ustos 2004, 84 sayfa 

 

 

 

Bu ara�tırmada, STANAG 4285 HF modem yazılımı TMS320C54x sabit noktalı 

sayısal i�aret i�lemcisi üzerinde gerçeklendi. Yazılım, gerçek zamanlı i�lem 

gereksinimlerini kar�ılaması için optimum hale getirildi. Alıcı için kesir aralıklı en 

küçük ortalama kare (LMS) karar geri beslemeli dengeleyici (DFE) kullanıldı. 

LMS algoritmasının yakınsamasını iyile�tirmek için çoklu geçi� tekni�inden 

yararlanıldı. Modem yazılımını test etmek için Watterson modeline dayanan HF 

kanal benzeticisi kullanıldı. Benzetim sonuçları LMS algoritmasının 

yakınsamasının çoklu geçi� tekni�inin kullanılarak iyile�tirildi�ini gösterdi. 

Yazılımın gerçek zamanlı i�lem gereksinimlerini kar�ıladı�ı gösterildi. 

 

Anahtar Kelimeler: STANAG 4285, HF Modem, TMS320C54x, karar geri 

beslemeli dengeleyici, Watterson Modeli 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 
The high frequency (HF) spectrum, extending from 2 to 30 MHz, has been used 

for many years for beyond-light-of sight communications. In the early part of the 

20th century HF radio was the principal form of the long distance communications 

without cables. Nevertheless, in the early 1970s the commencement of the satellite 

communications ceased the research and development of HF systems [5]. Many 

users believed that HF communications would become obsolescent, since satellite 

communications offered higher data rates and reliable service. However, for many 

applications HF remained the primary means of beyond-line-of-sight 

communications, mainly due to its lower cost and low power requirements. 

The beyond-line-of-sight capability of HF communications is achieved by the 

reflection of the radio waves from ionized particles in the ionosphere. 

Unfortunately, the ionosphere is a very challenging physical channel and causes 

impairments such as multipath propagation and fading. Moreover, solar induced 

ionospheric disturbances may even lead to the interruption of the communication.  

The advances in digital technology have made possible the implementation of 

the designs of greater complexity in order to tackle the inherent problems 

encountered in HF transmission and hence the demand for HF modems using 3 

KHz voiceband channel has increased. For military short wave communication 

systems two waveforms have been standardized, STANAG 4285 and MIL-STD-
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188-110A [1], [2]. Today, modems for these waveforms are available in the 

market. 

The subject of this thesis is the implementation of STANAG 4285 modem 

software on TMS320C54x (’C54x) fixed-point digital signal processor (DSP). 

Although the transmitter part is standard, a variety of algorithms can be employed 

for the receiver. However, the computational requirements of the algorithms 

should not exceed the capacity of the processor. Therefore, optimization of codes 

turns out to be an important issue besides the performance of the receiver.  

In order to evaluate the performance of the HF modems without on-the-air 

experiments a mathematically tractable model representing the HF channel should 

be used. Most of the HF channel simulators employ Watterson’s channel model [3] 

that is also recommended in STANAG 4285. Chapter 2 deals with the 

characteristics of the HF medium and traditional HF modems. Moreover, the 

STANAG 4285 waveform is described in detail. 

Chapter 3 is concerned with the implementation details. The Tiger board 

including TMS320C5410 (’C5410) DSP is selected as the implementation 

platform. After a brief explanation of features of ’C5410 processor, the fixed-point 

representation and its numerical effects are discussed. Since adaptive algorithms 

are affected significantly by finite precision, the least mean square (LMS) 

algorithm and numerical effects are described also. In the implementation, LMS 

algorithm is used in order to adapt the filter coefficients of the decision feedback 

equalizer (DFE). At the end of the chapter also a review of the decision feedback 

equalizer is given. 

The transmitter and receiver programs implemented on ’C5410 are discussed in 

Chapter 4 and Chapter 5, respectively. Both algorithms and their resource 

consumptions are described in detail.  

Chapter 6 describes the simulation environment and illustrates the performance 

of the HF modem under various channel conditions.  

Finally, Chapter 7 discusses the performance of the HF modem implemented on 

’C5410 and the results of the code optimization techniques used for minimizing 

the load on the processor. 
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CHAPTER 2 

 

 

HF CHANNEL AND HF MODEMS 

 

 

 
2.1 Introduction 

 

High frequency (HF) portion of the spectrum, allocated to the 2-30 MHz band, 

has been of great interest for many years for long-distance communications. At 

these frequencies the ionosphere can be used to reflect and refract radio waves 

enabling beyond line of sight communications.  

The propagation conditions through the ionosphere may change significantly. 

The geographical location, time of the day, season and the solar activity can affect 

the conditions. Moreover, the signals passed through the HF channel face some 

distortions, such as multipath propagation and fading. In order to develop robust 

receiver structures for HF communications the behavior of the ionosphere and 

channel characteristics should be comprehended. 

The first section of this chapter deals with the HF channel characteristics. 

Moreover, the physical structure of the ionosphere and Watterson’s HF channel 

model are described. In the second section the types of HF modems are discussed 

and STANAG 4285 waveform is described in detail. 

 

2.2 HF Channel 

 

2.2.1 Ionosphere 
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The ionosphere is an upper atmospheric layer above the Earth’s surface, 

extending from 50 km to 400 km altitude where electromagnetic radiation from the 

sun leads to ionization of the neutral gases. For reasons related to the historical 

development of ionospheric research, the ionosphere is divided into three regions 

designated D, E and F, respectively, in order of increasing altitude. While the E- 

and F- regions act mainly as radio wave reflectors, enabling long-range 

propagation, the D-region acts principally as an absorber and causes signal 

attenuation in the HF range [5]. The electron density of the ionospheric regions is 

given in Figure 2.1. 

 

 
Figure 2.1: Electron densities of the ionospheric regions 

 

 

The portion below 90 km of the ionosphere is known as the D-region [6]. The 

D-region electron density exhibits large diurnal variations. It has a maximum value 

shortly after midday and a very small value at night. The D-region, because of its 

relatively higher concentration of neutral particles and heavy ions, absorbs energy 

from a passing wave.  
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The altitude range from 90 km to 160 km constitutes the E-region. The E-region 

can support long distance communication up to 2000 km using frequencies as high 

as 20 MHz. 

The F-region extends upwards from 160 km and is divided into the F1 and F2 

layers [5]. The F1 layer exists only during daylight and it merges with the F2 layer 

at nighttime. Usually, waves that penetrate the E-region also penetrate the F1 layer 

and are reflected by the F2 layer. While F1 layer introduces additional absorption 

commonly, the F2 layer is the principal reflecting region for long distance HF 

communication up to 4000 km or more. 

There are several modes of propagation for HF transmission. For example, a 

single reflection from the F-region is known as 1F mode or a double reflection 

from the E-region is known as 2E mode. Figure 2.2 shows some of the propagation 

modes. In practice, the electron densities in the ionosphere are continuous and the 

path of the ray will likewise be a continuous curve. 

  

 
Figure 2.2: Examples of propagation paths of different modes 

 

In general, each mode contains four components, known as ordinary and 

extraordinary magnetoionic components of both the low and high rays. While low 

rays are reflected from the boundary of the layers, high rays penetrate the layer, 

travel through it and then are reflected back to the Earth. Moreover, these rays are 

split in two components because of the Earth’s magnetic field, ordinary and 

extraordinary waves. The existence of these components should be taken into 

account when modeling the HF channel. 
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2.2.2 HF Channel Characterization 

 

There are many factors that affect the physical characteristics of the ionosphere. 

Since the ionosphere is not a static medium, the HF channel has a time-variant 

impulse response. If the same signal is transmitted at two widely separated time 

instants, the two received signals will be different and these time-varying 

responses are treated in statistical terms [4]. 

HF communication is mainly affected by multipath propagation. The 

transmitted signal travels over several modes or paths to the receiver, through 

single or multiple reflections from the E- and F- layers of the ionosphere. Since the 

time taken by each path is different, the signal at the receiver consists of several 

multipath components that are spread in time over an interval of up to several 

milliseconds. This phenomenon is known as multipath propagation and it is one of 

the major sources of the distortion in HF communications.  

Another distortion type for HF communication is signal fading due to the time-

variant multipath characteristics of the channel. In general, the transmitted signal is 

represented as 

 [ ]tf2j
l

Ce)t(sRe)t(s π=                                                                                (2.1) 

where sl(t) is the equivalent lowpass signal of s(t). Assuming that there are 

multiple discrete propagation paths, each path has a delay and an attenuation factor 

[4]. Then, the received bandpass signal can be expressed as 

 � τ−α=
n

nn ))t(t(s)t()t(x                                                                      (2.2) 

where αn(t) and τn(t) denote the attenuation factor and the propagation delay for 

the nth path, respectively. Substituting (2.1) into (2.2) and taking the equivalent 

lowpass of (2.2) yields 

 � −= −

n
nl

tfj
nl ttsettr nC ))(()()( )(2 τα τπ                                                         (2.3) 

Using (2.3), the equivalent lowpass channel can be expressed as 

 � τ−δα=τ τπ−

n
n

)t(f2j
n ))t(t(e)t()t;(c nC                                                   (2.4) 



 7 

Considering the transmission of an unmodulated carrier at frequency fc, i.e. sl(t) is 

one for all t, the received signal becomes 

 �� θ−τπ− α=α=
n

)t(j
n

n

)t(f2j
nl

nnC e)t(e)t()t(r                                           (2.5) 

Equation (2.5) shows that the received signal is composed of the sum of time-

variant phasors having amplitudes αn(t) and phases θn(t). The attenuation factors, 

αn(t), change very slowly and do not cause a significant change in the received 

signal [4]. The fading distortion is mainly due to the random time variations in the 

phases θn(t). Even a small change in the delay τn(t) as 1/fc can change θn(t) by 2π 

radian. The randomly time variant phases may lead to addition of phasors      

αn(t)e-jθn(t) destructively or constructively. These amplitude variations in the 

received signal lead to signal fading.  

The changes in the delays τn(t) on different paths are expected to be at different 

rates and in a random manner. Therefore, assuming a large number of paths and 

using central limit theorem, the channel impulse response c(τ;t) can be modeled as 

a zero-mean complex-valued Gaussian process. In this case, the envelope |c(τ;t)| 

for any t becomes Rayleigh distributed and the channel is called Rayleigh fading 

channel. Most of the HF modem designs assume this type of channel model. 

Another probability distribution function used to model the envelope of the 

channel is Rice distribution that is employed when there are fixed signal reflectors 

in the medium, thus when a model with zero mean becomes impossible.  

In addition to multipath propagation and fading, another multiplicative 

distortion is the frequency shift. In general, the average heights of the ionospheric 

layers are increasing or decreasing with time, introducing different Doppler shifts 

on each of the multipath components.  

 

2.2.3 Watterson HF Channel Model 

 

In order to determine the performance of the HF modems in the laboratory 

environment, many simulators have been developed. The most popular HF channel 

simulator model is the “Watterson Model” which was developed in 1970 [3].  
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As mentioned in [3], if the consideration is restricted to band-limited channels 

(say, 10kHz) and sufficiently short periods of time such as 10 minutes, most of the 

HF ionospheric channels can be adequately represented by a stationary model. 

Moreover, in majority of channels, propagation is over a limited number of 

relatively discrete modes. Using these two characteristics, the stationary channel 

model illustrated in Figure 2.3 is proposed by Watterson. 

 

 

 

 

 

 

 

 

Figure 2.3: Watterson Channel Model 

 

 

The input signal to the channel feeds an ideal delay line and is delivered at a 

limited number of paths with adjustable delays. Then, each delayed signal is 

modulated in amplitude and phase by a baseband tap-gain function Gi(t), and all 

modulated signals are summed to form the output signal.  

Moreover, the Watterson model involves three hypotheses for the statistical 

characteristics of the tap-gain functions: 

i) Each tap-gain function is a complex Gaussian process that produces Rayleigh 

fading. 

ii) Tap-gain functions are independent. 

iii) Each tap-gain function has a spectrum that in general is the sum of two 

Gaussian functions of frequency, one for each magnetoionic component. 

After measurements and analyses, Watterson et al. concluded that the proposed 

stationary channel model were valid [3] with some limitations on the bandwidth. 

Tapped Delay Line 

x

Σ 

G1(t) xGn(t) xGi(t) . . . . . . 

Input 
Signal 

τ 

Output 
Signal 

τn 
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The validity was confirmed over a bandwidth of 2.5 kHz at the nighttime and 12 

kHz at the daytime. 

Although the Watterson model suffers some limitations, it has been widely used 

in order to compare the performances of HF modems. This model is also 

recommended in STANAG 4285 [1]. Besides multiplicative HF channel 

distortions the recommendation includes the addition of white Gaussian noise.  

 

2.3 HF Modems 

 

In the following sections, the HF modem types are presented and the required 

characteristics for STANAG 4285 HF modem is described. 

 

2.3.1 Modem Types for HF Short Wave Communications  

 

According to the number of signaling tones employed there are two types of 

modems, known as multi-tone and single-tone modems. 

Multi-tone modems employ a symbol period, which is much longer than the 

maximum expected multipath delay in order to minimize the effects of inter-

symbol interference (ISI) [22]. Hence, the inter-symbol distortion takes place only 

on the leading and trailing edges of the symbol. Using this fact, the receiver 

ignores the beginning of the symbol and operates on the undistorted part. The 

desired data rate is maintained by transmitting multiple signaling tones in parallel.  

MIL-STD-118-110A standard [2] describes two multi-tone modems. One of 

them transmits 16 data tones employing differential QPSK to achieve a data rate of 

2400 bps. Moreover, an unmodulated tone is added in order to correct frequency 

offset errors. The other multi-tone modem of MIL-STD-118-110A standard is a 

39-tone modem, which has forward error control, whereas the 16-tone modem is 

uncoded.  

In single-tone modems the symbol period is short compared to multipath spread 

and hence, ISI extends over several symbols. To overcome this channel distortion 

a training sequence is repetitively inserted into the transmitted data and an 

equalizer is employed at the receiver. The receiver makes use of this repeated 
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training sequence to obtain synchronization and correct the frequency offset error. 

STANAG 4285 is an example for single-tone modems. 

The standard HF channels have the same bandwidth as the telephone channels. 

However, the HF channel has major impairments compared to telephone one. For 

example, the two channels have different types of fading. A telephone channel has 

flat fading whereas HF channels have frequency-selective fading, generally. For a 

single-tone HF modem training sequences are repeteadly inserted into the 

transmitted data which reduces the efficiency. Therefore, as the telephone modems 

can work up to 33.6 kbits/s, fast data rates for standardized military single-tone HF 

modems are only 2.4kbits/s. 

 

2.3.2 STANAG 4285 Waveform 

 

STANAG 4285 waveform is standardized for military short wave 

communication systems. In this section the required characteristics of the 

STANAG 4285 waveform is presented to ensure interoperability between modems 

transmitting data over HF radio links [1]. 

 

2.3.2.1 Modulation 

 

The modulation technique is chosen to be phase shift keying of a sub-carrier of 

1800 Hz with a modulation speed of 2400 bauds. Table 2.1 presents the values that 

the phase shift of the modulated signal may take relative to the unmodulated 

reference. Each phase shift value indicates a symbol number, as shown in the 

table. 
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Table 2.1: Phase Shift Values 

 

 

 

 

 

 

 

 

 

 

The complex number exp(jnπ/4) is linked with the symbol number n. Figure 2.4 

shows the symbols on the constellation diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Phase State Encoding 

 

 

 

 

 

Symbol Number Phase 

0    0 
1  π / 4 
2  π / 2 
3 3π / 4 
4    π 
5 5π / 4 
6 3π / 2 
7 7π / 4 

Symbol  6 

Symbol  7 

Symbol  0 

Symbol  1 

Symbol  2 

Symbol  3 

Symbol  4 

Symbol  5 
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2.3.2.2 Transcoding 

 

Transcoding process is the operation of linking a symbol to be transmitted to a 

group of bits. The assignment is Gray coding in which the adjacent symbols differ 

only by one binary digit, so that the most likely errors caused by noise will result 

in a single bit error. 2-PSK, 4-PSK, and 8-PSK modulation techniques are 

employed for 1200 bps, 2400 bps, 3600 bps uncoded data rates, respectively. 

 

• For 1200 bps uncoded data rate transcoding is achieved by linking one 

symbol to one bit according to the rule indicated in Table 2.2. 

 

Table 2.2: Transcoding for 2-PSK 

 

 

 

 

 

 

• For 2400 bps uncoded data rate transcoding is achieved by linking one 

symbol to a set of two consecutive bits according to the rule indicated in 

Table 2.3. 

 

Table 2.3: Transcoding for 4-PSK 
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• For 3600 bps uncoded data rate transcoding is achieved by linking a symbol 

to a set of three consecutive bits according to the rule indicated in Table 2.4. 

 

 

Table 2.4: Transcoding for 8-PSK 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2.3 Frame Structure 

 

In STANAG 4285 waveform the symbols to be transmitted are structured in 

recurrent frames 106.6 ms in length.  Figure 2.5 shows the frame structure. 

 

 

 

 

 

 

 

 

Figure 2.5: Frame structure 
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Every frame consists of 256 symbols. There are totally 80 synchronization, 48 

reference, and 128 data symbols. The data symbols are broken into four 32-symbol 

length blocks and the reference symbols are broken into three 16-symbol length 

blocks. The number of data bits transmitted per frame is 128 at 1200 bps, 256 at 

2400 bps, and 384 at 3600 bps uncoded transmission rate. 

The synchronization and reference symbols are all known by the receiver. The 

modem uses the synchronization sequence for equalizer training, frequency shift 

correction and in order to detect the presence of the signal. 

 

2.3.2.4 Synchronization Sequence Generator 

 

The synchronization sequence consists of 80 symbols and is transmitted 

recurrently every 106.6 ms. This sequence uses 2-PSK modulation, whatever the 

data rate may be.  

The generator polynomial for the synchronization sequence is (x5 + x2 + 1). 

Figure 2.6 shows the generator structure.    

 

 

 

 

 

 

 

Figure 2.6: Synchronization Sequence Generator 

 

 

At the beginning of every frame the generator is set to the initial value (1 1 0 1 

0). The first synchronization symbol is identical to the least significant bit of the 

initial value (0). The remaining 79 symbols are obtained by applying the clock 79 

times.  

The sequence obtained by the generator is identical to a pseudo random 

sequence of length 31. This pseudo random sequence is repeated periodically 

x0 x4 x3 x2 x1 

modulo 2 adder 

Synchronization symbol 
to be transmitted with  

2-PSK 

x5 

0 1 1 0 1 
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within the 80-symbol window. Consequently, the synchronization sequence 

consists of 2 periods of length 31 plus the first 18 symbols of another period.  

 

2.3.2.5 Data Block Scrambling 

 

The scrambling operation is performed only on data and reference symbols, 

which constitute data block. This operation consists of modulo 8 addition of the 

data and reference symbol number to the scrambling symbol number, which leads 

to complex multiplication of the data and reference symbol by the scrambling 

symbol. 

The scrambling symbol generator is shown in Figure 2.7. The generator 

polynomial is (x5 + x2 + 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Scrambling Sequence Generator 

 

 

The generator is initialized to 1 at the start of the each frame. Then, the symbols 

are derived from the triplet consisting of the last three bits in the PN register 

according to the following relationship: 

  Scrambling symbol Bk = exp(jnπ/4) 

  , where  n = 4x2 + 2x1 + x0   and   x2, x1, x0 may be 0 or 1. 
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The generation from one symbol to the next is achieved by successive shifting 

of the PN register by three positions. As shown in Figure 2.7, the scrambling 

symbols are independent from data and reference symbols.  

The scrambling sequence is composed of 176 symbols and is repeated every 

106.6 ms. Whatever the data rate may be (1200, 2400, or 3600 bps), data 

scrambling by an eight-phase-state sequence makes it possible to create an eight-

phase-state data block. 

 

2.3.2.6 Error Correction Coding 

 

As the basis for error correction coding for all of the data rates, a constraint 

length 7, rate ½ convolutional encoder is used. Figure 2.8 shows the structure of 

the convolutional encoder.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8:  Convolutional Encoder 

 

 

As shown in the figure, for each bit input to the encoder, two bits are taken as 

the output, the upper output bit T1(x) being taken first. The generator polynomials 

for T1(x) and T2(x) are as follows:  

For T1:   ( x6 + x4 + x3 + x1 + x0 ) 

       

+ 

+ 

input(x) 

T1(x) 

T2(x) 

modulo 2 adder 

modulo 2 adder 
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For T2:   ( x6 + x5 + x4 + x3 + x0 ) 

 

Uncoded data rates for STANAG-4285 waveform are 3600 bps, 2400 bps, and 

1200 bps. Using convolutional encoding technique 2400 bps, 1200 bps, 600 bps, 

300 bps, 150 bps, and 75 bps coded data rates can be obtained.  

For 2400 bps coded data rate, 256 data bits are transmitted in every frame. 

Firstly, these data bits are coded by the convolutional encoder, resulting in 512 

coded bits. Then, the puncturing operation, which is used only in 2400 bps coded 

data rate, is performed at the output of the interleaver. The puncturing technique, 

i.e., skipping every fourth bit at the interleaver output, reduces the number of bits 

to 384. Lastly, 128 data symbols are obtained by using 8-PSK modulation. 

For 1200 bps coded data rate, 128 data bits are transmitted in every frame. The 

convolutional encoder forms a coded bit stream of length 256. The number of bits 

is the same at the input and at the output of the interleaver for 1200 bps coded data 

rate. Lastly, using 4-PSK modulation technique 128 data symbols are formed for 

the frame. 

The number of data bits transmitted every frame is 64 for 600 bps coded data 

rate. At the output of the convolutional encoder 128 coded bits are obtained. Then, 

these coded bits are interleaved. Lastly, 2-PSK modulation technique is performed 

in order to obtain 128 data symbols for the frame. 

For 300, 150, and 75 bps coded data rates, 32, 16, and 8 data bits are 

transmitted in every frame, respectively. The modulation technique used in these 

low data rates is 2-PSK as in 600 bps. In order to get 128 data symbols for every 

frame, the number of bits at the output of the convolutional encoder should be 128. 

This coded bit stream is generated by repeating the pairs of output bits the 

appropriate number of times. It must be noted that the bits are repeated in pairs 

rather than the repetitions of T1(x), followed by the repetitions of the second, 

T2(x). Table 2.5 summarizes the basic formats for error correction coding at each 

of the data rates. 
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Table 2.5: Basic Formats For Error Correction Coding 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2.7  Interleaver and Deinterleaver 

 

The interleaving technique used for STANAG-4285 waveform is a slight 

modification of a normal convolutional interleaver. Figure 2.9 shows a conceptual 

representation of a convolutional interleaver. For a normal implementation, coded 

bits are shifted into interleaver shift registers (rows) on the left side of the figure. 

On each new bit, the commutator switches into the next lower row. Each row has k 

more bits of storage than the preceding one above it. Bits are extracted through the 

output commutator in a similar way and transmitted. In the receiver, deinterleaving 

is performed by a similar operation. The only difference is that each shift register 

in the deinterleaver has k fewer bits of storage than the preceding one above it. For 

STANAG-4285 waveform, this normal interleaving technique is modified by 

making the commutators at the input of the interleaver and at the output of the 

deinterleaver cycle through all of the rows in a nonsequential pattern.  

 

 

 

 

Coded 
Data  
Rate 

Waveform  
Format  

Used 

Effective 
Code  
Rate 

2400 bps 

1200 bps 

600 bps 

300 bps 

150 bps 

75 bps 

8 Phase (3600 bps) 

4 Phase (2400 bps) 

2 Phase (1200 bps) 

2 Phase (1200 bps) 

2 Phase (1200 bps) 

2 Phase (1200 bps) 

2 / 3 

1 / 2 

1 / 2 

1 / 4 

1 / 8 

1 / 16 

Method For 
Achieving That 

Code Rate 

Rate 1/2 Punctured to Rate 2/3 

Unmodified Rate 1/2 Code 

Unmodified Rate 1/2 Code 

Rate 1/2 Code Repeated 2 Times 

Rate 1/2 Code Repeated 4 Times 

Rate 1/2 Code Repeated 8 Times 
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Figure 2.9: Convolutional Interleaver and Deinterleaver 

 

 

According to the different delay increment k for each successive row, there are 

two types of interleavers used in STANAG-4285 waveform. The total interleaving 

delay is 10.24 seconds for the long interleaver, whereas 0.853 seconds for the short 

interleaver. Number of rows of both interleavers is 32 for all data rates. Table 2.6 

shows the specific parameters of the interleaver to be utilized. 

 

 

Table 2.6: Interleaver Parameters 
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The commutator row sequence for outputting bits from the interleaver at all 

data rates other than 2400 bps is as follows: 

This is the normal sequence for one complete cycle of 32 output bits. 

0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  13,  14,  15,  16,  17,  18,  

19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31 

 

For the 2400 bps coded data rate, 512 bits are taken from the encoder as the 

input of the interleaver in every frame. However, 384 bits must be taken out of the 

interleaver instead of 512 bits. Therefore, at the output of the interleaver every 

fourth row is skipped when taking bits out and this process is called puncturing. 

The commutator row sequence for outputting bits from the interleaver for the 8-

PSK modulation used for the 2400 bps coded data rate is as follows: 

This is one complete cycle of 24 output bits and is repeated for every 

eight successive 8-PSK symbols. 

0,  1,  2,  4,  5,  6,  8,  9,  10,  12,  13,  14,  16,  17,  18,  20,  21,  22,  24,  

25,  26,  28,  29,  30 

 

The commutator row sequence for inputting bits in the interleaver is as follows: 

This sequence is generated by taking modulo 32 results of the 

multiplication of each number in the normal sequence by 9. 

0,  9,  18,  27,  4,  13,  22,  31,  8,  17,  26,  3,  12,  21,  30,  7,  16,  25,  

2,  11,  20,  29,  6,  15,  24,  1,  10,  19,  28,  5,  14,  23 

 

The interleaver and deinterleaver are synchronized when the two center 

commutators shown in Figure 2.9 are synchronized, i.e., a bit taken from the ith 

row of the interleaver is sent to the ith row of the deinterleaver. 

 

2.3.2.8 Initialization And Message Protocol 

 

There are some initializations and message formatting to be used in STANAG 

4285 when operating with the coding and interleaving. The shift registers for the 

interleaver and encoder should be initialized. Moreover, in order to indicate the 
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beginning and end of the message bits some message pattern should be inserted 

into the bit stream sent to the encoder. These rules can be stated as follows: 

a) The encoder shift-register and the interleaver shift-registers should be set to 

all zeroes before the start of any message.  

b) A unique 32-bit start of message pattern (SOM) is inserted into the bit 

stream sent to the encoder before the first bit of a message. The 32-bit word 

used for the SOM is as follows in hexadecimal format: 

SOM = 03873C3C (the left most bit is the first bit sent) 

c) A unique 32-bit end of message pattern (EOM) is appended after the last bit 

of the message. The 32-bit word used for the EOM is as follows in 

hexadecimal format: 

EOM = 4B65A5B2 (the left most bit is the first bit sent) 

d) A string of zeroes, equal in length to the interleaver delay plus 102, is 

appended to the EOM. The transmission of bits is terminated only after the 

last of these zeroes is input to the encoder. Using these zeroes, the contents 

of the shift registers of the interleaver and coder are set to all zeroes, getting 

ready for the next message. 

e) The number of flush zeroes is different for each of the data rates and type of 

the interleaver as shown in Table 2.7. 

 

 

Table 2.7: The Number Of Flush Zeroes 

 

 

 

 

 

 

 

 

 

 

 
Data Rate 

Number Of Flush Zeroes 
Long Interleaver  Short Interleaver 

2400 bps 

1200 bps 

600 bps 

300 bps 

150 bps 

75 bps 

      24678           2150 

      12390           1126 

        6246             614 

       3174             358 

       1638             230 

         870             166 



 22 

After insertion of SOM, EOM, and flush zeroes the bit stream to be transmitted 

takes the form as shown in Figure 2.10. The bits are sent to the encoder in the 

order stated as in the figure. 

 

 

 

Figure 2.10: Data bits to be transmitted 

SOM Message Bits EOM Flush Zeroes 
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CHAPTER 3 

 

 

IMPLEMENTATION DETAILS 

 

 

 
3.1 Introduction 

 

The transmitter and the receiver programs of the STANAG 4285 HF modem 

are implemented on TIGER 5410/PC development board that features the Texas 

Instruments TMS320C5410 fixed point DSP processor. Both fixed point C and 

TMS320C54x Assembly codes are utilized throughout the development of the 

system. More information about the features of TIGER 5410/PC board can be 

found in Appendix A. 

According to the type of the arithmetic there are two types of DSP processors, 

namely fixed point and floating point. Although floating point arithmetic provides 

much greater dynamic range, its implementation is generally slower and more 

expensive compared to fixed point implementation. Moreover, fixed point DSP 

processors require less power than their floating point counterparts.  

The features of the TMS320C5410 DSP are described briefly in Section 3.2. 

Section 3.3 discusses the fixed point arithmetic and its numerical effects. In 

particular, the least mean square (LMS) algorithm and finite precision effects are 

discussed also. In the implementation, the LMS algorithm is employed for 

adapting the filter coefficients of the decision feedback equalizer (DFE) at the 

receiver. A review for DFE is given in Section 3.4. 
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3.2 TMS320C5410 Fixed Point DSP Processor 

 

TMS320C5410 (’C5410) is a member of TMS320C54x (’C54x) 16-bit fixed 

point processor family [7]. It has an execution time of 10 ns for single cycle fixed 

point instruction and on-chip memory space of 64K words. Both data and program 

memory segments are composed of 16-bit words.  

Although the word length is 16 bits, the arithmetic logic unit and accumulators 

of ’C54x are 40 bits wide, enabling extended precision. This feature is useful 

especially for filtering operations. 

The memory maps for ’C5410 is given in Figure 3.1. The on-chip memory can 

be mapped into both data and program memory spaces by switching to overlay 

mode. In the overlay mode, on-chip RAM is mapped into both memory spaces as 

shown in Figure 3.1 [7]. 

Operating from on-chip memory has several advantages. Firstly, since no wait 

states are required, higher performance is achieved by using on-chip memory. 

Secondly, it requires lower power and cost than external memory. Therefore, it is 

worth the effort to use the memory efficiently.   

Another critical point, which should be taken into account, is the execution 

time. As indicated before, a single cycle instruction has an execution time of 10 ns 

for ’C5410. Considering STANAG 4285, where frames to be transmitted are 106.6 

ms in length, the maximum number of cycles available to process one frame 

becomes 10.6x106, namely the total allowable cycles spent by transmitter and 

receiver programs for one frame. 

’C54x Assembly language has some application-specific instructions and 

addressing modes that provide efficiency in both speed and memory. In order to 

take full advantage of the specific features provided by ’C54x, the assembly 

language should be utilized for time-critical functions. Therefore, in the 

implementation most of the functions of the transmitter and receiver program are 

written in assembly language. 
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Figure 3.1: Memory maps of TMS320C5410 
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3.3 Fixed Point Implementation 

 

In contrast to floating point format, fixed point implementation forces the user 

to understand the fixed point representation. Scaling, overflow handling, rounding 

are some examples of issues that should be taken into account when using fixed 

point format. Fixed point representation and its finite precision effects are 

discussed in the following subsections. 

 

3.3.1 Fixed Point Representation  

  

In fixed point implementation, signed or unsigned integers are used to represent 

fractional numbers. The range of numbers to be represented is selected by the use 

of a radix point within an integer. Figure 3.2 gives an example of a fixed point 

number with a length of 16 bits. The radix point marks the location where bits to 

the right represent a fractional base-2 addition to the number on the left of the 

radix point. The first bit to the right of the radix point represents 2-1, the second 2-2, 

and so on. For the example in Figure 3.2 the number represented is 2-1+2-2+2-3 

yielding to 0.875. This representation is also called Q-point format representation. 

For this example, since there are 15 bits representing the fractional part, the 

number is said to be in Q15 format. 

 

 

 

 

 

 

Figure 3.2: An example of a fixed point number  

 

 

For Q15 format, the smallest non-zero magnitude, i.e. the resolution, is 2-15. For 

smaller Q-point formats, such as Q14 and Q13, the resolution increases and hence 

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
9 8 7 6 5 4 3 2 1 0 10 13 12 14 11 15 

radix point 

bit number: 
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the accuracy decreases. Therefore, the maximum possible Q-point format should 

be used in order to obtain closer values to results of infinite precision. 

The main difficulty in fixed point implementation arises from manipulation of 

numbers with different Q-point formats. Handling such numbers requires bit-wise 

shifting operation that increases execution time. Also, in order to prevent 

overflows the results of arithmetic operations should be scaled in some cases. As a 

consequence, it is necessary to make certain adjustments to the numbers when 

using fixed point format. 

 

3.3.2 Quantization Errors 

 

In a digital implementation of a filtering operation, quantization errors arise 

from analog to digital conversion and finite word-length arithmetic [8].  

For a uniform quantization process with a step size ∆, which is sufficiently 

small, the quantization error can be assumed as uniformly distributed over the 

range −∆/2 to ∆/2 [11]. Then, the variance of the quantization error is given by 

12

2
2 ∆=σ                                                                                                   (3.1) 

If each quantizing level is represented by B bits plus sign bit, the quantizer step 

size becomes 2−B. Therefore, the variance of the quantization error becomes 

 
12

2 B2
2

−
=σ                                                                                                (3.2) 

In the implementation of STANAG 4285 HF modem, the input data and filter 

coefficients are represented generally by 15 bits plus sign bit. Hence, the variance 

of error has a value of 2−30/12.  

Another source of the quantization error is finite word-length arithmetic. If no 

overflows take place, additions do not introduce errors. However, each 

multiplication introduces an error after the product is quantized. These errors may 

cause the performance of the implementation of the algorithms deviate from their 
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theoretical values. Especially, adaptive filtering algorithms are sensitive to finite 

word-length arithmetic.  

 As indicated before, the accumulators of ’C54x are 40 bits wide. Therefore, in 

a filtering operation it is not an advisable choice to quantize the product after each 

multiplication. Instead, the quantization process can be performed after 

accumulation of products.  

 

3.3.3 LMS Algorithm and Finite Precision Effects 

 

The least mean square (LMS) algorithm is a member of the family of the 

stochastic gradient algorithms [8]. The algorithm is used to adapt the weights of an 

FIR filter (w(n)) to minimize the mean square error between the filter’s output 

(y(n))and the desired signal (d(n)). Representing the input vector as u(n) the LMS 

algorithm can be summarized as follows: 

 y(n) = wH(n)u(n)                                                                                      (3.3) 

 e(n) = d(n) − y(n)                                                                                     (3.4) 

 w(n+1) = w(n) + µu(n)e*(n)                                                                    (3.5) 

where e(n) denotes the estimation error at nth time instant and µ represents the step 

size parameter.  

Assuming that the input data u(n) and the weights w(n) are statistically 

independent, the LMS algorithm converges in the mean square if and only if the 

step size parameter µ satisfies the condition [8] 

 
max

2
0

λ
<µ<                                                                                            (3.6) 

where λmax is the largest eigenvalue of the correlation matrix R (R=E{u(n)uH(n)}).  

The value of step size parameter also affects the steady state excess mean 

square error ξex(∞). Using the independence assumption of u(n) and w(n) it can be 

shown that the excess error is proportional to the step size µ [12] 

 ( ) )(tr
2
1

minex Rµξ≈∞ξ                                                                             (3.7) 
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where tr(R) denotes the trace of R. As a result, selection of a smaller step size 

decreases the excess mean square error. 

On the other hand, the convergence rate of the LMS algorithm is inversely 

proportional to the step size value and directly proportional to the eigenvalue 

spread of R, which is defined as 

 
min

max

λ
λ

=χ                                                                                                  (3.7) 

Therefore, if the eigenvalue spread of R is wide or the step size parameter has a 

small value then it takes a long time for the LMS algorithm to converge. 

Consequently, the selection of the step size parameter plays an important role in 

both convergence rate and excess error value. 

Finite precision has some significant effects on LMS algorithm. In [9] it is 

shown that the total output mean squared error (MSE) has a term due to the error 

∆w(n) in the quantized tap-weight vector wq(n). Moreover, this contribution to the 

total error is inversely proportional to the step size parameter µ. Therefore, in 

practice the step size parameter can only be decreased to a level at which the 

effects of quantization errors in the tap weights are not significant [8].  

Another phenomenon in finite precision LMS algorithm is known as stalling 

[9], [13]. This phenomenon occurs when the update term in the algorithm 

recursion becomes smaller in magnitude than the least significant bit of the tap 

weight. Therefore, reduction of step size parameter value µ beyond a certain value 

increases the steady state MSE due to the stalling phenomenon. Another result 

obtained in [9] and [13] is that the steady state MSE approaches the performance 

of the analog LMS algorithm as the number of bits in the digital implementation 

approaches infinity. 

In some cases the tap weights in the LMS algorithm may attain large values 

although the inputs, disturbances, and estimation errors remain bounded [14]. This 

unbounded behavior of parameters is called as parameter drift, which may be 

viewed as a hidden form of instability [8]. 
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3.4 Review of the Decision Feedback Equalizer (DFE) 

 

Because inter-symbol interference (ISI) can be quite severe at times for HF 

transmission, the nonlinear equalizer DFE, which was first introduced by Austin in 

1967 [15], is to be preferred over the linear equalizer. The linear equalizer only 

passes the received symbols through a single transversal filter, but the DFE also 

uses previous decisions.  

In order to understand the idea of the DFE, consider a baseband channel with 

impulse response sequence {hn}. In the absence of noise, the response of the 

channel to an input sequence {xn} is given by 

 � ��
>

−
<

−− ++==
k 0k

knk
0k

knkn0knkn xhxhxhxhy                                 (3.8) 

The second and third terms in (3.8) are due to the precursors and postcursors of the 

channel impulse response, respectively. The DFE is composed of feedforward and 

feedback sections as shown in Figure 3.3. The feedforward section is identical to 

the linear equalizer and the feedback section is used to remove the ISI caused by 

the previously detected symbols, i.e. due to postcursors of the channel impulse 

response. However, decision errors lead to residual ISI which may increase the 

probability of error of future decisions. Therefore, error propagation may reduce 

the effectiveness of DFE. Analyses of the error propagation for DFE can be found 

in [16], [17], [18]. 

 

 

 

 

 

 

 

 

Figure 3.3: DFE structure 
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It is known that the fractionally spaced equalizers (FSE) have an advantage in 

that they are less sensitive to timing phase [19]. Noting the performance of DFE in 

a multipath fading environment, the fractionally spaced DFE structure was first 

suggested by [20] and [19]. The structure of a fractionally spaced DFE, which has 

tap spacings at half the symbol interval on the forward taps, is given in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Fractionally spaced DFE structure 

 

Since LMS algorithm is employed for adapting the filter coefficients of DFE in 

the implementation, finite precision also affects the performance of DFE. 
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CHAPTER 4 

 

 

TRANSMITTER PROGRAM 

 

 

 
4.1 Introduction 

 

The transmitter program initializes transmitter parameters and registers; takes 

the data bits from an input bit file and after operations according to the message 

protocol it produces frames. Then, the frames are written to an output file in binary 

format. Both C and ‘C54x Assembly programming languages were employed 

while developing the transmitter functions. The block diagram of the transmitter is 

given in Figure 4.1. 

During the formation of the frames, firstly, the data bits are coded through the 

convolutional encoder in the transmitter. Then, the coded bits are sent to the 

interleaver as input. Using the corresponding modulation technique for selected 

data rate, the data symbols are formed from the interleaved data symbols. After 

that, the synchronization, data, and reference symbols are arranged in order to 

constitute the frame structure shown in Figure 2.5. The next operation performed 

is data block scrambling. Only data and reference symbols, that constitute the data 

block, are scrambled. While synchronization sequence is transmitted in 2-PSK 

format, the data block forms eight-phase-state sequence because of the scrambling 

process. After scrambling, transmission filtering and transposition to 1800Hz 

processes are performed by the transmitter. The flowchart of the transmitter 

operations is given in Figure 4.2. 



 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Block diagram of the transmitter 

(Π denotes interleaver) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Flowchart of the transmitter operations 
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4.2 Implementation of the Transmitter Program 

 

There are mainly three processes performed by the transmitter program. Firstly, 

at the beginning of a message transmission, the transmitter parameters and 

registers are initialized by the program. Secondly, start of message pattern (SOM), 

end of message pattern (EOM), and flush zeroes are inserted into the message bits 

in order to conform to the message protocol. Lastly, the program forms frames 

using the required characteristics for STANAG 4285 waveform. The main 

function of the transmitter program is the “trans_main” function. It performs 

initializations and message protocol; and calls the “transmitter” function for the 

formation of frames. 

The transmitter program includes many functional blocks. The following 

subsections present these functional blocks in terms of algorithms utilized, their 

memory usage and cycle counts per frame. The CPU cycles given are measured 

when both data and program memory spaces are allocated to on-chip memory. 

Obviously, using external memory will increase the number of cycles spent. 

 

4.2.1 Initializations 

 

When the transmitter program starts to execute, first operation performed by the 

trans_main function is initialization. After the user selects the coded data rate and 

the interleaver type, the transmitter parameters are initialized by the function. It 

sets the new message flag to 1 and the end of message flag to 0, meaning that the 

trans_main function is called for the first time and the start of the message pattern 

(SOM) should be transmitted before message bits. Moreover, arrays and variables, 

such as concerning the modulation type, the number of bits transmitted per frame 

(given in Table 4.1) are initialized according to the selected data rate. Then, the 

shift register of the convolutional encoder is filled with all zeroes. Lastly, the 

initialization of the interleaver is performed setting the shift registers to all zeroes.  

The cycle counts for the initialization process are measured as 11466 with long 

interleaver and 6269 with short interleaver. The difference is caused by the number 
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of shift registers to be set to zeroes. The program memory allocated for 

initialization is 133 words. 

 

 

Table 4.1: Number Of Bits Transmitted Per Frame 

 

 

 

 

 

 

 

 

 

4.2.2 Message Protocol 

 

As stated in Section 2.3.2.8, the transmitter inserts a unique 32-bit start of 

message pattern (SOM) into the beginning of the message bits and appends a 

unique 32-bit end of message pattern (EOM) after the message bits. These 

message patterns are required for the receiver to detect the start and end of 

message bits. Moreover, flush zeros should be appended after the EOM, in order to 

fill the encoder shift register and interleaver shift registers with zeroes.  

The trans_main function checks the start of message and end of message flags 

to transmit SOM, message bits, EOM, and flush zeroes in the correct order. The 

algorithm used for the message protocol is given in Figure 4.3. 

Firstly, the start of message flag is checked by the function. If it is 1, namely, if 

no message bits have been transmitted yet, 32-bit SOM pattern is to be transmitted. 

However, this process exhibits differences between the different data rates. As 

given in Table 4.1, the number of bits transmitted per frame is less or equal to 32 

for data rates less than 600 bps. Therefore, 32-bit SOM is transmitted in 4 frames 

for 75 bps, in 2 frames for 150 bps and in one frame for 300 bps. However, since 

the number of bits transmitted per frame is greater than 32 for other data rates, also 

Coded Data Rate Bits per Frame 

2400 bps 

1200 bps 

600 bps 

300 bps 

150 bps 

75 bps 

256 

128 

64 

32 

16 

8 
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message bits are transmitted in the first frame. In that case, the transmitter appends 

224 message bits for 2400 bps, 96 message bits for 1200 bps and 32 message bits 

for 600 bps at the end of 32-bit SOM. After completion of transmitting SOM 

pattern, the start of message flag is set to 0. 

The transmitter takes the message bits from the input bit file on PC and checks 

if the end of file is reached or not. The end of file flag is initially set to 0. 

However, if the end of file is reached, the transmitter sets the flag to 1. While the 

end of message flag is 0, the transmission of message bits continues. When it is 1, 

the transmitter appends 32-bit EOM pattern and flush zeroes at the end of message 

bits. After completion of transmitting last flush zero, the program terminates. 
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Figure 4.3: Flowchart of the Transmission Control 
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4.2.3 Convolutional Encoder 

 

The SOM, message, EOM, and flush zero bits constitute the data bits that 

should be processed and transmitted as a sequence of frames. The trans_main 

function calls the transmitter function in order to process data bits and form 

frames. The first operation carried out by transmitter function is encoding. As 

stated in Section 2.3.2.6, the convolutional encoder used for STANAG 4285 has a 

rate of 1/2 and constraint length of 7. The number of input and output bits of the 

encoder is given in Table 4.2. 

 

 

Table 4.2: Number of input and output bits of the encoder 

 

 

 

 

 

 

 

 

 

For every input bit I(x) the encoder outputs two bits, T1(x) and T2(x). For data 

rates 300, 150, and 75 bps, the output bit pairs are repeated 2, 4, and 8 times, 

respectively, in order to obtain 128 bits for 2-PSK modulation.  

Since the number of input bits to the encoder is different for data rates, the 

execution speed of the encoding process exhibits differences between them as 

shown in Table 4.3. It requires 5944 cycles for 2400 bps and as the data rate 

decreases the cycle counts decreases also. The program memory requirement of 

encoding process is 330 words. 

 

 

 

Coded Data Rate No. Of Input Bits No. Of Output Bits 
 

2400 bps 

1200 bps 
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256 

128 

64 

32 
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16 
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256 

128 
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32 
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Table 4.3: Cycle counts for encoding process 

 

 

 

 

 

 

 

 

 

4.2.4 Interleaver 

 

There are two interleaving options for STANAG 4285, long and short 

interleaving. As indicated in Section 2.3.2.7, the total interleaving delays are 10.24 

and 0.853 seconds for long and short interleavers, respectively.  

The delay increment between successive shift registers is the largest for 2400 

bps data rate with long interleaver as shown in Table 2.6. For that data rate, the 

total number of delay bits in the long interleaver is 23808. If every bit of a memory 

word were used for shift registers, then a data memory of 1488 words would be 

reserved for long interleaver: 

1 word = 16 bits                                                                           (4.1) 

23808 / 16 = 1488 words                                                             (4.2) 

Since the delay increment is 48 for 2400 bps, then every row would have 3 more 

words than the preceding one above it. However, considering other data rates with 

long interleaver, the values of the delay increment are 24 and 12. Therefore, the 

most convenient way to reduce the complexity is to reserve only 12 bits of a 16-bit 

memory word for shift registers. With this choice, the difference in successive 

rows of long interleaver becomes 4 words of memory for 2400 bps, 2 words for 

1200 bps and 1 word for other data rates. In this case, a data memory of 1984 

words should be reserved for long interleaver: 

Data Rate Cycle Counts 

2400 bps 

1200 bps 

600 bps 

300 bps 

150 bps 

75 bps 

5944 

3000 

1528 

920 

616 

464 
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  23808 / 12 = 1984 words                                                            (4.3) 

The values of delay increment are much smaller for short interleaver compared 

with the long one as shown in Table 2.6. Maximum value of delay increment is 4 

and in this case, the total number of delay bits becomes 1984. Since this value is 

equal to the number of words used for long interleaver, every word of memory can 

be reserved for a delay bit. Therefore, total memory of 1984 words is required for 

short interleaver as for the long one. Consequently, both types can use the same 

data memory. 

The speed of the interleaving process plays an important role for the overall 

speed of the transmitter. In order to reduce the processing time, the interleaver 

employs circular addressing mode. The number of cycles spent by interleaving 

process is given in Table 4.4.  

 

 

Table 4.4: Cycle counts for interleaving process 

 

 

 

 

 

 

 

Since every delay bit of a shift register utilizes a whole word in short 

interleaver, there is no need to shift the words. Instead, overwriting by circular 

addressing is adequate in order to write into or read from the interleaver. However, 

12 delay bits employ a word of memory in long interleaver and hence, shifting 

operation is needed. Therefore, two types of interleavers exhibit differences in 

cycle counts for the same data rates.  

The long and short interleavers require 110 and 141 words of program memory, 

respectively. The algorithms utilized lead to this difference. 

 

 

Data Rates 

1200 bps 

2400 bps 

600 – 75 bps 

Long Interleaver 

10256 

22851 

5196 

Short Interleaver 

7223 

17378 

3679 

Cycle Counts 
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4.2.6 Generation of Data Symbols 

 

The first operation in which fixed point numbers are used is the generation of 

data symbols. The transmitter employs 8-PSK, 4-PSK, and 2-PSK modulation 

techniques for 2400 bps, 1200 bps, and other coded data rates, respectively. The 

interleaved data bits are assigned to PSK symbols using the transcoding process as 

explained in Section 2.3.2.2. For each data rate 128 data symbols are generated in 

a frame, totally. 

The PSK symbols are stored in Q15 format. As seen in Figure 2.4, the real part 

of Symbol-0 and the imaginary part of Symbol-2 are 1. Therefore, saturation 

occurs when storing these symbols in Q15 format. 

Table 4.5 gives the information about the number of cycles spent for generation 

of the data symbols. The number of input bits is 384, 256, and 128 for 2400 bps, 

1200 bps, and other coded data rates, respectively. Therefore, the number of cycles 

spent for the operation is different for different data rates. Moreover, the program 

memory allocated for the process is 65 words. 

 

Table 4.5: Cycle counts for generation of data symbols 

 

 

 

 

 

 

4.2.7 Frame Formation 

 

Every frame in STANAG 4285 consists of synchronization, reference and data 

symbols. After generation of data symbols, all of the symbols should be grouped 

and arranged according to the frame structure as explained in Section 2.3.2.3.  

The number of CPU cycles required for this process is 937 and the program 

memory space allocated is 106 words. 

Coded Data Rate Cycle Counts 

2400 bps 

1200 bps 

600-75 bps 

4559 

3918 

3277 
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4.2.8 Scrambling 

 

The scrambling process is performed only on data and reference symbols. The 

only operation performed is complex multiplication of data and reference symbols 

by scrambling symbols. Since there is no possibility of saturation, the outputs of 

scrambling process are stored in Q15 format.  

Figure 4.4 shows the scrambling operation. As indicated in 2.3.2.5, the 

scrambling sequence consists of 8-PSKsymbols, which are independent of the data 

and reference symbols and are repeated each frame. After scrambling operation, 

the data and reference symbols become 8-PSK, whereas the synchronization 

sequence is transmitted as 2-PSK. 

 

 

 

 

 

 

 

Figure 4.4: Scrambling operation 

 

 

The scrambling process requires 1901 CPU cycles and 33 words of program 

memory. 

 

4.2.9 Transmission Filtering 

 

For the ideal channel case, the transmission and reception filters, hT(t) and hR(t) 

respectively, should be matched in order to maximize SNR in the receiver. 

Moreover, they should be so chosen that an intersymbol interference (ISI) free 

transmission is achieved. ISI free transmission can be accomplished if overall 

signal pulse shape at the receiver matched filter output satisfies the Nyquist 
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criterion. A widely used pulse in practice with desirable spectral properties is the 

raised cosine pulse [4]. The raised cosine spectrum is given as 
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where α is called the rolloff factor, and it is in the range 0 ≤ α ≤  1. The expression 

of the overall pulse shape in time domain is 

 )t(h)t(h)t(g RT ∗=                                                                                  (4.5) 

where “∗ ” denotes convolution. Since the reception filter is matched to the 

transmission filter, their impulse responses satisfy the relation 

 )t(h)t(h TR −= ∗                                                                                        (4.6) 

where “*” denotes complex conjugation. Therefore, the spectral shape of the 

overall pulse can be simplified as 

 2
TTTRT )f(H)f(H)f(H)f(H)f(H)f(G === ∗                                      (4.7) 

by using(4.6). As a result, the responses of the transmission and reception filters 

satisfy the relation 

 )f(G)f(H)f(H RT ==                                                                        (4.8) 

 

The pulse shape used for transmission and reception filters in STANAG 4285 is 

a root-raised cosine pulse shape with a rolloff factor of 0.2. The pulse is sampled at 

N = 4 samples/symbol and is truncated to span 10 symbols. Therefore, the filtering 

operation leads to 1024 samples per frame at the output. Time characteristic of this 

pulse is given in Figure 4.5. 
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Figure 4.5: Impulse response of transmission filter 

 

 

The filter coefficients and symbols are all stored in Q15 format. Since there is 

no probability of saturation, the output of the filter is also stored in Q15. 

The filtering operation requires 125173 cycles of execution time. This number 

may seem to be a bit large, but taking into account the filter length and the number 

of samples to be filtered it can be considered as moderate. Moreover, the program 

memory space allocated for filtering operation is 69 words. 

 

4.2.10 Transposition to Intermediate Frequency at 1800 Hz 

 

Transposition to intermediate frequency is the last operation performed by the 

transmitter program. This process includes multiplication of in-phase and 

quadrature phase channel signals with cosine and sine signals at 1800 Hz 

respectively, and addition of multiplication results. Figure 4.6 shows the 

transposition to intermediate frequency (IF). 

Using the relationship between the sample rate 4/T (9600 Hz) and the 

intermediate frequency 1800 Hz, a look-up table of length 16 is required for both 

sine and cosine signals in Q15 format. The output of the modulation process is also 

stored in Q14 format. 
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Figure 4.6: Block diagram of transposition to IF frequency 

 

 

The number of CPU cycles used by the process is 5228 and the program 

memory space requirement is 46. 

 

4.3 Resource Requirements of The Transmitter Program 

 

The transmitter program implemented on ’5410 DSP processor requires 3.87 

Kwords of data and 3.37 Kwords of program memory space, totally. The data 

memory is mainly occupied by the interleaver with 1984 words. Constant arrays, 

such as transmission filter coefficients, synchronization and scrambling symbols 

use the remaining part of the data memory. Considering program memory space, 

message protocol routine uses most of the memory with 1.5 Kwords.  

The execution time of the transmitter program varies with data rates. Since the 

number of bits to be transmitted in 2400 bps coded data rate is larger than the 

others, the CPU cycles required is the largest one for this data rate. Table 4.6 

shows maximum CPU cycles used for different data rates. 
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Table 4.6: Cycle counts for transmitter program 

 

 

 

 

 

 

 

 

 

As shown in Table 4.6 the maximum number of cycles required for transmitter 

program is 169624 per frame. Since every frame has a length of 106.6 ms, 

approximately 10.6x106 cycles is available for ’C5410 in order to process the 

frame. As a consequence, the transmitter program uses maximum 1.6% of the time 

available for processing the frame. 

 

Data Rate Cycles 
2400 bps 

1200 bps 

600 bps 

300 bps 

150 bps 

75 bps 

169624 

153437 

146262 

145685 

145364 

145205 
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CHAPTER 5 

 

 

RECEIVER PROGRAM 

 

 

 
5.1 Introduction 

 

The STANAG 4285 waveform is suitable for reception using a variety of 

receive algorithms. In this implementation, the receiver structure is based on a 

fractionally spaced LMS DFE. In order to improve the convergence of the LMS 

algorithm a multipass technique is employed for training the equalizer.  

The block diagram of the receiver is given in Figure 5.1. The following sections 

present the implementation details of the receiver program. 

 

5.2 Implementation of the Receiver Program 

 

The receiver program mainly consists of two functions. The first function, 

‘rec_main’, performs initializations, reads 1024 samples from the input file where 

the sample rate is 4/T (9600Hz) and then calls the ‘receiver’ function, which 

demodulates the signal and decodes bits. The flowchart of the ‘receiver’ function 

is given in Figure 5.2 There are two modes of the receiver program, acquisition 

and tracking. Firstly, the receiver is set to acquisition mode and seeks to detect the 

synchronization sequence within the received samples. If the synchronization is 

obtained, then the receiver switches to tracking mode. 
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The following subsections describe the functional blocks of the receiver 

program with the resource requirements for ’C54x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Block diagram of the receiver 

(Π-1 denotes deinterleaver) 
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Figure 5.2: Flowchart of the receiver function 
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5.2.1 Initializations 

 

The first operation performed by the receiver program is initialization. After the 

user selects the coded data rate and the interleaver type, the receiver parameters 

are initialized firstly. Main operations performed can be summarized as follows: 

• The receiver mode is set as acquisition, i.e. the synchronization 

sequence has not been detected yet. The other receiver mode is tracking. 

• ‘Start of message’ flag is set to 0, i.e. the SOM sequence has not been 

detected within the decoded bits yet. When SOM is detected, this flag 

will be set as 1. 

• ‘End of message’ flag is set to 0, i.e. the EOM sequence has not been 

detected yet. 

• ‘Quit receiver’ flag is set to 0. When its value becomes 1, the receiver 

program terminates. 

• ‘Viterbi’ flag is set to 0. Viterbi decoding process is not performed 

unless this flag is set to 1. 

• ‘Output data’ flag is set to 0. The receiver waits for the detection of the 

SOM sequence in order to output the decoded bits. 

In addition to receiver parameters, the program initializes the data memory used 

by the deinterleaver, equalizer and Viterbi decoder. The program memory 

allocated by the initialization routine is 350 words and 26000 cycles are required 

for the process. 

 

5.2.2 Transposition to Baseband and Reception Filtering 

 

Transposition to baseband is the first operation performed on the received 

samples regardless of the receiver mode. This process includes the multiplication 

of the received signal with cosine and sine signals at 1800 Hz and reception 

filtering. The reception filter is the same of the transmission filter explained in 

Section 4.2.9.  
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The input to this process is in Q15 format, but the output is stored in Q14 

format in order to prevent the saturation. The operation spends 118473 cycles, 

mainly due to reception filtering. Moreover, it requires a program memory of 118 

words.  

 

5.2.3 Signal Detection 

 

In order to process received data and decode bits the receiver should firstly 

detect the frame out of the received samples. Every frame has the synchronization 

sequence of length 80 symbols as a first block. Therefore, this sequence is used for 

the detection of the signal. 

The synchronization sequence consists of 2 periods of a 31-symbol pseudo 

random (PN) sequence and first 18 symbols of that sequence. The signal detection 

algorithm is based on this periodicity [1].  

The first operation in signal detection is correlating the sequence of received 

input samples g(i) with the 31-symbol length reference PN sequence xpnref(i): 

 )i(x)i(g)i(v pnref�=                                                                                 (5.1) 

where “� ” denotes continuous correlation and v(i) represents the output signal of 

the correlator. This process is performed at sample rate (4/T).  

After obtaining the correlator output sequence, the energy E(i) over v(i) is 

calculated within a sliding window using the following equation: 

 �
=

+=
NH

0k

2)ki(v)i(E                                                                                  (5.2) 

where NH is the maximum length expected for the channel impulse response.  

Because of the periodicity of the synchronization sequence, E(i) will also be 

periodic [1]. The maximums of E(i) are obtained for two periods of the transmitted 

PN sequence, and the minimum is obtained in the middle between two periods [1]: 

 Epeak1(i) = E(i) 

 Epeak2(i) = E(i+31*4)                                                                                (5.3) 
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 Emiddle(i) = E(i+31*4/2) 

Lastly, the ratios Epeak1(i)/ Emiddle(i) and Epeak2(i)/ Emiddle(i) are compared with a 

threshold. If both ratios are grater than the threshold then the synchronization is 

achieved.  

The algorithm block diagram for signal detection is given in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.3: Block diagram for signal detection process 

 

 

Signal detection routine requires variable number of cycles from the CPU. In 
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5.2.4 Frequency Offset Correction 

 

According to the required characteristics stated in [1], the modem must be 

capable of tolerating a frequency error of ± 75 Hz between the transmission and 

reception HF carriers (transmitter/receiver frequency error and Doppler shift 

included) and rate of frequency change up to 3.5 Hz. There are two types of 

frequency offset correction methods used in the implementation, coarse and fine 

frequency correction methods.  

Coarse frequency correction method is based on spectral analysis where 2048 

point Fast Fourier Transform (FFT) operation is performed on square of the input 

signal.  

As indicated in Section 2.3.2, each frame consists of 256 symbols (dn’s) and 80 

of them are real 2-PSK synchronization symbols. These symbols are passed 

through a transmit filter having an impulse response gtr(t) and transmitted signal 

x(t) is obtained. 

 n tr
n

x(t) d g (t nT)
∞

=−∞
= −�                                                                            (5.4) 

Then x(t) is passed through the channel and additive white Gaussian noise 

(AWGN), n(t), is added. For modelling the frequency shift, this signal is 

multiplied by ej2πνt where ν is the frequency offset.  

 j2 t
n tr C

n

r(t) d g (t nT) h (t) n(t) e
∞

πν

=−∞

� �= − ∗ +� 	
 

�                                            (5.5) 

Then, the received signal r(t) is passed through the receive filter filter (gr(t)) and 

y(t) is obtained. 

 j2 t j2 t
n tr C r r

n

y(t) d g (t nT)*h (t)*g (t) e n(t)*g (t)e
∞

πν πν

=−∞

� �= − +� 	
 

�              (5.6) 

This final form of y(t) can be simplified to the form in (5.7). 

 j2 t
n

n

y(t) d h(t nT)e m(t)
∞

πν

=−∞
= − +�                                                           (5.7) 
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where h(t) = gtr(t)*hC(t)*gr(t) and m(t)=n(t)*gr(t) ej2πνt. Notice that m(t) is a zero 

mean Gaussian signal. Sampling y(t) at time instants kT/4, k=0,1,..., the signal 

samples are obtained. 

 j2 kT / 4
k n k

n

y d h(kT / 4 nT)e m
∞

πν

=−∞
= − +�                                                    (5.8) 

Then, yk’s are squared for finding the frequency offset 

 

2 2 2 j2 kT / 2
k n

n

i m k
i m ,m i

y d h (kT / 4 nT)e

d d h(kT / 4 iT)h(kT / 4 mT) z

∞
πν

=−∞
∞ ∞

=−∞ =−∞ ≠

= − +

− − +

�

� �
                                  (5.9) 

where zk is a zero mean complex Gaussian noise denoting signalxnoise and 

noisexnoise components. Moreover, dk’s can be assumed to be independent, 

therefore expected value of the cross products are also zero. As indicated in 

Section 2.3.2, last 176 symbols in a frame composed of data and reference 

symbols are scrambled, therefore they can be assumed to be equally likely 

distributed over 8 complex symbols. Then, the squares of these symbols become 

equally likely distributed over 4 complex symbols. Hence, their mean is zero. 

However, first 80 symbols of a frame, i.e. the synchronization sequence, are 

composed of real symbols and when they are squared their values become all 1’s. 

In conclusion, real synchronization sequence causes a large non-zero mean when 

squared. This DC value gives rise to a peak in Fourier transform of the squared 

signal which is at the origin if there is no frequency offset. According to the 

frequency offset term ej2πνkT/2 in (5.9), the peak will shift to the πνT radians. This 

peak can be detected with Fast Fourier Transform (FFT) of the squared signal. If N 

point FFT is used, then the frequency resolution becomes 

 
2

f
NT

∆ = Hz                                                                                          (5.10) 

In the implementation, 2048-point FFT is used for the frequency offset 

correction and the frequency resolution is 2.34375 Hz from (5.10). Figure 5.4 

shows the block diagram of the coarse frequency offset estimation. 
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Figure 5.4: Block Diagram of the Coarse Frequency Offset Estimation 

 

Since the frequency resolution in coarse frequency offset correction is 2.34375 

Hz, a fine frequency offset correction is needed to minimize the offset error. The 

fine frequency offset correction method used in the implementation is based on 

channel estimation with LMS algorithm.  

Samples of last two frames are stored in the data memory of the receiver as 

shown in Figure 5.5. Making use of the synchronization sequence channel 

coefficients are estimated for two frames by LMS algorithm. Then, frequency 

correction routine calculates the phases of the maximum channel taps and the 

difference gives the phase shift in 1024 samples due to the frequency offset.   

Let the phases of the maximum channel taps be θn and θn+1 for nth and (n+1)th 

frames, respectively. Considering the frequency offset given in (5.8), the phase 

difference of the maximum channel taps corresponds to 

 2πνokT/4 = θn+1 - θn                                                                               (5.11) 

where k is 1024 (number of samples in a frame). Using 5.11, the frequency offset 

can be found. 

 

 

 

 

 

 

Figure 5.5: Frames stored in the data memory 
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The fine frequency offset correction process requires 1014 words of program 

memory including channel estimation routine. The process uses 667828 CPU 

cycles. Moreover, the coarse frequency offset correction uses 744 words of 

program memory and needs 538335 CPU cycles. 

 

5.2.5 Fractionally Spaced LMS DFE with Multipass Technique 

 

The equalizer employed in the implementation is an adaptive fractionally 

spaced decision feedback equalizer (FSDFE). The tap spacings of the feedforward 

part are at T/2 and least mean square (LMS) algorithm is utilized for the adaptation 

of the filter coefficients. The feedforward part spans 16 symbols and the feedback 

part spans 8 symbols. 

Although LMS algorithm is well known for its simplicity and robustness, its 

convergence is slower than other adaptive algorithms. However, for fast-varying 

channels an adaptive algorithm possessing a fast convergence property is required. 

To improve the convergence of the LMS algorithm, the multipass technique is 

employed in the implementation.  

The STANAG 4285 waveform includes synchronization and reference symbols 

inserted into each frame that can be used for training operation of the equalizer. 

Although the reference symbols are scrambled by a 8-PSK scrambling sequence, 

the scrambling symbols are all known by the receiver. In the multipass technique, 

the 80-symbol length synchronization sequence is repeatedly trained by the LMS 

algorithm until a pre-assigned number of iterations is reached. Denoting the 

iteration number index as ‘k’, the total number of iterations as ‘K’ and the symbol 

index as ‘n’, the multipass LMS algorithm employed in the implementation can be 

described as follows. 

 For n=1, 2, …, 80 and k=1, 2, …, K 

 Wk(n) = Wk(n-1) + µXk(n)ek*(n)                                                          (5.12) 

ek(n)� error for the nth symbol 



 57 

where Wk(n) and Xk(n) denote the weight and input vector, respectively. Then the 

initial weight vector for each iteration is obtained as 

 Wk(1) = Wk-1(80)                                                                                   (5.13) 

 When the synchronization sequence part of the received samples is fed to DFE, 

the receiver checks the number of incorrect decisions and controls the flow of the 

program. The flowchart of the control process is given in Figure 5.6.  When the 

number of decision errors is smaller than a pre-assigned threshold, then the ‘error 

free pass’ counter is incremented. However, if the number of errors exceeds the 

threshold, the counter is set to zero. After that, the counter value is compared to 

the pre-assigned maximum iteration number of the multipass operation. If the 

iteration number is reached, the equalization of synchronization part is ended. 

Otherwise, the operation is performed one more time. When equalization process 

fails, i.e. if many decision errors occur, ‘bad frame’ counter is incremented by one. 

The receiver program checks this counter and when a threshold value is reached it 

terminates.  

The improvement in the performance of DFE with multipass technique is 

shown from the results given in Table 5.1. The table gives the number of errors 

detected for an uncoded test at 2400 bps with 192000 bits. The channel employed 

in the test has 2 independent equal-power Rayleigh paths with 0.5 Hz Doppler 

spread and separated by 1 ms. As shown in Table 5.1 significant improvement is 

achieved for high SNR values. As the noise power increases the improvement 

becomes negligible.  

 

Table 5.1: Number of errors for an uncoded test with 192000 bits at 2400 bps 

 

 

 

 

 

 

 

Number of errors within 192000 bits 

10 dB 15 dB 20dB 25 dB 

No. of 
iteration

s 
1 

2 

4 

6 

8 

    8585         

    8564             

    8546  

    8531 

    8520 

    1751         

    1643             

    1635  

    1616 

    1603 

    644         

    444             

    257  

    138 

    131 

    569         

    355             

    214  

    100 

    42 
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After the multipass training, as shown in Figure 5.2, the whole frame is fed to 

the equalizer. The filter coefficients are also updated for reference symbols and so 

to follow rapid changes in the channel is enabled. The unscrambling process for 

data and reference symbols is also performed in the equalizer before they are fed 

to the decision device. This process includes only the multiplication of symbols 

with conjugates of the scrambling symbols.  

The main problem encountered in the implementation of the LMS DFE with 

16-bit length filter coefficients was the parameter drift. Except for the low signal 

to noise ratio (SNR) values, the filter coefficients attained arbitrary large values 

with slight increases in each equalization process. This unbounded behavior is 

especially observed for non-fading channels with high SNRs. In order to tackle 

this problem, double precision (2 words) is used for the filter coefficients. 

Obviously, the number of CPU cycles spent by the equalizer is increased because 

of the double precision arithmetic. While the multiplication of two 16-bit values 

requires only one instruction, the multiplication of a 32-bit word with a 16-bit one 

requires two 16-bit multiplications and an addition. Considering the filtering and 

coefficient update operations, the double precision has a significant effect on 

execution time. 

The number of CPU cycles used for the equalization process depends on the 

maximum iteration number of the multipass technique. If the maximum iteration 

number is selected as 8, then the whole equalization process requires at most 

3.92x106 CPU cycles. 
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Figure 5.6: Flowchart of the multipass equalization control 
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5.2.6 Soft Bit Decision Computation 

 

The Viterbi algorithm used in the receiver program operates on the soft decision 

values. Therefore, the data symbols should be extracted at the equalizer output and 

then the soft bit decisions should be computed. 

Firstly, the nearest 64-PSK symbol number is calculated for each data symbol 

using a 64-PSK constellation diagram. Then, the soft bit decisions are obtained 

using the look-up tables generated for each data rate. Figure 5.7 shows the 

constellation diagram of 64-PSK signal. 

For transmission at 2400 bps coded data rate 8-PSK modulation is used. 

Therefore, using 64-PSK constellation diagram every interval of two consecutive 

8-PSK symbols is divided into 8 equal portions. Similarly, there are 16 portions for 

1200 bps and 32 portions for other rates between two consecutive symbols. The 

look-up tables for soft bit decisions are generated using this fact. The soft bit 

decision values for different data rates are shown in Figure5.8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: 64-PSK constellation diagram 
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Figure 5.8: Soft bit decision values 

 

 

As shown in Figure 5.8, the soft bit decision values are signed numbers and 

they are represented by 6 bits in the memory.  

The program memory space required for soft bit decision computation process 

is 550 words. The number of CPU cycles used by the operation is different for 

different data rates due to PSK modulation employed. Table 5.2 gives the number 

of CPU cycles for each data rate. Maximum execution time is used for 2400 bps 

data rate due to 8-PSK modulation.  

 

 

Table 5.2: The number of CPU cycles for soft bit decision computation 
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5.2.7 Deinterleaver 

 

The next operation after soft decision computation is deinterleaving. The 

programming technique of the deinterleaver is very similar to one employed for 

the interleaver. The delay increment values for successive rows are given in Table 

2.6. 

While the interleaver gets hard bits as input, the soft decision inputs of the 

deinterleaver are 6 bits in length. Therefore, the required memory space is much 

grater for long deinterleaver.  

In long interleaver, every word of the memory can be used by two soft bit 

decisions. Since there are totally 23808 soft bit decisions to be stored in the long 

deinterleaver for 2400 bps data rate, 11904 words of data memory should be 

reserved for this process. Moreover, 115 words of program memory should be 

allocated.  

In short deinterleaver, one word is reserved for each soft bit decision. 

Considering 2400 bps data rate, i.e. the largest amount of memory usage, the 

deinterleaver requires only 1984 words of data memory. Furthermore, the number 

of words allocated for program memory is 175 words. 

In order to decrease processing time, circular addressing mode technique is 

used for both long and short deinterleaver. The number of cycles used by 

deinterleavers for different data rates is given in Table 5.3. 

 

 

Table 5.3: The number of cycles for deinterleaving process 

 

 

 

 

 

 

 

Data Rates 

1200 bps 

2400 bps 

600 – 75 bps 

Long Deinterleaver 

7240 

14355 

3679 

Short Deinterleaver 

9504 

18875 

4816 

Cycle Counts 
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5.2.8 Viterbi Decoding 

 

Considering the improvement in the execution speed and memory requirement 

of the receiver program, the programming techniques utilized for soft decision 

Viterbi decoder play a critical role.  

The convolutional encoder in the transmitter has a constraint length of 7. 

Therefore, the number of possible delay states in the trellis diagram is 27-1 = 64. 

While the delay states represent the state of the encoder, the path states represent 

the output bit pairs from the encoder. Since the encoder has a rate of 1/2, there are 

only two paths from each delay state to another. 

Viterbi algorithm consists of metric update and traceback operations. In the 

metric update, accumulated distances are calculated for two possible paths 

pointing to the delay state. The path with the minimum accumulated distance is 

selected as the survivor and stored for traceback operation. The other path is 

discarded. This computation is repeated for every delay state.  In traceback 

operation, after five times the constraint length 7, the state with the minimum 

accumulated metric is selected and tracing the stored paths backward a hard output 

bit is obtained.  

In Viterbi algorithm, most of the processing time is spent on the metric update, 

since all of the 64 states must be updated for every symbol interval. Throughout 

the development of the Viterbi function two methods are implemented for metric 

update operation and they exhibit considerable difference in processing time.  

First method accumulates metrics for two paths one by one. Then compares 

them and selects the minimum one. This process is repeated for every delay state, 

increasing calculation time too much. Maximum number of cycles used for this 

method is 1962871.  

Second method utilizes symmetry properties of the trellis diagram for the 

encoder used. Moreover, it uses specific ’C54x instructions in order to minimize 

metric update calculation time [10].  

The path states associated with the two paths pointing to a delay state are 

complementary for the convolutional encoder used in STANAG 4285. A butterfly 

structure of the trellis diagram is given in Figure 5.9, showing the symmetry 
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property of path states. As shown in the figure, if one of the path state is (00), then 

the other path state is (11) for the paths pointing to the same delay state. For other 

paths not shown in the figure, the complementary path state pair may be (10) and 

(01). 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Butterfly structure of the trellis diagram 

 

 

Another simplification can be made in local distance calculation. Denoting the 

input soft bit decision pair as SD1 and SD2, the local distance for path j is 

calculated using the Euclidean distance: 
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where T1(j) and T2(j) represent the expected inputs for path j, and they are coded 

as signed antipodal values, meaning that 0 corresponds to +1 and 1 corresponds to 

−1. Expanding (5.14) yields: 
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Since the distances are to be compared, the terms �
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In order to find minimum distance, discarding the leading –2 scalar, the 

maximums are searched for in the metric update. As a result, the local distance for 

path j is calculated using the equation: 

�
=

=
2

1n
nn TSD)j(distance                                                                     (5.17) 

Since two path states are complementary entering the same delay state, the local 

distances for them will differ only in sign, i.e. if one of the paths has a local 

distance of ‘x’, the other will have a local distance of  ‘-x’. Therefore, only one 

calculation for local distance is adequate in a butterfly structure. 

In order to benefit from these results, dual add-subtract and compare-select-

store instructions of ’C54x are utilized. Once the local distance is calculated, only 

four cycles are spent per butterfly to calculate accumulated distances and select the 

maximum ones for each state. As a result, a significant improvement in processing 

time is obtained for metric update operation. Table 5.4 gives the number of cycles 

used by the Viterbi decoder for different data rates. Moreover, the process requires 

232 words of program memory. 

 

 

Table 5.4: The number of cycles for Viterbi decoder 

 

 

 

 

 

 

5.2.9 Message Protocol 

 

In the message protocol of the receiver the following operations are performed: 

Coded Data Rate Cycles 

2400 bps 

1200 bps 

600-75 bps 

495800 

226399 

91545 
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• The receiver program searches for the SOM sequence within the 

decoded bits. Only after the SOM sequence is detected, the bits are 

written to the output file and ‘start of message’ flag is set to 1.  

• After that, the program searches for the EOM sequence and reception 

terminates when it is detected.  

• If the receiver continuously fails to detect the 80-symbol 

synchronization sequence for a time interval equal to the interleaver 

delay, the reception is also terminated. The number of failures in the 

detection of the synchronization sequence is determined by the ‘bad 

frame’ counter used in the control of the equalizer.  

 

5.3 Resource Requirements of the Receiver Program 

 

The receiver program implemented on ’C5410 DSP processor uses 35.18 

Kwords of data and 6.98 Kwords of program memory. Since every soft decision 

value is represented by 6 bits, the most of the data memory space is occupied by 

the deinterleaver. Moreover, the receiver program uses 4 Kwords of data memory 

space in order to store real and imaginary parts of two frames.  

The execution time of the receiver program varies with data rates and the 

thresholds used for multipass DFE. Table 5.5 gives the maximum numbers of CPU 

cycles used by the receiver program for different data rates when the maximum 

number of iterations for DFE is set to eight. As shown in the table, the CPU cycles 

required by the 2400 bps coded data rate is larger than others because of the 

number of bits to be decoded.  

The number of CPU cycles used by the receiver program is approximately 

6.42x106 per frame in the worst case. Since there are 10.66x106 cycles available in 

order to process a frame, the program uses 60.58% of this amount. 
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Table 5.5:Cycle counts for receiver program 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Rate Cycles 
2400 bps 

1200 bps 

600 bps 

300 bps 

150 bps 

75 bps 

6421149 

6117140 

5249448 

5175895 

5170166 

5167301 
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CHAPTER 6 

 

 

SIMULATIONS 

 

 

 
6.1 Introduction 

 

In order to evaluate the performance of implemented STANAG 4285 HF 

modem, the Watterson’s channel model is employed as the channel simulator that 

is also recommended in [1]. Since it is impossible to model every HF channel 

condition, the simulator uses three standard channels. Two of them are multipath 

channels with two independent Rayleigh fading paths with equal average powers 

and the other is single-path channel with a single Rayleigh fading path. Two 

multipath channels differ in time delay and Doppler spread values as shown in 

Table 6.1. These values are recommended in [21]. 

 

 

Table 6.1: Properties of multipath channels employed in the tests  

 

 

 

 

 

In order to generate a Rayleigh fading path two independent Gaussian 

noise sources are required as shown in Figure 6.1. The white Gaussian 

noise signals, n1(t) and n2(t), are passed through a low-pass filter (h(t)) 

Channel Doppler Spread Time Delay Spread 

Poor 

Moderate 

1 Hz 

0.5 Hz 

2 ms 

1 ms 
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which determines the Doppler spread. The filter has a bandwidth of 

approximately one-half the Doppler spread [1]. Equation 6.1 shows the 

relation between the Doppler spread and the frequency response of the low-

pass filter. Moreover, as indicated in  [1], the shape of the low-pass filter is 

not critical but it should be at least a two-pole filter. 

 

 

 

 

 

 

 

 

 

Figure 6.1:Generation of a Rayleigh Fading Path 
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The tests are performed in the presence of different amounts of additive white 

Gaussian noise (AWGN). The simulation results are given in the following 

section. 
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6.2 Simulation Results 

 

The following tests are implemented in the baseband and 12000 frames are used 

for each data rate. Since every frame is 106.6 ms in length, the test time for each 

bit-error measurement becomes 21.32 min. However, in order to achieve more 

exact values the tests should be run for extended lengths of time as recommended 

in [1]. For example, in order to achieve the actual bit error rate (BER) the test for 

moderate channel with coded and long-interleaved data should be run for 15.6 hrs 

[1].  

There are three sets of input data for the channel used in the tests. First one is 

coded data with long interleaving, the second one is coded data with short 

interleaving, and the last one is uncoded data without interleaving. The tests are 

performed in the presence of AWGN and the signal to noise ratio (SNR) values are 

calculated as  

 ��
�

�
��
�

�

−−
−−=

powernoiseaverage
powersignalaverage

log10SNR 10                                            (6.1) 

 

Figures from 6.2 to 6.9 give the bit error rates (BER) for different channel 

conditions and data types. Moreover, the predicted performances of the HF modem 

employing error correction coding and long interleaving are tabulated in Appendix 

B. These performance values are suggested by [1]. 

The BER performance of the HF modem for poor channel with coded and long 

interleaved data is given in Figure 6.2. Compared to other rates, transmission at 

2400 bps is less robust since 8-PSK symbols have shorter Euclidean distance than 

4- and 2-PSK symbols. Moreover, puncturing at 2400 bps is another reason for 

degraded performance. Compared to the predicted BER values in Table B.1, the 

BER performance of the modem is better except for at 600 bps with 10 dB SNR 

and at 1200 bps with 15 dB SNR.  

 

 

in 3 kHz bandwidth 
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Figure 6.2: BER performance of the modem for poor channel (coded, long 
interleaving) 

 

 

Figure 6.3 shows the performance of the HF modem for moderate channel with 

coded and long interleaved data. Comparing to predicted values given in Table 

B.2, the performance of the HF modem is worse for high SNR values. Considering 

the data rates, performance of 600 bps is the best as expected. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: BER performance of the modem for moderate channel (coded, long 

interleaving) 
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The BER performance of the HF modem for a single Rayleigh fading path with 

a Doppler spread of 1 Hz is given in Figure 6.4 for coded and long interleaved 

data. For low SNR values the performance of the HF modem is better than the 

predicted one given in Table B.3. The BER performance of the modem at 600 and 

1200 bps data rate for 15 dB SNR value is worse compared to predicted 

performance. Moreover, for high SNR values degradation in performance is 

observed at 2400 bps. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: BER performance of the modem for single Rayleigh fading path 

(coded, long interleaving) 

 

 

 

Figures from 6.5 to 6.7 give the BER performances of the HF modem using 

coded data with short interleaver. As shown in the figures, the use of short 

interleaving technique degrades the performance of the modem compared to long 

interleaving technique. 
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Figure 6.5: BER performance of the modem for poor channel (coded, short 

interleaving) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: BER performance of the modem for moderate channel (coded, short 

interleaving) 
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Figure 6.7: BER performance of the modem for single Rayleigh fading path 

(coded, short interleaving) 

 

 

 

Figure 6.8 and 6.9 show the performance of the HF modem, which does not use 

error correction coding or interleaving technique. Therefore, these results may be 

seen as the performance of the DFE. 

Figure 6.8 gives the performance of the modem for AWGN channel in absence 

of multipath and fading distortion. While BER values are closer for low SNR 

values, the difference becomes apparent for higher SNR values. 

The BER performance of the modem for moderate channel with uncoded data is 

given in Figure 6.9.  
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Figure 6.8: BER performance of the modem for AWGN channel (uncoded, 

without interleaving) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 6.9: BER performance of the modem for moderate channel (uncoded, 

without interleaving) 
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Considering all results, the 8-PSK transmission is less robust since 8-PSK 

symbols have a shorter Euclidean distance compared to 2- or 4-PSK. The best 

performances are observed for 2-PSK transmission.  

The simulations show that the performance of the coded transmission with long 

interleaving outperforms the coded transmission with short interleaving. However, 

the long interleaving has a disadvantage of long transmission delay. 

The test results obtained for coded data and long interleaving technique are 

close to predicted performances given in Appendix A. However, as indicated 

before, the BER values shown in the figures cannot be the actual bit error rates of 

the HF modem. The test times to obtain confident BER values are much longer 

than the one used in this implementation. 

 



 77 

 

CHAPTER 7 

 

 

CONCLUSIONS 

 

 

 
In this research, the STANAG 4285 HF modem software is implemented on 

TMS320C54x fixed point digital signal processor (DSP). The routines are tested 

for proper operation by using high level programs. Using code optimization 

techniques the software is ported on fixed point DSP. Considering the resource 

requirements of the HF modem software, the program is evaluated to be efficient 

enough for real time operation on TMS320C54x.  

In order to compensate the severe inter-symbol-interference (ISI) effect of the 

HF channel, a fractionally spaced decision feedback equalizer is employed in the 

receiver. For the adaptation of equalizer filter coefficients LMS algorithm is 

utilized. The convergence speed of the LMS algorithm is very slow for fast-fading 

channels where the input correlation matrices may have wide eigenvalue spread 

values. Therefore, a multipass technique is used in order to improve the 

convergence of the LMS algorithm. The results show that the performance of the 

receiver employing multipass technique outperforms the one employing singlepass 

technique. 

A significant problem is encountered when using fixed point arithmetic for 

LMS algorithm. When equalizer filter coefficients are represented by 16 bits, a 

slight increase in magnitude is observed for coefficients in each iteration resulting 

in divergence. This effect is especially encountered for high signal-to-noise ratio 

(SNR) values. In order to prevent divergence, the representation of filter 

coefficients is changed from 16-bit to 32-bit increasing the complexity. 
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The BER performance of the HF modem is evaluated by an HF channel 

simulator employing the Watterson’s channel model. The results have shown that 

the performance of the modem is close to predicted one. 

Although the multipass technique improves the convergence property of the 

LMS algorithm a whitening filter prior to the equalizer will improve the 

performance. Therefore, the results obtained in this implementation can be 

extended by using a whitening filter. 
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APPENDIX A 
 

 

TIGER 5410/PC DEVELOPMENT BOARD FEATURES 
 

 

 

A.1 TIGER 5410/PC Hardware 

 

Digital Signal Processor:  

Quantity 1 
Type TMS320VC5410 DSP 
Processing Power 100 MIPS 
 

Memory:  

’C5410 SRAM (on-chip) 64 kwords 
’C5410 ROM (on-chip) 16 kwords 
SRAM 256 kbytes 
EPROM Up to 256 kbytes 
 

Digital I/O Interfaces:  

RS-232 Interface 16550-compatible UART 
Serial Interface Three Multi-channel Buffered Serial Ports (McBSPs) 
Host Port Interface HPI Header connects to the ’C5410 HPI 
 

Analog I/O Interface:  

I/O Interface 16-bit, dual channel, 50 kHz 
Connector: Line level, mini jacks 
Line/Microphone is jumper selectable 

Telephone Interface Analog RJ-11, FCC approved 
DACs  Two,8-bit 

 
Host Interface:  

16-bit PC Host Standard ISA bus interface with  
bi-directional interrupt support 
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Debug/Emulation:  

Emulation Hardware On-board emulation (Test Bus Controller) hardware 
External Emulator JTAG connector for external emulators 
 
Power requirements:  

Current 3.7 A @ 3.3 Vdc 
0.7 A @ 5 Vdc 

 
 
A.2 TIGER 5410/PC Software 

 

Development Environment: 

• Code Composer Studio environment. 
• Libraries: Complete software support libraries for all on-board devices, and for 

communication with the host system, including loader. Standard C library. 
 

Language Support: 

• Texas Instruments C compiler, assembler, linker, and tools 

 

 

A.3 Features of the TMS320VC5410 

• 10-ns single-cycle fixed-point instruction execution time (100 MIPS performance) 

• 40-bit Arithmetic Logic Unit (ALU) 

• 64 kwords of on-chip SRAM 

• 16 kwords of on-chip ROM 

• 2.5V core power supply  

• Three on-chip Multi-Channel Buffered Serial Ports (McBSPs) 

• 8-bit enhanced host port interface (HPI8) 

• Six DMA channels 

• Standard 16-bit timer 
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APPENDIX B 
 

 

PREDICTED BER PERFORMANCES 
 

 

 

Table B.1: Predicted BER for CCIR Poor Conditions versus SNR 

(for coded data with long interleaving) 

 

 

 

 

 

 

 

 

 

 

Table B.2: Predicted BER for CCIR Moderate Conditions versus SNR 

(for coded data with long interleaving) 

 

 

 

 

 

 

 

 

Coded Data Rate (Bits/Second) 
 

2400 1200 600 

SNR 
in 3 kHz 

bandwidth 

5 dB 

10 dB 

15 dB 

20 dB 

25 dB 

40 dB 

- 

- 

2.13E-1 

5.65E-2 

2.53E-2 

1.14E-2 

- 

1.33E-3 

0 

0 

0 

0 

6.63E-3 

0 

0 

0 

0 

0 

Coded Data Rate (Bits/Second) 
 

2400 1200 600 

SNR 
in 3 kHz 

bandwidth 

5 dB 

10 dB 

15 dB 

20 dB 

25 dB 

- 

- 

1.49E-2 

9.9E-5 

0 

2.15E-1 

1.78E-4 

0 

0 

0 

6.67E-3 

0 

0 

0 

0 
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Table B.3: Predicted BER for Single Rayleigh Fading Path versus SNR 
(1 Hz Doppler Spread) 

(for coded data with long interleaving) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coded Data Rate (Bits/Second) 
 

2400 1200 600 

SNR 
in 3 kHz 

bandwidth 

5 dB 

10 dB 

15 dB 

20 dB 

25 dB 

- 

0.5 

1.25E-1 

4.46E-4 

0 

- 

3.18E-2 

0 

0 

0 

2.86E-1 

3.4E-4 

0 

0 

0 


