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ABSTRACT 
 
 

EARTHQUAKE DAMAGE DETECTION USING WATERSHED 

SEGMENTATION AND INTENSITY-GRADIENT ORIENTATION 

APPROACHES 

 
 
 

Sümer, Emre 

 

M.S., Department of Geodetic and Geographic Information Technologies 

Supervisor: Assist. Prof. Dr. Mustafa TÜRKER 

 

September 2004, 100 pages 

 

 

Earthquake is one of the most destructive natural disasters on earth. Rapid 

and reliable post-quake damage assessment has an important role to reduce 

the drastic effects of an earthquake by setting the responsible agencies in 

motion. In this study, the collapsed buildings due to earthquake were 

detected from post-event aerial images. Two approaches were proposed to 

detect the collapsed buildings. These approaches were implemented in a 

selected urban area of Golcuk. The first approach was based on the analysis 

of shadow casting edges. First, the shadow casting edges of the buildings 

were identified and a buffer zone was generated for each building polygon 

along these edges. Then, the shadow regions were detected using the 

watershed segmentation algorithm. This was followed by measuring the 

agreement between the shadow producing edges of the buildings and their 

corresponding shadows. Of the 284 buildings analyzed, 229 were 

successfully labeled as collapsed or un-collapsed providing an overall 

accuracy of 80,63%.  

 iv 
 



In the second approach, a two-branch method based on building light 

intensities and the gradient orientation was used. In the first branch, an 

intensity threshold was determined and applied to building image patches. 

Then, a pixel ratio was computed to categorize the buildings. In the second 

branch, a series of processings were carried out including the smoothing of 

the building image patches and the determination of the magnitude and the 

orientation of the gradient. Then, an optimum angle threshold was 

determined to label the buildings. The final decision about the condition of a 

building was made by integrating the two branches. Of the 284 buildings 

analyzed, 254 were correctly labeled providing an overall accuracy of 

89,44%. The same assessments were repeated after generating a one-pixel 

wide buffer zone around the building polygons and an overall accuracy of 

90,85% was obtained. 

 

The results of the proposed approaches prove that the collapsed buildings 

caused by the earthquake can be successfully detected from post-event 

aerial images. 
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ÖZ 
 
 

WATERSHED KESİMLEMESİ VE YOĞUNLUK-EĞİM YÖNELİMİ 

YAKLAŞIMLARI KULLANILARAK DEPREM HASAR TESPİTİ 

 
 
 

Sümer, Emre 

 

Yüksek Lisans,Jeodezi ve Coğrafi Bilgi Teknolojileri E.A.B.D 

Tez Yöneticisi: Yrd. Doç. Dr. Mustafa TÜRKER 

 

Eylül 2004, 100 sayfa 

 

 

Deprem, yerküredeki en yõkõcõ doğal felaketlerden birisidir. Hõzlõ  ve güvenilir 

bir deprem sonrasõ hasar değerlendirmesi, depremin şiddetli etkilerini ilgili 

kuruluşlarõ devreye sokarak azaltmada önemli bir role sahiptir. Bu çalõşmada, 

deprem nedeniyle yõkõlmõş binalar, deprem sonrasõ hava fotoğraflarõndan 

tespit edilmiştir.  

 

Yõkõlmõş binalarõn tespitinde iki yaklaşõm önerilmiştir. Bu yaklaşõmlar, 

Gölcük�ten seçilen kentsel bir bölge üzerinde uygulanmõştõr. İlk yaklaşõm, 

gölge oluşturan kenarlarõn analizi temeline dayanmaktadõr. İlk önce, binalarõn 

gölge üreten kenarlarõ saptanmõş ve her bir bina çokgeni için bu kenarlar 

boyunca bir tampon alan oluşturulmuştur. Daha sonra, gölge alanlarõ 

watershed kesimleme algoritmasõ kullanõlarak tespit edilmiştir. Bunu, 

binalarõn gölge üreten kenarlarõyla ilgili gölgesinin arasõndaki uyuşmanõn 

ölçülmesi takip etmiştir. Analiz edilen 284 bina içinden 229 tanesi %80,63�lük 

bir genel doğruluk sağlayarak başarõlõ bir biçimde �yõkõlmõş� veya �yõkõlmamõş� 

olarak tanõmlanmõştõr. 
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İkinci yaklaşõmda ise, bina õşõk yoğunluğu ve eğim yönünü temel alan iki 

bölümlü bir yöntem kullanõlmõştõr. Birinci bölümde, bir yoğunluk eşik değeri 

belirlenmiş ve bina görüntülerine uygulanmõştõr. Daha sonra, binalarõn 

kategorize edilmeleri için bir piksel oranõ belirlenmiştir. İkinci bölümde ise, 

bina görüntülerinin yumuşatõlmasõ ve eğim büyüklüğünün ve yönünün 

belirlenmesini içeren bir grup işlemler yerine getirilmiştir. Sonrasõnda, 

binalarõn sõnõflandõrõlmasõ için en uygun açõ eşik değeri belirlenmiştir. İki 

bölümün birleştirilmesiyle, bir binanõn durumu hakkõnda son bir karara 

varõlmõştõr. Analiz edilen 284 bina içinden 254 tanesi %89,44�lük bir genel 

doğruluk sağlayarak başarõlõ bir şekilde sõnõflandõrõlmõştõr. Benzer 

değerlendirmeler, bina çokgenleri etrafõnda tek piksellik bir tampon alan 

oluşturulduktan sonra tekrarlanmõş ve %90,85�lik bir genel doğruluk elde 

edilmiştir. 

 

Önerilen yaklaşõmlarõn sonuçlarõ göstermektedir ki deprem nedeniyle yõkõlmõş 

binalar, deprem sonrasõ hava fotoğraflarõndan başarõyla tespit 

edilebilmektedir. 

 

 

Anahtar Kelimeler: Görüntü İşleme, depremler, tespit, havaya ilişkin, bina. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

Natural disasters are defined as rapid and destructive events, which seriously 

threaten life and property on earth (Alexander, 1993). Earthquakes are one of 

the most significant natural catastrophes that cannot be predicted and 

prevented. Turkey is one of the countries that considerably suffers from this 

catastrophic event. On August 17, 1999, the urban areas of Golcuk, Yalova, 

Izmit and Istanbul were significantly damaged by a strong earthquake. The 

epicenter of the earthquake was 40.702No, 29.987Eo, near the city of Izmit, 

the magnitude was 7.4 and the depth was 17 km (EDM, 2000). As a social 

damage, according to the Government Crisis Center, around 15.000 people 

died, 24.000 were injured and up to 600.000 people were forced to leave 

their homes. As a structural damage, about 41.000 structures including the 

residential and commercial buildings, and the public facilities were heavily 

damaged (Erdik, 2003). 

 

The prevention of earthquakes is nearly impossible with today�s technology 

and knowledge but according to Montoya (2002), with effective disaster 

management strategies such as preparedness, mitigation, response and 

recovery activities, the impact of the disasters can be avoided or reduced. 

For instance, the extent of the damage caused by a catastrophic event can 

be efficiently assessed using remote sensing technology that aims to set the 

corresponding agencies in motion to reduce the life losses.    

 

Change detection is a widely used technique in remote sensing to detect the 

earthquake-induced changes. Image rationing and image differencing are the 

frequently used methods in change detection applied in post-earthquake 
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damage assessment studies. There are also several other techniques such 

as digital image classification and texture analysis to detect the damage 

caused by an earthquake. Besides, various kinds of data sources are 

available to be used in the post-earthquake damage assessment studies, 

which are nighttime imagery, optical imagery, radar imagery, aerial 

photography, aerial video imagery and airborne MSS imagery. 

 

The objective of this study is to detect the collapsed buildings from post-

event aerial imagery based on building shadows, brightness and the 

orientation of the gradient. This was achieved by proposing two different 

approaches: (i) Watershed Segmentation and (i) Building Intensity - Gradient 

Orientation. These approaches were implemented in a selected urban area 

of the city of Golcuk, which is one of the urban areas most strongly affected 

by the earthquake. 

 

During this study, all the implementations and the processes were carried out 

using MATLAB® 6.5, which is a high-performance language for technical 

computing. Using this language, a program was developed that achieves the 

automated detection of the collapsed buildings using the two approaches. 

The data used in the detection process is fed into the program and the 

results of the analyses are obtained in both graphical and textual modes. The 

program also performs some additional operations, such as image 

enhancement and edge detection on the image of the study area. 

 

 

1.1.    Study Area and Data Description 
 

A selected urban area of the city of Golcuk was used as the study area. The 

area is located in Marmara region, which is located in the northwestern part 

of Turkey (Figure 1.1).  
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earthquake 

 

 
Figure 1.1. Location of the study area 

 

 

The study area consists of 284 rectangular shaped buildings. It is known from 

a previous study (San, 2002) that 79 of the 284 buildings were collapsed and 

the remaining 205 buildings were un-collapsed. In the study area, the surface 
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area of the smallest building is 54 m2 and the largest is 918 m2. The average 

surface area of all buildings is found to be 231 m2. The distribution of the 

surface areas of the buildings is illustrated in Figure 1.2.  
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Figure 1.2. Distribution of the surface areas of the buildings 

 

 

A post-earthquake panchromatic aerial photograph having 1-meter spatial 

resolution was used as the post-quake image data. The photographs 

covering the area were taken after the earthquake (in September 1999) at 

midday by the General Command of Mapping of Turkey.  The scale of the 

aerial photo was 1/16,000 and it was scanned at 21 µm. The illumination 

direction and the sun angle determined by San (2002) were also available. 

The sun angle was computed as 135o from the post-event aerial photo. This 

means that the sun was in southeast of the aerial photo.  

 

The vector building boundaries were also utilized in this study in order to 

assess the conditions of the buildings. This data set was also prepared by 

San (2002) by digitizing each building polygon. The vector data set contains, 

for each building, the Cartesian coordinates of the edge points.  
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1.2.    Organization of the Thesis 
 

This thesis is composed of seven chapters. The next chapter (chapter 2) 

provides the literature review about the building damage assessment from 

aerial and space images, in terms of previous studies, data requirements and 

the methodology. 

 

In chapter 3, the methodology that provides the detection of the collapsed 

buildings using the watershed segmentation algorithm is introduced.  First, 

the methodology is summarized using a flowchart. Next, the building 

selection procedure and the utilization of the vector data are explained 

together with the aerial photo. Then, the determination of the shadow edges 

of each building is explained. This is followed by the buffer zone generation 

procedure. After that, the watershed segmentation step is explained and the 

results are presented. Finally, the accuracy assessment step is provided 

together with the final results. 

 

The second methodology concerning the building intensity and the gradient 

orientation is described in chapter 4. First, the steps of the proposed method 

are presented. Then, the selection of the buildings is explained using the 

aerial photo and the vector building boundary information. Next, the details of 

the building intensity and the gradient orientation methods are discussed and 

the results are given. After that, the building assessment step that combines 

the results of the two methods is presented. At the end of the chapter, the 

accuracy assessment is carried out and then the final results are 

demonstrated.    

 

The following chapter (chapter 5) presents the building damage detection 

software developed by the author. Introduction to software and the system 

architecture are given first. Then, the building damage detection components 

of the program are explained by means of inputs, outputs and other 
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processes. Lastly, the image analysis component is presented including 

image enhancement and edge detection options.  

 

Chapter 6 contains the comparison of the proposed two approaches by 

means of accuracies and several statistics computed for the collapsed and 

un-collapsed buildings. Moreover, the reasons for incorrect detection of the 

buildings are discussed in this chapter by providing several examples. 

 

The final chapter concludes the proposed methods and contains several 

recommendations arising from this study. 
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CHAPTER 2 
 
 

PAST STUDIES FOR DAMAGE DETECTION FROM AERIAL AND SPACE 
IMAGES 

 
 
 

This chapter includes the previous studies conducted on damage detection 

methods using air borne and space borne remote sensing technologies. First, 

the remote sensing technology in earthquake studies is introduced. Then, the 

past studies related to earthquake damage detection are presented by 

means of aerial or space images and applied methodologies. 

 

 

2.1. The Remote Sensing Technology in Earthquake Studies 

 

Remote sensing technology is an important tool to get useful information 

from earth surface features. Using this technology, it is possible to monitor 

the damages occurred by floods, droughts, fires, hurricanes, earthquakes 

and any other natural disasters. Remote sensing technology has been 

applied to many earthquakes occurred in different places and times on earth. 

Some examples of these are the Irpinia (Italy) earthquake in 1980, the 

Hyogoken-Nanbu (Kobe) earthquake in 1995, the Umbria (Italy) earthquake 

in 1997, the Chi-Chi (Taiwan) earthquake in 1999, the Quindio (Colombia) 

earthquake in 1999, the Kocaeli (Turkey) earthquake in 1999, the Gujarat 

earthquake (India) in 2001, the Bhuj earthquake (India) in 2001 and the El 

Salvador earthquake in 2001. These cases are examined in the next section 

in terms of data used and the methodology.  
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The earthquake damage assessment studies are examined according to the 

use of different data sources based on airborne and spaceborne imagery. 

Airborne remote sensing is one of the most important technologies for 

obtaining information about the regions struck by earthquakes. Observation 

of buildings and infrastructures in urban areas and collection of damage data 

are appropriate by using this technology. Aerial photographs and aerial video 

imagery are the major types of data used in airborne remote sensing 

technology (Yamazaki, 2001; Ozisik, 2004).  

 

Spaceborne remote sensing is another important technology in monitoring 

earthquake-induced changes. The chief advantage of spaceborne remote 

sensing is the large area coverage compared with the airborne remote 

sensing. For this reason, it is usually used to gather information at regional 

scale. In damage assessment studies, spaceborne remote sensing can be 

used either in optical systems or in microwave systems. The data sources 

that mostly used with the spaceborne remote sensing technology are: 

nighttime imagery, optical imagery and the radar imagery. 

 

 

2.2. Past Studies Related to Damage Detection 

 

In many applications of damage assessment and building detection, the 

aerial photography is widely used due to its advantages such as improved 

vantage point, permanent recording, broadened spectral sensitivity, the 

increased spatial resolution, and geometric fidelity. One of the frequently 

used applications of aerial photography is the detection of the buildings from 

their shadows. Irvin and McKeown (1989) state that the shadows are usually 

among the darkest areas in images and their extraction can be feasible using 

image processing techniques. They developed several methods to estimate 

the grouping of related structures together with the shape, verification and 

height of individual structures. In each method, the main approach used was 

the relation between structures and their cast shadows. Another study 
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concerning the building shadows was realized by Huertas and Nevatia 

(1988). They used building shadows to estimate the building heights. In 

addition, the shadows cast by the buildings were utilized in verification of the 

buildings. Their method was composed of four steps including line and corner 

detection, labeling of the corners based on shadows, tracing of object 

boundaries, and finally the verification of hypotheses.  

 

Ishii et al. (2002) proposed a method, containing two cases, to detect the 

damaged areas after the Hyogoken-Nanbu earthquake from the aerial 

photographs of the Kobe city. In the first case, color and edge information 

were used to detect the damaged areas from a post-quake aerial 

photograph. Combining the color information with the edge information, the 

discrimination of the damaged areas from the non-damaged could be done 

successfully. In the second step, aerial photographs of the same area taken 

before and after the earthquake were available. They matched the two 

images by using the affine transform and also manually. Then, the colors of 

the corresponding pixels in each image were checked. Thus, the areas 

having color differences were examined. As a consequence, the two-case 

method was said to be fairly good in determining the damaged areas.  

 

Aerial photos at varying scales were used in the study conducted by Van 

Westen and Hofstee (2001). Visual interpretation of the aerial photos 

belonging to the damaged area due to the 1999 Quindio, Colombia 

earthquake was performed. Four types of damage were detected including 

total collapse, roof collapse, partially damaged roof and no visible damage. 

The results of the visual interpretation were found to be satisfactory because 

of the good agreement with the results of the field survey. 

 

In a different study, post earthquake airborne multi-spectral scanner images 

were used in assessing the damage caused by the Kobe earthquake in 1995 

(Mitomi et al., 2003). A classification-based method was developed. First, the 

training areas were selected using GIS data, based on field damage survey. 

 9 
 



Then, the detection of the damaged and non-damaged buildings was 

performed using the maximum likelihood classification algorithm. The results 

were quite satisfactory and were in good agreement with the field survey 

data. 

 

Yanamura and Saji (2003) developed a technique that provides the 

automatic detection of the damaged areas due to an earthquake from the 

aerial images taken before and after the event. The first step of the damage 

detection was registering the two aerial images by the help of a digital map. 

To do that, the perspective transformation was used. Then, the differences 

between the registered images were computed to detect the damaged areas. 

At the end, the damaged areas were detected correctly. The summary of 

their proposed method is illustrated in Figure 2.1. 
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Figure 2.1. Flow of the proposed method by Yanamura and Saji (2003) 
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In a recent study, Turker and Cetinkaya (in press), detected the collapsed 

buildings caused by the 1999 Kocaeli, Turkey earthquake using digital 

elevation models (DEMs) created from the aerial photographs taken before 

(1994) and after (1999) the earthquake. The DEMs created from two epochs 

were differenced and the difference DEM was analyzed on a building-by-

building basis for detecting the collapsed buildings. The producer�s accuracy 

for collapsed buildings was computed to be 84%. Further, Turker and San (in 

press) utilized the cast shadows to detect the collapsed buildings due to 

Kocaeli, Turkey earthquake. The available vector building boundaries were 

used to match the shadow casting edges of the buildings with their 

corresponding shadows and to perform analysis in a building specific 

manner. Of the 80 collapsed buildings, 74 were detected correctly, providing 

92.50% producer�s accuracy. 

 

Another kind of data source in airborne remote sensing is the aerial video 

imagery. In post-disaster damage detection, aerial video imagery taken from 

planes and helicopters are said to be quite practical and powerful due to its 

short response time and low cost (Ham, 1998; Yamazaki, 2001). 

 

Images of the damaged buildings because of the 1995 Hyogoken-Nanbu 

(Kobe) earthquake were examined in order to provide the automatic 

detection of the damaged buildings (Hasegawa, 1999). The images were 

acquired by using aerial high-definition television (HDTV) data source. Using 

image processing techniques, the relationships between the degrees of 

building damage and the color information / edge intensity were investigated 

to detect the building damage. It was found that the results were in fairly 

good agreement with the ground surveys. 

 

In a similar study, Mitomi et al. (2000) detected the damaged buildings by 

processing the aerial television images taken after the 1999 Kocaeli, Turkey 

and Chi-Chi, Taiwan earthquakes. The method was composed of defining the 

characteristics of the damage to wooden buildings based on hue, saturation, 
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brightness and the edge elements. First, the damaged pixels were extracted. 

Then, a threshold value for texture analysis was determined to estimate the 

distribution of damaged buildings. Once the results of the texture analysis 

were obtained, it was compared with the visual analysis. This approach was 

said to properly detect the collapsed buildings. 

  

A near-real time earthquake damage assessment using the integration of 

GIS and remote sensing was performed by Gamba and Casciati (1998). 

Their approach comprised two phases. In the first phase, GIS was performed 

via collecting and analyzing data about buildings and infrastructures. In the 

second phase, the system receives near-real time imagery of the suffered 

area to perform change detection through shape analysis and perceptual 

grouping using the pre and post-event aerial images. The proposed system 

was initially applied to the Irpinia earthquake occurred in 1980 and then to 

the Umbria earthquake in 1997. The results were found to be quite 

satisfactory as the method was successful in determining almost all the 

buildings that were not destroyed even if a few errors were present. Figure 

2.2 illustrates the diagram of the damage assessment system architecture 

developed by Gamba and Casciati (1998). 
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Huyck et al. (2003) used change detection algorithms to identify areas where 

complete collapse of buildings occurred for the Kocaeli earthquake of 1999. 

In this study, SPOT and SAR data were used as optical and radar data 

respectively. A series of algorithms were developed to show the differences 

between before and after event images. To validate these algorithms, the 

results of the analysis were compared with the ground truth data obtained by 

the Japanese investigation team. The comparison results proved that a good 

agreement was encountered between the two data sets. 

 

Detection of damage for the January 13, 2001 El Salvador earthquake was 

conducted using Landsat-7 images by Estrada et al. (2001). Satellite images 

taken before and after the disaster were compared to identify the location of 

landslides and hard hit urban areas. It was performed by rationing between 

bands in visible portions together with the sharpening of the multi-spectral 

bands by merging with the panchromatic band. As a consequence of this 

study, the major landslides were successfully identified by manual inspection.  

 

In a similar study, an earthquake damage detection method that compares 

the optical images with panchromatic bands of Landsat-7 was developed. 

(Yusuf et al. 2001). To do that, two different images of the disaster area due 

to the 2001 Gujarat, India earthquake acquired in January (before the 

earthquake) and in February 2001 (after the earthquake) were investigated. 

First, the differences in reflection intensity (digital number) of the two images 

were calculated and then, the estimated impacted area was abstracted on a 

pixel unit based on the obtained frequency distributions of the differences in 

the optical sensor values. After that, the significant changes in the reflectance 

were revealed. Finally, the accuracy of the results were assessed by a 

classification method and good correspondences were shown in the most of 

damaged distributions. 

 

Chiroiu and Andre (2001) proposed a multidisciplinary approach based on 

high-resolution satellite data and earthquake engineering to assess the 
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damage caused by Bhuj, (India), Earthquake of January 26th, 2001. GIS was 

also used in order to display the spatial distribution of damages. The data 

used in this study was a 1-meter IKONOS multispectral simulation (a 

combination of 1 meter panchromatic and 4 meters multispectral) taken after 

the earthquake and a 2-meter panchromatic image obtained by KVR-1000 

satellite before the earthquake. In automatic detection of damages, the high-

resolution images taken before and after the earthquake were compared in 

terms of reflectance. At the same time, a radiometric improvement was 

applied to obtain a higher accuracy of the image, followed by a high-

resolution filter and a false color composition was also made to illustrate the 

reflectance variation between the two scenes. The results were found to be 

moderately satisfactory due to some disagreements with the real data. 

 

Turker and San (2003) used pre- and post-event SPOT HRV images to 

detect the Izmit earthquake induced changes. The change areas were 

detected by subtracting the near-infrared channel of the merged pre-event 

image from that of the post-event image. The overall accuracy for the change 

areas were found to be 83%. 
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CHAPTER 3 
 
 

BUILDING DAMAGE DETECTION USING WATERSHED SEGMENTATION 
 
 
 
In this chapter, detection of the collapsed buildings from aerial photographs 

using the watershed segmentation algorithm is given. To do that, a technique 

was developed based on building shadows and image segmentation. The 

first part contains the explanation of the methodology. Then, each item in the 

methodology is examined in detail. This is followed by the presentation of the 

results. 

 

 

3.1. The Methodology 
 

The main steps followed in the proposed building damage assessment 

method are shown in Figure 3.1. As seen in the flowchart, the post-event 

aerial photograph of the study area and the vector building boundaries were 

used as the inputs for the method. Initially, the post-event aerial photo was 

visually enhanced using histogram equalization technique to provide better 

discrimination between the buildings and their shadows. The effect of the 

preprocessing is illustrated on a small section of the study area in Figure 3.2. 

Next, the buildings were selected one-by-one using the raster data (aerial 

photo of the region) together with the vector data (vector building 

boundaries). Then, for each building, the shadow-producing edges were 

determined by means of a simple algorithm. To do that, the illumination angle, 

which was available from a previous study conducted by San (2002), was 

used. After finding the shadow edges, a buffer zone was generated along the 

shadow edges of the buildings. This was followed by the execution of the 
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watershed segmentation algorithm. For each building, a binary-colored 

output representing the shadow and non-shadow areas was generated. 

Finally, the accuracy assessment was carried out.  
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Figure 3.1.  Damage detection using watershed segmentation 
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Figure 3.2.  (a) Original aerial photo, (b) histogram-equalized aerial photo, (c) histogram of 

the original aerial photo, (d) histogram of the histogram-equalized aerial photo 
 

 

3.2. Building Selection 
 

To select the vector building polygons, each polygon was assigned a unique 

identification code between 1 and 284. Furthermore, the edges of each 

polygon were also given numerical codes between 1 and 4. Only four 

numbers were used while labeling the edges because in the study area, all 

the buildings were rectangular shaped. The labeled edges and the 

corresponding (x, y) coordinates of a building (#175) are illustrated in Figure 

3.3. The labeling of the edges was necessary to identify the shadow casting 

edges of a building being assessed and to relate these edges with the 

corresponding cast shadows. 
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In the algorithm, first, the corner points are found from the vector information. 

This is simply finding the points that share the same end point on adjacent 

edges. For instance, since both edge 4 and edge 1 share the same end 

point, that is (x,y) = (230,419), this end point is selected as a corner point 

(Figure 3.3-b). Then, the Euclidean distances (d1, d2, d3, d4), shown in Figure 

3.5-a are computed between the corner points of the building and the corner 

of the minimum-bounding rectangle in the illumination direction. Next, the 

computed distances are sorted and the maximum or maximums are 

determined. If there is only one maximum distance, the edges that contain 

the same corner point are selected as the shadow edges. If, on the other 

hand, there are two maximum distances then, the edge that contains those 

corner points is labeled to be the shadow edge. These two cases can be 

illustrated with an example. If d1 > d4 > d2 > d3, then the shadow edges are 

determined as edge 1 and edge 2 (Figure 3.5-a). This is because the corner 

point connecting these edges possesses the farthest distance (d1). If the 

ranking is d1 = d4 > d2 > d3, then, edge 1 is selected as the shadow edge 

since it is the only edge containing the farthest distances d1 and d4.  
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Figure 3.5.  (a) The Euclidean distances (d1, d2, d3 and d4) and the 

             the shadow producing edges of building # 175 
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3.4.   Buffer Zone Generation: 
 

The determination of the shadow producing edges was followed by the 

generation of a buffer zone. A three-pixel wide buffer area, inside and outside 

the building polygon, was generated around the shadow producing edges of 

each building (Figure 3.6). The inside building part of the buffer zone (zone 

B) was used for building analysis while the outside building part of the buffer 

zone (zone S) was used for shadow analysis. The purpose of the buffer zone 

generation was to deal with the shadow and building areas around the 

shadow producing edges of the buildings. These areas can also be called 

�the most significant parts� of a building for the damage assessment.  
 
 
 

 

Buffer zone, 
outside  

the building 
area of A 

Buffer zone, 
inside  

the building 
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Figure 3.6.  Buffer zone generation along the shadow producing edges 

 
 
3.5.   Watershed Segmentation: 
 

This segmentation is based on the concepts of watersheds and catchment 

basins, which are well known in topography. In this approach, a gradient 

image can be regarded as a topographic surface where the gray-levels of the 

gradient image represent altitudes (Figure 3.7). Therefore, the edges in the 

image having high brightness values are considered as watershed lines while 

the interior regions of the image having low brightness values can be 

considered as catchment basins (Sonka et al. 1998).  
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The first step of the segmentation is finding the minima (catchment basin) 

and piercing of it.  Then, whole relief is immersed into the water that causes 

the water flooding into the areas close to the piercing points. As the relief 

goes deeper in the water, some flooded areas tend to merge. In order to 

prevent this, infinitely tall dams are placed along the watershed lines. At the 

end, the resulting group of dams defines the watersheds of the image 

(Shafarenko et al. 1997). Vincent et al. (1991) developed a fast and flexible 

algorithm for computing watersheds in digital grayscale images. The 

algorithm is based on an analogy of an immersion process. In this algorithm, 

the flooding of the water in the image is efficiently simulated using a queue of 

pixels. They applied the algorithm in several fields with regard to picture 

segmentation including MR imagery and digital elevation models. 

 

 

 

Watersheds 

Catchment 
basins 

(a) (b)

 
Figure 3.7.  Watershed segmentation in one dimension: (a) gray-level profile of the image 

                  data; (b) watershed segmentation � local minima of gray level (altitude) yield  

                  catchment basins; local minima define the watershed lines. 
 

 

In this study, the watershed segmentation was performed based on the idea 

of flooding from selected sources (Beucher et al., 1992). These sources 

represent the markers. Two different markers were defined, one for shadow 

regions and the other for the building areas. These markers were utilized to 

avoid the over-segmentation, which is the situation that the watershed 
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segmentation algorithm finds too many unnecessary classes than needed. 

After the gradient image was found, the shadow and the building markers 

were selected within the outside building buffer zone (S) and the inside 

building buffer zone (B) respectively. The locations and the number of the 

markers were seeded randomly. Figure 3.8-a shows an example for the 

marker orientation on a gradient image. 

 

The watershed segmentation algorithm was executed to generate a binary 

colored image. After running the watershed algorithm, the two-region output 

image was obtained. Of these regions, one refers to shadow areas while the 

other corresponds to the building areas. In Figure 3.8-b, the shadow and the 

building areas are shown in blue and yellow colors, respectively. 
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Figure 3.8. (a) The starting pixels (markers) for watershed transform, and (b) the segmented 

            output after the watershed transform. 
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3.6.   Building Condition Assessment 
 

After detecting the shadow and building areas, the agreement was 

measured, for each building, within the buffer zone of the shadow producing 

edges between the pixels labeled as building and the pixels labeled as 

shadow (Figure 3.9). To do that the pixels inside the shadow buffer (S) and 

the building buffer (B) were counted and categorized as shadow or building 

pixel. Then, a ratio was computed between those pixels labeled as building 

and the total number of pixels falling inside the building region of the buffer 

zone. Similarly, a ratio was also computed between those pixels labeled as 

shadow and the total number of pixels falling inside the shadow region of the 

buffer zone.  

 

This can be illustrated with an example. The pixel distribution of building # 

175 is shown in Table 3.1. For this building, the shadow detection algorithm 

detected two shadow edges that are 1 and 2. The total number of pixels 

falling inside the buffer zone along the shadow edges were calculated and 

named as �Total Assessed Pixels� (Table 3.1). Totally, 99 pixels were 

generated for shadow buffer and 99 pixels were generated for building buffer. 

After performing the watershed transform, 91 shadow pixels (blue pixels) fell 

into the shadow buffer and 66 building pixels (yellow pixels) fell into the 

building buffer. Then, the building and the shadow ratios were calculated as 

66/99 = 66.67% and 91/99 = 91.92%, respectively.  

 

A user-defined threshold was used to make a decision about the condition of 

the building. If the building ratio or the shadow ratio was below the defined 

threshold value then, the building was labeled collapsed. If on the hand, both 

the building and the shadow ratios are over the defined threshold value then, 

the building was labeled un-collapsed. In deciding the building condition, the 

building and the shadow ratios were used together in order to avoid or 

reduce the misdetection of the buildings. 

 

 24 
 



Significant 
regions for 

building analysis 

2

 
Figure 3.9. The shadow and building

                          condition. 
 

 
Table 3.1. The calculation of (buil

 

Total Asse

Detected S

Detected B

Shadow R

Building R

3.7.  The Results 
 

In this section, the results of the

presented. First, the optimum 

determined. Then, using the optim

are provided by means of an error

is illustrated in Figure 3.10. 

 

 

 

 
 

1

 regions used

ding / shadow

ssed Pixels

hadow Pix

uilding Pixe

atio: 0.9192
atio: 0.6667

 
 

 proposed d

threshold 

um thresho

 matrix. The

25 
 

Shadow 
edges  

(1 and 2) 

 in the assessment of the building 

) pixel ratios for building # 175. 

: 99 

els: 91 

ls: 66 

 

 

amage analysis technique are 

level for building analysis is 

ld value, the computed results 

 summary of the whole process 



 

1 Calculate some pre-
defined accuracy 
indices using 
previously found error 
matrices for varying 
threshold levels 
between 20% and 80%

S
th3

elect the 
reshold level as 

optimum that 
gives the 
maximum number 
of highest 
percentages 
among the pre-
defined accuracy 
indices 4

Use the corresponding 
error matrix in the 
optimum threshold 
level to assess the 
accuracy of the results

2

Construct error 
matrices for varying 
threshold levels 
between 20% and 80% 

 
Figure 3.10. The process of optimum threshold determination and accuracy assessment 

 

 

Error matrices were constructed for the threshold values of 20%, 30%, 40%, 

50%, 60%, 70% and 80% (Appendix A). Then, by using these error matrices, 

the pre-defined accuracy indices, such as the overall accuracy, overall kappa, 

average user�s accuracy, average producer�s accuracy, combined user�s 

accuracy and combined producer�s accuracy were calculated (Table 3.2). The 

producer�s accuracy indicates the probability of a reference building being 

correctly labeled and is a measure of omission error. On the other hand, the 

user�s accuracy is the probability that a building labeled on the map actually 

represents that class on the ground truth data. Moreover, it is a measure of 

commission error (Story and Congalton, 1986). This table was then analyzed 

for determining the optimum threshold level (Fung and LeDrew, 1988), to be 

used in damage assessment of the buildings. 
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Table 3.2. The accuracy indices for the threshold values between 20% and 80%. 
 

Overall 
Accuracy

Overall
Kappa x

Average 
Accuracy 

Combined  
Accuracy 

Threshold 
(%) 

 (%) 100 User's Producer's User's Producer's
20% 72,89 4,71 73,93 51,66 73,41 62,28 
30% 76,06 22,24 77,40 58,52 76,73 67,29 
40% 77,46 35,32 73,09 65,33 75,28 71,40 
50% 80,63 51,19 75,93 75,30 78,28 77,97 
60% 74,65 45,01 71,41 75,83 73,03 75,24 
70% 64,08 32,98 68,15 72,01 66,12 68,05 
80% 42,61 11,28 62,98 59,08 52,80 50,85 

 

 

As an example, the calculation of the accuracy indices, for an error matrix 

constructed at the 50% threshold level (Table 3.3), is given below. The 

calculations of the accuracy indices for the remaining threshold levels are 

given in Appendix B.  

 

 
Table 3.3. The error matrix for the threshold value of 50% 

 

Reference  
Collapsed Un-collapsed Total 

Collapsed 50 26 76 
Un-collapsed 29 179 208 

Total 79 205 284 
 

 

! Overall Accuracy =  (50 + 179) / 284 * 100 = 80,63% 
 

! Overall Kappa = (a overall � a observed) / (1 - a observed), 

 

                                       (79 * 76) + (208 * 205)  

                      (76 * 79) + (76 * 205) + (79 * 208) + (205 * 208)  
 a observed   =  = 0.5119

 

! User�s accuracy for collapsed buildings = 50 / 76 * 100 = 65,79% 
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! User�s accuracy for un-collapsed buildings = 179 / 208 * 100 = 86,06% 

 

! Average user�s accuracy = (65,79 + 86,06) / 2 = 75,93% 
 

! Producer�s accuracy for collapsed buildings = 50 / 79 * 100 = 63,29% 

 

! Producer�s accuracy for un-collapsed buildings = 179 / 205 * 100 = 

87,31% 

 

! Average producer�s accuracy = (63,29 + 87,31) / 2 = 75,30% 
 

! Combined user�s accuracy = (Overall accuracy + Average user�s 

accuracy) / 2 = (80,63 + 75,93) / 2 = 78,28% 

 

! Combined producer�s accuracy = (Overall accuracy + Average 

producer�s accuracy) / 2 = (80,63 + 75,30) / 2 = 77,97% 

 

Of the six indices provided in Table 3.2, four gave the highest percentage 

(highlighted in gray) in the 50% threshold level. The remaining two indices 

did not reach to the maximum value at 50% due to the imbalance between 

the number of collapsed and un-collapsed buildings that are 79 and 205 

respectively. However, their percentages were not quite different from the 

maximum. For this reason, 50% level was chosen as the optimum threshold.  

 

The trend of the overall accuracies versus varying threshold values is also 

shown graphically in Figure 3.11. It can be clearly seen in the figure that the 

peak of the overall accuracy (80,63%) is reached when the threshold value is 

50%. The shape of the curve is a little bit far from an ideal bell curve due to 

the difference in the number of collapsed and un-collapsed buildings. 
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Figure 3.11. The change of the overall accuracy as the threshold changes. 

 

 

Thus, all the buildings contained within the study area were analyzed using 

the optimum threshold of 50%. Of the 284 buildings, 229 were correctly 

detected by the proposed method. An error matrix was generated for the 

optimum threshold level by comparing the analysis results with the reference 

data. The error matrix contains the overall accuracy, the user�s, and the 

producer�s accuracies for collapsed and un-collapsed buildings (Table 3.4).  

 

The overall accuracy (80,63%) was computed by dividing the sum of the 

diagonal of the error matrix (highlighted in gray) by the total number of the 

buildings (284). The producer�s accuracy for collapsed and the producer�s 

accuracy for un-collapsed buildings were computed to be 63,29% and 

87,31%, respectively. On the other hand, the user�s accuracy for collapsed 

and the user�s accuracy for un-collapsed buildings were found to be 65,79% 

and 86,06%, respectively. It is evident from the results that, 55 buildings were 

incorrectly detected. Of these buildings, 29 were not detected as collapsed 

through the analysis. Instead, 26 un-collapsed buildings were detected as 

collapsed. The mis-detected buildings represent the omission and 

commission errors respectively. 
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Table 3.4. The error matrix for the optimum threshold value of 50% with accuracies 

 

Reference  
Collapsed Un-collapsed Total 

Collapsed 50 26 76 
Un-collapsed 29 179 208 

Total 79 205 284 
    

Producer�s Accuracy 63,29 87,31  
User�s Accuracy 65,79 86,06  
Overall Accuracy  80,63   
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CHAPTER 4 
 
 

BUILDING DAMAGE DETECTION USING BUILDING INTENSITY-
GRADIENT ORIENTATION APPROACH 

 
 

The detection of the collapsed buildings using watershed segmentation was 

explained in the previous chapter. In this chapter, a new approach developed 

for detecting the collapsed buildings from aerial photographs based on 

building intensity and the orientation of the gradient is described. Initially, the 

methodology is introduced. Then, the explanation of the approach is followed. 

In the final section of the chapter, the results of the methodology are 

presented. 

 

 

4.1.  The Methodology 
 

The proposed two-way building damage detection technique called �Building 

Intensity and Gradient Orientation� is illustrated in Figure 4.1. The word 

�intensity� refers to the intensity of the light reflected by the building. As in the 

watershed segmentation approach, discussed in the previous chapter, the 

post event aerial photo of the region and the vector boundary boundaries 

were used as the input data. Besides, the selection of the buildings was also 

performed by making use of the aerial photo and the vector data. Starting 

from this point, the detection process was divided into two branches. In the 

first branch, the detection process was performed based on building intensity 

information. To do that, an intensity threshold was determined by using the 

reference data and afterwards, this threshold was applied to original building 

images. Then, based on the analysis of the thresholded building images each 

building was labeled collapsed or un-collapsed.  
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In the second branch, a group of manipulations were carried out in order to 

make a decision about the condition of a building. First, a preprocessing was 

carried out on each building in order to smooth the image. After that, the 

gradient of the smoothed image was used to produce x and y partial 

derivatives. Next, the orientation and the magnitude of the gradient were 

calculated by using the partial derivatives. Then, by using the orientation 

information, an optimum threshold level was determined for the standard 

deviation of the angle distribution of the building pixels. Finally, as in the first 

branch, using the determined threshold level, a decision was made about the 

condition of each building. In the building condition assessment step, the 

results of the two branches were combined and a final decision was made 

about the condition of a building. At the end, the accuracy of the results was 

computed using the reference data. 

 

 

Building Assessment 

Gradient Orientation 
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Accuracy Assessment

Vector building 
boundaries

Building selection 

Post-earthquake
aerial photograph
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Analysis

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. Damage detection using building intensity and gradient orientation analysis 
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4.2.  Building Selection 
 

Similar to watershed segmentation approach, the vector building boundary 

information was also used in this approach. To summarize: Each building 

polygon was assigned a unique identification number ranging between 1 and 

284. Then, the edges of each building polygon were enumerated between 1 

and 4 in the clock-wise direction (San, 2002). The main purpose for taking 

the vector data into account was to improve the accuracy of the building 

damage detection process by concentrating on building polygons only. In 

other words, the false alarm areas such as roads, grounds, vegetation and 

any other objects are eliminated. 

 

After selecting a building, a one-pixel wide buffer region was generated by 

extending the building boundaries in all directions about one pixel. This 

region was created to improve the accuracy of building damage detection 

procedure. The main reasons for selecting the size of the buffer area no 

more than 1 pixel are twofold: 

 

! the buffer area more than one pixel may increase the chance to 

include the unnecessary shadow areas in the analysis of the building 

under consideration, and 

  
! the buffer area more than one pixel may increase the chance to 

include the undesired building and shadow areas of the neighboring 

buildings. 

 
For above reasons, the false intensity values may be calculated during 

building intensity analysis. On the other hand, during the gradient orientation 

analysis, the angles of neighboring buildings may be involved or the standard 

deviation values may change due to the undesired regions.   
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In further analyses, the buffered buildings are also used together with the 

original ones to examine their differences in the accuracy. An example for an 

original and the buffered building is shown in Figure 4.2. 

 

 

 

 
(a) 

 

(b) 

Original 
building 
boundaries

One-pixel 
buffer area

 
Figure 4.2.  A building polygon (a) with no buffer area, (b) with a one-pixel buffer area. 

 
 
 
4.3.  The Building Intensity Approach 
 

The motivation of this approach is to discriminate the collapsed and un-

collapsed buildings based on brightness values inside the building polygons. 

In general, it was observed that the collapsed buildings reflect higher 

intensity values compared to un-collapsed buildings. The difference in the 

reflected brightness may be due to the roof type (mostly tile), appears dark in 

black and white, or some other objects located on the roofs that reduce the 

brightness value such as chimneys. In addition, the shadows caused by the 

slope of the roofs may also reduce the reflected intensity values for un-

collapsed buildings. For these reasons, the amount of intensity reflected by 

different buildings may vary. In Figure 4.3, the intensity variation between a 

collapsed and an un-collapsed building is illustrated.  
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Figure 4.3.  (a) An un-collapsed building with low intensity and (b) a collapsed building with  

                   higher intensity. 
 

 

In the building intensity analysis, the first step was determining the intensity 

threshold level. In turn, this threshold level will be used to differentiate the 

collapsed buildings from the un-collapsed ones. The threshold value was 

determined through analyzing all the collapsed and un-collapsed buildings in 

the reference data by means of their brightness values. To find the exact 

threshold value, two different histograms were generated, one for collapsed 

and the other for un-collapsed buildings (Figure 4.4). Then, the intersection of 

the two normal curves, which gives the optimum intensity value, was found 

using the normalization curve equation shown below. 

 

 

 

 

  y = f (x | µ , σ) =                         e 

  

  

 
   -(x - µ)2 

2σ2 
 

1 

σ (2 π) 1/2 

 

 

where, µ is the mean value of the normal 

deviation. In order to find the intersection o

equation for collapsed buildings that have µ =
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   -∞ < x < ∞        (equation 1)
curve and σ is the standard 

f the two normal curves, the 

 171,3 and σ = 25,27 and the 



equation for un-collapsed buildings that have µ = 120,6 and σ = 20,63 were 

equalized. 
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(b) 

 
Figure 4.4. The intensity histogram for (a) un-collapsed buildings and (b) collapsed buildings. 

 

 

After solving the two equations, the optimum intensity threshold level (value 

of x in the normalization equation) was found to be 145 (Appendix C). This 

simply means that those buildings collapsed due to earthquake will have an 

average intensity greater than 145. Therefore, this threshold value was 

applied to all buildings in the study area. A resultant image after applying the 

threshold value of 145 to a building is shown in Figure 4.5.  
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Figure 4.5.  A building image after applying the threshold value of 145. 
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The same procedure was also carried out for all buildings that have one pixel 

wide buffer region. The intensity histograms generated for collapsed and un-

collapsed buildings are illustrated in Figure 4.6.  
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Figure 4.6.  The intensity histograms for (a) un-collapsed buildings and (b) collapsed 

 buildings that have one-pixel wide buffer bound. 

 

 

Then, the two normalization curves were equalized in a similar way explained 

earlier and the intensity threshold level was calculated as 141 (Appendix D). 

This threshold level was also applied to the original image. 

 

 

4.4.  The Gradient Orientation Approach 
 

This approach is based on the detection of the variation in the gradient 

direction of the building image patches in order to discriminate the collapsed 

buildings from un-collapsed ones. It is assumed that, for collapsed buildings, 

the direction of gradient is randomly distributed. On the other hand, for un-

collapsed buildings, the gradient orientation is assumed to be more regular 

and only slight variation in the angle is encountered (Figure 4.7). This 

assures that the discrimination of collapsed buildings from un-collapsed can 
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be achieved by analyzing the angle information of the gradient image of the 

buildings.  

 

 

 

  
 

 

  

(b)(a) 
 

Figure 4.7.  (a) A collapsed building with random gradient direction and (b) an un-collapsed 

                     building with regular gradient direction 
 

 

 4.4.1. Image Pre-processing 
 

The analysis of the gradient orientation was comprised of several steps. In 

the first step, the original building image patch was pre-processed using a 

Gaussian smoothing filter (equation 2), which suppresses the noise and 

controls the amount of detail in the building image: 

 

 

 

 

G (x,y) =                        e 

 
   -(x2 + y2)

2σ2 
 

1 

2 π σ2 

 

 

 

 

where, σ is the spread of the Gaussian and controls the degree 

and (x,y) is a pixel within the filter window. The smoothed bu
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 (equation 2)
of smoothing 

ilding image 



patch, S(x,y), was then generated after convoluting the original image, I(x,y), 

using the Gaussian filter, G(x,y) (equation 3). The original and the smoothed 

building image patches are shown in Figure 4.8. 

 

 

 

S (x,y) = G(x,y) * I(x,y)   

 

                       (equation 3) 

 

 

 

 

(a) 

 

 

(b) 
 

Figure 4.8.  A building image patch (a) before smoothing and (b) after smoothing. 

 

 

 4.4.2. The Calculation of the Gradient Orientation 
 

In the next step, the smoothed image was utilized to produce the vertical and 

horizontal partial derivatives, which were computed by averaging the finite 

differences over a 2x2 square array (equation 4). 

 
 
 

P(x,y) ≈ (S(x,y+1) - S(x,y) + S(x+1,y+1) - S(x+1,y)) / 2 

Q(x,y) ≈ (S(x,y) - S(x+1,y) + S(x,y+1) - S(x+1,y+1)) / 2 
(equation 4)
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where, P(x,y) and Q(x,y) are the vertical and horizontal partial derivatives, 

respectively and S(x,y) is the smoothed image patch. Then, the magnitude 

and the orientation of the gradient were calculated using equation 5. 

 

 

           M(x,y) ≈ (P(x,y)2 + Q(x,y)2) ½  

          θ(x,y) ≈ arctan (Q(x,y), P(x,y)) 

 
 

 

 

where, M(x,y) is the magnitude of the gradient, θ(x,y) is the orie

gradient and arctan(x,y) is a function that returns an angle be

(Lecture Notes on Image Processing Algorithms Course, 2002

present case, this range was then mapped into [0, +π] int

example, the partial representation of the gradient magnit

orientation (for each pixel) of a building patch are shown in Figu

the numbers represent the angle values (between 0o and 

corresponding pixels. 
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Figure 4.9.  (a) The gradient magnitude and (b) the gradient orientation of a
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 4.4.3. Threshold Determination for the Optimum Standard  
                      Deviation 

 

After obtaining the gradient orientation, the whole angle interval (00 - 1800) 

were divided into 15o sub-intervals which were (1) 0-15, (2) 16-30, (3) 31-45, 

(4) 46-60, (5) 61-75, (6) 76-90, (7) 91-105, (8) 106-120, (9) 121-135, (10) 

136-150, (11) 151-165 and (12) 166-180. Then, for each building, the 

gradient direction histograms were generated. In these histograms, the 

abscissa represents the gradient direction from 0 to 180 degrees divided into 

12 equal intervals while the ordinate represents the frequency of the gradient 

directions. Figures 4.10-a and 4.10-b illustrate the histograms for a collapsed 

and an un-collapsed building, respectively. 
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Figure 4.10.  (a) An un-collapsed building and (b) a collapsed building with un-biased 

            frequencies 
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As can be seen in the figure, the (0o � 15o) interval was not taken into 

account due to its high frequency, which occurs a biased distribution. After 

eliminating this interval, the histogram of a collapsed building looks more-or- 

less flat when compared with the histogram of an un-collapsed building, 

which concentrates in one or two directions.  

 

In the study area, the number of pixels falling within the building polygons 

(size of the buildings) was not the same for all buildings. For this reason, for 

each histogram, the frequency values were mapped into 0 � 100 interval 

proportional to the building size. At the end of this mapping process, the new 

histograms were constructed (Figure 4.11). This was followed by the 

calculation of the standard deviations of the new histograms. It was observed 

that most of the collapsed buildings have low standard deviation values due 

to their flat distribution. On the other hand, most of the un-collapsed buildings 

have high standard deviations.  
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Figure 4.11.  (a) An un-collapsed building and (b) a collapsed building with un-biased 

            frequencies after mapping the frequency values between 0 and 100. 
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As a final step, the optimum standard deviation threshold that discriminates 

the collapsed buildings from the un-collapsed was determined. To do that, 

the average of the standard deviation values of all collapsed and un-

collapsed buildings were computed. For collapsed and un-collapsed 

buildings, the computed values were found to be 16,07 and 17,93, 

respectively. Then, by applying the same procedure as in the optimum 

intensity threshold level determination in the previous section, an optimum 

threshold of 17 was found. The similar processes were also carried out for 

the one-pixel wide buffer region generated building polygons. In this case, 

the optimum standard deviation value was found to be 17,31. 

 

 

4.5. Assessments of the Conditions of the Buildings by Integrating    
Both Approaches 

 

After performing the building intensity analysis, the optimum intensity 

threshold was computed to be 145 for the buildings when a buffer zone is not 

generated and 141 when a one pixel wide buffer zone is generated. After 

that, for each building, those pixels having brightness values higher than the 

threshold were counted and then divided into the total number of pixels 

contained within the building. The result gave us the pixel ratio per building. 

This can be illustrated with an example. In Figure 4.5, the number of pixels 

staying above the optimum threshold level of 145 is 114 and the total number 

of pixels contained within this building is 256 pixels. Thus, the pixel ratio is 

computed to be 114 / 256 or 44,53 %.  

 

In general, it was observed that the pixel ratios were higher for collapsed 

buildings than the pixel ratios for un-collapsed buildings. This is because, the 

pixels with high intensity values were much more present within collapsed 

buildings. As a consequence of the analysis, 60% pixel ratio was accepted to 

be the optimum threshold level that differentiates collapsed buildings from 

un-collapsed. Thus, those buildings having a pixel ratio greater than 60% 
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was labeled collapsed. Otherwise, the buildings were categorized as un-

collapsed. 

 

As mentioned above, in the gradient orientation approach, the optimum 

standard deviation threshold value was found to be 17. Therefore, this value 

was used to discriminate the collapsed buildings from the un-collapsed ones. 

If the standard deviation of a building�s gradient direction histogram was 

below the optimum standard deviation then, the building was accepted to be 

collapsed. Otherwise, the building was labeled un-collapsed.  

   

The final decision about the building condition was made by combining the 

results of the building intensity and the gradient orientation approaches. A 

building was marked collapsed if its pixel ratio was above the predefined 

pixel ratio of 60% and the standard deviation of its gradient direction 

histogram was below the optimum standard deviation of 17. On the other 

hand, a building was labeled un-collapsed if its pixel ratio was below the 

predefined pixel ratio of 60% and the standard deviation of its gradient 

orientation histogram was above the optimum standard deviation of 17. The 

similar processings were also carried out for the one-pixel wide buffer region 

generated building polygons. In this case, the pixel ratio of 60% was 

preserved but the optimum standard deviation value of 17 was changed to 

17,31.  

 

By using the optimum pixel ratio and the optimum standard deviation 

threshold value, the results were obtained. Then, for the assessment of the 

accuracy, an error matrix was created for; (i) the buildings without a buffer 

zone and (ii) the buildings with a buffer zone of 1 pixel. The main steps of the 

optimum pixel ratio determination and the accuracy assessment to get the 

results is given below:  

 

! The error matrices for varying threshold levels between 10% and 90% 

were constructed. 
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! The predefined accuracy indices were computed using the previously 

constructed error matrices for varying pixel ratios. 

 

! The optimum pixel ratio that gives the maximum number of highest 

percentages among the predefined accuracy indices was selected. 

 

! The accuracy of the results was assessed by using the corresponding 

error matrix in the optimum pixel ratio. 

 

 

4.6. The Results 
 

As listed at the end of the previous section, the error matrices for the varying 

pixel ratios changing between 10% and 90% were constructed. By using 

these matrices, several predefined accuracy indices including overall 

accuracy, overall kappa, average user�s and producer�s accuracies, and 

combined user�s and producer�s accuracies were computed (Table 4.1). In a 

similar way, a table for the buffered case was also generated (Table 4.2). 

 

 
Table 4.1.  The accuracy indices for the pixel ratios between 10% and 90% 

 
Pixel Ratio Overall Overall

(%) Accuracy Kappa x
Average  

Accuracy % 
Combined 

Accuracy % 
 (%) 100 User's Producer's User's Producer's

10% 28,52 0,55 64,01 50,49 46,26 39,50 
20% 34,51 5,38 64,91 54,63 49,71 44,57 
30% 47,54 16,47 65,52 62,88 56,53 55,21 
40% 64,79 35,06 69,72 73,66 67,25 69,23 
50% 82,75 62,18 79,52 85,33 81,13 84,04 
60% 89,44 73,70 86,85 86,85 88,14 88,14 
70% 89,08 69,63 91,83 81,16 90,46 85,12 
80% 80,99 40,06 89,58 65,82 85,28 73,40 
90% 73,94 8,89 86,74 53,16 80,34 63,55 
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Table 4.2.  The accuracy indices for the pixel ratios between 10% and 90% in the buffered 

                    case  

 

Pixel Ratio Overall Overall
(%) Accuracy Kappa x Average Accuracy % Combined 

Accuracy % 
  (%) 100 User's Producer's User's Producer's

10% 28,87 0,82 64,06 50,73 46,47 39,80 
20% 34,86 5,67 64,96 54,88 49,91 44,87 
30% 49,30 18,26 66,04 64,10 57,67 56,70 
40% 65,85 37,19 71,04 75,17 68,44 70,51 
50% 85,21 67,02 81,77 87,42 83,49 86,32 
60% 90,85 76,84 89,08 87,82 89,96 89,33 
70% 90,85 74,64 94,37 83,54 92,61 87,19 
80% 81,34 41,46 89,73 66,46 85,53 73,90 
90% 74,65 12,31 87,00 54,43 80,83 64,54 

 
 
 
Of the six indices represented in Tables 4.1 and 4.2, four gave the highest 

percentage (highlighted in gray) in the 60% threshold level. The remaining 

two indices did not reach to the maximum at 60% threshold level although 

their percentages were not quite different from this peak value. The reason 

for this would be that there is a wide range between the number of collapsed 

and un-collapsed buildings. 

 

The tendencies of the overall accuracies versus varying threshold levels for 

the un-buffered and buffered cases are shown in Figures 4.12 and 4.13, 

respectively. As can be seen from the figure that the peaks of the overall 

accuracies (89,44%) and (90,85%) are reached when the pixel ratio is 60%. 

The shape of the curve is a little bit far from the ideal bell curve similar to the 

results of watershed segmentation approach. This is because there exists an 

imbalance between the number of collapsed and un-collapsed buildings. 
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Figure 4.12.  The change of the overall accuracy as the pixel r
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Figure 4.13.  The change of the overall accuracy as the pixel ratio cha

                        case 
 

 

Therefore, all the buildings in the study area were assess

ratio of 60% and the optimum standard deviation threshold 

un-buffered case) and 17,31 (in the buffered case). Of the 2

and 258 buildings were correctly detected in the un-buffe
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84 buildings, 254 
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cases, respectively by the integrated approach. The error matrices were 

generated using the optimum pixel ratios by comparing the analyzed results 

with the ground truth. The error matrices include the overall accuracy, the 

user�s and the producer�s accuracies for collapsed and un-collapsed buildings 

(Table 4.3 � 4.4).  

 

 
Table 4.3.  The error matrix for the optimum pixel ratio and standard deviation threshold  

                  levels in the un-buffered case 
 

Reference  
Collapsed Un-collapsed Total 

Collapsed 64 15 79 
Un-collapsed 15 190 205 

Total 79 205 284 
    

Producer�s Accuracy 81,01 92,68  
User�s Accuracy 81,01 92,68  
Overall Accuracy  89,44   

 

 
Table 4.4.  The error matrix for the optimum pixel ratio and standard deviation threshold  

                     levels in the buffered case 
 

Reference  
Collapsed Un-collapsed Total 

Collapsed 64 11 75 
Un-collapsed 15 194 209 

Total 79 205 284 
    

Producer�s Accuracy 81,01 94,63  
User�s Accuracy 85,33 92,82  
Overall Accuracy  90,85   

 

 

The overall accuracies were calculated as 89,44% and 90,85% for the un-

buffered and buffered cases, respectively. In the un-buffered case, both the 

user�s and the producer�s accuracies were computed, for collapsed buildings, 

as 81,01%. On the other hand, for un-collapsed buildings, both the user�s and 
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the producer�s accuracies were found to be 92,68%. In the buffered case, the 

producer�s accuracies for collapsed and un-collapsed buildings were 

computed to be 81,01% and 94,63%, respectively. On the other hand, the 

user�s accuracies for collapsed and un-collapsed buildings were computed to 

be 85,33% and 92,82%, respectively.  

 

It can be observed that 30 buildings in the un-buffered case and 26 buildings 

in the buffered case were not detected correctly due to several reasons. In 

the un-buffered case, of the 30 mis-detected buildings, 15 were not detected 

as collapsed through the analysis. Instead, 15 un-collapsed buildings were 

detected as collapsed. In the buffered case, of the 26 mis-detected buildings, 

15 were not detected as collapsed through the analysis. Instead, 11 un-

collapsed buildings were detected as collapsed. In each case, the mis-

detected buildings represent the omission and commission errors 

respectively. 
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CHAPTER 5 
 
 

DEVELOPING A BUILDING DAMAGE DETECTION SOFTWARE 
 
 
In this chapter, the software development part of the study is described. The 

chapter includes four main sections. First, the system design is explained. In 

this section, the functionalities of the software and the architecture of the 

system are introduced. Secondly, the watershed segmentation component of 

the software is presented. This is followed by the explanation of the second 

approach, building intensity � gradient orientation. Finally, the image analysis 

component is described. 

 
 
5.1. System Design 
 

The building damage detection software was implemented using MATLAB®, 

which stands for matrix laboratory, a high-performance language mostly 

used for technical computing. It integrates computation, visualization, and 

programming in a user-friendly environment. Typical uses of Matlab are as 

follows: 

 

! Mathematics and computation 

 

! Algorithm development 

 

! Data acquisition 

 

! Modeling, simulation and prototyping 

 

! Data analysis, exploration, and visualization 
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! Scientific and engineering graphics 

 

! Application development, including graphical user interface building 

 

MATLAB includes a group of add-on application-specific solutions called 

toolboxes. The toolboxes allow the user to learn and apply specialized 

technology and provide to solve particular classes of problems. Areas in 

which toolboxes are available include image processing, signal processing 

control systems, neural networks, fuzzy logic, wavelets, simulation, and many 

others. On the other hand, MATLAB possesses a system that includes many 

parts such as development environment, the MATLAB mathematical function 

library, the MATLAB language, graphics and, the MATLAB application 

program interface (API) (MATLAB 6.5.0 manual, 2002). 

 

The motivation of the software development has arisen, from the need of 

automating the earthquake damage detection methods. This brings some 

advantages such as speed, easiness and compactness. The damage 

detection software works fast since all the operations are executed on a 

single environment. No other supplementary program is needed. In addition, 

it is easy to use the system due to its user-friendly structure supported by the 

graphical user interface (GUI). Finally, the system has a compact form that 

packs the two earthquake damage detection methodologies in a standalone 

environment. This property gives the opportunity of testing different methods 

on a single data and comparing the results of them. 

 

The architecture of the developed system is illustrated in Figure 5.1. As can 

be seen in the figure two different inputs are fed into the system components 

that are the post-event aerial image and the vector building boundary 

information. The post-event aerial photograph is input to all the components 

of the software while the vector building boundaries are utilized by the image 

analysis component only. At the output side, two different outputs are 
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obtained from this earthquake damage detection system. The components 

other than the image analysis generate the labeled buildings, such as the 

collapsed or un-collapsed in a graphical or textual mode. On the other hand, 

image analysis component is used to generate visually enhanced image 

outputs. These processes include several image processing operations, such 

as image enhancement and edge detection. 
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5.2. Watershed Segmentation Component 
 
The watershed segmentation component of the system was designed to 

automatically detect the collapsed buildings from a post-event aerial 

photograph using the first approach. Therefore, to do that, all the processes 

mentioned in chapter 3 were implemented within this component. The source 

code of the watershed segmentation component can be seen in Appendix E. 

 

The detection procedure starts with the determination of the method in the 

main window (Figure 5.2). To start the watershed segmentation approach, 

the upper radio button must be selected. Then, this choice is confirmed by 

clicking the �Ok� button. The �Exit� button is used for the termination of the 

program and the �About� button gives information about the author and the 

version of the program, correspondingly.  

 

 

 
 

Figure 5.2. Main menu of the damage detection software 
 

 

After selecting the method, a new window is displayed on the screen. This 

window contains several menu items, such as file, attributes, segmentation 

and image analysis (Figure 5.3). Except for the image analysis, the other 

menu items are examined below.  
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! File: This menu item comprises of two options: (i) Displaying the 

photograph of the study area and (ii) quitting the program.  

 

! Attributes: Using this menu item, several adjustments can be carried 

out before performing the watershed segmentation. For example, the 

buffer bound, the buffer depth and the threshold value can be set. 

While the buffer bound and the buffer depth are scaled between 1 and 

10 pixels, the threshold level gets a value between 0% and 100%. In 

the optimum case, the buffer bound is selected as 6 and the buffer 

depth (size of the buffer zone) is set to 3 pixels. On the other hand, the 

threshold level is determined as 50% (Figure 5.3). 
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Figure 5.3. A general view of the watershed segmentation interface and the resul

                     manual segmentation 
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! Segmentation: In this menu item, the mode of the segmentation can 

be determined to be either (i) manual or (ii) automatic. In the manual 

mode, the building number is entered into the edit box manually and 

the �start� button located in the manual segmentation panel is clicked. 

After this operation, the segmented building is displayed on a small 

window. In addition, the corresponding building is marked on the 

image by a color that represents its condition (Figure 5.3). Four 

different colors are used to represent the conditions of the buildings. 

According to the legend designed, green color represents that the 

building is un-collapsed. The red is used for collapsed buildings, while 

blue and yellow signify the omission and commission errors, 

respectively. In the example given in Figure 5.3, building # 184 was 

successfully detected as un-collapsed and is represented in green 

color. In the automatic mode, all the buildings are processed after 

clicking the �start� button, located in the automatic segmentation panel 

(Figure 5.4). Accordingly, the segmentation results and the accuracy 

assessment statistics are written to an output file with a message, 

placed on the automatic segmentation panel (Figure 5.4). 

 

 

 

Message 
about the 
output file

Automatic  
segmentation  

panel 

 

 

Figure 5.4. View of the automatic segmentation 
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5.3. Building Intensity – Gradient Orientation Component 
 
This component was designed, to implement the second proposed approach 

for the automated detection of the collapsed buildings from a post-event 

aerial photo of the damaged region. The source code of this component can 

be seen in Appendix F. 

 

As in the previous section, the detection procedure starts with the selection of 

the method in the main window (Figure 5.5). This time, the lower radio button 

is selected to initiate the building intensity � gradient orientation method.  

 

 

 
 

Figure 5.5. Main menu of the damage detection software with second option selected 
 
 
After selecting the Building Intensity � Gradient Orientation method, a new 

window is displayed on the screen. This window contains several menu items 

including file, attributes and detection (Figure 5.6). 

 
! File: As in the watershed segmentation component, this menu 

contains two options. These are used;  (i) to load the study area (aerial 

photo of the region) and (ii) to terminate the program. 
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! Attributes: The parameters used in the building intensity � gradient 

orientation approach are available in this menu item. These 

parameters are; buffer bound, intensity threshold, building ratio and 

angle threshold (standard deviation threshold). The scroll bars are 

used to adjust these parameters. The buffer bound parameter gets the 

pixel values of 0 or 1 that represent the un-buffered and buffered 

cases of the approach, respectively. On the other hand, the intensity 

threshold changes between 0 and 255, the building ratio is scaled 

between 0% and 100% and finally, the angle threshold gets a value 

between 0 and 100. In the optimum case, if the buffer bound is 

selected to be 0 then, the other parameters, the intensity threshold, 

the building ratio and the angle threshold should be chosen as 145, 

60% and 17, respectively (Figure 5.6). On the other hand, if the buffer 

bound is set to 1 then the same parameters should be 141, 60% and 

17,31, respectively. 
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Figure 5.6. General view of the building intensity � gradient orientation
         result of the manual detection 
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! Detection: As in the watershed approach, two types of detection are 

designed in this approach. These are manual and automatic 

detections. In both modes, the same logic is used as in the watershed 

segmentation component. The result of the manual detection is 

visualized on the aerial photo using four different colors where green 

represents un-collapsed while red represents the collapsed buildings. 

On the other hand, blue and yellow colors are used to indicate the 

omission and commission errors, respectively (Figure 5.6). The results 

of automatic detection and the statistics of the accuracy assessment 

are written to a file with a message placed on the automatic detection 

panel (Figure 5.7).  
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Figure 5.7. View of the automatic detection 
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5.4. Image Analysis Component  
 
The aim of the image analysis component was to enrich the damage 

detection software by adding several image processing features. These 

features include major image enhancement methods and some well-known 

edge detection algorithms.  

 

The image analysis component is a menu item located within the watershed 

segmentation component. It contains two options; (i) image enhancement 

and (ii) edge detection.  

 

! Image Enhancement: In this option, four menu items are available 

which are file, intensity adjustment, histogram equalization and noise 

reduction filtering (Figure 5.8).  

 

 

 
 

Figure 5.8. Main menu of the image enhancement 

 

 

The file menu contains the standard options as in the previous 

components, such as loading the study area and terminating the 

program. The intensity adjustment offers some modifications on the 

image. These are simply increasing or decreasing the brightness, 

contrast and gamma attributes of the image. The effects of these 

operations, on a small segment of the study area, are exemplified in 

Figure 5.9. Using the histogram equalization, the intensity histogram of 

the study area can be equalized. As an output, the modified image can 

be displayed together with the before and the after histograms (Figure 

5.10). In the final menu item, several well-known noise reduction filters 
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are applied with varying kernel sizes (3x3 and 5x5) to the image. 

These are; the median, average and adaptive (wiener) filters.  

   

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

Figure 5.9. (a) High brightness image, (b) low brightness image, (c) high contrast  

                  image, (d) low contrast image, (e) high gamma image, (f) low gamma  

                                  image 
 

 

(a) 

 

(b) 
 

Figure 5.10. The histogram of the (a) original image and (b) equalized image               

 60 
 



! Edge Detection: In this menu item, two options are available that are 

(i) file and (ii) edge detection (Figure 5.11). The content of the file 

menu is the same as in the previous components. On the other hand, 

the edge detection is comprised of 5 methods, which are Sobel, 

Prewitt, Roberts, Laplacian of Gaussian and Canny edge detectors. 

These methods can be applied to post-event aerial photo of the study 

area. The resulting images after applying these techniques are 

illustrated in Figure 5.12. 

 

 

 
 

Figure 5.11. Main menu of the edge detection 

 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

Figure 5.12. Output images after applying (a) Prewitt, (b) Sobel, (c) Roberts, (d)  

                        Laplacian of Gaussian and (e) Canny edge filters 
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CHAPTER 6 
 
 

DISCUSSIONS OF THE RESULTS 
 

 
In this chapter, two main points are examined. First, the comparison of the 

proposed (i) watershed segmentation and (ii) building intensity � gradient 

orientation approaches are carried out in terms of the accuracies of the 

results they provide and the number of correctly and incorrectly detected 

buildings. Then, the special cases that make the proposed methods fail are 

discussed. 

 
 

6.1. Comparison of the Two Approaches 
 

In the first approach, the building damage detection was achieved using the 

watershed segmentation algorithm. In the second approach, a composite 

technique using the intensity of the buildings and the orientation of the 

gradient was attempted. The second approach was separated into buffered 

and un-buffered versions. The summary of the results of the developed 

methods is provided in Table 6.1. 

 
 
 

Table 6.1. The comparison of the proposed approaches in terms of overall accuracies 

 
Approach used Overall Accuracy 

Watershed Segmentation 80,63 % 
Building Intensity – Gradient 

Orientation with no buffer 
89,44 % 

Building Intensity – Gradient 
Orientation with a pixel wide buffer 

90,85 % 
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As can be seen in the table, all the accuracies are above 80 percent. The 

highest accuracy (90,85%) was achieved using the buffered version of the 

building intensity � gradient orientation approach. On the other hand, the 

lowest accuracy (80,63%) was obtained using the watershed segmentation 

approach. In addition to overall accuracies, the user�s and producer�s 

accuracies for collapsed and un-collapsed buildings are also provided in 

Table 6.2. 

 

 
Table 6.2. The comparison of the user�s and producer�s accuracies for collapsed and un- 

                 collapsed buildings 

 

Approach used 

User’s 
accuracy for 

collapsed 
buildings 

User’s 
accuracy for 
un-collapsed

buildings 

Producer’s 
accuracy for 

collapsed 
buildings 

Producer’s 
accuracy for 
un-collapsed

buildings 
Watershed  

Segmentation 
65,79% 86,06% 63,29% 87,31% 

Building Intensity – 
Gradient Orientation with 

no buffer 
81,01% 92,68% 81,01% 92,68% 

Building Intensity – 
Gradient Orientation with 

a pixel wide buffer 
85,33% 92,82% 81,01% 94,63% 

 

 

Of the four accuracy indices (user�s accuracy for collapsed, user�s accuracy 

for un-collapsed, producer�s accuracy for collapsed, producer�s accuracy for 

un-collapsed), the buffered version of the building intensity � gradient 

orientation approach provided the highest three accuracies except for the 

producer�s accuracy for collapsed buildings, which was found to be the same, 

both in the buffered and un-buffered versions of this approach. This is 

because of the existence of the equal number of omission errors, which is 15 

in buffered and un-buffered cases, shown in Table 6.3. As in the overall 

accuracies, the watershed segmentation method provided the lowest user�s 
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and producer�s accuracies. The number of correctly and incorrectly detected 

buildings by the proposed methods are given in Table 6.3. 

 

 
Table 6.3. The comparison of the correctly and incorrectly detected buildings with omission  

    and commission errors 
 

Approach 
used 

Number of  
correctly 
detected 
buildings  

Number of  
incorrectly 
detected 
buildings  

Omission  
error 

Commission 
error 

Watershed 
Segmentation 

229 55 29 26 

Building 
Intensity – 
Gradient 

Orientation with 
no buffer 

254 30 15 15 

Building 
Intensity – 
Gradient 

Orientation with 
a one pixel wide 

buffer 

258 26 15 11 

 

 

As can be seen in Table 6.3, the building intensity � gradient orientation 

approach was the most successful of all. On the other hand, the watershed 

segmentation approach was found to be the least successful method. The 

omission (misclassified collapsed building) and commission (misclassified 

un-collapsed building) errors were encountered much more in watershed 

segmentation approach than in the other method. The visual representation 

of collapsed, un-collapsed and mis-detected buildings for the proposed 

approaches are presented in the appendices G, H and I. 
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In the building intensity � gradient orientation approach, small differences 

were encountered in the results of  the buffered and un-buffered versions of 

the method. For instance, the difference in the overall accuracies was found 

to be as 1,41%. In the buffered version of this method, the user�s and 

producer�s accuracies were slightly better than the un-buffered version. 

These differences occurred because the buffered version of the method 

detected four more buildings correctly. 

 

In summary, the results show that both approaches can be accepted  

successful for detecting the collapsed buildings. However, if compared to 

each other, the second approach, which was developed based on the 

intensity and angle information, demonstrates better results than the 

watershed segmentation approach. It is thought that the difference in the 

results of the two approaches is due to several special cases about the 

buildings that negatively affect the detection process and some segmentation 

errors in the watershed segmentation approach. Moreover, it is clearly seen 

from the results that the one pixel wide buffer zone improved the accuracy of 

the second method by providing a better differentiation between collapsed 

and un-collapsed buildings. 

 

 

6.2. Discussions  
 
Although the proposed methods were successful for detecting the damaged 

buildings, in several cases, incorrect labeling of the buildings was observed. 

This may be due to the shortcomings of the methods and several special 

cases. These cases and limitations were examined in detail and examples 

were provided for each case. 

 

The limitations and several special cases encountered during the study are 

listed below with the example aerial photos:  
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1. The shadow of the neighboring object casts on an un-collapsed 

building: This case is illustrated in Figure 6.1  

 

 

 

 

Analyzed 
building 

Shadow of 
the 

vegetation 
 

Figure 6.1. An example for the limitation # 1  

 

 

This case is only encountered in the watershed segmentation approach. In 

this case, the shadow of the vegetation casts on an un-collapsed building. 

For this reason, the building is labeled as collapsed due to insufficient 

building pixels.  

 

2. The shadow of the neighboring object casts on a collapsed building: 

This case is exemplified in Figure 6.2 

 

 

 

 
Shadow of 
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building 

Neighboring 
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Figure 6.2. An example for the limitation # 2  
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This special case was faced in both approaches. In watershed segmentation 

approach, the shadow pixels of the analyzed building increases due to the 

shadow of the neighboring building. Therefore, the collapsed building is 

labeled un-collapsed. On the other hand, in the building intensity � gradient 

orientation approach, the intensity of the building is reduced due to the 

shadow of the neighboring building. Thus, like in the watershed segmentation 

method, the collapsed building is marked as un-collapsed. 

 

3. The shadow of an un-collapsed building is obscured by a neighboring 

building: An example of this case is shown in Figure 6.3. 
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Figure 6.3. An example for the limitation # 3 
 

 

erved in the watershed segmentation approach only. The 

g obscures the shadow region of an un-collapsed building. 

, the shadow pixels of the analyzed building are reduced 

is-detected as collapsed. 

e of low contrast between a building and the shadows: 

own in Figure 6.4. 
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Figure 6.4. An example for the limitation # 4 
 

 

This anomaly was met in both approaches. In the watershed segmentation 

approach, the building pixels are diminished inside the building polygon due 

to low intensity spots. Therefore, the building being analyzed is incorrectly 

labeled collapsed instead of un-collapsed. In the building intensity � gradient 

orientation approach, a heterogeneous texture may occur due to the 

chimneys and some other objects located on the roof of the building, shown 

in the above figure. This texture increases the standard deviation of the angle 

histogram of the gradient image and therefore, the standard deviation 

exceeds the optimum threshold value. Thus, the un-collapsed building is 

wrongly labeled collapsed. 

 

5. A collapsed building casts shadow to some extent : This limitation is 

illustrated in Figure 6.5. 
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collapsed 
building 

 

Figure 6.5. An example for the limitation # 5 
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This case is encountered in both approaches. In the watershed segmentation 

approach, the unexpected cast shadows around the building polygon 

increases the shadow pixels. As a consequence, the collapsed building is 

labeled un-collapsed due to this case. In the second approach, the building 

intensity is reduced due to the shadow region cast by the collapsed building. 

This causes the incorrect labeling of a collapsed building as un-collapsed. 

 

6. An error occurs in segmentation due to the location of the markers: This 

case is illustrated in Figure 6.6 
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Figure 6.6. An example for the limitation # 6 

 

 

This kind of error occurs only in the watershed segmentation approach. If one 

of the shadow casting edges of the building being analyzed does not produce 

enough shadow, the initial points (markers) for the shadow region may not be 

selected properly. Therefore, due to this reason, a false output is created and 

an un-collapsed building may be labeled collapsed. 

 

After examining the mentioned cases above, the distribution of the mis-

detected buildings with respect to these cases are given, for each method in 

Table 6.4. 
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Table 6.4. The distribution of the mis-detected buildings according to six cases 

 

Approach used 

C
as

e 
#1

 

C
as

e 
#2

 

C
as

e 
#3

 

C
as

e 
#4

 

C
as

e 
#5

 

C
as

e 
#6

 Total Mis-
detected 
buildings 

Watershed 
Segmentation 

2 3 8 11 26 5 55 

Building Intensity – 
Gradient Orientation 

(with no buffer) 
0 6 0 15 9 0 30 

Building Intensity – 
Gradient Orientation 

(with a pixel wide 
buffer) 

0 6 0 11 9 0 26 

 

 

It is evident from the above table that most of the mis-detections are arisen 

from two shortcomings. The first limitation comes with the unexpected 

shadows cast by the collapsed buildings that cause to fail the detection 

process. The second one is the occurrence of low contrast between the 

buildings and their cast shadows. 

 

In addition to the listed limitations, the proposed approaches may not be 

successful in the following cases:  

 

! If the sunrays come towards the ground at 90o angle, the detection of 

the shadows of the buildings would be more difficult because the cast 

shadows would be thin. 

 

! Those buildings small in size and/or low in height may not produce 

enough shadow. Therefore, the detection of these buildings may be 

difficult. 
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! The non-rectangular shape buildings (circular, elliptical or polygonal 

more than four edges) may not be detected properly due to the mis-

identification of the shadow edges. 

 

! The buildings having a very light roof in color (almost white) may not 

be detected correctly by the building intensity analysis. 
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CHAPTER 7 
 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 

In this chapter, the conclusions of the conducted research are described 

together with the recommendations related to further studies. This chapter is 

composed of three sections. In the first two sections, the conclusions of the 

watershed segmentation and the building intensity � gradient orientation 

approaches are provided, respectively. Then, in the last section, the 

recommendations are presented.  

 

 

7.1. Conclusions of Watershed Segmentation Approach 
 
In this part, an approach for detecting the earthquake-damaged buildings 

through shadow analysis of the watershed segmented post-event aerial 

imagery is presented. The approach was implemented in an urban area of 

the city of Golcuk. A total of 284 buildings were analyzed to measure their 

conditions. Of the 79 collapsed buildings, 50 were detected correctly 

providing a producer�s accuracy of 63.29% and a user�s accuracy of 65.79%. 

On the other hand, of the 205 un-collapsed buildings, 179 were labeled 

correctly providing a producer�s accuracy of 87.31% and a user�s accuracy of 

86.06%. The overall accuracy was computed as 80.63%. 
 

It was found that determining the optimum threshold for separating the 

damaged buildings from non-damaged is important. In the present case, the 

optimum threshold was computed as 50% by using various accuracy indices. 

This threshold value is valid for this study only, and should not be considered 

global.  
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In this approach, the integration of the raster data (aerial photo of the region 

struck by the earthquake) with the GIS data (vector building boundaries) was 

found to be very helpful. By doing this, it was purely concentrated on building 

polygons and the false alarm areas, such as vegetation and roads, were not 

taken into account. Thus, the overall accuracy was improved.  

 

In addition, development of a system that provides the automated detection 

of the collapsed buildings had many advantages. The first benefit was the 

reduction of the processing speed. The other one was the provision of a 

user-friendly environment. Moreover, as a by-product, generation of the 

visual and textual outputs enhanced the results of the analyses. Finally, it 

was concluded that the results of the detection of collapsed buildings using 

watershed segmentation are found to be fairly encouraging. 

 

 

7.2. Conclusions of Building Intensity – Gradient Orientation 
Approach 

 
In this section, an alternative approach, building intensity � gradient 

orientation, based on building intensity information together with the angle 

information of the gradient image is explained. This approach was also 

implemented in the same area of the city of Golcuk, so as to compare the 

results of the two approaches. In the analysis of the buildings, two different 

experiments were carried out. In the first experiment, 284 buildings were 

analyzed without using a buffer area. Of the 79 collapsed buildings, 64 were 

detected correctly providing the producer�s and user�s accuracies of 81,01%. 

On the other hand, of the 205 un-collapsed buildings, 190 were labeled 

correctly providing the producer�s and user�s accuracies of 92.68%. The 

overall accuracy was computed to be 89.44%. In the second experiment, all 

the buildings were analyzed by using a one-pixel wide buffer area around the 

building polygons. This time, of the 79 collapsed buildings, 64 were detected 

correctly providing a producer�s accuracy of 81.01% and a user�s accuracy of 
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85.33%. On the other hand, of the 205 un-collapsed buildings, 194 were 

labeled correctly providing a producer�s accuracy of 94.63% and a user�s 

accuracy of 92.82%. The overall accuracy was computed to be 90.85%. As a 

result of building intensity � gradient orientation approach, when a buffer was 

used, the accuracy of the result increased. 

 

In this approach, three different threshold levels (intensity threshold, building 

ratio and standard deviation threshold) were used and found to be vital in 

discriminating the collapsed buildings from the un-collapsed. In the present 

case, the optimum threshold values were computed as (141, 60%, 17.31) 

and (145, 60%, 17) for the buffered and un-buffered cases, respectively. 

However, these values were obtained for this study and may not be applied 

to different study areas.   

 

A system was also developed in order to provide the automated detection of 

the collapsed buildings. Using this system, the comparison of the results of 

the two proposed approaches were effectively carried out. 

 

Finally, the integration of raster data and GIS data was efficiently performed 

and found to be very functional in this approach. The results of the building 

intensity � gradient orientation approach were regarded as quite promising 

due to its high accuracy. 

 

 

7.3. Recommendations 
 

The watershed segmentation approach has several shortcomings to be 

improved in the future. The selection of the initial markers is one problem. 

The buffer zones that are defined by the user can be expanded or shrinked to 

find a better agreement between the shadow pixels (generated by the 

algorithm) and the actual shadow pixels. 
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The building intensity � gradient orientation approach has also some 

limitations such as the size of the buffer and type of the filter used for 

smoothing the building image patches. The optimum size for the building 

buffer should be determined to produce better results. In addition, the use of 

an adaptive filter instead of a standard Gaussian filter may yield better 

results. 

 

The proposed approaches can be applied on high-resolution satellite images 

or aerial images higher than one-meter spatial resolution. Working with a 

high-resolution data may eliminate some of the shortcomings mentioned in 

chapter 6. 

 

The developed software can be improved by adding several processing 

modules that perform an automatic detection of the building boundaries. By 

doing this, the capabilities and the speed of the system may be enhanced by 

eliminating the external use of GIS data. 
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APPENDIX A: ERROR MATRICES FOR THE VARYING THRESHOLD  
                          VALUES BETWEEN 20% AND 80% 

   

                        
 

Table A.1. Error matrix for the threshold level of 20% 

 
Reference  

Collapsed Un-collapsed Total 
Collapsed 3 1 4 

Un-collapsed 76 204 280 
Total 79 205 284 

 

 

 

Table A.2. Error matrix for the threshold level of 30% 

 
Reference  

Collapsed Un-collapsed Total 
Collapsed 15 4 19 

Un-collapsed 64 201 265 
Total 79 205 284 

 

 

Table A.3. Error matrix for the threshold level of 40% 

 
Reference  

Collapsed Un-collapsed Total 
Collapsed 30 15 45 

Un-collapsed 49 190 239 
Total 79 205 284 

 

 

Table A.4. Error matrix for the threshold level of 50% 

 
Reference  

Collapsed Un-collapsed Total 
Collapsed 50 26 76 

Un-collapsed 29 179 208 
Total 79 205 284 
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Table A.5. Error matrix for the threshold level of 60% 

 
Reference  

Collapsed Un-collapsed Total 
Collapsed 62 55 117 

Un-collapsed 17 150 167 
Total 79 205 284 

 

 

Table A.6. Error matrix for the threshold level of 70% 

 
Reference  

Collapsed Un-collapsed Total 
Collapsed 71 94 165 

Un-collapsed 8 111 119 
Total 79 205 284 

 

 

Table A.7. Error matrix for the threshold level of 80% 

 
Reference  

Collapsed Un-collapsed Total 
Collapsed 76 160 236 

Un-collapsed 3 45 48 
Total 79 205 284 
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APPENDIX B: CALCULATIONS OF THE ACCURACY INDICES FOR THE 
                         THRESHOLD LEVELS BETWEEN 20% and 80% 
 
Calculation of the accuracy indices for the threshold level of 20% using the 

corresponding error matrix: 

 

! Overall Accuracy =  (3 + 204) / 284 * 100 = 72,89% 
 

! Overall Kappa = (a overall � a observed) / (1 - a observed), 

 

                                       (79 * 4) + (280 * 205)  

                      (4 * 79) + (280 * 205) + (4 * 205) + (79 * 280)  
 a observed   =  = 0.0471

 

! User�s accuracy for collapsed buildings = 3 / 4 * 100 = 75% 

 

! User�s accuracy for un-collapsed buildings = 204 / 280 * 100 = 72,86% 

 

! Average user�s accuracy = (75 + 72,86) / 2 = 73,93% 
 

! Producer�s accuracy for collapsed buildings = 3 / 79 * 100 = 3,80% 

 

! Producer�s accuracy for un-collapsed buildings = 204 / 205 * 100 = 

99,51% 

 

! Average producer�s accuracy = (3,80 + 99,51) / 2 = 51,66% 
 

! Combined user�s accuracy = (Overall accuracy + Average user�s 

accuracy) / 2 = (72,89 + 73,93) / 2 = 73,41% 

 

! Combined producer�s accuracy = (Overall accuracy + Average 

producer�s accuracy) / 2 = (72,89 + 51,66) / 2 = 62,28% 
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Calculation of the accuracy indices for the threshold level of 30% using the 

corresponding error matrix: 

 

! Overall Accuracy =  (15 + 201) / 284 * 100 = 76,06% 
 

! Overall Kappa = (a overall � a observed) / (1 - a observed), 

 

                                       (79 * 19) + (265 * 205)  

                      (19 * 79) + (19 * 205) + (79 * 265) + (205 * 265)  
 a observed   =  = 0.2224

 

! User�s accuracy for collapsed buildings = 15 / 19 * 100 = 78,95% 

 

! User�s accuracy for un-collapsed buildings = 201 / 265 * 100 = 75,85% 

 

! Average user�s accuracy = (78,95 + 75,85) / 2 = 77,40% 
 

! Producer�s accuracy for collapsed buildings = 15 / 79 * 100 = 18,99% 

 

! Producer�s accuracy for un-collapsed buildings = 201 / 205 * 100 = 

98,05% 

 

! Average producer�s accuracy = (18,99 + 98,05) / 2 = 58,52% 
 

! Combined user�s accuracy = (Overall accuracy + Average user�s 

accuracy) / 2 = (76,06 + 77,40) / 2 = 76,73% 

 

! Combined producer�s accuracy = (Overall accuracy + Average 

producer�s accuracy) / 2 = (76,06 + 58,52) / 2 = 67,29% 
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Calculation of the accuracy indices for the threshold level of 40% using the 

corresponding error matrix: 

 

! Overall Accuracy =  (30 + 190) / 284 * 100 = 77,46% 
 

! Overall Kappa = (a overall � a observed) / (1 - a observed), 

 

                                       (79 * 45) + (239 * 205)  

                      (45 * 79) + (79 * 239) + (239 * 205) + (45 * 205)  
 a observed   =  = 0.3532

 

! User�s accuracy for collapsed buildings = 30 / 45 * 100 = 66,67% 

 

! User�s accuracy for un-collapsed buildings = 190 / 239 * 100 = 79,50% 

 

! Average user�s accuracy = (66,67 + 79,50) / 2 = 73,09% 
 

! Producer�s accuracy for collapsed buildings = 30 / 79 * 100 = 37,97% 

 

! Producer�s accuracy for un-collapsed buildings = 190 / 205 * 100 = 

92,68% 

 

! Average producer�s accuracy = (37,97 + 92,68) / 2 = 65,33% 
 

! Combined user�s accuracy = (Overall accuracy + Average user�s 

accuracy) / 2 = (77,46 + 73,09) / 2 = 75,28% 

 

! Combined producer�s accuracy = (Overall accuracy + Average 

producer�s accuracy) / 2 = (77,46 + 65,33) / 2 = 71,40% 
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Calculation of the accuracy indices for the threshold level of 60% using the 

corresponding error matrix: 

 

! Overall Accuracy =  (62 + 150) / 284 * 100 = 74,65% 
 

! Overall Kappa = (a overall � a observed) / (1 - a observed), 

 

                                       (79 * 117) + (167 * 205)  

                    (117 * 79) + (117 * 205) + (79 * 167) + (205 * 167)  
 a observed   =  = 0.4501

 

! User�s accuracy for collapsed buildings = 62 / 117 * 100 = 52,99% 

 

! User�s accuracy for un-collapsed buildings = 150 / 167 * 100 = 89,82% 

 

! Average user�s accuracy = (52,99 + 89,82) / 2 = 71,41% 
 

! Producer�s accuracy for collapsed buildings = 62 / 79 * 100 = 78,48% 

 

! Producer�s accuracy for un-collapsed buildings = 150 / 205 * 100 = 

73,17% 

 

! Average producer�s accuracy = (78,48 + 73,17) / 2 = 75,83% 
 

! Combined user�s accuracy = (Overall accuracy + Average user�s 

accuracy) / 2 = (74,65 + 71,41) / 2 = 73,03% 

 

! Combined producer�s accuracy = (Overall accuracy + Average 

producer�s accuracy) / 2 = (74,65 + 75,83) / 2 = 75,24% 
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Calculation of the accuracy indices for the threshold level of 70% using the 

corresponding error matrix: 

 

! Overall Accuracy =  (71 + 111) / 284 * 100 = 64,08% 
 

! Overall Kappa = (a overall � a observed) / (1 - a observed), 

 

                                       (79 * 165) + (119 * 205)  

                    (165 * 79) + (165 * 205) + (79 * 119) + (205 * 119)  
 a observed   =  = 0.3298

 

! User�s accuracy for collapsed buildings = 71 / 165 * 100 = 43,03% 

 

! User�s accuracy for un-collapsed buildings = 111 / 119 * 100 = 93,28% 

 

! Average user�s accuracy = (43,03 + 93,28) / 2 = 68,15% 
 

! Producer�s accuracy for collapsed buildings = 71 / 79 * 100 = 89,87% 

 

! Producer�s accuracy for un-collapsed buildings = 111 / 205 * 100 = 

54,15% 

 

! Average producer�s accuracy = (89,87 + 54,15) / 2 = 72,01% 
 

! Combined user�s accuracy = (Overall accuracy + Average user�s 

accuracy) / 2 = (64,08 + 68,15) / 2 = 66,12% 

 

! Combined producer�s accuracy = (Overall accuracy + Average 

producer�s accuracy) / 2 = (64,08 + 72,01) / 2 = 68,05% 
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Calculation of the accuracy indices for the threshold level of 80% using the 

corresponding error matrix: 

 

! Overall Accuracy =  (76 + 45) / 284 * 100 = 42,61% 
 

! Overall Kappa = (a overall � a observed) / (1 - a observed), 

 

                                       (79 * 236) + (48 * 205)  

                      (236 * 79) + (236 * 205) + (79 * 48) + (205 * 48)  
 a observed   =  = 0.1128

 

! User�s accuracy for collapsed buildings = 76 / 236 * 100 = 32,20% 

 

! User�s accuracy for un-collapsed buildings = 45 / 48 * 100 = 93,75% 

 

! Average user�s accuracy = (32,20 + 93,75) / 2 = 62,98% 
 

! Producer�s accuracy for collapsed buildings = 76 / 79 * 100 = 96,20% 

 

! Producer�s accuracy for un-collapsed buildings = 45 / 205 * 100 = 

21,95% 

 

! Average producer�s accuracy = (96,20 + 21,95) / 2 = 59,08% 
 

! Combined user�s accuracy = (Overall accuracy + Average user�s 

accuracy) / 2 = (42,61 + 62,98) / 2 = 52,80% 

 

! Combined producer�s accuracy = (Overall accuracy + Average 

producer�s accuracy) / 2 = (42,61+ 59,08) / 2 = 50,85% 
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APPENDIX C: CALCULATION OF OPTIMUM BUILDING INTENSITY 

             THRESHOLD LEVEL  
 
 
Normal Distribution Curve Equation: 
 
 

 

y = f (x | µ , σ) =                         e 

 
   -(x - µ)2 

2σ2 

 
1 

σ (2 π) 1/2 

 
 

fcol(x):  Normal distribution curve function for colla

funcol(x): Normal distribution curve for un-collapse

µcol: The mean value of the collapsed buildings =

σcol: The standard deviation of the collapsed buil

µuncol: The mean value of the un-collapsed buildi

σuncol: The standard deviation of the un-collapsed

 

In order to find the intersection of the two functio

satisfied as follows: 

e 

 
   -(x - µcol)2

2σcol
2 

 

funcol(x) =

 

 

                 

 
1 

σcol
 (2 π) 1/2 fcol(x) = =

 

 
 

1 

25,17 (6.28 ) 1/2 e 

 
   -(x - 171.26)

2 

2(25.17)2
 

 

=
 

 

 

 

e

 
   -(x - 171.26)

2 

1267.06
 

 
 

25,17 

20,63 

 
= 
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   -∞ < x < ∞       
psed buildings 

d buildings 

 (171,26) 

dings = (25,17) 

ngs = (120,61) 

 buildings = (20,63) 

ns, fcol(x) = funcol(x) should be 

1 

σuncol
 (2 π) 1/2 e 

 
   -(x - µuncol)2

2σuncol
2 

1 

20.63
 
(6.28 ) 1/2 e 

 
   -(x - 120.61)2

 

2(20.63)2
 

 

 
   -(x - 120.61)2

 

851.19
 

e  



 

e
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ln 
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20,63

 
ln 
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x2 (
 

       1 
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�    

 

 

 
0.000385x2 � 0.0127x � 6.2568 

 

  Positive x is found as 145, which is the optim
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   (x - 120.61)2

 

851.19
 + 
 

) � 0.0131x � 6.058 

5 = 0 

um intensity threshold. 



 
APPENDIX D: CALCULATION OF OPTIMUM BUILDING INTENSITY 

          THRESHOLD LEVEL WITH 1 PIXEL WIDE BUFFER  
                   REGION 
 
 
Normal Distribution Curve Equation: 
 
 

 

y = f (x | µ , σ) =                         e 

 
   -(x - µ)2 

2σ2 

 
1 

σ (2 π) 1/2 

 
 

fcol(x):  Normal distribution curve function for colla

funcol(x): Normal distribution curve for un-collapse

µcol: The mean value of the collapsed buildings =

σcol: The standard deviation of the collapsed buil

µuncol: The mean value of the un-collapsed buildi

σuncol: The standard deviation of the un-collapsed

 

In order to find the intersection of the two functio

satisfied as follows: 

e 

 
   -(x - µcol)2

2σcol
2 

 

funcol(x) =

 

                 

 

 
1 

σcol
 (2 π) 1/2 fcol(x) = =

 
 

1 

20.96 (6.28 ) 1/2 e 

 
   -(x - 114.34)

2 

2(20.96)2
 

 

=
 

 

 

 

e

 
   -(x - 170.52)

2 

1217.22
 

 
 

24,67 

20,96 

 
= 
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   -∞ < x < ∞       
psed buildings 

d buildings 

 (170,52) 

dings = (24,67) 

ngs = (114,34) 

 buildings = (20,96) 

ns, fcol(x) = funcol(x) should be 

1 

σuncol
 (2 π) 1/2 e 

 
   -(x - µuncol)2

2σuncol
2 

1 

24.67
 
(6.28 ) 1/2 e 

 
   -(x - 170.52)2

 

2(24.67)2
 

 

 
   -(x - 114.34)2

 

878.64
 

e  



 

e

 
   -(x - 170.52)
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1217.22
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ln 

 
   (x - 114.34)2
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ln 

 

 

               

 

0.163 = 
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       1 

  878.64
  
   
   

 
        1 

   1217.22 ) �    � 0.02x � 9.17 
 

 

 
0.000316x2 � 0.0205x � 9.17 = 0  

 

 Positive x is found as 141, which is the optimum intensity threshold. 
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APPENDIX E: SOURCE CODE OF THE WATERSHED SEGMENTATION  
                             COMPONENT 
 
 
function [tempSub,imout,color_code,im,a] = kftoolsDemo(bnum,auto,bb,bd,thr); 

 

if auto == 1 

color_code = 0; 

building_no = bnum; 

DISPLAY_MODE = 0; % Initially textual mode is set 

bufferBound = bb; 

buffer_depth = bd; 

damage_threshold = thr; 

ref_noncol_count = 0; 

ref_col_count = 0; 

both_noncol_count = 0; 

both_col_count = 0; 

im = imread('1m_full_equalized.tif'); 

fid1=fopen('building_results.txt','w+'); % The file that holds the results 

an_data = zeros(building_no,1); 

ref_data = [0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]';  

for b = 1 : building_no % b indicates the building id 

im_loc=sprintf('%d.txt',b);   

fid=fopen(im_loc); 

a = fscanf(fid,'%d %d %d',[3 inf]); % 3 : # of columns in the vector polygon file 

a = a'; 

fclose(fid); 

sprintf('%d.building is processing...\n',b) 

build_size(b) = size(a,1); 

for i = 1 : build_size(b) % i indicates the entry-id(row-id) in each building 

s(b,i) = struct('X',a(i,1),'Y',a(i,2),'edgeIndex', a(i,3)); % s is structure that holds each buildings' 
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datum 

end 

for i = 1 : build_size(b) 

XArray(b,i) = s(b,i).X; 

YArray(b,i) = s(b,i).Y; 

XEdgeIndex(b,i) = s(b,i).edgeIndex; 

end 

min_x = min(XArray(b,1:build_size(b))); 

max_x = max(XArray(b,1:build_size(b))); 

min_y = min(YArray(b,1:build_size(b))); 

max_y = max(YArray(b,1:build_size(b))); 

temp = im(min_y-bufferBound:max_y+bufferBound,min_x-bufferBound:max_x+bufferBound); 

for i = 1 : build_size(b) 

XArraySub(b,i) = XArray(b,i) - min_x + 1 + bufferBound; 

YArraySub(b,i) = YArray(b,i) - min_y + 1 + bufferBound; 

end 

min_x_sub = min(XArraySub(b,1:build_size(b))); 

max_x_sub = max(XArraySub(b,1:build_size(b))); 

min_y_sub = min(YArraySub(b,1:build_size(b))); 

max_y_sub = max(YArraySub(b,1:build_size(b))); 

tempSub=temp(min_y_sub-bufferBound:max_y_sub+bufferBound,min_x_sub 

bufferBound:max_x_sub+bufferBound); 

if DISPLAY_MODE == 1  

figure(1); 

set(1,'Name','Original Image') 

imshow(tempSub); 

end; 

[subH subW] = size(tempSub); % Width : X, Height : Y 

subH*subW 

c_p = 1; % holds the corner count  

for p1 = 1 : build_size(b)-1 

for p2 = p1+1 : build_size(b) 

if XEdgeIndex(b,p1) ~= XEdgeIndex(b,p2) 

if (XArraySub(b,p1) == XArraySub(b,p2)) & (YArraySub(b,p1) == YArraySub(b,p2)) 

corners(b,c_p,1) = XArraySub(b,p1); % 1 for X 

corners(b,c_p,2) = YArraySub(b,p1); % 2 for Y 

c_p = c_p + 1; % Fetch a new corner  

 93 
 



 

 

end 

end 

end 

end 

corner_count(b) = c_p - 1; 

for c1 = 1 : corner_count(b)-1 

for c2 = c1+1 : corner_count(b) 

if corners(b,c1,1) == corners(b,c2,1) % If Xs are matched 

if corners(b,c1,2) == corners(b,c2,2) % If Ys are also matched 

corners(b,c2,1) = 0; % Remove the X part 

corners(b,c2,2) = 0; % Remove the Y part 

end 

end 

end 

end 

n_c_p = 1; % new corner count 

for cnew = 1 : corner_count(b) 

if (corners(b,cnew,1) ~= 0) & (corners(b,cnew,2) ~= 0) 

new_corners(b,n_c_p,1) = corners(b,cnew,1); 

new_corners(b,n_c_p,2) = corners(b,cnew,2); 

n_c_p = n_c_p + 1; 

end 

end 

new_corner_count(b) = n_c_p - 1; 

corner_edges = zeros(new_corner_count(b),2); 

cnt = 1; 

for cor = 1 : new_corner_count(b) 

for t = 1 : build_size(b) 

if (XArraySub(b,t) == new_corners(b,cor,1)) & (YArraySub(b,t) == new_corners(b,cor,2)) 

corner_edges(cor,cnt) = XEdgeIndex(b,t); 

cnt = cnt + 1; 

end 

end 

cnt = 1; 

end 
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APPENDIX F: SOURCE CODE OF THE BUILDING INTENSITY-GRADIENT  
                        ORIENTATION COMPONENT 
 
 
function [color_code,im,a] = cannyMain2(bnum,oto,bb,it,br,at); 

 

if oto == 1 

color_code = 0; 

bufferBound = bb; 

fid2=fopen('buildings2.txt','w+'); % The file that holds the results 

fid3=fopen('areas.txt','w+'); % The file that holds the area of the buildings 

angleThr = at;  % Standard Deviation 

edgeThr = br; % Unit area edge point count (%) 

std_col_index = 1; 

std_uncol_index = 1; 

intensity_thr = it; 

ref_noncol_count = 0; 

ref_col_count = 0; 

both_noncol_count = 0; 

both_col_count = 0; 

im = imread('1m_full_equalized.tif'); 

building_no = bnum; % normally 284 

ref_data = [0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]';  

an_data = zeros(building_no,1); 

for b = 1 : 284 % b indicates the building id 

im_loc=sprintf('%d.txt',b);   

fid=fopen(im_loc); 

a = fscanf(fid,'%d %d %d',[3 inf]); % 3 : # of columns in the vector polygon file 

a = a';  

fclose(fid); 

sprintf('%d.building is processing...\n',b); 

build_size(b) = size(a,1); 
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for i = 1 : build_size(b) % i indicates the entry-id(row-id) in each building 

s(b,i) = struct('X',a(i,1),'Y',a(i,2),'edgeIndex', a(i,3)); % s is structure that holds each buildings'   

end 

for i = 1 : build_size(b) 

XArray(b,i) = s(b,i).X; 

YArray(b,i) = s(b,i).Y; 

XEdgeIndex(b,i) = s(b,i).edgeIndex; 

end 

min_x = min(XArray(b,1:build_size(b))); 

max_x = max(XArray(b,1:build_size(b))); 

min_y = min(YArray(b,1:build_size(b))); 

max_y = max(YArray(b,1:build_size(b))); 

temp = im(min_y-bufferBound:max_y+bufferBound,min_x-bufferBound:max_x+bufferBound); 

for i = 1 : build_size(b) 

XArraySub(b,i) = XArray(b,i) - min_x + 1 + bufferBound; 

YArraySub(b,i) = YArray(b,i) - min_y + 1 + bufferBound; 

end 

min_x_sub = min(XArraySub(b,1:build_size(b))); 

max_x_sub = max(XArraySub(b,1:build_size(b))); 

min_y_sub = min(YArraySub(b,1:build_size(b))); 

max_y_sub = max(YArraySub(b,1:build_size(b))); 

tempSub = temp(min_y_sub-bufferBound:max_y_sub+bufferBound,min_x_sub-

bufferBound:max_x_sub+bufferBound); 

im1 = tempSub; % A copy of the original building image is stored in 'im'. 

[rows, cols] = size(tempSub); 

fprintf(fid3, '%d\n', rows*cols); 

for i=1 : rows  

for j=1 : cols 

if tempSub(i,j) < intensity_thr 

tempSub(i,j) = 0; 

end 

end 

end 

edge_count = 0; 

building_area = rows * cols; 

for i=1 : rows 

for j=1 : cols 
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if tempSub(i,j) > 0 

edge_count = edge_count + 1; 

end 

end 

end 

unit_area_edge_count = edge_count / building_area; 

percentage_area_edge_count = unit_area_edge_count * 100; 

fprintf(fid2, 'Building Ratio : %f\n', percentage_area_edge_count); 

[imDummy orient] = canny2(im1,1); % Sigma = 1 

angleCat = zeros(12,1); % 12 Angle Intervals between 0 and 180 

for i=1 : rows 

for j=1 : cols 

if orient(i,j) >= 0 & orient(i,cols) < 15 

angleCat(1) = angleCat(1) + 1; 

elseif orient(i,j) >= 15 & orient(i,j) < 30 

angleCat(2) = angleCat(2) + 1; 

elseif orient(i,j) >= 30 & orient(i,j) < 45 

angleCat(3) = angleCat(3) + 1; 

elseif orient(i,j) >= 45 & orient(i,j) < 60 

angleCat(4) = angleCat(4) + 1; 

elseif orient(i,j) >= 60 & orient(i,j) < 75 

angleCat(5) = angleCat(5) + 1; 

elseif orient(i,j) >= 75 & orient(i,j) < 90 

angleCat(6) = angleCat(6) + 1; 

elseif orient(i,j) >= 90 & orient(i,j) < 105 

angleCat(7) = angleCat(7) + 1; 

elseif orient(i,j) >= 105 & orient(i,j) < 120 

angleCat(8) = angleCat(8) + 1; 

elseif orient(i,j) >= 120 & orient(i,j) < 135 

angleCat(9) = angleCat(9) + 1; 

elseif orient(i,j) >= 135 & orient(i,j) < 150 

angleCat(10) = angleCat(10) + 1; 

elseif orient(i,j) >= 150 & orient(i,j) < 165 

angleCat(11) = angleCat(11) + 1; 

elseif orient(i,j) >= 165 & orient(i,j) <= 180 

angleCat(12) = angleCat(12) + 1; 

end 
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APPENDIX G: THE DISTRIBUTION OF THE COLLAPSED, UN-COLLAPSED  

  AND INCORRECTLY DETECTED BUILDINGS FOR THE   
  WATERSHED SEGMENTATION APPROACH    
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ure G.1. The building distribution for the Watershed Segmentation Approach  
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APPENDIX H: THE DISTRIBUTION OF THE COLLAPSED, UN-COLLAPSED 
   AND INCORRECTLY DETECTED BUILDINGS FOR THE 
 BUILDING INTENSITY - GRADIENT ORIENTATION   
   APPROACH    
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APPENDIX I:  THE DISTRIBUTION OF THE COLLAPSED, UN-COLLAPSED  

 AND INCORRECTLY DETECTED BUILDINGS FOR THE  
 BUILDING INTENSITY - GRADIENT ORIENTATION   
 APPROACH WITH A ONE-PIXEL WIDE BUFFER       
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