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ABSTRACT 

AUTOMATIC TARGET RECOGNITION IN INFRARED IMAGERY 

 

 

Bayık, Tuba Makbule 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Aydın Alatan 

 

September 2004, 66 Pages 

 

The task of automatically recognizing targets in IR imagery has a history of 

approximately 25 years of research and development. ATR is an application of 

pattern recognition and scene analysis in the field of defense industry and it is still 

one of the challenging problems. This thesis may be viewed as an exploratory 

study of ATR problem with encouraging recognition algorithms implemented in the 

area. The examined algorithms are among the solutions to the ATR problem, which 

are reported to have good performance in the literature. Throughout the study, 

PCA, subspace LDA, ICA, nearest mean classifier, K nearest neighbors classifier, 

nearest neighbor classifier, LVQ classifier are implemented and their performances 

are compared in the aspect of recognition rate. According to the simulation results, 

the system, which uses the ICA as the feature extractor and LVQ as the classifier, 

has the best performing results. The good performance of this system is due to the 

higher order statistics of the data and the success of LVQ in modifying the decision 

boundaries. 
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ÖZ 

KIZILÖTESİ GÖRÜNTÜLERDE OTOMATİK HEDEF TANIMA 

 

 

Bayık, Tuba Makbule 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç.Dr. Aydın Alatan 

 

Eylül 2004, 66 Sayfa 

 

Yaklaşık 25 yıllık araştırma ve geliştirme tarihi olan kızılötesi görüntülerde 

otomatik hedef tanıma konusu, örüntü tanıma ve görüntü çözümleme alanlarının 

savunma sanayisindeki bir uygulama alanıdır. Otomatik Hedef Tanıma konusu, 

hala bu alanın ilgi çekici problemlerinden biridir. Bu tez, çarpıcı tanıma 

algoritmalarının otomatik hedef tanıma problemine uygulamalarını içerir ve 

konunun keşif çalışması olarak okunabilir. İncelenen algoritmalar, literatürde bu 

konuda başarılı sonuçlar verdikleri bildirilen çözüm yöntemleridir. Bu çalışmada 

Ana Bileşen Çözümlemesi, indirgenmiş uzayda Doğrusal Ayırtaç Çözümlemesi, 

Bağımsız Bileşen Çözümlemesi, en yakın ortalama sınıflayıcısı, K komşu 

sınıflayıcısı, en yakın komşu sınıflayıcısı ve Öğrenen Vektör Nicemlemesi 

algoritmaları gerçeklenmiş ve elde edilen sonuçların tanıma oranı açısından 

gösterdikleri performanslar sunulmuştur. Benzetimlerde özellik bulucu olarak 

Bağımsız Bileşen Çözümlemesi, sınıflayıcı olarak da Öğrenen Vektör Nicemlemesi 

metodunun 2 numaralı uzantısını kullanan dizge, en iyi sonuçları vermiştir. Bu 
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sonuçlar, verilerin yüksek dereceli korelasyonuna ve Öğrenen Vektör Nicemlemesi 

metodunun karar sınırlarını tanımlamadaki başarısına bağlıdır.  

 

Anahtar Kelimeler: Otomatik Hedef Tanıma, Ana Bileşen Çözümlemesi, 

Doğrusal Ayırtaç Çözümlemesi, Bağımsız Bileşen Çözümlemesi, Öğrenen Vektör 

Nicemlemesi 
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CHAPTER 1 

INTRODUCTION 

1.1 PROBLEM DEFINITION AND MOTIVATION 

Automatic target recognition (ATR) task, also can be referred to as weapon 

vision [8], is one of the challenging problems of the defense industry. The aim of an 

ATR system is to remove the role of man from the process of target detection and 

recognition and hence, implementing a real-time and reliable system of high 

performance. 

The automatic target recognition term originated with the Low Altitude 

Navigation and Targeting Infrared for Night (LANTIRN) program in the early 

1980’s. Prior to the LANTIRN program, little had been done in the area, which 

became known as ATR [1]. 

In the most general sense, an ATR system is composed of a target detector 

and recognizer. Such an inclusive system of ATR covers the problems of 

preprocessing, detection, segmentation, classification, tracking and aim-point 

selection. Figure 1-1 represents the block diagram of such a typical system. 
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Figure 1-1: Basic block diagram of a typical ATR system. Black box represents the 
scope of this thesis 

Briefly, the preprocessing is the step that improves target contrast and 

reduces noise and clutter present in the image. Examples of preprocessing 

functions are noise suppression, focus control, adaptive contrast enhancement, etc 

[7]. 

Target detection is the process of localizing those areas in the image where 

a potential target is likely to be present. Conventionally, the detection techniques 

are based on the contrast between target and its immediate background. Most of 

the techniques can be adapted to detect either light or targets. Once a potential 

target is localized, it is extracted from the background as accurately as possible in 

the segmentation step.  

Feature computation and classification is the process of associating 

detected targets with target classes. Throughout this thesis, ATR refers to the 

classification task of infrared images, specifically, to the decision algorithm, that 

classifies the still images or video sequences into one of the predefined target 

classes using the information extracted through the examination of the pre-

collected data, so-called the training set.  

  PREPROCESSING 
TARGET 

DETECTION 
  SEGMENTATION 

FEATURE 
COMPUTATION, 
SELECTION AND 
CLASSIFICATION 

PRIORITIZATION, 

TRACKING AND AIM-

POINT SELECTION 
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Prioritization is the process of assigning priorities to the targets in the field 

of view. This information, which is pre-stored, is normally based on the type of the 

target and the probability of its correct classification. The prioritized target is then 

tracked. Aim-point selection involves the determination of the critical aim-point of a 

target. A stored feature vector corresponding to the target class and aspect is used 

for aim-point designation. 

ATR systems, combining different sensor outputs, such as visual images or 

SAR images, can be designed to increase the overall performance. Parallel 

algorithms utilizing semantic, contextual and structural information would perform 

well. 

An ATR system may be used as guidance to armed forces operating under 

inferior weather conditions or at night. Moreover, with ATR, remotely controlled 

vehicles or cruise missiles are also designed. Remotely piloted vehicles are 

another application area of the ATR systems. The performance of such systems is 

dictated by the large volumes of data requiring analysis and by the short timelines 

required by the target acquisition scenarios. ATR is a high leverage technology, 

and the challenge is to go beyond human-aided capabilities to automatic, 

autonomous systems [8]. 

1.2 CHALLENGES IN ATR IN INFRARED IMAGERY 

Infrared imagery contains the thermal radiations emitted by objects. It is an 

effective method to cluster heat-generating targets. Main advantages of IR sensors 

are that they are passive and involve one-way propagation. Moreover, they 

penetrate fog, haze and dust, operate at day and night, and therefore offer good 

performance even under inappropriate operating conditions.  

Figure 1-2 shows a typical IR image of size 240x320 used in this study. At 

the center of the image, there exists a loaded truck with white (hot) tires. At the 

background, buildings with hot windows and vegetation are observed.  
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Figure 1-2: An example of IR image 

The biggest handicap of utilizing the IR imagery reported in the literature 

and encountered during this study is the difficulty to obtain such images, moreover 

there is no canonical and public data set to evaluate the performance of the 

implemented algorithms. The implemented ATR systems, developed with a limited 

data set might result in high false alarm rates in practical applications. The reason 

for this inconsistency lays under the sensor deficiencies and the infrared signature 

characteristics of the targets and the background. ATR is particularly difficult if 

there is structured background and low signal-to-noise ratio. The viewing direction 

of the target is another issue to be considered. 

IR images of targets exhibit seasonal variations and changes according to 

the time of the day. The image of the same target under identical conditions may 

even vary according to the recent history of the target (the tires of a truck get 

brighter after long rides, the heaters inside may be on or off etc.). Another limitation 

with the IR is the occlusion problem. The vegetation and terrain may obscure the 

targets in infrared imagery, whereas there are different sensing systems to 

penetrate, such obstacles such as SAR. Therefore, IR images are relatively high in 

irrelevant information and variability. 
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1.3 OUTLINE OF THE THESIS 

Chapter 2 represents a brief survey of ATR methods. The algorithms 

standing out among the recently developed algorithms each with a brief 

explanation are involved.  

Chapter 3 includes the dimension reduction methods, which is critical for 

the application, since the system is implemented under a limited data set and the 

target images constitute high dimensional data involving great amount of irrelevant 

information. Among the dimension reduction methods, recognized methods of 

PCA, LDA and subspace LDA, as well as the relatively new topic of ICA, are 

discussed in detail. 

Chapter 4 is devoted to the pattern classifiers. Pattern classification basics, 

traditional methods of NN, k-NN, nearest mean and k-Mean classification are 

overviewed and details of LVQ method are conferred.  

In Chapter 5, the performances of the algorithms, which are discussed in 

detail, are analyzed graphically and with tables.  

Finally, in Chapter 6, the thesis gets to a conclusion and simulation results 

are compared. 
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CHAPTER 2 

OVERVIEW OF AUTOMATIC TARGET RECOGNITION 

METHODS 

There are plenty of algorithms developed and being developed in the area 

of ATR. According to [9], these algorithms fall into one of the three general 

categories of statistical, neural and model based approaches. In the first two 

categories, the information to be used in the classification task is implicitly 

extracted, while in the latter one, a model database is constructed either with CAD 

tools or from the real data, and then comparison is achieved among these 

templates.  

In the following subsections, the prominent algorithms of these categories 

are summarized. 

2.1 STATISTICAL METHODS 

Statistical Pattern Recognition is one of the major approaches in pattern 

recognition discipline. In statistical methods, a target image is represented with a 

set of characteristic measurements, called feature vectors [10]. Features constitute 

points in a d-dimensional space, and the feature space is formed in a decision 

theoretic basis with the a priori knowledge of underlying distribution and/or the 

statistical properties of a set of known samples, namely the training set. The goal is 

to form the feature space such that the features of the targets belonging to different 

classes are clustered at different regions of the feature space. Statistical methods 

include projection based methods, such as Principal Component Analysis, Linear 
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Discriminant Analysis and Independent Component Analysis, etc, each of which 

will be explained in this thesis.  

In ATR, patterns are images of targets and this constitutes a very high 

dimensional space of vectors. The aim for using statistical methods in ATR is 

reducing the dimension and overcoming the problems of the limited data sets with 

which the feature extractors are trained. Statistical methods are especially 

satisfactory for patterns with well-behaved distributions. 

- Principal Component Analysis:  

Principal Component Analysis (PCA) method is a conventional method of 

face recognition and is widely applied in to appearance-based recognition [4]. This 

method is applicable to the ATR problem provided that a region of interest is 

detected within the input image [9]. PCA is based on the correlation between 

image pixels, and its utility to image analysis is in part due to the correlation 

between nearby pixels in a real-world image. The idea behind PCA is to express 

the data in a lower dimensional space with the minimum error in the least square 

sense. This means that the criterion of the feature extraction with PCA is the 

minimization of the reconstruction error. It should be noted that PCA is an 

unsupervised method. The details and mathematical reasoning of PCA are further 

discussed in Chapter 3. 

- Linear Discriminant Analysis: 

Linear Discriminant Analysis (LDA), just like PCA, aims to reduce the 

dimensionality of the data and searches for appropriate axes to project the data 

onto [6]. However, in LDA; the criterion of feature extraction is the separability of 

different classes. LDA is based on the analysis of within and between scatter 

matrices of the data. It is a supervised method, since the data are analyzed 

according to the classes, which they belong to. The LDA method is thoroughly 

discussed in Chapter 3. 
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2.2 NEURAL NETWORK METHODS 

Neural network systems are inspired from the human neural system. ATR 

needs methods to represent targets and backgrounds that are both sufficiently 

descriptive, yet robust to signature and environmental variations. Neural networks 

offer potentially powerful collective-computation techniques for designing special 

purpose hardware, which can implement fast optimization for a number of 

computational vision and multi-sensor fusion methods [1]. The existence of 

powerful learning algorithms is one of the main strengths of the neural network 

approach. There are a number of neural network inspired techniques, which can be 

used for the selection or development of maximally discriminating feature sets. The 

classical multilayer perceptron, convolutional neural networks, modular neural 

networks are examples of neural techniques in ATR literature. The major drawback 

of the NN systems is the overfitting problem [14]. Overfitting means that the 

solution fits the training data, but it does not represent the underlying function. In 

other words, algorithm memorizes the system rather than generalizing it. 

- Convolutional Neural Network: 

Convolutional Neural Network (CNN) is reported to be an effective method 

for character recognition [2]. This neural approach then applied in face recognition 

and also ATR problems.  

CNN is an adaptation of the well-known multilayer back-propagation 

network which is an accepted technique of recognizing high dimensional data. 

CNN compensates the deficiency of the back propagation network for the 

invariance with respect to translations or local distortions. The robustness is 

achieved via implementing three ideas: local receptive fields, shared weights and 

spatial sub-sampling.  

In Figure 2-1, an illustrative CNN structure is shown. The network consists 

of an input layer, several hidden layers, and an output layer. 
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Figure 2-1: CNN configuration 

In CNN, the image itself constitutes the input layer. Each node corresponds 

to a pixel in the input image. The hidden layers receive input from a small 

neighborhood of the previous plane. This is denoted as local receptive fields in the 

preceding paragraph. Shared weight means that all nodes of a plane use the same 

weights. In order to extract various features, multiple planes can be used in each 

plane. Sub-sampling step is held out via another hidden layer where local 

averaging and sub-sampling operation is carried out. Notice that, sub-sampling 

reduces the resolution of the feature map, consequently, it reduces the sensitivity 

of the output to shifts and distortions. 

In the application of CNN to ATR [9], the convolutional kernel is designed 

as a Canny edge detector. In this approach, different convolutional kernel sizes are 

utilized, specifically kernels of size 3x3, 5x5 and 3x5. The kernels of different sizes 

are employed to detect features at different scales and orientations. 

- Modular Neural Network 

Modular Neural Networks (MNN), involves a hierarchical neural network 

architecture using a mixture of expert modular neural network, with each expert 

Input Image 

Feature Map1 Feature Map2 

Convolutional 

Connection 

Subsampling 

Full Connection

Output Layer 
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consisting of a committee of neural networks [15]. In the mixture of expert modular 

network, each expert is trained for a particular subset of data vectors (target 

region). A gating network is then trained to select or combine the outputs of expert 

networks to form the final output. The partitioning of the dataset into several 

subsets is based on the similarity of target silhouettes. The partitioning is guided by 

intuition and confirmed by experiment. In the committee of networks, each member 

network receives distinct inputs, which are features extracted from one local region 

of the target image. 

Apparently, this method is not shift-invariant, a centering algorithm 

preceding the MNN upgrades the performance. The main advantage of this 

method is its robustness to occlusion, since the input is a particular region of the 

target image. It should also be noted that decomposing the image results in simpler 

networks, which allow better generalization, and saves processing time. 

Figure 2-2 shows the MNN-based approach introduced by [16]. The image 

is partitioned into six disjoint regions. A sub-sampled version of the input image is 

also added as the input to the network, and it is partitioned. The committee of 

networks receives features of directional variance in 5x5 image blocks. The 

classification decisions of the individual committee members are combined using 

stacked generalization. Stack generalization is a scheme for minimizing the 

generalization error rate [17]. 
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Figure 2-2: The MNN-based scheme offered for ATR 

- Learning Vector Quantization : 

Learning vector quantization (LVQ), as discussed thoroughly in Chapter 4, 

is a popular method of globally modifying decision boundaries. LVQ has an 

iterative learning scheme in which a number of class representatives are searched 

to define the distribution of the data as accurately as possible especially at the 

class boundaries. After the learning procedure is completed, the test procedure is a 

simple nearest neighbor classifier. 

LVQ is proposed by [15], [16] to classify targets in IR imagery. In their 

methods, training images are separated into target-aspect groups. Each target-

aspect group contains one target type within a restricted range of viewing angles. 

The training images are then decomposed into wavelet sub-bands. Each wavelet 

sub-band of each target-aspect group is clustered using the k-means algorithm [11] 

in order to create a set of code vectors. The LVQ algorithm is then applied to the 

code vectors to enhance discriminatory ability. 



 12

2.3 MODEL-BASED METHODS 

Model based methods are based on physical properties of sensor, scene 

and the target. In model-based approaches, first, a model database is constructed, 

and then local features extracted from an image are compared with the prestored 

target models. This technique reduces dependence on large training sets. 

However, practical modeling of spectrum of operational reality is far from solved. 

There are different approaches in model-based methods, such as Hausdorff 

metric-based matching and geometric hashing. 

- Hausdorff Metric Based Matching: 

The Hausdorff distance is a measure of dissimilarity of two sets of points in 

their least similar matches. It is defined to be the maximum of the minimum 

distances from all members of two point sets.  

Formally, if A and B are two finite sets of points, the Hausdorff distance is 

defined as 

)},(),,(max{),( ABhBAhBAH =  (2-1) 

where h(A,B) is the norm of distances between points of B in the neighborhood of 

A and the points of A. 

The Hausdorff distance does not involve any point matching algorithms. As 

an ATR algorithm, the test image is assigned to the label of the class whose 

template is closest in the Hausdorff sense, with the intensity edges of images and 

templates being used as the point sets. 

- Geometric Hashing: 

Geometric hashing is another method of representing and matching the 

data on the basis of affine transformations and hash tables. The main benefit of 

this scheme is the invariance under affine transformations. It is based on an 

intensive offline model learning stage, where model information is indexed into a 

hash table using minimal transformation invariant features. It is reported to be a 
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successful recognition method of both 2-D and 3-D objects in cluttered scenes 

from an arbitrary viewpoint [21]. The mathematical approximations, explained in 

the following paragraph, on which the approach is based, are especially suitable 

for bodies, which are relatively far from the camera. 

Given two different images of the same flat object, we may assume that, 

there exists a non-singular 2x2 matrix A and a 2-D translation vector b, such that 

each point x in the first image is translated to the corresponding point Ax+b in the 

second image. 

Assume that the model objects and scenes are described by sets of interest 

points, like corners, end points, which are invariant under affine transformation. 

Now, the recognition problem is a point-set matching task, where one is given a set 

of model point-sets and an observed point-set. We look for a transformed subset of 

some model point-set, which matches a subset of the observed point-set. 

For the geometric representation of the objects, assume that an arbitrary 

set of m points belonging to a rigid body are given. The three ordered non-collinear 

points ),,( 210 eee define an affine basis under which any feature point P can be 

represented by a doublet ),( βα  satisfying 00201 )()( eeeeeP +−+−= βα . Hence, 

a representation, which is invariant under affine transformations, is obtained.[21] 

Accordingly, the m points are represented by their coordinates in the affine basis 

triplet. Representing object points by coordinates in all possible affine bases 

removes the dependency of the algorithm to the basis, therefore, occlusion 

problem is overcome. For each affine basis, the coordinates ),( βα  of all other m-3 

model points in the affine coordinate frame defined by the basis triplet, are 

computed. After each such coordinate are quantized, they are used as an index to 

a hash table, and the (model, basis) pair is recorded there. 

Given the test image, first, features are extracted (assume n features are 

extracted). Test data is associated with the label of the model that gets the most of 

the entries to its location in the hash table. 
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2.4 DISCUSSION 

Other than presented here, there are also several variations of such 

algorithms proposed for the ATR problem. However, no single approach is likely to 

be the solution to all ATR problems [34], [35], [36], [37], [38]. Nevertheless, by 

applying the most useful techniques to each part of the problem, the progress is 

accelerating. The most successful ATR systems will probably blend several 

algorithmic techniques to achieve satisfactory performance. Due to the nature of IR 

signature, the performance of the system is heavily dependent on operating 

conditions. 

Under the operating conditions of the ATR systems developed in this study, 

there are no occluded parts of the targets. The view angle under which data is 

collected is fixed, but there are some seasonal changes between data. Under such 

conditions, the canonical pattern recognition approaches are likely to perform well. 

In any algorithm, due to the high dimensionality of the data, the curse of 

dimensionality problem is still an important issue. Overfitting and computational 

problems are to be considered. Some dimension reduction techniques are 

implemented to overcome this issue. LVQ, as one of the best methods of decision 

boundary representations, is implemented throughout this study, as well as some 

conventional classifiers, to evaluate the system experimentally.  
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CHAPTER 3 

AUTOMATIC TARGET RECOGNITION WITH 

DIMENSION REDUCTION 

3.1 MOTIVATIONS IN DIMENSION REDUCTION PROBLEM 

Due to advances in data collection capabilities, researchers in such 

domains of engineering, astronomy, economics, statistics encounter an increasing 

number of variables associated with each observation. These high dimensional 

datasets present many mathematical challenges, as well as some opportunities. As 

an important problem in high dimensional datasets for many cases, not all the 

measured variables are ‘important’ for understanding the underlying phenomena of 

interest [19]. 

Having large amounts of high dimensional sensory data to process, analyze 

or store, dimension reduction is needed for  

 Visualization 

 Data compression for transmission or storage 

 Decreasing computation time and memory usage 

 Change of representation for statistical pattern recognition and modeling 

Dimension reduction is the problem of finding a k-dimensional 

representation of a d-dimensional random variable, with k<d, that captures the 

content in the original data with respect to some criterion. 
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There exist different criteria for each dimension reduction problem, such as 

minimizing the reconstruction error, preserving distances or maximizing likelihood 

with respect to some model [18]. 

Within the context of pattern recognition, high dimensionality introduces the 

well-known limitation, which is denoted by [10] as “the curse of dimensionality”. For 

linear or quadratic classifiers, the required number of training samples depends 

linearly or quadratically on the data dimensionality. Furthermore, the training 

sample set size needs to increase exponentially, in order to effectively estimate the 

multivariate densities needed to perform nonparametric classification [6]. 

In the following chapters, the most common linear approaches to avoid the 

problem of dimensionality, namely Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) and a relatively new approach, Independent 

Component Analysis (ICA) are studied. 

3.2 PRINCIPAL COMPONENT ANALYSIS 

In the mean squared error sense, Principal Component Analysis (PCA) is 

the best linear dimension reduction technique. It is also known as the Singular 

Value Decomposition or the Karhunen-Loève Transform [19]. Since it is based on 

the covariance matrix of the variables, it is a second order method, therefore PCA 

considers the pair-wise relationships between variables of observation set (e.g. 

pixels in the image database).  

PCA looks for orthogonal basis functions for which the components of the 

signal are uncorrelated. The main aim of the PCA is to reduce the dimensionality 

by finding orthogonal linear combinations of the original variables with the largest 

variance. An N-dimensional random variable has N principal components. 

However, for many datasets, the first several principal components retain most of 

the variance, so that the rest can be discarded with minimal loss of information.  

In order to rephrase the PCA method in mathematical terms, consider M 

observations of N-dimensional random variable [ ]TN21 x...xx=x  with the 
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ith observation being denoted as )(ix . )(ix  can be expanded in any set of 

orthonormal basis vectors jφ  as  

N
i
N

iii φφφx )(
2

)(
21
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)( ... κκκ +++=  (3-1) 

where orthonormality indicates the relation  
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It is further desired that the coefficients iκ  satisfy the relation  
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which means that the coefficients are uncorrelated, if the random variable has zero 

mean (otherwise, they are statistically orthogonal). It can be shown that [3] the 

eigenvectors of the covariance matrix (correlation matrix for random variables with 

nonzero means) are the unique solution to iφ  to satisfy the desired conditions.  

A further property of this decomposition is the equality between the total 

variation and the sum of the eigenvalues iλ  of the covariance matrix. Truncating 

the expansion to use some number P(<N) of basis vectors, the average energy in 

the error process, referred to as the mean-square error, equals [19]  

∑
+=

N

Pi
i

1

λ  (3-4) 

If the eigenvectors, corresponding to the largest P eigenvalues of the covariance 

matrix are preserved, the optimal representation with P basis vectors, with respect 

to the mean-square error, is achieved. 
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Notice the following practical issues: When the density function of the 

random vector x is not known, the expectations and moments can be simply 

estimated from the data. The mean of x can be estimated as  

∑=
=

M

i
i

M 1
)(1 xΨ  (3-5)  

and defining the MxN zero mean data matrix to be  

[ ]ΨxΨxΨxΧ −−−= )()2()1( ... M  (3-6) 

the covariance matrix can be estimated as  

)(1 T

M
XXC =  (3-7)  

 In Figure 3-1 and Figure 3-2, some typical IR target image regions are 

illustrated, as well as their mean image. 

 

     

Figure 3-1: Examples of IR target images 

 

Figure 3-2: Mean image of target images 

In the task of target recognition, target images are random vectors to be 

analyzed. Note that images, which are 2-dimensional arrays of size NxxNy can be 

represented as vectors of dimension Nx*Ny . Typically, images constitute a high 
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dimensional space (40*80 in our implementation), and M, the number of 

observations, is far less than the image space dimensions (250 in our 

implementation).  

Computationally, it is quite costly to determine the eigenvectors of the Nx*Ny 

by Nx*Ny covariance matrix that is formed for images of typical sizes. Furthermore, 

only M – 1 eigenvalues will be nonzero, consequently having meaningful 

corresponding eigenvectors. In their task of face recognition, Turk and Pentland  

[4] offered an elegant remedy in which the eigenvalue decomposition is carried out 

on MxM matrices. Their methodology is as follows: 

Consider again the zero mean data matrix X and the associated covariance 

matrix C, defined in the previous paragraphs. Now, consider the eigenvectors vi of 

XTX : 

iii
T vΧvΧ µ=  (3-8) 

After multiplying the equation with X, 

iii
T ΧvΧvΧΧ µ=  (3-9) 

it is straightforward to rewrite the equation in terms of the covariance matrix C 

iii XvCXv µ=  (3-10) 

and observe that Xvi corresponds to iφ , the eigenvectors of C.  

Therefore, to extract the eigenvectors of C which correspond to the nonzero 

eigenvalues, extracting the eigenvectors of MxM dimensional matrix L = XTX, and 

then multiplying the eigenvectors of L with X avoids a significant amount of 

computational effort. Depending on the constraints of the problem, the dimension 

can further be decreased to some number P≤M by taking into account only the P 

highest valued eigenvalues. 
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After the basis vectors are obtained, the variation of any image Ι from the 

mean image Ψ  can be projected onto the new coordinates, and a lower 

dimensional feature vector κ  can be obtained. Defining a basis matrix 

[ ]TPφφφΦ ...21= , the feature vector of the image Ι  can simply be 

calculated via a matrix multiplication: 

( )ΨΙΦκ −=  (3-11) 

Figure 3-3 shows the first 15 eigenimages )...( 151 ΦΦ  of the data set, whose 

typical examples are shown in Figure 3-1. 

 

     

     

     

Figure 3-3: First 15 eigen images of the data set 

3.3 SUBSPACE LINEAR DISCRIMINANT ANALYSIS 

As stated in the previous section, given M observations of an N-dimensional 

random vector, PCA aims to code the data to retain most of the variance of the 

data. In PCA, while searching for the optimal representation, all observations are 

considered to belong to a single distribution and the class information to which the 

observations belong is not utilized. Unlike PCA, Linear Discriminant Analysis (LDA) 

searches for the orientations for which the projected data for each class are well 

separated. Therefore, a measure of discrimination between projected data is 

optimized. The most fundamental and widely used technique is the Fisher’s linear 
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discriminant [6],[10], in which the objective function is stated in terms of the scatter 

of the projected points. 

For the data to be well separated, the means of the classes should be 

distant enough with respect to their variations. More clearly, the data of the same 

classes is desired to be dense while the means of classes are scattered widely. A 

measure of the scatter within class iχ  can be obtained via the scatter matrix, 

defined as: 

∑
∈

−−=
i

T
iii

χx
mxmxS ))((  (3-12) 

where mi stands for the sample mean 
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For a c-class problem, the within-class scatter matrix is defined to keep 

track of the scatter within all of the classes: 

∑
=

=
c

i
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1

SS  (3-14) 

Moreover, the scatter between classes is measured as the distinction 

between the means of the classes and is represented via the between-class 

scatter matrix: 

∑
=

−−=
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T
iiiB n

1

))(( mmmmS  (3-15) 

If the projection is represented in matrix form with matrix W, such that the 

projected samples y are computed as y=WTx; the within-class and between-class 

scatter matrices after the projection are easily shown to be  
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WW W
T
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~
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T
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 (3-16) 

A simple scalar measure of scatter is the determinant of the scatter matrix, 

and utilizing of all the above definitions, yield the following criterion function 

WSW

WSW
WJ

W
T

B
T

=)(  (3-17) 

where •  denotes the determinant operation. 

It can be shown [10] that the columns of an optimal W are generalized 

eigenvectors that correspond to the largest eigenvalues in  

iWiiB wSwS λ=  (3-18) 

The subspace LDA method simply makes use of the above discussion of 

LDA on the data which is projected onto its Principal Components of Section 3.2 

beforehand. As stated in [5], the combination of these two methods solves the 

generalization/overfitting problem based on the training samples to new testing 

samples. 

 

    

Figure 3-4: Subspace LDA images of the data set 

3.4 INDEPENDENT COMPONENT ANALYSIS 

Independent Component Analysis (ICA) is a more recently developed 

method of linearly representing the multivariate data. In ICA, the aim is to minimize 

the statistical dependence of the components of a representation [28]. The method 
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is applicable to many different problems, such as blind source separation, blind 

deconvolution, and feature extraction. Independence is much stronger than the 

uncorrelatedness sought in the classical method PCA, since uncorrelatedness 

involves only second order statistics, while independence involves all the higher 

order statistics. Actually, the main aim of ICA is not necessarily dimension 

reduction and there are overcomplete versions of ICA where the number of ICs is 

even larger than the dimension of the data [26].  

Similar to the previous formulation, consider a set of observed random 

vectors x of dimension N. Assume there exists an unobservable set of random 

variables [ ]TPsss ...21=s , which are statistically independent and are mixed 

using an unknown linear transformation to form observable random variable x 

Asx =  (3-19) 

Note that, the set of random variables si are denoted as statistically 

independent, if their joint probability density function is the product of each 

variable’s marginal density function, i.e. 

)()...()(),...,,( 2121 PP sfsfsfsssf =  (3-20) 

ICA aims to estimate the independent random vectors si , referred to as 

hidden variables or sources, and the mixing matrix, A, from the observations of x. 

In the estimation procedure the mixing matrix is assumed to be square for 

simplicity. After estimating A, its inverse W can be computed and an estimate of 

the independent components can be obtained 

Wxy =  (3-21) 

It is well known that [30], given two independent random variables s1 and 

s2, their sum s1+s2 is more Gaussian than the participating variables s1 and s2. 

Among all the variables, which are generated by summing these two variables, the 

sum 1xs1+0xs2 is the least Gaussian. Therefore, given a set of observed random 

variables, which are generated from some independent components, these 
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independent components can be estimated by maximizing a measure of 

nongaussianity.  

Information theory might be utilized as the main guide for studying 

independence. Information theory introduces the concept of entropy, a quantity of 

average information that the observer obtains via a random variable, x , [23], [30]: 

∫−= xxxx dffH )())(log()(  (3-22) 

Considering the definition of entropy, mutual information is defined 

),()()()( yxyxyx HHH,I −+=  (3-23) 

This quantity can be interpreted as a measure of information about y, that is 

obtained by observing the random variable x. It should be noted that, I(x,y)=0, if  x 

and y are statistically independent. 

It is also proven that [29] if g is the cumulative density function of the ICs 

generating the random variable, maximizing the joint entropy of Y = g(U) minimizes 

the mutual information between estimates of the ICs ui. In other words, the 

entropies of yi tend to be minimized, as the joint entropy of Y is maximized. For a 

given covariance matrix, it is well known that the Gaussian distribution has the 

maximum entropy. Minimizing mutual information is roughly equivalent to 

minimizing the entropy and therefore amounts to searching for components that 

are far from Gaussian. 

Another tool to study independence is kurtosis [19], which is defined as 

224 }){(3}{)( xxx Ε−Ε=kurtosis  (3-24) 

This concept accounts for the sparseness of a distribution. Sparse data are 

highly kurtotic. Maximizing kurtosis is equivalent to maximizing the joint entropy. 
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The basic principles of the information theory stated above, construct the 

main methodology of ICA. Any approximations or formulations keeping track of 

mutual information, other than those presented here, would suffice as well. 

Practically, there are various algorithms to estimate the ICs. Mainly, these 

algorithms involve optimization procedures with some constraint function that gives 

a measure of independence. Generally, the number of ICs is determined by the 

number of observed vectors, by assuming a square mixing matrix for simplicity. 

The independent axes found in ICA are not necessarily orthogonal, therefore. They 

change relative distance between data points, and also alters the angles between 

data points, which affects similarity measures such as cosines. With the cosine 

similarity measure, the distance between two vectors x1 and x2 is given as 

21

21

. xx
xx ⋅

=d  (3-25) 

where the operator ||.|| stands for the Euclidean norm of a vector. 

While searching for a smaller number of components than the original dimension, 

the dimension may be reduced beforehand using another method, such as PCA, or 

since the ICA is a linear generative model, the original variables may be replaced 

with a number of their principal components [25],[26]. Such techniques are also 

present for ordering the ICs according to their response to the constraint function 

and keep as many extrema as the desired number of dimensions.  

Various implementations of ICA are reported [22], [24], [25], [26], [29], [31]. The 

method used in this study is called as FastICA [28] and makes use of negentropy 

as the constraint and Newton Iteration scheme as the optimization method. 

Negentropy is defined as a slightly modified version of differential entropy: 

)()()( yHyHyJ gauss −=  (3-26) 

where gaussy  is a Gaussian random variable of the same covariance matrix y . Due 

to the properties mentioned above, negentropy is always non-negative and equals 
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zero iff y  has Gaussian distribution. Negentropy has the additional interesting 

property that it is invariant under invertible linear transformations [31], The 

estimation of negentropy is difficult, therefore in practice, some approximations 

have to be used. Note that, even in cases where an approximation is not very 

accurate, it can be used as a measure of non-gaussianity that is consistent in the 

sense that it is always non-negative, and equal to zero if y  has Gaussian 

distribution. 

The following equation can be shown to approximate negentropy [28] 

{ } { }[ ]2)()()( γGyGyJ Ε−Ε∝  (3-27) 

where γ  is a Gaussian variable of zero mean and unit variance, and G is some 

nonquadratic function. In particular, choosing G, which does not increase fast, one 

obtains more robust estimators. 

Assume the following relation: )()( ⋅=⋅ Gg & . FastICA uses )tanh()( 11 uaug =  

and 2
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= , as nonlinear functions with 1≤a≤2. This approximation is fast 

to compute, yet robust. Algorithm for calculating the pth IC is as follows: 
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Step 4. if not converged, i.e. 1≠• pold ww , return to a2. 

The steps numbered labeled with ‘Substep’ exist to ensure that different ICs 

are calculated by making use of decorrelation. 

 

     

     

     

Figure 3-5: 15 IC images of the data set, calculated with the FastICA method 

In the following figures, an illustration of dimension reduction techniques are 

seen. With MATLAB’s statistical toolbox, two sets of Gaussian variables are 

constructed. The projection axes are shown in the figures.  
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Figure 3-6: PCA results on the first constructed data set 

    

Figure 3-7: PCA results on the second constructed data set 

Figure 3-6 and Figure 3-7. shows a two dimensional, two class distributions. 

Left figures show the class distributions and principal components of the 

corresponding distributions, while the right figures show the projected data onto the 

principal axes. As these illustrations indicate, PCA acts as if all data belongs to the 

same distribution and the PCA axes point to the directions of the extremum 
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variations of the data. It is observed that PC’s are orthogonal, and the separability 

between classes is not altered after projection. 

 

    

Figure 3-8:LDA results on the first constructed data set 

    

Figure 3-9: LDA results on the second constructed data set 

Figure 3-8 and Figure 3-9 are organized like the preceding figures. Left 

images belong to class distributions and projection axes calculated via LDA. Right 
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images show the projected data onto the computed axes. As seen from the figures, 

LDA resulted in a projection axis that maximizes the class separability on single 

dimension. Dimension is reduced to 1 since we are dealing with a 2 class problem.  

 

    

Figure 3-10:ICA results on the first constructed data set 

    

Figure 3-11:ICA results on the second constructed data set 
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Left images on Figure 3-10 and Figure 3-11 show the IC’s of two different 

distributions whose PC’s and LDA axes are indicated in the preceding axes. The 

computed IC’s are clearly non-orthogonal, and the relative distances between 

points are not preserved.  
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CHAPTER 4 

CLASSIFIERS 

4.1 PATTERN CLASSIFICATION BASICS 

The classical model of a pattern recognizer involves a sensor, a feature 

extractor and a classifier, where classification is defined to be the assignment of 

the features into one of the specified classes.  

The classifiers are mainly designed using statistical, structural or neural 

network approaches [10]. While the structural methods expose a description of the 

pattern rather than classifying it, the neural networks are black box approaches 

supervised according to a reward/punishment scheme. Finally, the statistical 

methods partition the feature space into class decision regions such that the 

probability of error or the cost of error is minimized. Unless fuzzy sets are used, 

statistical methods find out disjoint regions.  

In some statistical methods, the underlying probability density of the pattern 

is assumed to be belonging to some of the classical parametric densities. In such 

problems known as the parametric approaches, the unknown parameters of the 

densities are tried to be estimated to find out the optimal classifier. However, the 

classical densities rarely fit the actual pattern density, and nonparametric 

approaches are employed in many practical problems [6]. The goal in some 

nonparametric approaches is to estimate the density functions p(x|wj) from training 

patterns, and can be thought of a generalization of the histogram approach. The 

others aim to a posteriori probabilities P(wj|x) bypassing the estimation and directly 

go into the decision functions.  
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The basic idea behind the probability estimation can be stated in terms of 

the binomial distribution [6],[10]. Having n independently drawn samples of the 

probability density function p(x), binomial distribution gives the probability of k of 

the samples falling into the region R 

knk
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with the expected value E{k} = nP. Since the binomial distribution peaks sharply 

about the mean, k/n is a good estimate for P. This probability is equals 

∫=∈ ')'()( xxx dpRP  (4-2) 

and assuming R is very small and encloses a volume V 

VpRP )()( xx =∈  (4-3) 

These results yield the following estimation of p(x) 
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Thus, a reasonable estimate for the a posteriori probability is  
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For the minimum error rate, we select the category most frequently 

represented within the cell. 

4.1.1 NEAREST NEIGHBOR CLASSIFIER 

When there exists a set of labeled training samples, assigning a test 

sample to the class associated with the training sample, which is closest to the test 
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data, is known as the nearest neighbor classification [10]. The ‘closeness’ of the 

data are calculated using a proper distance measure, and the most widely used 

distance measure is the Euclidean distance. This kind of classifier is a special case 

of the k-nearest neighbor classifier, which is discussed in the next section, with 

k=1. 

4.1.2 K-NEAREST NEIGBOR CLASSIFIER 

With the k-nearest neighbor classifier, the k closest sample data to the test 

data are considered, and the test data is labeled with the most frequently observed 

class among the k nearest neighbors. 

4.1.3 NEAREST MEAN CLASSIFIER 

The mean vector of each class is calculated using the known labeled data, 

and the nearest mean classifier labels the test data in the class whose mean vector 

happens to be the closest to the test data. 

4.1.4 K-MEANS CLASSIFIER 

K-means algorithm is an unsupervised method as the training data are 

unlabeled. ‘K’ stands for the number of classes to partition the feature space into. 

The k-means algorithm starts with a random initialization of the k mean vectors. 

The train data are clustered around these mean vectors according to the nearest 

neighbor rule, and each mean vector is restructured by calculating the mean of its 

cluster. Restructuring is repeated until the mean vectors are not updated anymore 

or the maximum number of iterations is reached. 

4.2 LEARNING VECTOR QUANTIZATION 

Another popular approach in supervised learning is the learning vector 

quantization (LVQ) where the decision boundaries are represented via a set of 

code vectors that are globally modified [12]. Each class is assigned to a set of 

feature vectors called the code vectors and every coordinate in feature space is 
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assigned to the class of the closest code vector. There are variations of the LVQ 

algorithm [12], [15], [33], [32] that ensures faster convergence of the decision 

algorithms or closer partitioning of the feature space to the optimal decision 

boundaries.  

The original LVQ algorithm starts with a set of optimal number of initial code 

vectors and the code vectors are updated iteratively via a learning rate until the 

criterion of learning is achieved. Since the decision boundaries are represented by 

the code vectors, lying close to the class borders, a good approximation of the a 

posteriori probability is not necessary everywhere [32]. It is more important to place 

the code vectors such that the nearest neighbor classification minimizes the 

average expected misclassification probability.  

In the following sections, main algorithms of LVQ are explained. Through 

these sections, x(t) represents a labeled training sample, mi(t) represents the 

sequential values of the code vectors. α(t) is the learning rate of the procedure. Let 

the nearest code vector to the input pattern is mc(t). 

4.2.1 THE LVQ1 

The following equations define the basic learning vector quantization 

algorithm, so-called LVQ1 [12]. 
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and 

cifor  )()1( ≠=+ tt ii mm  (4-7) 

Note that, this approach is supervised, since we know each train data’s 

class label. In LVQ1, after the code vectors are initialized, each train data is 

observed for a chosen number of iterations. In an iteration, every element of the 

training set is examined, and for each train data, the code vector, which is the 

nearest to the train data is found. If the data is correctly classified, the winning 
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code vector is moved towards the train data by some scaled value of the distance 

between the data and the winning code vector. This scale is called as the learning 

rate. If the training data is misclassified, the code vector is moved away from the 

misclassified data by the distance between the winning code vector and the train 

data, scaled with the learning rate. Note that, the code vectors, other than the 

winning vector are not updated. 

The learning rate is chosen between 0 and 1 and is usually made to 

decrease monotonically with time.  

Figure 4-1 shows how LVQ1 method modifies the decision boundary. There 

are two classes of Gaussian variables, each class represented with a different 

color. The black points are code vectors. Each data falling onto the light blue area 

would be labeled as ‘blue’, while any data that falls into light red region would be 

labeled as ‘red’. Left image shows the decision areas after random initialization of 

code vectors, while the right image shows the updated decision regions after 5 

iterations. Note that, there are 5 code vectors for each class, and learning rate is 

chosen to be 0.015. The algorithm converged after 5 steps. 

 

   

Figure 4-1: Class Boundaries and Code Vectors of a distribution in 2 dimensional 
feature space at initialization and after convergence 
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4.2.2 THE OPTIMIZED LEARNING RATE LVQ1 (OLVQ1) 

OLVQ1 is a modification of the LVQ1 in the way that an individual learning 

rate αi(t) is assigned to each code vector mi(t) and is updated in each iteration for 

the fastest convergence of the algorithm [1]. 
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and 

cifor  )()1( ≠=+ tt ii mm  (4-9) 

The preceding equations can be rephrased in the following form: 

[ ]{ )()()()()()(1)1( tttstttst cccc xmm αα +−=+  (4-10) 

where s(t) = +1 if the classification is correct, and s(t) = -1 otherwise.  

For the statistical accuracy of the learned code vectors, it is obvious that the 

corrections, which are made at different times, should be of approximately equal 

magnitude. In other words, the same training set, when ordered differently, should 

yield the same solution under the same initialization. As the previous equation 

states, the updated code vector contains the traces of the last input pattern through 

the last term and the traces of the previous input patterns through the first term. 

The contribution factor of x(t) in this learning step is αc(t), whereas this factor is [1-

s(t) αc(t)] αc(t-1) for x(t-1). For x(t) and x(t-1) to contribute equally to the code 

vector, their contribution factors must be equal. Approximately equal contributions 

yield the recursive formulation: 

)1()(1
)1()(
−+

−
=

tts
tt
c

c
c α

αα  (4-11) 
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However, since the learning rate may rise, its value should be restricted to 

unity. 

4.2.3 THE LVQ2 

In LVQ2, two code vectors, mi(t) and mj(t),  that are nearest neighbors to 

x(t) are updates instead of one. One of them must be the nearest neighbor in the 

same class with the test pattern while the other must belong to another class. 

Moreover, x(t) must fall into a window between mi and mj. The window is defined to 

have the width w 

s
d
d

d
d

i

j

j

i >









,min  where 

w
ws

+
−

=
1
1

 and di represents the Euclidean distance 

between x and mi. 

With the figures below, the effects of LVQ algorithm parameters; namely the 

learning rate, the size of the training data set, the number of codebook vectors; on 

the recognition rate, are graphically presented. Recognition rate is the percentage 

of correct classifications among the test samples. 

A set of simulated data is used. The data set consists of 3 two-dimensional 

classes with Gaussian distribution of different means and variances. Figure 4-2 

shows this data set with each class indicated with a different color. The mean and 

standard deviation pairs )),(),,(( 2121 σσµµ  for these classes are 

((55,72.2),(19.5,20.8)), ((35,167),(29.5,32)) and ((-14.5,31.5),(24.5,32)). Each class 

has 500 samples.  
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Figure 4-2: Simulated data set, which is used in comparisons 

 

Figure 4-3: Evaluation of the effect of learning rate on performance 
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The LVQ1 algorithm is run with different learning rates, and as it is 

observed in Figure 4-3, the simulations show that the recognition rate versus 

learning rate is a unimodal function with a global optimum. This optimum may 

depend on the number of iterations, since for larger values of learning rate, 

oscillations with iterations might be observed. During simulations, 5 code vectors 

per class are used, and the iteration number is 10. 

 

 

Figure 4-4: Effect of the size of the Code Book on performance 

As seen in Figure 4-4, increasing the number of code vectors does not 

always increase the recognition rate. After 5 code vectors per class, the recognition 

rate reside within the range of 95.3%-95.9%. While choosing the number of code 

vectors, codebook size should be chosen in accordance with the number of 

observations. A large number of code vectors may result in poor reasoning, if there 

are a small number of observations per vector. During this simulation, learning rate 

is chosen to be 0.04, and the number of iterations is 10. 
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Figure 4-5: Effect of the size of training data set on performance  

As explained with the previous simulation, data set size and the number of 

code vectors need to be considered together. With well-behaved distributions, with 

an appropriate number of code vectors, performance is not altered considerably 

with increasing observations. In Figure 4-5, the effect of the training set size on 

recognition rate is presented. The learning rate is chosen to be 0.2 in this 

simulation. 
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CHAPTER 5 

COMPARATIVE ANALYSIS VIA SIMULATIONS 

In this chapter, the experimental results of previously explained algorithms 

are presented. The algorithms are implemented in C++, compiled using MS Visual 

C++ 6.0 IDE. The application is realized using MFC 6.0 Library for user interfaces 

and DirectX 8.0, GDIPlus Library, and CDirectShowWrapper and CGdiplusWrapper 

classes of TUBITAK-BILTEN for video and image capturing and viewing.  

The algorithm can be examined in two phases. The first phase is that of 

detection, and the second is the recognition phase. The detection phase input is 

infrared movies in MPEG1 format and recognition is carried out on captures of the 

detected images of targets.  

The data are collected by a stationary camera, observing vehicles from a 

fixed distance and fixed viewing angle. There two sets of movies, which are 

recorded at different times of the year, June 2003 and February 2004. The 

database is divided into two disjoint sets for test and training data, according to 

seasonal changes. There are 5 classes in the resulting database: Trucks, buses, 

vans, minibuses, tankers. Table 5-1 summarizes the classes and class populations 

of the collected data. 
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Table 5-1: Statistical properties of the test and the training sets 

 Trucks Buses Vans Minibuses Tankers Total 

Training Set 33 26 22 44 13 138 

Test Set 7 4 39 14 1 65 

 

5.1 PREPROCESSING AND TARGET DETECTION 

In detecting the targets in infrared imagery, user intervention is required for 

background processing. User selects a region of interest with a stationary 

background scene.  

After the user inputs a stationary background region, tracking loop begins. 

This loop lasts until the user exits or stops the application. The first step of this loop 

is to directly compare the corresponding pixels of the stationary region of interest 

and the frame to be processed, i.e. subtraction of two consecutive regions in two 

frames.  

The second step is binarization, i.e. thresholding of each pixel of the 

difference image.  



 >

=
otherwise,  0

T |k)y,F(x,-j)y,F(x,|   if   1
jkD  (5-1) 

The results of thresholding are quite noisy, especially because the 

background is highly cluttered in the data.  

In order to remove the regions that are unlikely to be object parts, 

morphological operators are used. Dilation and erosion are used one after another 

to remove the noise and recover back all the object parts. As the morphological 

operator, a 3x3 structure in Figure 5-1, which has a checkerboard pattern, is 

utilized.  
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Figure 5-1: The pattern used during morphological operations 

Size filter is also used after morphological operators to decrease the false 

alarm rates. The frames that result in a foreground area that is smaller than 100 

pixels are eliminated. A bounding rectangle for the detected target is calculated by 

scanning the binary image to find the maximum and minimum object pixels in both 

directions. 

In Figure 5-2, samples of typical background and target images, which are 

used during this study, are presented. Figure 5-3 shows the difference image 

between the figures presented in Figure 5-2, and the result of thresholding step on 

the difference image. Finally, Figure 5-4 shows the morphological operation result. 

 

   

Figure 5-2: Samples of background and target scenes 
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Figure 5-3: Samples of difference image and its thresholding result 

 

Figure 5-4: Sample of morphological operation 

The target image, whose bounding rectangle is calculated, is extracted from 

the overall image, and normalized to the size of 40x80 pixels by bicubic 

interpolation. Then the recognition algorithms are employed. The comparative 

results of the recognition phase are presented in the next section. 

5.2 SIMULATION RESULTS 

There are two kinds of illustrative results, which are presented. The first 

presentation is via confusion matrix, and the second type is the graphical plots. In 

the confusion matrix, the first column represent the actual classes of targets, and 

the first row represent the labels assigned to the data. Diagonal entities are the 
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correct classifications, while the non-diagonal entities are the misclassifications. In 

the simulations, Euclidean distance is utilized unless otherwise stated. 

5.2.1 PCA vs subspace LDA 

In Table 5-2 and Table 5-4, an expected improvement in subspace LDA is 

observed. In Table 5-3, results, when dimensions are reduced further with PCA, 

are presented. The recognition rate decreases as it is expected, but is still 

satisfactory when the dramatic decrease in the dimension is considered. LDA’s 

discriminatory approach results in higher recognition rate. 

Table 5-2: Results of PCA algorithm 

DR Technique PCA, trained with 138 images 

Dimension Reduced To 100 

Classifier Nearest Neighbor 

Classifier Training 138 representatives 

 TRUCK BUS VAN MINIBUS TANKER 

TRUCK 5 1 1 0 0 

BUS 0 2 2 0 0 

VAN 5 6 23 5 0 

MINIBUS 0 0 6 8 0 

TANKER 0 0 0 1 0 

Recognition Rate : 58.46% 
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Table 5-3: Results of PCA algorithm with fewer dimensions 

DR Technique PCA, trained with 138 images 

Dimension Reduced To 20 

Classifier Nearest Neighbor 

Classifier Training 138 representatives 

 TRUCK BUS VAN MINIBUS TANKER 

TRUCK 4 1 2 0 0 

BUS 0 4 0 0 0 

VAN 6 8 22 3 0 

MINIBUS 0 1 9 4 0 

TANKER 0 0 0 1 0 

Recognition Rate : 52.308% 

 
Table 5-4: Results of subspace LDA algorithm 

DR Technique 
Subspace LDA, trained with 138 

images 

Dimension Reduced To 20 

Classifier Nearest Neighbor 

Classifier Training 138 representatives 

 TRUCK BUS VAN MINIBUS TANKER 

TRUCK 5 1 1 0 0 

BUS 0 3 1 0 0 

VAN 6 7 24 2 0 

MINIBUS 0 0 6 8 0 

TANKER 0 0 0 1 0 

Recognition Rate : 61.5% 



 48

 

Figure 5-5: Recognition Rate vs the number of Principal Axes used. PCA is trained 
with 25 images 

As Figure 5-5 illustrates, increasing the number of principal components, 

we obtain a stationary recognition rate. This is because, the principal components 

corresponding to small valued eigenvalues does not carry much energy, therefore 

does not carry much information relevant to the classification. 

 

 

Figure 5-6: Recognition Rate vs Number of Axes used in LDA 
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As expected, LDA is a better feature extractor than PCA, since it takes the 

separability issues into account. With subspace LDA, as illustrated in  

Figure 5-6 the dimension can be reduced more without downgrading the 

performance. 

5.2.2 PCA vs ICA 

Table 5-5 and Table 5-6 compare the results of classification via Euclidean 

and cosine similarity measures. It is observed that if cosine similarity measure is 

used, the recognition rate increases as proposed in [25]. Among the dimension 

reduction methods, ICA and LDA are observed to be more successful in extracting 

the information that is relevant to the classification.  

Table 5-5: Results of ICA algorithm 

DR Technique ICA, trained with 138 images 

Dimension Reduced To 20 

Classifier Nearest Neighbor 

Classifier Training 138 representatives 

 TRUCK BUS VAN MINIBUS TANKER 

TRUCK 1 1 2 3 0 

BUS 0 3 1 0 0 

VAN 7 0 32 0 0 

MINIBUS 0 0 10 4 0 

TANKER 1 0 0 0 0 

Recognition Rate : 61.53% 
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Table 5-6: Results of ICA algorithm with ‘cosine-matching’ 

DR Technique ICA, trained with 138 images 

Dimension Reduced To 20 

Classifier 
Nearest Neighbor with cosine 

similarity measure 

Classifier Training 138 representatives 

 TRUCK BUS VAN MINIBUS TANKER 

TRUCK 2 0 3 2 0 

BUS 0 3 1 0 0 

VAN 5 2 32 0 0 

MINIBUS 0 0 10 4 0 

TANKER 1 0 0 0 0 

Recognition Rate : 63.0% 

 

 

 

Figure 5-7: ICA-Recognition Rate vs Iteration Count 
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With the iterative procedure of finding independent components, iteration 

count improves the performance. 

 

 

Figure 5-8: ICA with different initial ICs 

The initialization of IC’s is a critical issue with a low number of iterations. 

5.2.3 Simulations by LVQ1 vs Nearest Neighbor 

Comparing the results, which are presented in Table 5-2, Table 5-7 and 

Table 5-5, Table 5-8, the superiority of LVQ1 over nearest neighbor method is 

apparent. With fewer vectors (a total of 25 vectors are used in LVQ1, while 138 

vectors are utilized in NN), higher correct classification rate, as well as better 

classification time, is achieved. The projections, both onto PC’s and IC’s are well 

classified with LVQ1. 
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Table 5-7: Classification with PCA+LVQ1 

DR Technique PCA, trained with 138 images 

Dimension Reduced To 100 

Classifier LVQ1 

Classifier Training 
Training set population: 138 

Codebook : 5 vectors/class, α: 0.2 

 TRUCK BUS VAN MINIBUS TANKER 

TRUCK 5 0 0 2 0 

BUS 0 1 3 0 0 

VAN 2 2 33 2 0 

MINIBUS 0 1 8 5 0 

TANKER 1 0 0 0 0 

Recognition Rate : 67.7% 

Table 5-8: Classification with ICA+LVQ1 

DR Technique ICA, trained with 138 images 

Dimension Reduced To 15 

Classifier LVQ1 

Classifier Training 
Training set population: 138 

Codebook : 5 vectors/class, α: 0.2 

 TRUCK BUS VAN MINIBUS TANKER 

TRUCK 1 0 3 0 0 

BUS 0 3 1 0 0 

VAN 0 1 38 0 0 

MINIBUS 0 1 9 3 1 

TANKER 0 0 0 1 0 

Recognition Rate : 69.3% 
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Figure 5-9: LVQ1 is run with different initial code vectors 

In Figure 5-9, the x-axis shows 10 different cases, in which various random 

initial vectors are used. The target images have high order statistical properties 

and are sensitive to initial vectors. This is due to the local settlement of the code 

vectors [32]. 

 

 

Figure 5-10: LVQ1 is run with different initial code vectors, and each image’s 
histogram is stretched 
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In Figure 5-10, the effect of a preprocessing step, histogram stretching, on 

LVQ1 is presented. The same reasoning with Figure 5-9 applies in this illustration. 

The difference is due to the histogram stretching, which worsens the performance. 

Histogram stretching, as experimentally observed, is not an appropriate 

preprocessing technique in ATR with IR, since the IR signatures of each class of 

vehicles are usually corrupted via such a method. 

 

 

Figure 5-11: LVQ1 Recognition rate vs Codebook size  

As observed in Figure 5-11 and stated in Chapter 4, increasing codebook 

size has an effect of poor reasoning, therefore the optimal number of codebook 

size should be decided according to the number of observations. Increasing the 

size of the codebook so that there exist one training data per vector is an example 

of such a situation. In such a case, performance, the expected classification 

performance is no more than that of the nearest neighbor classification.  
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Figure 5-12: LVQ1 trained in different numbers of iterations 

As in Figure 5-12, the number of iterations in LVQ1 training is another 

important parameter to examine by simulations. Left plot presents the results 

obtained by LVQ1, when dimension is reduced to 10, 3 code vectors per class are 

computed, alpha is chosen to be 0.01 In the right plot, all parameters except for 

alpha are the same. Alpha is chosen to be 0.15. The oscillations around 47% are 

the effect of the high learning rate. Left plot shows that the convergence is 

reached, and it is reached with a considerably low number of iterations. 

 

 

Figure 5-13: LVQ1 Recognition rate vs Learning rate 
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In LVQ1, learning rate parameter, alpha, may be selected experimentally. 

As expected, increasing the learning rate dramatically increases the recognition 

rate. In LVQ, the aim is to represent the decision boundaries as precisely as 

possible. Therefore, when the code vectors are moved with large steps, the code 

vectors move far from the decision boundaries, leading the smaller recognition rate 

as presented in Figure 5-13. 

5.2.4 OLVQ1 vs LVQ1 

 

 

Figure 5-14: OLVQ1 run with different initial code vectors 

In terms of recognition performance, OLVQ1 behaves in a similar manner to 

that of LVQ1, as shown in Figure 5-14. In fact, the three options of LVQ yield 

almost similar accuracies in most pattern recognition problems, although a different 

philosophy underlies each [12].  
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Figure 5-15: OLVQ1 Recognition Rate vs Learning Rate 

The effect of initial learning rate in OLVQ1 is not like that of LVQ1, since the 

learning rate is continuously updated in this modification. The algorithm itself 

avoids the learning rate to go beyond 1. 

5.2.5 Simulations by LVQ2 

 

 

Figure 5-16: LVQ2-Recognition Rate vs Window Size 
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The window is a region where code vectors are updated. With the window 

size, the decision critic area is defined. As it is observed in Figure 5-16, window 

size is a quite critical parameter. Smaller values should be preferred. 

 

 

Figure 5-17: LVQ2 is run with different initial code vectors 

LVQ2 turns out to be the most sensitive method to the initialization 

according to the simulations. 
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Figure 5-18: LVQ2 Recognition Rate vs Number of Iterations 

The LVQ2 is a successful method of defining decision regions. 

 

 

Figure 5-19: LVQ2-Recognition Rate vs Learning Rate 

The small learning rate performs better with LVQ2 and a sufficient number 

of iterations.  
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5.2.6 Computational Efficiency 

Since the ATR is a time-critical task, the computation times of the 

algorithms are presented in Table 5-9 for comparison. The results are presented in 

milliseconds and are obtained on a Pentium 4, 2.0 GHz machine.  

Table 5-9: Computation times of implemented algorithms 

 Specifications 
Computation 

Time (ms) 

PCA Training Training set: 138 images of size 40x80  20462 

Subspace LDA Training 
Training set: 5 classes, 138 images of 

size 40x80. Dimension reduced to: 20. 
21116 

ICA Training 
Training set: 138 images of size 40x80. 

Dimension reduced to: 20 , No. of iter.: 1 
82395 

Projection Algorithm 
An image of size 40x80 image onto 20-D 

space 
12 

LVQ1 Training 
Training set: 20-D, 5 class, 138 vectors 

Code Vectors/class: 5 , No. of iter: 1 
79 

OLVQ1 Training 
Training set: 20-D, 5 class, 138 vectors 

Code Vectors per class: 5 , No. of iter.: 1 
77 

LVQ2 Training 
Training set: 20-D, 5 class, 138 vectors 

Code Vectors per class: 5 , No. of iter.: 1 
77 

NN Classification 
Data Dimension: 20 

Number of Representatives: 25 

Number of Test Vectors: 138 

75 
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CHAPTER 6 

CONCLUSIONS 

Throughout this thesis, applications of some pattern recognition techniques 

on the task of ATR are studied. The investigated algorithms are grouped into two 

major parts as statistical dimension reduction methods where PCA, subspace LDA 

and ICA are studied, and pattern classification methods, namely nearest neighbor, 

k means, k nearest neighbors and LVQ are studied.  

One of the major drawbacks of this study is the limited data set with which 

the algorithms are trained and tested. Though the test and data sets are limited, 

they are disjoint and are gathered under two different weather conditions, which 

the infrared sensors are quite sensitive about.  

The performance is evaluated based on the recognition rate within this 

study. Other than recognition rate, computation time is an important issue in ATR 

tasks, with much of the interest on the test epoch. The decision algorithms are 

quite satisfactory. 

According to the simulation results obtained, of the dimension reduction 

methods, which can be thought of as feature extractors of the intensity data, the 

best performing algorithm is ICA, while subspace LDA resulted in the second best 

performance and the PCA turned out to be the least promising method. LDA, 

taking the class information of the training set into account, performs better than 

PCA, as expected. The superiority of the ICA algorithm may be interpreted as a 

symptom of the non-gaussianity of the image data and that the intensity values are 

correlated in high orders, the assumption of second order correlatedness is not 

satisfactory. It also should be noted that, when the tests are carried out in joint sets 

of test and training samples, PCA and ICA perform closer to each other. However, 



 62

with disjoint sets, as illustrated in Chapter 5, ICA is superior to PCA. Better 

performance of ICA in more challenging test sets may be expected. 

Among the classifiers, LVQ has the superior results. This result is not 

surprising, either. Since LVQ operates on decision boundary regions and iteratively 

updates the code vectors for better classification, it turns out to be a better 

classifier than nearest neighbor.  

While evaluating the results, it should be kept in mind that all these results 

are obtained with sets of still IR imagery, and no use of temporal context is made. 

A remedy for more satisfactory results is sensor fusion algorithms. For instance, 

SAR outputs, whose employment in the ATR algorithms are reported to be more 

satisfactory, may be fused with IR images and increase the overall performance of 

the system. In addition, the viewing angle in collected data are identical, therefore, 

one needs not consider such a variation. For data sets with different views of 

targets, aspect windows may offer a good and easy solution. Certainly, to develop 

solutions for such data sets, there should be sufficient number of samples for every 

class’ each aspect.  

The implemented system is not tested with the images where the target 

parts are occluded. All the implemented algorithms assume that the target images 

are centered and background is extracted as much as possible. Almost certainly, 

the algorithms would produce higher false alarm rates under such test sets. This 

problem may be defeated by training the algorithms with sub-regioning the train 

images first. Intuitively, optimal sub-regioning is up to experimental results and 

operating conditions.  
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