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ABSTRACT

GENERALIZED BEAM ANGLE STATISTICS FOR SHAPE DESCRIPTION

Tola, Ömer Önder

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Fatoş Yarman - Vural

Co-Supervisor: Dr. Nafiz Arıca

August 2004, 84 pages

In this thesis, we introduce a new shape descriptor and a graph based matching

algorithm to detect a template shape in an image that contains a single object. The

shape descriptor, Generalized Beam Angle Statistics, GBAS is obtained with the

generalization of the boundary based shape descriptor, Beam Angle Statistics, BAS

[5]. GBAS improves BAS so that it can compute the feature vector of a boundary

point without the requirement of the parametric boundary representation. This way,

it can be used in matching an individual edge pixel with a boundary point of template

shape, even if it is not possible to extract the shape boundary in the image with the

available techniques.

Given a template shape, the matching algorithm solves the correspondence prob-

lem between the sampled boundary points of the template and the edges of the query

image, using the GBAS feature vectors and the spatial information of edges. The

match graph represents the correspondence problem and the optimum path on this

graph gives the solution of it. Optimum path is found using a polynomial time algo-

rithm that is based on the dynamic programming approach.

In the experiments, we show that the proposed shape descriptor is very powerful

and the matching algorithm is capable of detecting a template shape in edge detected
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images under a variety of transformations and noise.

Keywords: Shape Recognition, Beam Angle Statistics, Generalized Beam Angle Statis-

tics, Matching Algorithm
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ÖZ

ŞEKİL BETİMLEMEK İÇİN GENELLEŞTİRİLMİŞ KERTERİZ AÇISI

İSTATİSTİKLERİ

Tola, Ömer Önder

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Fatoş Yarman - Vural

Ortak Tez Yöneticisi: Dr. Nafiz Arıca

Ağustos 2004, 84 sayfa

Bu tezde, bir şablon şekli tek bir nesne içeren bir imgede bulmak için yeni bir şekil be-

timleyicisi ve çizgeye dayanan bir eşleştirme algoritması önerilmektedir. Genelleştirilmiş

Kerteriz Açısı İstatistikleri, GKAİ adını verdiğimiz bu şekil betimleyicisi daha önce

önerilen ve bir sınır tabanlı şekil betimleyicisi olan, Kerteriz Açısı İstatistikleri, KAİ’nin

genelleştirilmesi ile elde edilmiştir [5]. GKAİ, KAİ’yi parametrik sınırlara gerek duy-

madan bir sınır noktasının öznitelik vektörünü hesaplayacan şekilde geliştirir. Böylece,

resimdeki şekil sınırlarını var olan yöntemlerle elde etmek mümkün olmasa dahi, birey-

sel bir kenar pikselini şablon şeklin bir sınır noktasıyla eşleştirmek mümkün olur.

Bir şablon şekil verildiğinde, eşleştirme algoritması, şablon şeklin örneklenmiş sınır

noktaları ile sorgu imgesinin kenarları arasındaki eşleşme problemini kenarların GKAİ

öznitelik vektörleri ve uzaysal bilgisini kullanarak çözer. Eşleştirme çizgesi, eşleşme

problemini temsil eder ve bu çizge üzerindeki en uygun yol problemin çözümü verir. En

uygun yol, dinamik programlama yaklaşımına dayanan polinom zamanlı bir algoritma

ile bulunur.

Yapılan deneylerde, önerilen şekil betimleyicisinin çok güçlü olduğunu ve eşleştirme

algoritmasının çeşitli dönüşüm ve gürültü tipleri altında bir şablon şekli kenarları
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taranmış bir imge içerisinde tespit edebildiğini gösteriyoruz.

Anahtar Kelimeler: Şekil Tanıma, Kerteriz Açısı İstatistikleri, Genelleştirilmiş Kert-

eriz Açısı İstatistikleri, Eşleştirme Algoritması
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CHAPTER 1

INTRODUCTION

Shape is an important visual property of objects. It has much superiority compared

to other visual features such as color and texture. Firstly, humans make abstractions

of objects with their shapes. When two people talk about an object, the common

property that both of them imagine is mostly its shape. Other properties such as

the color and texture might be a secondary issue. Secondly, shape is a discriminative

property of objects that lead to object identity but, other properties are not. This

is especially true for man-made objects. Moreover, humans give different names to

objects that have different shapes. For instance, car manufactures give a distinctive

name for each model of car they produce. Therefore, formation of object classes

is strongly influenced with the shapes of objects rather than other low level visual

features. In addition, the shapes of objects are closely related to their function. For

example; all birds have wings, all fish have fins, etc. Importance of this fact from the

perspective of object recognition is that object classes are formed according to their

functions. In other words, objects that have similar functions are grouped into the

same classes. As a result, shape features provide a powerful clue to object identity

and functionality and determine their class.

Shape recognition is a difficult problem because the detection of shapes in images

cannot be performed successfully. This has many reasons ranging from the complexity

of the shapes, to the lighting conditions such as shadows and specular reflection. Addi-

tionally, depth information is lost during the formation of shapes with the perspective

projection of the objects on the 2D imaging plane. Therefore, even if the shape is

1



detected correctly, the loss of information during the projection must be handled. Yet

another problem is the noise, which is present in images due to many sources, changes

the forms of shapes. Occlusion is another factor that prevents the detection of shapes.

Accordingly, shapes must be detected even if some parts of them are not available.

Shape recognition involves the detection and classification of shapes. Related

methods can be divided into two classes. In the first class, detection and classification

phases are separated from each other. First, the object is detected and then it is

classified. Detection phase uses only the information gathered from the image. Seg-

mentation is the usual process for detection. Discontinuities between unrelated parts

and similarity of the related parts are used in the process. After the segmentation,

each connected part is assumed to be an object. Then, various features of these object

regions are used to classify them.

In the second approach, templates or models are used to recognize shapes [34, 20,

23, 1, 18]. These methods locate the template shape within the image. Since the class

of the template shape is known a priori, the classification step is eliminated. This

way, only the objects of interest are recognized within images. The main advantage

of template based recognition is the improvement of the shape recognition process

combining the detection and recognition phases.

During the MPEG-7 studies, it is shown that boundary based shape descriptors

are more successful in the retrieval of shapes. The boundary based shape descriptor,

BAS outperformed many other shape description methods found in the literature [5].

However, as many other similar shape descriptors [25], BAS requires the extraction of

the shape boundary for description. Therefore, it has limited applicability.

In this study, we follow the template based shape recognition paradigm in order

to extend the applicability of the boundary based shape descriptor BAS to general

images. Accordingly, we suggest a method that performs the detection of a given

template shape in images that contain a single object using the shape descriptor,

Generalized Beam Angle Statistics, GBAS and a graph based matching algorithm.

GBAS, which is obtained with the generalization of BAS, improves BAS so that it can

compute the feature vectors of boundary points in the lack of parametric boundary

representation. This way, it can be used to compute the features vectors of edge

pixels even if it is not possible to extract the shape boundary with the available
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techniques. Then, the detection problem is reduced to matching the boundary points

of the template shape and the edges. This is achieved by a graph based matching

algorithm, which transforms the problem to the determination of the optimum path. A

polynomial time algorithm based on the dynamic programming approach is employed

for the determination of the optimum path.

The thesis is organized as follows. The related background is given in chapter 2.

Next, the proposed shape descriptor Generalized Beam Angle Statistics, (GBAS) is

introduced in chapter 3. Chapter 4 describes the matching algorithm used for object

detection. The experiments that are carried out for the evaluation of the performance

of GBAS and the matching algorithm are given in chapter 5. Finally, chapter 6

concludes the thesis and gives the future research directions.
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CHAPTER 2

BACKGROUND

In this chapter, first we give an overview of shape representation techniques. Then,

we describe Beam Angle Statistics (BAS) [5], the shape descriptor that we have gen-

eralized to create a new shape descriptor, Generalized Beam Angle Statistics, GBAS

for object detection. Finally, we review the edge detection methods and discuss the

Canny edge detector which we use as a preliminary step for description.

2.1 Shape Representation Techniques

Shape representation techniques can be analyzed in two main classes: region and

boundary based techniques [25]. Region based techniques use the whole information

content of shapes for description. Basic representation methods are region decom-

positions into simple surface primitives such as polygons and quad-trees, bounding

regions such as the minimum enclosing rectangle and the convex hull and internal fea-

tures such as the skeletons and shape matrices [12]. Examples of region based shape

descriptors are [36, 28, 22, 3, 21]. Since we utilize a boundary based shape descriptor

we do not elaborate on the region based shape representation techniques any further.

Boundary based shape representation techniques can be classified into the following

classes: simple boundary descriptors, parametric contours, set of boundary points,

curve approximations and transform domain techniques.

Simple boundary descriptors mainly focus on a single property of shapes and

represent that property with a number. These are global descriptors so that they
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do not represent local shape characteristics. However, such characteristics affect some

of these descriptors drastically. Boundary length, diameter, centroid, bending energy,

eccentricity, convexity, major axis orientation, circular variance and elliptic variance

[12, 17, 26, 37] are among the simple boundary descriptors. Disadvantage of these

descriptors is that they cannot be used to describe shapes alone because completely

different shapes can be mapped to similar simple boundary descriptors. Therefore,

they are usually used in conjunction with other methods to eliminate false alarms.

Parametric boundary descriptors represent the shape boundary as an ordered set

of boundary points, which are accessible through a parameter. The simplest parame-

terization is the indices of boundary points. This corresponds to the digital equivalent

of the arc length parameterization, which is useful for continuous curves. However,

the index parametrization is not equivalent to the arc length parameterization of

digital curves, for instance in 8-connected boundaries. Most of the parametric bound-

ary descriptors are also boundary representations because they define the boundary

uniquely. Examples of parametric boundary descriptors are vectors, complex signals,

chain codes and shape numbers [12].

Set of boundary points is an alternative to the parametric representations. It

aims the removal of the dependency of shape descriptors to the ordering of boundary

points. This is especially useful in scenarios where it is required to describe shapes

even if the boundary cannot be extracted with the available techniques. Contour

following algorithms extract digital shape boundaries from pre-segmented binary im-

ages. However, extraction of shape boundaries is not always possible in grayscale or

colored images. Therefore, shape descriptors which does not depend on the parametric

boundary representation, are useful for the detection of objects in general images.

Chords [26] and shape contexts [21], are examples of the set of boundary points

descriptors. The shape descriptor proposed in this thesis, GBAS is also based on

the set of boundary points representation. GBAS assigns a feature vector to each

boundary point without using the parametric boundary information. This makes it a

suitable shape descriptor to be used in object detection.

Parametric boundary descriptors such as vectors and complex signals are very

redundant. Curve approximation methods try to reduce the redundancy of these de-

scriptors by using only the “important” boundary points for shape description. They
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partition the curves into parts and then represent these parts using predefined geomet-

ric primitives such as lines, arcs and B-splines. Polygon approximation methods are

the most popular curve approximation methods, which use line segments to represent

these parts. These methods are not practical for natural objects [37].

Transformations are useful mathematical tools that allow one to replace the prob-

lem domain with a more convenient one in which the solution is more easily con-

structed. Shape description techniques make use of the transforms as well. Transform

domain techniques, which are divided into the mono-scale (Fourier, Sine, Cosine,

Laplace, Z, etc.) and multi-scale (short-time Fourier, Wavelets, Gabor, Scale-space,

etc.) transforms, use transform coefficients, transform measures such as energies and

transform statistics as transform domain features [12]. Main difference between the

mono-scale and multi-scale transforms is that while the former are one-to-one, latter

are usually one-to-many. Multi-scale transforms map the input signal based on the

supplied scale parameter to the transform domain. On the other hand, mono-scale

transforms do not require any parameter for mapping. Fourier descriptors [17], cur-

vature scale space [15, 16, 31] and wavelet descriptors [35] are examples of transform

domain descriptors.

2.2 Beam Angle Statistics: BAS

Beam Angle Statistics, BAS, is a boundary based shape descriptor that describes

shapes by a set of moment functions derived from the beam angles of boundary points.

Like many other shape descriptors [37, 25], it requires parametric boundary represen-

tation for description.

In this section, first we give some introductory definitions and then define BAS

and discuss its properties. Finally, we conclude with a discussion that argues the

additional requirements of a BAS based shape descriptor which will be used in shape

detection.

2.2.1 Shape Boundary

Shape boundary is an ordered set of points lying on the discrete cartesian coordinate

system, Z2. A shape boundary composed of L points is represented as;

S = {s1(x1, y1), s2(x2, y2), . . . , sL(xL, yL)} (2.1)
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where s1(x, y) and sL(x, y) are the starting and ending points of the boundary respec-

tively. For closed boundaries, s1 = sL.

2.2.2 Curvature

Curvature is the rate of change in the slope of the curve tangent. Intuitively, it is an

indication of the amount of bended ness in the curve. For instance, the curvature of a

straight line is zero. This result can be verified intuitively since a straight line is not

bended. Consider a circle. The curvature of each point in a circle is constant. Again,

intuitively, a circle is bended by a constant amount from all points. Besides these

intuitive understandings, curvature can be used to extract other geometrical means

such as convex or concave corners, inflection points, etc. [12].

In mathematical terms, the curvature, k(t) of a two-dimensional parametric curve,

c(t) = (x(t), y(t)) is defined as follows;

k(t) =
x′(t)y′′(t) − x′′(t)y′(t)

(x′(t)2 + y′(t)2)
3
2

(2.2)

Clearly, in order to compute the curvature of c(t), first and second order derivatives of

x(t) and y(t) are required. Note that, this definition serves for the curvature analysis

of continuous curves.

Curvature is an important shape feature and in its stand-alone form it can be

used as a shape descriptor. However, this can be expensive because as the length

of the curve increases, the length of the feature vector increases as well. In order to

overcome this difficulty one can use different methods for defining a curvature based

feature vector. Uniform sampling of the curvature function, non-uniform sampling of

the curvature function using the important curve points such as high-curvature points,

convex or concave corner points, etc., statistics of global measures derived from the

curvature function such as mean-curvature, variance, standard deviation, etc., and

important global measures of shape complexity such as bending-energy can all be

used as features derived from curvature [12].

2.2.3 Beam Angle Function

Beam-Angle function is a measure of curvature of a discrete curve. Given a shape

boundary, S, the Beam-Angle function, cn(si) of a boundary point si(x, y), is defined
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Figure 2.1: Beam Angle Function, cn(si).

as the angle between the vectors Fn(si) =
−−−−−−→
(si, si+n) and Bn(si) =

−−−−−−→
(si, si−n) where

n indicates the number of points to the right and left of si that will be used in the

computation (see figure 2.1). One can think n as a parameter that arranges the scale

at which the beam angle of si would be evaluated. Beam angle function is introduced

in [5].

For a straight line, the Beam-Angle function of any point on the line must be π.

For a convex point, the value of the Beam-Angle function must be less than π, in

a sufficiently large neighborhood, n. Similarly, for a concave point, the value of the

Beam-Angle function must be greater than π, for a sufficiently large neighborhood

n. Other geometrical means related to curvature can be represented similarly by the

Beam-Angle function as well.

Beam Angle Statistics is an innovative way of defining a curvature based shape

descriptor. In all of the techniques discussed in 2.2.2, an estimation of the curvature

at each boundary point must be performed before defining curvature based features.

This is problematic because the resultant descriptor depends on the scale, n which

is used to compute the curvature. However, BAS does not require the estimation of

curvature at each boundary point. Rather, it uses the curvature estimates performed

at all scales. For each boundary point, it creates the feature vector from the moments

of curvature estimates performed at all scales. This results in a robust shape descriptor

which is independent of the scale.
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2.2.4 Beam Angle Statistics (BAS)

Given a shape-boundary S = {s1(x1, y1), s2(x2, y2), . . . , sL(xL, yL)}, there exists a

set, Bi = {c1(si), c2(si), . . . , cM (si)} of beam angles for each boundary point si where

M = L/2. Then, each boundary point si is assigned a feature vector derived from its

set of beam angles, Bi. The feature vector is composed of the beam angles’ central

moments;

Ξ{cm(si)} =
1
M

M∑
j=0

(cj(si) − µi)m, for m = 1, 2, . . . ,D (2.3)

where

µi =
1
M

M∑
j=0

cj(si) (2.4)

Here, Ξ is the expected value operator. Then, the D-dimensional feature vector of si

is given by;

F (si) =
[
Ξ{c1(si)},Ξ{c2(si)}, . . . ,Ξ{cD(si)}

]
(2.5)

Combining the corresponding entries of all boundary points’ feature vectors;

Γ(j) = {Ξ{cj(si)}|i = 1, 2, . . . , L} (2.6)

one can create a set of D-function that represents the shape being described;

Γ = {Γ(1),Γ2, . . . ,Γ(D)} (2.7)

These functions are the 1st, 2nd and Dth moments of the boundary points’ beam

angles. The statistics created in this fashion are called Beam Angle Statistics [5].

In figures 2.2 (a) and (b), a template shape and its BAS moment functions are

presented, respectively. In (b), horizontal axis shows boundary points and the vertical

axis shows the moments of the boundary points. Moreover, thick and thin lines are

the 1st and 2nd moments of the BAS shape descriptor, respectively. Additionally,

in the figures, some boundary points and their corresponding BAS moment function

points are marked with numbers from 1 to 4. Observe that, in BAS, there exists a

local minima for each convex point and a local maxima for each concave point. For

instance, the marked points 1, 2 and 4 are convex points which have a local minima

in the BAS functions. On the other hand, point 3 is a concave point which has a

local maxima. We say that BAS preserves the concavities and convexities of shapes,

therefore BAS moment functions are consistent with the human visual system. Note
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that, in the BAS moment functions 1st point is marked twice which is due to the

periodicity of BAS.

2.2.5 Properties of BAS

In this section, first we discuss the properties of the BAS shape descriptor. Then, we

analyze the weaknesses of BAS which leads us to develop a new shape descriptor for

object detection.

2.2.5.1 Superiorities of BAS

1. BAS is consistent with the Human Visual System: BAS shape descrip-

tor is successful in capturing the concavities and convexities of shapes which are

known to be important visual clues in human recognition of shapes. Each con-

vexity and concavity has a corresponding minima and maxima in BAS, respec-

tively. This leads to the representation of parts of a shape as well. Consequently,

BAS is one of the best curvature based shape descriptors and it is shown that it

performs better than most of the shape descriptors found in the literature [5].

2. BAS is robust to noise: One of the desirable properties of a shape descriptor

is its robustness under noise. Consider a smooth shape, such as a circle. Now

consider the same shape with a little perturbation noise added. Clearly, a human

observer would recognize the shape correctly and it would describe the shape

as a “noisy circle”. We expect a similar behavior from a shape descriptor. The

noise added to the shape must not change the overall form of the descriptor

much but there must be a difference with the original descriptor so that noise

can be captured. In BAS, noise does not effect the overall form of the shape

descriptor but the effect of noise can be captured. Note that as the amount of

noise increases, then the effects of it increases as well.

3. BAS is robust to occlusion: Occlusion is a common deformation that is pro-

duced in natural images due to the ordering of objects. Therefore, insensitivity

of a shape descriptor to occlusion is a desirable property. Although BAS uses

whole shape boundary to compute the feature vector of each boundary point,

for modest levels of occlusion it performs well.
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Figure 2.2: A sample shape from the MPEG-7 CE Shape-1 Data Set is shown in (a).
The BAS shape descriptor of shape in (a) is given in (b).
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4. BAS is invariant to Rotation, Scaling, Translation and Reflection: BAS

shape descriptor is shown to be invariant under rotation, scaling, translation and

reflection transformations. These are very important affine transformations that

play role in the evaluation of shape similarity. Therefore, it is a big plus for BAS.

2.2.5.2 Weaknesses of BAS

1. BAS requires parametric boundary representation: BAS implicitly as-

sumes that the boundary of the shape to be described is extracted and made

available for description. This assumption of processing a digital image in a se-

quence of stages producing different representations at each stage dates back to

David Marr. In his book about computer vision [27], he suggests a step-by-step

algorithm for the extraction of information from images. At first glance, this

idea seemed to be valuable and then scientists begin to attack different aspects

of the ultimate problem of information extraction from digital images. However,

it become apparent that, each representation produced at the output of every

step making explicit some parts of the information contained, also results in the

loss of some useful information. Thus, attacking the ultimate problem of infor-

mation extraction from images, we might be more successful if we can exploit

the whole information present in the image in a single step or in as small number

of steps as possible. BAS is not applicable to a raw image.

2. BAS is not suitable to the output of poor segmentation algorithms:

To our best knowledge, segmentation algorithms proposed so far are far from

being optimally segmenting images, in the sense of the segmentation that would

be expected from a human operator. Consequently, if one wants to detect shapes

within images first applying the existing segmentation algorithms and then try-

ing to extract shape information using different means, then it must be prepared

to handle poor segmentation results. Using a very optimistic shape descriptor

such as BAS, this is not possible. It is desirable to make BAS more robust to

poor segmentation results.

3. BAS’ statistical stability decreases as the resolution of shapes de-

creases: BAS shape descriptor is proven to be scale invariant. However, as
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the scale of shapes decreases, then the number of beam-angles decreases propor-

tional to the length of the boundary. Therefore, for shapes having small number

of points, sufficient statistics cannot be computed. This affects noise tolerance

of BAS for small scaled shapes negatively.

2.2.5.3 Towards a new Shape Descriptor

We have investigated most of the important properties of BAS. In conclusion, we can

say that, BAS is a good shape descriptor as long as the input, shape-boundary, is

presented to BAS carefully. On the other hand, in real images, many forms of noise

exist and we do not have a procedure that will present input to BAS in the required

form. Thus, in order to use BAS as a shape descriptor when several forms of noise

exist in the input it must be improved. Desired properties of a BAS based shape

descriptor that will be used for object detection in real images are as follows;

1. The shape descriptor must be able to compute the feature vectors of boundary

points even when full ordering of the shape-boundary points is not available.

2. The shape descriptor must be able to compute the feature vectors of boundary

points in case there are excessive or missing parts in the input as a result of poor

segmentation results.

3. The shape descriptor must behave well under different kinds of noise that can

be present in images.

4. The shape descriptor must be able to extract sufficient number of beam-angles

in cases where the scale of the shape is small.

In the following chapters, we will show how such a shape descriptor can be defined

based on BAS.

2.3 Edge Detection

Segmentation is one of the first steps that are performed in most of the image analysis

problems. Detection of discontinuities is a basic approach for segmentation. Edges

are the most general means of discontinuities and can be defined as the regions of an

image where gray-level variations are sharp (abrupt). Although detection of edges is
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not enough to discover meaningful structures in an image because the sources of edges

can be quite diverse including noise, shadows, etc., it has been widely used prior to

object detection in many studies such as the Hough Transforms [19, 24].

Since boundaries of objects produce strong edges, we use edge detection to ex-

tract possible regions of images that include object boundaries. In this section, first

we review general edge detection approaches and then we describe the Canny edge

detector, which we have used to detect edges in our object detection method.

2.3.1 Edge Detection Methods

Edge detection methods can be classified into the image domain and the transform

domain techniques. In the image domain, primary mathematical tool used for edge

detection is differentiation. On the other hand, Fourier transform is the most popular

transform domain based technique used for edge detection.

Differentiation based edge detection methods either use first-order differentiation

with the Gradient operator or second-order differentiation with the Laplacian oper-

ator. First order differentiation operator Gradient can be used to detect maximum

rate of change. Usually, a large response is expected from edge pixels and by use of

an appropriate threshold, these pixels can be detected. On the other hand, second

order differentiation operator Laplacian produces zero-crossings at the edges. These

locations effectively describe the edges.

Fourier transform based edge detection relies on the fact that edges produce high

frequency components in the frequency domain. Using this property and applying

high-pass filtering enhances edges. Again, a threshold value can be used to detect

edges after the filtering operation.

2.3.2 Problems of Edge Detection

Detection of edges using both of these mathematical tools has three major problems:

noise, localization and thresholding [8].

Firstly, noisy pixels cannot be separated from edges by these operators. Conse-

quently, before using any of these tools, low-pass filtering or smoothing is applied for

noise reduction. However, there is a side effect of low-pass filtering. As the scale

of low-pass filter increases, so as the spreading and the displacement of edges. This
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means that there is a trade-off between the amount of noise reduced and the error

made in the localization of edges.

Third problem is the use of a single threshold value. Using a simple threshold

does not provide the best possible edge localization results that can be obtained from

edge enhanced images because a large value of the threshold discards weak edges

producing too many fragmentations and a small value of the threshold introduces too

many edges. All of these problems are addressed in the Canny edge detector.

2.3.3 The Canny Edge Detection Method

Canny edge detection was proposed by Canny in [10]. It provides solutions for the

major problems of edge detection; noise reduction, edge localization and thresholding.

Firstly, for the trade-off between noise reduction and edge localization, it is shown

that, Canny edge detector makes the optimal choice between these issues in the case

of step edges and Gaussian noise [14]. Secondly, for the edge localization problem,

Canny edge detector performs non-maximal suppression and hysteresis thresholding.

Non-maximal suppression simply thins the magnitude of gradient to prevent thick

edges at the output. Hysteresis thresholding employs two threshold values, low and

high, to decide which of the edge-enhanced pixels correspond to edges. This ensures

the appearance of weak edges which are detected using the low threshold value, in

the final output if they are connected to strong edges which are determined by the

high threshold value. This way, unnecessary weak edges are avoided but weak edges

that might be useful are kept. Details of the standard implementations of Canny edge

detection are as follows;

1. Reduction of Noise:

In the first step, before trying to detect edges, noise reduction is performed.

This is usually achieved by Gaussian smoothing.

2. Computation of the Gradient Vector:

Both the direction and the magnitude of gradient vector is used in Canny edge

detection. Gradient can be computed by different operators such as Sobel, Pre-

witt and Roberts.

3. Non-Maximum Suppression:
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Direction of the gradient is used in non-maximum suppression. Direction along

the edge is traced and any values smaller than the local maximum is suppressed.

As a result, gradient image is thinned to produce a single response for a single

edge.

4. Hysteresis Thresholding:

Hysteresis thresholding eliminates the fragmentation of edge segments by em-

ploying two thresholds: low and high. Any pixel having gradient magnitude

greater than high threshold is immediately considered as an edge. Any pixel

having a gradient magnitude less than the low threshold is eliminated to be an

edge. Finally, the pixels that have gradient magnitudes between low and high

thresholds are considered as edges only if they are connected to an edge having

an edge magnitude greater than high threshold.

In conclusion, Canny edge detector performs a sophisticated edge detection op-

eration and it employs very important features that are necessary to detect edges

effectively.
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CHAPTER 3

GENERALIZED BEAM ANGLE STATISTICS (GBAS)

Generalized Beam Angle Statistics, (GBAS) is a boundary based shape descriptor

which describes shapes with the statistics of generalized beam angles produced be-

tween the beams originating at the reference point and directed to the rest of the

points of the boundary. GBAS is obtained with the generalization of Beam Angle

Statistics, BAS [5]. Although BAS requires the parametric boundary representation

in order to compute the feature vectors of boundary points, GBAS drops this re-

quirement and allows the computation of the feature vectors in the lack of parametric

boundary representations. This property is essential for the description of edges in

edge detected images. As a result, the feature vector of a boundary point in a tem-

plate shape and the feature vector of an edge pixel in an edge image can be computed

in the same manner. Then, these feature vectors are used to match the points of the

template shape with the edges.

The chapter is organized as follows. In section 3.1, we define the GBAS shape de-

scriptor formally. Invariance properties of GBAS under translation, rotation, scaling,

and reflection transformations are given in section 3.2. Then, we show the robustness

of GBAS shape descriptor to shearing, noise and occlusion in sections 3.3, 3.4 and

3.5, respectively. Finally, we discuss the computational complexity of the descriptor

in section 3.6.
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Figure 3.1: Boundary Pixels Set.

3.1 Definition

In this section we first give some definitions and then introduce Generalized Beam

Angle Statistics.

3.1.1 Boundary Pixels Set

Boundary pixels set, P = {p1, p2, . . . , pN} is a set of edge pixels that are extracted

from an image using an edge detection algorithm (see Figure 3.1). The indices of

the boundary pixels are assigned arbitrarily. Note that this representation is not

parametric since the ordering of the pixels constituting the boundary is unknown.

Given a binary image containing a single shape, one can obtain the parameterized

boundary of the shape using a contour following algorithm. However, in most of the

complex grayscale or colored images, the problem of extraction of a shape boundary

is not guaranteed to have a solution. Therefore, in this study, we focus on the set of

points or non-parametric representation of boundaries.

3.1.2 Beam Vector

Beam Vector, V (pi, pj), is defined as a vector from an edge pixel, pi, to another edge

pixel, pj (see Figure 3.2). It is essential in the definition of beam angles.

3.1.3 Mean Beam Vector

In order to compute the GBAS feature vector of an edge pixel pi, first we partition the

set of edge pixels P into two disjoint sets relative to pi. For this purpose, the Mean
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Figure 3.2: Beam Vector

Beam Vector, OK(pi), of the edge pixel pi is computed (See Figure 3.3). OK(pi) is

the mean vector of all beam vectors originating at pi and directed to all other edge

pixels in P . Thus; in mathematical terms;

OK(pi) =
N∑

j=1

V (pi, pj) (3.1)

where
∑

, denotes vector addition operation. Mean beam vector, OK(pi) partitions

Mean Beam Vector
OK(pi)

pi

Figure 3.3: Mean Beam Vector, OK(pi).

the edge pixels set P into two disjoint sets, namely, the forward I and backward G,

edge pixel sets (Figure 3.4) relative to pi.

3.1.4 Forward and Backward Edge Pixels Sets

The forward edge pixels set of an edge pixel pi, I = {i1, i2, . . . , iS}, is the union of the

edge pixels, pj, whose beam vectors, V (pi, pj), have less than π degrees with the mean

beam vector, OK(pi), in the counter clockwise direction. In Figure 3.4, edge pixels in
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the forward edge pixels set are shown as white circles. Note that each boundary pixel,

pi has a distinct forward edge pixels set determined by the mean beam vector. Thus,

the number, S, and elements of the forward edge pixels set changes from boundary

pixel to boundary pixel.
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Figure 3.4: Forward I and Backward G Edge Pixels Sets.

The backward edge pixels set of an edge pixel pi, G = {g1, g2, . . . , gR}, is the union

of the edge pixels, pj , whose beam vectors, V (pi, pj), have less than π degrees with

the mean beam vector, OK(pi), in the clockwise direction. In Figure 3.4, edge pixels

in the backward edge pixels set are shown as black circles. Note that each boundary

pixel, pi has a distinct backward edge pixels set determined by the mean beam vector.

Thus, the number, R, and elements of the backward edge pixels set changes from

boundary pixel to boundary pixel.

3.1.5 Generalized Beam Angle

Generalized beam angle Ck,l(pi) of an edge pixel pi, is an angle formed by forward

V (pi, ik) and backward V (pi, gl) beam vectors that originate at pi and are directed to

ik forward and gl backward edge pixels, respectively (Figure 3.5).

This definition somewhat generalizes the beam angle definition in [5]. The beam

angle of [5] is defined as the angle between the beam vectors left and right to the

reference pixel pi. Obviously, the determination of “left” and “right” boundary pixels

requires parametric boundary representation in [5]. The generalized beam angle defi-

nition introduced here, eliminates this requirement. This simple modification of beam

angle definition with the introduction of Mean Beam Vector that provides the partial
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Figure 3.5: Generalized beam angle, Ck,l(pi).

ordering of boundary pixels frees the computation of beam angle statistics from the

parametric boundary representation.

3.1.6 Beam Angles Matrix

Next, we define the Beam Angles Matrix , K(pi), of the edge pixel pi, in order to

compute its GBAS feature vector. Beam angles matrix, K(pi), denotes all generalized

beam angles of the boundary pixel pi. In mathematical terms it is defined as;

K(pi) = �Ck,l(pi)� k = 1, 2, . . . , S l = 1, 2, . . . , R (3.2)

Remember that, Ck,l(pi) denotes the generalized beam angle that is formed by the

forward V (pi, ik) and backward V (pi, gl) beam vectors that originate at pi and are

directed to ik forward and gl backward edge pixels, respectively. Since K(pi) incor-

porates all beam angles formed by the beam vectors that are created by the forward

and backward edge pixel sets I and G, respectively, it has S ∗ R elements. Note that

since the number and elements of forward and backward edge pixels sets is different

for each boundary pixel, the number of elements of the beam angles matrix may differ

from boundary pixel to boundary pixel as well.

3.1.7 Generalized Beam Angle Statistics

In this study, for each edge pixel pi, the Generalized Beam Angle Ck,l(pi) is taken as

a random variable with the probability density function Pi(Ck,l(pi)) and considered

as an outcome of the stochastic process which generates the shape being described
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at different scales. The probability density function Pi is approximated with the

histogram of the generalized beam angles in the beam angles matrix, K(pi). As a

result, moments of the beam angle random variable, Ck,l(pi), are defined as follows;

Ξ [C(pi)
m] =

S∑
k=1

R∑
l=1

Ck,l(pi)
mPi(Ck,l(pi)), m = 1, 2, . . . , d. (3.3)

In the above equation, Ξ indicates the expected value operator. The moments describe

the statistical behavior of the generalized beam angles that form edge pixel pi’s beam

angles matrix K(pi).

3.1.8 GBAS Feature Vector

Each edge pixel pi, is described by the following GBAS feature vector ;

Γ(pi) =
[
Γ1(pi),Γ2(pi), . . . ,Γd(pi)

]
, i = 1, 2, . . . , N . (3.4)

The components of the feature vector are the moment statistics of Generalized Beam

Angles;

Γm(pi) = Ξ [C(pi)
m] , m = 1, 2, . . . , d. (3.5)

Note that, the number of moments required to describe the shape depends on the form

of the probability density function, Pi(Ck,l(pi)), of the beam angles matrix, K(pi).

3.1.9 GBAS Moment Functions

GBAS Moment functions of a shape are formed by combining the corresponding com-

ponents of boundary pixels’ GBAS feature vectors end to end. In mathematical terms,

the moment functions of a shape, A, which is represented by a set of edge pixels, P ,

are defined as follows;

GBASm(A) =< Γm(p1),Γm(p2), . . . ,Γm(pN ) > , m = 1, 2, . . . , d. (3.6)

In figures 3.6, 3.8, 3.10 and 3.12 some sample shapes and in figures 3.7, 3.9, 3.11

and 3.13 their GBAS Moment functions are shown. Observe that local maxima and

minima points of GBAS Moment functions correspond to concave and convex corner

points of shapes. For example, in figure 3.7 two minimas correspond to apples’ handles.

The maxima between the minimas is due to the concavity between the two handles

of the apple. In figure 3.9, the local minimas at the center of the graph correspond to
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the two extremes of the bat’s wings at the top left and bottom right of the figure 3.8.

On the other hand, the local minima divided at the edges of the figure 3.9 correspond

to the tail of the bat at the lower left corner of the shape. In figure 3.10, there is a

triangle whose edges are slightly convex. Three local minimas of the GBAS Moment

functions correspond to the corners of the triangle. On the other hand, three maximas

correspond to the centers of the triangles’ edges. In figure 3.12, there is a flower having

10 leaves. The corner of each leave correspond to a local minima. Therefore, it is

possible to count the number of leaves by counting the number of local minimas in

the GBAS Moment functions. These examples show that concavities and convexities

produce local maximas and minimas in the GBAS Moment functions.

3.2 Properties of GBAS

In this section, we investigate the properties of GBAS shape descriptor in a sub-class

of affine transformations. We show that GBAS is invariant to translation, rotation,

scaling (uniform), and reflection. An immediate consequence of invariance of the

GBAS shape descriptor to these transformations is that the shape descriptor is also

invariant to the following types of affine transformations:

• euclidean motion (rotation + translation),

• rigid body transformation (rotation + translation + reflection) and

• similarity transformation (rotation + translation + scaling).

Euclidean motion, rigid body and similarity transformations are formed by a com-

bination of the rotation, translation, reflection and scaling transformations. But,

GBAS is invariant under rotation, translation, reflection and scaling transformations.

Therefore, it is also invariant to the Euclidean motion, rigid body and similarity trans-

formations.

3.2.1 Translation Invariance

GBAS shape descriptor is translation invariant. GBAS shape descriptor of a boundary

point pi depends on its mean beam vector OK(pi) and the moments of its generalized

beam angles Ck,l(pi). Neither OK(pi) nor Ck,l(pi) depends on the absolute coordinates
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Figure 3.6: A sample shape from MPEG-7 CE Shape-1 Data Set.
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Figure 3.7: GBAS Moment functions of shape in figure 3.6.
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Figure 3.8: A sample shape from MPEG-7 CE Shape-1 Data Set.
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Figure 3.9: GBAS Moment functions of shape in figure 3.8.
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Figure 3.10: A sample shape from MPEG-7 CE Shape-1 Data Set.
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Figure 3.11: GBAS Moment functions of shape in figure 3.10.
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Figure 3.12: A sample shape from MPEG-7 CE Shape-1 Data Set.
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Figure 3.13: GBAS Moment functions of shape in figure 3.12.
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of boundary pixels. They depend on beam vectors V (pi, pj) directed from the reference

boundary pixel pi to another boundary pixel pj. Consequently, GBAS shape descriptor

is translation invariant.

3.2.2 Rotation Invariance

GBAS shape descriptor is rotation invariant. If the shape is rotated by α degrees then

V (pi, pj) and OK(pi) are rotated α degrees, as well. Additionally, the partitioning

of the pixel set, P , into the forward, I and backward G edge pixels sets is preserved.

Therefore, pi’s generalized beam angles, Ck,l(pi) do not change. However, if the start-

ing pixels of the shape boundaries are not same, then GBAS Moment functions are

circularly shifted. In other words, there exists a phase difference between the GBAS

Moment functions. This phase difference is typically handled in the descriptor match-

ing algorithm. Since the phase difference is due to the change of the starting pixel, it

can be observed after any transformation.

3.2.3 Scale Invariance

GBAS shape descriptor is scale invariant. As the shape is scaled by a factor of α

uniformly;

• the length of shape boundary increases (α > 1) or decreases (α < 1),

• the beam vectors, V (pi, pj) starting from the reference pixel, pi, ending in rest of

the boundary pixels are preserved, however their number either increases (α > 1)

or decreases (α < 1),

• the mean beam vector, OK(pi) of the boundary pixel pi is preserved,

• the partitioning of the pixel set, P , into its forward, I and bacward G, edge

pixels sets is preserved but the number of elements in each of these sets either

increases (α > 1) or decreases (α < 1)

It follows that pi’s generalized beam angles, Ck,l(pi) do not change. However, as the

length of the boundary pixels set P increases, then, the number of generalized beam

angles, Ck,l(pi) used to compute pi’s GBAS feature vector increases as well. Then,

statistical stability of the descriptor also increases. Conversely, as the length of the
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boundary pixels set P decreases, then the number of generalized beam angles, Ck,l(pi)

used to compute pi’s GBAS feature vector decreases as well. Then, statistical stability

of the descriptor decreases. Consequently, as the scale of the shape increases, then the

generalized beam angle statistics is enhanced and as the scale of the shape decreases,

generalized beam angle statistics deteriorates.

In figure 3.14 a sample shape and its 2.0, 0.30, 0.25, 0.20 and 0.10 scaled in-

stances are shown. 1st and 2nd GBAS Moment functions of these shapes are shown

in figures 3.15 and 3.16, respectively. Observe that GBAS Moment functions are very

similar however, as the scale of the shape decreases, then the fluctuations of the shape

descriptor increases. This is due to the decrease in the statistical stability. Note that

there is a phase difference between the 0.10 scaled shape and others since the starting

points of the shapes are different. Note also that, GBAS Moment functions are down-

sampled to the size of the shortest boundary for illustration purposes. In conclusion,

GBAS is scale invariant.

3.2.4 Reflectance Invariance

GBAS shape descriptor is reflectance invariant. As the shape is reflected:

• the beam vectors, V (pi, pj) starting from the reference pixel, pi, ending in rest

of the boundary pixels are reflected,

• the mean beam vector, OK(pi) of the boundary pixel pi is reflected,

• the partitioning of the pixel set, P , into its forward, I and backward G, edge

pixels sets is preserved.

From these it follows that pi’s generalized beam angles, Ck,l(pi) do not change.

In figure 3.17 (a), (b), (c) and (d) a sample shape and its reflected instances about

the x, y and both of x and y axis are shown. In figures 3.18 and 3.19 the 1st and 2nd

GBAS Moment functions of the sample and reflected shapes are shown, respectively.

Observe that GBAS shape descriptors of these shapes are exactly the same.

3.3 Robustness to Shear

Shearing changes the curvature of the boundary points. GBAS is a curvature based

shape descriptor, thus, as the shape is sheared, it changes. However, the change of the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Figures (a) to (f) show a sample shape and its 2.0, 0.3, 0.25, 0.2 and 0.1
scaled instances respectively.
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Figure 3.15: 1st GBAS Moment functions of the sample and scaled shapes in fig-
ure 3.14.
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Figure 3.16: 2nd GBAS Moment functions of the sample and scaled shapes in fig-
ure 3.14.
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(a) (b)

(c) (d)

Figure 3.17: Sample shapes for demonstrating the effects of reflection. In (a) original
shape is shown. In (b), (c) and (d) reflected versions of the original shape about the
x, y and both of x and y axis are shown.
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Figure 3.18: 1st GBAS Moment functions of the sample and reflected shapes in fig-
ure 3.17.
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Figure 3.19: 2nd GBAS Moment functions of the sample and reflected shapes in fig-
ure 3.17.
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descriptor is closely related with the magnitude of the shearing. For small amounts

of shearing the form of the descriptor does not change significantly.

In figure 3.21 sample shapes for visualizing the effects of shearing are shown. Orig-

inal shape of figure 3.20 is sheared along the direction of horizontal axis. Figures 3.21

(a), (b), (c), and (d) show sheared instances of the original shape by factors of 0.8, 0.6,

0.4 and 0.2 respectively. Figures 3.22 and 3.23 show the 1st and 2nd GBAS Moment

functions of the sample and sheared shapes. It is clear that, up to shear factor of 0.6,

GBAS shape descriptors have strong resemblances, i.e. local maximas and minimas of

the descriptor do not change much. Below this factor, the differences between shape

descriptors become more apparent.

3.4 Robustness to Noise

Noise is a common problem for image processing systems. There are various sources

of noise. Imperfections of imaging sensors results in noisy images. Additionally, noise

can be introduced in early stages of image processing such as segmentation and edge

detection. Therefore, noise robustness is a desirable property of shape descriptors. In

this section, we demonstrate noise robustness of GBAS. For this purpose, Gaussian

noise having various variances is added to a shape. Noise is taken as the magnitude

of the displacement vector of each boundary point. Direction of this vector is given

by the direction of the gradient.

In figure 3.24 a sample shape and various levels of noisy instances of it are shown.

In figures 3.25, and 3.26 it can be observed that the 1st and 2nd GBAS Moment func-

tions of the noisy shapes have small variations. As the amount of noise increases then

the amount of variations increases as well. This shows that, GBAS shape descriptor

is insensitive to Gaussian noise.

3.5 Robustness to Occlusion

Occlusion is a common deformation that can be encountered in images because of

the ordering of objects in the scene. In this case, only a portion of the shape is

visible and it is requested to detect the whole shape from the visible part. Shape

descriptors that exploit local information can be successful to cope up with this prob-

lem. However, GBAS computes the statistics of beam angles which are directed to all
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Figure 3.20: Sample shape used in the shearing test.

(a) (b)

(c) (d)

Figure 3.21: Sample shapes for demonstrating the effects of shearing. In figures (a)
to (d) sheared instances of the original shape in figure 3.21 by factors of 0.8, 0.6, 0.4
and 0.2 are shown.
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Figure 3.22: 1st GBAS Moment functions of the sample and sheared shapes in fig-
ures 3.20 and 3.21, respectively.
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Figure 3.23: 2nd GBAS Moment functions of the sample and sheared shapes in fig-
ures 3.20 and 3.21, respectively.
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(a) (b)

(c) (d)

Figure 3.24: Sample shapes for demonstrating the effects of noise. In (a) original
shape is seen. In figures (b) to (d) Gaussian noise having zero mean and 0.5, 1.0, and
1.5 variance added versions of the shape are seen.
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Figure 3.25: 1st GBAS Moment functions of the sample and noisy shapes in figure 3.24.
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Figure 3.26: 2nd GBAS Moment functions of the sample and noisy shapes in fig-
ure 3.24.
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Algorithm 3.1: Find GBAS shape descriptor of a given shape boundary P .

(1) for each pixel pi in P do

(2) compute OK(pi)

(3) partition P using OK(pi) into I and G

(4) for each forward pixel il in I do

(5) for each backward pixel gk in G do

(6) compute Ck,l(pi) using V (pi, il), V (pi, gk) and OK(pi)

(7) compute Γ(pi) of pi using angles Ck,l(pi)

boundary points. Therefore, since occluded boundary points are not available, GBAS

shape descriptor is inevitably effected by occlusion. Nevertheless, for small amounts

of occlusion it performs well.

Figures 3.27 and 3.28 show a sample shape and various levels of occluded instances

of it. In figures 3.29 and 3.30, 1st and 2nd GBAS Moment functions of the sample

and occluded shapes are shown, respectively. Observe that the shapes of the moment

functions are very similar. The magnitude of error increases at the points near the

occlusion. We can say that, up to 30% occlusion, results are satisfactory.

3.6 Computational Complexity

In this section, we investigate the computational complexity of the proposed shape

descriptor, GBAS. We show that although naive implementation of the shape de-

scriptor has complexity O(N3), it can be improved to O(N2). This time complexity

is the same as the time complexity of the BAS shape descriptor, which is O(N2).

This means that, for the added capability of description in the absence of parametric

boundary representation, we do not pay any additional cost. Note that, although the

time complexity of the two shape descriptors GBAS and BAS is O(N2), practically

BAS runs slightly faster than GBAS. This is due to the constant which is not shown

in the complexity analysis.

3.6.1 Naive Implementation

Naive method to compute the GBAS shape descriptor of a shape boundary is summa-

rized in Algorithm 3.1, where for each pixel, mean beam vector OK(pi) is computed.
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Figure 3.27: Sample shape for occlusion.

(a) (b)

(c) (d)

Figure 3.28: Sample shapes for demonstrating the effects of occlusion. In figures (a)
to (d), 10%, 20%, 30% and 40% occluded instances of the sample shape in figure 3.27
are shown, respectively.
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Figure 3.29: 1st GBAS Moment functions of the sample and occluded shapes in fig-
ures 3.27 and 3.28, respectively.
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Figure 3.30: 2nd GBAS Moment functions of the sample and occluded shapes in
figures 3.27 and 3.28, respectively.
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This can be achieved in O(N) time, since computation involves the summation of N

beam vectors, V (pi, pj), directed from pi to all other pixels in P . In step 3 of the

algorithm, pixel set P is partitioned into forward, I and backward, G pixel sets using

OK(pi). This can be achieved in O(N) time as well, since computation is performed

once for each pixel in P . In steps 4, 5 and 6 of the algorithm, Generalized Beam

Angles of pixel pi are computed. Clearly pi has S ∗ R Generalized Beam Angles,

Ck,l(pi). Here S and R are the number of pixels in the forward, I and backward, G

boundary pixels sets, respectively. S ∗ R takes its largest value when S = R = N/2.

Consequently, time required to compute generalized beam angles is O(S ∗ R) which

is O(N/2 ∗ N/2) or O(N2) in the worst case. Finally, in step 7, moment statistics

of generalized beam angles are computed. This can be performed in O(N2) time be-

cause during the computation each Generalized Beam Angle is processed only once.

As a result, total time required to compute GBAS feature vector of a single boundary

pixel is O(N + N + N2 + N2) which is simply O(N2). Since this operation will be

performed for each boundary pixel, the computational cost of naive implementation

for the computation of the GBAS shape descriptor of a shape having boundary length

N is O(N3).

3.6.2 Efficient Implementation

In this section, we propose an efficient algorithm for the computation of GBAS shape

descriptor. The algorithm is based on the idea that, if one can represent generalized

beam angles, Ck,l(pi) in terms of each other, then without computing all of them,

GBAS shape descriptor can be computed. Based on this idea, computational cost of

GBAS shape descriptor is decreased to O(N2).

A forward beam vector, F (pi, ik) is a beam vector that starts from the reference

pixel pi and ends in a pixel, ik which is an element of the forward pixels set, I of pi.

Similarly, a backward beam vector, B(pi, gl) is a beam vector that starts from the

reference pixel pi and ends in a pixel, gl which is an element of the backward pixels

set, G. See figure 3.31.

A forward beam angle, Fk(pi) is an angle formed by the mean beam vector,

OK(pi) and a forward beam vector, F (pi, ik) of the reference pixel, pi. Similarly, a

backward beam angle, Bl(pi) is an angle formed by the mean beam vector, OK(pi)
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Figure 3.32: Forward and Backward Beam Angles.

and a backward beam vector, B(pi, gl) of the reference pixel, pi. Note that forward

and backward beam angles of a boundary pixel pi are always positive by definition.

See figure 3.32.

A generalized beam angle, Ck,l(pi) of a reference pixel, pi can be represented by

the summation of a forward, Fk(pi) and a backward, Bl(pi) beam angle.

A forward difference, δFk(pi) of a reference pixel, pi is the difference of its two

consecutive forward beam angles, Fk(pi) and Fk−1(pi):

δFk(pi) = Fk(pi) − Fk−1(pi), k = 2, 3, . . . , S. (3.7)

Similarly, a backward difference, δBl(pi) of a reference pixel, pi is the difference of its

two consecutive backward beam angles, Bl(pi) and Bl−1(pi):

δBl(pi) = Bl(pi) − Bl−1(pi), l = 2, 3, . . . , R. (3.8)

Main beam angle, A(pi) of a reference pixel, pi is the Generalized Beam Angle

C1,1(pi) that is formed by the first forward, F1(pi) and backward, B1(pi) beam
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angles:

A(pi) = F1(pi) + B1(pi). (3.9)

It is possible to represent all Generalized Beam Angles of a boundary pixel, pi by

its main beam angle, A(pi) and forward, δFk(pi) and backward, δBl(pi) differences:

Ck,l(pi) = A(pi) +
k∑

u=2

δFu(pi) +
l∑

v=2

δBv(pi). (3.10)

This formulation reduces the computation of Generalized Beam Angle statistics to

O(N2) time. In the next section, we show that, using equation 3.10, it is possible to

compute GBAS without computing all generalized beam angles of a boundary point.

The computation of main beam angle, A(pi) , and terms of forward δFk(pi) and

backward δBl(pi) differences are sufficient to obtain the statistics.

3.6.2.1 Computation of GBAS

In this section, we derive formulations to compute GBAS of a boundary pixel, pi.

For the simplicity of notation, we drop pi terms in all of the equations. Therefore,

equation 3.10 can be written in the new notation as follows;

Ck,l = A +
k∑

u=2

δFu +
l∑

v=2

δBv . (3.11)

3.6.2.2 Mean

Mean value is given by;

µ =
1

SR

S∑
k=1

R∑
l=1

Ck,l. (3.12)

Expanding the generalized beam angles term, Ck,l using equation 3.10 we obtain;

µ =
1

SR

S∑
k=1

R∑
l=1

(
A +

k∑
u=2

δFu +
l∑

v=2

δBv

)
. (3.13)

This equation can be simplified to;

µ = A +
1
S

S∑
k=1

(
k∑

u=2

δFu

)
+

1
R

R∑
l=1

(
l∑

v=2

δBv

)
. (3.14)

Introducing the definitions;

E(F )(n) =
S∑

k=1

(
k∑

u=2

δFu

)n

(3.15)

44



and

E(B)(n) =
R∑

l=1

(
l∑

v=2

δBv

)n

, (3.16)

equation 3.14 can be written as;

µ = A +
E(F )

S
+

E(B)
R

. (3.17)

3.6.2.3 Computation of powers of E(X)

Consider the computation of E(F ):

E(F ) =
S∑

k=1

(
k∑

u=2

δFu

)
. (3.18)

Clearly, the term
∑k

u=2 δFu inside the summation will be evaluated for each k from 1

to S. However, for the evaluation of the k + 1th term, kth term will be used:

k+1∑
u=2

δFu =
k∑

u=2

δFu + δFk+1. (3.19)

Therefore, the computation of the terms for k = 1 to S can be performed in O(1) time.

Since the outer summation has complexity O(S), then the total computational cost of

computing E(F ) is O(S ∗1) which is simply O(N). Therefore, E(F ) can be computed

in O(N) time. This result can be generalized to E(F )(n) and E(B)(n) similarly.

3.6.2.4 Variance

Variance is given by;

σ2 =
1

SR

S∑
k=1

R∑
l=1

(Ck,l − µ)2. (3.20)

Expanding the square we obtain;

σ2 =
1

SR

S∑
k=1

R∑
l=1

(
C2

k,l − 2µCk,l + µ2
)
. (3.21)

This equation can be simplified to;

σ2 =

(
1

SR

S∑
k=1

R∑
l=1

C2
k,l

)
− µ2. (3.22)

First term of the equation can be expanded using equation 3.10 into;

µ(2) =
1

SR

S∑
k=1

R∑
l=1

(
A +

k∑
u=2

δFu +
l∑

v=2

δBv

)2

. (3.23)
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Introducing the definition below;

X =
k∑

u=2

δFu +
l∑

v=2

δBv , (3.24)

equation 3.23 can be written as;

µ(2) =
1

SR

S∑
k=1

R∑
l=1

(A + X)2 . (3.25)

Applying the square;

µ(2) =
1

SR

S∑
k=1

R∑
l=1

(
A2 + 2AX + X2

)
, (3.26)

This equation can be simplified to;

µ(2) = A2 +
2A
SR

S∑
k=1

R∑
l=1

X +
1

SR

S∑
k=1

R∑
l=1

X2. (3.27)

Expanding the X in second term we obtain

2A
SR

S∑
k=1

R∑
l=1

(
k∑

u=2

δFu +
l∑

v=2

δBv

)
, (3.28)

which is equal to;
2A
S

E(F ) +
2A
R

E(B). (3.29)

Next, expanding the X in the third term of equation 3.27 we obtain;

1
SR

S∑
k=1

R∑
l=1

(
k∑

u=2

δFu +
l∑

v=2

δBv

)2

, (3.30)

which is equal to;

1
S

S∑
k=1

(
k∑

u=2

δFu

)2

+
2

SR

(
S∑

k=1

k∑
u=2

δFu

)(
R∑

l=1

l∑
v=2

δBv

)
+

1
R

R∑
l=1

(
l∑

v=2

δBv

)2

. (3.31)

Using equations 3.15 and 3.16 equation 3.31 can be written as;

E(F )(2)

S
+

2E(F )E(B)
SR

+
E(B)(2)

R
. (3.32)

Then, we can write equation 3.27 using equations 3.29 and 3.32 as follows;

µ(2) = A2 +
2AE(F ) + E(F )(2)

S
+

2E(F )E(B)
SR

+
2AE(B) + E(B)(2)

R
. (3.33)
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Finally, using equation 3.22 and 3.33 we obtain variance as follows;

σ2 = A2 +
2AE(F ) + E(F )(2)

S
+

2E(F )E(B) − µ2

SR
+

2AE(B) + E(B)(2)

R
. (3.34)

Higher order moments of GBAS can be written similar to mean and variance using

the terms introduced in equations 3.15 and 3.16. These terms are called moment

representing functions of GBAS. They can be computed in linear time, O(N) with

the length of the shape boundary, N .

3.6.2.5 Fast GBAS and its Complexity

Based on the derivations presented in the previous section, algorithm 3.2 computes

the GBAS shape descriptor of a shape having N boundary points in O(N2) time. In

the algorithm, firstly, mean beam vector is computed and pixel set is partitioned into

forward and backward pixels sets using the mean beam vector. Secondly, forward,

backward beam angles and moment representing functions are computed. Thirdly,

main beam angle is found. Finally, moment statistics are computed using the moment

representing functions and main beam angle.

The 2nd step of the Algorithm 3.2, computes the mean beam vector of the reference

pixel, pi in O(N) time. The 3rd step of the algorithm, partitions pixel set P into the

forward, I and backward, G pixel sets in O(N) time. In steps 4 and 5 of the algorithm,

forward beam angles, Fk(pi) of the reference pixel are evaluated. Therefore, the

operation is of order O(S), which is on the order of O(N). In steps 6 to 10, moment

representing functions of forward pixels are computed. The number of operations that

must be performed is O(S ∗ m). S is on the order of O(N) and m is the number of

moments to be computed, which is independent of the boundary length. Thus, this

part of the algorithm is O(N). In steps 11 to 17, every computation performed for

forward pixels is performed for backward pixels, in O(N) time as well. In steps 18

to 23, Generalized Beam Angle Statistics of the reference pixel is computed using the

moment representing functions previously computed. These steps are independent of

the size of the shape boundary, therefore they are completed in O(1) time. As a result,

computational complexity of generating feature vector of a single boundary pixel is

O(N). Consequently, the computational complexity of producing the GBAS Moment

functions of a shape boundary having length N is O(N2).
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Algorithm 3.2: Find GBAS shape descriptor of a given shape boundary P .

(1) for each pixel pi in P do

(2) compute OK(pi)

(3) partition P using OK(pi) into I & G

(4) for each forward pixel ik in I do

(5) Fk = atan(V (pi, ik)) − atan(OK(pi))

(6) for k = 2 to S do

(7) δFk = Fk − Fk−1

(8) Sum(δFk) = Sum(δFk) + δFk

(9) for m = 1 to d do

(10) PF (m) = PF (m) + Sum(δFk)m

(11) for each backward pixel gl in G do

(12) Bl = atan(V (pi, gl)) − atan(OK(pi))

(13) for l = 2 to R do

(14) δBl = Bl − Bl−1

(15) Sum(δBl) = Sum(δBl) + δBl

(16) for m = 1 to d do

(17) PB(m) = PB(m) + Sum(δBl)m

(18) A = F1 + B1

(19) α = S ∗ R

(20) T1 = PF (1)/S + PB(1)/R

(21) T2 = PF (2)/S + 2 ∗ PF (1) ∗ PB(1)/(R ∗ α) + PB(2)/R

(22) Γ1(pi) = A + T1

(23) Γ2(pi) = A2 + 2AT1 + T2
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CHAPTER 4

MATCHING ALGORITHM

In the previous chapter, we introduced GBAS shape descriptor which represents shapes

without a parametric boundary. In this chapter, we describe an algorithm to detect

objects in images using the GBAS shape descriptor. We assume that the image

contains a single object for which boundary is not available. The only preprocessing

method we use is Canny edge detection. Matching algorithm selects the most similar

boundary pixels of the template shape to the edge pixels in the edge detected image. In

the experiments, we show that matching algorithm successfully extracts the template

shape within the edges in the input image.

The chapter is organized as follows. In section 4.1, we define the matching problem

formally. Section 4.2 introduces the match graph which is used to represent the

matching problem in mathematical terms. Match path and the proposed algorithm to

solve the matching problem are given in sections 4.3 and 4.4 respectively. Finally, in

section 4.5, we investigate the computational complexity of the matching algorithm.

4.1 Matching Problem

In this study, Matching is defined as the correspondence;

M = {(s1, p(s1)), (s2, p(s2)), . . . , (sL, p(sL))} (4.1)

between the ordered set of boundary pixels of a template shape;

S = {s1(x1, y1), s2(x2, y2), . . . , sL(xL, yL)} (4.2)
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and the unordered set of edge pixels;

P = {p1(x1, y1), p2(x2, y2), . . . , pN (xN , yN )} (4.3)

where p(si) denotes the edge pixel that is matched with the boundary pixel si. Clearly,

the solution of the matching problem is the parametric representation of the detected

shape boundary;

B = {p(s1), p(s2), . . . , p(sL)}. (4.4)

Therefore, the matching algorithm proposed in this study can be considered as a

boundary extraction method as well.

Matching problem is illustrated in figure 4.1 where the two inputs are a template

shape and an edge detected image. The output is the set of edges corresponding to

the pixels of the template shape. The figure also shows that the matching algorithm

uses the GBAS feature vectors and the Euclidean distances(spatial information) of

the edge pixels to solve the correspondence problem.

Match Set

GBAS
Descriptor of

Template
Shape

GBAS
Descriptor of

Edge
Image

Spatial
Information

of Edge
Image

Template Shape

Edge Image

M
A
T
C
H
I
N
G

A
L
G
O
R
I
T
H
M

Figure 4.1: Matching Problem

4.2 Match Graph

Match graph is a mathematical representation of the matching problem. In the graph,

there exists a node for a matching alternative between the template shapes boundary
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pixels and the edge pixels. On the other hand, arcs of the match graph represent

the ordering of the template shapes’ boundary pixels. This allows the exploitation of

the neighborhood relationships of both boundary pixels and edge pixels during the

matching process. Moreover, it ensures a parametric boundary representation of the

detected shape. This representation can be used in many applications, but a useful one

for the matching process itself is the verification of the fitness of the detected shape

to the template. This can be used in the performance evaluation of the matching

algorithm. Now, let’s define match graph formally.

4.2.1 Definition: Match Graph

Given a template shape S and an edge image P , match graph, Z(E,F ) is a multistage

di-graph where the nodes E(i, j)∈E represent the matching between si in the boundary

pixels set S and pj in the edge pixels set P .

...

... ...

...

...

...... ... ...

...

s1

s2

sL

p1 p2 pN

Edge Pixels

Boundary
Pixels

SE1

SE2

SEL

E(1,1) E(1,2) E(1,N)

E(2,1) E(2,2) E(2,N)

E(L,1) E(L,2) E(L,N)

Figure 4.2: Matching Graph.

In the match graph, each row corresponds to the set of matching nodes of the

boundary pixel si and given by;

SEi = {E(i, j)|j = 1, 2, . . . , N} (4.5)

Each row of the graph is called the field of the corresponding boundary pixel.

The arcs in F are of the form < E(i, j), E(i + 1, k) > for all 1 ≤ k ≤ N and k �= j.

In other words, in the match graph, there exists an arc from the node E(i, j) to the
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rest of the nodes in SEi+1. The exception of this rule is the case where the matching

nodes E(i, j) and E(i + 1, k) are matched with the same edge pixel; j = k. Then, a

match graph can be represented by a multi-stage di-graph, as shown in Figure 4.2.

In the match graph, the cost of an arc < E(i, j), E(i + 1, k) > is defined as follows;

F ((i, j), (i + 1, k)) = D(i, j) + αU(pj , pk), (4.6)

where D(i, j) is the distance of GBAS feature vectors of si and pj;

D(i, j) =
d∑

b=1

|Γb(si) − Γb(pj)| (4.7)

and U(pj , pk) is Euclidean distance of the pj and pk edge pixels;

U(pj , pk) =
√

(xk − xj)2 + (yk − yj)2. (4.8)

The parameter α is the normalization factor for making the algorithm independent of

the image size. The value of this parameter restricts the allowed distances between the

matched edge pixels of two consecutive boundary pixels. As the value of it increases,

then the algorithm selects the next edge pixel to be matched closer to the current

pixel.

4.3 Match Path

A match path is a path that starts from SE1 of the first boundary pixel s1, ending in

SEL of the last boundary pixel sL, forming a matching set such that each boundary

pixel is matched with a unique edge pixel in the set of edge pixels, P . Clearly, the

match path represents the correspondences of the boundary pixels and edge pixels.

Moreover, it determines the parametric boundary representation of the detected object

in the edge image. Among many alternatives of match paths, optimum match path

which has the minimum cost is of up most interest.

4.4 Matching Algorithm

The problem of matching the boundary of the template shapes to the edge pixels of

an image is reduced into the problem of finding the minimum cost path (optimum

path) in the match graph.
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Algorithm 4.1: Find optimum match path Y of a match graph Z(E,F ).

Initialization:

for 1 ≤ j ≤ N do

f1(j) = D(1, j)

Iteration:

for 2 ≤ i ≤ L do

for 1 ≤ j ≤ N do

tmin = mint F ((t − 1, t), (i, j)) + f(i−1)(t) such that

tmin ∈ {1 ≤ t ≤ N} ∧ pj /∈ Path(E(t − 1, tmin))

fi(j) = F ((t − 1, tmin), (i, j)) + fi−1(tmin)

Qi(j) = E(i − 1, tmin)

Termination:

mint fL(t) such that

tmin ∈ {1 ≤ t ≤ N}
Y = Path(E(L, tmin))

As described above, the algorithm constructs a match graph, which represents all

the matching alternatives between the boundary pixels of the template shapes and

the edge pixels of the edge image. It, then finds an optimum matching using dynamic

programming method.

Let, fi(j) be the minimum accumulated cost at node E(i, j) in row i and Qi(j)

be the column of the node in SEi−1 on the shortest path to the node E(i, j) in SEi,

we define the path with the minimum accumulated cost as the optimum matching

searched by the algorithm 4.1.

In the algorithm, Path(E(i, j)) denotes the sub-path that starts from the E(i, j)

match node of the match graph that is constructed by following Qi(j). Optimum

match path Y , is constructed by following QL(tmin) that is in the field SEL of the

last boundary pixel sL and has the minimum cost.

4.5 Computational Complexity

In this section, we investigate the computational complexity of the matching algo-

rithm.
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In the initial step, all matching nodes in the first row are processed and assigned

the difference of GBAS feature vectors. The number of operations performed in this

step is proportional to the number of edge pixels, N . Therefore, the computational

complexity of this step is O(N).

In the second step of the algorithm, all remaining matching nodes are processed.

The number of matching nodes is equal to (L − 1) ∗ N . For each matching node,

all previous matching nodes are investigated and the path having minimum cost is

identified. This requires operations on the order of the number of edge pixels, O(N).

However, for each processed path, it is ensured that the edge pixel of the current

matching node is not found on the path. This requires operations on the order of the

length of the path formed. This means that on the average O(L/2) operations will

be performed. Total cost of this step can be computed by multiplying all these costs;

O((L − 1) ∗ N ∗ N ∗ L/2) which is simply O(N2L2).

Finally, in the last phase of the algorithm, the matching node on the last row

having minimum accumulated cost is identified. This requires the investigation of

O(N) matching nodes.

Clearly, the most demanding phase of the algorithm is the second phase. Thus,

the computational complexity of the algorithm is O(N2L2).

4.6 Increasing the Efficiency of the Matching Algorithm

Matching algorithm considers all match nodes of the match graph. For the match

node, E(i, j) of a boundary point si and an edge pj, it iterates through the match

nodes, SEi−1 of the previous boundary point, si−1 and then finds the optimum match-

ing node, E(i − 1, t) such that the cost,

E(i, j).cost = D(i, j) + E(i − 1, t).cost + αU(pj , pt) (4.9)

is minimized. Recall that U(pj , pt) is the Euclidean distance between the edges pj

and pt. Consequently, processing the match nodes of the edges that are close to pj

is enough for the determination of the optimum match node. Therefore, processing

all match nodes is an overhead and implementation of a scheme that will eliminate

unnecessary match nodes can improve the performance of the matching algorithm.

One of the possible methods is the use of range queries provided by multi-dimensional
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si-2

si-1 si

T(si)

Figure 4.3: Turning angle, T (si) of boundary point si.

indexing mechanisms [9].

Ensuring that each boundary point is matched with a unique edge is another

overhead of the matching algorithm. One way of implementing this requirement is

through the traversal of the sub-path, constructed by the algorithm and checking if pj

is already included on the path or not. The number of operations is proportional to

the length of the sub-path and on the average it is of complexity O(L), where L is the

number of boundary points. This procedure can be viewed as a global optimization

which ensures that each boundary point is matched with a unique edge. A more

efficient solution can be obtained by employing a local optimization method, in which

the probability of matching multiple boundary points with the same edge is low. We

propose a local optimization method which is based on the idea of preventing the

match of successive boundary points with the same edge. It is implemented with the

addition of the turning angle constraint, β(i, j). Accordingly, the turning angle at the

boundary point, si must be close to the turning angle at the match edge, pj. Turning

angle, T (si) of a boundary point si is defined as the positive angle between the vectors

V (si−2, si−1) and V (si−1, si) (see figure 4.3). Defining the turning angle constraint,

β(i, j) as follows;

β(i, j) =‖ T (si) − T (pj) ‖ (4.10)

the cost function to be minimized becomes;

E(i, j).cost = D(i, j) + E(i − 1, t).cost + αU(pj , pt) + β(i, j). (4.11)

Note that, the terms of the cost function except for D(i, j) which represents the

distance of the GBAS feature vectors of the boundary point si and edge pj, are

subject to change with respect to the previous match node, E(i − 1, t). The turn-

angle constraint can be implemented without the introduction of additional cost to
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the matching algorithm, therefore a performance gain of factor O(L) can be achieved.
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CHAPTER 5

EXPERIMENTS

In this chapter, we evaluate the performance of the proposed shape descriptor, Gener-

alized Beam Angle Statistics, GBAS and the matching algorithm through experiments.

Experiments are collected in two main classes:

• Descriptor performance of GBAS and

• Detection performance of the Matching algorithm.

In the first class of experiments, the descriptor performance of GBAS is evaluated

using the MPEG-7 CE Shape-1 database. The results presented in section 5.1 indicate

that GBAS is a shape descriptor as powerful as its predecessor: BAS. Therefore,

generalizing the BAS for the purpose of object detection, we do not loose the power

of it.

In the second class of experiments we evaluate the performance of the proposed

matching algorithm using artificial and real edge detected images. Various experi-

ments, which are presented in section 5.2 show that the matching algorithm can be

used to detect a given template shape in edge detected images under different condi-

tions.

5.1 The Performance of the GBAS Shape Descriptor

In this section, we demonstrate the performance of the proposed shape descriptor,

GBAS. For this purpose, MPEG-7 Core Experiments Shape-1 data set is used. This
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data set was formed during the MPEG-7 activities, which aimed to create standards

on multimedia database indexing. The performance evaluation of shape descriptors

through this data set is important because it allows the comparison of the performance

with many other similar studies.

5.1.1 MPEG-7 Core Experiments Shape-1 Data Set

MPEG-7 Core Experiments Shape-1 data set contains three test cases: Part-A, Part-

B and Part-C. In these test cases, all images are binary that contain a single object.

Therefore, before the application of the tests contours are extracted using a contour

following algorithm. Then, tests are performed as specified in the related sections.

5.1.1.1 Part-A

Part-A evaluates the performance of shape descriptors under scale and rotation trans-

formations. It is divided into the Part-A1 and Part-A2 test classes that are obtained

from 70 original digital images with the application of scaling by 0.1, 0.2, 0.25, 0.30

and 2.0 scale factors and rotation by 9, 36, 45, 90 and 150 degrees, respectively. There-

fore, each test case contains 70 classes of 420 shapes. A class of shapes from Part-A1

and Part-A2 data sets are shown in figures 5.1 (a) to (f) and (g) to (l), respectively.

In the experiments, all of the 420 shapes are used for query. Then, top 6 retrievals

are considered as matches. If an algorithm retrieves all 6 members of a class in the

matches for all shapes, then it has 100% success.

5.1.1.2 Part-B

Part-B evaluates the performance of shape descriptors under similarity. It contains 70

classes of 1400 shapes. There are 20 shapes in each class. Classes are formed based on

the similarity of the shapes. Example images from different classes of the data set are

shown in figures 5.2 (a) to (f). On the other hand, figures 5.2 (g) to (l) demonstrate

the diversity of shapes within a class of the data set.

In the experiments, all of the 1400 shapes are used as a query. Then, top 40

retrievals are considered as matches. If an algorithm retrieves all 20 members of a

class in the matches for all shapes, then it has 100% success.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.1: A class of shapes from the MPEG-7 CE Shape-1 Part-A1 and Part-A2
data sets are shown in figures (a) to (f) and (g) to (l), respectively. Original images
are given in figures (a) and (g). Scales of figures (b) to (f) and rotations of figures (h)
to (l) are 2.0, 0.3, 0.25, 0.2 and 0.1 and 9, 36, 45, 90 and 150 degrees, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.2: Example images from the MPEG-7 CE Shape-1 Part-B data set. Shapes
in figures (g) to (l) are taken from a class of the set and they demonstrate the within
class diversity of Part-B.
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5.1.1.3 Part-C

Part-C, which contains 1300 images, evaluates the performance of shape descriptors

under motion and non-rigid deformations. 200 images of the data set are the motion

pictures of a bream fish. Examples of these images are given in figures 5.4 (a) to (n).

Remaining 1100 images are of various marine animals. See figure 5.4 (o) to (ab) for

examples of them.

In the experiments, only the query bream fish, which is shown in figure 5.3, is

used for retrieval. Then, top 200 retrievals are considered as matches. If an algorithm

retrieves all 200 images of bream fishes’ motion pictures in the matches, then it has

100% success.

5.1.2 Feature Extraction

Feature extraction aims the reduction of the shape descriptor to smaller sizes. We

extract features from the GBAS shape descriptor using a simple method. Accordingly,

uniformly spaced samples taken from the GBAS shape descriptor are used as features.

In all tests, 64 samples are taken.

5.1.3 Similarity Measurement

For similarity measurement, a Dynamic Time Warping (DTW) algorithm is employed.

Dynamic Time Warping algorithms are originally developed for speech recognition

[33, 30, 11, 32]. They are applied to the recognition of isolated musical patterns [2]

and hand-writings [7] as well. DTW is suitable for the matching of signals that have

local non-linear variations. It achieves this goal by stretching and compressing parts

of the signals [4]. The details of the algorithm are given in [4].

5.1.4 Results

In the experiments, firstly feature vectors of shapes are computed and saved to de-

scriptor files. Next, in the feature extraction phase 64 samples are taken by uniformly

sampling the shape descriptors. Then, queries are performed as explained in the pre-

vious section. The results of the experiments along with the results of other shape

descriptors are given in table 5.1.
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Figure 5.3: Query image of the MPEG-7 CE Shape-1 Part-C data set.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

(v) (w) (x) (y) (z) (aa) (ab)

Figure 5.4: Example images from the motion pictures of the bream fish and the
pictures of marine animals of the MPEG-7 CE Shape-1 Part-C data set are given in
(a) to (n) and (o) to (ab), respectively.
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Table 5.1: Performance comparison of GBAS in the MPEG-7 Core Experiments
Shape-1 Data Set.

Descriptor Part A1 Part A2 Part B Part C
Shape Context - - 76.51 -
Tangent Space 88.65 100 75.45 92

Curvature Scale Space 89.76 99.37 75.44 96
Zernike Moments 92.54 99.60 70.22 94.5

Wavelet 88.04 97.46 67.76 93
DAG 85 85 60 83

BAS(60) 90.87 100 82.37 93.5
GBAS(64) 92.26 100 82.07 93.0

BEST Performance 92.54 100 82.37 96

Part-A1 or the scaling test performance of GBAS is 92.26%, which is a better

performance than the one obtained with BAS, 90.87%. Moreover, this result is very

close to the best performance exhibited by Zernike Moments, 92.54%. The superiority

of GBAS’ performance to BAS in the Part-A1 test indicates that GBAS is more

successful in collecting sufficient statistics when the scale of shapes and consequently

the length of the shape boundaries are small. In other words, this result shows that

the statistical stability of GBAS is better than that of BAS.

Part-A2 or the rotation test performance of GBAS is 100%. This is very natural

because rotation does not change the GBAS shape descriptor.

In Part-B or the similarity test, which is the most important test of MPEG-7, the

performance of GBAS, 82.07% is nearly equal to the performance of BAS, 82.37%

which is the best performance of this test. In this test, BAS and GBAS perform

much more better than the other most competitive descriptor, Shape Context which

has a performance of 76.51%. Therefore, in the similarity test GBAS’ performance

decreases compared to BAS, however it is still much more better than other studies

in the literature.

In Part-C or the motion and non-rigid deformations test, the performance of GBAS

is 93.0% which is slightly worse than BAS’ performance, 93.5%. Part-C performance

of GBAS is worse than Curvature Scale Space and Zernike Moment’s performances

that are 96% and 94.5% respectively. GBAS detects 186 of 200 motion pictures of

bream fish correctly, however for 14 of them it fails. Explanation of this fact is that,

although the object in all of the 200 images is the same, its shape differs from frame to
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

(v) (w) (x) (y) (z) (aa) (ab)

Figure 5.5: Missed and misclassified shapes in the MPEG-7 CE Shape-1 Part-C test
are given in figures (a) to (n) and (o) to (ab), respectively.

frame due to the perspective projection involved. This produces most severe effects,

when the fish turns around in the 3D space, creating a completely different set of

shapes in the 2D imaging plane. In figures 5.5 (a) to (n) and (o) to (ab), missed and

misclassified shapes are shown, respectively. Observe that, the query shape is more

similar to the misclassified shapes than the missed shapes.

As a result, tests performed on MPEG-7 CE Shape-1 data set show that general-

izing the BAS shape descriptor we gain a very important property, shape description

in the lack of parametric boundary representation, however we do not loose much.

5.2 The Performance of the Proposed Matching Algorithm

In this section, we investigate the performance of the matching algorithm using the

artificial and real edge images.
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Figure 5.6: Template Shape Used in the Robustness to Rotation, Reflection, Scaling,
Shearing, Gaussian Noise, Speckle Noise, and Occlusion Tests.

Artificial edge images, which are generated from the boundaries of the shapes

in the MPEG-7 CE Shape-1 Part-B data set, demonstrate the performance of the

matching algorithm under the rotation, scaling, reflection and shearing transforma-

tions, occlusion, Gaussian noisy shapes and Speckle noisy images.

Edge detected images are obtained from the MPEG-7 CE Shape-1 Part-C data

sets’ bream fish images with the addition of Gaussian noise and the application of the

Canny edge detection algorithm. These images include the effects of noise, occlusion,

smoothing and dislocalization of the edges. Therefore, this experiment demonstrates

the performance of the matching algorithm in real images.

All of these experiments show that the matching algorithm can successfully detect

template shapes in edge detected images that contain a single object.

5.2.1 Robustness of the Matching Algorithm to Rotation and Reflection

The matching algorithm uses the GBAS Moment functions of the template shape

and the edge image as well as the distance between the edge pixels. In chapter 3,

we have seen that GBAS Moment functions are invariant to rotation and reflection.

The Euclidean distance between the edge pixels that is considered in the matching

algorithm, does not affect the rotation and reflection robustness properties. As a

result, the matching algorithm is invariant to rotation and reflection.

In figure 5.6 template shape used in robustness to rotation test is shown. It is

matched with each of the 6 query images presented in figure 5.7 (a) to (f) and the
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results of the matching are given in (g) to (l). Matching points are marked with big

dots. Clearly, the template shape is successfully matched with the query images.

The same template shape is used in robustness to reflection test and it is matched

with the query images shown in figure 5.8. Matching results are given in figure 5.9.

Results indicate that the matching algorithm successfully matches reflected shapes.

5.2.2 Robustness of the Matching Algorithm to Scaling

In chapter 3, we have shown that GBAS is scale invariant. However, the distance of

edge pixels depends on scale. Therefore, the matching algorithm searches for the same

scaled instances of the template, by default. However, it is possible to search for a

specified scaled instance. In this section, we demonstrate that the matching algorithm

achieves to detect specified scaled instances of the templates.

The template shape which is shown in figure 5.6, is matched with 2.0, 2.5, 3.0, 3.5,

4.0 and 4.5 times scaled instances presented in figures 5.10 (a) to (f), respectively. Note

that the scale factor between the template shape and the query image to be detected

determines the α parameter of the matching algorithm. The results of matching, which

are shown in figures 5.10 (g) to (l), indicate that the template shape is successfully

matched with its scaled instances.

5.2.3 Robustness of the Matching Algorithm to Shearing

We know that GBAS is not invariant to shearing since it is a curvature based shape

descriptor. As a result, matching algorithm is not expected to have a good perfor-

mance in matching shapes that differ by a shearing transformation. However, when

the amount of shear is small, then the effects are negligible and it is reasonable to

expect good performance.

Sheared instances of the template along the horizontal axis by scale factors of 0.9,

and 0.8 are shown in figures 5.11 (a) and (b) and the results of the matching are

given in (c) and (d), respectively. Up to scale factor 0.8, the algorithm successfully

matches the template shape with query images. However, for larger scale factors that

are below 0.8, it fails.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.7: Query images of the rotation test are given in (a) to (f). Figures (g) to
(l) show the results of matching the query images with the template.
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(a) (b) (c) (d)

Figure 5.8: Query images used in robustness to reflection test. Original shape in (a)
is reflected about the x, y and both of x and y axis and the figures (b), (c) and (d)
are obtained, respectively.

(a) (b)

(c) (d)

Figure 5.9: Results of matching the template shape with the query images in figure 5.8
(a) to (d) are shown in figures (a) to (d), respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.10: Query images used in the scaling test are given in (a) to (f). These are
the scaled instances of the template presented in figure 5.6 having scale factors 2.0,
2.5, 3.0, 3.5, 4.0 and 4.5, respectively. Results of matching the template with the
query images are shown in figures (g) to (l), respectively.
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(a) (b) (c) (d)

Figure 5.11: Query images (a) and (b) are obtained by shearing the template with
scale factors of 0.9 and 0.8 along the horizontal axis, respectively. Figures (c) and (d)
show the results of matching the template with the query images.

5.2.4 Robustness of the Matching Algorithm to Gaussian Noise

In figure 5.12 (a), template shape used to demonstrate the robustness of the Matching

algorithm to Gaussian noise is shown. Gaussian noise having zero mean and various

variances (2.0, 4.0, 6.0, 8.0 and 10.0) is added to the template. Figures 5.12 (b)

to (f) show these images. Noise is taken as the magnitude in the displacement of

shape’s boundary points. Direction of the displacement is taken as the direction of the

gradient. To obtain noisy images, every boundary point of the shape is displaced with

the amount of noise in the direction of the gradient. Then, the template is matched

with the noisy images. Results are shown in figures 5.12 (g) to (l), respectively.

Comparing the results of matching the template with itself (see figure 5.12 (a)) and

the noisy images, one can conclude that the matching algorithm is robust to Gaussian

noise.

5.2.5 Robustness of the Matching Algorithm to Speckle Noise

In order to create speckle noise, we add edge pixels randomly to the edge image. Co-

ordinates of the noisy edge pixels are generated from a uniform distribution. Speckle

noise, 20%, 30%, 40%, 50%, 60% and 75% of the number of true edge pixels is added

to the template which are shown in figures 5.13 (a) to (f), respectively. Then, the

template shape is matched with the query images. Results that are shown in fig-

ures 5.13 (g) to (l) indicate that the template shape can be detected successfully in

speckle noisy images that have noise up to 75% of the true edges.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.12: Template shape used in the Gaussian noise test is shown in (a). Query
images generated from the template with the addition of Gaussian noise having 2.0,
4.0, 6.0, 8.0 and 10.0 variances are given in (b) to (f), respectively. The results of
matching the template with the query images are shown in figures (g) to (l).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.13: Figures (a) to (f) show query images generated from the template shape
by adding 20%, 30%, 40%, 50%, 60% and 75% of speckle noise, respectively. The
results of matching the template with the query images are shown in (g) to (l).
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5.2.6 Robustness of the Matching Algorithm to Occlusion

Figures 5.14 (a) to (f) show query images generated by occluding the template 5%,

10%, 15%, 20%, 25% and 30% of the boundary pixels, respectively. Then, the template

is matched with the query images. Results that are shown in figures 5.14 (g) to (l)

indicate that the matching algorithm successfully matches images occluded up to 30%

of the number of edge pixels.

5.2.7 Overall Performance

In the previous sections, we have shown tests that are applied on a single shape for

the demonstration of the performance of the matching algorithm. In this section, we

report the results obtained with the application of the tests to a larger class of shapes.

The test class is generated by taking a sample shape from each of the 70 MPEG-7 CE

Shape-1 Part-B data set classes. Therefore, a test case of 70 shapes is obtained. Then,

reflected, rotated, scaled, sheared, occluded, Gaussian and speckle noisy instances of

these shapes are generated and the template shapes are matched with them.

The results of matching the template shapes with themselves and rotated, reflected

and scaled instances are shown in table 5.2. Success is presented in three scales: Per-

fect, Good and Un-matched which correspond to the matching of more than 95%, 70%

and less than 70% of the template shapes’ selected pixels and the edges of the query im-

ages. Accordingly, 92.86% of the templates are matched in the good scale for all tests.

Moreover, 77.14%, 77.14%, 75.71% and 74.29% of the templates are matched in the

perfect scale with themselves and rotated, reflected and scaled instances, respectively.

However, 7.14% shapes could not be matched at all. These results indicate that most

of the template shapes are matched successfully under rotation, reflection and scaling

transformations. Additionally, 7.14% failure in the self-matching test show that, the

matching algorithm is not suitable for the matching of some classes of shapes. We

explain this fact as follows. The matching algorithm uses a polynomial time dynamic

programming algorithm for the solution of the NP matching problem. Therefore, it

finds a sub-optimal solution for the matching-problem. As a result, this solution does

not correspond to the optimum solution or a successful matching for some classes of

shapes.

The results of matching the template shapes with 0.9 and 0.8 factor sheared in-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.14: Figures (a) to (f) show query images generated from the template by
occluding 5%, 10%, 15%, 20%, 25% and 30% of the boundary pixels, respectively.
The results of matching the template with the query images are shown in figures (g)
to (l).
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Table 5.2: Performance of the matching algorithm under Self, Rotation, Reflection
and Scaling Transformations.

Test Perfect Good Un-matched
Self 77.14 92.86 7.14

Rotation 77.14 92.86 7.14
Reflection 75.71 92.86 7.14
Scaling 74.29 92.86 7.14

Table 5.3: Performance of the matching algorithm under Shearing.

Test Perfect Good Un-matched
Sheared(0.9) 70 90 10
Sheared(0.8) 58.57 78.57 21.43

stances along the horizontal axis are presented in table 5.3. Accordingly, up to shear

factor of 0.8, for 78.57% of the shapes matching is satisfactory.

The results of matching the template shapes with occluded shapes 5%, 10% and

15% of the boundary points are presented in table 5.4. Consequently, up to occlusion

factor of 10% results are satisfactory for 70% of the shapes. For 15% occlusion, only

57.14% of the shapes can be matched satisfactorily.

The results of matching the template shapes with Gaussian noisy shapes having

variances 1, 3, 5, 7 and 9 are presented in table 5.5. Experiments show that up to

Gaussian noise having variance 7, more than 71.43% of the shapes can be matched

successfully.

The results of matching the template shapes with Speckle noisy images having

noise 25%, 50% and 75% of the number of true edge pixels are shown in table 5.6.

Experiments show that up to Speckle noise 75% of the number of true edge pixels,

more than 71.43% of the shapes can be successfully matched.

Table 5.4: Performance of the matching algorithm under Occlusion.

Test Perfect Good Un-matched
Occluded(5%) 4.29 87.14 12.86
Occluded(10%) 0 70 30
Occluded(15%) 0 57.14 42.56
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Table 5.5: Performance of the matching algorithm under Gaussian Noise.

Test Perfect Good Un-matched
Gaussian Noise(0,1) 67.14 85.71 14.29
Gaussian Noise(0,3) 52.86 81.43 18.57
Gaussian Noise(0,5) 42.86 80 20
Gaussian Noise(0,7) 48.57 71.43 28.57
Gaussian Noise(0,9) 27.14 60 40

Table 5.6: Performance of the matching algorithm under Speckle Noise.

Test Perfect Good Un-matched
Speckle Noise(25%) 57.14 90 10
Speckle Noise(50%) 55.71 78.57 21.43
Speckle Noise(75%) 45.51 71.43 28.57

5.2.8 Experiments performed on Edge Detected Images

In this experiment, we apply the matching algorithm to the edge detected images. For

this purpose, we use the binary bream fish images of MPEG-7 CE Shape-1 Part-C data

set. We add Gaussian noise to the binary images in order to introduce imperfections

such as dislocalizations, missing and excessive edges. Then, we detect edges using the

Canny edge detection algorithm. In figure 5.15, formation of the edge detected images

are summarized. A binary bream fish image of the Part-C data set and its Gaussian

noisy instances having variances 0.2, 0.4, 0.6, 0.8 and 1.0 are shown in figures (a) and

(b) to (f), respectively. Figures (g) to (l) show the results of applying the Canny edge

detection algorithm to the noisy images. Note that the intensities of the binary images

are in the range 0 to 1. Observe that, as the variance of Gaussian noise increases,

then the deformations introduce in the edge detected images increases as well. As a

result, noisy edge detected images having dislocalizations, missing and excessive edges

are obtained.

In the experiments, we match the query image (see figure 5.3) of the Part-C data set

with the edge detected images. Table 5.7 summarizes the results of the experiments.

The rows of the table correspond to the Gaussian noisy test sets generated from the

Part-C data set with the addition of noise having different variances. Recall that

there exists 200 motion pictures of a bream fish in the Part-C data set. Therefore, in

each test case there are 200 edge detected images. The columns of the table show the

percentage of perfect, good and un-matched matching cases. Recall also that a perfect,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.15: Original image is shown in figure (a). Images in (b) to (f) are the Gaussian
noisy instances of the original image having zero mean and variances 0.2, 0.4, 0.6, 0.8
and 1.0, respectively. Edge detected images produced from the noisy images by the
Canny edge detection algorithm are given in figures (g) to (l).

77



Table 5.7: Performance of the Matching Algorithm in Edge Detected Images.

Test Perfect Good Un-matched
Gaussian Noise (0,0.2) 80 94 6
Gaussian Noise (0,0.4) 80 85.5 14.5
Gaussian Noise (0,0.6) 75 85 15
Gaussian Noise (0,0.8) 73 83.5 16.5
Gaussian Noise (0,1.0) 55.5 74.5 25.5

good and un-matched case refers to the matching in which more than 95%, 70% and

less than 70% of the sampled points of the template are matched with the edges of the

query image correctly, respectively. In this set of experiments it is observed that up to

Gaussian noise having variance 1.0, 74.5% of the shapes can be matched successfully.

As a result, we can say that the proposed shape descriptor and the matching algorithm

can be used to detect a given template shape in edge detected images that contain a

single object satisfactorily.
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CHAPTER 6

CONCLUSION

In this thesis, we introduce a new method for the detection of shapes in edge detected

images. This task is achieved by defining a shape descriptor, Generalized Beam Angle

Statistics, GBAS and proposing a template based matching algorithm.

GBAS is obtained with the generalization of the Beam Angle Statistics (BAS),

[5] for the purpose of object detection. It improves BAS so that the computation of

the feature vectors of boundary points can be performed in the lack of parametric

boundary representation. In other words, GBAS does not require tedious boundary

extraction process. This property makes GBAS a suitable shape descriptor that can be

used right after an edge detection algorithm that lead to edge map which may include

missing or excessive edges. Therefore, GBAS can be applied on complex images where

the boundaries of objects are not available.

Inspite of its ability to extract shapes from incomplete boundary information,

GBAS preserves all the superiorities of BAS. First of all, GBAS assures the consistency

to the Human Visual System by preserving all the convexities and concavities of the

shapes. Also, it is invariant to translation, rotation, scale and reflection because none

of these transformations change the set of generalized beam angles of boundary points

significantly. An immediate consequence of this fact is invariance to more complex

transformations that can be obtained with a combination of translation, rotation,

scaling and reflection such as Euclidean motion, rigid body and similarity. Moreover,

GBAS is robust to shearing, occlusion and noise. It has improved statistical stability

because it uses O(N2) beam angles as opposed to BAS which uses O(N) beam angles
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for the description of the boundary points. Although GBAS uses more beam angles

for description, its complexity is the same as the complexity of BAS, O(N2). This

efficiency is achieved by the Fast GBAS algorithm that allows the computation of

GBAS feature vectors without computing all beam angles.

The proposed matching algorithm locates the template shape within the edge

map of the query image. It is translation, rotation and reflection invariant because

the GBAS feature vectors and the Euclidean distance of edges, which are used by the

algorithm, are invariant to these transformations. Although the matching algorithm

is not invariant to scaling, it can be used to locate scaled instances of the template

shape provided that the expected range of the scale factor is given.

Noise robustness is one of the most important properties of the matching algorithm.

This is due to the averaging process performed during the computation of moments.

Tests performed on artificial edge images show that the algorithm is robust to Gaussian

noisy shapes until 10.0 standard deviation. The method is also robust to Speckle noisy

images. The tests performed on real images show that it is also robust to the effects

of smoothing, dislocalizations, motion and non-rigid deformations.

The experiments indicate that the proposed matching algorithm handles shearing

successfully when the amount of shear is less than 0.2. However, larger amounts of

shear deteriorate the performance of the algorithm. Employment of a method for the

online discovery of shear can be quite useful in the matching of sheared shapes.

Discontinuities up to 30% of the entire shape boundary do not affect the matching

performance significantly. However, the percentage length of the discontinuity to be

tolerated depends on the characteristics of the boundary. In order to improve the

matching performance, the algorithm can be extended to skip some of the boundary

points without matching and continue the matching process.

Most important problem of the matching algorithm is the sub-optimal solution

generated by the dynamic programming approach. As a result, some type of shapes

cannot be matched. Fortunately, only for a small percentage of the shapes this led to

the failure of the algorithm in the experiments. The class of shapes that the algorithm

does not work must be further investigated thoroughly in the future studies.

One major constraint of the proposed method is the detection of a single object

within an image. In other words, the proposed method assumes that there is a single
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object to be extracted from a predefined region of the image. Therefore, the proposed

method can work with the single-object-images or require a coarse segmentation as a

preprocessing step to partition the image into parts with single object.

Symmetric shapes constitute another problem for the matching algorithm. For

some of them, the algorithm matches the same symmetric part more than once leaving

other parts unmatched. This is especially observed when one of the symmetric parts

of the shape has some sort of noise. Different strategies can be employed for the

solution of this problem including the removal of the already matched parts of shapes

from further processing.

The computational complexity of the matching algorithm is prohibitive without the

implementation of the proposed improvement methods. Multi-dimensional indexing

mechanisms and the turn-angle constraint can provide significant performance gains.

However, these methods complicate the coding of the algorithm.

In conclusion, the proposed shape descriptor, GBAS, together with the matching

algorithm can be used to detect the template shapes in edge detected images which

contain a single object. The method works under a variety of transformations and

noise. Future studies will be directed for the detection of the template shapes in

images that contain more than one object.
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