APPLICATION OF ROCK MASS CLASSIFICATION SYSTEMS FOR FUTURE SUPPORT DESIGN OF THE DİM TUNNEL NEAR ALANYA

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

SONGÜL COŞAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MINING ENGINEERING

SEPTEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Prof. Dr. Ümit Atalay Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Erdal Ünal Supervisor

Examining Committee Members

Prof. Dr. Reşat Ulusay	(HU,GEO)
Prof. Dr. Erdal Ünal	(METU,MINE)
Assoc. Prof. Dr. Tamer Topal	(METU,GEO)
Assoc. Prof. Dr. H. Aydın Bilgin	(METU,MINE)
Assist. Prof. Dr. İhsan Özkan	(SU,MINE)

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Songül Coşar

ABSTRACT

APPLICATION OF ROCK MASS CLASSIFICATION SYSTEMS FOR FUTURE SUPPORT DESIGN OF THE DİM TUNNEL NEAR ALANYA

Coşar, Songül M.Sc., Department of Mining Engineering Supervisor: Prof. Dr. Erdal Ünal

September 2004, 217 pages

In this thesis, the results of a number of rock mass classification systems applied to Dim-highway tunnel study area are presented. The tunnel ground was classified according to Rock Mass Rating (RMR), Modified Rock Mass Rating (M-RMR), Rock Mass Quality (Q,) Geological Strength Index (GSI), and New Austrian Tunneling Method (NATM).

Dim Tunnel has a horse-shoe shape, with a diameter of 10 meters and maximum overburden thickness of 70 meters. During studies, the geological and geotechnical characteristics of the rock mass along the Dim Tunnel route were investigated. The main objective of rock mass classifications carried out in this study was to obtain adequate data that could be used in future excavation and support-design studies. In order to accomplish this task, literature survey was carried out, followed by a comprehensive field study and laboratory testing. Field studies involved detailed discontinuity surveys of the exposed rock mass at the surface and on the cores taken within 10-20 meters of the borehole above the tunnel. A geological map and a geological cross-section along the tunnel axis were also prepared. Finally, correlations between the results of the rock mass classification systems were made carrying out statistical analyses for the Dim Tunnel study area.

The results obtained from the RMR and M-RMR classifications indicate that M-RMR system estimates better rock mass quality ratings at the upper bounds of the rock mass condition, but worst ratings at the lower bounds (RMR is less than 40) as also suggested by the previous studies.

Keywords: Dim Tunnel, GSI system, M-RMR system, RMR system, rock mass classification

ALANYA YAKINLARINDAKİ DİM TÜNELİNİN GELECEĞE YÖNELİK TASARIMI İÇİN KAYA KÜTLESİ SINIFLAMA SİSTEMLERİNİN UYGULANMASI

Coşar, Songül Yüksek Lisans, Maden Mühendisliği Bölümü Tez Yöneticisi : Prof. Dr. Erdal Ünal

Eylül 2004, 217 sayfa

Bu tezde, kaya kütlesi sınıflama sistemlerinin Dim karayolu tünelinde uygulanması ile ilgili çalışmalar sunulmuştur. Tünel zemini; Kaya Kütlesi Puanlaması (RMR), Modifiye Edilmiş Kaya Kütlesi Puanlaması (M-RMR), Q-Sistemi, Jeolojik Dayanım İndeksi (GSI) ve Yeni Avusturya Tünelcilik Yöntemi (NATM) kullanılarak sınıflanmıştır.

Yapılması planlanan Atnalı şeklindeki Dim Tüneli, 10 metre çapındadır ve tünel üzerindeki en fazla et kalınlığı 70 metredir. Çalışmalar sırasında, Dim Tüneli güzergahı boyunca kesilecek ve yüzeyde görülen kaya kütlesi ve kaya malzemesinin jeolojik ve jeoteknik özellikleri araştırılmıştır. Bu çalışmadaki kaya kütlesi sınıflamalarının başlıca amacı, ileride yapılacak kazı ve destek tasarımı çalışmaları için gerekli olan verileri elde etmektir. Bu amacı gerçekleştirmek için literatür araştırmasından sonra ayrıntılı arazi çalışmaları ve

laboratuvar deneyleri yapılmıştır. Arazi çalışmaları tünel seviyesinden 10-20 m yukarıda yeralan kesimdeki ve yüzeydeki süreksizliklerin ayrıntılı olarak araştırılmasını içermektedir. Ayrıca jeoloji haritası ve tünel ekseni boyunca jeolojik kesit hazırlanmıştır. Son aşamada, Dim Tüneli çalışma alanı için kaya kütlesi sınıflama sistemlerine ait istatistiksel analizler yapılarak karşılaştırılmıştır.

RMR ve M-RMR sınıflamalarından elde edilen sonuçlara göre M-RMR sistemi sınıflama puanının üst sınır değerlerinde RMR'a göre daha iyi kaya kütlesi puanları, buna karşın alt sınır bölgesinde (40'ın altında) ise daha düşük puanlar vermektedir. Bu sonuçlar daha önce bu konuda yapılan çalışmaları da desteklemektedir.

Anahtar Kelimeler : Dim Tüneli, GSI sistemi, kaya kütlesi sınıflaması, M-RMR sistemi, RMR sistemi

To My Family

ACKNOWLEDGEMENT

I would like to express my indebted appreciation to my supervisor Prof. Dr. Erdal Ünal for his very kind supervision, valuable suggestions and friendship throughout this study.

I express my gratitude to the members of the examining committee namely: Prof. Dr Reşat Ulusay, Assoc. Prof. Dr. Tamer Topal and Assoc. Prof. Dr. H. Aydın Bilgin and Assist. Prof. Dr. İhsan Özkan for their valuable comments.

I would like to express my special thanks to Serdar Aker and Şenol Sözer for their advices and invaluable helps in all stages of the study.

I cordially would like to thank Serkan Üçer for his invaluable help and encouragements during the study.

I would like to express my special thanks to my brother Koray Coşar for his support and contribution to this thesis.

I would like to thank Ercüment Karahan, Mine Alta, Yavuz Ergintav, Sezer Akarcalı and Berkay Kentli for their motivation, support and friendship.

I am greateful to Murat Doğan, Gökbora Akay, Fatma Köksal Toksoy, Haluk Yüksel, Yeliz Coşar, Reza Osgoui and Armal Koçal for their invaluable help and encouragements during this study.

Finally, but most deeply, I would like to thank my family for their support and patience during preparation of this thesis.

TABLE OF CONTENTS

PLAGIARI	SM	iii
ABSTRAC	Г	iv
ÖZ		vi
DEDICATI	ON	viii
ACKNOWI	LEDGE	MENTS ix
TABLE OF	CONT	ENTSx
LIST OF TA	ABLES	xiii
LIST OF FI	GURES	5 xv
LIST OF A	BBREV	'IATIONS xx
CHAPTER		
1. INTR	ODUC'	TION
1.1	Gener	al Remarks1
1.2	Statem	nent of the Problem
1.3	Object	tives of the Thesis
1.4	Metho	bodology of the Thesis
1.5	Thesis	Outline
2. LITE	RATUF	RE SURVEY 4
2.1	Introd	uction
2.2	Rock I	Mass Classification Systems in General
2.3	Rock I	Mass Classification Systems Used in This Study
	2.3.1	Rock Mass Rating (RMR) System 8
	2.3.2	Modified Rock Mass Rating (M-RMR) System 13
	2.3.3	Rock Mass Quality (Q) System 18
	2.3.4	Geological Strength Index (GSI)
	2.3.5	New Austrian Tunneling Method (NATM)

		2.3.6	Correlations between RMR, M-RMR, Q, GSI	
		and NA	ATM	. 33
	2.4	Estima	ation of Rock Mass Strength and Deformation	
		Modul	us	. 34
3.	GEOI	LOGICA	AL AND GEOTECHNICAL INVESTIGATIONS AT	
	THE	DIM T	UNNEL PROJECT AREA	. 38
	3.1	Introdu	uction	. 38
	3.2	Genera	al Information about Dim Tunnel	. 38
	3.3	Previo	us Studies	. 38
		3.3.1	Geology	. 41
			3.3.1.1 Regional Geology	. 41
			3.3.1.2 Site Geology	. 42
			3.3.1.3 Structural Geology	. 44
		3.3.2	Hydrogeology	. 44
		3.3.3	Subsurface Investigations	. 44
		3.3.4	Laboratory Tests	. 45
	3.4	Curren	nt Studies	. 45
	3.5	Engine	eering Geology	. 46
		3.5.1	Schist	. 48
		3.5.2	Blocky Limestone	. 50
		3.5.3	Conglomerate	. 52
		3.5.4	Sandstone-Shale Alternation	. 53
4.	ROCH	K MAS	S CLASSIFICATION SYSTEMS APPLIED TO DIM	
	TUN	INEL G	ROUND	. 54
	4.1	Introdu	uction	. 54
	4.2	Rock I	Mass Classification for Dim Tunnel	. 54
		4.2.1	Modified Rock Mass Rating (M-RMR)	. 54
		4.2.2	Rock Mass Rating (RMR)	. 57
		4.2.3	Q-System	. 59
		4.2.4	Geological Strength Index (GSI)	. 61
		4.2.5	New Austrian Tunneling Method (NATM)	. 63

	4.3	Correlations between RMR, M-RMR, Q, GSI and NATM	. 63
	4.4	Discussion	. 70
5.	CON	ICLUSIONS AND RECOMMENNATIONS	. 75
	5.1	Conclusions	. 75
	5.2	Recommendations for Future Studies	. 77

APPENDICES

A.	Information Related to Rock Mass Classification Systems Used in This
	Study
	A.I. A brief history of the development of the Hoek-Brown failure
	criterion (Hoek, 2004 111
	A.II Guidelince for estimeting disturbance factor D
(H	oek, et al., 2002)
	A.III Estimates of rock mass strength and deformation modulus
(H	oek, 2004
B.	Geotechnical Borehole Logs 124
C.	Input Data Forms For Rock Mass Classification 151
D.	Core Box Photos and Illustrations of Structural Domains 169
E.	Rock Mass Classification Calculations for Dim Tunnel 186
	E.I. ROCKMASS Outputs
	E.II. Rock Mass Rating Calculations
	E.III. Geological Strength Index Calculations 205
F.	Correlation Charts for M-RMR, RMR, Q and GSI Classification
	Systems

LIST OF TABLES

TABLES

2.1 Major rock mass classification systems (Bieniawski, 1989; Özkan
and Ünal, 1996; Ulusay and Sönmez., 2002)7
2.2 Rock mass rating system (After Bieniawski, 1989) 10
2.3 Classification of individual parameters used in the Q system
(Barton, 2002a)
2.4 Excavation support categories and their ESR values (After Barton et al.,
1974)
2.5 Correlations between the classification systems
2.6 List of empirical equations suggested for estimating the deformation
modulus with required parameters and limitations
3.1 Number, km, coordinates, elevations and depth of drillings 45
4.1 NATM rock mass classes for the project area
4.2 Summary of the rock mass classification results of the study area 64
4.3 The minimum and maximum M-RMR values for each borehole and
corresponding RMR and GSI values
4.4 Maximum unsupported spans and their stand-up time based on RMR,
M-RMR and Q values for the each borehole location
A.1 Guidelines for Excavation and Support of 10 m span rock tunnels in
accordance with the RMR System (Bieniawski, 1989)
A.2 Q-System : Support Measures for Q Range 10 to 1000 ^a
(Barton et al., 1974)
A.3 Q-System: Support Measures for Q Range 1 to 10 ^a
(After Barton et al., 1974) 101
A.4 Q-System: Support Measures for Q Range 0.1 to 1.0 ^a (After Barton et.
al., 1974)

A.5 Q-System: Support Measures for Q Range 0.001 to 0.1 ^a (After Barton et al., 1974)
A.6 NATM rock mass classes (Geoconsult, 1993 and
ONORM B 2203, 1994)
B.1 Geotechnical borehole log for SK-6+050 drilling 124
B.2 Geotechnical borehole log for SK-6+180 drilling 125
B.3 Geotechnical borehole log for SK-6+280 drilling 129
B.4 Geotechnical borehole log for SK-6+400 drilling 131
B.5 Geotechnical borehole log for SK-6+570 drilling 137
B.6 Geotechnical borehole log for SK-6+680 drilling 142
B.7 Geotechnical borehole log for SK-7+130 drilling 144
B.8 Geotechnical borehole log for SK-7+250 drilling 146
C.1 Input data forms for rock mass classification for SK-6+050 drilling . 151
C.2 Input data forms for rock mass classification for SK-6+180 drilling . 152
C.3 Input data forms for rock mass classification for SK-6+280 drilling . 155
C.4 Input data forms for rock mass classification for SK-6+400 drilling . 156
C.5 Input data forms for rock mass classification for SK-6+570 drilling . 160
C.6 Input data forms for rock mass classification for SK-6+880 drilling . 163
C.7 Input data forms for rock mass classification for SK-7+130 drilling . 164
C.8 Input data forms for rock mass classification for SK-7+250 drilling . 166
E.II.1 Rock Mass Rating (RMR) calculations for SK-6+050, SK-6+180,
SK-6+280 and SK-6+400 boreholes
E.II.1 Rock Mass Rating (RMR) calculations for SK-6+570, SK-6+880,
SK-7+130 and SK-7+250 boreholes
E.III.1 GSI calculations for SK-6+050 borehole 205
E.III.2 GSI calculations for SK-6+180 borehole
E.III.3 GSI calculations for SK-6+280 borehole
E.III.4 GSI calculations for SK-6+400 borehole 207
E.III.5 GSI calculations for SK-6+570 borehole 208
E.III.6 GSI calculations for SK-6+880 borehole 210
E.III.7 GSI calculations for SK-7+130 borehole 210
E.III.8 GSI calculations for SK-7+250 borehole

LIST OF FIGURES

FIGURES

2.1 The overall structure of the modified Rock Mass Rating, M-RMR,
system and the classification steps (After Unal, 1996) 17
2.2 The 1993 updated Q-support chart for selecting permanent B+S(fr)
reinforcement and support for tunnels and caverns in rock. The black,
highlighted areas show where estimated Q-values and stability are
superior in TBM tunnels compared to drill-and-blast tunnels. This
means 'nosupport' penetrates further (After Barton, 2002a) 25
2.3 The modified GSI classification suggested by Sonmez and Ulusay
(2002)
2.4 The NATM's rock mass classes (Ayaydın, 1986) 33
3.1 Location map of the project area
3.2 General view of proposed Dim Tunnel route from Km 6+200 39
3.3 General view of proposed Dim Tunnel route from Km 6+570 40
3.4 Simplified regional geological map of the Alanya region
(Okay and Özgül, 1984)
3.5 Simplified stratigaraphical section of the site vicinity (modified
from Okay and Özgül, 1984; Şengün, 1986).1984) 43
3.6 Geological strip map of the Dim Tunnel
3.7 Exaggerated geological cross-section of the Dim Tunnel 47
3.8 General view of schists from the entrance portal of the Dim
Tunnel at Km 6+050
3.9 A close view of schists from the entrance portal of the Dim
Tunnel at Km 6+050
3.10 Cores of schists taken from borehole SK-6+180

3.11 Pole plot (a), contour plot (b), rose diagram (c) and, discontinuity
plane plot (d) of discontinuities of schist unit
3.12 A view of blocky limestone at the Dim tunnel route (Km 6+900) 51
3.13 Limestone and schist boundary along the Dim Tunnel route 51
3.14 Cores of blocky limestone taken from from borehole SK-6+880 52
3.15 Cores of conglomerates taken from borehole SK-7+130 52
3.16 Cores of sandstone-shale alternation taken from borehole
SK-7+130
4.1 M-RMR values of each successive structural domain for the study
area
4.2 RMR values of each successive structural domain for the study area 58
4.3~Q values of each successive structural domain for the study area 60
$4.4\ GSI$ values of each successive structural domain for the study area 62
4.5 Relationship between the RMR and Q values for the study area
4.6 Relationship between M-RMR and Q values for the study area
4.7 Relationship between RMR and GSI values for the study area
4.8 Relationship between M-RMR and GSI values for the study area 67
4.9 Relationship between Q and GSI values for the study area
4.10 Relationship between M-RMR and RMR values for the study area \dots 69
4.11 Relationship between M-RMR and RMR values considering
RMR < 40 for the study area
4.12 Total range of the RMR, M-RMR and GSI index values for each
structural domain which obtained from each borehole drilled in the
Dim Tunnel route
4.13 Graphical representation of the minimum and maximum M-RMR
values for each borehole and corresponding RMR and GSI values73
A.1Ratings of input parameters for RMR (After Bieniawski, 1989)
A.2 Relationship between the RMR-value and stand-up time of an
unsupported underground excavation (After Bieniawski, 1989)
A.3 The effect of horizontal-to-vertical stress ratio (K) to failure
height to rock load height ratio (strength factor, S) for various RMR

values (modified from Ünal and Ergür, 1990a)
A.4 Variation of rock-load as function of roof span in different
rock classes in the Geomechanics Classification (after Ünal, 1983)
A.5 Suggested adjustment for slaking effect of water (Ünal, 1996)
A.6 Suggested intervals and ratings for various input parameters used in
modified-rock mass rating classsification (after Ünal, 1996)
A.7 Intervals and ratings for joint condition index, I_{JC} (After Ünal, 1996). 94
A.8 Determination of Joint Condition Index, I_{JC} (After Ünal, 1996)
A.9 Suggestions in Determining Joint Alteration Index (Ja) in Broken
Structural Domains (Ünal, 2002)
A.10 Suggestions in Determining Joint Alteration Index (Ja) in Normal
Structural Domains (Ünal, 2002)96
A.11 Suggestions in Determining Stress Reduction Factor (SRF) in
Evaluating Core Boxes (After Ünal, 2002)97
A.12 Tunnel support chart showing 38 support categories (After Barton et
al., 1974)
A.13 GSI System (Hoek and Brown, 1997) 104
A.14 Modification of GSI System by Sönmez and Ulusay (1999) 105
A.15 GSI classification systems by Hoek (1999) 106
A.16 Quantification of GSI chart (Cai, et al., 2004) 107
A.17 Fuzzy-based quantitative GSI chart (After Sönmez, et al., 2004) 108
D.1 Explanations of photograph illustrations
D.2 Core box 1 photograph of borehole SK-6+050 169
D.3 Core box 8 photograph of borehole SK-6+180 170
D.4 Core box 9 photograph of borehole SK-6+180 170
D.5 Core box 10 photograph of borehole SK-6+180 171
D.6 Core box 11 photograph of borehole SK-6+180 171
D.7 Core box 12 photograph of borehole SK-6+180 172
D.8 Core box 4 photograph of borehole SK-6+280 172
D.9 Core box 5 photograph of borehole SK-6+280 173
D.10 Core box 6 photograph of borehole SK-6+280 173

D.11 Core box 7 photograph of borehole SK-6+280 174
D.12 Core box 6 photograph of borehole SK-6+400 174
D.13 Core box 7 photograph of borehole SK-6+400 175
D.14 Core box 8 photograph of borehole SK-6+400 175
D.15 Core box 9 photograph of borehole SK-6+400 176
D.16 Core box 10 photograph of borehole SK-6+400 176
D.17 Core box 11 photograph of borehole SK-6+400 177
D.18 Core box 6 photograph of borehole SK-6+570 177
D.19 Core box 7 photograph of borehole SK-6+570 178
D.20 Core box 8 photograph of borehole SK-6+570 178
D.21 Core box 9 photograph of borehole SK-6+570 179
D.22 Core box 10 photograph of borehole SK-6+570 179
D.23 Core box 1 photograph of borehole SK-6+880 180
D.24 Core box 2 photograph of borehole SK-6+880 180
D.25 Core box 3 photograph of borehole SK-6+880 181
D.26 Core box 3 photograph of borehole SK-7+130 181
D.27 Core box 4 photograph of borehole SK-7+130 182
D.28 Core box 5 photograph of borehole SK-7+130 182
D.29 Core box 6 photograph of borehole SK-7+130 183
D.30 Core box 7 photograph of borehole SK-7+130 183
D.31 Core box 1 photograph of borehole SK-7+250 184
D.32 Core box 2 photograph of borehole SK-7+250 184
D.33 Core box 3 photograph of borehole SK-7+250 185
D.34 Core box 4 photograph of borehole SK-7+250 185
E.1 ROCKMASS outputs of the SK-6+050 borehole
E.2 ROCKMASS outputs of the SK-6+180 borehole
E.3 ROCKMASS outputs of the SK-6+280 borehole
E.4 ROCKMASS outputs of the SK-6+400 borehole
E.5 ROCKMASS outputs of the SK-6+570 borehole
E.6 ROCKMASS outputs of the SK-6+880 borehole 196
E.7 ROCKMASS outputs of the SK-7+130 borehole 198

E.8 ROCKMASS outputs of the SK-7+250 borehole
F.1 Correlation of M-RMR, RMR, GSI and Q values for each structural
domain of SK-6+050 and SK-6+180 boreholes
F.2 Correlation of M-RMR, RMR, GSI and Q values for each structural
domain of SK-6+280 and SK-6+880 boreholes
F.3 Correlation of M-RMR, RMR, GSI and Q values for each structural
domain of SK-6+400 borehole
F.4 Correlation of M-RMR, RMR, GSI and Q values for each structural
domain of SK-6+570 borehole
F.5 Correlation of M-RMR, RMR, GSI and Q values for each structural
domain of SK-7+130 borehole
F.6 Correlation of M-RMR, RMR, GSI and Q values for each structural
domain of SK-7+250 borehole

LIST OF ABBREVIATIONS

A _b	Adjustment factor (blasting damage)
A_w	Adjustment factor (major planes of weaknesses)
В	Span or width of the tunnel (m)
BPI	Block Punch Index
BM-RMR	Basic modified rock mass rating
BSTR	Broken rock structure
c	cohesion (kPa)
CUMR	Corrected unit mass rating
CM-RMR	Corrected modified rock mass rating
D	Disturbance factor
E_m	Deformation modulus (GPa)
ESR	Excavation support ratio
F _C	Weathering coefficient
h _t	Rock-load height (m)
Н	Overburden or tunnel depth (m)
GSI	Geological strength index
ICR	Intact core recovery
I _{d-2}	Slake-durability index
I _{GW}	Grounwater condition index
I _{JC}	Joint condition index
I _{JO}	Joint orientation index
I_{PL}	Point load strength index
I _{UCS}	Uniaxial compressive strength index
\mathbf{J}_{a}	Joint alteration number
J _n	Joint set number
J _r	Joint roughness number

$\mathbf{J}_{\mathbf{v}}$	Volumetric joint count (joint/m ³)
\mathbf{J}_{w}	Joint water reduction factor
J_S	Joint spacing
К	Horizontal to vertical stress ratio
L	Length of rockbolts
M-RMR	Modified rock mass rating
NATM	New Austrian tunneling method
NGI	Norvegian Geotechnical Institute
Q	Rock mass quality
Р	Support pressure (kN/m ² or MPa)
PHHS	Possible high horizontal stress
RMi	Rock mass index
RMR	Rock mass rating
RMS	Rock mass strength
RQD	Rock quality designation
RSR	Rock structure rating
S	Strength factor
SCR	Surface condition rating
SR	Structure rating
SRF	Stress reduction factor
TCR	Total core recovery
TBM	Tunnel boring machine
t _f	Filling thickness (mm)
UMR	Unit mass rating
URCS	Unified rock mass classification system
WCS	Weakening coefficient system
φ	Internal friction angle (°)
γ	Density of the rock (N/m^3)
σ_{c}	Uniaxial compressive strength (MPa)
σ_{h}	Horizontal stress (MPa)
$\sigma_{\rm v}$	Vertical stress (MPa)

CHAPTER I

INTRODUCTION

1.1 General Remarks

The main purpose of a tunnel design is to use the rock itself as the principal structural material with little disturbance during the excavation and to provide as little support system as possible. For this purpose, determinations of geological and geotechnical conditions existing in a project area is absolutely necessary. The rock mass classification systems are used for preliminary tunnel design as an empirical method.

1.2 Statement of the Problem

To provide input data for empirical design of tunnels it is necessary to determine the geological conditions in the study area and carry out rock mass classification systems in the tunnel ground. The Rock Mass Rating (RMR), Modified Rock Mass Rating (M-RMR), Rock Mass Quality (Q), Geological Strength Index (GSI), and New Austrian Tunneling Method (NATM) are commonly used in rock mass classification systems. In this study, the above mentioned classification systems were used in Dim highway-tunnel project area near Alanya and correlations among these classification systems were performed using statistical methods.

1.3 Objectives of the Thesis

This study has three main objectives. The first one is to investigate the geological and geotechnical characteristics of the rock material and rock mass along the highway tunnel project located at the Alanya-Gazipaşa Road between Km 6+050 and Km 7+400 named as Dim.

The second objective consist of two stages, namely: i) classification of the rock mass in the study area according to the Rock Mass Rating (RMR), Modified Rock Mass Rating (M-RMR), Rock Mass Quality (Q), Geological Strength Index (GSI), and New Austrian Tunneling Method (NATM), and ii) investigation of correlations between these classification systems.

The third objective is to provide state of the art information on rock mass classification systems used in this study.

1.4 Methodology of the Thesis

The study has been carried out in four stages. In the first stage an extensive literature survey was performed. This survey included the review of rock mass classification systems, excavation and support recommendations and estimation of rock mass strength parameters for the preliminary tunnel design.

The second stage of the study included collection of previous data and reports related to the study area.

The third stage of the study involved field work. During field work, detailed discontinuity survey of exposed rock mass at the surface and on cores obtained from drillings were performed. Rock samples were taken from the core-boxes in order to carry out slake durability testing for each rock type. The other test results required for classifications were obtained from laboratory tests carried out by Petra Engineering.

The fourth stage of the study included the classification of rock masses for each borehole location along the tunnel route and the correlation of the rock mass classification results.

1.5 Thesis Outline

Following the introduction, Chapter 1, the rock mass classification systems and their applications as excavation and support recommendations and estimation of rock mass strength parameters for the preliminary tunnel design are reviewed in Chapter 2, as a part of literature survey.

Chapter 3 includes information about Dim Tunnel, previous geological studies, and geological and geotechnical studies carried out by the author around the tunnel project area.

The rock masses in the study area were classified according to Rock Mass Rating (RMR), Modified Rock Mass Rating (M-RMR), Rock Mass Quality (Q), Geological Strength Index (GSI), and New Austrian Tunneling Method (NATM). The results of the classifications and correlations among these classifications are presented in Chapter 4.

Finally, conclusions and recommendations related to this study are presented in Chapter 5.

CHAPTER II

LITERATURE SURVEY

2.1 Introduction

Basically, there are three different methods used in engineering design. These are empirical, observational, and numerical methods. Empirical design method relates practical experience gained on previous projects to the conditions anticipated at a proposed site and requires experience as well as engineering judgment. Rock mass classification systems are an integral of empirical tunneling design and have been successfully applied throughout the world.

During the feasibility and preliminary design stages of a project, when very little information on the rock mass and its stress and hydrogeological characteristics is available, the use of a rock mass classification can be of considerable benefit. At its simplest, this may involve using the classification scheme as a check list to ensure that all relevant information has been considered. At the other end of the spectrum, one or more rock mass classification schemes can be used to build up a picture of the composition and characteristics of a rock mass to provide initial estimates of support requirements, and to provide estimates of the strength and deformation properties of the rock mass (Hoek et al., 1995). A rock mass classification system has the following purposes in application (Bieniawski, 1976):

- a. To divide a particular rock mass into groups of similar behavior,
- b. To provide a basis for understanding the characteristics of each group,
- c. To facilitate the planning and design of excavations in rock by yielding quantitative data required for the solution of real engineering problems,
- d. To provide a common basis for effective communication among all persons concerned with a geotechnical project.

Ensuring that a classification system has the following attributes can fulfill these purposes:

- i. Simple, easy remembered, and understandable,
- ii. Each term clear and terminology used is widely acceptable,
- iii. Only the most significant properties of rock masses should be included,
- iv. Based on measurable parameters that can be determined by relevant tests quickly and cheaply in the field,
- v. Based on rating system that can weigh the relative importance of the classification parameters,
- vi. Functional by providing quantitative data for the design of tunnel support,
- vii. General enough so that the same rock mass will possess the same basic classification for various structures such as slopes, tunnels and foundations.

The classification systems are not recommended for use in detailed and final design, especially for complex underground openings. For these purposes, they need to be further developed (Bieniawski, 1989).

2.2 Rock Mass Classification Systems in General

There are many different rock mass classification systems and the most common ones are shown below in Table-2.1.

Rock mass classification systems have been developing for almost 60 years since Terzaghi (1946) firstly attempted to classify the rock masses for engineering purposes. Terzaghi (1946) classified rock conditions into nine categories ranging from hard and intact rock, class 1, to swelling rock, class 9.

Lauffer (1958) proposed that the stand up time for an unsupported span is related to the quality of the rock mass in which the span is excavated.

The Rock Quality Designation index (RQD) was developed by Deere et al. (1967) to provide a quantitative estimate of rock mass quality from drill core logs. RQD is defined as the percentage of intact pieces longer than 100 mm (4inches) in total length.

Palmström (1982) suggested that, when no core is available, but discontinuity traces are visible in surface exposures or exploration adits, the RQD might be estimated from the number of discontinuities per unit volume. The most important use of RQD is as a component of the RMR and Q rock mass classifications.

Wickham et al. (1972) proposed a quantitative method for describing the quality of a rock mass and for selecting appropriate support on the basic of their Rock Structure Rating (RSR) classification. Although the RSR classification system is not widely used, Wickham et al.'s work played a significant role in the development of the classification systems, which will be mentioned, in the previous paragraphs.

Table 2.1 Major rock mass classification systems (Bieniawski, 1989; Özkan and Ünal, 1996; Ulusay and Sönmez., 2002).

Rock Mass Classification System	Originator	Country of Origin	Application Areas
Rock Load	Terzaghi, 1946	USA	Tunnels with steel Support
Stand-up time	Lauffer, 1958	Australia	Tunneling
New Austrian Tunneling Method (NATM)	Pacher et al., 1964	Austria	Tunneling
Rock Quality Designation (RQD)	Deere et al, 1967	USA	Core logging, tunneling
Rock Structure Rating (RSR)	Wickham et al, 1972	USA	Tunneling
Rock Mass Rating (RMR)	Bieniawski, 1973 (last modification 1989-USA)	South Africa	Tunnels, mines, (slopes, foundations)
Modified Rock Mass Rating (M-RMR)	Ünal and Özkan, 1990	Turkey	Mining
Rock Mass Quality (Q)	Barton et al, 1974 (last modification 2002)	Norway	Tunnels, mines, foundations
Strength-Block size	Franklin, 1975	Canada	Tunneling
Basic Geotechnical Classification	ISRM, 1981	International	General
Rock Mass Strength (RMS)	Stille et al, 1982	Sweden	Metal mining
Unified Rock Mass Classification System (URCS)	Williamson, 1984	USA	General Communication
Weakening Coefficient System (WCS)	Singh, 1986	India	Coal mining
Rock Mass Index (RMi)	Palmström, 1996	Sweden	Tunneling
Geological Strength Index (GSI)	Hoek and Brown, 1997	Canada	All underground excavations

For a preliminary tunnel design, at least two classification systems should be applied (Bieniawski, 1989). In this study the most commonly used and applicable classification systems; Rock Mass Rating (RMR), Modified Rock Mass Rating (M-RMR), Rock Mass Quality (Q), Geological Strength Index (GSI) and New Austrian Tunneling Method (NATM) were used. More detailed information will be given about these classification systems in the following chapters.

2.3 Rock Mass Classification Systems Used in This Study

2.3.1 Rock Mass Rating (RMR) System

The Geomechanics Classification or the Rock Mass Rating (RMR) system was developed by Bieniawski in 1973. Significant changes have been made over the years with revisions in 1974, 1976, 1979 and 1989; in this study the discussion is based upon the latest version (Bieniawski, 1989) of the classification system.

The RMR classification has found wide applications in various types of engineering projects, such as tunnels, foundations, and mines but, not in slopes. Most of the applications have been in the field of tunneling.

Originally 49 case histories used in the development and validation of the RMR Classification in 1973, followed by 62 coal mining case histories that were added by 1984 and a further 78 tunneling and mining case histories collected by 1987. To the 1989 version, the RMR system has been used in 351 case histories (Bieniawski, 1989). This classification of rock masses utilizes the following six parameters, all of which are measurable in the field and some of them may also be obtained from borehole data (Bieniawski, 1989):

- a. Uniaxial compressive strength of intact rock material,
- b. Rock quality designation (RQD),
- c. Spacing of discontinuities,
- d. Condition of discontinuities,
- e. Groundwater conditions,
- f. Orientation of discontinuities.

To apply this classification system, the rock mass along the tunnel route is divided into a number of structural regions, e.g., zones in which certain geological features are more or less uniform within each region. The above six parameters are determined for each structural region from measurements in the field and entered into the standard input data sheets.

The RMR system is presented in Table 2.2. In Section A of Table 2.2, the first five parameters are grouped into five ranges of values. Since the various parameters are not equally important for the overall classification of a rock mass, importance ratings are allocated to the different value ranges of the parameters, a higher rating indicating better rock mass conditions (Bieniawski, 1989).

It is suggested by Bieniawski (1989), however, that the charts A-D in Appendix A as Figure A.1 should be used instead of A1 (uniaxial compressive strength), A2 (RQD) and A3 (spacing of discontinuities) in Table 2.2. These charts are helpful for borderline cases and also remove an impression that abrupt changes in ratings occur between categories Chart D is used if either RQD or discontinuity data are lacking.

A.	A. CLASSIFICATION PARAMETERS AND THEIR RATINGS									
	Par	rameter	er Range of values							
1	Strength of intact	Point-load strength index	> 10 MPa	4-10 MPa	2-4 MPa	1-2 MPa For this l			ow range axial ressive	
	rock metarial	Uniaxial comp. strength	> 250 MPa	100-250 MPa	50-100 MPa	25-50 MPa	5-25 MPa	1-5 MPa	<1 MPa	
		Rating	15	12	7	4	2	1	0	
	Drill co	re Quality RQD	90 % - 100 %	75 % - 90 %	50 % - 75 %	25 % - 50 %		< 25 %	,	
3		Rating	20	17	13	8	3			
	Spacing of	of discontinuities	> 2 m	0,6 - 2 m	200 - 600 mm	60 - 200 mm	<	60 mn	n	
		Rating	20	15	10	8	G . G	5		
4	Condition of discontinuities (See E)		Very rough surface Not continuous No separation Unweathered wall rock	Slightly rough surfaces Separation < 1 mm Slightly weathered walls	Slightly rough surfaces Separation < 1 mm Highly weathered walls	Shekensided surfaces or Gouge < 5 mm thick or Separation 1 - 5 mm Continuous	si son gouge > 5 n thick or Separation > 5 m Continuous		mm mm	
Ī		Rating	30	25	20	10		0		
	Ground	Inflow per 10 m tunnel length(1/m)	None	< 10	10 - 25	25 - 125		> 125		
5	water	(Joint water press)/ (Major principal σ)	0	< 0,1	0,1 - 0,2	0,2 - 0,5	> 0,5			
		General Conditions	Completely dry	Damp	Wet	Dripping	I	Flowing	5	
		Rating	15	10	7	4		0		
B.	RATING	ADJUSTMENT	FOR DISCONT	NUITY ORIENT.	ATIONS (See F)					
Strike and dip orientations Very favourable Favourable Fair Unfavourable Very Unfavour				urable						
Tunnels & mines Ratings Foundations		0	-2	-5	-10	-12				
		Foundations	0	-2	-7	-15	-25			
	Slopes		0	-5	-25	-50				
C.	ROCK M	IASS CLASSES	DETERMINED F	ROM TOTAL RA	ATINGS					
Ratings		100 ← 81	80 ← 61	60 ← 41	40 ← 21		< 21			
Class number			Ι	II	III	IV	V			
De	scription		Very good rock	Good rock	Fair rock	Poor rock	Very	y poor	rock	
D.	MEANIN	G OF ROCK CI	LASSES							
Class number		Ι	П	III	IV	V				
Average stand-up time		20 yrs for 15 m span	1 year for 10 m span	1 week for 5 m span	10 hrs for 2,5 m span	30 min	30 min for 1 m span			
Cohesion of rock mass (kPa)		> 400	300 - 400	200 - 300	100 - 200		< 100			
Friction angle of rock mass (deg)		> 45	35 - 45	25 - 35	15 - 25		< 15			
E.	GUIDELI	INES FOR CLAS	SSIFICATION O	F DISCONTINUI	FY CONDITIONS	5****				
Di Ra	scontinuity l tings	length (persistence)	< 1 m 6	1 - 3 m 4	3 - 10 m 2	10 - 20 m 1	:	> 20 m 0	l	
Separation (aperture) Ratings		None 6	< 0,1 mm 5	0,1 - 1,0 mm 4	1 - 5 mm 1	> 5 mm 0		1		
Roughness Ratings		Very rough 6	Rough 5	Slightyl rough	Smooth	Slickensided		led		
Infilling (gouge) Ratings		None 6	Hard filling <5 mm 4	Hard filling >5 mm 2	Soft filling <5 mm 2	Soft filling >5 mm 0		5 mm		
Weathering Ratings		Unweathered 6	Slightly weathered 5	Moderately 3	Highly Weathered	Decomposed 0		sed		
F.	EFFECT	OF DISCONTIN	UITY STRIKE A	ND DIP ORIENT	TATION IN TUN	NELLING**		~		
Strike perpendicular to tunnel axis										
	Drive with	din-Din 45 - 90°	Drive with di	- n-Din 20 - 45°	Din 4	$5 - 90^{\circ}$		Din 20 45°		
	Verv	favourable	Favo	urable	Very favourable		Fair			
Г	Drive against	dip-Dip 45 - 90°	Drive against o	lip-Dip 20 - 45°	Din 0 - 20° - Irrespective o		f strike			
Fair		Unfavourable		Fair						

Table 2.2 Rock mass rating system (After Bieniawski, 1989)

* Some conditions are mutually exclusive. For example, if infilling is present, the roughness of the surface will be overshadowed by the influence of the gouge. In such cases use A.4 directly. ** Modified after Wickham et al. (1972). *** Instead of A.1, A.2, and A.3 use the charts A-D given in Figure A.1. included in App.A **** Section E is used to calculate basic RMR.

After the importance ratings of the classification parameters are established, the ratings for the five parameters listed in Section A of Table 2.2 are summed up to yield the basic rock mass rating for the structural region under consideration.

At this stage, the influence of strike and dip of discontinuities is included by adjusting the basic rock mass rating according to Section B of Table 2.2. This step is treated separately because the influence of discontinuity orientation depends upon engineering application e.g., tunnel (mine), slope or foundation. It will be noted that the value of the parameters discontinuity orientation is not given quantitative terms but by qualitative descriptions such as favorable. To facilitate a decision whether strike and dip orientations are favorable or not, reference should be made to Section F in Table 2.2, which is based on studies by Wickham et al. (1972).

After the adjustment for discontinuity orientations, the rock mass is classified according to Section C of Table 2.2, which groups the final (adjusted) rock mass ratings (RMR) into five rock mass classes, the full range of the possible RMR values varying from zero to 100. Note that the rock mass classes are in groups of twenty ratings each.

Next, Section D of Table 2.2 gives the practical meaning of each rock mass class by relating it to specific engineering problems. In the case of tunnels and chambers, the output from the RMR System may be used to estimate the stand-up time and the maximum stable rock span for a given RMR (Figure A.2 in Appendix A).

Lauffer (1988) presented a revised stand-up time diagram specifically for tunnel boring machine (TBM) excavation. This diagram is most useful because it demonstrates how the boundaries of RMR classes are shifted for TBM applications. Thus, an RMR adjustment can be made for machineexcavated rock masses.

Support pressures can be determined from the RMR System as (Ünal, 1992):

$$\mathbf{P} = \left(\frac{100 - RMR}{100}\right) \cdot \boldsymbol{\gamma} \cdot \mathbf{B} \cdot \mathbf{S} = \boldsymbol{\gamma} \cdot \mathbf{h}_{t}$$
(2.1)

$$h_{t} = \left(\frac{100 - RMR}{100}\right) \cdot B \cdot S$$
(2.2)

where

Р	: is the support pressure in kN/m^2 ,
h _t	: is the rock-load height in meters,
В	: is the tunnel width in meters,
S	: strength factor (obtained from Figure A.3 included in
	Appendix A),
	2

 γ : is the density of the rock in kN/m³.

The variation of the rock-loads from Equation 2.1 for various rock classes as a function of roof span is presented in Figure A.4 included in Appendix A.

Using the measured support pressure values from 30-instrumented Indian tunnels, Goel and Jethwa (1991) proposed Equation 2.3 for estimating the short-term support pressure for underground openings in the case of tunneling by conventional blasting method using steel rib supports:

$$P = \left(\frac{0.75 x B^{0.1} x H^{0.5} - RMR}{2RMR}\right)$$
(2.3)

where

P : is the support pressure in MPa,

- H : is the overburden or tunnel depth in meters (>50 m),
- B : is the span of opening in meters.

RMR System provides a set of guidelines for the selection of rock support for tunnels in accordance with Table A.1 given in Appendix A. These guidelines depend on such factors as the depth below surface (in-situ stress), tunnel size and shape, and the method of excavation. Note that the support measures given in Table A.1 are for 10 m span horseshoe shaped tunnel, vertical stress less than 25 MPa and excavated using conventional drilling and blasting procedures.

2.3.2 Modified Rock Mass Rating (M-RMR) System

The rock mass classification systems have been developed for specific purposes and rock mass types, therefore, direct utilization of these systems, in their original form, for characterization of complex rock mass conditions is not always possible. This is probably one of the main reasons why designers continue to originate new systems, or modify and extend the ones that already exist. RMR and Q systems, for example, although widely used in mining and tunneling, can not fully describe the specifications of weak, stratified and clay bearing rock masses in their original form. Consequently, the engineering applications that would be carried out based on original RMR and Q ratings could be inadequate for making design decisions even during the preliminary design stage (Ünal, 1996).

Several modifications have been proposed in order to make the RMR classification more relevant to mining applications. One of these modifications is "The Modified Rock Mass Rating (M-RMR)" system that has been developed by Ünal and Özkan (1990) based on extensive geotechnical investigations carried out in a borax mine, two coal mines, a copper-zinc mine, and a gold mine region in Turkey.

The M-RMR System enables the determination of a quality-rating index (M-RMR) for characterization of rock masses. In general, the M-RMR System is based on the RMR system, developed by Bieniawski (1979, 1989). However new features are added to the system for better characterization of wide ranges of rock mass conditions, including weak, stratified, anisotropic and clay bearing rock masses.

The M-RMR System (Ünal, 1996; Ünal et al., 1997a and 1997b) includes the following new features:

- a. Flexibility in determining the input parameters from field survey and/or from core boxes.
- b. Inclusion of new parameters to the system, namely: the point load strength index (I_{PL}), Block Punch Index (BPI), weathering coefficient (F_C) which obtained from slake durability test and intact core recovery (ICR).
- c. Further description of adjustment factors, reflecting the effects of blasting damage (A_b) and major planes of weaknesses (A_w).
- d. Description of the broken rock structures (BSTR) encountered in core boxes and allocation of importance ratings of these regions.
- e. Allocation of new joint filling conditions, which can describe what, is physically seen in core boxes.
- f. Development of new rating system for orientation of joints, which facilitate the use of the M-RMR System for shafts and slopes in addition to tunnels.

- g. Considerations of the definitions and interval suggested by ISRM (1981), in allocating the importance ratings to strength and joint parameters.
- h. Fully automatic processing of the collected input data by means of a computer program called ROCKMASS, developed by Ünal and Özkan (1990).

The total rating, suggested by original RMR system for each individual input parameter has not been changed, however, after corrections due to weathering effect, the M-RMR quality rating index may go up to 110.

The input parameters required for classification process can be obtained from field or from core box survey. Depending on the type of survey the classification input data worksheets should be completed for each successive structural region or domain.

It is important to notice that based on the observation made in core boxes, the following features should be identified (Ünal, 2002):

i. Possible high horizontal stress (PHHS) zones,

ii. Broken structural zones (BSTR), characterized by heavily fractured nature of the rock, and absence of solid cores,

iii. Low shear strength properties, characterized by planar, smooth and occasionally slickensided joint surfaces,

iv. The effect of fault, existing in the vicinity of the borehole which may be recognized by the relative orientation of the discontinuities, the existence of the shear zones, and the presence of the water under pressure.
Based on the rock mass classification studies, the rock mass rating of each structural region should also be determined and the results should be interpreted in terms of rock mass classes and stability.

Structural regions are the zones of an engineering structure (i.e. tunnel or haulage way) in which geological conditions (e.g. type of rock material, discontinuities, topography, and overburden thickness) and hydrogeological conditions (e.g. surface and groundwater conditions) are similar. Structural domains, on the other hand, are the zones of core boxes in which certain features of the cores (i.e. rock type and joint density) are more or less uniform within each domain. Each shear zone, thick clay or broken zone, and cavity (core-loss) zone should be treated as a structural domain and hence, should be evaluated separately.

The quality-rating index for each structural region or domain, can be obtained either by manual calculations or by utilizing a computer program called ROCKMASS, developed by Ünal and Özkan (1990). In order to determine the M-RMR index manually, the ratings of the six basic input parameters, the weathering coefficient and the two adjustment factors (A_b and A_w) should be considered.

The six input parameters considered in M-RMR system are; uniaxial compressive strength, RQD, condition of discontinuities, joint spacing, groundwater conditions, and orientation of discontinuities. The steps that should be followed for determining the M-RMR value are illustrated in Figure 2.1. If there are more than one joint set in the rock mass, the M-RMR index should be determined by considering each joint set separately and the lowest M-RMR value should be selected as an index representing the structural region (or domain) in question.

Figure 2.1 The overall structure of the modified Rock Mass Rating, M-RMR, System and the classification steps (After Ünal, 1996).

In order to determine the M-RMR value, the geotechnical data must be converted to numerical values, which reflect the ratings assigned to the input parameters. This can be accomplished by utilizing the Figures A.5 to A.8 given in Appendix A.

Gökçeoğlu and Aksoy (2000) suggested new improvements, such as determination of weathering coefficient by Schmidt hammer and four-cycle slake durability index, to the M-RMR system with their study.

2.3.3 Rock Mass Quality (Q) System

Barton et al. (1974) at the Norvegian Geotechnical Institute (NGI) proposed the Rock Mass Quality (Q) System of rock mass classification on the basis of about 200 case histories of tunnels and caverns. It is a quantitative classification system, and it is an engineering system enabling the design of tunnel supports.

The concept upon which the Q system is based upon three fundamental requirements:

- a. Classification of the relevant rock mass quality,
- b. Choice of the optimum dimensions of the excavation with consideration given to its intended purpose and the required factor of safety,
- c. Estimation of the appropriate support requirements for that excavation.

The Q-System is based on a numerical assessment of the rock mass quality using six different parameters:

$$Q = \left(\frac{RQD}{J_n}\right) \cdot \left(\frac{J_r}{J_a}\right) \cdot \left(\frac{J_w}{SRF}\right)$$
(2.4)

where

RQD	is the Rock Quality Designation
J_n	is the joint set number
J _r	is the joint roughness number
$\mathbf{J}_{\mathbf{a}}$	is the joint alteration number
$\mathbf{J}_{\mathbf{w}}$	is the joint water reduction factor
SRF	is the stress reduction factor

The numerical value of the index Q varies on logarithmic scale from 0.001 to a maximum of 1000.

The numerical values of each of the above parameters are interpreted as follows (Barton et al., 1974). The first quotient (RQD/J_n), representing the structure of the rock mass, is a crude measure of the block or particle size. The second quotient (J_r/J_a) represents the roughness and frictional characteristics of the joint walls or filling materials. The third quotient (J_w/SRF) consists of two stress parameters. SRF is a measure of:

- i. loosening load in the case of an excavation through shear zones and clay bearing rock,
- ii. rock stress in competent rock, and
- iii. squeezing loads in plastic incompetent rocks. It can be regarded as as a total stress parameter.

The parameter J_w is a measure of water pressure. The quotient (J_w/SRF) is a comlicated empirical factor describing the active stress.

Barton et al. (1974) consider the parameters, J_n , J_r , and J_a , as playing a more important role than joint orientation, and if joint orientation had been included, the classification would have been less general. However, orientation is implicit in parameters J_r , and J_a , because they apply to the most unfavorable joints.

The traditional use of the Q-system for rock mass classification and empirical design of rock reinforcement and tunnel support has been extended in several ways in the paper published by Barton (2002a). The classification of individual parameters used to obtain the tunneling Quality Index Q for a rock mass is given in Table 2.3.

Table 2.3 Classification of individual parameters used in the Q System (Barton, 2002a).

A1	

Rock quality	designation	RQD (%)
А	Very poor	0–25
В	Poor	25–50
С	Fair	50-75
D	Good	75–90
E	Excellent	90–100
NT . (1) TT 71		

Notes: (i) Where RQD is reported or measured as ≤ 10 (including 0), a nominal value of 10 is used to evaluate Q. (ii) RQD intervals of 5, i.e., 100, 95, 90, etc., are sufficiently accurate.

A	2
А	4

Joint set number		$\mathbf{J}_{\mathbf{n}}$
А	Massive, no or few joints	0.5-1
В	One joint set	2
С	One joint set plus random joints	3
D	Two joint sets	4
E	Two joint sets plus random joints	6
F	Three joint sets	9
G	Three joint sets plus random joints	12
Н	Four or more joint sets, random, heavily jointed,	15
	'sugar-cube', etc.	
J	Crushed rock, earthlike	20
Notes: (i) For tunnel inter	resections, use $(3.0 \text{ x } J_n)$. (ii) For portals use $(2.0 \text{ x } J_n)$.	

A3

Joint roug	hness number	$\mathbf{J}_{\mathbf{r}}$			
(a) Rock-wa	(a) Rock-wall contact, and (b) rock-wall contact before 10 cm shear				
А	Discontinuous joints	4			
В	Rough or irregular, undulating	3			
С	Smooth, undulating	2			
D	Slickensided, undulating	1.5			
E	Rough or irregular, planar	1.5			
F	Smooth, planar	1.0			
G	Slickensided, planar	0.5			

Table 2.3 (Continued).

(c) No rock-wall contact when sheared

H Zone containing clay minerals thick enough to prevent rock-wall contact. 1.0J Sandy, gravely or crushed zone thick enough to prevent rock-wall contact 1.0

Notes: (i) Descriptions refer to small-scale features and intermediate scale features, in that order. (ii) Add 1.0 if the mean spacing of the relevant joint set is greater than 3m. (iii) $J_r = 0.5$ can be used for planar, slickensided joints having lineations, provided the lineations are oriented for minimum strength. (iv) Jr and J_a classification is applied to the joint set or discontinuity that is least favourable for stability both from the point of view of orientation and shear resistance, τ (where $\tau \approx \sigma_n \tan^{-1} (J_r/J_a)$.

A4

Joint	alteration number	ø _r app	prox.	(deg) J _a
(a) Roo	ck-wall contact (no mineral fillings, only coatings)			
А	Tightly healed, hard, non-softening, impermeable filling,	_	_	0.75
	i.e., quartz or epidote			
В	Ünaltered joint walls, surface staining only	25	-35	1.0
С	Slightly altered joint walls, non-softening mineral coating	s, 25	-30	2.0
	sandy particles, clay-free disintegrated rock, etc.			
D	Silty- or sandy-clay coatings, small clay fraction	20	-25	3.0
	(non-softening)			
E	Softening or low friction clay mineral coatings,	8	-16	4.0
	i.e., kaolinite or mica. Also chlorite, talc, gypsum, graphite	e, etc.,		
	and small quantities of swelling clays			
(b) Ro	ck-wall contact before 10 cm shear (thin mineral fillings)			
F	Sandy particles, clay-free disintegrated rock, etc.		25-30) 4.0
G	Strongly over-consolidated non-softening clay mineral fill	ings	16-24	4 6.0
	(continuous, but <5mm thickness)	C		
Η	Medium or low over-consolidation, softening,		12-1	6 8.0
	clay mineral fillings (continuous, but <5mm thickness)			
J	Swelling-clay fillings, i.e., montmorillonite		6-12	2 8–12
	(continuous, but <5mm thickness).			
	Value of J _a depends on per cent of swelling clay-size partic	cles,		
	and access to water, etc.			
(c) No	rock-wall contact when sheared (thick mineral fillings)			
KLM	Zones or bands of disintegrated or crushed rock and clay	6–24	6,8	, or 8–12
	(see G, H, J for description of clay condition)			
Ν	Zones or bands of silty- or sandy-clay, small clay fraction			5.0
	(non-softening)			
	OPR Thick, continuous zones or bands of clay	6–24	10, 13	, or 13–20
	(see G, H, J for description of clay condition)			
<u>A5</u>				

Joi	nt water reduction factor A	pprox. water pres. (kg/c	(m^2) J_w
А	Dry excavations or minor inflow,	<1	1.0
	i.e., <5 l/min locally		
В	Medium inflow or pressure,	1–2.5	0.66
	occasional outwash of joint fillings		
С	Large inflow or	2.5-10	0.5
	high pressure in competent rock with unfilled	joints	
D	Large in.ow or high pressure,	2.5–10	0.33
	considerable outwash of joint fillings		

Table 2.3 Continued.

E	Exceptionally high inflow or	>10	0.2-0.1
	water pressure at blasting, decaying with	n time	
F	Exceptionally high inflow or	>10	0.1-0.05
	water pressure continuing without notic	eable decay	

Notes: (i) Factors C to F are crude estimates. Increase J_w if drainage measures are installed. (ii) Special problems caused by ice formation are not considered. (iii) For general characterization of rock masses distant from excavation influences, the use of $J_w = 1.0$, 0.66, 0.5, 0.33, etc. as depth increases from say 0–5, 5–25, 25–250 to >250 m is recommended, assuming that RQD=J_n is low enough (e.g. 0.5–25) for good hydraulic connectivity. This will help to adjust Q for some of the effective stress and water softening effects, in combination with appropriate characterization values of SRF. Correlations with depth dependent static deformation modulus and seismic velocity will then follow the practice used when these were developed.

A6

Р

Heavy squeezing rock pressure

Stres	s reduction factor			SRF
(a) Weakness zones intersecting excavation, which may cause loosening of rock mass whe				
tunnel	is excavated			
А	Multiple occurrences of weakness zones co	ontaining clay	y or chemically	10
	disintegrated rock, very loose surrounding	rock (any dej	pth)	
В	Single weakness zones containing clay or o	chemically di	sintegrated rock	c) 5
	(depth of excavation ≤ 50 m			
С	Single weakness zones containing clay or c	chemically di	sintegrated rock	2.5
_	(depth of excavation >50m)			
D	Multiple shear zones in competent rock (cl	ay-free), loos	se surrounding r	ock 7.5
-	(any depth)	c)		5.0
E	Single shear zones in competent rock (clay	-free),		5.0
Б	(depth of excavation ≤ 50 m)	f		2.5
Г	Single shear zones in competent rock (clay	y-free),		2.5
C	(depth of excavation >50m)	an antra? ata	(any danth)	5.0
G	Loose, open joints, neavily jointed or suga	ar cube ⁻ , etc.	(any depth)	5.0
	_	σ_{c}/σ_{1}	$\sigma_{\theta}/\sigma_{c}$	SRF
(b) Cor	mpetent rock, rock stress problems			
Η	Low stress, near surface, open joints	200	< 0.01	2.5
J	Medium stress, favorable stress condition	200-10	0.01-0.3	1
Κ	High stress, very tight structure.	10–5	0.3-0.4	0.5–2
	Usually favorable to stability, may be			
	unfavorable for wall stability			
L	Moderate slabbing after >1h in massive roo	ck 5–3	0.5-0.65	5-50
Μ	Slabbing and rock burst after a few minute	s 3–2	0.65–1	50-200
	in massive rock			
Ν	Heavy rock burst (strain-burst) and immed	iate <2	>1	200–400
	dynamic deformations in massive rock			
			$\sigma_{\theta}/\sigma_{c}$	SRF
(c) Squ	(c) Squeezing rock: plastic flow of incompetent rock under the influence of high rock			
pressu	re			
0	Mild squeezing rock pressure		1–5	5-10

22

>5

10-20

Table 2.3 (Continued).

		<u> 5KF</u>
(d) S	welling rock: chemical swelling activity depending on presence of water	
R	Mild swelling rock pressure	5-10
S	Heavy swelling rock pressure	10-15

ODE

Notes: (i) Reduce these values of SRF by 25–50% if the relevant shear zones only influence but do not intersect the excavation. This will also be relevant for characterization. (ii) For strongly anisotropic virgin stress field (if measured): When $5 \le \sigma_1/\sigma_3 \le 10$; reduce σ_c to $0.75\sigma_c$: When $\sigma_1=\sigma_3 > 10$; reduce σ_c to $0.5\sigma_c$; where σ_c is the unconfined compression strength, σ_1 and σ_3 are the major and minor principal stresses, and σ_0 the maximum tangential stress (estimated from elastic theory). (iii) Few case records available where depth of crown below surface is less than span width, suggest an SRF increase from 2.5 to 5 for such cases (see H). (iv) Cases L, M, and N are usually most relevant for support design of deep tunnel excavations in hard massive rock masses, with RQD=Jn ratios from about 50–200. (v) For general characterization of rock masses distant from excavation influences, the use of SRF=5, 2.5, 1.0, and 0.5 is recommended as depth increases from say 0–5, 5–25, 25–250 to >250 m. This will help to adjust Q for some of the effective stress effects, in combination with appropriate characterization values of J_w: Correlations with depth- dependent static deformation modulus and seismic velocity will then follow the practice used when these were developed. (vi) Cases of squeezing rock may occur for depth H > $350Q^{1/3}$ according to Singh [34]. Rock mass compression strength can be estimated from $\sigma_{cm} \approx 5\gamma Q^{-1/3}c$ (MPa) where γ is the rock density in t/m³, and Qc = Q x $\sigma_c / 100$; Barton (2000).

Most recently, some suggestions, related to Q-System, were made by Ünal (2002). These suggestions are based on the experience gained in applying rock mass classification systems. As experienced before, it was quite difficult to apply the Q-System as suggested by Barton et al. (1974). The difficulty arises, especially in determining the joint alteration number (J_a) and stress reduction factor (SRF) parameters during geotechnical logging, which is not defined by Barton et al. (1974). In order to bring a modest solution to this problem Ünal (2002) made some suggestions for J_a and SRF parameters. These suggestions are presented in Appendix A (Figures A.9 to A.11).

In relating the value of the index Q to the stability and support requirements of underground excavations, Barton et al. (1974) defined a parameter that they called Equivalent Dimension, D_e , of the excavation. This dimension is obtained by dividing the span, diameter or wall height of the excavation by a quantity called the Excavation Support Ratio, ESR.

$$D_{e} = \frac{\text{Excavation span, diameter or height (m)}}{\text{Excavation Support Ratio, ESR}}$$
(2.5)

The value of ESR is related to the intended use of the excavation and to the degree of security which is demanded of the support system installed to maintain the stability of the excavation as shown below in Table 2.4.

The equivalent dimension, D_e , plotted against the value of Q, is used to provide 38 support categories in a chart published in the original paper by Barton et al. (1974). This chart has been updated by Grimstad and Barton (1993) to reflect the increasing use of steel fibre reinforced shotcrete in underground excavation support. The original support chart and list of 38 support categories are presented in Appendix A as Figure A.12 and Tables A.2 to A.5.

Table 2.4 Excavation support categories and their ESR values (After Barton et al., 1974).

Excav	ation Category	ESR Values
А	Temporary mine openings	3-5
В	Permanent mine openings, water tunnels for hydro power	1.6
	(excluding high pressure penstocks), pilot tunnels, drifts	
	and headings for excavations	
С	Storage rooms, water treatment plants, minor road and	1.3
	railway tunnels, civil defense chambers, portal intersections	
D	Power stations, major road and railway tunnels, civil	1.0
	defense chambers, portal intersections.	
E	Underground nuclear power stations, railway stations,	0.8
	sports and public facilities, factories	

The reproduced updated Q-support chart (Barton, 2002a) is shown in Figure 2.2.

- 1. Unsupported.
- 2. Spot bolting (Sb).
- 3. Systematic bolting (B).
- 4. Systematic bolting with 40-100 mm unreinforced shotcrete.
- 5. Fibre reinforced shotcrete (S(fr)), 50-90 mm, and bolting.
- 6. Fibre reinforced shotcrete, 90-120 mm, and bolting.
- 7. Fibre reinforced shotcrete, 120-150 mm, and bolting.
- 8. Fibre reinforced shotcrete, >150 mm, with reinforced ribs of shotcrete and bolting.
- 9. Cast concrete lining (CCA).

Figure 2.2 The 1993 updated Q-support chart for selecting permanent B+S(fr) reinforcement and support for tunnels and caverns in rock. The black, highlighted areas show where estimated Q-values and stability are superior in TBM tunnels compared to drill-and-blast tunnels. This means 'nosupport' penetrates further (After Barton, 2002a).

Barton et al. (1980) provide additional information on rock bolt length, maximum unsupported spans and roof support pressures to supplement the support recommendations published in the original 1974 paper.

The length (L) of rockbolts can be estimated from the excavation width (B) and the Excavation Support Ratio (ESR):

$$L = \frac{2 + 0.15B}{ESR}$$
(2.6)

The maximum unsupported span can be estimated from the following expression:

Maximum unsupported span = 2 . ESR .
$$Q^{0.4}$$
 (2.7)

Based upon analyses of case records, Grimstad and Barton (1993) suggest that the relationship between the value of Q and the permanent roof support pressure P is estimated from:

$$P = \frac{2\sqrt{J_n}Q^{-1/3}}{3J_r}$$
(2.8)

The original Q-based empirical equation for underground excavation support pressure (Barton et al., 1974), when converted from the original units of kg/cm² to MPa, is expressed as follows (Barton, 2002a):

$$P = \frac{J_r}{20xQ^{1/3}}$$
(2.9)

2.3.4 Geological Strength Index (GSI)

One of the major problems in designing underground openings is estimating the strength parameters of in situ rock mass. The strength and deformation modulus of closely jointed rock masses cannot be directly determined, since the dimensions of representative specimens are too large for laboratory testing. This limitation results in an important difficulty when studying in jointed rock masses. Hoek and Brown (1980) suggested an empirical failure criterion to overcome this difficulty. The rock mass rating (RMR) classification was introduced into the Hoek–Brown criterion by its originators (Hoek and Brown, 1988) to describe the quality of rock masses. This empirical criterion has been re-evaluated and expanded over the years due to the limitations both in Bieniawki's RMR classification and the equations used by the criterion for very poor-quality rock masses (Hoek, 1983, 1990, 1994; Hoek and Brown, 1988, 1997; Hoek et al., 1992, 2002).

Hoek (1994), Hoek et al (1995), and Hoek and Brown (1997) proposed a new rock mass classification system called "Geological Strength Index, GSI" as a replacement for Bieniawski's RMR to eliminate the limitations rising from the use of RMR classification scheme. The GSI System seems to be more practical than the other classification systems such as Q and RMR when used in the Hoek–Brown failure criterion. Therefore, the GSI value has been more popular input parameter for the Hoek–Brown criterion to estimate the strength and deformation modulus of the jointed rock masses.

In the original form of the GSI System (Hoek and Brown, 1997), the rock mass is classified into 20 different categories with a letter code based upon the visual impression on the rock mass and the surface characteristics of discontinuities and the GSI values ranging between 10 and 85 are estimated (Figure A.13 in Appendix A). Two additional rock mass categories, is called foliated / laminated rock mass structure and massive or intact rock, were

introduced into the GSI system by Hoek et al. (1998) and Hoek (1999), respectively as seen in A.15 (Appendix A). Due to the anisotropic and heterogeneous nature of the foliated/laminated rock mass structure category, Marinos and Hoek (2001) also proposed a special GSI chart only for the classification of the heterogeneous rock masses such as flysch.

However, the GSI classification scheme, in its existing form, leads to rough estimates of the GSI values (Sönmez and Ulusay, 1999). Therefore, Sönmez and Ulusay (1999) made an attempt for the first time to provide a more quantitative numerical basis for evaluating GSI as a contributory use of the GSI system by introducing new parameters and ratings, such as surface condition rating (SCR) and structure rating (SR) (Figure A.14 in Appendix A). In this modification, the original skeleton of the GSI System has been preserved, and SR and SCR are based on volumetric joint count (J_v) and estimated from the input parameters of RMR scheme (e.g. roughness, weathering and infilling). Then this chart was slightly modified by Sönmez and Ulusay (2002) and defined by fuzzy sets by Sönmez et al. (2003). In this version of the quantitative GSI chart, intact or massive rock mass included into the system as previously suggested by Hoek (1999) as given in Figure 2.3.

In recent years, the GSI system has been used extensively in many countries and lots of studies have been done to quantify GSI system parameters to better classify jointed rock masses for engineering purposes. The quantified GSI chart, building on the concept of block size and condition, developed by Cai, et al. (2003), and fuzzy-based quantitative GSI chart of Sönmez et al. (2004a) are presented as Figures A.16 and A.17 in Appendix A.

A computer program "RocLab" was developed (Hoek et al., 2002) to determine the rock mass strength parameters (cohesion, internal friction angle) by using GSI.

Figure 2.3 The modified GSI classification suggested by Sönmez and Ulusay (2002).

2.3.5 The New Austrian Tunneling Method (NATM)

The New Austrian Tunneling Method (NATM) was developed by Rabcevicz, Müller and Pacher between 1957 and 1965 in Austria. NATM features a qualitative ground classification system that must be considered within the overall context of the NATM (Bieniawski, 1989).

In essence, NATM is a approach or philosophy integrating the principles of the behavior of rock masses under load and monitoring the performance of underground excavations during construction. The NATM iss not a set of specific excavation and support techniques. It involves a combination of many established ways of excavation and tunneling, but the difference is the continual monitoring of the rock movement and the revision of support to obtain the most stable and economical lining. However, a number of other aspects are also pertinent in making the NATM more of a concept or philosophy than a method (Bieniawski, 1989).

Müller (1978) considers the NATM as a concept that observes certain principles. Although he has listed no less than 22 principles, there are seven most important features on which the NATM based (Bieniawski, 1989):

1. *Mobilization of the Strength of the Rock Mass.* The method relies on the inherent strength of the surrounding rock mass being conserved as the main component of the tunnel support. Primary support is directed to enable the rock to support itself. It follows that the support must have suitable load deformation characteristics and be placed at the correct time.

2. *Shotcrete Protection*. In order to preserve the load-carrying capacity of the rock mass, loosening and excessive rock deformations must be minimized. This is achieved by applying a thin layer of shotcrete, sometimes together with a suitable system of rock bolting, immediately after face advance. It is essential

that the support system used remains in full contact with the rock and deforms with it. While the NATM involves shotcrete, it does not mean that the use of shotcrete alone constitutes the NATM.

3. *Measurements*. The NATM requires the installation of sophisticated instrumentation at the time the initial shotcrete lining is placed, to monitor the deformations of the excavation and the buildup of load in the support. This provides information on tunnel stability and permits optimization of the formation of a load-bearing ring of rock strata. The timing of the placement of the support is of vital importance.

4. *Flexible Support*. The NATM is characterized by versatility and adaptability leading to flexible rather than rigid tunnel support. Thus, active rather than passive support is advocated, and strengthening is not by a thicker concrete lining but by a flexible combination of rock bolts, wire mesh, and steel ribs. The primary support will partly or fully represent the total support required and the dimensioning of the secondary support will depend on the results of the measurements.

5. *Closing of Invert.* Since a tunnel is a thick walled tube, the closing of the invert to form a load-bearing ring of the rock mass is essential. This is crucial in soft-ground tunneling, where the invert should be closed quickly and no section of the excavated tunnel surface should be left unsupported even temporarily. However, for tunnels in rock, support should not be installed too early since the load-bearing capability of the rock mass would not be fully mobilized. For rock tunnels, the rock mass must be permitted to deform sufficiently before the support takes full effect.

6. *Contractual Arrangements*. The preceding main principles of the NATM will only be successful if special contractual arrangements are made. Since the NATM is based on monitoring measurements, changes in support and construction methods should be possible. This, however, is only possible if the contractual system is such that changes during construction are permissible (Spaun, 1977).

7. *Rock Mass Classification Determines Support Measures.* Payment for support is based on a rock mass classification after each drill and blast round. In some countries this is not acceptable contractually, and this is why the method has received limited attention in the United States.

According to NATM, the rock mass is classified without a numerical quality rating; ground conditions are described qualitatively. The Austrian ONORM B2203 of October 1994 is based on the suggestions by Rabcewicz et al. (1964) as seen in Figure 2.4. The main rock mass classes and behaviour of rock masses for each rock mass group according to the ONORM B2203 are given in Table A.6 included in Appendix A

A critical analysis of the principles of the complete New Austrian Tunneling Method (NATM) "edifice of thoughts" has been published by Kovari (1994). The author claimed that: "The NATM is based on two basic erreneous concept". The most recently published paper by Kovari (2004) traces the fascinating history of rock bolts and the NATM or the sprayed concrete lining method from its beginnings and shows how it developed on a broad international front in its theoretical and technological aspects. This paper describes numerous examples of civil engineering work wordwide with early application of rock bolting. In concluding, it is demonstrated that NATM is in many respects borrowed and has created much confusion amongst professional engineers by dint of its psedudo-scientific basis (Kovari, 2004).

ROCK MASS CLASSIFICATION IN TUNNELING							
CLASS			GEOMECHANICAL BEHAVIOUR	WATER EFFECT			
I	STRONG get slightly fragile by time	Dense, uncertain discontinuity traces	Uniaxial compressive strength of rock is higher than the tangential stress on the opening wall	None			
II	FRAGILE get very fragile by time	Certain discontinuities due to the bedding and jointing, locally clayey joint fillings	No I: continuously stable (precautions to rock burst) No II: continuously stable with the support of the bench	Not significant			
III	FRIABLE	Wide and effective crushing, fucturing, mylonite zones in all directions, clayey fillings	Tangential stress on the excavation wall is higher than or equal to resistance of the rock. Open or close load bearing arch is necessary	Very effective on joint fillings			
IV	SQUEEZING	Crushed, folded thick mylonite zones, very well squeezed, cohessive soil	Due to tangential stresses on the excavation wall is higher than the bearing capacity of the rock, rock behaves plastically. Deforming towards opening	Highly effective on joint fillings and rock mass quality			
a v	VERY SQUEEZING potential to swelling	$\begin{array}{c c} & $	No IV : slow and minor rate No V: fast and effective rate Horizontal stress and floor heaving	Very high, softening			
b	SQUEEZING Low cohessive soil	$\begin{array}{c c} & & & & & \\ \hline & & & & & & \\ \hline & & & & &$	are expected. Load bearing close arch that should be installed immediately after excavation is necessary				
VI	Special Type (Flowing)	Non-cohessive, flowing soil	Similar with V and special precautions are necessary	Very much			

Not: This table were prepared according to Pacher and Rabcewicz.'s studies. Figure 2.4 The NATM's rock mass classes (Ayaydın, 1986).

2.3.6 Correlations between the RMR, M-RMR, Q, GSI and NATM

The RMR, M-RMR, Q and GSI classification systems are based on the quantitative properties of rock mass, but NATM is qualitative classification system. However, the basic idea of the support systems is close to each other. For the tunnel designs, these classification systems are used together as empirical aproach.

Various empirical correlations have been made between RMR and Q classification in previous studies. The most popular and applicable one is proposed by Bieniawski (1976) is given in Table 2.6.

Also different correlations proposed between GSI and RMR (Hoek, et al., 1995), GSI and Q (Hoek, et al., 1995), and M-RMR and Q (Ünal, 1996) as given in Table 2.5.

Originator of empirical equation	Equation			
Bieniawski (1976)	$RMR = 9 \ln Q + 44$			
Hoek et al. (1995)	$GSI = RMR_{76}$ (use of 1976 version of RMR) $GSI = RMR_{89} - 5$ (use of 1989 version of RMR)			
Hoek et al. (1995)	GSI = 9 lnQ' + 44 (Q': $\frac{RQD}{Jn} \frac{Jr}{Ja}$)			
Ünal (1996)	$M-RMR = 9.66 \ln Q + 37.9$			

Table 2.5 Correlations between the classification systems

2.4 Estimation of Rock Mass Strength and Deformation Modulus

One of the major problems in designing underground openings is estimating the strength parameters of in-situ rock mass. Determination of the strength of closely jointed rock masses is difficult since the size of representative specimens sometimes is too large for laboratory testing.

This difficulty can be overcome by using the Hoek-Brown failure criterion. Since its introduction in 1980, the criterion has been refined and expended over the years (1983, 1988. 1992, 1995, 2002). A brief history of the development of the Hoek-Brown failure criterion and summary of equations, which are used for estimation of rock mass strength parameters are published by Hoek (2004) and presented in Appendix A.I.

The results of the back analysis of the slope instabilities in closely jointed rock masses by Sönmez and Ulusay (1999 and 2002) indicated that the disturbance effect due to the influence of the method of excavation could not be ignored. For this reason, a disturbance factor, which should be used in the determination of rock mass constants considered by the Hoek-Brown failure criterion, was suggested by these investigators.

The latest version of Hoek-Brown failure criterion was proposed by Hoek et al. (2002). It represents a major re-examination of the entire Hoek-Brown failure criterion and new derivations of the relationships between rock mass strength parameters (m,s) and GSI. A disturbance factor (D), which is also considered by the empirical equation for estimating the deformation modulus of rock masses in conjuction with the GSI, was also included to deal with blast damage. The guidelines for estimating disturbance factor D are given in Appendix A.II. Also a computer program *RocLab*, which includes all of these new derivations, was developed to determine the rock mass strength parameters (cohesion, internal friction angle) by using GSI.

The deformation modulus (E_m) of a rock mass is an important parameter in any form of numerical analysis and in the interpretation of monitored deformation around underground openings. Since this parameter is very difficult and expensive to determine in the field, several attempts have been made to develop methods for estimating its value, based upon rock mass classifications (Hoek et al., 1995).

The first empirical model for prediction of the deformation modulus of rock masses was developed by Bieniawski (1978). After Bieniawski's empirical equation, some other empirical approaches such as Barton et al. (1980), Serafim and Pereira (1983), Nicholson and Bieniawski (1990), Mitri et al. (1994), Hoek and Brown (1997), Palmström and Singh (2001), Barton (2002), Hoek, et al. (2002) and Kayabaşı et al. (2003) have been proposed to estimate the deformation modulus of rock masses. Such empirical approaches are open to improvement because they are based limited collected data.

The equations proposed by Bieniawski (1978), Serafim and Pereira (1983), Nicholson and Bieniawski (1990) and Mitriet al.(1994) consider Bieniawski's RMR (1989) while Barton's equation (1980, 2002b) estimates the deformation modulus by considering the Q-values. The equation proposed by Hoek and Brown (1997) is a modified form of Serafim and Pereira's equation (1983) and it is based on the GSI. Palmström and Singh (2001) also suggested an empirical equation depending on RMi (Palmström, 1996) values for the prediction of deformation modulus. Kayabaşı et al. (2003) proposed the most recent empirical equation by considering the RQD, elasticity modulus of intact rock and weathering degree for estimating the deformation modulus of rock masses. Recently, with the study conducted by Gökçeoğlu et al. (2003), the prediction performance of the existing empirical equations was checked and some contributions to the work of Kayabaşı et al. (2003) was provided.

Mostly used empirical equations for the estimation of deformation modulus are given in Table 2.6.

Most resently, a prediction model, based on an approach which considers that modulus ratios of the rock mass and intact rock should be theoretically equal to each other when GSI is equal to 100, was developed by Sönmez et.al. (2004b).

Hoek presented a discussion paper, which is named as *estimates of rock mass strength and deformation modulus*, in the internet site www.rocscience.com (Hoek, 2004). In this paper, empirical estimates of rock mass strength and deformation modulus, which have beenpublished by several authors, together with available data from in situ measurements are

summarized in Figures (Appendix A.III). These estimates are based on rock mass classification systems. All of the empirical relationships used in these studies are intended to provide initial estimates of the rock mass properties and they should be used with caution in engineering design. In critical cases it is strongly recommended that the estimates should be confirmed by in situ measurements or by back analysis of excavation behavior.

Originator of empirical equation	Required parameters	Limitations	Equation		
Bieniawski (1978)	RMR	RMR > 50	$E_m = 2RMR-100$		
Serafim and Pereira (1983)	RMR	$RMR \le 50$	$E_m = 10^{[(RMR-10)/40]}$		
Barton (2002)	Q, σ _c	$\sigma_c \leq 100 MPa$	$E_m = 10[(\sigma_c / 100)Q]^{1/3}$		
Hoek et al.		σ _c ≤100 MPa	$E_m = [1-(D/2)] \sqrt{(\sigma_c/100)} 10^{(GSI-10)/40}$		
(2002)	GSI, σ_c, D	σ _c >100 MPa	$E_m = [1-(D/2)]10^{(GSI-10)/40}$		
σ_c : Uniaxial compressive strength, D: Disturbance factor (Appendix A II).					

 Table 2.6 List of empirical equations suggested for estimating the deformation

 modulus with required parameters and limitations

CHAPTER III

GEOLOGICAL AND GEOTECHNICAL INVESTIGATIONS AT THE DİM TUNNEL PROJECT AREA

3.1 Introduction

In this chapter, general information about Dim Tunnel, previous geological studies, and geological and geotechnical studies carried out by the author around the tunnel project area are presented.

3.2 General Information about Dim Tunnel

The study area is located 6 km southeast of Alanya on the Alanya-Gazipaşa-5. Division Boundary Road along the Mediterranean Sea coast between Km 6+050 and 7+400 in southern Turkey (Figures 3.1, 3.2 and 3.3).

The proposed Dim Tunnel has a horse-shoe shape, with a diameter of 10 meters and maximum overburden thickness of 70 meters.

3.3 **Previous Studies**

The proposed tunneling area and its vicinity were examined mainly for geological and mining purposes by Blumental (1951), Okay and Özgül (1984), and Şengün (1986).

Figure 3.1 Location map of the study area.

Figure 3.2 General view of proposed Dim Tunnel route from Km 6+200.

Figure 3.3 General view of proposed Dim Tunnel route from Km 6+570.

In regard to geotechnical investigations, Petra Engineering and Consulting Company, in 2002, carried out a detailed geotechnical investigation along the Dim Tunnel at the Alanya - Gazipaşa - 5. Division Boundary Road between Km 6+050 and Km 7+400. The preliminary geotechnical investigation report was completed and submitted to the General Directorate of Highways in January 2003 but the final geotechnical investigation report (including rock mass classifications, related support system, etc.) and design of the tunnel has not been prepared yet. The author of this thesis also involved in the project for Petra during the geological and geotechnical investigations.

3.3.1 Geology

In this section regional geology, site geology and structural geology of the study area and its vicinity are evaluated.

3.3.1.1 Regional Geology

The Alanya Massif is the name given to a large area of metamorphic rocks situated towards the east of Antalya Bay in the Eastern Mediterranean (Blumental, 1951).

The Mesozoic continental margin type lithologies of the Antalya unit crop out beneath the Alanya Massif in a large tectonic window.. In the east of the Antalya Bay between Alanya and Anamur, the largely sedimentary lithologies of the Antalya unit are in turn tectonically overlain by the metamorphic rocks of the Alanya Massif (Figure 3.4).

The southern part of the Alanya Massif is made up of three superimposed, relatively flat lying, crystalline nappes (Alanya Nappes). The Alanya Massif consists of the structurally lowest part of Mahmutlar Nappe, the intermediate part of the Sugözü Nappe, and the structurally highest unit of the Yumrudağ Nappe. Mahmutlar Nappe consists of heterogeneous series of shales, sandstones, dolomites, limestones and quartzites. These are metamorphosed under greenschist facies conditions, and at least part of the sequence is Permian in age. Sugözü Nappe made up of garnet-mica schists, eclogites and blue schist. Alanya nappe consists of a thick Permian carbonate sequence underlain by relatively thin schist metamorphosed under low-grade greenschist facies (Okay and Özgül, 1984).

Figure 3.4 Simplified regional geological map of the Alanya region (Okay and Özgül, 1984).

3.3.1.2 Site Geology

In the study area and its close vicinity, Permian aged Alanya formation belongs to Mahmutlar Nappe, Miocene aged Mut formation and Quaternary deposits are distinguished. The simplified stratigraphical section of the study area is presented in Figure 3.5.

Alanya formation (Pza) consists of schists with recrystallized limestone intercalation (Şengün, 1986). The transition from the schists to the recrystallized limestone is gradational with schist and carbonate bands of several meters thick at the contact. The thickness of the schist is given as approximately 500 m (Okay and Özgül, 1984).

Mut formation (Tm) consists of alternation of conglomerates, sandstones, siltstones and shales, grading into limestone in the uppermost section. The thickness of the Mut formation is approximately 100 m (Şengün, 1986).

ERA	SYSTEM	EPOCH	FORMATION	SYMBOL	ГІТНОГОСҮ	LITHOLOGIC EXPLANATION
ZOIC	QUATERNARY			Qa Qc		Alluvium Colluvium
CENO	TERTIARY	MIOCENE	MUT	Tm		Alternation of conglomerates, sandstones, siltstones, shale grading into limestones in the uppermost section.
PALEOZOIC	PRE-PERMIAN		ALANYA	Pza		Mica schist intercalated with recrystallized limestone, dolostone and quartzite

Figure 3.5 Simplified stratigaraphical section of the site vicinity (modified from Okay and Özgül, 1984; Şengün, 1986).

3.3.1.3 Structural Geology

Considering the size of project area, the effect of regional tectonic activity is not well observed. Therefore, some locally observed geologic structures such as folding, foliation and jointing could be described. In the project area and its surrounding, no fault is expected to cut the proposed tunnel axis. Foliation is the product of regional metamorphism in schists. Minor folds and rarely developed joints are observed locally within schist unit.

3.3.2 Hydrogeology

In the study area, the schist units are accepted as impervious because of very poor water storage and conduit capacity of these rocks. The other units, limestone, conglomerate and intercalation of sandstone-shale units is also accepted as impervious, according to field and borehole observations.

There are no significant and permanently flowing springs at the study area. The groundwater table was observed at two of the boreholes (~50 m depth) along the tunnel route and the rock mass is generally dry and sometimes shows leakages according to the investigations carried out Petra Engineering and Consulting Company (2002).

3.3.3 Subsurface Investigations

In regards to geotechnical investigations, Petra Company, in 2002, carried out a detailed geotechnical investigation at the proposed Dim tunnel project area (between Km 6+050 and 7+400). In order to determine the geotechnical properties of the ground, along the 1350 m long Dim Tunnel, a total of 462 m of drilling was performed with 8 boreholes (Table 3.1).

3.3.4 Laboratory Tests

In order to determine the necessary geomechanical parameters for tunnel design, rock mechanics testing (uniaxial compressive strength, point load, slake durability, unit weight) was performed on samples taken from the core borings drilled in the study area. Laboratory tests were conducted by Rock Mechanics Laboratories of General Directorate of Highway Research Department and Mining Department of the Middle East Technical University (Appendix C).

Borehole	Km	Coordinates		Elevation	Depth
No.		Northing	Southing	(m)	(m)
SK-6+050	6+050	4045002.5	417106.4	21.00	15.00
SK-6+180	6+232	4045181.9	417082.2	94.00	85.00
SK-6+280	6+280	4045228.4	417065.3	73.00	63.00
SK-6+400	6+370	4045308.3	417027.2	88.00	76.00
SK-6+570	6+610	4045514.8	416912.2	95.50	80.00
SK-6+880	6+880	4045753.3	416779.1	74.00	52.00
SK-7+130	7+130	4045981.9	416692.6	72.00	45.00
SK-7+250	7+250	4046125.8	416686.1	77.00	46.00

Table 3.1 Numbers, kilometers, coordinates, elevations and depths of drillings

3.4 Current Studies

After the review of the previous studies, a detailed geological and geotechnical field investigations were carried out in the project area to determine the rock mass conditions. These are:

- a. Field geology (identification of lithological units, determination of discontinuity characteristics, etc.),
- b. Core-box survey and geotechnical borehole logging (determination of lithological units, total core recovery (TCR), intact core recovery (ICR), rock quality designation (RQD), joint conditions such as weathering,

roughness, persistency, aperture, filling for each successive structural domain).

A strip geological map and cross-section showing borehole locations along the tunnel route were prepared based on field geology and core-box survey, and presented in Figures 3.6 and 3.7.

Geotechnical borehole logs were prepared considering the successive structural domains. Structural domains, in core boxes, are the zones where certain features of the rock (i.e., rock type, appearance and fracture frequency) are more or less the same. The geotechnical borehole logging was not carried out along the total length of the borehole drilling, but between the distance starting at approximately two width of tunnel span up from the estimated periphery of the tunnel to the end of the borehole. All of the logs including input-data required for rock mass classification systems are presented in Appendix B.

3.5 Engineering Geology

This chapter comprises the evaluation of engineering geological properties of the rocks exposed and cut along the tunnel route on the basis of field measurements, core-box survey and laboratory tests. The rock descriptions include both rock mass and rock material characteristics that based on ISRM (1981).

The rock types observed in the project area are predominantly schist with rarely recrystallized limestone intercalation, and blocky limestone, conglomerate and sandstone-shale alternation.

Figure 3.7 Exaggerated geological cross-section of the Dim Tunnel

3.5.1 Schist

Schist, which is rarely intercalated with recrystallized limestone, will be cut along the most part of the tunnel route (Figures 3.8, 3.9 and 3.10). Schist is greenish gray, moderately to highly weathered and mainly very weak to moderately weak, occasionally strong. It is easily separated along the foliation planes, which is highly persistent. Field and core-box observations show that thin foliation planes (5-15 cm) are tight (<1 mm). The joint walls are undulating and rough. Apertures are <1 to 5 mm wide and sometimes filled with calcite infilling. Average spacing of joints in the schist ranges between 0.5 to 1.5 m. Measurements of discontinuities were taken at two different stations along the tunnel route. The number of measurements is low, because the schists crop ot only in a few locations. Orientations of major discontinuity sets with pole plot, contour plot, rose diagram and discontinuity plane plots of schist unit are presented in Figure 3.11.

Figure 3.8 General view of schists from the entrance portal of the Dim Tunnel at Km 6+050.

Figure 3.9 A close view of schists from the entrance portal of the Dim Tunnel at Km 6+050.

Figure 3.10 Cores of schists taken from borehole SK-6+180.

The uniaxial compressive strength and point load strength index of the schists with recrystallized limestone range between 10 and 95 MPa, and 1.94 and 5 MPa, respectively. The Rock Quality Designation (RQD) ranges from 0 % to 95 % and weighted mean RQD is approximately 11 %. Slake durability index is between 40 to 99 %.

Figure 3.11 Pole plot (a), contour plot (b), rose diagram (c), and discontinuity plane plot (d) in discontinuities of schist unit.

3.5.2 Blocky Limestone

Blocky limestone will be along the tunnel route between Km 6+800 and 7+150, and at borehole SK-6+880. (Figures 3.12, 3.13 and 3.14).

Figure 3.12 A view of blocky limestone at the Dim tunnel route (Km 6+900).

Figure 3.13 Blocky limestone and schist boundary along the Dim Tunnel route.
It is light gray, moderately weathered, and moderately strong, and includes solution cavities (1-5 m in size). The joint walls are undulating, rough and surface-coated. The uniaxial compressive strength ranges between 10 and 20 MPa. The Rock Quality Designation (RQD) ranges from 0 % to 40 % and weighted mean RQD is approximately 6 %. Slake durability index is between 22 to 77 %.

Figure 3.14 Cores of blocky limestone taken from from borehole SK-6+880.

3.5.3 Conglomerate

Conglomerate does not crop out at the surface but is encountered at borehole SK-7+130 at Km 7+130 along the Dim Tunnel route (Figure 3.15). It is light grayish-white, approximately horizontally bedded, slightly weathered and moderately strong to strong. Matrix is light brown, beige, moderately hard, fine to medium grained.

Figure 3.15 Cores of conglomerates taken from borehole SK-7+130.

The uniaxial compressive strength of conglomerate is approximately 15 MPa. The Rock Quality Designation (RQD) ranges from 93 % to 94 % and weighted mean RQD is approximately 94 %. Slake durability index is 99 %.

3.5.4 Sandstone-Shale Alternation

Shale-sandstone alternation does not crop out at the surface but it will be cut along the tunnel route at borehole SK-7+130 at Km 7+130 and its surroundings (Figure 6.16).

Based on the borehole data, shale-sandstone alternation is yellowish light brown to dark gray, approximately horizontally bedded, highly to moderately weathered, occasionally completely weathered, very weak to weak. The uniaxial compressive strength of the sandstone-shale alternation ranges between 5 and 10 MPa. The Rock Quality Designation (RQD) ranges from 0 % to 85 % and weighted mean RQD is approximately 62 %. Slake durability index is between 3 and 30 %.

Figure 3.16 Cores of sandstone - shale alternation taken from borehole SK-7+130.

CHAPTER IV

ROCK MASS CLASSIFICATION SYSTEMS APPLIED TO DIM TUNNEL GROUND

4.1 Introduction

In this chapter, considering the geological and geotechnical data, which are discussed in the preceding chapter, rock mass classification systems for the Dim Tunnel ground have been applied.

4.2 Rock Mass Classification for the Dim Tunnel

For a preliminary tunnel design, at least two classification systems should be applied (Bieniawski, 1989). For the preliminary design of the Dim Tunnel, RMR, M-RMR, Q, GSI, and NATM classification systems were used.

4.2.1 Modified-Rock Mass Rating (M-RMR)

The M-RMR system is a powerful orderly process that can be used in characterizing all ranges of rock mass conditions including weak, stratified anisotropic and clay bearing rock masses. The input parameters required for the M-RMR system have been extracted both from the geotechnical borehole logs and from the results of the laboratory tests (Appendix B). Then the collected input parameters have been tabulated on rock mass classification logs (input data forms) considering the successive structural domains. Structural domains, in core boxes, are the zones where certain features of the rock are more or less the same. The input data forms and core photographs of each structural domain are presented in Appendix C and Appendix D, respectively.

The M-RMR values were determined with the latest version (2002) of ROCKMASS computer program. During classification process 126 individual section (structural domain) from 8 boreholes with a total length of 282 m along the Dim tunnel route were evaluated. All ROCKMASS calculations and the results of these calculations with respect to M-RMR are given in Appendix E.I. and Figure 4.1, respectively.

Based on these calculations, the M-RMR value of schist with recrystallized limestone intercalation, which will be cut along the most part of the proposed tunnel route, changes between 6 and 61. Weighted mean M-RMR value is around 28, which corresponds to poor rock, based on the classification by Bieniawski (1989).

The M-RMR value of blocky limestone shows quality variations within a range changing between 15 and 53. Weighted mean value is around 40 and this corresponds to poor rock.

The M-RMR value for conglomerate is found to be 63. This corresponds to good rock.

The M-RMR value of sandstone-shale alternation changes between 25 and 46. Weighted mean value is around 40 and this corresponds to poor rock.

4.2.2 Rock Mass Rating (RMR)

In order to determine the rock mass rating (RMR), Bieniawski's 1989 version rock mass rating system was used. The six parameters were determined and by summing these parameters rock mass ratings for each successive structural domain of borehole locations were computed (Appendix E.II).

One of the basic differences between the RMR and M-RMR system appears in characterization of extreme ends in rock mass quality spectrum, namely, the very poor / poor and good / very good rock mass conditions (Ünal,1996). In this study, both RMR and M-RMR were used to see the quality rating changes of rock mass.

According to the RMR calculations, rating of schist with recrystallized limestone intercalation changes between 26 and 62. Weighted mean M-RMR value is around 38, which corresponds to poor rock, based on the classification by Bieniawski (1989).

The RMR value of blocky limestone shows quality variations within a range changing between 35 and 54. Weighted mean value is around 36 and this corresponds to poor rock.

The RMR value for conglomerate is found to be 58. This corresponds to fair rock.

The RMR value of sandstone-shale alternation changes between 35 and 55. Weighted mean value is around 49 and this corresponds to fair rock.

The results of rock mass rating determinations are given in Figure 4.2.

Figure 4.2 RMR values of each successive structural domain for the study area

85

4.2.3 Rock Mass quality (Q)

Q values for each succesive structural domain of each borehole location along the Dim Tunnel were calculated with ROCKMASS software. These calculations and results of the calculations are presented in Appendix E.I and Figure 4.3, respectively.

According to the Q calculations, rating of schist with recrystallized limestone intercalation changes between 0.01 and 4.53. Weighted mean Q value is around 0.36, which corresponds to very poor rock, based on the classification by Barton (2002).

The Q value of blocky limestone shows quality variations within a range changing between 0.01 and 6. Weighted mean value is around 0.18 and this corresponds to very poor rock.

The Q value for conglomerate is found to be 18.75. This corresponds to good rock.

The Q value of sandstone-shale alternation changes between 0.01 and 7.56. Weighted mean value is around 5.10 and this corresponds to fair rock.

4.2.4 Geological Strength Index (GSI)

Geological strength index of the rock masses for the study area were determined by using the modified GSI chart of Sönmez and Ulusay (2002). Structural rating (SR), which are based on volumetric joint count (J_v), and surface condition rating (SCR) were estimated from the input parameters of RMR scheme (e.g. RQD, roughness, weathering and infilling). The GSI calculations and the result of these calculations for each borehole location were given in Appendix E.III and Figure 4.4, respectively.

According to the GSI calculations, rating of schist with recrystallized limestone intercalation ranges between 19 and 51. Weighted mean value is around 38, which corresponds to poor rock class.

The GSI value of blocky limestone shows quality variations within a range changing between 36 and 46. Weighted mean value is around 38, which corresponds to poor rock, based on the classification by Bieniawski (1989).

The GSI value for conglomerate is found to be 52. This corresponds to fair rock.

The GSI value of sandstone-shale alternation changes between 36 and 48. Weighted mean value is around 45 and this corresponds to fair rock.

The results of GSI determinations for each borehole location in the study area are given in Figure 4.4.

4.2.5 New Austrian Tunneling Method (NATM)

Each borehole location along the tunnel route is also classified according to the qualitative NATM classification as given in Table 4.1.

Borehole No	Rock Type	NATM Rock Mass Class	Behavior of Rock Mass
SK-6+050	Schist	В3	Rolling
SK-6+180	Schist	В3	Rolling
SK-6+280	Schist	В3	Rolling
SK-6+400	Schist	В3	Rolling
SK-6+570	Schist	В3	Rolling
SK-6+880	Blocky limestone	В3	Rolling
SK-7+130	Conglomerate	B1-B2	Friable-Very Friable
	Sandstone-shale	B2	Friable
SK-7+250	Schist	В3	Rolling

Table 4.1 NATM rock mass classes for the project area.

4.3 Correlations between RMR, M-RMR, Q, GSI and NATM

RMR, M-RMR, Q and GSI classification systems are based on the principal properties of a rock mass such as intact rock strength, discontinuity conditions (roughness, filling, weathering etc.), and geometry of intact rock block, and various empirical correlations have been developed between these classification systems as mentioned in Chapter 2.

For each borehole location in this study, rock masses are classified according to quantitative classification systems such as M-RMR, RMR, Q and GSI; and qualitative NATM classification. The results of these quantitative classifications for all borehole locations are presented comparatively in Appendix F. Also the summary results of the rock mass classifications for the Dim Tunnel are given in Table 4.2.

Borehole	Rock Type	Rock Mass Ratings				
No	коск турс	RMR	M-RMR	Q	GSI	NATM
SK-6+050	Schist	31	13	0.01	32	В3
SK-6+180	Schist	34	29	0.48	39	B3
SK-6+280	Schist	44	32	0.09	40	В3
SK-6+400	Schist	31	27	0.20	38	В3
SK-6+570	Schist	34	28	0.54	40	В3
SK-6+880	Blocky limestone	36	40	0.18	37	В3
SK-7+130	Conglomerate	58	63	18.75	52	B1-B2
	Sandstone- shale	49	40	5.10	45	B2
SK-7+250	Schist	40	26	0.42	37	В3

Table 4.2 Summary of the rock mass classification results of the study area

The results of rock mass classifications systems for the Dim Tunnel study area were compared and relationships between

- a. RMR and Q,
- b. M-RMR and Q,
- c. RMR and GSI,
- d. M-RMR and GSI, and
- e. Q and GSI,

f. RMR and M-RMR were made by carrying out statistical analyses and the regression equations given below were obtained.

The empirical relation between RMR and Q that is proposed by Bieniawski (1976) is in the form of RMR = 9 $\ln Q$ + 44. For the Dim Tunnel study area the empirical equation can be expressed by RMR = 2.80 $\ln Q$ + 45.19 (R²=0.67) as seen in Figure 4.5. This equation was obtained from 126 data which relate the structural domains.

Figure 4.5 Relationship between the RMR and Q values for the study area.

The empirical relation between M-RMR and Q that is proposed by Ünal (1996) is in the form of M-RMR = 9.66 lnQ + 37.9. For the Dim Tunnel study area the empirical equation can be expressed by M-RMR = 5.43 lnQ + 43.69 (R^2 =0.78) as seen in Figure 4.6.

Figure 4.6 Relationship between M-RMR and Q values for the study area.

The correlations between RMR and GSI, M-RMR and GSI, and Q and GSI values were performed (Figures 4.7, 4.8 and 4.9) and the regression equations given below were obtained. GSI=0.42RMR+23.07 (R²=0.44) between GSI and RMR, GSI=0.26 M-RMR+31.32 (R²=0.53) between GSI and M-RMR, and GSI=1.61 LnQ+42.99 (R²=0.54) between GSI and Q.

Figure 4.7 Relationship between RMR and GSI values for the study area.

Figure 4.8 Relationship between M-RMR and GSI values for the study area.

Figure 4.9 Relationship between Q and GSI values for the study area.

The M-RMR and RMR values were correlated and an empirical relation were found for the study area. The regression equation can be expressed by M-RMR = 1.56 RMR - 28.91 (R²=0.76) for 126 data as seen in Figure 4.10.

M-RMR values are quite worse than RMR values at the lower bounds (RMR < 40), therefore, the correlation between M-RMR and RMR for RMR < 40 (68 data) were also carried out and the regression equation M-RMR = $0.0046 \text{ RMR}^{2.40}$ (R²=0.48) was obtained (Figure 4.11).

Figure 4.10 Relationship between M-RMR and RMR values for the study area.

Figure 4.11 Relationship between M-RMR and RMR values considering RMR < 40 for the study area.

Relatively low correlation coefficient may also indicate deficiency of the RMR system in characterizing poor and very poor (RMR > 40) rock mass.

4.4. Discussion

According to Ulusay (1991), Ünal et al. (1992), Ulusay et al. (1995), and Ünal (1996), the results obtained from the RMR and M-RMR systems are very close to each other in the range 20 < RMR < 40. However, one of the basic differences between the RMR and M-RMR system appears in characterization of extreme ends in rock mass quality spectrum, namely, very poor / poor (RMR < 40) and good / very good (RMR > 70) rock mass conditions.

All RMR, M-RMR and GSI values for each structural domain were plotted in Figure 4.12. This figure shows the total range of index values obtained from each borehole drilled in the Dim Tunnel route. During analyses the lowest and the highest M-RMR values were selected for each borehole and corresponding RMR and GSI values were considered in preparing Table 4.3 and in drawing Figure 4.13. The results indicate that the rock mass shows a wider quality-rating range (6 to 63) with M-RMR system. However, the same rock mass shows quality variation within a range changing between 27 and 58 based on the RMR system. In conclusion, the M-RMR system estimates better rock mass quality ratings at the upper bounds (RMR > 50) of the rock mass condition, but worst ratings at the lower bounds (RMR < 40) for the study area. These results confirm the previous studies (Ulusay, 1991; Ünal et al., 1992; Ulusay et al., 1995; and Ünal, 1996). On the other hand, the GSI values for the same rock mass intensify in the range of 32 to 56.

Borehole No.	Structural	Minimum Values		
	Domain No.	M-RMR	RMR	GSI
SK-6+050	1	13	31	32
SK-6+180	6	6	27	32
SK-6+280	3	25	43	36
SK-6+400	8	16	35	32
SK-6+570	9	11	27	36
SK-6+880	1	15	35	36
SK-7+130	2	25	37	36
SK-7+250	1	13	37	34
Borehole No.	Structural		Maximum Valu	ues
Borehole No.	Structural Domain No.	M-RMR	Maximum Valu RMR	ues GSI
Borehole No. SK-6+050	Structural Domain No. 1	M-RMR 13	Maximum Valu RMR 31	GSI 32
Borehole No. SK-6+050 SK-6+180	Structural Domain No. 1 3	M-RMR 13 50	Maximum Valu RMR 31 47	ues GSI 32 51
Borehole No. SK-6+050 SK-6+180 SK-6+280	Structural Domain No. 1 3 2	M-RMR 13 50 59	Maximum Valu RMR 31 47 56	GSI 32 51 51
Borehole No. SK-6+050 SK-6+180 SK-6+280 SK-6+400	Structural Domain No. 1 3 2 11	M-RMR 13 50 59 61	Maximum Valu RMR 31 47 56 53	GSI 32 51 51 41
Borehole No. SK-6+050 SK-6+180 SK-6+280 SK-6+400 SK-6+570	Structural Domain No. 1 3 2 11 2	M-RMR 13 50 59 61 58	Maximum Valu RMR 31 47 56 53 53	GSI 32 51 51 41 56
Borehole No. SK-6+050 SK-6+180 SK-6+280 SK-6+400 SK-6+570 SK-6+880	Structural Domain No. 1 3 2 11 2 5	M-RMR 13 50 59 61 58 53	Maximum Valu RMR 31 47 56 53 53 53 54	GSI 32 51 51 41 56 46
Borehole No. SK-6+050 SK-6+180 SK-6+280 SK-6+400 SK-6+570 SK-6+880 SK-7+130	Structural Domain No. 1 3 2 11 2 5 1	M-RMR 13 50 59 61 58 53 63	Maximum Valu RMR 31 47 56 53 53 53 54 58	GSI 32 51 51 41 56 46 53

Table 4.3 The minimum and maximum M-RMR values for each borehole and corresponding RMR and GSI values.

In the case of tunnels, the rock mass classification index values may be used to estimate the stand-up time and the maximum unsupported span for a given RMR, M-RMR or Q value as mentioned in Chapter 2. Considering Bieniawski's (1989) roof span vs stand-up time plot (Figure A.2 in Appandix A), Barton's (1974) maximum unsupported span equation (Equation 2.7 in Chapter 2), and the summary table (Table 4.2 given in page 65) showing the rock-mass-ratings in the study area, the maximum unsupported spans and the

stand-up times for 10 m span were determined for each borehole location, and the results are tabulated in Table 4.4.

Borehole No	Rock Type	Maximum Unsupported Span (m)		Stand-up Time for 10 m Span	
ivo. Type	Type	RMR / M-RMR*	Q**	RMR / M-RMR*	
SK-6+050	Schist	1.40 / 1.20	0.32	<10 / 20 min	
SK-6+180	Schist	1.60 / 1.30	1.49	<10 / 48 min	
SK-6+280	Schist	2.25 / 1.50	0.76	25 min / 12 hr	
SK-6+400	Schist	1.40 / 1.20	1.05	<10 / 20 min	
SK-6+570	Schist	1.60 / 1.25	1.56	<10 / 48 min	
SK-6+880	Blocky limestone	1.70 / 1.90	1.01	4 / 1.5 hr	
SK-7+130	Conglomerate	2.90 / 3.20	6.46	2 mo / 21 day	
	Sandstone-shale	2.40 / 1.90	3.84	4 hr / 1.6 day	
SK-7+250	Schist	1.90 / 1.10	1.41	10 min / 4 hr	
* Roof span vs stand-up time (Bieniawski, 1989) **Maximum unsupported span= 2.ESR.O ^{0.4} (Barton, 1974)					

Table 4.4 Maximum unsupported spans and their stand-up time based on RMR, M-RMR and Q values for the each borehole location.

According to these results, it is interesting to notice the difference of "maximum unsupported spans" predicted by RMR, M-RMR and Q system. In addition, based on the RMR and M-RMR systems, it can be concluded that, except for conglomerate, all other classification index values belonging to other rock units fall into immediate collapse region for a span of 10 meters. Consequently, the tunnel should be excavated in two stages using the top heading and bench by drilling and blasting method the supports, such as rock bolt, wiremesh, shotcrete and steel arch should be used.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The main objective of this study is to provide a complete data obtained from a number of rock mass classification systems carried out at the Dim Tunnel study area to utilize in the future excavation and support-design studies. Geological and geotechnical properties of the rock units exposed at the surface and cut along tunnel route in the study area were investigated both in the field and laboratory. During classification process 126 individual section (structural domain) from 8 boreholes with a total length of 282 m were evaluated.

5.1 Conclusions

Based on the investigations carried out in this study, the following conclusions and are drawn:

 The rock masses were classified based on the RMR, M-RMR, Q, GSI and NATM classification systems and divided into three categories. i) Schist unit with recrystallized limestone intercalation and blocky limestone is very poor to poor according to the RMR, M-RMR, Q and GSI classes and it is classified as B3 (rolling) according to the NATM, ii) conglomerate is fair to good according to the RMR, M-RMR, Q and GSI classes and it is classified as B1 (friable) to B2 (very friable) according to the NATM, iii) sandstone-shale alternation is poor to fair according to the RMR, M-RMR, Q and GSI classes and it is classified as B2 (very friable) according to the NATM.

- 2. The results of rock mass classifications systems for the Dim Tunnel study area were compared and relationships between RMR and Q, M-RMR and Q, RMR and GSI, M-RMR and GSI, Q and GSI, and RMR and M-RMR were made by carrying out statistical analyses. The regression equations given below were obtained:
 - i. RMR= $2.80 \ln Q + 45.19 (R^2 = 0.67)$ between RMR and Q,
 - ii. M-RMR=5.43 $\ln Q$ + 43.69 (R^2 =0.78) between M-RMR and Q,
 - iii. GSI=0.42 RMR+23.07 (R²=0.44) between GSI and RMR,
 - iv. GSI=0.26 M-RMR+31.32 (R²=0.53) between GSI and M-RMR,
 - v. $GSI=1.61 \ln Q + 42.99 (R^2 = 0.54)$ between GSI and Q,
 - vi. M-RMR=1.56RMR-28.91 (R^2 =0.76) between M-RMR and RMR.
- 3. In the range where the RMR is less than 40 the following regression equation was obtained:

 $M-RMR = 0.0046 RMR^{2.40} (R^2 = 0.48).$

Relatively low correlation coefficient may indicate deficiency of the RMR system in characterizing poor and very poor (RMR > 40) rock mass.

- 4. The results obtained from the comparison of the RMR and M-RMR classification systems carried out in the study area indicate that the M-RMR system estimates better rock mass quality ratings at the upper bounds (RMR > 50) of the rock mass condition, but worst ratings at the lower bounds (RMR < 40), as also suggested by the previous studies.</p>
- 5. Except for conglomerate, all other classification index values belonging to other rock units fall into immediate collapse region for a span of 10 meters. Consequently, the tunnel should be excavated in two stages using the top heading and bench by drilling and blasting method the supports, such as rock bolt, wiremesh, shotcrete and steel arch should be used.

5.2. Recommendations for Future Studies

- Based on rock mass classifications carried out in this study, the tunnel ground was charaterized according to the RMR, M-RMR, Q, GSI and NATM systems. During future studies, excavation and support recommendations and strength parameters should be determined based on these classification studies with other empirical methods and, numerical studies.
- 2. During this study, correlations were made between the RMR, M-RMR, Q and GSI classification systems and, the related regression equations and regression coefficients were determined. However, further studies should be carried out in other locations in order to obtain more data and to iclude larger number of rock units.

REFERENCES

- Ayaydın, N., 1986. Yeni Avusturya Tünel Yöntemi Proje ve Ekonomik Uygulama, Türkiye'de Teknik-Bilimsel Sempozyumu, Teblğ No. 3, Ankara, 8 p.
- Barton, N., Lien, R. And Lunde, J., 1974. Engineering Classification of Masses for the Design of Tunnel Support, Rock Mechanics, Vol.6, No.4, pp.189-236.
- Barton, N., Loset, F., Lien R., Lunde, J., 1980. Application of the Q-System in Design Decisions Concerning Dimensions and Appropriate Support for Underground Installations. Int. Conf. Subsurface Space, Rockstore, Stockholm, Subsurface Space, Vol.2, pp. 553-561.
- Barton, N., 2002a. Some New Q-value Correlations to Assist in Site Characterisation and Tunnel Design, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 185-216.
- Barton, N., 2002b. Deformation Moduli and Rock Mass Characterization, Tunneling & Underground Space Technology., Vol. 17, pp. 221-222.
- Bieniawski, Z.T., 1973. Engineering Classification on Jointed Rock Masses. Trans. South African Inst. Civil Engineering, Vol.15, pp. 335-344.

- Bieniawski, Z.T., 1974. Geomechanics Classification of Rock Masses and its Application in Tunneling Proc. 3rd Congress of International Society for Rock Mechanics, Denver, Vol. 2, pp. 27-32.
- Bieniawski, Z.T., 1976. Rock Mass Classifications in Rock engineering, Proceedings Symposium on Exploration for rock Engineering, (ed. Z.T. Bieniawski), A.A. Balkema, Rotterdam, pp. 97-106.
- Bieniawski, Z.T., 1978. Determining Rock Mass Deformability Experience from Case Histories, International Journal of Rock Mechanics and Mining Sciences, Vol. 15, pp. 237-247.
- Bieniawski, Z.T., 1979. The Geomechanics Classification in Rock Engineering Applications, Proc. 4th International Congress Rock Mechanics, ISRM, Montreaux, A.A.Balkema, Rotterdam, Vol.2, pp. 51-58.
- Bieniawski, Z.T., 1989. Engineering Rock Mass Classifications, Wiley, Newyork, 251 pages.
- Blumental, M.M., 1951. Recherches Geologiques Dans le Taurus Cocidental Dans L'arrier e-Pays d'Alanya, M.T.A. Enst., Yayın D.5.
- Cai, M., Kaiser, P.K., Uno, H., Tasaka, Y., Minami, M., 2004. Estimation of Rock Mass Deformation Modulus and Strength of Jointed Hard Rock Masses Using the GSI System, International Journal of Rock Mechanics and Mining Sciences, Vol. 41, pp. 3-19.
- Deere, D.U., Hendron, A.J., Patton, F.D. and Cording, E.J., 1967. Design of Surface and Near Surface Construction in Rock. In Failure and breakage of Rock, Proc. 8th U.S. Symposium Rock Mechanics, (ed.

C.Fairhurst), New York. Soc. Min. Engr. Am. Inst. Metall. Petrolm. Engrs., pp. 237-302.

- Geoconsult ZT GmbH, 1993. Technical Specification for Civil Underground Tunnel Works, Prepared for the General Directorate of Highways Republic of Turkey, Austria.
- Goel, R.K. and Jethwa, J.L., 1991. Prediction on Support Pressure Using RMR Classification. Proc. Indian Conf., surat, India, pp. 203-205.
- Gökçeoğlu, C., Aksoy, H., 2000. New Approaches to the Characterization of Clay-bearing, Densely Jointed and Weak Rock Masses, Engineering Geology, Vol. 58, pp. 1-23.
- Gökçeoğlu, C., Sönmez, H., Kayabaşı, A., 2003. Predicting the Deformation Moduli of Rock Masses, International Journal of Rock Mechanics and Mining Sciences, Vol. 40, pp. 701-710.
- Grimstad, E. and Barton, N., 1993. Updating the Q-System for NMT. Proc. International Symposium on Sprayed Concrete – Modern Use of Wet Mix Sprayed Concrete for underground Support, Oslo, Norwegian Concrete Association.
- Hoek, E. 1983. Strength of jointed rock masses, 23rd. Rankine Lecture. Géotechnique 33(3), pp.187-223.
- Hoek, E. 1990. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. Intnl. J. Rock Mech. and Mining Sci. and Geomechanics Abstracts. 12(3), 227-229.

- Hoek, E. 1994. Strength of rock and rock masses, ISRM News Journal, 2(2), pp.4-16.
- Hoek, E., 1999. Putting Numbers to Geology An Engineer's Viewport, Quarterly Journal of Engineering Geology, Vol. 32, pp. 1-19.
- Hoek, E., 2000. Rock Engineering Course Notes, http://www.rocscience/ Hoek's Corner, last date accessed April 2004
- Hoek, E., 2004a. A Brief History the Development of the Hoek-Brown Failure Criterion, Discussion Paper # 7, http://www.rocscience.com/Hoek's Corner, 9 p, last date accessed June 2004
- Hoek, E., 2004b. Estimates of Rock Mass Strength and Deformation Modulus, Discussion Paper # 4, http://www.rocscience.com/Hoek's Corner, 6 p.
- Hoek, E. and Brown E.T., 1980. Underground Excavations in Rock, The Institution of Mining and Metallurgy, London, pp.31-34.,
- Hoek E and Brown E.T. 1988. The Hoek-Brown failure criterion a 1988 update. Proc. 15th Canadian Rock Mech. Symp. (ed. J.H. Curran), pp. 31-38. Toronto:Civil Engineering Dept., University of Toronto
- Hoek, E. and Brown, E.T. 1997. Practical estimates or rock mass strength. Intnl. J. Rock Mech. and Mining Sci. And Geomechanics Abstracts. 34(8), pp.1165-1186.
- Hoek, E., Wood, D. and Shah, S. 1992. A modified Hoek-Brown criterion for jointed rock masses. Proc. rock characterization, symp. Int. Soc. Rock Mech.:Eurock '92, (J. Hudson ed.), pp. 209-213.

- Hoek, E., Kaiser, P.K., Bawden, W.F., 1995. Support of Underground Excavations in Hard Rock, A.A. Balkema, Roterdam, Brookfield, pp. 27-47.
- Hoek, E., Marinos, P. and Benissi, M., 1998. Applicability of the GeologicalStrength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bull. Engg. Geol. Env. 57(2), pp. 151-160.
- Hoek, E., Carranza-Torres, C., Corkum, B., 2002. Hoek-Brown Failure Criterion – 2002 Edition, http://www.rocscience/Hoek's Corner, last date accessed April 2004
- ISRM (International Society for Rock Mechanics), 1981. Rock Characterization, Testing and Monitoring – ISRM Suggested methods, Pergamon Press, Oxford, E.T. Brown (ed), 211 p.
- Karayolları Genel Müdürlüğü, 1997, NATM Uygulamalı Yeraltı Tünel İşleri Teknik Şartnamesi, 105 p.
- Kayabaşı, A., Gökçeoğlu, C., and Ercanoğlu, M., 2003. Estimating the Deformation Modulus of Rock Masses: A Comparative Study", International Journal of Rock Mechanics and Mining Sciences, Vol. 40, pp. 55-63.
- Kovari, K., 1994. Erroneous Concepts behind the New Austrian Tunneling Method, Tunnel, Vol. 1.
- Kovari, K. 2004. History of Rock Bolts and the Spread Concrete Lining Method; Aachen International Mining Symposium, Aachen, pp. 18-66.

- Lauffer, H., 1958. Gebirgsklassifizierung für den Stollenbau. Geol. Bauwesen, Vol. 24, pp. 46-51.
- Lauffer, H., 1988. Zur Gebirgsklassifizierung bei Frasvortrieben, Felsbau. Vol. 6, pp. 137-149.
- Mitri, H.S., Edrissi, R. and Henning, J., 1994. Finite element Modeling of Cable-bolted Stopes in Hard Rock Ground Mines. SME Annual Meeting. Albuquerque, Mexico, pp. 94-116.
- Müller, L., 1978. Removing Misconceptions on the New Austrian Tunneling Method, Tunnels Tunneling, Vol. 10, pp. 667-671.
- Nicholson, G.A. and Bieniawski, Z.T., 1990. A nonlinear deformation Modulus Based on Rock Mass Classification, International Journal of Min. Geol. Eng., Vol.8, pp. 181-202.
- Özkan, İ. And Ünal, E., 1996. Kaya kütlesi sınıflama sistemleri üzerine kritik bir değerlendirme, 3. Ulusal Kaya Mekaniği Sempozyumu Bildirileri Kitabı, Ankara, 181-193.
- Okay, A. I., Özgül, N., 1984. HP/LT Metamorphism and the Structure of the Alanya Massif, Geological Evolution of the Eastern Mediterranean, Blackwell, London, 439 p.
- Palmström, A., 1982. The Volumetric Joint Count A Useful and Simple Measure of the Degree of Rock Jointing. Proc. 4th Congress IAEG, New Delhi, Vol. 5, pp. 221-228.

- Palmström, A., 1996. Characterizing Rock Masses by Rmi for Using in Practical Rock engineering (Part 1: The Development og the Rock Mass Index Rmi, tunneling Underground Space Technology, Vol. 11 (2), pp. 175-188.
- Palmström, A. and Singh, R., 2001. The Deformation Modulus of Rock Masses
 Comparisons between In-situ Tests and Indirect Estimates, Tunneling
 Underground Space Technology, Vol. 16, pp. 115-131.
- Petra Mühendislik ve Müşavirlik Ltd. Şti., 2002. Alanya-Gazipaşa-5.Bölge Hudud Yolu Jeolojik ve Jeoteknik Araştırma Raporu, TC Bayındırlık ve İskan Bakanlığı Karayolları Genel Müdürlüğü.
- Rabcewicz, L. 1964. The New Austrian Tunneling Method, Part I. Water Power, pp. 453-457.
- Serafim, J.L. and Pereira, J.P., 1983. Considerations of the Geomechanics Classification of Bieniawski. Proc. International Symposium on Geol. And Underground Const., LNEC, Lisbon, Portugal, Vol. 1, pp. 33-42.
- Sönmez, H. and Ulusay, R., 1999. Modifications to the Geological Strength Index (GSI) and Their Applicability to Stability of Slopes, International Journal of Rock Mechanics and Mining Sciences, Vol. 36, pp.743-760.
- Sönmez, H. and Ulusay, R., 2002. A Discussion on the Hoek-Brown Failure Criterion and Suggested Modifications to the Criterion Verified by Slope Stability Case Studies. Yerbilimleri (Earth Sciences), Vol 26, pp. 77-99.
- Sönmez, H., Gökçeoğlu, C. and Ulusay, R., 2003. An Application of Fuzzy Sets to the Geological Strength Index (GSI) System Used in Rock

Engineering, Engineering Application of Artificial Intelligence, Vol. 16, pp 251-269.

- Sönmez, H., Gökçeoğlu, C., Ulusay, R., 2004a. A Mamdani Fuzzy Inference System for the Geological Strength Index (GSI) and its Use in Slope Stability Assessments-Sinorock2004 Symposium, International Journal of Rock Mechanics and Mining Sciences, Vol. 41, pp.413-514.
- Sönmez, H., Gökçeoğlu, C., Ulusay, R., 2004b. Indirect Determination of the Modulus of Deformation of Rock Masses Based on the GSI System, International Journal of Rock Mechanics and Mining Sciences, Vol. 41, pp. 849-857.
- Spaun, G., 1977. Contractual Evaluation of Rock Rock Exploration in Tunnelling, Exploration of Rock Engineering, Z.T. Bieniawski (ed.), A.A.Balkema, Johannesburg, Vol. 2, pp. 49-52.
- Şengün, M., 1986. Alanya Masifinin Jeolojisi, MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Derleme Rapor, No.1982, Ankara.
- Terzaghi K., 1946. Rock Tunneling with Steel Supports, R.V. Practor and T. White (ed), Commercial Sheving Co., Youngstown, Ohio. 296 p.
- Ulusay, R., 1991. Geotechnical evaluations and deterministic design considerations for pitwall slopes at Eskihisar (Yatağan-Muğla) strip coal mine. PhD. Thesis, Middle East Technical University, Geological Engineerng Department, Ankara, Turkey, 340 p.
- Ulusay, R., Özkan, İ. and Ünal, E., 1995. Characterization of Weak, Stratified, and Clay Bearing Rock Masses for Engineering Applications. Proc. Of

the Fractured and Jointed Rock Masses Conference, Lake Tahoe, California, L.R. Myer, N.G.W. Cook, R.E. Goodman, and C.F. Tsans (eds.), pp. 229-235.

- Ulusay, R. and Sönmez, H., 2002. Kaya Kütlelerinin Mühendislik Özellikleri, TMMOB Jeoloji Müh. Odası Yayınları, No: 60, Ankara, 243 p.
- Ünal, E., 1992. Rock Reinforcement Design and its Application in Mining, Proc. International Symposium on Rock Support, Sudury, Ontario, Canada, pp.541-546.
- Ünal, E., 1996. Modified Rock Mass Classification: M-RMR System Milestones in Rock Engineering: A Jubilee Collection; Z.T. Bieniawski, Balkema, pp.203-223.
- Ünal, E., 2002, Rock Mass Classification Studies at Kışladağ Gold-Project Ste. Project No: METU AGUDOS 02-03-05-1-00-07, 39 p., (unpublished).
- Ünal, E. And Ergür, K., 1990. PC Modelling of Rock Reinforcement Requirements in Mine Roadways, Rock Mechanics Contributions and Challanges, Proc. of the 31th US Symposium, Balkema, pp. 761-768.
- Ünal, E. and Özkan, İ., 1990. Determination of Classification Parameters for Clay-bearing and Stratified Rock Mass, 9th Conference on Ground Control in Mining, Morgantown, USA, 250-259.
- Ünal, E., Ulusay, R., and Özkan, İ., 1997a. Rock Engineering Evaluations and Rock Mass Classification at Beypazarı Trona Site. Project No: 97-03-05-01-02 (METU), 24 p., (unpublished).

- Ünal, E., Ulusay, R., and Özkan, İ., 1997b. Rock Engineering Evaluations and Rock Mass Classification at Beypazarı Trona Field. Borehole TS-3 Site, Project No: 97-03-05-01-06 (METU) and 600-020-0057 (HU), 39 p, (unpublished).
- Wickham, G.E., Tiedemann, H.R. and Skinner, E.H., 1972. Support Determination Based on Geological Predictions, International Proc. North American Rapid Excavation Tunneling Conference, Chicago, K.S. Lane and L.A. Garfield (Eds), New York, p. 43-64.
APPENDIX A

INFORMATION RELATED TO ROCK MASS CLASSIFICATION SYSTEMS USED IN THIS STUDY

Figure A.1 Ratings of input parameters for RMR (After Bieniawski, 1989).

Figure A.1 (Continued).

Figure A.2 Relationship between the RMR-value and stand-up time of an unsupported underground excavation (After Bieniawski, 1989).

Figure A.3 The effect of horizontal-to-vertical stress ratio (K) to failure height to rock load height ratio (strength factor, S) for various RMR values (modified from Ünal and Ergür, 1990a).

Figure A.4 Variation of rock-load as function of roof span in different rock classes in the Geomechanics Classification (after Ünal, 1983).

Figure A.5 Suggested adjustment for slaking effect of water (Ünal, 1996).

Table A.1 Guidelines for Excavation and Support of 10 m span rock tunnels in accordance with the RMR System (Bieniawski, 1989).

Rock mass class	Excavation	Rock bolts (20 mm diameter, fully grouted)	Shotcrete	Steel sets			
I - Very good rock RMR: 81-100	Full face, 3 m advance	Generally no support required except spot bolting					
II - Good rock RMR: 61-80	Full face, 1 – 1.5 m advance. Complete support 20 m from face	Locally, bolts in crow 3 m long, spaced 2.5 m with occasional wire mesh	50 mm in crown where required	None			
III - Fair rock RMR: 41-60	Top heading and bench 1.5 - 3 m advance in top heading. Commence support after each blast. Complete support 10 m from face	Systematic bolts 4 m long, spaced 1.5 - 2 m in crown and walls with wire mesh in crown	None				
IV - Poor rock RMR: 21-40	Top heading and bench 1.0 – 1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face	Systematic bolts 4-5 m long, spaced 1 – 1.5 m in crown and walls with wire mesh	100 - 150 mm in crown and 100 mm in sides	Light to medium ribs spaced 1.5 m where required			
V - Very poor rock RMR : < 20	Multiple drifts 0,5 – 1.5 m advance in top heading. Install support concurrently with possible after blasting	Systematic bolts 5 - 6 m long, spaced 1 – 1.5 m in crown and walls with wire mesh. Bolt invert	150 - 200 mm in crown, 150 mm in sides, and 50 mm on face	Medium to heavy ribs spaced 0.75 m with steel lagging and fore poling if required. Close invert			

Figure A.6 Suggested intervals and ratings for various input parameters used in modified-rock mass rating classification (after Ünal, 1996).

Figure A.7 Intervals and ratings for joint condition index, I_{JC} (After Ünal, 1996).

Figure A.8 Determination of Joint Condition Index, IJC (After Ünal, 1996).

RUCTURAL DOMAIN TYPE	JOINT CONDITIONS	I _{JA} VALUE
BSTR 1/2	NO CLAY	c , N => 5
D31K172	WITH CLAY	b , H => 8
BSTR 3 / 4 / 5	NO FILLING HARD FILLING With Clay SOFT FILLING	$ \begin{array}{c} a\\ C\\ b\\ F\\ F\\ b\\ G\\ c\\ b\\ C\\ b\\ H\\ \end{array} \right\} $ $ \begin{array}{c} 2\\ 4\\ 4\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 8\\ H\\ \end{array} $

Figure A.9 Suggestions in Determining Joint Alteration Index (J_a) in Broken Structural Domains (Ünal, 2002).

	DESCRIPTION	I _{JA} VALUE
ŊĊ	a) Rock Wall Contact	
LLD	A. Hard, tightly healed filling	0.75
) FI	B. Ünaltered joint walls	1.0
NC	Surface staining only	
	C. Slightly altered joint walls	2.0
ING	Non-Softening mineral coatings (Hard)	
AT	Clay-free, disintegrated rock	
CO	D. Sandy clay coatings (Hard)	3.0
	E. Softening clay coatings (Soft)	4.0
	b) Rock Wall Contact When Sheared	
ری ر	Filling thickness < 5 mm	
IN	F. Clay-free sandy particles	4.0
FILI	G. Hard filling with clay	6.0
	H. Soft Filling	8.0
	J. Swelling Clay	8 - 12

Figure A.10 Suggestions in Determining Joint Alteration Index (J_a) in Normal Structural Domains (Ünal, 2002).

(a) Weakness zones intersecting excavation, which may cause loosening of rock mass									
DESCRIPTION	ISRF VALUE	NOTES							
BSTR* 1 / 2 BSTR 3 / 4 / 5	(i) a,G => 5 (ii) a,D => 7,5 (iii) a,A => 10 (iv) a,A => 10	BSTR BSTR BSTR CLAY (i) (ii) (iii) (iv)							
Multiple weakness zones in competent rock; Very loose surounding rock and Containing clay	$\left. \begin{array}{c} a \\ A \end{array} \right\} 10$	BSTR + Containing + CLAY BSTR							
Multiple Weakness Zones + Loose Surrounding Rock <u>NO CLAY</u> Multiple Weakness Zones	$ \begin{array}{c} a \\ D \\ \end{array} \begin{array}{c} 7.5 \\ \end{array} \\ \end{array} \\ \begin{array}{c} a \\ G \\ \end{array} \begin{array}{c} 5.0 \\ \end{array} $	BSTR NO CLAY BSTR (i) (i)							
No Loose Surrounding Rock									
Containing $\begin{cases} Depth < 50 \text{ m.} \\ Depth > 50 \text{ m.} \end{cases}$ Clay $\begin{cases} Depth > 50 \text{ m.} \\ Depth > 50 \text{ m.} \end{cases}$ Clay Free $\begin{cases} Depth < 50 \text{ m.} \\ Depth > 50 \text{ m.} \end{cases}$	$ \left. \begin{array}{c} a \\ B \end{array} \right\} 5 \\ \left. \begin{array}{c} a \\ C \end{array} \right\} 2.5 \\ \left. \begin{array}{c} a \\ E \end{array} \right\} 5 \\ \left. \begin{array}{c} a \\ 5 \end{array} \right\} 5 \\ \left. \begin{array}{c} a \\ a \end{array} \right\} 5 \\ \left. \begin{array}{c} a \\ a \end{array} \right\} 3 $								
* Broken Structural Domain	F } 2.5								

Figure A.11 Suggestions in Determining Stress Reduction Factor (SRF) in Evaluating Core Boxes (After Ünal, 2002).

Figure A.12 Tunnel support chart showing 38 support categories (After Barton et al., 1974)

86

	Notes	ı	I	I	I	I	I	ı	ı	I	I	ı	ı	ı	ı	ı	ı	I	I	I	I	I, II	I, II	I, III
	Type of Support	sb (utg)	sb (utg)	sb (utg)	sb (utg)	sb (utg)	sb (utg)	sb (utg)	sb (utg)	sb (utg)	B (utg) 2.5-3 m	B (utg) 2-3 m	B (utg) $1.5-2 \text{ m} + \text{clm}$	B (tg) 2-3 m	B (tg) 1.5-2 m + clm	B (tg) 2-3 m	B (tg) $1.5-2 \text{ m} + \text{clm}$	sb (utg)	B (utg) 1.5-2 m	B (utg) 1.5-2 m	B (utg) $1.5-2 \text{ m} + \text{S} 2-3 \text{ cm}$	B (tg) $1.5-2 \text{ m} + \text{clm}$	B (tg) $1.5-2 \text{ m} + \text{S}$ (mr) $5-10 \text{ cm}$	B (utg) 1.5-2 m + clm
Span/ESR	(m)	20-40	30-60	46-80	65-100	12-30	19-45	30-65	48-88	8.5-19	I	14-30	I	23-48	ı	40-72	I	5-14	I	ı	ı	9-23	ı	ı
Ъ ^р	(kg/cm ²)	<0.01	<0.01	<0.01	<0.01	0.05	0.05	0.05	0.05	0.25	ı	0.25	ı	0.25	ı	0.25	ı	0.5	ı	ı	ı	0.5	ı	ı
ctors	Span/ESR (m)	1	ı	I	ı	ı	ı	ı	ı	ı	I	ı	ı	·	ı	·	ı	·	ı	·	ı	≥15	≥15	<15
ditional Fa	$\mathbf{J}_{\mathrm{r}}/\mathbf{J}_{\mathrm{n}}$	ı	I	I	I	I	I	ı	I	I	I	ı	ı	I	I	ı	I	≥1.5	<1.5	≥1.5	<1.5	ı	ı	ı
Con	RQD/J _n	·	ı	ı	ı	ı	ı	ı	ı	≥20	<20	≥30	<30	≥30	<30	≥30	<30	≥10	≥10	<10	<10	≥10	<10	·
(~	1000-400	1000-400	1000-400	1000-400	400-100	400-100	400-100	400-100	100-40	I	100-40		100-40	I	100-40	I	40-10	ı	ı	I	40-10	ı	I
Support	Category	1 ^c	$2^{\rm c}$	3°	4°	$5^{\rm c}$	6°	$7^{\rm c}$	8°	6		10		11 ^c		12^{c}		13				14		

Table A.2 Q-System : Support Measures for Q Range 10 to 1000^a (Barton et al., 1974).

Tab	le A.2	(Continue	ed).
-----	--------	-----------	------

Support		Co	nditional l	Factors	\mathbf{P}^{b}	Span/ESR		
Category	Q	RQD/ J _n	$\mathbf{J}_{\mathbf{r}}/\mathbf{J}_{\mathbf{n}}$	Span/ESR (m)	(kg/cm^2)	(m)	Type of Support	Notes
15	40-10	>10	-	-	0.5	15-40	B (tg) $1.5-2 \text{ m} + \text{clm}$	I, II, IV
	-	≤10	-	-	-	-	B (tg) 1.5-2 m + S (mr) 5-10 cm	I, II, IV
$16^{c,d}$	40-10	>15	-	-	0.5	30-65	B (tg) $1.5-2 \text{ m} + \text{clm}$	I, V,VI
	-	≤15	-	-	-	-	B (tg) 1.5-2 m + S (mr) 10-15 cm	I, V, VI

^a After Barton et al. (1974)

^b Approx.

^c Original authors' estimates of support. Insufficient case records available for reliable estimation of support requirements. The type of support to be used in categories 1-8 will depend on the blasting technique. Smooth-wall blasting and thorough barring-down may remove the need for support. Rough-wall blasting may result in the need for single applications of shotcrete, especially where the excavation height is >25 m. Future case records should differentiate categories 1-8. Key: sb = spot bolting; B = systematic bolting; (utg) = untensioned, grouted; (tg) tensioned (expanding-shell type for competent rock masses, grouted post-tensioned in very poor quality rock masses); S = shotcrete; (mr) = mesh-reinforced; clm = chain-link mesh; CCA = cast concrete arch; (sr) steel-reinforced. Bolt spacings are given in meters (m). Shotcrete or cast concrete arch thickness is given centimeters (cm).

Support		Cor	nditional F	actors	\mathbf{P}^{b}	Span/ESR			
Category	Q	RQD/J _n	J _r /J _n	Span/ESR (m)	(kg/cm^2)	(m)	Type of Support	Notes	
17	10-4	>30	-	-	1.0	3.5-9	sb (utg)	Ι	
	-	≥10, ≤30	-	-	-	-	B (utg) 1-1.5 m	Ι	
	-	<10	-	≥ 6	-	-	B (utg) 1-1.5 m + S 2-3 cm	Ι	
	-	<10	-	<6	-	-	S 2-3 cm	Ι	
18	10-4	>5	-	≥10	1.0	7-15	B (tg) 1-1.5 m + clm	I,III	
	-	>5	-	<10	-	-	B (utg) $1-1.5 \text{ m} + \text{clm}$	Ι	
	-	≤ 5	-	≥10	-	-	B (tg) 1-1.5 m + S 2-3 cm	I,III	
	-	≤ 5	-	<10	-	-	B (utg) 1-1.5 m + S 2-3 cm	Ι	
19	10-4	-	-	≥20	1.0	12-29	B (tg) 1-2 m + S (mr) 10-15 cm	I,II,IV	
	-	-	-	<20	-	-	B (tg) $1-1.5 \text{ m} + \text{S} (\text{mr}) 5-10 \text{ cm}$	I,II	
20°	10-4	-	-	≥35	1.0	24-52	B (tg) 1-2 m + S (mr) 20-25 cm	I,V,VI	
	-	-	-	<35	-	-	B (tg) 1-2 m + S (mr) 10-20 cm	I,II,IV	
21	4-1	≥12.5	≤0.75	-	1.5	2.1-6.5	B (utg) 1 m + S 2-3 cm	Ι	
	-	<12.5	< 0.75	-	-	-	S 2.5-5 cm	Ι	
	-	-	>0.75	-	-	-	B (utg) 1 m	Ι	
22	4-1	>10, <30	>1.0	-	1.5	4.5-11.5	B(utg) 1 m + clm	Ι	
	-	≤10	>1.0	-	-	-	S 2.5-7.5 cm	Ι	
	-	<30	≤1.0	-	-	-	B (utg) 1 m + S (mr) $2.5-5$ cm	Ι	
	-	≥30	-	-	-	-	B (utg) 1m	Ι	
23	4-1	-	-	≥15	1.5	8-24	B (tg) 1-1.5 m + S (mr) 10-15 cm	I,II,IV,VII	
	-	-	-	<15	-	-	B (utg) $1-1.5 \text{ m} + \text{S} (\text{mr}) 5-10 \text{ m}$	Ι	
$24^{c,d}$	4-1	-	-	≥30	1.5	18-46	B (tg) 1.5 m + S (mr) 15-30 cm	I,V,VI	
	-	-	-	<30	-	-	B (tg) 1-1.5 m + S (mr) 10-15 cm	I,II,IV	
^a After Barto	n et al. (197	^b Ap	prox.						
^c See note X	II in Table 5	5.6. ^d See	e footnote	c in Table 5.2.					

Table A.3 Q-System: Support Measures for Q Range 1 to 10^a (After Barton et al., 1974).

Support Condi		nditional F	actors	\mathbf{P}^{b}	Span/ES			
Category	Q -	RQD/J _n	J _r /J _n	Span/ESR (m)	(kg/cm^2)	R (m)	Type of Support	Notes
25	1.0-0.4	>10	>0.5	-	2.25	1.5-4.2	B (utg) 1 m + mr or clm	Ι
	-	≤10	>0.5	-	-	-	B (utg) 1 m + S (mr) 5 cm	Ι
	-	-	≤ 5	-	-	-	B(tg) 1 m + S(Mr) 5 cm	Ι
26	1.0-0.4	-	-	-	2.25	3.2-7.5	B(tg) 1 m + S(mr) 5-7.5 cm	VIII, X, XI
	-	-	-	-	-	-	B (utg) 1 m + S 2.5-5 cm	I,IX
27	1.0-0.4	-	-	≥12	2.25	6-18	B(tg) 1 m + S(mr) 7.5-10 cm	I,IX
	-	-	-	<12	-	-	B (utg) 1 m + S (mr) 5-7.5 cm	I,IX
	-	-	-	>12	-	-	CCA 20-40 cm + B (tg) 1 m	VIII, X, XI
	-	-	-	<12	-	-	S (mr) 10-20 cm + B (tg) 1 m	VIII, X, I
28 ^d	1.0-0.4	-	-	≥30	2.5	15-38	B (tg) 1 m + S (mr) $30-40$ cm	I,IV,V,IX
	-	-	-	≥20, <30	-	-	B (tg) $1 \text{ m} + \text{S} (\text{mr}) 20-30 \text{ cm}$	I,II,IV,IX
	-	-	-	<20	-	-	B (tg) 1 m + S (mr) 15-20 cm	I,II,IX
	-	-	-	-	-	-	CCA (sr) 30-100 cm + B (tg) 1 m	IV,VIII,X,XI
29	0.4-0.1	>5	>0.25	-	3.0	1.0-3.1	B (utg) $1 m + S 2-3 cm$	-
	-	≤ 5	>0.25	-	-	-	B (utg) 1 m + S (mr) 5 cm	-
	-	-	≤0.25	-	-	-	B(tg) 1 m + S(Mr) 5 cm	-
30	0.4-0.1	≥ 5	-	-	3.0	2.2-6	B (tg) $1 \text{ m} + \text{S} 2.5-5 \text{ cm}$	IX
	-	<5	-	-	-	-	S (mr) 5-7.5 cm	IX
	-	-	-	-	-	-	B (tg) $1 \text{ m} + \text{S} (\text{mr}) 5-7.5 \text{ cm}$	VIII,X,XI
31	0.4-0.1	>4	-	-	3.0	4-14.5	B (tg) 1 m + S (mr) 5-12.5 cm	IX
	-	≤4,≥1.5	-	-	-	-	S (mr) 7.5-25 cm	IX
	-	<1.5	-	-	-	-	CCA 20- 40 cm + B (tg) 1 m	IX, XI
	-	-	-	-	-	-	CCA (sr) 30-50 cm + B (tg) 1 m	VII,X,XI
32 ^d	0.4-0.1	-	-	≥20	3.0	11-34	B (tg) 1 m + S (mr) 40-60 cm	II,IV,IX,XI
	-	-	-	<20	-	-	B (tg) 1 m + S (mr) 20-40 cm	III,IV,IX,XI
^a After Barton	n et al. (1974)	^b Appro	ox. ^c F	For key, refer to	Table 5.2, fo	otnote c.	^d See note XII in Table 5.6.	

Table A.4 Q-System: Support Measures for Q Range 0.1 to 1.0^a (After Barton et. al., 1974).

Support		Cor	nditional F	actors	\mathbf{P}^{b}	Span/ES	_	
Category	Q	RQD/J _n	J_r/J_n	Span/ESR (m)	(kg/cm^2)	R (m)	Type of Support	Notes
33	0.1-0.01	≥2	-	-	6	1.0-3.9	B (tg) 1 m + S(mr) 2.5-5 cm	IX
	-	<2	-	-	-	-	S (mr) 5-10 cm	IX
	-	-	-	-	-	-	S (mr) 7.5-15 cm	VIII,X
34	1.0-0.01	≥ 2	≥0.25	-	6	2.0-11	B (tg) 1 m + S (mr) 5-7.5 cm	IX
	-	<2	≥0.25	-	-	-	S (mr) 7.5-15 cm	IX
	-	-	< 0.25	-	-	-	S (mr) 15-25 cm	IX
	-	-	-	-	-	-	CCA (sr) 20-60 cm + B (tg) 1 m	VIII, X, XI
35 ^d	0.1-0.01	-	-	≥15	6	6.2-28	B (tg) 1 m + S (mr) $30-100$ cm	II, IX, XI
	-	-	-	≥15	-	-	CCA (sr) 60-200 cm + B (tg) 1 m	VIII,X,XI,III
	-	-	-	<15	-	-	B (tg) 1 m + S (mr) 20-75 cm	IX, XI, III
	-	-	-	<15	-	-	CCA (sr) 40-150 cm + B (tg) 1 m	VIII,X,XI,III
36	0.01-0.001	-	-	-	12	1.0-2.0	S (mr) 10-20 cm	IX
	-	-	-	-	-	-	S (mr) 10-20 cm + B (tg) 0.5-1.0 m	VIII,X,XI
37	0.01-0.001	-	-	-	12	1.0-6.5	S (mr) 20-60 cm	IX
	-	-	-	-	-	-	S (mr) 20-60 cm + B (tg) 0.5-1.0 m	VIII, X, XI
38 ^e	0.01-0.001	-	-	≥10	12	4.0-20	CCA (sr) 100-300 cm	IX
	-	-	-	≥10	-	-	CCA (sr) 100-300 cm + B (tg) 1 m	VIII, X,II,XI
	-	-	-	<10	-	-	S (mr) 70-200 cm	IX
	-	-	-	<10	-	-	S (mr) 70-200 cm	VIII,X,III,XI
^a After Bartor	n et al. (1974)							
^b Approx.								
^c For key, ref	er to Table 5.2.	footnote c.						
^d See note XI	I in Table 5.6.							
^e See note XI	I in Table 5.6.							

Table A.5 Q-System: Support Measures for Q Range 0.001 to 0.1^a(After Barton et al., 1974)

Figure A.13 GSI System (Hoek and Brown, 1997).

Figure A.14 Modification of GSI System by Sönmez and Ulusay (1999).

Figure A.15 GSI classification systems by Hoek (1999).

Figure A.16 Quantification of GSI chart (Cai, et al., 2004).

Figure A.17 Fuzzy-based quantitative GSI chart (After Sönmez, et al., 2004)

Behavior of Rock Mass Rock Mass Explanations **ONORM B 2203** ONORM B 2203 Class After Oct. 1994 Before Oct. 1994 The rock mass behaves elastically. Deformations are small and decrease rapidly. There is no tendency of A1 Stable A1 Stable overbreaking after scaling of the rock portions disturbed by blasting. The rock mass is permanently stable without support. А The rock mass behaves elastically. Deformations are small and decrease rapidly. A slight tendency of shallow A2 Slightly A2 Slightly overbreaks in the tunnel roof and in Overbreaking Overbreaking the upper portions of the sidewalls caused by discontinuities and the dead weight of the rock mass exists. Major parts of the rock mass behave elastically. Deformations are small and decrease rapidly. Low rock mass strength and limited stand-up times related to the prevailing **B1** Friable B1 Friable discontinuity pattern vield overbreaks and loosening of the rock strata in tunnel roof and upper sidewalls if no support is installed in time. This type of rock mass is characterised by large areas of non-B2 Very elastic zones extending far into the В Friable surrounding rock mass. Immediate installation of the tunnel support, will ensure deformations can be kept small and cease rapidly. In case of a delayed installation or an insufficient B2 Very Friable quantity of support elements, the low strength of the rock mass yields deep loosening and loading of the initial **B3** Rolling support. Stand-up time and unsupported span are short. The potential of deep and sudden failure from roof, sidewalls and face is high.

Table A.6 NATM rock mass classes (Geoconsult, 1993 and ONORM B 2203, 1994).

Table A.6 (Continued).

Rock	Behavior o	of Rock Mass	Frankriser		
Class	ONORM B 2203 After Oct. 1994	ONORM B 2203 Before Oct. 1994	Explanations		
	C1 Rock Burstling		C1 is characterized by plastic zones extending far into the surrounding rock mass and failure mechanisms		
С	C2 Squeezing	C1 Squeezing	such as spalling, buckling, shearing and rupture of the rock structure, by squeezing behaviour or by tendency rock burst. Subject rock mass shows a moderate, but distinct time depending squeezing behaviour deformations calm down slowly except in case of rock bursts Magnitude and velocity o deformations at the cavity boundary are moderate.		
	C3 Heavily Squeezing	C2 Heavily Squeezing	C2 is characterized by the development of deep failure zones and a rapid and significant movement of the rock mass into the cavity and deformations which decrease very slowly. Support elements may frequently be overstressed		
	C4 Flowing	L1 Short-term-stable with high cohesion	By limitation of the unsupported spans at arch and face, the rock mass remain stable for a limited time.		
	C5 Swelling	L2 Short-term-stable with low cohesion	No stand up time without support by prior installation of forepolling or forepiling and shotcrete sealing of faces simultaneously with excavation. The low cohesion requires a number of subdivisions.		

A.I A brief history of the development of the Hoek-Brown failure criterion (Hoek, 2004)

The original Hoek-Brown failure criterion was developed during the preparation of the book *Underground Excavations in Rock*, published in 1980. The criterion was required in order provide input information for the design of underground excavations. Since no suitable methods for estimating rock mass strength appeared to be available at that time, the efforts were focussed on developing a dimensionless equation that could be scaled in relation to geological information. The original Hoek-Brown equation was neither new nor unique – an identical equation had been used for describing the failure of concrete as early as 1936. The significant contribution that Hoek and Brown made was to link the equation to geological observations, initially in the form of Bieniawski's Rock Mass Rating and later to the Geological Strength Index GSI. The subsequent development of the criterion and the associated GSI system is described in these notes. Evert Hoek April 2004

A brief history of the development of the Hoek-Brown failure criterion

Hoek E. and Brown E.T. 1980. Underground Excavations in Rock. London: Institution of Mining and Metallurgy 527 pages Hoek, E. and Brown, E.T. 1980. Empirical strength criterion for rock masses. J.Geotech. Engng Div., ASCE 106(GT9), 1013-1035.

The original failure criterion was developed during the preparation of the book *Underground Excavations in Rock.* The criterion was required in order provide input information for the design of underground excavations. Since no suitable methods for estimating rock mass strength appeared to be available at that time, the efforts were focussed on developing a dimensionless equation that could be scaled in relation to geological information. The original Hoek-Brown equation was neither new nor unique –an identical equation had been used for describing the failure of concrete as early as 1936. The significant contribution that Hoek and Brown made was to link the equation to geological observations in the form of Bieniawski's Rock Mass Rating and later to the Geological Strength Index.

It was recognised very early in the development of the criterion that it would have no practical value unless the parameters could be estimated by simple geological observations in the field. The idea of developing a 'classification' for this specific purpose was discussed but, since Bieniawski's RMR had been published in 1974 and had gained popularity with the rock mechanics community; it was decided to use this as the basic vehicle for geological input. The original criterion was conceived for use under the confined conditions surrounding underground excavations. The data upon which some of the original relationships had been based came from tests on rock mass samples from the Bougainville mine in Papua New Guinea. The rock mass here is very strong andesite (uniaxial compressive strength about 270 MPa) with numerous clean, rough, unfilled joints. One of the most important sets of data was from a series of triaxial tests carried out by Professor John Jaeger at the Australian National University in Canberra. These tests were on 150 mm diameter samples of heavily jointed andesite recovered by triple-tube diamond drilling from one of the exploration adits at Bougainville.

The original criterion, with its bias towards hard rock, was based upon the assumption that rock mass failure is controlled by translation and rotation of individual rock pieces, separated by numerous joint surfaces. Failure of the intact rock was assumed to play no significant role in the overall failure process and it was assumed that the joint pattern was 'chaotic' so that there are no preferred failure directions and the rock mass can be treated as isotropic.

1983 Hoek, E. 1983. Strength of jointed rock masses, 23rd. Rankine Lecture. *Géotechnique* **33**(3), 187-223.

One of the issues that had been troublesome throughout the development of the criterion has been the relationship between Hoek-Brown criterion, with the non-linear parameters m and s, and the Mohr-Coulomb criterion, with the parameters c and ϕ . Practically all software for soil and rock mechanics is written in terms of the Morh-Coulomb criterion and it was necessary to define the relationship between m and s and c and ϕ in order to allow the criterion to be used for to provide input for this software.

An exact theoretical solution to this problem (for the original Hoek-Brown criterion) was developed by Dr John. W. Bray at the Imperial College of Science and Technology and this solution was first published in the 1983 Rankine lecture. This publication also expanded on some of the concepts published by Hoek and Brown in 1980 and it represents the most comprehensive discussion on the original Hoek Brown criterion.

1988 Hoek E and Brown E.T. 1988. The Hoek-Brown failure criterion - a 1988 update. *Proc. 15th Canadian Rock Mech. Symp.* (ed. J.H. Curran), pp. 31-38. Toronto:Civil Engineering Dept., University of Toronto

By 1988 the criterion was being widely used for a variety of rock engineering problems, including slope stability analyses. As pointed out earlier, the criterion was originally developed for the confined conditions surrounding underground excavations and it was recognised that it gave optimistic results near surfaces in slopes. Consequently, in 1998, the idea of *undisturbed* and *disturbed* masses was introduced to provide a method for downgrading the properties for near surface rock masses.

This paper also defined a method of using Bieniawski's 1974 RMR classification for estimating the input parameters. In order to avoid double counting the effects of groundwater (an effective stress parameter in numerical analysis) and joint orientation (specific input for structural analysis), it was suggested that the rating for groundwater should always be set at 10 (completely dry) and the rating for joint orientation should always be set to zero (very favourable). Note that these ratings need to be adjusted in later versions of Bieniawski's RMR.

1990 Hoek, E. 1990. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. *Intnl. J. Rock Mech. & Mining Sci. & Geomechanics Abstracts.* **12**(3), 227-229.

This technical note addressed the on-going debate on the relationship between the Hoek-Brown and the Mohr-Coulomb criterion. Three different practical situations were described and it was demonstrated how Bray's solution could be applied in each case.

1992 Hoek, E., Wood, D. and Shah, S. 1992. A modified Hoek-Brown criterion for jointed rock masses. *Proc. rock characterization, symp. Int. Soc. Rock Mech.:Eurock '92*, (J. Hudson ed.). 209-213.

The use of the Hoek Brown criterion had now become widespread and, because of the lack of suitable alternatives, it was now being used on very poor quality rock masses. These rock masses differed significantly from the tightly interlocked hard rock mass model used in the development of the original criterion. In particular it was felt that the finite tensile strength predicted by the original Hoek Brown criterion was too optimistic and that it needed to be revised. Based upon work carried out br Dr Sandip Shah for his Ph.D thesis at the University of

Toronto, a modified criterion was proposed. This criterion contained a new parameter a that provided the means for changing the curvature of the failure envelope, particularly in the very low normal stress range. Basically, the modified Hoek Brown criterion forces the failure envelope to produce zero tensile strength.

Hoek, E. 1994. Strength of rock and rock masses, *ISRM News Journal*, **2**(2), 4-16.

1995 Hoek, E., Kaiser, P.K. and Bawden. W.F. 1995. Support of underground excavations in hard rock. Rotterdam: Balkema

It soon became evident that the modified criterion was too conservative when used for better quality rock masses and a 'generalised' failure criterion was proposed in these two publications. This generalised criterion incorporated both the original and the modified criteria with a 'switch' at an RMR value of approximately 25. Hence, for excellent to fair quality rock masses, the original Hoek Brown criterion is used while, for poor and extremely poor rock masses, the modified criterion (published in 1992) with zero tensile strength is used.

These papers (which are practically identical) also introduced the concept of the Geological Strength Index (GSI) as a replacement for Bieniawski's RMR. It had become increasingly obvious that Bieniawski's RMR is difficult to apply to very poor quality rock masses and also that the relationship between RMR and m and s is no longer linear in these very low ranges. It was also felt that a system based more heavily on fundamental geological observations and less on 'numbers' was needed.

The idea of *undisturbed* and *disturbed* rock masses was dropped and it was left to the user to decide which GSI value best described the various rock types exposed on a site. The original *disturbed* parameters were derived by simply reducing the strength by one row in the classification table. It was felt that this was too arbitrary and it was decided that it would be preferable to allow the user to decide what sort of disturbance is involved and to allow this user to make their own judgement on how much to reduce the GSI value to account for the strength loss.

1997 Hoek, E. and Brown, E.T. 1997. Practical estimates or rock mass strength. Intnl.J. Rock Mech. & Mining Sci. & Geomechanics Abstracts. 34(8), 1165-1186.

This was the most comprehensive paper published to date and it incorporated all of the refinements described above. In addition, a method for estimating the equivalent Mohr Coulomb cohesion and friction angle was introduced. In this method the Hoek Brown criterion is used to generate a series of values relating axial strength to confining pressure (or shear strength to normal stress) and these are treated as the results of a hypothetical large scale in situ triaxial or shear test. A linear regression method is used to find the average slope and intercept and these are then transformed into a cohesive strength *c* and a friction angle ϕ .

The most important aspect of this curve fitting process is to decide upon the stress range over which the hypothetical in situ 'tests' should be carried out. This was determined experimentally by carrying out a large number of comparative theoretical studies in which the results of both surface and underground excavation stability analyses, using both the Hoek Brown and Mohr Coulomb parameters, were compared. 1998 Hoek, E., Marinos, P. and Benissi, M. (1998) Applicability of the GeologicalStrength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. *Bull. Engg. Geol. Env.* 57(2), 151-160.

This paper extends the range of the Geological Strength Index (GSI) down to 5 to include extremely poor quality schistose rock masses such as the 'schist' encountered in the excavations for the Athens Metro and the graphitic phyllites encountered in some of the tunnels in Venezuela. This extension to GSI is based largely on the work of Maria Benissi on the Athens Metro. Note that there were now 2 GSI charts. The first of these, for better quality rock masses published in 1994 and the new chart for very poor quality rock masses published in this paper.

2000 Hoek, E. and Marinos, P. (2000) Predicting Tunnel Squeezing. *Tunnels and Tunnelling International*. Part 1 – November 2000, Part 2 – December, 2000.

This paper introduced an important application of the Hoek-Brown criterion in the prediction of conditions for tunnel squeezing, utilising a critical strain concept proposed by Sakurai in 1983.

- 2000 Marinos, P and Hoek, E. (2000) GSI A geologically friendly tool for rock mass strength estimation. *Proc. GeoEng2000 Conference, Melbourne*.
- 2000 Marinos, P. & Hoek, E. 2000. From The Geological to the Rock Mass Model: Driving the Egnatia Highway through difficult geological conditions, Northern Greece, *Proc. 10th International Conference of Italian National Councilof Geologists, Rome*

These papers put more geology into the Hoek-Brown failure criterion than that which has been available previously. In particular, the properties of very weak rocks are addressed in detail for the first time. There is no change in the mathematical interpretation of the criterion in these papers.

2000 Hoek, E. and Karzulovic, A. (2000) Rock-Mass properties for surface mines. In *Slope Stability in Surface Mining* (Edited by W. A. Hustralid, M.K. McCarter and D.J.A. van Zyl), Littleton, CO: Society for Mining, Metallurgical and Exploration (SME), pages 59-70.

This paper repeats most of the material contained in Hoek and Brown, 1997, but adds a discussion on blast damage.

- 2000 Marinos, P and Hoek, E. (2000). GSI: a geologically friendly tool for rock mass strength estimation. *Proc. GeoEng2000*, Melbourne.
- 2001 Marinos. P, and Hoek, E. (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. *Bulletin of the Engineering Geology & the Environment (IAEG)*, 60, 85-92.

These papers does not add anything significant to the fundamental concepts of the Hoek-Brown criterion but they demonstrates how to choose appropriate ranges of GSI for different rock mass types. In particular, the 2001 paper on flysch discussed difficult materials such as flysch

on the basis of the authors' experience in dealing with these rocks in major projects in northern Greece.

2002 Hoek, E., Carranza-Torres, C. and Corkum, B. (2002) Hoek-Brown criterion – 2002 edition. *Proc. NARMS-TAC Conference*, Toronto, 2002, **1**, 267-273.

This paper represents a major re-examination of the entire Hoek-Brown criterion and includes new derivations of the relationships between *m*, *s*, *a* and *GSI*. A new parameter D is introduced to deal with blast damage. The relationships between the Mohr Coulomb and the Hoek Brown criteria are examined for slopes and for underground excavations and a set of equations linking the two are presented. The final relationships were derived by comparing hundreds of tunnel and slope stability analyses in which both the Hoek-Brown and the Mohr Coulomb criteria were used and the best match was found by iteration. A Windows based program called *RocLab* was developed to include all of these new derivations and this program can be downloaded (free) from www.rocscience.com. A copy of the paper is included with the download.

2004 Chandler R. J., De Freitas M. H. and P. G. Marinos. Geotechnical Characterisation of Soils and Rocks: a Geological Perspective. Keynote paper in: *Advances in geotechnical engineering, The Skempton Conference*, v1, p. 67-102, Thomas Telford, ICE, London (2004)

A brief contribution on the Geological Strength Index within a more general paper on engineering geology of soils and rock.

2004 V. Marinos, P. Marinos and E. Hoek. Discussion on rock mass characterisation with special emphasis in the geological strength index and in tunnelling, *Proc. 32nd International Geological Congress, Florence*, 2004. (in press)

A discussion on some of the geological aspects of the Geological Strength Index applied to tunnelling.

Hoek, E., Marinos P, and Marinos V. 2004. Rock mass characterisation for molasses. Paper submitted to the International Journal of Rock Mechanics and Mining Science.

A significant paper in which a new GSI chart for molassic rock masses is introduced, Molasse consists of a series of tectonically undisturbed sediments of sandstones, conglomerates, siltstones and marls, produced by the erosion of mountain ranges after the final phase of an orogeny. They behave as continuous rock masses when they are confined at depth and, even if lithologically heterogeneous, the bedding planes do not appear as clearly defined discontinuity surfaces. The paper discusses the difference between these rock masses and the flysch type rocks, which have been severely disturbed by orogenic processes.

Publication	Coverage	Equations
Hoek & Brown 1980	Original criterion for heavily jointed rock masses with no fines. Mohr envelope was obtained by	$\sigma_1 = \sigma_3 + \sigma_{ci} \sqrt{m\sigma_3/\sigma_{ci} + s}$
	statistical curve fitting to a number of (σ_n, τ) pairs	$\sigma_t = \frac{\sigma_{ci}}{2} \left(m - \sqrt{m^2 + 4s} \right)$
	σ'_1, σ'_3 are major and minor effective principal	$\tau = A\sigma_{ci} \left((\sigma_n' - \sigma_t) / \sigma_{ci} \right)^B$
	stresses at failure, respectively σ_i is the tensile strength of the rock mass	$\sigma_n' = \sigma_3' + \left((\sigma_1' - \sigma_3') / (1 + \partial \sigma_1' / \partial \sigma_3') \right)$
	m and s are material constants	$\tau = (\sigma_n - \sigma_3) \sqrt{\partial \sigma_1 / \partial \sigma_3}$
	σ'_n, τ are effective normal and shear stresses,	$\partial \sigma'_1 / \partial \sigma'_3 = m \sigma_{ci} / 2(\sigma'_1 - \sigma'_3)$
Hoek	Original criterion for heavily jointed rock masses	a' - a' La Juai la La
1983	with no fines with a discussion on anisotropic failure and an exact solution for the Mohr envelope by Dr	$\tau = (Cot\phi'_i - Cos\phi'_i)m\sigma_{ci} / 8$
	J.W. Bray.	$\phi_i = \arctan\left(1/\sqrt{4h\cos^2\theta - 1}\right)$
		$\theta = \left(90 + \arctan(1/\sqrt{h^3 - 1})\right)/3$
		$h = 1 + \left(\frac{16}{m\sigma_n} + s\sigma_{ci} \right) / (3m^2\sigma_{ci}) \right)$
Hoek & Brown 1988	As for Hoek 1983 but with the addition of relationships between constants <i>m</i> and <i>s</i> and a	Disturbed rock masses: $m_{\rm c}/m_{\rm c} = \exp\left((RMR - 100)/14\right)$
.,	modified form of RMR (Bieniawski [15]) in which	$m_b / m_i = \exp((RMR - 100)/14)$
	the Groundwater rating was assigned a fixed value of 10 and the Adjustment for Joint Orientation was set	$s = \exp((RMR - 100)/6)$
	at 0. Also a distinction between disturbed and	$m_{\rm c}/m_{\rm c} = \exp((RMR - 100)/28)$
	<i>undisturbed</i> rock masses was introduced together with means of estimating deformation modulus E	$s = \exp((RMR - 100)/9)$
	(after Serafim and Pereira [18]).	$S = \exp((RMR - 100)/9)$
		$E = 10^{((KMR-10)/40)}$
		m_b, m_i are for broken and infact rock, respectively.
Hoek, Wood & Shah	Modified criterion to account for the fact the heavily jointed rock masses have zero tensile strength	$\sigma_1 = \sigma_3 + \sigma_{ci} (m_b \sigma_3 / \sigma_{ci})^{\alpha}$
1992	Balmer's technique for calculating shear and normal stress pairs was utilised	$\sigma'_{n} = \sigma'_{3} + \left((\sigma'_{1} - \sigma'_{3}) / (1 + \partial \sigma'_{1} / \partial \sigma'_{3}) \right)$
		$\boldsymbol{\tau} = (\boldsymbol{\sigma}_n' - \boldsymbol{\sigma}_3') \sqrt{\partial \boldsymbol{\sigma}_1' / \partial \boldsymbol{\sigma}_3'}$
		$\partial \sigma_1' / \partial \sigma_3 = 1 + \alpha m_b^{\alpha} (\sigma_3' / \sigma_{ci})^{(\alpha-1)}$
Hoek 1994	Introduction of the Generalised Hoek-Brown criterion, incorporating both the original criterion for	$\sigma_1 = \sigma_3 + \sigma_c (m\sigma_3/\sigma_{ci} + s)^a$
Hoek, Kaiser &	fair to very poor quality rock masses and the	for <i>GSI</i> >25
Bawden 1995	modified criterion for very poor quality rock masses with increasing fines content. The Geological	$m_b/m_i = \exp((GSI - 100)/28)$
	Strength Index GSI was introduced to overcome the	$s = \exp((GSI - 100)/9)$
	deficiencies in Bieniawski's <i>RMR</i> for very poor quality rock masses. The distinction between	a = 0.5
	disturbed and undisturbed rock masses was dropped	for <i>GSI</i> < 25
	on the basis that disturbance is generally induced by engineering activities and should be allowed for by	s = 0 a = 0.65 GSU/200
	downgrading the value of GSI.	a = 0.05 - 0.01/200

Summary equations for Hoek-Brown failure criteria (Hoek, 2004)

Hock, Carranza-
Torres and
Corkum, 2002
Hock, Carranza-
Torres and
Corkum, 2002
A new set of relationships
between GSI,
$$m_{b}$$
, s and a is
introduced to give a smoother
transition between very poor
quality rock masses (GSI < 25)
and stronger rocks. A
disturbance factor D to account
for stress relaxation and blast
damage is also introduced.
Equations for the calculation of
Mohr Coulomb parameters c and
 ϕ are introduced for specific
ranges of the confining stress
 σ'_{3max} for tunnels and slopes.
All of these equations are
incorporated into the Windows
program RocLab that can be
downloaded from the Internet
site www.rocscience.com A
copy of the full paper is included
with the download.
 $\sigma'_{3max} = 0.47 \left(\frac{\sigma'_{cm}}{\mathcal{H}} \right)^{-0.91}$. H is the depth below surface
 $\sigma'_{3max} = 0.72 \left(\frac{\sigma'_{cm}}{\mathcal{H}} \right)^{-0.91}$. H is the slope height
 γ is the unit weight of the rock mass

Appearance of rock mass	Description of rock mass	Suggested value of <i>D</i>
	Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.	<i>D</i> = 0
	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant flor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	D = 0 $D = 0.5$ No invert
	Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	<i>D</i> = 0.8
	Small scale blasting in civil engineering slopes results in modest rock mass damage, particularly if controlled blasting is used as shown on the left hand side of the photograph. However, stress relief results in some disturbance.	D = 0.7 Good blasting D = 1.0 Poor blasting
	Very large open pit mine slopes suffer significant disturbance due to heavy production blasting and also due to stress relief from overburden removal. In some softer rocks excavation can be carried out by ripping and dozing and the degree of damage to the slopes is less.	D = 1.0 Production blasting D = 0.7 Mechanical excavation

A.II Guidelince for estimeting disturbance factor D (Hoek, et al., 2002).

A.III Estimates of rock mass strength and deformation modulus (Hoek, 2004).

In the preliminary stages of a rock engineering design the need for approximate estimates of rock mass strength and deformation modulus frequently arises. Several authors have published empirical estimates of these properties, based on rock mass classification systems. These estimates, together with available data from in situ measurements, are summarized in Figures 1 and 3. Hoek et al (2002) and Barton (2000) have extended these empirical relationships to allow for different intact rock strength values and for disturbance due to blast damage and stres relaxation. These extended relationships are summarized in Figures 2 and 4. All of these relationships are intended to provide initial estimates of the rock mass properties and they should be used with caution in engineering design. In critical cases it is strongly recommended that the estimates should be confirmed by in situ measurements or by back analysis of excavation behaviour. The use of RMR values of less than 30 and Q values of less than 0.1 for making these estimates is not recommended because of the dominant role of RQD in these classifications and the difficulty of determining its value for very poor quality rock masses. It is recommended that only directly determined values of RMR, Q and GSI should be used for making these estimated and that equations relating these classification systems should not be used.

Evert Hoek 2004 April

Figure 1: Estimates of the ratio of rock mass strength to the strength of small laboratory samples based upon rock mass classifications.

Figure 2: Rock mass strength predictions by Hoek at al, 2002, and Barton, 2000

Figure 3: Deformation modulus field measurements and empirical estimates.

Figure 4: Estimates of rock mass deformation modulus by Hoek, Carranza-Torres and Corkum, 2002 and by Barton, 2000, for different values of the intact rock strength σ_{ci} .

Note: This paper together with the Windows program RocLab can be downloaded from www.rocscience.com.
Page: 1/1	1
IG DATE	
RT : 19.07.2003	
: 19.07.2003	
	_
DBY : SONGUL COŞAR	AR
ED BY : SONGUL COŞAR	AR
TEST SAMPLES	2
TAKEN FOR	5
	S
NICAL	SI VSI
TES H	٦
	Ž
	õ
E B B	품
	AF 3
	ğ
[Ř
	Ē
	ш
· · · · · · · · ·	
l	
ning,	
HIO stc yod	HNICAL OTES Test NCCS TEST Test NCCS TEST NCCS TEST NCCS TEST STAKE DURABILITY TEST Sto AG'- aining,

APPENDIX B

Table B.1 Geotechnical borehole log for SK-6+050 drilling

							(GEOTE	CHNIC	AL BO	REHO	LE LO	G /FIEL	D DAT	A (MET	J-2003)							
																				Pag	e:	1/4	
PROJECT LOCATION BOREHOLE NO TYPE OF MACHINE CORE BARREL <u>CIRCULATION FLUI</u>	E D	:	DIM T ALAN SK -6 D - 90 Double Water	UNNEL YA -GA +180 0 Crell e Tube	- PROJ AZİPAŞ lious	ECT A ROA	١D			DEPTH NORTH EASTH ELEVA B.H. D END	H HING NG ATION PRILLIN	g dat	E / STA	ART	: 85.0 : 404 : 417 : 94.0 : 24.0 : 28.0	0 m 5181.9 082.2 0 m 08.2002 08.2002	RE- LOGGING DATE START END RE - LOGGED BY CHECKED BY	:	19.0 19.0 SON)7.20)7.20)GÜL	03 03 - CC - CC)ŞAF)ŞAF	1
			P	ARAME	ETERS	FOR M	I-RMR \$	SYSTE	М						PARA	METER			TES	ST SA		LES	
STRUCTURAL	DOMAI	IN		CC	DRE RE	COVE	RY			DISC	ONTIN	UITY			Q-SY	OR STEM			Т	AKEI	N FC	R	
BOX # STRUCTURAL DOMAIN NUMBER FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
8 1 50.00	51.00	1.0		0.98 (98)	0.92 (92)	0.42 (42)	J V	2 3	-	SW SW	0-R P-SR	L	0.9 0	0 3-H	a C (2)	a G (5)	SCHIST; light to dark gray, foliated, friable to hard, very weak to						
							В	11		UW	P-SR	Н	0.9	0			moderately weak, slighty weathered.				\square		
8 2 51.00	54.70	3.7		3.10 (84)	0.43 (12)	0.00 (0)	BST 1 (4)	50	-	MW	-	-	-	3-H	(4)	a G (5)	51.50 -53.00m occasionally weak, soft zone.						
8 3 54.70	55.95	1.25		1.20 (100)	1.16 (93)	0.83 (66)	W J B	3 2 9	-	SW SW UW	0-R 0-SR P-SR	L L H	0.9 0 0.9	0 3-H 0	a C (2)	a D (7.5)		x	55.5 x	0 -56	.00 m	1	
8 4 55.95	56.70	0.75		0.54 (72)	0.00 (0)	0.00 (0)	BST 2 (3)	50	-	HW	-	-	-	0.9-H	b F (4)	a G (5)							

Table B.2 Geotechnical borehole log for SK-6+180 drilling

										GEOTE	ECHNIC	CAL BO	REHO	LE LO	G /FIEI	D DAT	A (MET	U-2003)							
																			SK -6+180			Pag	e:	2/4	
					Р	ARAME	ETERS	FOR M	1-RMR	SYSTE	M						PARAN	IETERS			TES	ST S/	AMPI	LES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	ECOVE	RY			DISC	CONTIN	IUITY			Q-SY	STEM			T.	AKE	N FC	R	
# XO	TRUCTURAL DOMAIN NUMBER	ROM (m)	(m) O.	ENGTH (m)	ORE DIAMETER (mm.)	OTAL, m. 6)	VTACT, m. 6)	OTAL CORE LENGTH FOR RQD (m.) QD %	'YPE (J /B / W)	OF DISCONTINUITIES	(NGLE (o)	VEATHERING CONDITION	OINT ROUGHNESS /CONDITION	PERSISTENCY	(PERTURE THICKNESS (mm.) F NO FILLING EXISTS)	ILLING THICKNESS (mm.) and TYPE FEXIST)	OINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	ICS TEST	OINT LOAD TEST	ILOCK PUNCH TEST	SLAKE DURABILITY TEST	(-RAY	ETROGRAPHIC ANALYSES
9	5	56.70	57.35	0.65		0.63	- <u>•</u> 0.58	0.21	w	4# 4	-	SW	0-R	M	<u>~ _</u> 0.9	<u>е</u> –	a C	a D	SCHIST	1	ш. 		0,	^	
						(97)	(89)	(32)	J B	1 9		SW SW	0-R P-SB	L H	0	0.9-H 0	(2)	(7.5)							
9	6	57.35	58.35	1.0		0.59	0.0	0.0	BST	500	-	HW	-	-	-	3-H	c N	a G	41 % core loss						
						(59)	(0)	(0)	3 (2)								(5)	(5)							
9	7	58.35	59.10	0.75		0.70	0.53	0.33	W	2	-	MW	0-R	L	3	0	a C	a D							
						(93)	(71)	(44)	В	13		MW	0-SR	н	0.9	0	(2)	(7.5)							
9	8	59.10	64.15	5.05		3.84 (76)	1.88 (37)	0.50 (16)	BST 4 (4)	50	-	HW	-	-	-	3-H	b F (4)	a G (5)		2.00 X	m - 6 X	2.50	m		
10	9	64.15	65.10	0.95		0.95 (100)	0.95 (100)	0.46 (48)	В	13	-	SW	P-SR	Н	0.9	0	a C (2)	a D (7.5)	Unit weight: 27.25 Kn/m ³	64.20 X) -64.	.60 m			
10	10	65.10	65.70	0.60		0.47 (78)	0.16 (27)	0.0 (0)	BST 5 (4)	50	-	MW	-	-	-	3-H	b F (4)	a G (5)							

Table B.2 Continued.

										GEOTE	CHNIC	CAL BC	REHO	le lo	G /FIEL	D DAT	A (MET	U-2003)							
																			SK -6+180			Pag	e:	3/4	
					P	ARAME	TERS	FOR N	I-RMR	SYSTE	ΕM						PARAN	IETERS			TES	ST SA	MPI	ES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	COVE	RY			DISC	CONTIN	UITY			Q-SY	JR STEM			T/	AKEI	N FO	R	
																m									
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. %)	INTACT, m. %)	TOTAL CORE LENGTH FOR RQD (m. RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (o)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPI IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
10	11	65.70	66.30	0.60		0.60 (100)	0.57 (95)	0.11 (18)	W B	3 7	-	SW SW	0-R P-R	L H	0.9 0.9	0 0	a C (2)	a D (7.5)	SCHIST						
10	12	66.30	67.15	0.85		0.55 (65)	0.0 (0)	0.0 (0)	BST 6 (2)	500	-	нw	-	-	-	0.9-H	c N (5)	a G (5)	66.30 -67.15 m soft - weak zone						
10	13	67.15	68.25	1.10		1.10	1.04	0.31	W	2	-	SW	0-R	L	0.9	0	a C	a D							
						(100)	(95)	(28)	J	2		MW	0-R	L	0	3-H	(2)	(7.5)							
									В	18		SW	P-SR	Н	0.9	0									
10	14	68.25	70.70	2.45		1.86	0.13	0.0	BST	50	-	MW	-	-	-	0	a C	a G							
						(65)	(5)	(0)	7								(2)	(5)							
10	15	70 70	73 55	2.85		2.78	2.61	1 21	(4) W	3		N/NA/	0-R		3	0				-				—	
11	15	, 0.70	, 0.00	2.05		(98)	(92)	(47)	.1	1	_	MW	0-R		0	0.9-Н	(2)	(7.5)	4						
						(00)	(0=)		B	11		MW	P-S	H	0.9	0	(-)	()							
11	16	73.55	74.00	0.45		0.21	0.0	0.0	BST	50	-	MW	-	-	-	0	a C	a G		73.50) - 74	.00 m			
						(47)	(0)	(0)	8								(2)	(5)		ΧХ					
									(3)						1					1				,	, !

Table B.2 Continued.

										GEOTE	CHNIC	CAL BO	DREHO	LE LO	G /FIEI	_D DAT	A (MET	U-2003)							
																			SK -6+180			Pag	e:	4/4	
					Р	ARAMI	ETERS	FOR M	1-RMR	SYSTE	M						PARAN	IETERS			TES	ST SA	AMPI	LES	
S	TRUCT	URAL	DOMA	IN		CC	ORE RI	ECOVE	RY			DISC	CONTIN	IUITY			0-54	JR STFM			T	AKE	N FO	۱R	
							1															1			
3OX #	STRUCTURAL DOMAIN NUMBER	:ROM (m)	(ш) O.	.ENGTH (m)	ORE DIAMETER (mm.)	OTAL, m. 6)	NTACT, m. 6)	OTAL CORE LENGTH FOR RQD (m. QD %	YPE (J /B / W)	OF DISCONTINUITIES	VNGLE (0)	VEATHERING CONDITION	IOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) F NO FILLING EXISTS)	ILLING THICKNESS (mm.) and TYPE EXIST)	IOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	JCS TEST	OINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	(-RAY	PETROGRAPHIC ANALYSES
11	17		74.65	0.65	-	0.60	0.60	0.20	W	6	-	MW	0-VR	H	0.9	- <u>-</u>	a C	a D	SCHIST	-	-	-			\vdash
						(92)	(92)	(31)	J	1		MW	P-S	L	0.9	0	(2)	(7.5)							
									В	6		MW	P-S	Н	0.9	0									
11	18	74.65	75.10	0.45		0.24	0.03	0.0	BST	50	-	MW	-	-	-	0	a C	a D	47 % core loss			74.95	- 75.	.10 m	1
						(53)	(7)	(0)	(3)								(2)	(7.5)				^			
11	19	75.10	79.80	4.70		3.92	2.78	0.36	BST	50	-	MW	-	-	-	0	a C	a A						\vdash	
12						(83)	(59)	(8)	10								(2)	(10)							
									(4)																
12	20	79.80	82.60	2.80		1.68	0.38	0.16	BST	50	-	НW	-	-	-	0.9-H	b F	a D	40 % core loss						
						(60)	(14)	(6)	11								(4)	(7.5)							
12	21	82.60	85.0	2 40		2.28	2 13	1.39	(3) W	3		MM/	0-VR		0.9	0	aC	aG		+	<u> </u>	-		┝──┦	\vdash
		02.00		2.40		(95)	(89)	(58)	J	2		MW	P-R	L	0.9	0	(2)	(5)	1						
							l` í		В	16		MW	P-R	н	0.9	0									

Table B.2 Continued.

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	J-2003)							
PROJE	CT			:	DIM T	UNNEL	. PROJ	ECT				DEPT	H				: 63.) m	RE - LOGGING DATE			Page	e:	1/2	
LOCA1 BOREI	ION HOLE	NO		:	ALAN SK -6	YA - G +280	AZİPAŞ	SA RC	DAD			NORTI EASTI	HING NG				: 404 : 417	5228.4 065.3	START END	:	18.0 18.0)7.200)7.200)3)3		
TYPE (CORE	OF MA BARR			:	D -900 Doubl) Crel e Tube	lious					ELEV/ B.H. D	ATION RILLIN	g dat	E / ST	ART	: 73.0 : 16.0	0 m 08.2002	RE - LOGGED BY	:	SON	NGÜL	COS	AR	
CIRCU	LATIO	N FLUI	J	•	water							END					. 19.	J8.2002	CHECKED BY	-	501	NGUL	τυş		
					P.	ARAMI	ETERS	FOR M	1-RMR	SYSTE	M						PARAM	DR			TES	ST SA	MPL	ES	
S	FRUCT	URAL	DOMA	IN		CC	ORE RE	COVE	RY			DISC	CONTIN	IUITY			Q-SY	STEM			T,	AKEN	I FO	7	
BOX#	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (o)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
4	1	26.70	31.45	4.75		3.26 (77)	0.97 (20)	0.25 (5)	BST 1 (3)	50	-	MW	-	-	-	0.9-H	b F (4)	a D (7.5)	SCHIST ; gray, foliated, friable to moderately hard, very weak to mod. weak lightly weathered surface staining						
4	2	31.45	31.95	0.50		0.50	0.48	0.26	B	7	-	SW	P-R	н	0.9	-	a C	a D	incan, i.g. hy would be indee stanning.					\neg	
						(100)	(30)	(32)									(2)	(7.5)							
4	3	31.95	32.50	0.55		0.24 (44)	0.22 (4)	0.00 (0)	BST 2 (3)	50	-	MW	-	-	-	-	a C (2)	a G (5)	% 56 core loss						
4	4	32.50	34.25	1.75		1.25	1.10	0.30	W	2	-	MW	0-R	L	0.9	0	a C	a D			33.0	0 -33	50 m	\neg	
						(71)	(63)	(17)	J	1		MW	P-SR	М	0	3-H	(2)	(7.5)			х				
									В	17		MW	P-R	Н	09	0				1					

Table B.3 Geotechnical borehole log for SK-6+280 drilling

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEI	D DAT	A (MET	U-2003)							
																			SK -6+280			Pag	e:	2/2	
					P	ARAME	ETERS	FOR M	1-RMR	SYSTE	Μ						PARAN	IETERS			TES	ST SA	AMPL	ES	
S	TRUCI	TURAL	DOMA	IN		CC	ORE RE	ECOVE	RY			DISC		IUITY			0-SY	JR STEM			T	AKEI	N FO	R	
							1										a or								
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
4	5	34.25	36.80	2.55		1.91	0.64	0.18	BST	50	-	MW	-	-	-	-	a C	a G	SCHIST						
5						(75)	(25)	(7)	3								(2)	(5)							
									(4)																
5	6	36.80	37.80	1.00		0.82	0.48	0.21	W	1	-	HW	0-R	L	0.9	0	a C	a D							
						(82)	(48)	(21)	J	2		MW	P-SR	M	0	3-H	(2)	(7.5)							
-	-	07.00	40.50	4 70		0.41	1.00	0.10	В	9		IVIVV	P-R	н	0.9	0				—					
э		37.80	42.50	4.70		3.41	1.63	0.16	821	500	-	IVIVV	-	-	-	-		a D							
						(73)	(35)	(3)	4								(2)	(7.5)							
5	•	42.50	62.00	20 F		12.44	2.02	0.20	(4) DOT	500		N/NA/					hE			—	50 F	0.50	70 m	_	
6	°	42.50	03.00	20.5		(61)	(14)	(2)	5	500	-	IVIVV	·	-	-	-	(4)	(10)	•		50.5 X	0-30.	7011		
7						(01)	(,,,)	(~)	(3)								(.,	()							

Table B.3 Continued.

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	J-2003)							
																						Page	e:	1/6	
PROJI LOCA BORE TYPE CORE CIRCL	ECT TION HOLE OF MA BARR ILATIO	NO ACHINE EL N FLUI	E D	:	DIM T ALAN SK - 6 D - 90 Doubl Water	UNNEL YA - G 6+400 0 Crell e Tube	AZIPAS	ECT ŞA RO	AD			DEPTI NORTI EASTI ELEV/ B.H. D END	H HING NG ATION PRILLIN	G DA1	TE / STA	ART	: 76. : 404 : 417 : 88. : 19. : 23.	0 m 5308.3 027.2 0 m 08.2002 08.2002	RE - LOGGING DATE START END RE - LOGGED BY CHECKED BY	:	18.0 18.0 SON)7.20()7.20()GÜL	03 03 - CO - CO	ŞAR ŞAR	1
					Р	ARAME	ETERS	FOR M	1-RMR	SYSTE	M						PARAN	ETERS			TES	ST SA	MPL	ES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	ECOVE	RY			DISC	ONTIN	UITY			Q-SY	STEM			T	AKEI	N FO	R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
6	1	41.50	42.05	0.55		0.53	0.52	0.52	В	4	-	SW	P-SR	Н	0	3-H	a C	a G	SCHIST : gray, foliated, friable to mod.		41.40) - 41	.50m X		
						(30)	(55)	(00)									(=)	(0)					^		
6	2	42.05	43.10	1.05		0.88 (84)	0.21 (20)	0.00 (0)	BST 1 (3)	50	-	MW	-	-	-	-	a C (2)	a G (5)							
6	3	43.10	43.50	0.40		0.40 (100)	0.33 (83)	0.25 (63)	W B	1 3	-	MW MW	0-R P-S	L H	0 0	0.9 0.9	a C (2)	a D (7.5)							
6	4	43.50	44.00	0.50		0.38 (76)	0.00 (0)	0.00 (0)	BST 2 (2)	500	-	HW	-	-	-	-	c N (5)	a G (5)							

Table B.4 Geotechnical borehole log for SK-6+400 drilling

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEI	_D DAT	A (MET	U-2003)							
																			SK -6+400			Pag	e:	2/6	
					Р	ARAME	ETERS	FOR M	1-RMR	SYSTE	M						PARAN	IETERS			TES	ST SA	AMPI	ES	
S	TRUCT	URAL	DOMA	IN		CC	ORE RE	ECOVE	RY			DISC	CONTIN	IUITY			Q-SY	STEM			Т	AKE	N FO	R	
30X #	STRUCTURAL DOMAIN NUMBER	-ROM (m)	(m)	ENGTH (m)	ORE DIAMETER (mm.)	roTAL, m. %)	NTACT, m. %	TOTAL CORE LENGTH FOR RQD (m.) QD %	rype (J /B / W)	# OF DISCONTINUITIES	ANGLE (o)	VEATHERING CONDITION	IOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) F NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	JCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	<-RAY	PETROGRAPHIC ANALYSES
6	5	44.00	44.30	0.30		0.27 (90)	0.24 (80)	0.15 (50)	J B	1 5	-	MW MW	P-R P-SR	L H	0.9	0	a C (2)	a D (7.5)	SCHIST; gray, foliated, friable to moderately hard, very weak to weak, moderately weathered.						_
6	6	44.30	44.90	0.60		0.36 (60)	0.06 (10)	0.00 (0)	BST 3 (2)	500	-	нw	-	-	-	-	c N (5)	a G (5)	-						
6	7	44.90	46.80	1.90		1.87 (98)	1.80 (95)	0.50 (26)	W J B	1 2 28	-	MW MW MW	P-R P-R P-SR	L M H	0.9 0 0.9	0 0.9 0	a C (2)	a D (7.5)	Unit weight: 27.03 Kn/m ³ (45.00 -45.50m)	x	45.0 X	0 -45	.50m		
6 7	8	46.80	47.40	0.60		0.59 (98)	0.00 (0)	0.00 (0)	BST 4 (2)	500	-	HW	-	-	-	3-H	b F (4)	a G (5)							
7	9	47.40	47.90	0.50		0.47 (94)	0.47 (94)	0.19 (38)	В	6	-	SW	P-SR	Н	0.9	0	a A (0.75)	a D (7.5)			47	7.50 -	47.75 X	5 m	
7	10	47.90	48.95	1.05		0.90 (86)	0.06 (6)	0.00 (0)	BST 5 (3)	50	-	нw	-	-	-	-	a C (2)	a G (5)							

Table B.4 Continued.

										GEOTE	ECHNIC	CAL BO	REHO	LE LO	G /FIEI	_D DA1	ΓΑ (MET	U-2003)							
																			SK -6+400			Pag	e:	3/6	
					P	ARAME	ETERS	FOR N	/I-RMR	SYSTE	EM						PARAN	/ETERS			TES	ST SA		ES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	ECOVE	RY			DISC	CONTIN	IUITY			Q-SY	STEM			Т	AKE	N FC	R	
30X #	STRUCTURAL DOMAIN NUMBER	ROM (m)	(m) O.	ENGTH (m)	ORE DIAMETER (mm.)	OTAL, m. 6)	VTACT, m. 6)	OTAL CORE LENGTH FOR RQD (m.) QD %	YPE (J /B / W)	OF DISCONTINUITIES	(NGLE (o)	VEATHERING CONDITION	OINT ROUGHNESS /CONDITION	PERSISTENCY	RERTURE THICKNESS (mm.) F NO FILLING EXISTS)	ILLING THICKNESS (mm.) and TYPE F EXIST)	OINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	JCS TEST	OINT LOAD TEST	SLOCK PUNCH TEST	SLAKE DURABILITY TEST	(-RAY	PETROGRAPHIC ANALYSES
7	11	48.95	49.80	0.85		0.83 (98)	0.66 (78)	0.54 (64)	W B	2 5	-	MW SW	0-R P-SR	L H	0.9 0.9	0 0	a A (0.75)	a D (7.5)	SCHIST	<u> </u>					_
7	12	49 80	50 50	0.70		0.70	0.03	0.00	BST	500		нw	-	-	-	-		a D		-					
	12	40.00	50.50	0.70		(100)	(4)	(0)	6 (2)	500							(5)	(7.5)							
7	13	50.50	52.40	1.90		1.60 (84)	0.36 (19)	0.14 (7)	BST 7 (3)	50	-	HW	-	-	-	-	a C (2)	a A (10)							
7 8	14	52.40	54.20	1.80		1.80 (100)	0.64 (36)	0.26 (14)	BST 8 (4)	50	-	MW	-	-	-	-	a C (2)	a A (10)							
8	15	54.20	55.90	1.70		1.47 (86)	0.13 (8)	0.00 (0)	BST 9 (3)	50	-	MW	-	-	-	-	a C (2)	a D (7.5)							
8	16	55.90	57.40	1.50		1.46	1.28	0.30	W	7	-	MW	0-R	L	0.9	0	a C	a D		1	56.0	0 - 5	6.50 r	n	
						(97)	(85)	(20)	J B	1 19		MW	P-SR P-SR	М	0 0.9	3-H 0	(2)	(7.5)			×				

Table B.4 Continued.

г

										GEOTE	CHNIC	CAL BO	DREHO	LE LO	G /FIEI	_D DAT	A (MET	U-2003)							
																			SK -6+400			Pag	e:	4/6	
s	TRUCT	TURAL	DOMA	IN	P	ARAME	eters Dre re	FOR M	I-RMR RY	SYSTE	M	DISC		IUITY			PARAN FC Q-SY	IETERS OR STEM			TES T.	ST SA AKEI	AMPL N FO	.ES R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR ROD (m.) ROD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
8 9	17	57.40	61.40	4.00		3.22 (81)	0.84 (21)	0.10 (3)	BST 10 (3)	50	-	MW	-	-	-	-	a C (2)	a G (5)	SCHIST						
9	18	61.40	62.40	1.00		0.96 (96)	0.88 (88)	0.20 (20)	W B	2 10	-	MW MW	0-R P-SR	L H	0.9 0	0 6-H	a C (2)	a D (7.5)							
9	19	62.40	63.90	1.50		1.16 (77)	0.42 (28)	0.00 (0)	BST 11 (3)	50	-	MW	-	-	-	-	a C (2)	a G (5)							
9	20	63.90	64.50	0.60		0.60 (100)	0.51 (85)	0.20 (33)	W JA JB B	4 1 1 3	-	MW MW HW MW	0-R 0-SR P-SR P-SR	L L H	0 0.9 0.9 0	0.9-H 0 0 0.9-H	a C (2)	a D (7.5)		x	64.1	0 - 64	1.30 r	1	
9	21	64.50	64.80	0.30		0.30 (100)	0.00 (0)	0.00 (0)	BST 12 (2)	500	-	HW	-	-	-	-	(5)	a G (5)							
9	22	64.80	65.40	0.60		0.60 (100)	0.25 (42)	0.00 (0)	W J B	2 1 11	-	MW MW MW	0-R P-SR P-SR	L M H	0 0 0	3-H 3-H 0.9-H	a C (2)	a D (7.5)							

Table B.4 Continued.

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	U-2003)							
																			SK -6+400			Pag	ə:	5/6	
					P	ARAME	TERS	FOR M	1-RMR	SYSTE	M						PARAN	ETERS			TES	STSA	١MPI	ES	
S	TRUCT	URAL	DOMA	IN		CC	RE RE	COVE	RY			DISC	CONTIN	UITY			O-SY	JR STEM			T.	AKEI	N FO	R	
																			4						
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. %)	INTACT, m. %)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
9	23	65.40	65.90	0.50		0.48	0.00	0.00	BST	500	-	HW	-	-	-	-	c N	a D	SCHIST						
						(96)	(0)	(0)	13 (2)								(5)	(7.5)							
9	24	65.90	67.65	1.75		1.70	0.58	0.00	BST	50	-	MW	-	-	-	3-H	b F	a A							
10						(97)	(25)	(0)	14								(4)	(10)	1						
10	05	07.05	00.00	1.05		1.00	0.10	0.00	(4)	500		1.1547								_			⊢		
10	25	67.65	69.00	1.35		1.03	(13)	0.00	15 15	500	-	HW	-	-	-	-	C N (5)	a A (0)	4				1		
						(, 0)	()	(0)	(2)								(-)	(-)					1		
11	26	69.00	72.80	3.80		3.76	1.10	0.00	BST	50	-	MW	-	-	-	3-H	b F	a D							
						(99)	(25)	(0)	16								(4)	(7.5)							
11	27	72.80	73 10	0.30		0.30	0.30	0.00	(4) W	1	-	N/\\/	0-B	1	0	3.H	alC	a D					<u> </u>		
	21	, 2.00	/ 0.10	0.50		(100)	(100)	(0)	B	4	_	MW	P-SR	н	0	3-H	(2)	(7.5)	1						
						È																			
11	28	73.10	73.50	0.40		0.40	0.00	0.00	BST	50	-	MW	-	-	-	3-H	b F	a G							
						(100)	(0)	(0)	17								(4)	(5)							
						1			(3)						1	I					1		.		.

Т

Table B.4 Continued.

										GEOTE	ECHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	U-2003)							
																			SK -6+400			Pag	ə:	6/6	
					Р	ARAM	ETERS	FOR N	1-RMR	SYSTE	ΕM						PARAN	/ETERS			TES	ST SA	MPL	ES	
S	STRUCT	TURAL	DOMA	IN		CC	ORE RI	ECOVE	RY			DISC	CONTIN	IUITY			O-SY	OR /STEM			Т	AKEI	N FO	R	
			1				1											1	-		T				
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
11	29	73.50	75.00	1.50		1.50	1.38	0.58	W	4	-	MW	0-R	L	0.9	0	a C	a D	SCHIST						
						(100)	(92)	(39)	J	2		MW	0-SR	L	0	0.9-H	(2)	(7.5)]						
									В	14		MW	P-S	Н	0	0.9-H				\perp					
11	30	75.00	75.25	0.25		0.25	0.00	0.00	BST	50	-	MW	-	-	-	-	a C	a G	4						
						(100)	(0)	(0)	(3)								(2)	(5)							
11	31	75.25	76.00	0.75		0.75	0.68	0.20	W	2	-	MW	0-R	L	0	3-H	a C	a G				1			
						(100)	(91)	(27)	J	2		MW	P-SR	L	0	3-H	(2)	(5)							
									В	12		MW	0-SR	н	0.9	0									

Table B.4 Continued.

									(GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	J-2003)							
																						Page	ə:	1/5	
PROJI LOCA BORE TYPE CORE CIRCL	ECT TON HOLE OF MA BARR LATIOI	NO ACHINE EL N FLUI	D	:	DIM T ALAN SK-6+ D-900 Doubl Water	UNNEL YA-GA -570 Crelli e Tube	. PROJ ZiPAŞ <i>i</i> ous	ECT A ROAI	D			DEPTI NORT EASTI ELEV B.H. D END	H HING ING ATION DRILLIN	g dat	E / ST	ART	: 80.0 : 404 : 417 : 95.0 : 29.0 : 02.0	0 m 5308.3 027.2 50m 08.2002 09.2002	LOGGING DATE START END RE- LOGGED BY RE- CHECKED BY	: : : :	19.0 19.0 SON SON)7.20()7.20(NGÜL NGÜL)3)3 . COŞ . COŞ	}AR }AR	
	TDUCT				P.				1-RMR	SYSTE	M						PARAM FC	ETERS DR			TES T			.ES R	
3	IRUCI	URAL	DOMA						ι Η Υ			DISC		UITY	1	1	Q-SY	STEM					<u> </u>	<u> </u>	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
6	1	46.80	47.50	0.70		0.49 (70)	0.18 (26)	0.00 (0)	BST 1 (4)	50	-	MW	-	-	-	3-H	b F (4)	a D (7.5)	SCHIST						
6	2	47.50	48.00	0.50		0.50 (100)	0.50 (100)	0.47 (94)	W B	1	-	SW SW	0-VR 0-SR	L H	0.9 0.9	0	a C (2)	a D (7.5)			47.5 x	0-48.	00m		
6	3	48.00	48.80	0.80		0.62 (78)	0.24 (30)	0.00 (0)	BST 2 (4)	50	-	MW	-	-	-	0	a C (2)	a G (5)							
6	4	48.80	49.15	0.35		0.35 (100)	0.35 (100)	0.12 (34)	J B	1 4	-	MW SW	0-R 0-SR	L H	0 0.9	3-H 0	a C (2)	a D (7.5)							

Table B.5 Geotechnical borehole log for SK-6+570 drilling

										GEOIE	CHNIC	CAL BC	REHO	LE LO	G /FIEL	D DA I	A (MEI)	U-2003)							
																			SK-6+570			Page	ə:	2/5	
					P	ARAME	TERS	FOR M	1-RMR	SYSTE	ΕM						PARAM	IETERS			TES	ST SA	۱۹M	LES	
S	TRUCT	URAL	DOMA	IN		CC)re re	ECOVE	RY			DISC	CONTIN	UITY			Q-SY	STEM			T/	AKEN	۱FO	R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	түре (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
6	5	49.15	50.00	0.85		0.57 (67)	0.28 (33)	0.10 (12)	BST 3 (4)	50	-	MW	-	-	-	0	a C (2)	a G (5)	SCHIST						
6	6	50.00	50.70	0.70		0.66 (94)	0.64 (91)	0.22 (31)	WB	1 8	-	MW SW	0-R 0-SR	L H	0.9 0	0 3-H	a C (2)	a D (7.5)	-						
6	7	50.70	52.90	2.20		1.71 (78)	0.42 19)	0.10 (5)	BST 4 (4)	50	-	MW	-	-	-	0	a C (2)	a G (5)			51.3	0-51.4	45m X		
6	8	52.90	54.35	1.45		1.35	1.35	0.82	w	1	-	MW	0-VR	L	0.9	0	a C	a D							
7						(93)	(93)	(57)	J	3		MW	0-SR	L	0.9	0	(2)	(7.5)			I				
									В	13		MW	0-SR	Н	0	3-H				\perp					
7	9	54.35	55.10	0.75		0.38 (51)	0.06 (8)	0.00 (0)	BST 5 (2)	500	-	HW	-	-	-	0	c N (5)	a G (5)	schistosity planes partially with filling partially with only aperture						
7	10	55.10	58.10	3.00		2.88	2.44	0.56	Ŵ	7	-	MW	0-VR	L	0.9	0	a C	a D	Unit weight: 27.62 Kn/m ²	1	55.5	0-56.	.00 m		
						(96)	(81)	(19)	J	3		MW	0-R	L	0	3-H	(2)	(7.5)	1 -	x	X				
									в	35		MW	0-R	н	0	3-H					'				

Table B.5 Continued.

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEI	D DAT	A (MET	U-2003)							
																			SK-6+570			Page	e:	3/5	
					P	ARAME	ETERS	FOR M	1-RMR	SYSTE	M						PARAN	METERS			TES	ST SA	MPL	ES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	ECOVE	RY			DISC	CONTIN	IUITY			Q-SY	OR STEM			T.	AKEN	N FO	R	
#XOX #	STRUCTURAL DOMAIN NUMBER	ROM (m)	O (m)	ENGTH (m)	ORE DIAMETER (mm.)	OTAL, m. 6)	VTACT, m. 6)	OTAL CORE LENGTH FOR RQD (m.) QD %	YPE (J /B / W)	OF DISCONTINUITIES	(NGLE (O)	VEATHERING CONDITION	OINT ROUGHNESS /CONDITION	PERSISTENCY	RERTURE THICKNESS (mm.) = NO FILLING EXISTS)	ILLING THICKNESS (mm.) and TYPE EXIST)	OINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	ICS TEST	OINT LOAD TEST	ILOCK PUNCH TEST	SLAKE DURABILITY TEST	(-RAY	PETROGRAPHIC ANALYSES
ш - 7	0	LL 50.10	H 00		0	100	= <u></u>			#	4	>		а.	₹ E	шЩ		00	COULCT	_	а.	ш	0)	<u>~</u>	ш
	11	58.10	60.20	2.10		1.69	(10)	0.00	BSI	50	-	HW	-	-	-	0	a C	a G	SCHIST						
						(80)	(12)	(0)	(3)								(2)	(3)							
7	12	60.20	61.50	1.30		1.28	1.20	1.00	J	1	-	MW	0-SR	L	0	3-H	a C	a D			60.9	0-61.	20m		
8						(98)	(92)	(77)	В	8		SW	P-SR	н	0.9	0	(2)	(7.5)			х				
8	13	61.50	64.50	3.00		2.00	0.61	0.22	BST	50	-	MW	-	-	-	0	a C	a G							
						(67)	(20)	(7)	7								(2)	(5)							
0	14	C4 50	CE 00	0.70		0.04	0.00	0.00	(4)	0		N // A/			0.0	0				_					
0	14	64.50	65.20	0.70		(01)	(96)	(0)	vv	2 1	-				0.9		a (2)	a D							
						(31)	(00)	(0)	в	8		SW	0-SB	н	0.9	0.5-11	(=)	(7.0)							
8	15	65.20	66.70	1.50		1.02	0.06	0.00	BST	50	-	MW	-	-	-	0	a C	a G							
						(68)	(4)	(0)	8								(2)	(5)							
									(4)																
8	16	66.70	67.00	0.30		0.30	0.25	0.11	w	1	-	MW	0-VR	L	0.9	0	a C	a D					Ţ	Ţ	
						(100)	(83)	(37)	В	5		MW	0-SR	н	0.9	0	(2)	(7.5)							

Table B.5 Continued.

Г

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	U-2003)							
																			SK-6+570			Pag	e:	4/5	
					P	ARAME	TERS	FOR N	I-RMR	SYSTE	M						PARAN	IETERS			TES	STSA	MPL	ES	
S	TRUCT	URAL	DOMAI	N		CC	RE RE	COVE	RY			DISC	CONTIN	IUITY			Q-SY	JR STEM			T,	AKEI	N FO	R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. %)	INTACT, m. %)	TOTAL CORE LENGTH FOR ROD (m.) ROD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
8	17	67.00	68.10	1.10		0.62 (56)	0.10 (9)	0.00 (0)	BST 9 (3)	50	-	HW	-	-	-	0	a C (2)	a G (5)	SCHIST						
8	18	68.10	68.70	0.60		0.55	0.45	0.17	W	3	-	MW	0-R	L	0.9	0	a C	a A							
						(92)	(75)	(28)	В	5		MW	P-SR	н	0.9	0	(2)	(0.75)							
8	19	68.70	69.10	0.40		0.21	0.05	0.00	BST	50	-	нw	-	-	-	0	a C	a G							
						(53)	(13)	(0)	10								(2)	(5)							
9	20	69 10	74 10	5.00		3.96	2.98	0.97	(3) W	11	-	нw	0-VB	1	0	0.9-H	aC	aD			70 7	0-71	00m	-+	
Ũ	20	00.10		0.00		(79)	(60)	(19)	J	4		MW	P-SR	L	0	3-H	(2)	(7.5)	-		x		X		
						, í	. ,	. ,	в	38		MW	P-SR	н	0	3-H						73.0	ا 0-73.	10m	
9	21	74.10	75.60	1.50		0.63	0.20	0.00	BST	500	-	нw	-	-	-	0	c N	a D	58 % core lass						
						(42)	(13)	(0)	11								(5)	(7.5)							
									(2)																ł

Table B.5 Continued.

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEI	D DAT	A (MET	U-2003)								
																			SK-6+57	0			Page):	5/5	
					P	ARAME	ETERS	FOR M	1-RMR	SYSTE	M						PARAN	ETERS				TES	ST SA	MPL	ES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	ECOVE	RY			DISC	CONTIN	IUITY			Q-SY	STEM				T.	AKEN	I FO	R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. %)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (FEXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHI DESCRIPTIONS AND NO	IICAL ES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
9	22	75.60	76.20	0.60	-	0.42	0.18	0.00	BST	50	-	MW	-	-	-	0	a C	a D	RECRISTALIZED LIMESTONE		_					
						(84)	(36)	(0)	12								(2)	(7.5)								
									(4)																	
9	23	76.20	76.70	0.50		0.43	0.43	0.16	J	1	-	SW	P-SR	L	0.9	0	a B	a D								
						(86)	(86)	(32)	В	7		SW	P-SR	м	0.9	0	(1)	(7.5)								
	04	70 70	00.00	0.00		1.00	0.70	0.01	DOT	50		N/0A/				0							\vdash			
10	24	/0./0	80.00	3.30		(58)	(23)	(9)	13	50	-	IVIVV	-	-	-	0	(2)	a D (7.5)	•							
10						(30)	(_0)	(3)	(3)								(_)	(1.10)								

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	U-2003)							
																						Pag	ə:	1/2	
PROJE LOCA BORE TYPE CORE CIRCL	ECT TION HOLE OF MA BARR ILATIO	NO ACHINE EL N FLUI	D	:	DIM T ALAN SK -6 D-900 Doubl Water	UNNEL YA -GA +880 Crellic e Tube	. PROJ AZİPAŞ Dus	ECT A ROA	D			DEPTI NORT EASTI ELEV/ B.H. D END	h Hing Ing Ation Drillin	G DAT	E / ST/	ART	: 52. : 404 : 416 : 74. : 02. : 04.	0 m 15753.3 5779.1 0m 09.2002 09.2002	RE - LOGGING DATE START END RE - LOGGED BY CHECKED BY	: : : :	16.0 16.0 SON SON)7.20)7.20)GÜL)3)3 - CC - CC)ŞAR)ŞAR	1
						PARAM	IETERS	FOR M	-RMR S	SYSTEM	l						PARAN	IETERS	GEOLOGICAL / GEOTECHNICAL	TEO	TOM		е тл		EOD
u,	STRUC	TURAL	DOMAI	N		С	ORE RI	ECOVE	RY			DISC	CONTIN	IUITY			Q-SY	STEM	DESCRIPTIONS AND NOTES	TLS	134		JIA		On
1 BOX #	■ STRUCTURAL DOMAIN NUMBER	0.0 0.0	(m) OL 7.50	(m) TENGTH (m)	CORE DIAMETER (mm.)	1.70 (%)	0. INTACT, m. (%)	O TOTAL CORE LENGTH FOR ROD (m.) B ROD %	TYPE (J/B/W)	6 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	- ANGLE ()	E WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	 FILLING THICKNESS (mm.) and TYPE (IF EXIST) 	o JOINT ALTERATION NUMBER (Ja) エ	 B STRESS REDUCTION FACTOR (SRF) 	BLOCKY LIMESTONE	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X:RAY	PETROGRAPHIC ANAL YSES
						(23)	(2)	(0)	1								(8)	(10)	77 % core loss						
1	2	7.50	16.00	8.50		2.10 (25)	1.10 (13)	0.79 (9)	BST 2 (2)	500	-	HW	-	-	-	0	b H (8)	a A (10)	% 75 core loss						
1 2	3	16.00	33.50	17.50		5.18 (30)	0.16 (1)	0.10 (1)	BST 3 (2)	500	-	HW	-	-	-	0	b H (8)	a A (10)	70 % core loss	29.0	0-30. X	.00m			
2	4	33.50	48.00	14.50		3.62 (25)	2.30 (16)	1.21 (8)	BST 4 (2)	500	-	HW	-	-	-	0	c N (5)	a D (7.5)	Unit weight :22.21 KN/m ³ 75 % core loss	42.00 X) -43. X	.00 m	40.80 X	0-41.	20m

Table B.6 Geotechnical borehole log for SK-6+880 drilling

|--|

										GEOTE	ECHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	U-2003)							
																			SK-6+880			Page	e:	2/2	
					P	ARAME	ETERS	FOR N	I-RMR	SYSTE	ΕM						PARAM	IETERS			TES	ST SA	MPL	LES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	COVE	RY			DISC	CONTIN	IUITY			Q-SY	JR STEM			т	AKEN	N FO	R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
3	5	48.00	49.00	1.00		0.53	0.53	0.40	W	4	-	MW	0-R	L	3	0	a C	a G	BLOCKY LIMESTONE						
						(53)	(53)	(40)									(2)	(5)	47 % core loss						
3	6	49.00	52.00	3.00		2.40	1.74	0.45	W	29	-	нw	0-R	L	3	0	a C	a C							
						(80)	(58)	(15)	J	4		нw	P-SR	L	0.9	0	(2)	(2.5)							

GEOTECHNICAL BOREHO									LE LO	G /FIEL	D DAT	A (MET	U-2003)												
																						Page):	1/2	
PROJE LOCA BORE TYPE CORE CIRCL	ECT FION HOLE OF MA BARR LATIOI	NO \CHINE EL N FLUII	Ē	:	DIM T ALAN SK -7 D-900 Doubl Water	UNNEL YA-GA +130 Crellic e Tube	_ PROJ ZiPAŞ <i>i</i> Dus	ECT A ROA	D			DEPTI NORT EASTI ELEV/ B.H. [] END	H HING ING ATION DRILLIN	g dat	TE / STA	ART	: 45. : 404 : 416 : 72. : 05. : 17.	0 m 5981.9 692.6 00 m 09.2002 09.2002	RE- LOGGING DATE START END RE- LOGGED BY CHECKED BY	:	16.0 16.0 SON)7.200)7.200 NGÜL NGÜL)3)3 . COŞ . COŞ	}AR }AR	
					P	ARAME	ETERS	FOR M	1-RMR	SYSTE	M						PARAN	ETERS			TES	ST SA	MPL	ES	
S	TRUCT	URAL	DOMA	IN		CC	ORE RE	COVE	RY			DISC	CONTIN	UITY			Q-SY	STEM			T.	AKE	1 FOI	R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHINESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
3	1	15.30	21.10	5.80		5.72 (99)	5.72 (99)	5.48 (94)	JA JB	1 17	-	нw нw	P-R P-VR	L	0 3	0.9-5 0	a A (0.75)	a G (5.0)	CONGLOMERATE:grayish white, hard, strong to mod. strong, slightly to mod. weathered.						
3	2	21.10	21.30	0.20		0.16 (80)	0.16 (80)	0.00 (0)	BST 1 (4)	50	-	HW	-	-	-	-	b H (8)	a G (5.0)	SHALE						
4	3	21.30	23.38	2.08		2.08 (100)	2.08 (100)	1.93 (93)	J B	6 1	-	HW MW	P-R P-SR	L H	3 0.9	0	a A (0.75)	a G (5.0)	CONGLOMERATE unit weight:20.80 KN /m ³	22.4 X	5 -23	3.00 m 22.30	X) -22./	45m	
4	4	23.38	26.05	2.67		1.90 (71)	1.88 (70)	1.21 (45)	W J B	5 1 12	-	HW HW MW	0-R P-R P-SR	L M H	0.9 0.9 0.9	0 0 0	a A (0.75)	a E (5.0)	SHALE-SANDSTONE INTERCLATION. (decomposet - clay like)	24.0	0 -25 X	.00m			

Table B.7Geotechnical borehole log for SK-7+130 drilling

										GEOIE		JAL BO	JREHO	LE LO	G/FIEI	LD DA	IA (MEI	0-2003)							
																			SK-7+130			Pag	e:	2/2	
					P	ARAM	ETERS	FOR M	/I-RMR	SYSTE	ΞM						PARAM	ETERS			TES	ST S/	AMP	LES	
S	TRUCT	URAL	DOMA	IN		CC	ORE RF	ECOVE	RY			DISC		IUITY				OR STEM			Т	AKE	N FC	۶R	
		<u> </u>	<u> </u>	1			<u>т </u>	<u> </u>	[_]		1	1	T		T	r	0-31		4	<u> </u>	—	—	—	—	<u> </u>
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS / CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
4-5	5	26.05	29.60	3.55		3.18 (90)	3.16 (89)	3.02 (85)	W B	2 11	-	HW MW	0-R P-SR	L H	0.9 0.9	0 0	a A (0.75)	a G (5.0)	SHALE -SANDSTONE INT.			27.9	5-28 X	.20m	
5	6	29.60	31.00	1.40		1.03 (74)	0.78 (56)	0.00 (0)	BST 2 (4)	50	-	HW	-	-	-	-	b H (8.0)	a G (5.0)							
5	7	31.00	31.40	0.40		0.40 (100)	0.40 (100)	0.11 (28)	W B	2 4	-	HW MW	P-SR P-SR	L H	0.9 0.9	0 0	a E (4.0)	a G (50)							
5	8	31.40	35.00	3.60		3.13 (87)	2.96 (82)	2.17 (60)	W B	10 6	-	HW MW	0-R P-SR	L H	0.9 0.9	0. 0	a D (3.0)	a E (5.0)	SANDSTONE Unit weight:17.06 KN/m ³	32.0 X 34.6	i0-32 X X	.20m .90m	34.0 X	0-34.	.15m
6	9	35.00	41.00	6.00		5.96 (99)	5.82 (97)	4.68 (78)	W J B	15 1 8	-	MW MW MW	P-SR P-SR P-SR	L L H	0.9 0.9 0.9	0 0 0	a A (0.75)	a E (5.0)							
7	10	41.00	43.30	2.30		1.96 (85)	1.96 (85)	1.75 (76)	W B	2 10	-	MW MW	0-R P-SR	L H	0.9 0.9	0 0	a A (0.75)	a E (5.0)							
8	11	43.30	45.00	1.70		1.47 (86)	1.34 (79)	0.72 (42)	W B	7 7	-	HW MW	0-R P-SR	L H	0.9 0.9	0 0	a A (0.75)	a E (5.0)	SHALE - SANDSTONE INT.	T					

OF OTE OLIVIAL DODELLOLE LOO (FIELD DATA (METH 0000)

Table B.7 Continued.

									(GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	U-2003)							
																						Page	e:	1/5	
PROJE LOCAT BOREI TYPE CORE CIRCU	CT ION IOLE I DF MA BARR _ATIOI	NO ICHINE EL N FLUI	: D		DIM T ALAN SK-7+ D-900 Doubl Water	UNNEL YA-GA -250 Crelli e Tube	_ PROJ ZIPAŞ/ ous	ECT A ROAI	D			DEPTI NORTI EASTI ELEV/ B.H. D END	H HING NG ATION PRILLIN	g dat	E / ST/	٩RT	: 46. : 404 : 416 : 77. : 07. : 19.	0 m 46125.8 6686.1 0m 09.2002 09.2002	RE- LOGGING DATE START END RE- LOGGED BY CHECKED BY		17.0 17.0 SON)7.20()7.20()GÜL	03 03 . CO§ . CO§	ŞAR ŞAR	
					P	ARAME	ETERS	FOR M	1-RMR	SYSTE	М						PARAN	IETERS			TES	ST SA	MPL	.ES	
S	RUCT	URAL	DOMAI	IN		CC	ORE RE	COVE	RY			DISC	ONTIN	UITY			Q-SY	STEM			T.	AKEI	N FO	R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INFACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS / CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
1	1	0.00	6.00	6.00		0.98 (16)	0.00 (0)	0.00 (0)	BST1 (1)	500	-	D	-	-	-	-	b H (8)	a A (10)	SCHIST; decomposed 84 % core loss						
1	2	6.00	20.95	14.95		3.42 (23)	0.98 (7)	0.26 (2)	BST2 (2)	500	-	VHW	-	-	-	-	b H (8)	a D (7.5)	77 % core lass		15.0 X	0-15.	50 m		
1	3	20.95	21.40	0.45		0.44 (98)	0.39 (87)	0.12 (27)	J B	1 9	-	HW MW	P-R P-SR	M H	0 0.9	3-H 0	a C (2)	a D (7.5)	-						
1	4	21.40	25.32	3.92		0.98 (25)	0.37 (9)	0.10 (3)	BST3 (2)	500	-	нพ	-	-	-	-	c N (5)	a G (5)	75 %core lass						

Table B.8 Geotechnical borehole log for SK-7+250 drilling

										GEOTE		CAL BC	DREHO	LE LO	G /FIEL		TA (MET	U-2003)							
																			SK-7+250			Pag	e:	2/5	
					P	ARAMI	ETERS	FORM	/I-RMR	SYSTE	EM						PARAN	/IETERS			TES	ST S.	AMP	LES	
5	TRUCT	URAL	DOMA	IN		CC	ORE RE	ECOVE	RY			DISC	CONTIN	IUITY			Q-SY	/STEM			Т	AKE	N FC)R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. %)	INTACT, m. %)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS / CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE F EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
1 2	5	25.32	26.20	0.88		0.87 (99)	0.85 (97)	0.72 (82)	J B	1 7	-	MW MW	P-SR 0-SR	M H	0	3-H 0	a C (2)	a D (7.5)	SCHIST unit weight: 28.35 KN/m3	x	25.7	70-26	.20 m		
2	6	26.20	26.70	0.50		0.20 (40)	0.00 (0)	0.00 (0)	BST4 (2)	50	-	HW	-	-	-	-	c N (5)	a G (5)	60 % core loss						
2	7	26.70	26.95	0.25		0.25 (100)	0.25 (100)	0.13 (52)	В	3	-	SW	P-SR	Н	0.9	0	a A (0.75)	a D (7.5)							
2	8	26.95	27.25	0.30		0.26 (87)	0.00 (0)	0.00 (0)	BST 5 (3)	50	-	нw	-	-	-	3-H	b F (4)	a G (5)							
2	9	27.25	27.55	0.30		0.30 (100)	0.30 (100)	0.12 (40)	В	3	-	SW	P-SR	Н	0	3-H	b F (4.0)	a D (7.5)							
2	10	27.55	27.90	0.35		0.30 (86)	0.04 (13)	0.00 (0)	BST 6 (3)	50	-	HW	-	-	-	3-H	b F (4.0)	a G (5)							

Table B.8 Continued.

-

										GEOTE	CHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	U-2003)							
																			SK-7+250			Pag	e:	3/5	
					Р	ARAME	ETERS	FOR M	I-RMR	SYSTE	ΕM						PARAM	ETERS			TES	ST SA	AMPL	ES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	COVE	RY			DISC	CONTIN	UITY			Q-SY	OR STEM			T,	AKEI	N FO	R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	ТОТАL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RAD (m.) RAD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
2	11	27.90	28.40	0.50		0.48 (96)	0.48 (96)	0.15 (30)	W J B	1 1 4	-	MW MW SW	0-R 0-SR P-SB	L M H	0.9 0 0	0 0.9-H 3-H	a C (2)	a G (5)	SCHIST:Light-dark gray, foliated, low hardness-hard, mod. weak-weak slightly to mod. weathered.						
2	12	28.40	30.50	2.10		1.23 (59)	0.43 (21)	0.00 (0)	BST 7 (3)	50	-	MW	-	-	-	-	a C (2)	a G (5)	41 % core loss						
2	13	30.50	33.00	2.50		1.78 (71)	1.58 (63)	0.41 (16)	W J B	6 1 15	-	MW MW MW	D-S P-SR P-SR	L L H	0.9 0 0.9	0 3-H 0	a C (2)	a D (7.5)							
2	14	33.00	33.60	0.60		0.48 (80)	0.06 (10)	0.00 (0)	BST 8 (3)	50	-	MW	-	-	-	6-H	b F (4)	a G (5)							
3	15	33.60	34.25	0.65		0.42 (65)	0.22 (34)	0.14 (22)	W J B	2 1 1	-	MW MW MW	0-R P-SR P-SR	L M H	0.9 0 0.9	0 0.9-H 0	a C (2)	a G (5)							
3	16	34.25	36.00	1.75		1.69 (97)	1.63 (93)	1.19 (68)	W J B	2 1 12	-	MW MW MW	0-R P-SR P-SR	L M H	0.9 0.9 0.9	0 0 0	a B (1.0)	a E (5)		34.8	0-35. X	.20 m			

Table B.8 Continued.

E

										GEOTE	ECHNIC	CAL BC	REHO	LE LO	G /FIEL	D DAT	A (MET	U-2003)							
																			SK-7+250			Pag	e:	4/5	
					Р	ARAM	ETERS	FOR M	1-RMR	SYSTE	ΕM						PARAN	IETERS			TES	ST S/	AMP	LES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	ECOVE	RY			DISC	CONTIN	IUITY			Q-SY	STEM			Т	AKE	N FC)R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. %)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / GEOTECHNICAL DESCRIPTIONS AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
3	17	36.00	36.40	0.40		0.29 (73)	0.29 (73)	0.00 (0)	J B	1 10	-	MW MW	P-SR P-SR	M H	0 0.9	0.S-H 0	a C (2)	a D (75)	SCHIST						
3	18	36.40	37.50	1.10		0.55 (50)	0.08 (7)	0.00 (0)	BST 9 (2)	500	-	VHW	-	-	-	-	C N (5)	a G (5)	50 % core loss						
3	19	37.50	40.80	3.30		2.14 (65)	1.76 (53)	0.70 (21)	W J B	6 2 19	-	HW MW MW	0-R 0-R P-SR	L L H	0 0.9 0	3-H 0 3-H	a C (2)	a D (7.75)							
3	20	40.80	41.30	0.50		0.36 (72)	0.00 (0)	0.00 (0)	BST 10 (2)	500	-	HW	-	-	-	-	C N (5)	a G (5)							
3	21	41.30	41.80	0.50		0.46 (92)	0.46 (92)	0.19 (38)	В	4	-	MW	P-R	Н	0	3-H	a C (2)	a D (7.5)							
4	22	41.80	43.20	1.40		1.00 (71)	0.33 (24)	0.00 (0)	BST 11 (3)	50	-	MW	-	-	-	3-H	b F (4)	a G (5)							

Table B.8 Continued.

Г

										GEOTE	CHNIC	CAL BO	REHO	LE LO	G /FIEI	_D DAT	A (MET	U-2003)								
																				SK-7+250			Page	ə:	5/5	
					Р	ARAM	ETERS	FOR N	1-RMR	SYSTE	M						PARAM	IETERS				TES	ST SA	MPL	ES	
S	TRUCT	URAL	DOMA	IN		CC	DRE RE	COVE	RY			DISC	CONTIN	UITY			Q-SY	JR STEM				T.	AKEN	N FO	R	
BOX #	STRUCTURAL DOMAIN NUMBER	FROM (m)	TO (m)	LENGTH (m)	CORE DIAMETER (mm.)	TOTAL, m. (%)	INTACT, m. (%)	TOTAL CORE LENGTH FOR RQD (m.) RQD %	TYPE (J /B / W)	# OF DISCONTINUITIES	ANGLE (0)	WEATHERING CONDITION	JOINT ROUGHNESS /CONDITION	PERSISTENCY	APERTURE THICKNESS (mm.) (IF NO FILLING EXISTS)	FILLING THICKNESS (mm.) and TYPE (IF EXIST)	JOINT ALTERATION NUMBER (Ja)	STRESS REDUCTION FACTOR (SRF)	GEOLOGICAL / G DESCRIPTIONS	EOTECHNICAL AND NOTES	UCS TEST	POINT LOAD TEST	BLOCK PUNCH TEST	SLAKE DURABILITY TEST	X-RAY	PETROGRAPHIC ANALYSES
4	23	43.20	44.55	1.35		1.18	0.92	0.34	w	2	-	MW	0-R	L	0.9	0	a C	a D	SCHIST							
						(87)	(68)	(25)	J	3		MW	P-SR	M	0	6-H	(2)	(7.5)								
4	24	44.55	46.00	1.45		1 16	0.26	0.17	BST	50			0-5R	п	0	3-П	hlE				-	<u> </u>				
4	24	44.55	40.00	1.45		(80)	(25)	(12)	12	30	-	IVIVV	-	-			(4)	(7.5)								
						(30)	(_0)	()	(4)								(.)	(

Table B.8 Continued.

								INPUT	DATA	-FORM	I FOR F	ROCK MA	SS CL/	ASSIFIC	ATION ((METU-2	2004)								
																								Page	1/1
PROJI LOCA BORE	ect Tion Hole	NO	:	DIM TUNNE ALANYA -C SK -6+050	EL PRO BAZİPA	OJECT IŞA RO	DAD					NORTHI EASTIN ELEVAT	ng g Fion	:	404500 417106 21.0 m	2.5 .4		LOGGIN START LOGGE CHECK	IG DATE / END D BY ED BY		20.07 SON0 SON0	.2003 GÜL C GÜL C	OŞAR OŞAR		
BOX	етр	STRUC	CTURAL MAINS	ROCK	S ⁻ PAI	TRENG RAMETE	HT ERS	CORE	ERECC	VERY	(CTURE INSITY	WATER	RABILITY Id-2	r S	UITY SET E	ERING	JESS/	ENCY	URE	CKNESS PE	Q-:	SYSTE	MPAR	AMETE	RS
#	#	FROM		TYPE	UCS	PLT	BPI	RQD	ICR	TCR	E B	IND I	E DUI	0 # 0 SET	NITN	ATHE	UGH UGH	ISIST	PER	RT≊ STI					
		(m)	TO (m)		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GRO	SLAK	DISC	DISCO	ME	JON VIOL	PEI	ΑF	FILLIN	Jn	Jr	Ja	Jw	SRF
1	1	0.00	15.00	SCHIST	20	-	-	2	14	37	500	DRY	75	BST-2	-	нw	-	-	0	6-S	J	J	c K	A	a A

Table C.1 Input data forms for rock mass classification for SK-6+050

151

APPENDIX C

INPUT DATA FORMS FOR ROCK MASS CLASSIFICATION

								INPUT	DATA-	FORM	FOR RO	OCK MAS	SS CLAS	SSIFICA	tion (N	/IETU-20	04)								
																								Page:	: 1/3
PROJ LOCA BORE	ECT TION HOLE	NO	:	DIM TUNNEL ALANYA -GA SK -6+180				NORTHI EASTING ELEVAT	NG G 10N	:	404518 417082 94.0 m	81.9 2.2		LOGGII START LOGGE CHECK	NG DATE / END ED BY (ED BY	E : : :	19.07 SONG SONG	2003 GÜL C GÜL C	XOŞAF XOŞAF	२ २					
вох	STR	STRUC DOM	TURAL 1AINS		ST PAF	rrengi Ramete	HT ERS	CORE	E RECC	VERY	ACTURE ENSITY	WATER	RABILITY (Id-2)F FINUITY FS	JUITY SET DE	ERING	NESS / NDITION	TENCY	TURE	ICKNESS PE	Q-8	SYSTEI	MPAR	AMETE	RS
#	#	FROM	TO ()	ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	FR/ DI	IND	IE DU	CONT SEI	NITIN TYF	EATHI		RSIS ⁻	PER	RG TH ⊗ T					0.05
		(m)	10 (m)		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GRC C	SLAK	DIS	DISCO	WE	JOIN	ЪЕ	AF	FILLIN	Jn	Jr	Ja	Jw	SRF
		50.00	54.00	0011107				10			10		07			SW	0-R	L	0.9	0		I	a		a
8	1	50.00	51.00	SCHIST	-	2.5	-	42	92	98	16	WEI	97	3	-	SW HW	P-SR P-SR	н	0.9	3-н 0	E	F	C	в	G
8	2	51.00	54.70	SCHIST	25	-	-	0	12	84	50	WET	75	-	BST-4	MW	-	-	-	3-H	J	J	b F	в	a G
																SW	0-R	L	0.9	0			а		а
8	3	54.70	55.95	SCHIST	-	2.5	-	66	93	100	11	WET	99	3	-	SW HW	0-SR P-SR	L H	0 0.9	3-Н 0	E	E	С	В	D
8	4	55.95	56.70	SCHIST	10	-	-	0	0	72	50	WET	71	-	BST-3	нw	-	-	-	0.9-H	J	J	b F	В	a G
																SW	0-R	М	0.9	0			а		а
9	5	56.70	57.35	SCHIST	-	2.5	-	32	89	97	21	WET	96	3	-	sw sw	0-R P-SR	L H	0 0.9	0.9-H 0	С	E	С	В	D
9	6	57.35	58.35	SCHIST	10	-	-	0	0	59	500	WET	58	-	BST-2	нw	-	-	-	3-H	J	J	c N	в	a G
9	7	58.35	59.10	SCHIST	-	2.5	-	44	71	93	20	WET	92	2	-	MW MW	0-R 0-SR	L H	3 0.9	0 0	с	В	a C	в	a D

Table C.2 Input data forms for rock mass classification for SK-6+180 drilling

								INPUT	DATA-	FORM	FOR RC	OCK MAS	SS CLAS	SIFICA	tion (N	/IETU-20	04)								
																				SK -6+18	0			Page	: 2/3
BOX	STR	STRUC DOM	TURAL IAINS		ST PAF	rengi Ramete	HT ERS	CORE	E RECO	VERY	ACTURE ENSITY	WATER	IRABILITY < Id-2	JF TINUITY TS	JUITY SET ∍E	ERING	NESS / NDITION	TENCY	TURE	IICKNESS /PE	Q-9	SYSTEM	M PAR/	AMETE	RS
#	#	FROM	TO(m)	ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	FR		(e du INDE)	se [*]	ONTIN TYF	ЕАТН	DUGH JT CO	:RSIS:	PPER	ЧС 8 СТ 8	In	lr.		bw.	SDE
		(m)	10 (11)		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GRG	SLA	DIG	DISC	3	JOL NOL	PE	٩	FILLIN	011	01	Ja	000	
9	8	59.10	64.15	SCHIST	25	-	-	16	37	76	50	WET	75	-	BST-4	нพ	-	-	-	3-H	J	J	b F	В	a G
10	9	64.15	65.10	SCHIST	40	-	-	48	100	100	13	WET	99	1	-	SW	P-SR	н	0.9	0	В	F	a C	В	a D
10	10	65.10	65.70	SCHIST	25	-	-	0	27	78	50	WET	77	-	BST-4	MW	-	-	-	3-H	J	J	b F	В	a G
10	11	65.70	66.30	SCHIST	40	-	-	18	95	100	16	WET	99	2	-	SW SW	0-R P-R	L H	0.9 0.9	0 0	С	E	a C	в	a D
10	12	66.30	67.15	SCHIST	5	-	-	0	0	65	500	WET	64	-	BST-2	НW	-	-	-	0.9-H	J	J	c N	В	a G
10	13	67.15	68.25	SCHIST	40	-	-	28	95	100	20	WET	99	3	-	SW MW SW	0-R 0-R P-SR	L L H	0.9 0 0.9	0 3-H 0	С	F	a C	В	a D
10	14	68.25	70.70	SCHIST	10	-	-	0	5	65	50	WET	64	-	BST-4	MW	-	-	-	0	J	J	a C	в	a G
10 11	15	70.70	73.55	SCHIST	-	3	-	47	92	98	5	WET	97	3	-	MW MW MW	0-R 0-R P-S	L L H	3 0 0.9	0 0.9-H 0	С	F	a C	В	a D

Table C.2 Continued.

								INPUT	DATA-I	FORM	FOR RO	OCK MAS	SS CLAS	SIFICA	tion (N	/IETU-20	04)								
																				SK -6+18	0			Page	: 3/3
вох	STR	STRUCTURAL DOMAINS			ST PAF	rrengi Ramete	HT ERS	CORE	RECO	VERY	ACTURE ENSITY	WATER TION	RABILITY (Id-2	JF FINUITY FIS	JUITY SET PE	ERING	NESS / NDITION	TENCY	TURE	ICKNESS PE	Q-S	SYSTEI	M PAR.	AMETE	RS
#	#	FROM		ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	θΞ		E DU	SE N	AITNO BYT	EATH	UGH TCO	RSIS	PER	е Н Г					
		(m)	TO (m)		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GRO	SLAK	DISC	DISCO	ME	NIOL.	IBd	AF	FILLIN	Jn	Jr	Ja	Jw	SRF
11	16	73.55	74.00	SCHIST	10	-	-	0	0	47	50	WET	46	-	BST-3	MW	-	-	-	0	J	J	a C	в	a G
11	17	74.00	74.65	SCHIST	-	3	-	31	92	92	20	WET	91	3	-	MW MW MW	0-VR P-S P-S	тчт	0.9 0.9 0.9	0 0 0	С	Е	a C	В	a D
11	18	74.65	75.10	SCHIST	10	-	-	0	7	53	50	WET	52	-	BST-3	MW	-	-	-	0	J	J	a C	В	a D
11 12	19	75.10	79.80	SCHIST	25	-	-	8	59	83	50	WET	82	-	BST-4	MW	-	-	-	0	J	J	a C	В	a A
12	20	79.80	82.60	SCHIST	20	-	-	6	14	60	50	WET	59	-	BST-3	нw	-	-	-	0.9-H	J	J	b F	В	a D
12	21	82.60	85.0	SCHIST	-	3	-	58	89	95	8	WET	94	3	-	MW MW MW	0-VR P-R P-R	L L H	0.9 0.9 0.9	0 0 0	с	E	a C	В	a G

Table C.2 Continued.

г

								INPUT	DATA-	FURIM	FUR RU	JUK MAS	55 GLAS	SSIFICA	TION (N	VIETU-20	04)							Page.	· 1/1
PROJ LOCA BORE	IECT ATION EHOLE	NO	:	DIM TUNNEL ALANYA -GA SK -6+280	. PROJ Zipaş	ECT A ROA	٩D					NORTHI EASTIN ELEVAT	ng G 10n	:	404522 417065 73.00 r	28.4 5.3 n		LOGGII START LOGGE CHECK	NG DATE / END ED BY ED BY	E : : :	18.07 SON(SON(.2003 GÜL C GÜL C	;OŞAF ;OŞAF	1 age:	
BOX	STR	STRUC DOM	TURAL		ST PAF	rrengi Ramete	HT ERS	CORE	RECC	VERY	ACTURE ENSITY) WATER ITION	JRABILITY X Id-2	DF TINUITY TS	TINUITY TYPE	IERING	NESS /	TENCY	TURE	ING NESS YPE	Q-S	SYSTE	M PAR/	AMETE	RS
#	#	FROM (m)	TO (m)	ROCK TIPE	UCS (MPa)	PLT (MPa)	BPI (MPa)	RQD (%)	ICR (%)	TCR (%)	(#/m)	GROUNE COND	SLAKE DL	# (DISCON SE	DISCON SET 1	WEATH	ROUGH JOINT CC	PERSIS	APPEF	HILK 8 T	Jn	Jr	Ja	Jw	SRF
4	1	26.70	31.45	SCHIST	80	-	-	5	20	77	50	DRY	74	BST-4	-	MW	-	-	-	0.9-H	J	J	b F	А	a D
4	2	31.45	31.95	SCHIST	-	5	-	52	96	100	14	DRY	97	1	в	sw	P-R	н	0.9	-	В	E	a C	A	a D
4	3	31.95	32.50	SCHIST	75	-	-	0	4	44	50	DRY	42	BST-3	-	MW	-	-	-	0	J	J	b F	А	a G
4	4	32.50	34.25	SCHIST	-	5	-	17	63	71	11	DRY	68	3	W J B	MW MW MW	0-R P-SR P-R	L M H	0.9 0 9	0 3-H 0	с	E	a C	А	a D
4 5	5	34.25	36.80	SCHIST	80	-	-	7	25	75	50	DRY	72	BST-4	-	MW	-	-	-	0	J	J	b F	А	a G
5	6	36.80	37.80	SCHIST	-	5	-	21	48	82	12	DRY	79	3	W J B	HW MW MW	0-R P-SR P-R	L M H	0.9 0 0.9	0 3-H 0	D	E	a C	А	a D
5	7	37.80	42.50	SCHIST	80	-	-	3	35	73	50	DRY	70	BST-4	-	MW	-	-	-	0	J	J	b F	А	a D
5 6 7	8	42.50	63.00	SCHIST	-	4	-	2	14	61	50	DRY	59	BST-3	-	MW	-	-	-	0	J	J	b F	А	a A

Table C.3 Input data forms for rock mass classification for SK-6+280 drilling

								INP	UT DAT	A-FORM	MFOR R	OCK MAS	S CLAS	SIFICATIO	DN (ME	TU-2004)									
																							Page	:	1/4
PROJ LOCA BORE	ECT TION HOLE	NO	:	DIM TUNNEL ALANYA -GA SK -6+400	. PROJ AZİPAŞ	ECT A ROA	٨D					NORTHI EASTIN ELEVAT	NG G TON	:	404530 41702 88.0 m	08.3 7.2 1	RE- RE-	LOGGI START LOGGE CHECK	NG DATE / END ED BY (ED BY	E : :	20.07 SONC SONC	.2003 GÜL C GÜL C	OŞAF OŞAF	२ २	
BOX	STR	STRUC DOM	TURAL MAINS		S ⁻ PAI	TRENGI RAMETE	HT ERS	CORE	ERECC	VERY	ACTURE ENSITY	WATER TION	RABILITY (Id-2	F INUITY IS	IUITY SET E	ERING	VESS / VDITION	IENCY	TURE	ICKNESS 'PE	Q-S	SYSTE	MPAR	AMETE	RS
#	#	FROM	TO (m)	ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	Р. D	OUND	KE DU INDEX	#C SCONT SET	ONTIN TYF	ЛЕАТНІ	OUGHI NT COI	ERSIS ⁻	PPER	NG TH & TY	Jn	Jr	Ja	Jw	SRF
		(m)	,		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GR	SLA	Ĭ	DISC	5	ε IO	Г	4	FILLI			•	-	
6	1	41.50	42.05	SCHIST	-	3	-	95	95	96	7	DRY	99	1	в	SW	P-SR	н	0	3-H	в	F	a C	A	a G
6	2	42.05	43.10	SCHIST	20	-	-	0	20	84	50	DRY	83	BST-3	-	MW	-	-	-	0	J	J	a C	A	a G
6	3	43.10	43.50	SCHIST	-	3	-	63	83	100	10	DRY	99	2	W B	MW MW	0-R P-S	L H	0 0	0.9 0.9	С	F	a C	A	a D
6	4	43.50	44.00	SCHIST	10	-	-	0	0	76	500	DRY	75	BST-2	-	НW	-	-	-	0	J	J	c N	A	a G
6	5	44.00	44.30	SCHIST	-	3	-	50	80	90	20	DRY	90	2	J B	MW MW	P-R P-SR	L H	0.9 0.9	0 0	в	F	a C	А	a D
6	6	44.30	44.90	SCHIST	10	-	-	0	10	60	500	DRY	60	BST-2	-	нw	-	-	-	0	J	J	c N	А	a G
6	7	44.90	46.80	SCHIST	95	-	-	26	95	98	16	DRY	98	3	W J B	MW MW MW	P-R P-R P-R	L M H	0.9 0 0.9	0 0.9 0	С	F	a C	A	a D

Table C.4 Input data forms for rock mass classification for SK-6+400 drilling

							I	INPUT	DATA-I	FORM	FOR RC	OCK MAS	SS CLAS	SSIFICA	tion (N	/IETU-20	04)								
																				SK -6+40	0		Page:		2/4
BOX	STR	STRUC DOM	;TURAL 1AINS		ST PAF	'RENGH RAMETE	⊣T ΞRS	CORE	E RECO	VERY	ACTURE JENSITY	D WATER DITION	JRABILITY X Id-2	DF ITINUITY ITS	NUITY SET PE	HERING	HNESS / NDITION	STENCY	TURE	HICKNESS YPE	Q-8	SYSTEM	M PARA	AMETE	RS
#	#	FROM (m)	TO (m)	NOOKTHE	UCS	PLT	BPI	RQD	ICR	TCR	E D	ROUNE	ake di Inde	#()ISCON	CONTI TY	WEATH	ROUGH DINT CC	PERSIS	APPEF	LING TI & T	Jn	Jr	Ja	Jw	SRF
		. ,			(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	G	S		DIS		- Y	_		ЫL					
6 7	8	46.80	47.40	SCHIST	10	-	-	0	0	98	500	DRY	97	BST-2	-	нw	-	-	-	3-H	J	J	b F	А	a D
7	9	47.40	47.90	SCHIST	95	-		38	94	94	12	DRY	93	1	в	SW	P-SR	н	0.9	0	В	F	a A	А	a D
7	10	47.90	48.95	SCHIST	10	_	-	0	6	86	50	DRY	85	BST-3	-	нw	-	-	-	0	J	J	a C	А	a G
7	11	48.95	49.80	SCHIST	95	_	-	64	78	98	8	DRY	97	2	W B	MW SW	0-R P-SR	L H	0.9 0.9	0 0	с	F	a A	А	a D
7	12	49.80	50.50	SCHIST	10	_	-	0	4	100	500	DRY	99	BST-2	-	нw	-	-	-	0	J	J	a C	A	a D
7	13	50.50	52.40	SCHIST	20	-	-	7	19	84	50	DRY	83	BST-3	-	нw	-	-	-	0	J	J	a C	А	a A
7 8	14	52.40	54.20	SCHIST	20	-	-	14	36	100	50	DRY	99	BST-4	-	MW	-	-	-	0	J	J	a C	А	a A
8	15	54.20	55.90	SCHIST	10	-	-	0	8	86	50	DRY	85	BST-3	-	MW	-	-	-	0	J	J	a C	А	a D

Table C.4 Continued.

INPUT DATA-FORM FOR ROCK MASS CLASSIFICATION (METU-2004)																									
													-	SK -6+40	0	Page:									
BOX #	STR #	STRUCTURAL DOMAINS			STRENGHT PARAMETERS		CORE RECOVER		VERY	ACTURE ENSITY WATER		RABILITY < Id-2)F FINUITY FIS	JUITY SET DE	ERING	NESS / NDITION	TENCY	TURE	ICKNESS /PE	Q-8	SYSTE	AMETE	RS		
		FROM (m)	TO (m)	ROCK TYPE	UCS PLT	BPI	RQD	ICR	TCR	ĔΟ	annc ano:	(e du INDE)	# C	UTIN TYI	ЕАТН	DUGH IT CO	RSIS	PPER	lG TH & T	In	lr.	la	hw	SDE	
					(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GRC	SLA	DIS	DISC	>	A NOL	H	A	FILLIN	JII	01	Ja	500	5111
8	16	55.90	57.40	SCHIST	85	-	-	20	85	97	18	DRY	96	3	M J B	HW MW MW	0-R P-SR P-SR	L M H	0.9 0 0.9	0 3-H 0	С	F	a C	A	a D
8 9	17	57.40	61.40	SCHIST	20	-	-	3	21	81	50	DRY	80	BST-3	-	MW	-	-	-	0	J	J	a C	A	a G
9	18	61.40	62.40	SCHIST	85	-	-	20	88	96	12	DRY	95		W B	MW MW	0-R P-SR	L H	0.9 0	0 6-H	С	F	a C	А	a D
9	19	62.40	63.90	SCHIST	20	-	-	0	28	77	50	DRY	76	BST-3	-	MW	-	-	-	0	J	J	a C	А	a G
9	20	63.90	64.50	SCHIST		2	-	33	85	100	15	DRY	99	4	W JA JB	MW MW HW	0-R 0-SR P-SR	L L L	0 0.9 0.9	0.9-H 0 0	E	E	a C	А	a D
															В	MW	P-SR	Н	0	0.9-H					
9	21	64.50	64.80	SCHIST	10	-	-	0	0	100	500	DRY	95	BST-2	-	нw	-	-	-	0	J	J	c N	А	a G
9	22	64.80	65.40	SCHIST	-	2	-	0	42	100	21	DRY	99	3	W J B	MW	-	-	-	-	С	F	a C	A	a D
9	23	65.40	65.90	SCHIST	10	-	-	0	0	96	500	DRY	95	BST-2	-	HW	-	-	-	0	J	J	c N	А	a D

Table C.4 Continued.

INPUT DATA-FORM FOR ROCK MASS CLASSIFICATION (METU-2004)																									
																	SK -6+40	0		Page:		4/4			
BOX #	STR #	STRUCTURAL DOMAINS			STRENGHT PARAMETERS			CORE RECOVERY			ACTURE ENSITY	WATER ITION	IRABILITY < Id-2)F FINUITY FIS	JUITY SET PE	ERING	NESS / NDITION	TENCY	TURE	IICKNESS /PE	Q-8	SYSTEI	AMETE	RS	
		FROM (m)	TO (m)	ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	또 으 (#/m)	GROUND COND	SLAKE DU	# C DISCON	DISCONTIN	WEATH	ROUGH JOINT CO	PERSIS	APPER	ING TH & TY	Jn	Jr	Ja	Jw	SRF
					(MPa)	(MPa)	(MPa)	(%)	(%)	(%)										FILL					
9 10	24	65.90	67.65	SCHIST	25	-	-	0	33	97	50	DRY	96	BST-4	-	MW	-	-	-	3-H	J	J	b F	A	a A
10	25	67.65	69.00	SCHIST	15	-	-	0	13	76	500	DRY	75	BST-2	-	НW	-	-	-	0	J	J	c N	A	a A
10	26	69.00	72.80	SCHIST	20	-	-	0	29	99	50	DRY	98	BST-4	-	MW	-	-	-	3-H	J	J	b F	A	a D
11	27	72.80	73.10	SCHIST	-	2	-	0	100	100	16	DRY	99	2	W B	MW MW	0-R P-SR	чт	0 0	3-H 3-H	С	F	a C	A	a D
11	28	73.10	73.50	SCHIST	10	-	-	0	0	100	50	DRY	98	BST-3	-	MW	-	-	-	3-H	J	J	b F	A	a G
11	29	73.50	75.00	SCHIST	-	2	-	39	92	100	13	DRY	99	3	W J B	MW MW MW	0-R 0-SR P-S	L L H	0.9 0 0	0 0.9-H 0.9-H	E	E	a C	А	a D
11	30	75.00	75.25	SCHIST	10	-	-	0	0	100	50	DRY	98	BST-3	-	MW	-	-	-	0	J	J	a C	А	a G
11	31	75.25	76.00	SCHIST	-	2	-	27	91	100	21	DRY	99	3	W J B	MW MW MW	0-R P-SR 0-SR	L L H	0 0 0.9	3-H 3-H 0	E	E	a C	A	a G

Table C.4 Continued.
								INPUT	DATA-	FORM	FOR RO	OCK MAS	S CLAS	SSIFICA	tion (N	METU-20	04)								
																							Page:		1/3
PROJ LOCA BORE	IECT ATION EHOLE	NO	:	DIM TUNNEL ALANYA -GA SK -6+570	PROJ Zipaş.	ECT A ROA	ND					NORTHI EASTIN ELEVAT	ng G 10n	:	404530 417027 95.50 r)8.3 7.2 m		LOGGI START LOGGE CHECK	NG DATE / END ED BY (ED BY	= : : :	19.07 SON(SON(.2003 GÜL C GÜL C	XOŞAF XOŞAF	२ २	
вох	STR	STRUC	TURAL		ST PAF	RENGI RAMETE	HT ERS	CORE	ERECC	VERY	ACTURE ENSITY	WATER TION	RABILITY (Id-2	F IINUITY IS	IUITY SET °E	ERING	VESS/ VDITION	IENCY	TURE	ICKNESS PE	Q-S	SYSTE	M PAR.	AMETE	RS
#	#	FROM	TO ()	ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	θ Ω		TE DN	#C CON	NTIN TYF	EATHI		RSIS ⁻	PER	년 ~ 년 년	1	-	1-	h	0.00
		(m)	10 (m)		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GRC O	SLAK	DIS	DISCO	Ŵ	JOIN	ЪЕ	A	FILLIN	Jn	Jr	Ja	JW	SRF
6	1	46.80	47.50	SCHIST	30	-	-	0	26	70	50	WET	68	BST-4	-	MW	-	-	-	0	J	J	b F	В	a D
6	2	47.50	48.00	SCHIST	-	1.94	-	94	100	100	4	WET	98	2	W B	SW SW	0-VR 0-SR	L H	0.9 0.9	0 0	В	С	a C	В	a D
6	3	48.00	48.80	SCHIST	30	-	-	0	30	78	50	WET	76	BST-4	-	MW	-	-	-	0	J	J	a C	В	a G
6	4	48.80	49.15	SCHIST	-	1.94	-	34	100	100	14	WET	98	2	J B	MW SW	0-R 0-SR	L H	0 0.9	3-Н 0	В	С	a C	В	a D
6	5	49.15	50.00	SCHIST	30	-	-	12	33	67	50	WET	65	BST-3	-	MW	-	-	-	0	J	J	a C	в	a G
6	6	50.00	50.70	SCHIST	-	1.94	-	31	91	94	12	WET	92	2	W B	MW SW	0-R 0-SR	L H	0.9 0	0 3-H	в	с	a C	в	a D
6	7	50.70	52.90	SCHIST	30	-	-	5	19	78	50	WET	76	BST-4	-	MW	-	-	-	0	J	J	a C	В	a G

Table C.5 Input data forms for rock mass classification for SK-6+570 drilling

								INPUT	DATA-I	FORM	FOR RC	OCK MAS	S CLAS	SSIFICA	ΓΙΟΝ (Ν	/IETU-20	04)								
					-							-								SK -6+57	0		Page:		2/3
вох	STR	STRUC DOM	TURAL		ST PAF	RENGI	HT ERS	CORE	RECO	VERY	ACTURE ENSITY	WATER	IRABILITY (Id-2)F TINUITY TS	JUITY SET ⊃E	ERING	NESS / NDITION	TENCY	TURE	IICKNESS /PE	Q-8	SYSTE	MPAR	METE	RS
#	#	FROM	TO ()	ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	ER. D		IE DU	SE # C	AITINC IYT	EATH	UGH T CO	RSIS	PER	R TH & T					0.0.5
		(m)	10 (m)		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GRC C	II SLAK	DIS	DISCO	WE	RC JOIN	Βd	AF	FILLIN	Jn	Jr	Ja	Jw	SRF
0	0	50.00	54.05	COLUCT		0.50		- 7	00				01		w	MW	0-VR	L	0.9	0	5	0	a	2	a
б 7	8	52.90	54.35	SCHIST	-	2.50	-	57	93	93	11	VVEI	91	3	J B	MW	0-SR 0-SR	L H	0.9	0 3-H	D	C	C	в	U
7	9	54.35	55.10	SCHIST	10	-	-	0	8	51	500	WET	50	BST-2	-	MW	-	-	-	0	J	J	c N	В	a G
7	10	55.10	58.10	SCHIST	66	-	-	19	81	96	15	WET	95	3	W J B	MW MW MW	0-VR 0-R 0-R	L L H	0.9 0 0	0 3-H 3-H	E	в	a C	В	a D
7	11	58.10	60.20	SCHIST	15	-	-	0	12	80	50	WET	78	BST-3	-	MW	-	-	-	0	J	J	a C	В	a G
7 8	12	60.20	61.50	SCHIST	-		-	77	92	98	6	WET	96	2	J B	MW SW	0-SR P-SR	L H	0 0.9	3-H 0	В	F	a C	В	a D
8	13	61.50	64.50	SCHIST	20	-	-	7	20	67	50	WET	65	BST-4	-	MW	-	-	-	0	J	J	a C	В	a G
8	14	64.50	65.20	SCHIST	-	2.36	-	0	86	91	15	WET	90	3	W J B	MW MW SW	0-VR 0-R 0-SR	L L H	0.9 0 0.9	0 0.9-H 0	С	С	a C	В	a D
8	15	65.20	66.70	SCHIST	15	-	-	0	4	68	50	WET	65	BST-4	-	MW	-	-	-	0	J	J	a C	В	a G
8	16	66.70	67.00	SCHIST	-	3	-	37	83	100	20	WET	98	2	W B	MW MW	0-VR 0-SR	L H	0.9 0.9	0	В	С	a C	В	a D

Table C.5 Continued.

								INPUT	DATA-	FORM	FOR RC	DCK MAS	SS CLAS	SSIFICA	tion (N	/IETU-20	04)								
																				SK -6+57	0		Page		3/3
вох	STR	STRUC DOM	TURAL		ST PAF	rengi Ramete	HT ERS	CORE	ERECO	VERY	ACTURE ENSITY	WATER	RABILITY (Id-2)F FINUITY FIS	JUITY SET PE	ERING	NESS / NDITION	TENCY	TURE	ICKNESS PE	Q-S	SYSTE	MPAR	AMETE	RS
#	#	FROM	TO (m)	ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	Η̈́Ο		(E DU NDE)	S N O	AITINC AYT	EATH	UGH T CO	RSIS ⁻	PER	Å T T T	lu.		1.	lu.	0.005
		(m)	10 (m)		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GR(C	SLAM	DIS	DISCO	M	JOIN	ВЧ	Ν	FILLIN	Jn	Jr	Ja	JW	SRF
8	17	67.00	68.10	SCHIST	15	-	-	0	9	56	50	WET	55	BST-3	-	нw	-	-	-	0	J	J	a C	в	a G
8	18	68.10	68.70	SCHIST	-	3	-	28	75	92	13	WET	90	2	W B	MW MW	0-R P-SR	L H	0.9 0.9	0 0	С	F	a C	в	a A
8	19	68.70	69.10	SCHIST	15	-	-	0	13	53	50	WET	50	BST-3	-	HW	-	-	-	0	J	J	a C	в	a G
٩	20	69.10	74.10	SCHIST		26		10	60	70	10	WET	77	2	w	HW	0-VR	L	0	0.9-H 2 니	-	-	a C	в	a
5	20	09.10	74.10	301131		5.0	_	15	00	75	10	VVL1		5	B	MW	P-SR	Н	0	3-H	L		C	В	
9	21	74.10	75.60	SCHIST	10	-	-	0	13	42	500	WET	40	BST-2	-	нw	-	-	-	0	J	J	c N	В	a D
9	22	75.60	76.20	LIMESTONE	-	3	-	0	36	84	50	WET	85	BST-4	-	MW	-	-	-	0	J	J	a C	В	a D
9	23	76.20	76.70	LIMESTONE	-	4	-	32	86	86	16	WET	85	2	J B	SW SW	P-SR P-SR	L M	0.9 0.9	0	в	F	a B	в	a D
9 10	24	76.70	80.00	LIMESTONE	-	3	-	9	23	58	50	WET	57	BST-3	-	MW	-	-	-	0	J	J	a C	в	a D

Table C.5 Continued.

								INPUT	T DATA	-FORM	I FOR F	OCK MA	SS CLA	ASSIFIC	ATION ((METU-2	2004)								
PROJE LOCA ⁻ BORE	ect fion hole	NO	:	DIM TUNNE ALANYA -G SK -6+880	EL PRO BAZİPA	JECT ŞA RO	DAD					NORTHI EASTIN ELEVAT	NG G TON	:	404575 416779 72.00 n	i3.3 i.1 n		LOGGIN START LOGGE CHECK	IG DATE / END D BY ED BY	:	16.07 SONG SONG	.2003 ÀÜL C ÀÜL C	Page: OŞAR OŞAR		1/1
вох	STR	STRUC	CTURAL MAINS	ROCK	S ⁻ PAI	TRENGI RAMETE	HT ERS	CORE	E RECC	VERY	ACTURE ENSITY	WATER TION	RABILITY (Id-2)F ∏NUITY TS	JUITY SET PE	ERING	NESS / NDITION	TENCY	TURE	ICKNESS PE	Q-S	SYSTE	M PAR/	AMETE	RS
#	#	FROM (m)	TO (m)	TYPE	UCS (MPa)	PLT (MPa)	BPI (MPa)	RQD (%)	ICR (%)	TCR (%)	∰⊡ (#/m)	GROUND CONDI	SLAKE DU INDEY	# C DISCON	DISCONTIN	WEATH	ROUGH JOINT CO	PERSIS'	APER	FILLING TH & T	Jn	Jr	Ja	Jw	SRF
1	1	0.00	7.50	BLOCKY LST	10	-	-	0	2	23	500	DRY	22	BST-2	-	нw	-	-	-	0	J	J	b H	A	a A
1	2	7.50	16.00	BLOCKY LST	10	-	-	9	13	25	500	DRY	24	BST-2	-	нw	-	-	-	0	J	J	b H	A	a A
1 2	3	16.00	33.50	BLOCKY LST	20	-	-	1	1	30	500	DRY	29	BST-2	-	нw	-	-	-	0	J	J	b H	А	a A
2	4	33.50	48.00	BLOCKY LST	10	-	-	8	16	25	500	DRY	24	BST-2	-	нw	-	-	-	0	J	J	C N	A	a D
3	5	48.00	49.00	BLOCKY LST	-	5	-	40	53	53	4	DRY	51	1	w	MW	0-R	L	3	0	с	F	a A	А	a G
3	6	49.00	52.00	BLOCKY LST	-	5	-	15	58	80	11	DRY	77	2	J W	HW HW	0-R P-SR	L	3 0.9	0 0	С	F	a A	A	a G

Table C.6 Input data forms for rock mass classification for SK-6+880 drilling

								INPUT	DATA	-FORN	I FOR R	OCK MA	SS CLA	ASSIFIC	ATION (METU-2	2004)								
PROJE LOCA ⁻ BORE	ECT FION HOLE	NO	:	DIM TUNNE ALANYA -0 SK -7+130	EL PRO BAZİPA	JECT ŞA RO	DAD					NORTHI EASTIN ELEVAT	NG G 10N	:	404598 416692 72.00 n	1.9 .6 1		LOGGIN START LOGGE CHECK	IG DATE / END D BY ED BY	:	16.07. SONG SONG	.2003 GÜL C	OŞAR OŞAR	Page:	1/2
BOX	STB	STRUC DOM	TURAL	BOCK	S ⁻ PAI	TRENGI RAMETE	HT ERS	CORE	E RECC	VERY	ACTURE ENSITY	WATER TION	RABILITY (Id-2	R INUITY S	IUITY SET °E	ERING	NDITION	IENCY	TURE	ICKNESS 'PE	Q-S	SYSTE	M PAR/	AMETE	RS
#	#	FROM (m)	TO (m)	TYPE	UCS (MPa)	PLT (MPa)	BPI (MPa)	RQD (%)	ICR (%)	TCR (%)	(#/m)	GROUND CONDI	SLAKE DU INDEX	# C DISCONT SET	DISCONTIN	WEATHI	ROUGHI JOINT COI	PERSIST	APPER	FILLING TH & TY	Jn	Jr	Ja	Jw	SRF
3	1	15.30	21.10	CONGLO	15	-	-	94	99	99	3	DRY	99	2	JA JB	HW HW	P-R P-VR	L	0 3	0.9-5 0	в	Ш	a A	A	a G
3	2	21.10	21.30	SHALE	5	-	-	0	80	80	50	DRY	20	BST-4	-	нw	-	-	-	0	J	J	ъ	A	a G
4	3	21.30	23.38	CONGLO	15	-	-	93	100	100	3	DRY	99	2	J B	HW MW	P-R P-SR	L H	3 0.9	0 0	В	E	a A	A	a G
4	4	23.38	26.05	SHALE	5	-	-	45	70	71	6	DRY	25	2	W J B	HW MW	P-R P-SR	M H	3 0.9	0 0	с	F	a A	A	a E
4 5	5	26.05	29.60	SHALE- SST	10	-	-	85	89	90	3	DRY	30	3	W B	HW HW MW	0-R P-R P-SR	L M H	0.9 0.9 0.9	0 0 0	с	F	a A	A	a G
5	6	29.60	31.00	SHALE- SST	10	-	-	0	56	74	50	DRY	30	BST-4	-	нw	-	-	-	0	J	J	b H	A	a G
5	7	31.00	31.40	SHALE- SST	10	-	-	28	100	100	15	DRY	30	2	W B	HW MW	P-SR P-SR	L H	0.9 0.9	0 0	С	F	a E	A	a G

Table C.7 Input data forms for rock mass classification for SK-7+130 drilling

							INPUT	DATA	-FORM	I FOR R	OCK MA	SS CLA	ASSIFICA	ATION (METU-2	2004)								
																			SK -7+13	0		Page:		2/2
STR	STRUC DOM	TURAL AINS	ROCK	ST PAF	RENGI RAMETE	HT ERS	CORE	RECC	VERY	ACTURE ENSITY	WATER ITION	IRABILITY < Id-2)F TINUITY TS	JUITY SET PE	ERING	NESS / NDITION	TENCY	TURE	IICKNESS /PE	Q-S	SYSTE	M PAR	AMETE	RS
#	FROM		TYPE	UCS	PLT	BPI	RQD	ICR	TCR	H D		NDE)	D # C	AITNO 177	EATH	LGH T CO	RSIS'	PER	R T N T L ∞					
	(m)	10 (m)		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GRC C	SLAK	DIS	DISCO	WE	JOIN U	BE	ĄF	FILLIN	Jn	Jr	Ja	Jw	SRF
														w	HW	0-R	L	0.9	0.			а		а
8	31.40	35.00	SST	10	-	-	60	82	87	4	DRY	3	2	В	MW	P-SR	Н	0.9	0	С	E	D	A	Е
														w	MW	P-SR	L	0.9	0			а		а
9	35.00	41.00	SST	10	-	-	78	97	99	4	DRY	10	3	J	MW	P-SR	L	0.9	0	С	F	A	Α	E
														w	MW	0-R	L	0.9	0			а		а
10	41.00	43.30	SHALE-	10	-	-	76	85	85	5	DRY	20	2	В	MW	P-SR	Н	0.9	0	С	F	С	A	D
			551																					
										_			_	W	HW	0-R	L	0.9	0	_	_	а		а
11	43.30	45.00	SHALE- SST	10	-	-	42	79	86	8	DRY	30	2	В	MW	P-SR	н	0.9	0	С	F	С	A	D
	STR # 8 9 10	STR UC DOM # FROM (m) 8 31.40 9 35.00 10 41.00 11 43.30	STRUCTURAL DOMAINS FROM (m) TO (m) 8 31.40 35.00 9 35.00 41.00 10 41.00 43.30 11 43.30 45.00	STRUCTURAL DOMAINS ROCK TYPE FROM (m) TO (m) ROCK TYPE 8 31.40 35.00 SST 9 35.00 41.00 SST 10 41.00 43.30 SHALE- SST 11 43.30 SHALE- SST	STRUCTURAL DOMAINS ROCK TYPE PAR PAR FROM (m) TO (m) UCS (MPa) 8 31.40 35.00 SST 10 9 35.00 41.00 SST 10 10 41.00 43.30 SHALE- SST 10 11 43.30 45.00 SHALE- SST 10	STRUCTURAL DOWINS PROCK TYPE STRUCTURAL PARAMETE FROM (m) TO (m) MORAL 8 31.40 35.00 SST 10 - 9 35.00 41.00 SST 10 - 10 41.00 43.30 SHALE- SST 10 - 11 43.30 45.00 SHALE- SST 10 -	STRUCTURAL DOMAINS A_{AOC} B_{AOC} B_{AOC} B_{AOC} FROM (m) TO (m) TO UCS PLT BPI MPA MPA MPA MPA MPA 8 31.40 35.00 SST 10 C C 9 35.00 41.00 SST 10 C C 10 41.00 43.30 $SHALE$ - SST 10 C C 11 43.30 45.00 $SHALE$ - SST 10 C C	STRUCTURAL DOMAINS Arror STRUCTURAL PARAMETERS CORE # FROM (m) TO (m) PARAMETERS CORE 10 31.40 35.00 SST 10 - - 60 9 35.00 41.00 SST 10 - - 78 10 41.00 45.00 SHALE- SST 10 - - 42	STRUCTURAL DOMAINS A CORE RCCK PROCK TYPE STRENGHT PARAMETERS CORE RCCC # $FROM_{(m)}$ $TO(m)$ $TO(m)$ UCS PLT BPI RQD ICR 8 31.40 35.00 SSST 10 - - 60 82 9 35.00 41.00 SSST 10 - - 78 97 10 41.00 43.30 SHALE- SST 10 - - 76 85 11 43.30 45.00 SHALE- SST 10 - - 42 79	STRUCTURAL DOMAINS Arror of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print of Drive Print	STRUCTURAL DOMAINS PROCK TYPE STRENGHT PARAMETERS CORE RECOVERY House Trends Core Trends TC # FROM (m) TO (m) TO (m) ICS PLT BPI RQD ICR TCR 8 31.40 35.00 SST 10 - - 60 82 87 4 9 35.00 41.00 SST 10 - - 78 97 99 4 10 41.00 43.30 SHALE- SST 10 - - 76 85 85 5 11 43.30 45.00 SHALE- SST 10 - - 42 79 86 8	STRUCTURAL DOMAINS Area between the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of th	STRUCTURAL # STRUCTURAL DOMAINS A BOCK TYPE STRENGHT PARAMETERS CORE RECOVERY HD COM (m) EFROM CONDUCY MU (m) CORE RECOVERY MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) MU (m) M	STRUCTURAL # STRUCTURAL DOMAINS Application STRENGHT PARAMETERS CORE RECOVERY Machine Pare Machine Pare Machine Pare Machine Pare CORE RECOVERY Machine Pare Machine Pare Machine Pare Machine Pare CORE RECOVERY Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare Machine Pare MachinePare MachinePare	STRUCTURAL # STRUCTURAL DOMAINS Application STRENGHT PARAMETERS CORE RECOVERY House Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree Ling Tree <thling Tree <thling< th=""> Lin</thling<></thling 	STRUCTURAL DOMAINS STRUCTURAL TYPE STRENGHT PARAMETERS CORE RECOVERY (MPa) M L UCS PLT BPI RQD ICR TCR M U UCS PLT BPI RQD ICR TCR M U UCS PLT BPI RQD ICR TCR M U UCS PLT BPI RQD ICR TCR PLT M U UCS PLT BPI RQD ICR TCR PLT M U UCS PLT BPI RQD ICR TCR PLT M U UCS PLT BPI RQD ICR TCR PLT M U UCS PLT BPI RQD ICR TCR PLT M U UCS PLT BPI RQD ICR TCR PLT M U UCS PLT BPI RQD ICR TCR PLT PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US PU U US<	STRUCTURAL (m) ROCK TYPE STRENGHT (mPa) CORE RECOVERY Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO Max bit (NO <td>STRUCTURAL (m) DOMINS ROCK TYPE STRENGHT (MPa) CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE</td> <td>STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTU</td> <td>STR STRUCTURAL DOMAINS STRUCTURAL (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURA</td> <td>STR STR STR STR STR COR RECV W M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M</td> <td>Note 1 and 1 beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the ben</td> <td>STR STRUTURAL DOMAINS STRUTURAL FROM (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) <</td> <td>STR STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRU</td>	STRUCTURAL (m) DOMINS ROCK TYPE STRENGHT (MPa) CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE RECOVERY H2 STRENGT (MPa) KH CORE	STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTURAL (m) STRUCTU	STR STRUCTURAL DOMAINS STRUCTURAL (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURAL TO (m) STRUCTURA	STR STR STR STR STR COR RECV W M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M	Note 1 and 1 beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the beneficient in the ben	STR STRUTURAL DOMAINS STRUTURAL FROM (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) STRUTURAL TO (m) <	STR STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRUTURAL STRU

Table C.7 Continued.

							I	INPUT	DATA-	FORM	FOR RO	OCK MAS	SS CLAS	SSIFICA	tion (M	METU-20	004)								
																								Page:	: 1/3
PROJ LOCA BORE	ECT TION HOLE	NO	:	DIM TUNNEL ALANYA -GA SK -7+250	. PROJ AZİPAŞ	ECT A ROA	٩D					NORTHI EASTING ELEVAT	ng G 10n	:	404612 416686 77.00 r	25.8 6.1 m		LOGGI START LOGGE CHECK	NG DATE 7 / END ED BY (ED BY	E : : :	17.07 SON0 SON0	.2003 GÜL C GÜL C	COŞAF COŞAF	२ २	
вох	STR	STRUC DOM	TURAL MAINS		ST PAF	TRENG RAMETE	HT ERS	CORE	ERECC	VERY	ACTURE ENSITY	WATER	RABILITY (Id-2)F ΠNUITY IS	JUITY SET DE	ERING	NESS / NDITION	TENCY	TURE	ICKNESS PE	Q-S	SYSTE	MPAR	AMETE	RS
#	#	FROM	TO(m)	ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	Ë D		KE DU	CON SE	NENC REF	ЕАТН	DUGH	RSIS ⁻	PPER	₽ T T T	lin.	14	la.	hui	ODE
		(m)	10 (m)		(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GRO O	SLAK	DIS	DISCO	Ŵ	JOIN	ΒE	AI	FILLIN	Jn	Jr	Ja	JW	SRF
1	1	0.00	6.00	SCHIST	-	2	-	0	0	16	1000	DRY	15	BST-1	-	D	-	-	-	0	J	J	b H	А	a A
1	2	6.00	20.95	SCHIST	-	2	-	2	7	23	500	DRY	20	BST-2	-	VHW	-	-	-	0	J	J	Ь Н	A	a D
1	3	20.95	21.40	SCHIST	-	2	-	27	87	98	22	DRY	95	2	J B	HW MW	P-R P-SR	M H	0 0.9	3-Н 0	в	F	a C	A	a D
1	4	21.40	25.32	SCHIST	-	2	-	3	9	25	500	DRY	25	BST-2	-	НW	-	-	-	0	J	J	c N	A	a G
1 2	5	25.32	26.20	SCHIST	-	2	-	82	97	99	9	DRY	95	2	J B	MW MW	P-SR 0-SR	M H	0 0.9	3-H 0	в	С	a C	А	a D
2	6	26.20	26.70	SCHIST	-	2	-	0	0	40	500	DRY	40	BST-2	-	HW	-	-	-	0	J	J	c N	А	a G
2	7	26.70	26.95	SCHIST	-	2	-	52	100	100	12	DRY	97	1	в	sw	P-SR	н	0.9	0	в	F	a A	A	a D

Table C.8 Input data forms for rock mass classification for SK-7+250 drilling

								INPUT	DATA-I	-ORM	FOR RC	OCK MAS	SS CLAS	SSIFICA	FION (N	ИЕTU-20	04)								
																				SK -7+25	0			Page:	. 2/3
вох	STR	STRUC DOM	TURAL		ST PAF	RENG	HT ERS	CORE	RECO	VERY	ACTURE ENSITY) WATER ITION	JRABILITY X Id-2)F TINUITY TS	NUITY SET PE	ERING	NDITION	TENCY	TURE	HCKNESS YPE	Q-8	SYSTEM	M PAR	AMETE	RS
#	#	FROM	TO (m)	ROCKTIPE	UCS	PLT	BPI	RQD	ICR	TCR	ΕΩ		ke du INDE)	#(scon se	ONTII TY	ſΕΑΤΗ	OUGH NT CC	ERSIS	PPEF	NG TF & T	Jn	Jr	Ja	Jw	SRF
		(m)			(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	GR.	SLAI	DI	DISC	W	JOL	đ	4	FILLI	0.1.	0.	ou	•	0
2	8	26.95	27.25	SCHIST	-	2	-	0	0	87	50	DRY	82	BST-3	-	нw	-	-	-	3-H	J	J	b F	A	a G
																							b		а
2	9	27.25	27.55	SCHIST	-	2	-	40	100	100	10	DRY	97	1	В	SW	P-SR	Н	0	3-H	В	F	F	A	D
2	10	27.55	27.90	SCHIST	-	2	-	0	13	86	50	DRY	95	BST-3	-	нw	-	-	-	3-H	J	J	b F	А	a G
															W	MW	0-R	L	0.9	0			а		а
2	11	27.90	28.40	SCHIST	-	2	-	30	96	96	12	DRY	93	3	J	MW	0-SR	M	0	0.9-H	С	F	С	А	G
															В	SW	0-SR	н	0	3-H					
2	12	28.40	30.50	SCHIST	-	2	-	0	21	59	50	DRY	57	BST-3	-	MW	-	-	-	0	J	J	a C	A	a G
															W	MW	D-S	L	0.9	0			а		а
2	13	30.50	33.00	SCHIST	-	2	-	16	63	71	8	DRY	68	3	J	MW	P-SR	L	0	3-H	С	F	С	А	D
															Б	IVIVV	P-SR	п	0.9	0					
2	14	33.00	33.60	SCHIST	-	2	-	0	10	80	50	DRY	77	BST-3	-	MW	-	-	-	6-H	J	J	b F	A	a G
															W	MW	0-R	L	0.9	0			а		а
3	15	33.60	34.25	SCHIST	-	2	-	22	34	65	6	DRY	63	3	J	MW	P-SR	М	0	0.9-H	С	F	С	А	G
															В	MW	P-SR	Н	0.9	0					

Table C.8 Continued.

								INPUT	DATA-	FORM	FOR RO	OCK MAS	SS CLAS	SSIFICA	TION (M	METU-20	04)								
																				SK -7+25	0			Page	: 3/3
BOX	STR	STRUC DOM	TURAL		ST PAF	rrengi Ramete	HT ERS	CORE	ERECC	VERY	ACTURE ENSITY	WATER	IRABILITY < Id-2)F TINUITY TS	JUITY SET PE	ERING	NESS / NDITION	TENCY	TURE	IICKNESS /PE	Q-S	SYSTE	MPAR	AMETE	RS
#	#	FROM	TO (m)	ROCK TYPE	UCS	PLT	BPI	RQD	ICR	TCR	R D	COND	AKE DU INDE)	#C ISCON	CONTIN	WEATH	ROUGH	ERSIS	APPER	HL ONI CL &	Jn	Jr	Ja	Jw	SRF
		(111)			(MPa)	(MPa)	(MPa)	(%)	(%)	(%)	(#/m)	5	รา		DIS	-	۳ç	ш		FILL					
3	16	34.25	36.00	SCHIST	-	2	-	68	93	97	8	DRY	94	3	W J B	MW MW MW	0-R P-SR P-SR	L M H	0.9 0.9 0.9	0 0 0	С	F	a B	А	a E
3	17	36.00	36.40	SCHIST	-	2	-	0	73	73	27	DRY	70	2	J B	MW MW	P-SR P-SR	M H	0 0.9	0.9-H 0	В	F	a C	A	a D
3	18	36.40	37.50	SCHIST	-	2	-	0	7	50	500	DRY	48	BST-2	-	VHW	-	-	-	3-Н	J	J	c N	A	a G
3	19	37.50	40.80	SCHIST	-	2	-	21	53	65	8	DRY	63	3	W J B	HW MW MW	0-R 0-R P-SR	LLI	0 0.9 0	3-H 0 3-H	ш	F	a C	A	a D
3	20	40.80	41.30	SCHIST	-	2	-	0	0	72	50	DRY	70	BST-2	-	HW	-	-	-	0	J	J	c N	A	a G
4	21	41.30	41.80	SCHIST	-	2	-	38	92	92	8	DRY	89	1	в	MW	P-R	Н	0	3-H	В	F	a C	A	a G
4	22	41.80	43.20	SCHIST	-	2	-	0	24	71	50	DRY	68	BST-3	-	MW	-	-	-	3-Н	J	J	b F	A	a G
4	23	43.20	44.55	SCHIST	-	2	-	25	68	87	11	DRY	84	3	W J B	MW MW MW	0-R P-SR 0-SR	L M H	0.9 0 0	0 6-H 3-H	E	С	a C	A	a D
4	24	44.55	46.00	SCHIST	-	2	-	12	25	80	50	DRY	77	BST-4	-	MW	-	-	-	3-H	J	J	b F	А	a D

Table C.8 Continued.

APPENDIX D

CORE BOX PHOTOGRAPS AND ILLUSTRATION OF STRUCTURAL DOMAINS

Figure D.1 Explanations of photograph illustrations

Figure D.2 Core box 1 photograph of borehole SK-6+050

Figure D.3 Core box 8 photograph of borehole SK-6+180

Figure D.4 Core box 9 photograph of borehole SK-6+180

Figure D.5 Core box 10 photograph of borehole SK-6+180

Figure D.6 Core box 11 photograph of borehole SK-6+180

Figure D.7 Core box 12 photograph of borehole SK-6+180

Figure D.8 Core box 4 photograph of borehole SK-6+280

Figure D.9 Core box 5 photograph of borehole SK-6+280

Figure D.10 Core box 6 photograph of borehole SK-6+280

Figure D.11 Core box 7 photograph of borehole SK-6+280

Figure D.12 Core box 6 photograph of borehole SK-6+400

Figure D.13 Core box 7 photograph of borehole SK-6+400

Figure D.14 Core box 8 photograph of borehole SK-6+400

Figure D.15 Core box 9 photograph of borehole SK-6+400

Figure D.16 Core box 10 photograph of borehole SK-6+400

Figure D.17 Core box 11 photograph of borehole SK-6+400

Figure D.18 Core box 6 photograph of borehole SK-6+570

Figure D.19 Core box 7 photograph of borehole SK-6+570

Figure D.20 Core box 8 photograph of borehole SK-6+570

Figure D.21 Core box 9 photograph of borehole SK-6+570

Figure D.22 Core box 10 photograph of borehole SK-6+570

Figure D.23 Core box 1 photograph of borehole SK-6+880

Figure D.24 Core box 2 photograph of borehole SK-6+880

Figure D.25 Core box 3 photograph of borehole SK-6+880

Figure D.26 Core box 3 photograph of borehole SK-7+130

Figure D.27 Core box 4 photograph of borehole SK-7+130

Figure D.28 Core box 5 photograph of borehole SK-7+130

Figure D.29 Core box 6 photograph of borehole SK-7+130

Figure D.30 Core box 7 photograph of borehole SK-7+130

Figure D.31 Core box 1 photograph of borehole SK-7+250

Figure D.32 Core box 2 photograph of borehole SK-7+250

Figure D.33 Core box 3 photograph of borehole SK-7+250

Figure D.34 Core box 4 photograph of borehole SK-7+250

APPENDIX E

ROCK MASS CLASSIFICATION CALCULATIONS FOR DIM TUNNEL

E.I ROCK MASS OUTPUTS

	IN	PUT PAI	RAMET	TERS	USEI	D IN M	4-RMF	R SY:	STEN	1					
INTERVAL	ROCK TY	PE STR	RQD	ICR	#/m	DSOR	GW	Id2	w	RD	RP	PRS	Ар	FT	FS
0 - 15	schist	20	2	14	500	bst2	0	75	hw	-	-	-	-	6	s
GE	DTECHNICAL	LOG (CORE	REC	OVER	Y AND	JOI	NT SI	PACI	ENG))				
INTERVAL	INTERVAL ROCK TYPE T.C.R. (%) I.C.R. (%) RQD (%) SPACING (mm) -15 schist 37 14 2 2														
0 -15	schist			37	I	14			2			2			
	GE	OTECHN	ICAL	LOG	(30	ENT CO		FION))						
INTERVAL	ROCK	TYPE	WEA	атн.	R	DUGHNE	ESS	PERS	SIST	·.	APE	RT.	FJ	ILLIN	IG
0 -15	schist		l I	าพ		-			-			-		6	s
	PARAME	TERS A	ND R/	ATIN	GS U:	SED I	N M-F	RMR :	SYST	ГЕМ					
INTERVAL	ROCK S	TRI	RQDI		JSI		JCI		GWI	C	:	JOI		FC	
0 -15	schist 🔳	4	1		2		0			15		-9		1.00)

Figure E.1 ROCKMASS outputs of the SK-6+050 borehole.

	PARAMET	ERS AND	O RATIN	NGS USED]	N BARTON	N Q SYSTEM	1	
INTERVAL	ROCK	RQI	þ	Jn	Jr	Ja	Jw	SRF
0 -15	schist	10		20	1.0	6	1	10.0
		F	INAL C	CLASSIFICA	TION LOGS	5		
INTERVAL	ROCK	TYPE	F	R Q D	M-	-RMR	BART	FON-Q
0 -15	schist		2		13		0.01	

Figure E.1 (Continued).

	INPU	r pai	RAME	FERS	USEI	D IN I	M-RMI	R SY	STEN	M					
INTERVAL	ROCK TYPE	STR	RQD	ICR	#/m	DSOR	GW	Id2	W	RD	RP	PRS	Ар	FT	FS
50.00 - 51.00	SCHIST	2.5	42	92	16	0	25	97	SW	P.	SR	L	0.0	3	H
51.00 - 54.70	SCHIST	25	0	12	50	BST4	25	75	MW	-	-	-	-	3	H
54.70 - 55.95	SCHIST	2.5	66	93	11	0	25	99	SW	U.	SR	L	0.0	3	H
55.95 - 56.70	SCHIST	10	0	0	50	BST3	25	71	HW	-	-	-	-	1	H
56.70 - 57.35	SCHIST	2.5	32	89	21	0	25	96	SW	P.	SR	H	0.5	0	-
57.35 - 58.35	SCHIST	10	0	0	500	BST2	25	58	HW	-	-	-	-	3	H
58.35 - 59.10	schist	2.5	44	71	20	0	25	92	MW	U.	SR	H	0.5	0	-
59.10 - 64.15	SCHIST	25	16	25	50	BST4	25	75	HW	-	-	-	-	3	H
64.15 - 65.10	SCHIST	40	48	100	13	0	25	99	SW	P.	SR	H	0.5	0	-
65.10 - 65.70	SCHIST	25	0	25	50	BST4	25	77	MW	-	-	-	-	3	H
65.70 - 66.30	SCHIST	40	18	95	16	0	25	99	SW	P.	R	H	0.5	0	-
66.30 - 67.15	SCHIST	5.0	0	0	500	BST2	25	64	HW	-	-	-	-	1	H
67.15 - 68.25	SCHIST	40	28	95	20	0	25	99	SW	Ρ.	SR	H	0.5	0	-
68.25 - 70.70	SCHIST	10	0	5	50	BST4	25	64	MW	-	-	-	-	0	-
70.70 - 73.55	SCHIST	3.0	47	92	5	0	25	97	MW	P.	S	H	0.5	0	-
73.55 - 74.00	SCHIST	10	0	0	50	BST3	25	46	MM	-	-	-	-	0	-
74.00 - 74.65	SCHIST	3.0	31	92	20	0	25	91	MW	P.	S	H	0.5	0	-
74.65 - 75.10	SCHIST	10	0	7	50	BST3	25	52	MW	-	-	-	-	0	-
75.10 - 79.80	SCHIST	25	8	25	50	BST4	25	82	MW	-	-	-	-	0	-
79.80 - 82.60	SCHIST	20	6	14	50	BST3	25	59	HW	-	-	-	-	1	H
82.60 - 85.00	SCHIST	3.0	58	89	8	0	25	94	MW	P.	R	H	0.5	0	-

	GEO?	FECHNICAL LOG	(CORE RECOVE	RY AND JOIN	T SPACING)	
INT	ERVAL	ROCK TYPE	T.C.R. (%)	I.C.R. (%)	RQD (%)	SPACING (mm)
50.00	-51.00	SCHIST	98	92	42	62
51.00	-54.70	SCHIST	84	12	0	20
54.70	-55.95	SCHIST	100	93	66	90
5.95	-56.70	SCHIST	72	0	0	20
6.70	-57.35	SCHIST	97	89	32	47
7.35	-58.35	SCHIST	59	0	0	2
8.35	-59.10	schist	93	71	44	50
9.10	-64.15	SCHIST	76	25	16	20
54.15	-65.10	SCHIST	100	100	48	76
5.10	-65.70	SCHIST	78	25	0	20
5.70	-66.30	SCHIST	100	95	18	62
6.30	-67.15	SCHIST	65	0	0	2
57.15	-68.25	SCHIST	100	95	28	50
8.25	-70.70	SCHIST	65	5	0	20
70.70	-73.55	SCHIST	98	92	47	200
73.55	-74.00	SCHIST	47	0	0	20
74.00	-74.65	SCHIST	92	92	31	50
4.65	-75.10	SCHIST	53	7	0	20
75.10	-79.80	SCHIST	83	25	8	20
9.80	-82.60	SCHIST	60	14	6	20
32.60	-85.00	SCHIST	95	89	58	125

Figure E.2 ROCKMASS outputs of the SK-6+180 borehole.

		GEOTECHN	ICAL LO	G (JOIN	T CONDIT	'ION)			
INTERVAL	ROO	CK TYPE	WEATH	. ROU	GHNESS	PERSIST.	APERT.	FILLI	NG
50.00 -51.00 51.00 -54.70 54.70 -55.99 55.95 -56.70 56.70 -57.33 57.35 -58.33 58.35 -59.10	0 SCH19 0 SCH19 5 SCH19 0 SCH19 5 SCH19 5 SCH19 0 SCH19 0 sch19	ST ST ST ST ST St	S MW S HW S HW MW	W P. P. W P. V.	SR SR - SR SR SR SR SR	L L L H H H	0.01 0.01 0.5	3 3 .9 0 3 0	H H H H H H
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5 SCH12 0 SCH12 0 SCH12 0 SCH12 5 SCH12 5 SCH12 5 SCH12 5 SCH12 5 SCH12 0 SCH12 0 SCH12	5T 5T 5T 5T 5T 5T 5T 5T 5T	HW MW S HW S MW MW MW	W P. P. P. P. P.	- SR SR R SR - SR - SR	H H H H H H	0.5 0.5 0.5 0.5	3 0 3 0 0 0 0 0 0 0	
74.00 -74.69 74.65 -75.10 75.10 -79.80 79.80 -82.60 82.60 -85.00	5 SCHIS 0 SCHIS 0 SCHIS 0 SCHIS 0 SCHIS	ST ST ST ST ST	MW MW MW HW	P.	- - - R	H - - H	0.5	0 0 .9 0	- H -
	PAR	METERS A	ND RATI	NGS USE	D IN M-R	MR SYSTEM	1		
INTERVAL	ROCK	STRI	RQDI	JSI	JCI	GWI	JOI	FC	
$\begin{array}{c} 50.00 & -51.00\\ 51.00 & -54.70\\ 54.70 & -55.95\\ 55.95 & -56.70\\ 56.70 & -57.35\\ 57.35 & -58.35\\ 57.35 & -58.35\\ 59.10 & -64.15\\ 64.15 & -66.10\\ 55.10 & -64.15\\ 63.0 & -67.15\\ 63.0 & -67.15\\ 68.25 & -70.70\\ 70.70 & -73.55\\ 68.25 & -70.70\\ 70.70 & -73.55\\ 73.55 & -74.00\\ 74.65 & -75.10\\ 75.10 & -75.40\\ 75.10 & -79.80\\ 79.80 & -82.60\\ 82.60 & -85.00\\ \end{array}$	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST	4 3 6 4 6 4 6 4 6 2 6 3 7 7 3 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7	10 0 14 0 8 0 10 5 11 0 8 0 11 0 8 0 11 0 8 0 11 3 13	9 3 9 8 2 8 3 9 2 8 3 11 3 8 3 3 10	14 10 14 10 14 7 5 9 14 10 15 8 14 10 15 8 14 17 12 15 12 15 12 15 17 7 10 14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-5 -5 -12 -5 -5 -5 -5 -5 -12 -5 -5 -12 -5 -12 -5 -12 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	1 1.0 0.90 1 1.0 1.1 0.90 1 1.0 1.0 1.0 1.0 1.0 0.83 1.1 0.86 1.0 .9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.13 0 .15 7 .13 .10 0 .15 01 .15 3 .15 3 .15 3 .13 10 04 0 .11
	PARAME.	rers and	RATINGS	USED I	N BARTO	N Q SYST	EM		
INTERVAL	ROCK	RQD		Jn	Jr	Ja	Jw	SRF	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST	42 10 66 10 32 10 44 10 10 10 28 10 47 10 31 10 10 58		6 20 6 20 3.0 20 20 20 20 20 20 20 20 20 2	1.0 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.00 4.00 2.00 5 2.00 4.00 2.00 2.00 2.00 2.00 2.00 2.00	- 66 - 66 - 66 - 66 - 66 - 66 - 66 - 66	5.0 5.0 7 5.0 7 5.0 7 5.0 7 5.0 7 5.0 7 5.0 7 5.0 7 7 5.0 7 10 7	.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

Figure E.2 (Continued).

FINAL CLASSIFICATION LOGS											
INTERVAL	ROCK TYPE	RQD	M-RMR	BARTON-Q							
50.00 -51.00	SCHIST	42	45	0.46							
51.00 -54.70	SCHIST	0	15	0.02							
54.70 -55.95	SCHIST	66	50	0.73							
55.95 -56.70	SCHIST	0	10	0.02							
56.70 -57.35	SCHIST	32	42	0.70							
57.35 -58.35	SCHIST	0	6	0.01							
58.35 -59.10	schist	44	44	1.94							
59.10 -64.15	SCHIST	16	24	0.03							
64.15 -65.10	SCHIST	48	46	1.06							
55.10 -65.70	SCHIST	0	20	0.02							
65.70 -66.30	SCHIST	18	40	0.40							
56.30 -67.15	SCHIST	0	6	0.01							
57.15 -68.25	SCHIST	28	41	0.41							
70 70 -72 55	SCHIST	0	16	0.03							
73 55 -74 00	CUICT	4/	46	0.69							
74 00 -74 65	CUTCT	21	13 20	0.03							
74 65 -75 10	SCHIST	0	14 39	0.68							
75 10 -79 80	SCHIST	8	14 21	0.02							
79.80 -82.60	SCHIST	6	16	0.02							
32.60 -85.00	SCHIST	5.8	10	1 07							

Figure E.2 (Continued).

	INPUT PARAMETERS USED IN M-RMR SYSTEM										
INTERVAL	ROCK TYPE STR	RQD ICR	#/m DSOR	GW	Id2 W	RD	RP PRS	Ар	FT	FS	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	SCHIST80SCHIST5.0SCHIST75SCHIST5.0SCHIST80SCHIST5.0SCHIST80SCHIST80Schist4.0	5 20 52 96 0 4 17 63 7 25 21 48 3 25 2 14	50 BST4 14 0 50 BST3 11 0 50 BST4 12 0 50 BST4 50 BST3	0 0 0 0 0 0 0 0	74 M 97 S 42 M 68 M 72 M 79 M 70 M 59 M	W P. W P. W P. W P. W P. W - W -	R H SR M SR M SR M 	0.5	1 0 3 0 3 0 3 0 3	H - H - H -	
GEOTECHNICAL LOG (CORE RECOVERY AND JOINT SPACING)											
INTERVAL	ROCK TYPE	T.C.R. ((%) I.C.R.	. (%)	RQD	(%) SPA	CING	(mm	>	
$\begin{array}{ccccc} 26.70 & -31.45 \\ 31.45 & -31.95 \\ 31.95 & -32.50 \\ 32.50 & -34.25 \\ 34.25 & -36.80 \\ 36.80 & -37.80 \\ 37.80 & -42.50 \\ 42.50 & -63.00 \\ \end{array}$	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST schist	77 10 44 71 75 8 73 61	20 00 4 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	96 63 5 48 5		5 52 7 21 3 2	20 20 20 20) 71 90 83			
	GEOTECHN	ICAL LOG	(JOINT CO		TION)						
INTERVAL	INTERVAL ROCK TYPE WEATH. ROUGHNESS PERSIST. APERT. FILLING										
$\begin{array}{ccccc} 26.70 & -31.45 \\ 31.45 & -31.95 \\ 31.95 & -32.50 \\ 32.50 & -34.25 \\ 34.25 & -36.80 \\ 36.80 & -37.80 \\ 37.80 & -42.50 \\ 42.50 & -63.00 \\ \end{array}$	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST	MW SW MW MW MW MW MW	P. P. P. ■ P. - -	R R SR SR			0.5 0.01 0.01		.9 0 3 0 3 0 3	<u>+</u> <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u>	

Figure E.3 ROCKMASS outputs of the SK-6+280 borehole.

PARAMETERS AND RATINGS USED IN M-RMR SYSTEM										
INTERVAL	ROCK	STRI	RQDI	JSI	JCI	GWI	JOI	Fc		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST	8 9 8 9 8 9 8 8 8	2 0 6 3 6 1 1	3 9 3 9 3 9 3 9 3 3	13 15 15 9 17 9 ∎ 17 9	15 15 15 15 15 15 15 15	-7 -5 -12 -5 -5 -5 -9	0.99 1.13 0.81 0.95 0.98 1.02 0.97 0.90		

PARAMETERS AND RATINGS USED IN BARTON Q SYSTEM										
INTERVAL	ROCK	RQD	Jn	Jr	Ja	Jw	SRF			
$\begin{matrix} 26.70 & -31.45 \\ 31.45 & -31.95 \\ 31.95 & -32.50 \\ 32.50 & -34.25 \\ 34.25 & -36.80 \\ 36.80 & -37.80 \\ 37.80 & -42.50 \\ 42.50 & -63.00 \end{matrix}$	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST	10 52 10 10 10 10 10 10 10	20 2.0 3.0 4.0 20 4.0 20	1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.0	4.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	1 1 1 1 1 1 1 1	7.5 7.5 5.0 7.5 5.0 7.5 7.5 7.5 10.0			

	FINAL CLASSIFICATION LOGS										
INTERVAL	ROCK TYPE	RQD	M-RMR	BARTON-Q							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST Schist	5 0 17 7 21 3 2 2 1 3 2	34 59 25 42 41 45 39 26	0.02 2.60 0.05 0.57 0.05 0.52 0.03 0.01							

Figure E.3 (Continued).

	INPU	r pai	RAMET	TERS	USEI	D IN M	M-RMI	R SY	STEI	М					
INTERVAL	ROCK TYPE	STR	RQD	ICR	#/m	DSOR	GW	Id2	W	RD	RP	PRS	Ар	FT	FS
41.50 - 42.05 42.05 - 43.10 43.10 - 43.50	SCHIST SCHIST SCHIST	3.0 20 3.0	95 0 63	95 20 83	7 50 10	0 BST3 0	0000	99 83 99	SW MW MW	Р. - Р.	SR - S	н - н	0.0	3 0 1	н - н
43.50 - 44.00 44.00 - 44.30 44.30 - 44.90	SCHIST SCHIST SCHIST	10 3.0 10	0 50 0	0 80 10	500 20 500	BST2 0 BST2	000000000000000000000000000000000000000	75 90 60	HW MW HW	Р. -	SR -	н _	0.5	0000	
44.90 - 46.80 46.80 - 47.40 47.40 - 47.90	SCHIST SCHIST SCHIST	95 10 95	26 0 38	95 0 94	16 500 12	0 BST2 0	0	98 97 93	MW HW SW	P. - P.	SR - SR	н н	0.5	030	- H ~
47.90 - 48.95 48.95 - 49.80 49.80 - 50.50 50.50 - 52.40	SCHIST SCHIST SCHIST	95 10 20	64 0 7	78 4 19	500 500	BST3 0 BST2 BST3	000	97 99 83	HW SW HW	P.	SR -	н _	0.5	0000	-
52.40 - 54.20 54.20 - 55.90 55.90 - 57.40	SCHIST SCHIST SCHIST	20 10 85	14 0 20	25 8 85	50 50 18	BST4 BST3 0	0000	99 85 96	MW MW MW	- - P.	- SR	- - M		0 0 3	- - H
57.40 - 61.40 61.40 - 62.40 62.40 - 63.90	SCHIST SCHIST SCHIST	20 85 20	3 20 0	21 88 25	50 12 50	BST3 0 BST3	000000000000000000000000000000000000000	80 95 76	MW MW MW	P.	SR	н	0.0	0 9 0	- H -
63.90 - 64.50 64.50 - 64.80 64.80 - 65.40 65.40 - 65.90	SCHIST SCHIST SCHIST	10 2.0 10	0	85 0 42	500 21 500	BST2 0 BST2	0	99 95 99	HW HW MW	P.	SR - SR	н - м	0.0	0 3 0	н - н
66.90 - 67.65 67.65 - 69.00 69.00 - 72.80	SCHIST SCHIST SCHIST	25 15 20	000	25 13 25	50 500 50	BST4 BST2 BST4	0000	96 75 98	MW HW MW				-	3 0 3	н - Н
72.80 - 73.10 73.10 - 73.50 73.50 - 75.00	SCHIST SCHIST SCHIST	20 10 2.0	0 0 39	100 0 92	16 50 13	0 BST3 0	0000	99 98 99	MW MW MW	P. - P.	SR - S	н н	0.0	3 3 1	H H H
75.20 - 75.25	SCHIST	2.0	27	0 91	50	BST3 0	0	98 99	MW MW	υ.	R	- L	0.0	0	- H

GEO'	TECHNICAL LOG	CORE RECOVE	RY AND JOIN	T SPACING)	
INTERVAL	ROCK TYPE	T.C.R. (%)	I.C.R. (%)	RQD (%)	SPACING (mm)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST SCHIST	96 84 100 76 90 60 98 98 94 86 98 94 86 98 100 86 97 81 96 77 100 100 100 96 97 76 99	95 20 83 0 80 10 95 0 94 6 78 4 19 25 8 85 21 88 25 88 25 85 0 42 0 25 13 25	95 0 63 0 50 0 26 0 38 0 64 0 7 14 0 20 3 20 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0	142 20 100 2 50 2 62 2 83 20 125 2 20 20 55 20 83 20 66 2 47 2 20 20 20 55 20 20 20 20 20 20 20 20 20 20 20 20 20
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	SCHIST SCHIST SCHIST SCHIST SCHIST	100 100 100 100 100	0 92 0 91	0 0 39 0 27	62 20 76 20 47

Figure E.4 ROCKMASS outputs of the SK-6+400 borehole.

	GEOTECHNICAL LOG (JOINT CONDITION)											
INT	ERVAL	ROCK TYPE	WEATH.	ROU	GHNESS	PERSIST.	APERT.	FILLI	NG			
$\begin{array}{c} 41.50\\ 42.05\\ 43.10\\ 43.50\\ 44.00\\ 44.90\\ 44.90\\ 44.90\\ 47.40\\ 47.40\\ 47.40\\ 50.50\\ 50.50\\ 50.50\\ 50.50\\ 52.40\\ 61.40\\ 63.90\\ 64.80\\ 65.40\\ 65.40\\ 66.80\\ 65.40\\ 66.95\\ \end{array}$	-42.05 -43.10 -44.00 -44.90 -44.90 -44.90 -47.90 -47.90 -47.98 -52.40 -52.40 -52.40 -54.20 -55.90 -61.40 -62.40 -64.80 -65.90 -65.	SCHIST SCHIST	SW MW MW HW HW HW SW HW SW HW SW HW HW MW MW MW MW MW MW MW MW MW MW MW MW HW	 P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. <	SR SR SR SR SR SR SR SR SR SR SR SR SR S		0.01 0.01 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.01 0.01	■ 3 0 0 0 0 0 0 0 0 0 0 0 0 0				
69.00 72.80 73.10 73.50 75.00 75.25	-72.80 -73.10 -73.50 -75.00 -75.25 -76.00	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST	MW MW MW MW MW	P. P.	- SR - S	H	0.01	3 3 .5 0 3	H H H H			

	PARAMETERS AND RATINGS USED IN M-RMR SYSTEM										
INTERVAL	ROCK	STRI	RQDI	JSI	JCI	GWI	JOI	FC			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST SC	7 4 7 3 9 3 4 4 4 8 4 4 8 4 4 8 4 5 5 3 4 4 5 5 3 4 4 5 5 3 4 4 5 5 3 4 4 5 5 3 4 5 5 3 4 5 5 3 4 5 5 3 4 5 5 3 4 5 5 3 4 5 5 3 4 5 5 3 4 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	19 0 14 0 11 0 7 0 9 0 14 0 3 5 0 14 0 3 5 0 6 1 6 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7	10 3 9 2 8 2 9 2 9 2 9 3 10 2 3 3 3 8 3 9 2 8 2 3 9 2 8 2 3 9 2 8 3 9 2 8 3 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9	7 15 10 12 13 12 13 12 13 7 14 14 14 14 14 14 14 14 14 12 14 14 15 9 15 3 15 10 12 9 12 10 7 9 12 10 7 9 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	15 15 15 15 15 15 15 15 15 15 15 15 15 1	$\begin{array}{c} -5 \\ -7 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -11 \\ -7 \\ -5 \\ -5 \\ -11 \\ -5 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -12 \\ -5 \\ -5 \\ -12 \\ -5 \\ -5 \\ -12 \\ -5 \\ -5 \\ -12 \\ -5 \\ -5 \\ -12 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -$	1.15 1.04 1.15 1.00 1.09 0.91 1.14 1.13 1.11 1.06 1.13 1.15 1.04 1.15 1.04 1.13 1.03 1.12 1.00 1.15 1.12 1.13 1.00 1.14 1.15 1.12 1.13 1.00			

Figure E.4 (Continued).

	PARAMET	TERS AND RATI	NGS USED 1	IN BARTON	N Q SYSTE	м	
INTERVAL	ROCK	RQD	Jn	Jr	Ja	Jw	SRF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST SCHIST	99 10 63 10 50 10 26 10 38 10 64 10 10 10 10 10 10 10 10 10 10	2.0 3.0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 3.0 20 6 20 6 20 6<	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$\begin{array}{c} 2.00\\ 2.00\\ 2.00\\ 5\\ 5\\ 2.00\\ 5\\ 2.00\\ 5\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 5\\ 5\\ 4.00\\ 2.00\\ 5\\ 4.00\\ 2.$		5.0 5.0 7.5 5.0 7.5 5.0 7.5 5.0 7.5 7.5 10.0 7.5 7.5 7.5 5.0 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 7.5 7.5 7.5 5.0 7.5 7.5 7.5 7.5 7.5 7.5 5.0 7.5 7.5 7.5 7.5 5.0 7.5 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 7.5 5.0 7.5 5.0 7.5 5.0 7.5 5.0 5.0 5.0

TNTEDVAT	DOCK TYDE	ROD	M-DMD	BAPTON-O
INIERVAL	ROCK TIPE	RQD	M-RMR	BARTON-Q
2.05 -42.05	SCHIST	95	58	4.75
2.05 -43.10	COUTOT	62	31	0.05
3.10 -43.50	CUICE	0	20	1.40
4 00 =44 30	COUTOT	50	20 52	1.67
4 30 -44 90	SCHICT	0	20	1.0/
4 90 -46 80	SCHIST	26	20	0.02
6 80 -47 40	SCHIST	0	16	0.50
7 40 -47 90	SCHIST	2.9	10 54	2 39
7 90 -48 95	SCHIST	0	24	0.05
8.95 -49.80	SCHIST	64	61	2 79
9.80 -50.50	SCHIST	0	22	0.01
0.50 -52.40	SCHIST	7	33	0.01
52.40 -54.20	SCHIST	14	43	0.04
4.20 -55.90	SCHIST	0	26	0.03
5.90 -57.40	SCHIST	20	45	0.44
7.40 -61.40	SCHIST	3	32	0.05
1.40 -62.40	SCHIST	20	39	0.44
2.40 -63.90	SCHIST	0	32	0.05
3.90 -64.50	SCHIST	33	46	0.55
4.50 -64.80	SCHIST	0	22	0.02
4.80 -65.40	SCHIST	0	35	0.22
5.40 -65.90	SCHIST	0	22	0.01
6.90 -67.65	SCHIST	0	29	0.01
7.65 -69.00	SCHIST	0	23	0.01
9.00 -72.80	SCHIST	0	29	0.02
2.80 -73.10	SCHIST	0	31	0.22
3.10 -73.50	SCHIST	0	19	0.03
3.50 -75.00	SCHIST	39	47	0.65
5.00 -75.25	SCHIST	0	26	0.05
5.25 -76.00	SCHIST	27	49	0.68

Figure E.4 (Continued).

INPUT PARAMETERS USED IN M-RMR SYSTEM															
INTERVAL	ROCK TYPE	STR	RQD	ICR	#/m	DSOR	GW	Id2	W	RD	RP	PRS	Ap	FT	FS
46.80 - 47.50	SCHIST	30	0	25	50	BST4	25	68	MW	-	-	-	-	3	H
47.50 - 48.00	SCHIST	1.9	94	100	4	0	25	98	SW	υ.	SR	н	0.5	0	-
48.00 - 48.80	SCHIST	30	0	25	50	BST4	25	76	MW	-	-	-	-	0	1-
48.80 - 49.15	SCHIST	1.9	34	100	14	0	25	98	MW	U.	R	L	0.0	3	H
49.15 - 50.00	SCHIST	30	12	25	50	BST3	25	65	MW	-	-	-	-	0	-
50.00 - 50.70	SCHIST	1.9	31	91	12	0	25	92	SW	U.	SR	H	0.0	3	H
50.70 - 52.90	SCHIST	30	5	19	50	BST4	25	76	MW	-	-	-	- 1	0	-
52.90 - 54.35	SCHIST	2.5	57	93	11	0	25	91	MW	U.	SR	H	0.0	3	H
54.35 - 55.10	SCHIST	10	0	8	500	BST2	25	50	HW	-	-	-	-	0	-
55.10 - 58.10	SCHIST	66	19	81	15	0	25	95	MW	U.	R	н	0.0	3	H
58.10 - 60.20	SCHIST	15	0	12	50	BST3	25	78	HW	-	-	-	-	0	-
60.20 - 61.50	SCHIST	2.4	77	92	6	0	25	96	SW	Ρ.	SR	H	0.5	0	-
61.50 - 64.50	SCHIST	20	7	20	50	BST4	25	65	MW	10	-	-	-	0	-
64.50 - 65.20	SCHIST	2.4	0	86	15	0	25	90	SW	U.	SR	H	0.5	0	-
65.20 - 66.70	SCHIST	15	0	4	50	BST4	25	65	MW	-	-	-		0	-
66.70 - 67.00	SCHIST	3.0	37	83	20	0	25	98	MW	U.	SR	H	0.5	0	-
67.00 - 68.10	schist	15	0	9	50	BST3	25	55	HW	-	-	-	-	0	-
68.10 - 68.70	SCHIST	3.0	28	75	13	0	25	0	MW	₽.	SR	н	0.5	0	-
68.70 - 69.10	SCHIST	15	0	13	50	BST3	25	50	HW	-	-	-	-	0	-
69.10 - 74.10	SCHIST	3.6	19	60	10	0	25	77	MW	Ρ.	SR	н	0.0	3	H
74.10 - 75.60	SCHIST	10	0	13	500	BST2	25	40	HW		-	-	-	0	-
75.60 - 76.20	RE-LST	3.0	0	25	50	BST4	25	85	MW	-	-	-		0	-
76.20 - 76.70	RE-LST	4.0	32	86	16	0	25	85	SW	Ρ.	SR	M	0.5	0	-
76.70 - 80.00	RE-LST	3.0	9	23	50	BST3	25	57	MW	-	-	-	-	0	-

GEOTECHNICAL LOG (CORE RECOVERY AND JOINT SPACING)										
INTERVAL		ROCK TYPE	T.C.R. (%)	I.C.R. (%)	RQD (%)	SPACING (mm)				
46.80 47.50 48.00 48.80 49.15 50.00 50.70 52.90 54.35 55.10 58.10 60.20 61.50 64.50 65.20 66.70	-47.50 -48.00 -49.15 -50.00 -50.70 -52.90 -54.35 -55.10 -60.20 -64.50 -65.20 -65.20 -67.00	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST	70 100 78 100 67 94 78 93 51 96 80 98 67 91 68 100	25 100 25 91 19 93 8 81 12 92 20 86 4 83	0 94 0 34 12 31 57 0 19 0 77 7 0 0 37	20 250 20 71 20 83 20 90 2 66 20 166 20 50				
67.00 68.10 68.70 69.10 74.10 75.60 76.20	-68.10 -68.70 -69.10 -74.10 -75.60 -76.20	SCHIST SCHIST SCHIST SCHIST RE-LST RE-LST	56 92 53 79 42 84 86	9 75 13 60 13 25	0 28 0 19 0 0	20 76 20 100 2 20				
76 70	-80 00	PF-LOT	E Q	22	0	20				

76.70 -80.00 RE-LST 58 23 9 20

Figure E.5 ROCKMASS outputs of the SK-6+570 borehole.

GEOTECHNICAL LOG (JOINT CONDITION)										
INTERVAL	ROC	ROCK TYPE		H. ROU	GHNESS	PERSIST.	APERT.	FILLING		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS SCHIS RE-LS RE-LS RE-LS	T T T T T T T T T T T T T T T T T T T	AND RATE	W W U. SW U. SW U. SW U. SW U. W U. W U. W U. W U. W U. W U. W U. W U. SW U. W U. SW U. SW U. W U. V. SW U. V. SW U. V. SW U. W U. SW U. W U. SW U. W U. SW	R R R SR SR SR SR SR SR SR SR SR SR SR S	H H H H H H H H H H H H H H H H H H H	0.5 0.01 0.01 0.01 0.5 0.5 0.5 0.5 0.5 0.5	3 H 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		
INTERVAL	ROCK	STRI	RQDI	JSI	JCI	GWI	JOI	Fc		
$\begin{array}{c} 46.80 & -47.50\\ 47.50 & -48.00\\ 48.00 & -48.80\\ 48.00 & -49.15\\ 49.15 & -50.00\\ 50.00 & -50.70\\ 50.70 & -52.90\\ 52.90 & -54.35\\ 54.35 & -55.10\\ 55.10 & -58.10\\ 55.10 & -68.10\\ 58.10 & -60.20\\ 61.50 & -64.50\\ 61.50 & -64.50\\ 64.50 & -65.20\\ 65.20 & -66.70\\ 65.70 & -67.00\\ 68.10 & -68.70\\ 68.10 & -68.70\\ 68.70 & -69.10\\ 68.10 & -74.10\\ 74.10 & -75.60\\ 75.60 & -76.20\\ 76.20 & -76.70\\ -80.00\\ \end{array}$	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST RE-LST RE-LST	5 5 5 5 3 7 3 6 4 6 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3	0 9 5 8 2 13 0 6 0 16 0 9 0 8 0 8 4	3 11 3 9 3 9 2 9 3 10 3 9 3 8 3 9 3 9 2 3 9 2 3 9 2 3 9 9 3	10 16 16 17 14 15 7 12 7 12 7 12 7 12 7 12 17 12 12 7 12 17 7 12 7 12 7 12 7 12 12 7 12 12 7 12 12 7 12 12 7 12 12 7 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 17 12 12 12 12 12 12 12 12 12 12	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-5 -5 -5 -5 -5 -5 -7 -5 -11 -5 -11 -5 -12 -5 -11 -5 -9 -5 -5 -5 -5 -5 -5 -12 -5 -5 -12 -5 -5 -12 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	0.95 1.14 1.00 1.14 0.94 1.10 1.00 1.00 1.00 1.12 1.01 1.13 0.94 1.09 0.94 1.14 0.85 1.12 1.01 0.94 1.09 0.94 1.14 0.85 1.00 0.94 1.14 0.85 1.00 0.94 1.00 0.85 0.094 1.00 0.85 0.094 1.00 0.85 0.094 1.00 0.85 0.00 0.85 0.00 0.94 1.00 0.85 0.00 0.94 0.00 0.94 0.00 0.00 0.00 0.94 0.00 0.0		

Figure E.5 (Continued).
	PARAMETERS	AND RATIN	IGS USED	IN BARTO	N Q SYSTE	М	
INTERVAL	ROCK	RQD	Jn	Jr	Ja	Jw	SRF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST RE-LST RE-LST	10 94 10 34 10 31 10 57 10 10 10 10 10 10 28 10 10 10 10 28 10 10 10 10 28 10 10 10 10 10 10 10 10 10 10	20 2.0 20 20 20 20 20 20 4.0 20 20 2.0 20 3.0 20 3.0 20 2.0 2.0 2.0 2.0 2.0 2.0 2.	1.0 2 1.0 2 1.0 2 1.0 2 1.0 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	.66 .66 .66 .66 .66 .66 .66 .66 .66 .66	$\begin{array}{c} 7.5\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 10.0\\ 7.5\\ 5.0\\ 10.0\\ 5.0\\ 10.0\\ 5.0\\ 7.5\\ 7.5\\ 7.5\\ 7.5\\ 7.5\\ 7.5\\ 7.5\\ 7.5$
INTERVAL	ROCK TYP	E R	QD	M	-RMR	BAR	TON-Q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST RE-LST RE-LST	0 0 3 12 3 5 0 19 0 19 0 3 0 28 0 3 0 28 0 0 19 0 3 9 3	94 4 57 77 7	19 27 28 33 27 4 11 33 18 26 4 17 4 15 27 16 34 27 16 34 27	58 42 3 39 3 52 4 15 2 0 4	0.01 4.14 0.03 1.50 0.04 1.36 0.03 1.25 0.01 0.42 0.03 1.69 0.03 1.69 0.03 1.69 0.03 1.69 0.03 0.29 0.03 1.63 0.31 0.03 0.31 0.02 1.41 0.02	

Figure E.5 (Continued).

	INPU	r pai	RAME	rers	USEI	DINI	M-RMF	R SYS	STEP	4					
INTERVAL	ROCK TYPE	STR	RQD	ICR	#/m	DSOR	GW	Id2	W	RD	RP	PRS	Ар	FT	F
0.00 - 7.50	LIMEST	10	0	2	500	BST2	0	22	HW	-	-	-	-	0	-
7.50 - 16.00	LIMEST	10	9	13	500	BST2	0	24	HW	-	-	-	-	0	-
16.00 - 33.50	LIMEST	20	1	1	500	BST2	0	29	HW		-	-	-	0	-
33.50 - 48.00	LIMEST	10	8	16	500	BST2	0	24	HW	10	-	-	-	0	-
48.00 - 49.00	LIMEST	5.0	40	53	4	0	0	51	MW	U.	R	L	3.0	0	
49.00 - 52.00	LIMEST	5.0	15	58	11	0	0	77	HW	P.	SR	L	0.5	0	-

Figure E.6 ROCKMASS outputs of the SK-6+880 borehole.

INI	ERVAL	ROCK TYPE	T.C.R. (%)	I.C.R. (%)	RQD (%)	SPACING (um
0.00	-7.50	LIMEST	23	2	0	2
16 00	-16.00	LIMEST	25	13	9	2
33.50	-48.00	LIMEST	25	16	8	2
48.00	-49.00	LIMEST	53	53	40	250
49.00	-52.00	LIMEST	80	58	15	90

		GEOTECHN	NICAL LOG	(JOINT CONDI	TION)			
INT	ERVAL	ROCK TYPE	WEATH.	ROUGHNESS	PERSIST.	APERT.	FILLI	NG
0.00 7.50 16.00 33.50 48.00 49.00	-7.50 -16.00 -33.50 -48.00 -49.00 -52.00	LIMEST LIMEST LIMEST LIMEST LIMEST LIMEST	HW HW HW HW HW MW	- - - P. R SR	L L L	- - - 3.0 0.5	0 0 0 0 0 0	

	PAR	AMETERS	AND RAT	INGS USE	D IN M-RMR	SYSTEM		
INTERVAL	ROCK	STRI	RQDI	JSI	JCI	GWI	JOI	Fc
0.00 -7.50 7.50 -16.00 16.00 -33.50 33.50 -48.00 48.00 -49.00 49.00 -52.00	LIMEST LIMEST LIMEST LIMEST LIMEST LIMEST	3 3 4 3 9 9	0 4 0 4 10 5	2 2 2 11 9	12 12 12 12 12 18 15	15 15 15 15 15	-12 -9 -12 -8 -5 -5	0.70 0.71 0.74 0.71 0.86 1.03

	PARAME	TERS AND RA	TINGS USED	IN BART	ON Q SYSTE	M	
INTERVAL	ROCK	RQD	Jn	Jr	Ja	Jw	SRF
0.00 -7.50 7.50 -16.00 16.00 -33.50 33.50 -48.00 48.00 -49.00 49.00 -52.00	LIMEST LIMEST LIMEST LIMEST LIMEST	10 10 10 10 40 10	20 20 20 20 20 3.0	1.0 1.0 1.0 1.0 3 1.0	8 8 8 5 2.00 2.00		10.0 10.0 10.0 7.5 5.0 2.5

	FINAL CLASSIFICATION LOGS											
INTERVAL	ROCK TYPE	RQD	M-RMR	BARTON-Q								
0.00 -7.50	LIMEST	0	15	0.01								
6.00 -33.50 3.50 -48.00	LIMEST	1 8	17	0.01								
8.00 -49.00	LIMEST	40	53	6.0								

Figure E.6 (Continued).

										_					
INTERVAL	ROCK TYPE	STR	RQD	ICR	#/m	DSOR	GW	Id2	W	RD	RP	PRS	Ap	FT	FS
15.30 - 21.10	CONGLO	15	94	99	3	0	0	99	HW	Р.	VR	L	3.0	0	-
21.10 - 21.30	SHALE	5.0	0	25	50	BST4	0	20	HW		-	-	-	0	-
21.30 - 23.38	CONGLO	15	93	100	3	0	0	99	MW	Ρ.	SR	H	0.5	0	-
23.38 - 26.05	SHALE	5.0	45	70	6	0	0	25	MW	Ρ.	SR	H	0.5	0	-
26.05 - 29.60	SH-SST	10	85	89	3	0	0	30	MW	Ρ.	SR	H	0.5	0	-
29.60 - 31.00	SH-SST	10	0	25	50	BST4	0	30	HW		-	-	-	0	-
31.00 - 31.40	SH-SST	10	28	100	15	0	0	30	SW	Ρ.	SR	H	0.5	0	-
31.40 - 35.00	SST	10	60	82	4	0	0	3	MW	Ρ.	SR	H	0.5	0	-
35.00 - 41.00	SST	10	78	97	4	0	0	10	MW	Ρ.	SR	M	0.5	0	-
41.00 - 43.30	SST	10	76	85	5	0	0	20	MW	P.	SR	M	0.5	0	-
43.30 - 45.00	SH-SST	10	42	79	8	0	0	30	MW	Ρ.	SR	M	0.5	0	-

INT	ERVAL	ROCK TYPE	T.C.R. (%)	I.C.R. (%)	RQD (%)	SPACING (mm)
15.30	-21.10	CONGLO	99	99	94	333
21.10	-21.30	SHALE	80	25	0 03	20
3.38	-26.05	SHALE	71	70	45	166
6.05	-29.60	SH-SST	90	89	85	333
9.60	-31.00	SH-SST	74	25	0	20
1.00	-31.40	SH-SST	100	100	28	66
1.40	-35.00	SST	87	82	60	250
5.00	-41.00	SST	99	97	78	250
1.00	-43.30	SST	85	85	76	200
3.30	-45.00	SH-SST	86	79	42	125

GEOTECHNICAL LOG (CORE RECOVERY AND JOINT SPACING)

		GEOTE	CHNICAL	LOG (JOIN	r coi	NDIJ	rion)	7	1			
INTERVA	LF	OCK TYP	E WE	ATH.	RÓU	HNE	35	PERS	IST.	APE	RT.	FILL:	ING
15.30 -21 21.10 -21 21.30 -23 23.38 -26 26.05 -29 29.60 -31 31.00 -31 31.40 -35 35.00 -41 41.00 -43 43.30 -45	.10 CON .30 SHA .38 CON .05 SHA .60 SH- .40 SH- .00 SST .30 SST .30 SST	IGLO ALE IGLO ALE -SST -SST -SST C -SST		HW HW MW MW HW SW MW MW MW MW	P. P. P. P. P. P. P.		VR VR SR SR SR SR SR SR SR	H H H H	L L M M		3.0		

Figure E.7 ROCKMASS outputs of the SK-7+130 borehole.

INTERVAL	ROCK	STRI	RQDI	JSI	JCI	GWI	JOI	FC
L5.30 -21.10 21.30 -21.30 21.30 -23.38 23.38 -26.05 26.05 -29.60 29.60 -31.00 31.40 -35.00 35.00 -41.00 41.00 -43.30	CONGLO SHALE CONGLO SHALE SH-SST SH-SST SST SST SST SST SST SST	323233333333	19 0 19 10 17 0 8 13 16 16	12 3 10 12 3 9 11 11 11	14 16 13 13 13 16 14 13 14 14	15 15 15 15 15 15 15 15 15 15 15	- 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.1 0.70 1.1 0.72 0.75 0.75 0.75 0.61 0.65 0.70 0.75

INTERVAL	ROCK	RQD	Jn	Jr	Ja	Jw	SRF
15.30 -21.10 21.10 -21.30 21.30 -23.38 32.38 -26.05 26.05 -29.60 29.60 -31.00 31.00 -31.40 31.40 -35.00 35.00 -41.00 41.00 -4.30 43.30 -45.00	CONGLO SHALE CONGLO SHALE SH-SST SH-SST SST SST SST SST SST SST	94 10 93 45 85 10 28 60 78 76 42	2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.5 1.0 1.0 1.5	0.75 8 0.75 0.75 0.75 8 4.00 3.00 0.75 0.75 0.75		5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

		FINAL CLASSIFICAT	ION LOGS	
INTERVAL	ROCK TYPE	RQD	M-RMR	BARTON-Q
15.30 -21.10 21.10 -21.30 21.30 -23.38 23.38 -26.05 26.05 -29.60 29.60 -31.00 31.00 -31.40 31.40 -35.00	CONGLO SHALE CONGLO SHALE SH-SST SH-SST SH-SST SST SST	94 0 45 85 0 28 60	63 25 62 38 46 27 36 38	18.8 0.01 18.6 4.00 7.6 0.01 0.47 2.00
5.00 -41.00 1.00 -43.30 13.30 -45.00	SST SST SH-SST	78 76 42	42 43 40	6.9 6.8 5.6

Figure E.7 (Continued).

Γ

ſ

			_							-						
INTER	VAL	ROCK TYPE	STR	RQD	ICR	#/m	DSOR	GW	Id2	W	RD	RP	PRS	Ap	FT	FS
0.00 -	6.00	SCHIST	2.0	0	0	999	BST1	0	15	D	-	-	-	-	0	-
6.00 -	20.95	SCHIST	2.0	2	7	500	BST2	0	20	VH	-	-	-	-	0	-
20.95 -	21.40	SCHIST	2.0	27	87	22	0	0	95	HW	P.	R	M	0.0	3	н
21.40 -	25.32	SCHIST	2.0	3	9	500	BST2	0	25	HW	-	-	-	-	0	-
25.32 -	26.20	SCHIST	2.0	82	97	9	0	0	95	MW	P.	SR	М	0.0	3	H
26.20 -	26.70	SCHIST	2.0	0	0	50	BST2	0	40	HW	-	-	-	-	0	-
26.70 -	26.95	SCHIST	2.0	52	100	12	0	0	97	SW	Ρ.	SR	H	0.5	0	-
26.95 -	27.25	SCHIST	2.0	0	0	50	BST3	0	82	HW	-	-	-	- 1	3	H
27.25 -	27.55	SCHIST	2.0	40	100	10	0	0	97	SW	P.	SR	н	0.0	3	H
27.55 -	27,90	SCHIST	2.0	0	13	10	BST3	0	97	HW	- 1	- 1	-	-	3	H
27.90 -	28.40	SCHIST	2.0	30	96	12	0	0	93	SW	Ρ.	SR	H	0.0	3	H
28.40 -	30.50	SCHIST	2.0	0	21	50	BST3	0	57	MW	-	-		-	0	-
30.50 -	33.00	SCHIST	2.0	16	63	8	0	0	68	MW	Ρ.	SR	H	0.5	0	-
33.00 -	33.60	SCHIST	2.0	0	10	50	BST3	0	77	MW	-	-		-	6	H
33.60 -	34.25	SCHIST	2.0	22	34	6	0	0	63	MW	Ρ.	SR	H	0.5	0	-
34.25 -	36.00	SCHIST	2.0	68	93	8	0	0	94	MW	Ρ.	SR	H	0.5	0	-
36.00 -	36.40	SCHIST	2.0	0	73	27	0	0	70	MW	Ρ.	SR	H	0.5	0	-
36.40 -	37.50	SCHIST	2.0	0	7	500	BST2	0	48	VH	-	-	-	-	3	H
37.50 -	40.80	SCHIST	2.0	21	53	8	0	0	63	MW	Ρ.	SR	H	0.0	3	H
40.80 -	41.30	SCHIST	2.0	0	0	500	BST2	0	70	HW	-	-	-	-	0	-
41.30 -	41.80	SCHIST	2.0	38	92	8	0	0	89	MW	Ρ.	R	H	0.0	3	H
41.80 -	43.20	SCHIST	2.0	0	24	50	BST3	0	68	MW	-	-	-	-	3	H
43.20 -	44.55	SCHIST	2.0	25	68	11	0	0	84	MW	P.	SR	M	0.0	9	H
44.55 -	46.00	SCHIST	2.0	12	25	50	BST4	0	77	MW	-	-	-		3	H

INPUT PARAMETERS USED IN M-RMR SYSTEM

GEOTECHNICAL	LOG	(CORE	RECOVERY	AND	JOINT	SPACING)	

INTERVAL	ROCK TYPE	T.C.R. (%)	I.C.R. (%)	RQD (%)	SPACING (mm)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST SCHIST	16 23 98 25 99 40 100 87 100 86 96 59 71 80 65 97 73 50 65 72 92 71 80 80	0 7 9 9 7 0 100 0 100 100 100 100 13 96 21 63 10 34 93 73 7 53 0 92 24 68 25	$ \begin{array}{c} 0 \\ 2 \\ 27 \\ 3 \\ 82 \\ 0 \\ 52 \\ 0 \\ 68 \\ 0 \\ 21 \\ 0 \\ 38 \\ 0 \\ 25 \\ 12 \\ 0 \\ 12 \\ 12 \\ 0 \\ 12 \\ 12 \\ 0 \\ 12 \\ 12 \\ 0 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	1 2 45 2 111 20 83 20 100 100 83 20 125 20 125 37 2 125 2 125 20 90 20

Figure E.8 ROCKMASS outputs of the SK-7+250 borehole.

			T			1
INTERVAL	ROCK TYPE	WEATH .	ROUGHNESS	PERSIST.	APERT.	FILLING
0.00 -6.00 6.00 -20.95 20.95 -21.40 21.40 -25.32 25.32 -26.20 26.20 -26.70 26.70 -26.95 27.25 -27.55 27.25 -27.55 27.55 -27.90 27.90 -28.40 28.40 -30.50 30.50 -33.00 33.60 -33.60 33.60 -34.25 34.25 -36.00 36.40 -37.50 37.50 -40.80 40.80 -41.30 41.30 -43.20 43.20 -44.52	SCHIST SCHIST	D VHW HW HW SW HW SW HW SW MW MW MW MW MW MW MW MW MW MW MW MW MW	P. R P. SR P. SR P. SR P. SR P. SR P. SR P. SR P. SR P. SR P. SR P. SR P. SR P. SR P. SR		0.01 0.01 0.5 0.01 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	

	PAR	AMETERS	AND RAT	INGS USE	D IN M-RMR	SYSTEM		
INTERVAL	ROCK	STRI	RQDI	JSI	JCI	GWI	JOI	Fc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST	ទ ធ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	0 1 7 1 17 0 12 0 10 0 8 0 5 0 7 14 0 0 7 14 0 0 7 5 7 5	1 2 8 2 9 3 9 9 9 9 9 3 10 3 10 10 2 10 2 10 3 9 3	8 11 9 12 9 12 14 8 7 15 13 4 13 13 13 6 7 12 7 9 4 10	15 15 15 15 15 15 15 15 15 15 15 15 15 1	$\begin{array}{c} -12\\ -11\\ -5\\ -11\\ -5\\ -12\\ -5\\ -12\\ -5\\ -5\\ -9\\ -5\\ -5\\ -5\\ -10\\ -5\\ -5\\ -5\\ -11\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5$	0.67 0.70 1.12 0.72 1.12 0.80 1.13 1.13 1.13 1.13 1.13 1.13 1.11 0.89 0.95 1.01 0.92 1.11 0.97 0.84 0.97 1.08 0.97 1.08 0.95 1.01

Figure E.8 (Continued).

	PARAMET	ERS AND RATI	NGS USED 1	IN BARTOI	I Q SYSTE	M	
INTERVAL	ROCK	RQD	Jn	Jr	Ja	Jw	SRF
0.00 - 6.00 6.00 - 20.95 20.95 - 21.40 21.40 - 25.32 25.32 - 26.20 26.70 - 26.95 27.55 - 27.25 27.25 - 27.25 27.55 - 27.90 28.40 - 30.50 33.00 - 33.60 33.00 - 34.25 34.25 - 36.00 36.00 - 36.40 36.00 - 34.25 34.25 - 40.80 41.30 - 41.30 41.30 - 41.80 43.20 - 44.55	SCHIST SCHIST	10 10 27 10 82 10 52 10 40 10 10 10 10 10 10 10 10 10 1	20 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	1.0 1.0 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8 8 2.00 5 2.00 5 0.75 4.00 4.00 2.00 2.00 2.00 2.00 2.00 1.00 2.00 5 2.00 5 5 2.00 4.00 2.00 2.00 2.00 2.00 2.00 2.00		$ \begin{array}{c} 10.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 7.5\\ 5.0\\ 7.5$

		FINAL CLASSIFICA	FION LOGS	
INTERVAL	ROCK TYPE	RQD	M-RMR	BARTON-Q
$\begin{array}{ccccc} 0.00 & -6.00 \\ 6.00 & -20.95 \\ 20.95 & -21.40 \\ 21.40 & -25.32 \\ 25.32 & -26.20 \\ 26.70 & -26.95 \\ 26.95 & -27.25 \\ 27.25 & -27.55 \\ 27.55 & -27.90 \\ 28.40 & -30.50 \\ 30.50 & -33.00 \\ 33.00 & -33.60 \\ 33.00 & -34.25 \\ 34.25 & -36.00 \\ 36.00 & -36.40 \\ 37.50 & -40.80 \\ 40.80 & -41.30 \\ 41.30 & -41.80 \\ 41.30 & -43.20 \\ 43.20 & -44.55 \\ 44.55 & -46.00 \end{array}$	SCHIST SCHIST	$ \begin{array}{c} 0 \\ 2 \\ 27 \\ 3 \\ 0 \\ 52 \\ 0 \\ 52 \\ 0 \\ 52 \\ 0 \\ 52 \\ 0 \\ 52 \\ 68 \\ 0 \\ 21 \\ 0 \\ 38 \\ 0 \\ 21 \\ 0 \\ 38 \\ 0 \\ 21 \\ 0 \\ 21 \\ 0 \\ 21 \\ 0 \\ 21 \\ 0 \\ 21 \\ 0 \\ 22 \\ 58 \\ 0 \\ 0 \\ 21 \\ 0 \\ 21 \\ 0 \\ 25 \\ 12 \\ 0 \\ 25 \\ 12 \\ 0 \\ 0 \\ 25 \\ 12 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	1.3 1.3 1.3 1.3 1.3 1.3 1.5 2.0 5.4 2.0 4.4 3.0 4.2 1.7 4.3 5.5 3.5 5.5 3.7 2.2 4.3 2.6 3.3 3.3	0.01 0.01 0.90 0.02 5.5 0.02 4.62 0.03 0.67 0.03 1.00 0.05 0.36 0.03 0.73 4.53 0.33 0.02 0.23 0.02 1.27 0.03 0.56 0.02

Figure E.8 (Continued).

Γ

	Borehole No	SK	-6+0)50									SK	-6+1	80												S	K-6	+28	0		
	Structural Domain Number	1			1	2	3	4	5	6	7 8	3 9	10	11	12	13	14 1	5 10	6 17	18	19	20	21		1	2	3	4	5	6	7	8
	Parameters	Rati	ng	Ē									R	lating	J									Ī				Rat	ing			
1	PL/UCS	3		F	6	3	6	2	6	2	6 3	3 5	3	5	1	3	2	7	2 7	2	3	3	7		8	9	8	9	8	9	8	8
2	RQD	3		F	9	3	13	3	7	3	9 !	5 10	3	5	3	7	3 1	0	37	3	3	3	12	Ī	3	10	3	5	3	5	3	3
3	SPACING	5			5	5	6	5	5	5	6 !	5 6	5	5	5	5	5	6	55	5	5	5	6		5	6	5	5	5	5	5	5
4	DISCONTINUITY			- E																												
	persistence	1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1		1	1	1	1	1	1	1	1
	separation	1			4	6	4	6	4	6	4 6	6 4	6	4	6	4	4	4 4	4 4	4	6	6	4		6	4	6	4	4	4	4	4
	rougness	5		L	3	3	3	3	3	3	3 3	3 3	3	5	3	3	3	1 ;	31	3	3	3	5		4	6	4	6	6	4	6	6
	infilling	2		L	4	4	6	4	6	4	6 4	1 4	4	6	4	6	6	6 (66	6	6	4	6		3	5	3	5	3	5	3	3
	weathering	1		L	5	3	6	1	5	1	3 .	1 5	3	5	1	5	3	3 3	3 3	3	3	1	3		3	5	3	3	3	3	3	3
5	GROUNDWATER	15		L	7	7	7	7	7	7	7	7 7	7	7	7	7	7	7	77	7	7	7	7		15	15	15	15	15	15	15 1	15
6	ORIENTATION	-5		L	-5	-5	-5	-5	-5	-5	-5 -{	5 -5	-5	-5	-5	-5	-5 -	5 -	5 -5	-5	-5	-5	-5	ļ	-5	-5	-5	-5	-5	-5	-5 -	-5
	RMR-Basic	36			44	35	52	32	44 3	32 4	45 3t	5 45	35	43	31	41	34 4	5 3	4 41	34	37	33	51		48	61	48	53	48	51	48 4	18
	RMRo	31			39	30	47	27 3	39 2	27 4	40 30	40	30	38	26	36	29 4	0 29	9 36	29	32	28	46		43	56	43	48	43	46	43 4	13
	1																															
	Borehole No														SK-	6+4	00															
	Borehole No Structural Domain Number	1	2	3	4	5	6	7	8	9 1	10 1 [.]	12	13	14	SK- 15	6+4)0 17 1	8 19	9 20	21	22	23	24	25	26	27	28	29	30	31		
	Borehole No Structural Domain Number Parameters	1	2	3	4	5	6	7	8	9	10 1	12	13	14	SK- 15 Ra	6+40 16 ating)0 17 1	8 19	9 20	21	22	23	24	25	26	27	28	29	30	31		
1	Borehole No Structural Domain Number Parameters PL/UCS	1	2	3	4	5	6	7	8	9 1	10 1 ⁻ 2 9	1 12	13	14	SK- 15 Ra 2	6+40 16 ating 8	DO 17 1 3	8 19	9 20 3 5	21	22 5	23 2	24 3	25 2	26 3	27 5	28	29 5	30 2	31		
1	Borehole No Structural Domain Number Parameters PL/UCS RQD	1 7 19	2	3 7 13	4	5 7 10	6 2 3	7 9 6	8 2 3	9 1 9 8	10 1 2 9 3 13	12 2 3	13 3 4	14 3 4	SK- 15 Ra 2 3	6+40 16 ating 8 5	DO 17 1 3 3	8 19 8 3 5 3	9 20 3 5 3 7	21 2 3	22 5 3	23 2 3	24 3 3	25 2 3	26 3 3	27 5 3	28 2 3	29 5 8	30 2 3	31 5 6		
1 2 3	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING	1 7 19 7	2 3 3 5	3 7 13 6	4 2 3 5	5 7 10 5	6 2 3 5	7 9 6 5	8 2 3 5	9 9 8 6	10 1 ⁻ 2 9 3 10 5 0	1 12 9 2 3 3 6 5	13 3 4 5	14 3 4 5	SK- 15 Ra 2 3 5	6+40 16 ating 8 5 5	DO 17 1 3 5	8 19 8 3 5 3 6 9	9 20 3 5 3 7 5 6	21 2 3 5	22 5 3 5	23 2 3 5	24 3 3 5	25 2 3 5	26 3 3 5	27 5 3 5	28 2 3 5	29 5 8 6	30 2 3 5	31 5 6 5		
1 2 3 4	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING DISCONTINUITY	1 7 19 7	2 3 3 5	3 7 13 6	4 2 3 5	5 7 10 5	6 2 3 5	7 9 6 5	8 2 3 5	9 9 8 6	10 1 ⁻ 2 9 3 10 5 0	1 12 9 2 3 3 5 5	13 3 4 5	14 3 4 5	SK- 15 Ra 2 3 5	6+40 16 ating 8 5 5	DO 17 1 3 3 5	8 19 8 3 5 3 6 9	9 20 3 5 3 7 5 6	21 2 3 5	22 5 3 5	23 2 3 5	24 3 3 5	25 2 3 5	26 3 3 5	27 5 3 5	28 2 3 5	29 5 8 6	30 2 3 5	31 5 6 5		
1 2 3 4	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING DISCONTINUITY persistence	1 7 19 7	2 3 3 5 1	3 7 13 6 1	4 2 3 5 1	5 7 10 5 1	6 2 3 5 1	7 9 6 5 1	8 2 3 5 1	9 - 9 8 6 1	10 1 ⁻ 2 9 3 10 5 0 1	1 12 9 2 3 3 5 5 1 1	13 3 4 5 1	14 3 4 5 1	SK- 15 Ra 2 3 5 1	6+40 16 ating 8 5 5 5	D0 17 1 3 3 5 1	8 19 8 3 5 3 6 9 1	9 20 3 5 3 7 5 6 1 1	21 2 3 5 1	22 5 3 5 1	23 2 3 5 1	24 3 3 5 1	25 2 3 5 1	26 3 3 5 1	27 5 3 5	28 2 3 5 1	29 5 8 6	30 2 3 5 1	31 5 6 5 4		
1 2 3 4	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING DISCONTINUITY persistence separation	1 7 19 7 1 6	2 3 3 5 1 4	3 7 13 6 1 1 6	4 2 3 5 1 4	5 7 10 5 1 4	6 2 3 5 1 4	7 9 6 5 1 4	8 2 3 5 1 6	9 1 9 8 6 1 4	10 1 ⁻ 2 9 3 13 5 6 1 - 4 4	1 12 9 2 3 3 5 5 1 1 1 4	13 3 4 5 1 1 4	14 3 4 5 1 4	SK- 15 Ra 2 3 5 1 4	6+4 16 ating 8 5 5 5 1 4	DO 17 1 3 3 5 1 4	8 19 8 3 5 3 6 9 1 7	9 20 3 5 3 7 5 6 1 1 1 4	21 2 3 5 1 4	22 5 3 5 1 6	23 2 3 5 1 4	24 3 3 5 1 1 6	25 2 3 5 1 4	26 3 3 5 1 6	27 5 3 5 1 6	28 2 3 5 1 6	29 5 8 6 1 6	30 2 3 5 1 4	31 5 6 5 4 4		
1 2 3 4	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING DISCONTINUITY persistence separation rougness	1 7 19 7 1 6 3	2 3 3 5 1 4 3	3 7 13 6 1 6 1 6	4 2 3 5 1 4 3	5 7 10 5 1 4 3	6 2 3 5 1 4 3	7 9 6 5 1 4 3	8 2 3 5 1 6 3	9 9 8 6 1 4 3	10 1 1 2 9 3 13 5 0 1 1 4 4 3 3	1 12 2 2 3 3 5 5 1 1 1 4 3 3	13 3 4 5 1 1 4 3	14 3 4 5 1 1 4 3	SK- 15 Ra 2 3 5 1 4 3	6+4 16 ating 8 5 5 5 1 4 3	DO 17 1 3 3 5 1 4 3	8 19 8 3 5 3 6 9 1 3 3 3	9 20 3 5 3 7 5 6 1 1 4 4 3 3	21 2 3 5 1 4 3	22 5 3 5 1 6 3	23 2 3 5 1 4 3	24 3 3 5 1 6 3	25 2 3 5 1 4 3	26 3 5 1 6 3	27 5 3 5 1 6 3	28 2 3 5 1 6 3	29 5 8 6 1 6 1	30 2 3 5 1 4 3	31 5 6 5 4 4 5		
	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING DISCONTINUITY persistence separation rougness infilling	1 7 19 7 1 6 3 4	2 3 5 1 4 3 6	3 7 13 6 1 6 1 4	4 2 3 5 1 4 3 6	5 7 10 5 1 4 3 6	6 2 3 5 1 4 3 6	7 9 6 5 1 4 3 6	8 2 3 5 1 6 3 4	9 9 8 6 1 4 3 6	10 1 ⁻¹ 2 9 3 11 5 6 1	0 2 0 2 3 3 3 3 5 5 5 5 1 1 1 1 1 4 4 4 3 3 6 6	13 3 4 5 1 1 4 3 6	14 3 4 5 1 4 3 6	SK- 15 Ra 2 3 5 1 1 4 3 6	6+40 16 atting 8 5 5 5 1 4 3 6	DO 17 1 3 3 5 1 4 3 6	8 19 8 3 5 3 6 9 7 1 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9 20 3 5 3 7 5 6 1 1 4 4 3 3 6 4	21 2 3 5 1 4 3 6	22 5 3 5 1 6 3 4	23 2 3 5 1 4 3 6	24 3 3 5 1 6 3 4	25 3 5 1 4 3 6	26 3 3 5 1 6 3 4	27 5 3 5 1 6 3 4	28 2 3 5 1 6 3 4	29 5 8 6 1 6 1 4	30 2 3 5 1 4 3 6	31 5 6 5 4 4 5 4		
	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING DISCONTINUITY persistence separation rougness infilling weathering	1 7 19 7 1 6 3 4 5	2 3 3 5 1 4 3 6 3	3 7 13 6 1 6 1 4 3	4 2 3 5 1 4 3 6 1	5 7 10 5 1 4 3 6 3	6 2 3 5 1 4 3 6 1	7 9 6 5 1 4 3 6 3	8 3 5 1 6 3 4 1	9 9 8 6 1 4 3 6 5	10 1 ⁻¹ 2 9 3 10 5 0 1	1 12 9 2 33 33 55 55 1 1 4 4 33 33 56 66 1 1	13 3 4 5 1 1 4 3 6 6	14 3 4 5 1 4 3 6 3	SK - 15 2 3 5 1 4 3 6 3	6+40 16 ating 8 5 5 1 4 3 6 3	3 3 5 1 4 3 6 3	8 19 8 5 3 6 9 1 9 3 3 3 2 0	9 20 3 5 3 7 5 6 1 1 4 4 3 3 6 4 3 3	21 2 3 5 1 4 3 6 1	22 5 3 5 1 6 3 4 3	23 2 3 5 1 4 3 6 1	24 3 3 5 1 6 3 4 3	25 2 3 5 1 1 4 3 6 1	26 3 3 5 1 6 3 4 3	27 5 3 5 1 6 3 4 3	28 2 3 5 1 6 3 4 3	29 5 8 6 1 6 1 4 3	30 2 3 5 1 1 4 3 6 3 3	31 5 6 5 4 4 5 4 3		
	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING DISCONTINUITY persistence separation rougness infilling weathering GROUNDWATER	1 7 19 7 1 6 3 4 5 15	2 3 3 5 5 1 4 3 6 3 15	3 7 13 6 1 6 1 4 3 15	4 2 3 5 1 4 3 6 1 1 5	5 7 10 5 1 4 3 6 3 15	6 3 5 1 4 3 6 1 1 5	7 9 6 5 1 4 3 6 3 15	8 3 5 1 6 3 4 1 15 1	9 8 6 1 4 3 6 5 5	10 1 ⁻ 2 9 3 10 5 0 1 - 4 4 3 0 6 0 1 - 15 15	12 12 2 3 3 3 5 5 6 1	13 3 4 5 1 1 4 3 6 1 1 5	14 3 4 5 1 1 4 3 6 3 15	SK- 15 2 3 5 5 1 4 3 6 3 15	6+40 16 ating 8 5 5 1 4 3 6 3 15	3 3 5 1 4 3 6 3 15	8 1 8 1 5 1 6 4 3 1 2 0 3 1 5 1	9 20 3 5 3 7 5 6 1 1 4 4 3 3 6 4 3 3 5 15	21 3 5 1 4 3 6 1 1 5	22 5 3 5 1 6 3 4 3 4 3 15	23 2 3 5 1 4 3 6 1 1 5	24 3 3 5 1 6 3 4 3 15	25 3 5 1 4 3 6 1 15	26 3 3 5 1 6 3 4 3 15	27 5 3 5 1 6 3 4 3 15	28 2 3 5 1 6 3 4 3 15	29 5 8 6 1 6 1 4 3 15	30 2 3 5 5 1 4 3 6 3 15	31 5 6 5 4 4 5 4 3 15		
1 2 3 4 5 6	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING DISCONTINUITY persistence separation rougness infilling weathering GROUNDWATER ORIENTATION	1 19 7 19 7 1 6 3 4 5 5 5 5	2 3 3 5 5 1 4 3 6 3 15 -5	3 7 13 6 1 1 6 1 1 4 3 15 -5	4 3 5 1 4 3 6 1 15 -5	5 10 5 1 4 3 6 3 15 -5	6 2 3 5 1 4 3 6 1 15 -5	7 9 6 5 1 4 3 6 3 15 -5	8 2 3 5 1 6 3 4 1 15 1 5	9 9 8 6 1 4 3 6 5 15 -5	10 1 2 9 3 1 5 0 1 - 4 - 3 3 6 0 1 - -5 -	12 12 2 2 3 3 3 4 4 4 5 6 1 1 5 5 5 5	13 3 4 5 1 4 3 6 1 15 -5	14 3 4 5 1 1 4 3 6 3 15 5 -5	SK - 15 2 3 5 5 1 1 4 3 6 3 15 -5	6+4 16 16 8 5 5 5 5 1 4 3 6 3 15 -5	3 3 5 1 4 3 6 3 15 15	8 1 8 5 5 5 6 4 2 0 3 5 5 1 5 1 5 1	9 20 3 5 3 7 5 6 1 1 4 4 3 3 6 4 3 3 5 15 5 -5	21 3 5 1 4 3 6 1 15 -5	22 5 3 5 1 1 6 3 3 4 3 4 3 15 -5	23 2 3 5 1 1 4 3 6 1 15 55	24 3 3 5 1 6 3 4 3 15 -5	25 3 5 1 1 4 3 6 1 15 -5	26 3 3 5 1 6 3 4 3 15 -5	27 5 3 5 1 6 3 4 3 15 -5	28 2 3 5 1 6 3 4 3 15 -5	29 5 8 6 1 6 1 4 3 15 -5	30 2 3 5 5 1 1 4 3 6 3 15 -5	31 5 6 5 4 4 5 4 3 15 -5		
1 2 3 4 5 6	Borehole No Structural Domain Number Parameters PL/UCS RQD SPACING DISCONTINUITY persistence separation rougness infilling weathering GROUNDWATER ORIENTATION RMR-Basic	1 7 19 7 1 6 3 4 5 15 -5 67	2 3 3 5 5 1 1 4 3 6 3 3 15 -5 43	3 7 13 6 1 1 6 1 1 4 3 15 5 5 5 6	4 2 3 5 4 0 4 4 4 3 5 5 40	5 7 10 5 4 3 6 3 15 -5 54	6 3 5 1 4 3 6 1 1 5 -5 40	7 9 6 5 1 4 3 6 3 15 -5	8 2 3 5 1 6 3 4 1 15 1 5 4 0 4 0 5	9 9 8 6 1 4 3 6 5 -5 57 4	10 1 2 2 3 1 5 6 1 2 4 4 3 3 6 6 1 2 5 -5 -5 -4 40 58	12 12	13 3 4 5 1 1 4 3 6 1 15 -5 42	14 3 4 5 1 1 4 3 6 3 3 15 -5 44	SK - 15 2 3 5 5 1 4 3 6 3 15 -5 42	6+4 16 ating 8 5 5 1 4 3 6 3 15 -5 50 4	3 3 3 5 1 4 3 6 3 15 1 -5 -43	8 11 8 5 5 5 6 4 7 7 8 1 1 1 6 4 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 8 1 9 4	3 5 3 7 3 7 5 6 1 1 1 4 4 4 3 3 5 15 5 -5 5 15 5 -5 5 -5 3 3 4 4 4 4 4 4 5 15 5 15 5 -5 4 4	21 2 3 5 5 1 1 4 3 6 1 1 5 5 5 40	22 5 3 5 5 1 1 6 3 4 3 4 3 15 -5 45	23 2 3 5 5 1 1 4 3 6 1 1 5 5 5 40	24 3 3 5 1 6 3 4 3 15 -5 43	25 2 3 5 5 1 1 4 3 6 1 15 -5 40	26 3 3 5 1 6 3 4 3 15 -5 43	27 5 3 5 1 6 3 4 3 15 -5 45	28 2 3 5 1 6 3 4 3 15 -5 42	29 5 8 6 1 6 1 4 3 15 -5 49	30 2 3 5 5 1 1 4 3 6 3 15 -5 42	31 5 6 5 4 4 4 5 4 3 15 -5 51		

Table E.II.1 Rock Mass Rating (RMR) calculations for SK-6+050, SK-6+180, SK-6+280 and SK-7+400 boreholes

203

APPENDIX E II ROCK MASS RATING (RMR) CALCULATIONS

Borehole No											S	K-6	+57	0												5	6K-6	ò+8	80		
Structural Domain Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	1	2	3	4	1	5	6
Parameters												Rat	ing														Ra	ting			
1 PL/UCS	4	5	4	5	4	5	4	6	2	7	2	6	3	6	2	7	2	7	2	7	2	7	8	7	2	2	3	2	2	9	9
2 RQD	3	19	3	7	4	7	3	11	3	5	3	15	3	3	3	8	3	7	3	5	3	3	7	2	3	3	3	3	3	8	5
3 SPACING	5	8	5	6	5	6	5	6	5	6	5	7	5	6	5	5	5	6	5	6	5	5	6	3	5	5	5	5	5	8	6
4 DISCONTINUITY																															
persistence	1	1	1	4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	4	4
separation	6	4	4	4	4	4	4	6	4	6	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	1	1	1
rougness	3	3	3	5	3	3	3	3	3	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	5	3
infilling	4	6	6	4	6	4	6	4	6	4	6	6	6	6	6	6	6	6	6	4	6	6	6	6	6	6	6	6	6	6	6
weathering	3	5	3	5	3	5	3	3	1	3	1	5	3	5	5	3	1	3	3	3	1	3	5	3	1	1	1	1	1	3	1
⁵ GROUNDWATER	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	15	15	15	15	51	5	15
6 ORIENTATION	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	5 -	5	-5
RMR-Basic	36	58	36	47	37	42	36	47	32	44	32	54	35	41	36	44	32	44	34	40	32	39	48	36	40	40	41	40) 5	9	50
RMRo	31	53	31	42	32	37	31	42	27	39	27	49	30	36	31	39	27	39	29	35	27	34	43	31	35	35	36	35	5 5	4	45

Table E.II.2. Rock Mass Rating (RMR) calculations for SK-6+570, SK-6+880, SK-7+130 and SK-7+250 boreholes

204

Borehole No					SK-	7+1	30																SI	K-7-	+25	0										
Structural Domain Number	1	2	3	4	5	6	7	8	9	10	11		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Parameters					R	ating	1																	Rati	ing											
1 PL/UCS	2	1	2	1	2	2	2	2	2	2	2		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
² RQD	19	3	19	9	17	3	6	12	15	15	8		3	3	6	3	16	3	10	3	8	3	6	3	4	3	4	14	3	3	5	3	8	3	6	4
³ SPACING	9	5	9	6	9	5	5	6	8	8	6		5	5	5	5	6	5	6	5	6	6	6	5	6	5	7	6	5	5	6	5	6	5	6	5
4 DISCONTINUITY																																				
persistence	4	4	4	1	1	1	1	1	2	2	2		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
separation	1	4	1	4	4	4	4	4	4	4	4		4	4	4	4	4	4	4	6	6	6	6	4	4	6	4	4	4	4	6	4	6	6	6	6
rougness	6	3	3	3	3	3	3	3	3	3	3		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	5	3	3	3
infilling	6	6	6	6	6	6	6	6	6	6	6		6	6	4	6	4	6	6	4	4	4	4	6	6	2	6	6	6	6	6	6	4	4	2	4
weathering	1	1	3	3	3	1	5	3	3	3	3		0	0	3	1	3	1	5	1	5	1	5	3	3	3	3	3	3	3	3	1	3	3	3	3
5 GROUNDWATER	15	15	15	15	15	15	15	15	15	15	15		15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
⁶ ORIENTATION	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5		-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
RMR-Basic	63	42	62	48	60	40	47	52	58	58	49	ľ	42	42	46	43	57	43	55	43	53	44	51	45	47	43	48	57	45	45	50	43	53	45	47	46
RMRo	58	37	57	43	55	35	42	47	53	53	44		37	37	41	38	52	38	50	38	48	39	46	40	42	38	43	52	40	40	45	38	48	40	42	41

AP
PE
Z
X
F
III

GE
I O
Ó
JIC
AL
S
RE
Ĩ
IL
II
Ð
EX
(GS
Ĵ

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, Jv ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI
1	0.00 - 15.00	Schist	2	34,2	18	5	1	2	8	32
Note:	D = 115 - 3.3 Jv	^b SR = -17.5 ln (I) + 79.8	° SCR	= R +R +R						

Table-E.III.1 GSI calculations for SK-6+050 borehole

Table-E.III.2 GSI calculations for SK-6+180 borehole

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, Jv ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI
1	50.00 - 51.00	Schist	42	22,1	26	3	5	4	12	42
2	51.00 - 54.70	Schist	0	34,8	18	3	3	4	10	36
3	54.70 - 55.95	Schist	66	14,8	33	3	6	6	15	51
4	55.95 - 56.70	Schist	0	34,8	18	3	1	4	8	32
5	56.70 - 57.35	Schist	32	25,2	23	3	5	6	14	45
6	57.35 - 58.35	Schist	0	34,8	18	3	1	4	8	32
7	58.35 - 59.10	Schist	44	21,5	26	3	3	6	12	42
8	59.10 - 64.15	Schist	16	30,0	20	3	1	4	8	33
9	64.15 - 65.10	Schist	48	20,3	27	3	5	4	12	43
10	65.10 - 65.70	Schist	0	34,8	18	3	3	4	10	36
11	65.70 - 66.30	Schist	18	29,4	21	5	5	6	16	46
12	66.30 - 67.15	Schist	0	34,8	18	3	1	4	8	32
13	67.15 - 68.25	Schist	28	26,4	23	3	5	6	14	45
14	68.25 - 70.70	Schist	0	34,8	18	3	3	6	12	40

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, J _v ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI	
15	70.70 - 73.55	Schist	47	20,6	27	1	3	6	10	39	
16	73.55 - 74.00	Schist	0	34,8	18	3	3	6	12	40	
17	74.00 - 74.65	Schist	31	25,5	23	1	3	6	10	38	
18	74.65 - 75.10	Schist	0	34,8	18	3	3	6	12	40	
19	75.10 - 79.80	Schist	8	32,4	19	3	3	6	12	40	
20	79.80 - 82.60	Schist	6	33,0	19	3	1	4	8	32	
21	82.60 - 85.0	Schist	58	17,3	30	5	3	6	14	48	
Note: ^a RQI	$\frac{\text{Note:}}{\text{RQD} = 115 - 3.3 \text{ Jv}} ^{\text{b}} \text{SR} = -17.5 \ln (J_{\text{v}}) + 79.8 ^{\text{c}} \text{SCR} = \text{R}_{\text{r}} + \text{R}_{\text{w}} + \text{R}_{\text{f}}$										

Table E.III.2 (Continued)

Table E.III.3 GSI Calculations for SK-6+280 borehole

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, Jv ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI	
1	26.70 - 31.45	Schist	5	33,3	18	4	3	3	10	36	
2	31.45 - 31.95	Schist	52	19,1	28	6	5	5	16	51	
3	31.95 - 32.50	Schist	0	34,8	18	4	3	3	10	36	
4	32.50 - 34.25	Schist	17	29,7	20	6	3	5	14	44	
5	34.25 - 36.80	Schist	7	32,7	19	6	3	3	12	40	
6	36.80 - 37.80	Schist	21	28,5	21	4	3	5	12	41	
7	37.80 - 42.50	Schist	3	33,9	18	6	3	3	12	40	
8	42.50 - 63.00	Schist	2	34,2	18	6	3	3	12	40	
Note:	Note:										
^a RQI	D = 115 - 3.3 Jv	^b SR = -17.5 ln (J_v) + 79.8	° SCR:	$= R_r + R_w + R_f$							

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, J _v ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI
1	41.50 - 42.05	Schist	95	6,1	48	3	5	4	12	51
2	42.05 - 43.10	Schist	0	34,8	18	3	3	6	12	40
3	43.10 - 43.50	Schist	63	15,8	32	1	3	4	8	36
4	43.50 - 44.00	Schist	0	34,8	18	3	1	6	10	36
5	44.00 - 44.30	Schist	50	19,7	28	3	3	6	12	43
6	44.30 - 44.90	Schist	0	34,8	18	3	1	6	10	36
7	44.90 - 46.80	Schist	26	27,0	22	3	3	6	12	41
8	46.80 - 47.40	Schist	0	34,8	18	3	1	4	8	32
9	47.40 - 47.90	Schist	38	23,3	25	3	5	6	14	46
10	47.90 - 48.95	Schist	0	34,8	18	3	1	6	10	36
11	48.95 - 49.80	Schist	64	15,5	32	3	1	6	10	41
12	49.80 - 50.50	Schist	0	34,8	18	3	1	6	10	36
13	50.50 - 52.40	Schist	7	32,7	19	3	1	6	10	37
14	52.40 - 54.20	Schist	14	30,6	20	3	3	6	12	41
15	54.20 - 55.90	Schist	0	34,8	18	3	3	6	12	40
16	55.90 - 57.40	Schist	20	28,8	21	3	3	6	12	41
17	57.40 - 61.40	Schist	3	33,9	18	3	3	6	12	40
18	61.40 - 62.40	Schist	20	28,8	21	3	3	2	8	33
19	62.40 - 63.90	Schist	0	34,8	18	3	3	6	12	40
20	63.90 - 64.50	Schist	33	24,8	24	3	3	4	10	38
21	64.50 - 64.80	Schist	0	34,8	18	3	1	6	10	36
22	64.80 - 65.40	Schist	0	34,8	18	3	3	4	10	36
23	65.40 - 65.90	Schist	0	34,8	18	3	1	6	10	36
24	65.90 - 67.65	Schist	0	34,8	18	3	3	4	10	36

Table 4 E.III.4 GSI Calculations for SK-6+400 borehole

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, J ^v ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI	
25	67.65 - 69.00	Schist	0	34,8	18	3	1	6	10	36	
26	69.00 - 72.80	Schist	0	34,8	18	3	3	4	10	36	
27	72.80 - 73.10	Schist	0	34,8	18	3	3	4	10	36	
28	73.10 - 73.50	Schist	0	34,8	18	3	3	4	10	36	
29	73.50 - 75.00	Schist	39	23,0	25	1	3	4	8	34	
30	75.00 - 75.25	Schist	0	34,8	18	3	3	6	12	40	
31	75.25 - 76.00	Schist	27	26,7	22	5	3	4	12	41	
Note: ^a RQD = 115 - 3.3 Jv ^b SR = -17.5 ln (J_v) + 79.8 ^c SCR= R _r +R _w +R _r											

Table E.III.4 (Continued)

 Table E.III.5
 GSI Calculations for SK-6+570 borehole

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, Jv ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI
1	46.80 - 47.50	Schist	0	34,8	18	3	3	4	10	36
2	47.50 - 48.00	Schist	94	6,4	47	3	5	6	14	56
3	48.00 - 48.80	Schist	0	34,8	18	3	3	6	12	40
4	48.80 - 49.15	Schist	34	24,5	24	5	5	4	14	45
5	49.15 - 50.00	Schist	12	31,2	20	3	3	6	12	19
6	50.00 - 50.70	Schist	31	25,5	23	3	5	4	12	42
7	50.70 - 52.90	Schist	5	33,3	18	3	3	6	12	40
8	52.90 - 54.35	Schist	57	17,6	30	3	3	4	10	40

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, J ^v ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI
9	54.35 - 55.10	Schist	0	34,8	18	3	1	6	10	36
10	55.10 - 58.10	Schist	19	29,1	21	5	3	4	12	41
11	58.10 - 60.20	Schist	0	34,8	18	3	1	6	10	36
12	60.20 - 61.50	Schist	77	11,5	37	3	5	6	14	51
13	61.50 - 64.50	Schist	7	32,7	19	3	3	6	12	41
14	64.50 - 65.20	Schist	0	34,8	18	3	5	6	14	44
15	65.20 - 66.70	Schist	0	34,8	18	3	5	6	14	44
16	66.70 - 67.00	Schist	37	23,6	24	3	3	6	12	42
17	67.00 - 68.10	Schist	0	34,8	18	3	1	6	10	36
18	68.10 - 68.70	Schist	28	26,4	23	3	3	6	12	42
19	68.70 - 69.10	Schist	0	34,8	18	3	3	6	12	40
20	69.10 - 74.10	Schist	19	29,1	21	3	3	4	10	39
21	74.10 - 75.60	Schist	0	34,8	18	3	1	6	10	36
22	75.60 - 76.20	Schist	0	34,8	18	3	3	6	12	40
23	76.20 - 76.70	Schist	32	25,2	23	3	5	6	14	45
24	76.70 - 80.00	Schist	9	32,1	19	3	3	6	12	41
Note: a RQI	D = 115 - 3.3 Jv	^b SR = -17.5 ln (J_v) + 79.8	° SCR	$= R_r + R_w + R_f$						

Table E.III.5 (Continued)

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, Jv ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI
1	0.00 - 7.50	Blocky Limestone	0	34,8	18	3	1	6	10	36
2	7.50 - 16.00	Blocky Limestone	9	32,1	19	3	1	6	10	37
3	16.00 - 33.50	Blocky Limestone	1	34,5	18	3	1	6	10	36
4	33.50 - 48.00	Blocky Limestone	8	32,4	19	3	1	6	10	37
5	48.00 - 49.00	Blocky Limestone	40	22,7	25	5	3	6	14	46
6	49.00 - 52.00	Blocky Limestone	15	30,3	20	3	1	6	10	37

Table E.III.6 GSI Calculations for SK-6+880 borehole

 Table E.III.7
 GSI Calculations for SK-7+130 borehole

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, J _v ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI
1	15.30 - 21.10	Conglomerate	94	6,4	47	6	1	6	13	53
2	21.10 - 21.30	Shale	0	34,8	18	3	1	6	10	36
3	21.30 - 23.38	Conglomerate	93	6,7	47	3	3	6	12	51
4	23.38 - 26.05	Shale-Sandstone	45	21,2	26	3	3	6	12	42
5	26.05 - 29.60	Shale-Sandstone	85	9,1	41	3	3	6	12	48
6	29.60 - 31.00	Shale-Sandstone	0	34,8	18	3	1	6	10	36
7	31.00 - 31.40	Shale-Sandstone	28	26,4	23	3	5	6	14	45
8	31.40 - 35.00	Sandstone	60	16,7	31	3	3	6	12	44
9	35.00 - 41.00	Sandstone	78	11,2	38	3	3	6	12	47
10	41.00 - 43.30	Sandstone	76	11,8	37	3	3	6	12	46
11	43.30 - 45.00	Shale-Sandstone	42	22,1	26	3	3	6	12	40
Note: a RQI	D = 115 - 3.3 Jv	^b SR = -17.5 ln (J_v) + 79.8	° SCR	$= R_r + R_w + R_f$		-				-

Str. Dmn. #	Depth Interval (m)	Rock Type	RQD	Volumetric Joint Count, Jv ^a	Structural Rating, SR ^b	Rougness Rating, R _r	Weathering Rating, R _w	Infilling Rating, R _f	Surface Condition Rating, SCR ^c	GSI
1	0.00 - 6.00	Schist	0	34,8	18	3	0	6	9	34
2	6.00 - 20.95	Schist	2	34,2	18	3	0	6	9	34
3	20.95 - 21.40	Schist	27	26,7	22	3	3	4	10	43
4	21.40 - 25.32	Schist	3	33,9	18	3	1	6	10	36
5	25.32 - 26.20	Schist	82	10,0	40	3	3	4	10	43
6	26.20 - 26.70	Schist	0	34,8	18	3	1	6	10	36
7	26.70 - 26.95	Schist	52	19,1	28	3	5	6	14	47
8	26.95 - 27.25	Schist	0	34,8	18	3	1	4	8	34
9	27.25 - 27.55	Schist	40	22,7	25	3	5	4	12	42
10	27.55 - 27.90	Schist	0	34,8	18	3	1	4	8	34
11	27.90 - 28.40	Schist	30	25,8	23	3	5	4	12	42
12	28.40 - 30.50	Schist	0	34,8	18	3	3	6	12	40
13	30.50 - 33.00	Schist	16	30,0	20	3	3	6	12	41
14	33.00 - 33.60	Schist	0	34,8	18	3	3	2	8	34
15	33.60 - 34.25	Schist	22	28,2	21	3	3	6	12	41
16	34.25 - 36.00	Schist	68	14,2	33	3	3	6	12	45
17	36.00 - 36.40	Schist	0	34,8	18	3	3	6	12	40
18	36.40 - 37.50	Schist	0	34,8	18	3	3	6	12	40
19	37.50 - 40.80	Schist	21	28,5	21	3	3	6	12	41
20	40.80 - 41.30	Schist	0	34,8	18	3	1	6	10	36
21	41.30 - 41.80	Schist	38	23,3	25	5	3	4	12	42
22	41.80 - 43.20	Schist	0	34,8	18	3	3	4	10	36
23	43.20 - 44.55	Schist	25	27,3	22	3	3	2	8	33
24	44.55 - 46.00	Schist	12	31,2	20	3	3	4	10	37
Note: ^a RQE) = 115 - 3.3 Jv	^b SR = -17.5 ln (J _v) + 79.8	° SCR	$= R_r + R_w + R_f$						

Table E.III.8 GSI Calculations for SK-7+250 borehole

Figure F.1 Correlation of M-RMR, RMR, GSI and Q values for each structural domain of SK-6+050 and SK-6+180 boreholes.

Figure F.2 Correlation of M-RMR, RMR, GSI and Q values for each structural domain of SK-6+280 and SK-6+880 boreholes.

Figure F.3 Correlation of M-RMR, RMR, GSI and Q values for each structural domain of SK-6+400 borehole.

Figure F.4 Correlation of M-RMR, RMR, GSI and Q values for each structural domain of SK-6+570 borehole.

Figure F.5 Correlation of M-RMR, RMR, GSI and Q values for each structural domain of SK-7+130 borehole.

Figure F.6 Correlation of M-RMR, RMR, GSI and Q values for each structural domain of SK-7+250 borehole.