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ABSTRACT 

 

INVESTIGATION OF ELECTROMIGRATION INDUCED HILLOCK AND EDGE 
VOID DYNAMICS ON THE INTERCONNECT SURFACE BY COMPUTER 

SIMULATION 
 

ÇELİK , Aytaç 

M.S., Department of Metallurgical and Materials Engineering 

Supervisor: Prof. Dr. Tarık Ö. OĞURTANI 

 

September 2004, 151 pages 

 

 

The Electromigration-induced failure of metallic interconnects is a complicated 

process, which involves flux divergence, vacancy and atom accumulation with or 

without compositional variations, void and hillocks nucleation, growth and shape 

changes.  

 

Hillocks and surface void dynamics in connection with the critical morphological 

evaluation have been investigated in order to understand the conditions under which 

premature failure of metallic thin interconnects occur. 
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In this thesis, an interconnect is idealized as a two dimensional electrically conducting 

strip which contains gaussian form hillock or edge void. Indirect boundary element is 

used to predict the evolution of the surface after the applied electric field. 

 

Computer simulation results show that the surface crystal structure of   is extremely 

important in the determination of the life time of thin film single crystal interconnect 

lines. Under the applied electrostatic field not only the degree of rotational symmetry 

(parameter, m) but also the orientation of the surface plane play dominant role in the 

development of the surface topology and the formation of the fatal EM induced voids.  

The degree of anisotropy in the surface diffusion coefficient,  and the intensity of the 

electron wind parameter may have great influence on the evolution regime actually 

taking place on the surfaces and at sidewalls of the interconnects. 

 

Keywords: Electromigration, Hillocks, Surface Voids, Surface Diffusion.  
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ÖZ 

 

YÜZEY TEPECİK VE BOŞLUKLARININ ELEKTROGÖÇ NEDENLİ 

DİNAMİĞİNİN BİLGİSAYAR SİMÜLASYONU ARACILIĞI İLE 

ARAŞTIRILMASI  

 

ÇELİK , Aytaç 

Y.Lisans, Metalurji ve Malzeme Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Tarık Ö. OĞURTANI 

 

Eylül 2004, 151 sayfa 

 

 

Elektrogöç nedenli metalik ara bağlantı elemanı bozulması akı sapması, boşluk ve atom 

kümelenmeleri, boşluk ve tepecik kümelenmeleri, büyümesi ve şekil değişikliklerini 

içeren oldukça karmaşık bir süreçtir. 

 

Bu tezde, metalik ara bağlantı elemanlarının zamansız bozulmalarına neden olan kritik 

durumları anlamak için yüzeyde yer alan tepecik ve boşluklarının dinamiği ile 

bağlantılı kritik morfolojik evrim süreçleri araştırılmıştır. 
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Metalik ara bağlantı elemanı,iki boyutlu ve yüzeyinde gaussian formda tepecik veya 

boşluk bulunduran iletken serit olarak modellenmiştir. Yüzeyin evrim sürecini dolaylı 

sınır elemanları metodu kullanılarak tahmin edilmeye calışılmıştır. 

 

Bilgisayar simülasyonları göstermiştir ki, tek taneli metalik ara bağlantılarının ömrünün 

tahmininde yüzey kristal yapısı oldukça önemli rol oynamaktadır. Elektrik alan altında 

yüzey topolojisinin gelişiminde ve elektrogöç nedenli ölümcül boşlukların oluşumunda 

sadece rotasyon simetrisi değil aynı zamanda yüzey düzleminin yönelimide baskın rol 

oynamaktadır. Yüzey difüzyonundaki eşyösüzlüğün miktarının ve elektron rüzgarı 

katsayısının metalik ara bağlantı elemanlarının yüzeylerinin morfolojik evrimde etkisi 

büyüktür.  

 

Anahtar Sözcükler: Elektrogöç, tepecikler, yüzey boşlukları, yüzey difüzyonu.  
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CHAPTER 1 

 

LITERATURE SURVEY 

 

 

Electromigration is the mass transport of metal atoms due to the momentum transfer 

that results from collision of conducting electrons and diffusing metal atoms. This 

momentum exchange produces a driving force for metal diffusion that is 

proportional to the current density. 

 

Electromigration was discovered more than 100 years ago (Geradin, 1861), but it 

became a concern only when the relatively severe conditions necessary for 

operation of integrated circuits. Therefore, for at least 100 years, electromigration 

was an interesting problem only in solid state physics, but of no interests 

whatsoever commercially. 

 

When electromigration was identified as a concern for the reliability of 

semiconductor devices, all of this changed (Blech, 1966). This discovery, coming as 

a surprise to the industry, threatened to stop integrated circuit development until 

solutions to problem become available. Since then a number of studies have been 

published and improvements have been reached both in the comprehension of the 
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physical phenomena involved in electromigration and in the technological solutions 

employed to limit its effects. 

From the model of Black (Black, 1967), an empirical limit of a maximum current in 

the lines of 5x105 A/cm2 was fixed in military standards and it helped in keeping the 

problem under control. However, by increasing the integrated circuits complexity at 

the end of the seventies, the need for narrower metal lines led to the discovery of 

the concurrent effect of mechanical stresses, a study started by Black and coworkers 

in 1976, and of the relationship between line width and grain structure (the so-called 

bamboo effect). But many of the finer details of these concepts and their interaction 

to produce reliability problems were not completely appreciated. In the two decades 

following, these concepts have been refined to the point where a reasonable 

understanding of what makes a circuits reliable and unreliable has been achieved. 

 

In spite of the exhausting studies, many aspects of electromigration are not well 

understood. The inadequate theoretical understanding of phenomenon leads to the 

unsatisfactory results and the complexity of the phenomenon becoming more and 

more clear. 

 

There are many approaches developed to study electromigration phenomenon. 

Among these, computer simulation is a powerful and efficient one due to many 

factors (grain structure, grain texture, interface structure, stresses, film composition, 

physics of void and hillock nucleation and growth, thermal and current density 

dependencies, etc.) that influence electromigration and to inability to isolate the 

effect of these factors experimentally. Also it is easier to consider multiple 

mechanisms involved in electromigration to enhance the accuracy of the 
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microscopic variables to reveal the insights of this phenomenon that may be 

experimentally impossible. 

In Chapter 1, literature review for the electromigration and its affect on the surface 

morphologies are presented. Morphology and structures of surfaces and interfaces 

are examined by irreversible thermodynamic treatment in Chapter 2. A completely 

normalized and scaled partial differential equation obtained through this treatment 

which is useful for computer simulation studies. Numerical methods, used during 

the solving the partial differential equation, are presented in Chapter 3. Results of 

the simulation experiments are discussed in Chapter 4. And finally, Conclusion is 

presented in Chapter 5. 
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 1.1. Overview 

 

The VLSI (Very Large Scale Integration) technology today can make over 1010 

micro devices on a single chip. The integrated circuits (IC) devices have 

sophisticated structures involving different materials: metals, semiconductors, 

ceramics, and polymers. Modern semiconducting chips include a dense array of 

narrow, thin film metallic conductors that serve to transport current between the 

devices. These metallic conductors are called as interconnect (Fig. 1.1.1). 

 Figure 1.1.1: Cross-sectional view of the interconnect structure 

 

There are large number of interconnects in a single device, and they are 

predominantly made by aluminum and copper alloys deposited on semiconductor 
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substrates and covered by passivation layers. The Interconnects generally have 

complex geometry and cross-section dimensions are on the order of microns or 

submicron.  

 

The continuing trend towards miniaturization of microelectronic components causes 

growing demands on both the used materials and fabrication process. A decisive 

prerequisite to improve the reliability of interconnect lines is to clarify the 

connection between production conditions of materials and their microstructure on 

one side and their electrical and mechanical properties on the other side. 

 

With the complexity of today’s microelectronics, a phenomenal level of reliability 

must be maintained for instance, if probability of failure for a transistor is one in a 

million, and the integrated circuit contains a million transistors, failure is very near 

certainty. And today’s modern integrated circuits can have more than thirty million 

circuit elements. Therefore, for any acceptable reliability on the chip level, today’s 

circuit element must be among the most reliable things ever built in the world. 

 

However, due to continuing miniaturization of VLSI circuits, thin-film metallic 

conductors or interconnects are subject to increasingly high current densities. Under 

these conditions, electromigration can lead to the electrical failure of interconnects 

in very short times by reducing the circuit lifetime to an unacceptable level 

(Mahadevan et al., 1996).  
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The current density carried in an interconnect can be very high indeed, up to 

7 210 /A cm  or higher without immediate damage (Wang et al., 1996). It is 

impossible to pass such a high current density through most bulk conductors 

because joule heating would melt the material, because joule heating limits the 

allowable current to about 24 /10 cmA . Because Si substrates on which interconnects 

are built are very good heat conductors and a thin film conductor is so closely 

connected to the substrate along whole of its length that joule heating is severe but 

not catastrophic, even at these very high current densities. On the other hand, in a 

device having a very dense integration of circuits, the heat management is a  

serious issue. Typically, a device is cooled by a fan or other means to maintain the 

operation temperature around 100 C°. 

 

It is thus not surprising that electromigration is often an important phenomenon in 

metallization systems. 

 

Electromigration causes several different kinds of failure in narrow interconnect. 

For example, the current density is 106 A/cm2. Such current density can cause 

Electromigration in the line at the device operation temperature 100 C° and lead to 

void formation at the cathode and extrusion at the anode (Fig. 1.1.2). These defects 

are most persistent and serious reliability failures in thin film integrated circuits. As 

device miniaturization demands smaller and smaller interconnects, the current 

density goes up, so does the probability of circuit failure induced by 

Electromigration. 
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Interconnect
e-

Hillock Void

 

Figure 1.1.2: Hillock and Void formation sites. 

 

We will consider these two modes of failure in interconnect. The first one is surface 

void failures along the length of the interconnect (called internal failures) and 

diffusive displacements at the terminals of the interconnect that destroy electrical 

contact. And the other is the regions of material accumulation in interconnects, 

leading to the growth of spikes or hillocks (Fig. 1.1.2). Recent research has shown 

that both of these failure modes are strongly affected by the microstructure of the 

interconnect and can therefore be delayed or overcome by metallurgical changes 

that alter the microstructure. 

 

 

1.2. The Physics of Electromigration 

 

Electromigration is forced atomic diffusion with the driving force due to an electric 

field and associated electric current in metals (Arzt and Nix, 1991). 

Electromigration is an important failure mechanism in integrated circuit 

metallization for two reasons. The first is that metal thin films can dissipate 

enormous power densities without melting and in turn can carry large current 

densities (> 10 MA/cm2 for aluminum). Thus, the driving force can be quite large. 
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Second, the ratio of grain boundary/interface area to film cross-sectional area is 

large, leading to fast diffusion paths and high average mobility. Thus, the diffusion 

process itself is faster in the interconnects which also enhance the effect. 

 

In any transport process, the flux of material, eJ , can be described by the Nernst-

Einstein diffusion relationship 

 

e
N D FJ

k T
⋅ ⋅

=
⋅

                                      (1.2.1) 

 

where N is the density of moving species, D is their mobility and F is the driving 

force for migration on each of these species. In electromigration, F is the force 

exerted on a metallic atom by the passage of an electron flux and this force is 

made up of two contributions. The ionic core of the metal atom experiences a 

force due to the potential gradient across the conductor. This force is proportional 

to the valence of the metal and is directed in the opposite direction to the electron 

flux. The second contribution to F comes from the rather mysterious “electron 

wind force”, which may be thought of as being due to collisions between the 

electrons and polarized vacancy-metal ion complexes. The momentum transfer 

between electron and ion usually results in a force directed in the same direction 

as the electron flux. In gold and aluminum the electron wind force is measured 

to be much greater than the field-ion force and so dominates the electromigration 

process (Fig. 1.2.1). 

 



 9

winddirecttotal FFF +=                                                                    (1.2.2) 

 

FWind FDirect

e-

interconnect
 

Figure 1.2.1: The driving force for electromigration. 

 

The electron wind force per atom, F, is proportional to the applied electrostatic 

field: 

 

*
totalF Z eE=                                                                             (1.2.3) 

 

where the dimensionless number  *Z  is known as the effective valance or the 

effective charge, e  is the unit electrostatic charge and E  is the electrostatic field.  

 

The Value of *Z  has been expressed by Huntington and Grone 1961, as 

 

*

*
*

2
1

m
m

N
N

Z
d

d
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
ρ                                                                              (1.2.4) 

 

where N  is the density of conduction electrons, dρ  is the specific defect 

resistivity, dN  the defect density, ρ  is the metal resistivity, and *m  is the effective 
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mass of the electrons near the Fermi surface taking part in the momentum exchange. 

This equation makes clear the close relationship between the fundamental process 

of electron scattering which contributes to electrical resistivity and the electronic 

scattering event that is the cause of the electron wind force. It is also clear that the 

vacancy-ion complex is important in electromigration just as it is in ordinary 

diffusion transport. Electromigration requires both a force on the metallic atom to 

encourage it to migrate and a mechanism for migration, in this case vacancy 

diffusion. 

 

The effective charge *Z  characterizes the momentum transfer, its value which is 

not well understood, can be inferred from experimental data. 

 

The Einstein - Nerst relation for diffusion in a potential field relates the drift 

velocity to the electron wind force, F: 

 

kT
jeDZ

kT
eEDZF

kT
DBFvdrift

ρ**
====                                   (1.2.5) 

 

where 0 exp QD D
kT
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 is the diffusion coefficient, B is the mobility, k is 

Boltzman’s constant, T is absolute temperature and j  is the current density. 

 

From Eq. (1.2.5) electromigration induced mass flow is seen to be directly 

proportional to the current density and the diffusion constant D. The drift 

velocity, driftv , will be a function of the diffusion pathway and the temperature 
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dependence of driftv  will be characterized by the activation energy of the 

predominant diffusion mechanism, Q . 

 

In the interconnect, atoms may diffuse along several paths: the surface of metal, the 

bulk crystal, and the grain boundaries. The schematic picture of these diffusion 

paths can be seen in figure 1.2.2. 

 

Surface Electromigration

Vacancy

Bulk Electromigration

 

Figure 1.2.2: The diffusion paths of electromigration. 

 

Since atoms are more loosely bonded at the grain boundaries than in the lattice, 

atoms migrate along grain boundaries more easily than through the grain bulk 

lattice. Therefore, the grain structure is a critical factor in electromigration. But the 

surface diffusion is the fastest one due to the easy movement of adatoms at the 

surface. According to Lloyd (1997), the activation energies, E, for the pathways are 

in general, 

 

bulkboundarygrainsurface EEE 3
2
3

 ==                                                             (1.2.6) 
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Mass transport on the surface of interconnects is the sum of the electron field force 

and capillary forces: 

 

⎟
⎠
⎞

⎜
⎝
⎛ Ω+−

Ω
=

dl
deZ

kT
DJ κγδ *                                                             (1.2.7) 

 

where J  is the surface flux of atoms (the number of atoms passing per unit length 

per time), D  is the surface diffusivity, δ  is the thickness of the surface layer taking 

part in the diffusion process Ω  is the atomic volume, γ  is the surface energy, κ  is 

the curvature of the surface (positive for a rounded void), and l  is the arc length. 

 

The physical meaning of Eq. (1.2.7) is that atoms will diffuse in the direction of 

electron flow if the electric wind force dominates, but toward the position with large 

curvature if the capillary forces dominate. 

 

From the above discussions it is clear that electromigration could not cause a failure 

unless there is a divergence in the flux somewhere in the interconnect that allows 

voids or hillocks to form. Flux divergence will occur whenever there are changes in 

F, the driving force for electromigration, or in D , the mobility of the diffusing 

species in the grain boundaries. F depends on *Z  and this parameter can vary 

both from grain boundary to grain boundary in a polycrystalline film and at 

contacts between two dissimilar metals. Therefore contact points of substrate and 

the interconnect, temperature gradient in the interconnect, grain structure, and 
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photolithography or etch defects are some examples to the source of flux divergence 

(Fig. 1.2.3).  
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Figure 1.2.3: Schematic illustrations of several sites at which flux divergence is 

expected in metallization systems: (a) triple points in conductor layers; (b) regions 

where the conductor changes in width; (c) a gold wire/aluminum film contact; (d) at 

defects in an interconnect. 

 

These “weak” sites lead to the nucleation of edge voids or hillocks. After the 

nucleation, growth and movement of the defect is highly dependent on the 

microstructure and applied electromigration stress. 

 

By decreasing the interconnect width, electromigration failure depends on the grain 

structure is partially overcome, because interconnect width is strongly related to the 

grain structure. As the interconnect width decreases or the grain size increases, the 

grain structure changes from polycrystalline to a near-bamboo structure, and finally 
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bamboo structure (Fig. 1.2.4). In polycrystalline interconnect grain boundaries form 

a continuous network. And as discussed above diffusion on grain boundary is faster 

than diffusion in lattice so the latter is negligible (Wang and Suo, 1996). By 

contrast, a narrow interconnect has a bamboo-like grain structure, where grain 

boundaries are far apart and nearly perpendicular to the interconnect direction and 

hence do not aid in the diffusion process, thus in bamboo-like interconnects grain 

boundary diffusion becomes negligible. It is observed that the lifetime decreases to 

a minimum and then increases as the interconnect width decreases (Vaidya et al., 

1980). This means that bamboo structured lines tend to show the greatest resistance 

to the electromigration induced damage. 

 

 

Figure 1.2.4: Increasing ratio of w/d 

 

However, bamboo interconnects are not immortal yet. They still show various type 

failure modes. After the line is subject to an electric current, the void exhibit extra 

ordinarily complex dynamics: they disappear, re-form, drift, change shape, 

coalesance, and break up (Marieb et al. 1995). A particular behavior has captured 
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much attention. A void sometimes takes the shape of a slit, lying inside a single 

grain, severing the interconnect (Sanchez et al., 1992; Rose, 1992). Arzt et al. 

(1994) reported that a void is round initially; it moves, grows, and then changes 

shape to become a slit. 

 

Edge void or hillock migration may be understood in terms of surface diffusion. 

Atoms diffuse on the surface of the void or hillock from one portion to another, so 

that the void or hillock appears to translate in the grain.  

 

It has been suggested that a rounded void is unstable: the electric current may 

amplify a small asymmetry in the void shape and cause the void to collapse to a slit 

(Wang et al., 1996). There are two forces that compete to determine the void shape. 

Surface tension or “capillary forces” favors a rounded void, and electric current 

“electron wind force” favors the slit. That is under the electric current a void 

collapse to a slit. 

 

Figure 1.2.5 illustrates an edge void and hillock, as atoms diffuse along the surface. 

For simplicity, it is assumed that the conductor has isotropic surface energy. Both 

electric field and surface energy drive diffusion: 

a

2u

2u
a

E w
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Figure 1.2.5: A narrow slit emanates from an edge void and hillock. 
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A dimensionless number emerges from Eq. (1.2.7) and this consideration: 

 

Ω
=

γ
ρχ

2* JaeZ                                                           (1.2.8) 

 

where, a is the size of the void. When χ is small, the surface energy dominates, and 

the void will remain rounded. When χ is large, the electric field dominates, and the 

slit will form (Suo, et al., 1994).  

 

 

1.3 Experimental and Theoretical Observations in Literature 

 

Since 1966, when I.A. Blech reported for the first time the failure of thin aluminum 

stripes on oxidized silicon due to electromigration, the reliability of the 

interconnects in integrated circuits has become a major concern for the 

microelectronics industry. With shrinking dimensions the grain structure of the 

interconnects have changed from fully polycrystalline to a bamboo structure. It was 

founded that the lifetime of such conductor lines is increased due to the reduced 

number of grain boundaries. Nevertheless, such lines do eventually fail due to 

electromigration, very often by the occurrence of slit-like transgranular voids. The 

theoretical description of such shape instabilities has since been the subject of 

several publications.  

 

There are several possible explanations for the formation of the slits. If the void is 

on a grain boundary, slits may form due to stress induced grain diffusion. Slits may 
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also form due to electromigration induced surface diffusion. Suo et al. (1994) have 

pointed out that there are two driving forces for diffusion: electromigration tends to 

promote the formation of slits, while surface energy tends to favor rounded voids. 

They suggest that if the electric current density exceeds a critical value, a rounded 

void will collapse into slit. More detailed computations subsequently confirmed this 

hypothesis, but showed that if the surface diffusivity is isotropic, slits form parallel 

to the line and do not causes open circuits. Kraft and Arzt (1997) and Gungor and 

Maroudas (1998), however, pointed out that open circuits may form by this 

mechanism if the surface diffusivity is anisotropic. They showed that skit voids will 

only form in grains with certain crystallographic orientations. 

 

Kraft and Arzt (1997) examined electromigration mechanism in unpassivated 

interconnects by both experimental and theoretical. Both theoretically and 

experimentally observed voids showed a typical asymmetric shape with respect to 

the direction of the electron flow. They conclude that shape of growing voids is 

largely determined by electromigration induced surface diffusion. Beside shape 

changes, the simulations also described void motion and growth. 

 

Another typical observation was that bamboo interconnects failed by slit-like voids, 

which are frequently (but not always) transgranular. 

 

And also their TEM and SEM observations showed that interconnects usually 

contain large number of voids, and that the behavior of voids is extremely complex. 

Voids continuously nucleate and heal during the life of the interconnect. Voids also 
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migrate along the interconnect in the direction of current flow, changing their shape 

as they do so (Kraft and Arzt, 1994). 

 

During the theoretical studies, they applied finite difference and finite element 

formulations, and compared the results of numerical simulations with experimental 

studies. And they developed a model to predict lifetimes of interconnects and to 

describe the microscopic damage behavior, considering nucleation and growth of 

voids. 

 

Oren and Ogurtanı developed a mathematical model of the mass flow and 

accumulation on void surfaces under the action of applied electrostatic force field 

and capillary effects that follows from the conservation laws, and from fundamental 

postulates of linear irreversible thermodynamics, accounting for the effects of 

applied electric field and thermal stress.  

 

Numerical simulations were run with and without the surface diffusion anisotropy, 

with the initial void shape critical asymmetric with respect to the direction of 

electron flow. These numerical experiments show that the two fold asymmetry in 

the anisotropic diffusion coefficient becomes a main factor in the development of a 

straight advancing slit, which accelerates the early open circuit failure due to a 

sharp slit hitting the upper edge of the interconnect. 

 

Gungor and Maroudas studied the complex problem of linear and non-linear 

dynamics of transgranular voids in thin films with bamboo grain structure. They 

simulated the formation of various morphological features: void faceting, formation 
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of wedge-shaped voids, propagation of slit like and soliton like features. They 

presented the effects of anisotropy of void surface diffusivity on the stability of the 

interconnects. They show that morphological instabilities caused by simultaneous 

action of applied mechanical stress and electric field on transgranular dynamics of 

voids, and propagation of slits (Gungor and Maroudas, 1998). 

 

Schimschak and Krug (1996) proposed a continuum description of the surface 

evolution that takes into account electromigration and capillary driven diffusion. 

For numerical simulations they applied a one dimensional model of interface 

dynamics, which can be parameterized by a height function. The one dimensional 

geometry is convenient and relevant to the modeling of shape changes at the edge of 

an effectively two dimensional conductor line, but becomes inappropriate if the 

dynamics create overhangs. They studied numerically the motion and the shape 

evolution of an infinitely extended, isotropic, and homogeneous two dimensional 

current carrying conductors.  

 

The electromigration induced shape evolution of cylindrical voids was numerically 

examined in their work at 1998 with the same theoretical background in the 

previous work. They observed two main routes. If the initial deformation is an 

elongation in the current direction, protrusion develops at the leading end of the 

void, and forms a separate daughter void. Since daughter is smaller, it moves 

rapidly and runs ahead of the mother void. If, on the other hand, the void is initially 

elongated perpendicular to the current, invagination develops which eventually 

splits the void horizontally. 
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Schimschak and Krug add crystal anisotropy to their calculations in the work at 

2000 and they simulate edge voids in addition to the voids in the interconnects. In 

this study, they allow the entire upper edge to evolve, and periodic boundary 

conditions are imposed along the current direction. And they observe that edge 

instability can lead to the formation of overhangs which subsequently pinch off and 

release voids into the interior of the strip. 

 

Their calculations showed that most important parameter effecting void stability 

and evolution was to be founded to be the ratio of the void size to the characteristic 

length scale. Also crystalline anisotropy has a decisive influence both on the 

formation of voids at the edge of the line and on the evolution of fatal slits out of 

large edge voids. 

 

Mahadevan et al. (1999) studied edge instability in single crystal metal lines, 

applying a numerical phase field technique. They defined the critical value of the 

applied current when the edge perturbation grows to become a slit shaped void that 

spans the wire and leads to electrical failure, reducing the circuit lifetime to an 

unacceptable level.  

 

Mahadevan and Bradley (1998) used a phase field method to simulate the time 

evolution of perturbation to the edge of a current carrying single crystal metal line, 

accounting for electromigration, surface diffusion, and current crowding. They 

provided a fabrication criterion that ensured the wire will not fail through formation 

of voids.  
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Fridline and Bower (1999) studied the effect of anisotropy of the surface diffusivity 

on the formation and growth of slit like voids, considering an interconnect as a two-

dimensional electrically conducting strip that contains an initial semi-circular void. 

They applied a finite element model to predict the evolution of the void after an 

electric field was applied to the strip. Their later work accounts for several kinetic 

processes involved in interconnect failures, including surface diffusion, interface 

and grain boundary diffusion, and sliding on grain boundaries and the interface 

between line and elastic passivation. 

 

They categorized the void behavior into three: stable void migration, void collapse, 

and line severing. Stable void migration was observed at low χ values. For low 

values of χ the electromigration driving force is weak compared to the surface 

energy driving force. Therefore these two forces compete and the void adopts a 

stable equilibrium shape. For the low values of χ void remain stable regardless of 

the magnitude of the anisotropy in the surface. The symmetry in the surface 

diffusivity plays a significant role in determining the equilibrium shape of the void. 

Once the equilibrium reached void migrate in the interconnect. For moderate values 

of χ and low anisotropy, the electromigration driving force exceeds the stabilizing 

effect of the surface energy and void tends to collapse, form a slit with alignment 

between 0° and 45° to the line direction, or break up into smaller voids. For certain 

values of m, χ, and θ, void may change its shape so as to sever the lines. As the 

degree of anisotropy is increased, the slit tend to form faster. This causes the void to 

reach the sides of the interconnect and severing the interconnect. 
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Suo (1998) considered aluminum interconnects in the presence of insulator and 

shunts, subjected to temperature change and a direct electric current. He studied the 

evolution of interconnects into a stable state with a segment of aluminum depleted 

near the cathode, a linear distribution of pressure in the rest of the line, and no 

further mass diffusion, and estimated time scale for the interconnect to evolve to the 

stable state. He described the mechanisms for diffusive processes in solid structures 

of small feature sizes, between a few to hundreds of nanometers (Suo, 2000). 

Considering microelectronic and photonic devices, he applied the concept of free 

energy. The change of free energy defines a thermodynamic force which, in its turn 

drives the configurational change of the structure. He gave a physical description of 

forces of diverse origin that occur in thin films of interconnect lines, including 

elasticity, electrostatics, capillary, electric current. Yu and Suo derived a finite 

element formulation to model the dynamics of a single pore on moving grain 

boundary, assuming that the surface diffusion is the dominant process for a small 

pore to adjust its shape and position. 

 

Sun et al. (1997) considered the evolution of grains in a polycrystalline fiber, and 

applied a variational approach to microstructure development, which incorporates 

thermodynamic forces and mass transport mechanisms. The free energy includes 

the interfacial, elastic, electrostatic and chemical components.  The rate process 

included diffusion, creep, grain boundary motion, and surface or interface reactions. 

In a later work, sun et al. modeled the dynamics of two grain thin film on a 

substrate (Suo, Sun and Yang, 1997). They developed a finite element formulation 

that accounted for surface tension anisotropy, bulk phase free energy density, and 

finite junction mobility. The authors formulated the laws for the motion of grain 
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void interfaces and grain boundaries. The large shape changes of solid due to matter 

diffusion on its surface were studied by Sub and Suo. In addition to surface 

diffusion, evaporation and condensation were accounted for, and finite element 

approach was applied to analyze the thermal grooving on polycrystalline surface. 

 

Liniger et al. (2002) studied the kinetics of void growth in unpassivated, 

electroplated copper lines. The experimental investigation with the scanning 

electron microscope aimed to study the effect of sample temperature and line-width 

on the rate of void growth. Voids are observed to grow by consuming grains in a 

stepwise fashion, either by thinning out from the top down, or through a simple 

edge displacement mechanism. In all cases, surface diffusion was the primary 

diffusion path for void growth. In the case of polycrystalline lines, grain boundaries 

provided a secondary path for copper diffusion. Hillock formation was observed to 

the anode end of the lines. Over time, hillock formation spread over the entire 

length of the line with the exception being the area just around the cathode end of 

the test structure. Voiding was observed to initiate at the cathode and of the line, 

and to grow along an apparent grain boundary. After some time, the void grew 

across the entire width of the line, leaving behind a small island of copper. 

 

Experimental and theoretical observations of the failure development during 

electromigration indicate that electromigration failure is the result of complicated 

competition between growth, shape change and motion of voids (Arzt et al., 1994). 

The interaction between these mechanisms is not well understood, although several 

important attempts have been made to model such events. Void motion has been 

treated, for example by Ho (1970), with the result that small voids migrate more 
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rapidly. More recently, Nix and Arzt (1992) have suggested that a critical void size 

exists for which void motion is minimum; the consequence could be that larger 

voids catch up with smaller ones, moving more rapidly as they do so and resulting 

in a catastrophic mechanism of void growth and failure. As described by Børgesen 

et al., (1991) grain boundaries can trap voids until they reach a critical size. 

 

First, voids are not static but rather show motion, usually in the direction opposing 

the electron wind. This has been confirmed by several in situ scanning electron 

microscopy (SEM) on unpassivated Al lines, and field-emission SEM or scanning 

transmission electron microscopy (STEM), imaging back-scattered electrons, on 

passivated Al lines. It was also observed that voids can “heal” by breaking up into 

smaller fragments or grow by coalescing with other voids. 

 

Second, besides “classical” grain boundary diffusion, surface and interface 

diffusion can contribute to the damage development. This is suggested by in situ 

transmission electron microscopy (TEM) studies on large grained Al stripes and 

films revealing voids inside the grains. These voids had grown in the direction of 

current flow lines, sometimes without apparently interacting with grain boundaries. 

Thinning of large regions within a single grain in an Al film during electromigration 

testing was observed. Both observations cannot be explained if the grain boundaries 

are the only diffusion paths. 

 

Third, voids do not grow in a self-similar manner, but can show significant shape 

changes. This point has been especially emphasized as a result of electromigration 

tests that were interrupted several times for damage characterization in an SEM 
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(Kraft, et al., 1993). A typical void shape has been identified which appears to be 

necessary for the development of a failure site. The resulting fatal void often has a 

slit-like morphology, which gives the appearance of a crack perpendicular to the 

line. Following detailed experimental observations states that these slits frequently 

do not follow grain boundaries, as might be expected, but are transgranular. Again 

these observations indicate the necessity to consider mass transport mechanisms 

other than the grain boundary diffusion. 

 

1.4. Electromigration Failure 

 

In this section we shall consider the two most important modes of failure in 

metallization systems. The character and density of grain boundaries in the 

conductors often dictate the manner in which the electromigration failure occurs. 

We have already seen that local depletion of material during electromigration can 

result in the formation of voids in interconnects. When grain boundary diffusion is the 

only significant transport mechanism, these voids will form along the boundaries 

themselves. Agglomeration of several of these voids can create a crack that extends 

all the way across the conductor, i.e. an open circuit. While all grain boundary 

triple points are possible sites for flux divergence in the manner mentioned above, 

the ones which actually suffer local material depletion depend in a complex manner 

on the grain boundary geometry and the values of gbD and *Z  in the intersecting 

boundaries. We can certainly say that void formation is statistically likely to occur 

somewhere along a interconnect carrying a high current density, but predicting the 

triple points at which the first crack will appear is difficult. D'Heurle (1971) has 
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shown some elegant micrographs of crack formation at grain boundaries in current-

stressed aluminum interconnects, which emphasize the essentially random nature 

of the crack-forming process. 

 

Any morphological in-homogeneity in the interconnect will act as a site for flux 

divergence and will be an exceptionally favored site for crack formation. The 

thinner regions of interconnects at steps are obvious sites for void nucleation and 

crack formation. Local variations in grain size will also be likely to provide sites 

for material depletion. The bimodal grain structure characteristic of zone T is a 

perfect example of an inhomogeneous grain structure, and films with this grain 

morphology might be expected to be particularly prone to rapid electromigration 

failure at the triple points around the large grains. Observations on the formation of 

cracks at the grain boundaries in thin film conductors suggest that equiaxed large-

grained polycrystalline films should be less susceptible to open-circuit failure than 

fine-grained ones. 

 

Much of the work on electromigration failure has concentrated on crack 

formation at regions of material depletion. However, there are also regions of 

material accumulation in metallization structures, leading to the growth of spikes 

or hillocks. Figure 1.4.1 shows an example of a very large aluminum spike 

produced by electromigration. Protuberances of this kind can easily grow to 

form a short-circuit path between adjacent interconnects, and this is the second 

important mode of electromigration failure. These adjacent interconnects can be 

vertically above one another in the metallization structure (separated by an 
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insulating layer of course), or lying in the same plane. Hillock and spike 

growth can also crack passivation layers, exposing the sensitive aluminum 

conductors to corrosive attack by the free atmosphere. An example of a 

passivation layer cracked by hillock growth in the underlying interconnect is 

shown in figure 1.4.2. 

 

 

 

 

 

 

 

 

 

 

These micrographs illustrate that electromigration is a very real practical problem in 

microelectronic metallization, causing both short-circuit and open-circuit failures. 

We should remember that Joule heating will increase the temperature of the 

interconnect well above room temperature in many systems, and pure aluminum 

interconnects typically fail after only a few hours at 250 °C when passing a current 

of 106 A/cm2. It has thus proved very important to discover methods by which the 

resistance of the conductors to electromigration failure can be increased. 

Figure 1.4.1: A scanning electron 

micrograph of a large metal protru-

sion created in an accumulation 

region of an interconnect during 

electromigration. 

Figure 1.4.2: A scanning electron 

micrograph of a passivation layer 

cracked by hillock growth in an 

underlying interconnect. 
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1.5 Electromigration Resistance 

 

The simplest method for increasing the resistance of thin film conductors is to 

remove the principal transport paths, the grain boundaries. Increasing the grain 

size of thin films by a heat treatment after deposition can reduce the density of 

grain boundaries and has been found to increase the electromigration lifetimes of 

interconnects. Single-crystal aluminum films have been shown to have lifetimes as 

long as 36000 hours at 175 °C while passing 2 X 106A cm2, while tests in unusually 

large-grained aluminum alloy films have also shown very long lifetimes before 

electromigration failure (Gangulee and D'Heurle 1973). This result is not 

surprising, as once the rapid diffusion paths are removed the electromigration 

process can only proceed by lattice diffusion, which is very slow at the low 

temperatures at which these tests are performed. However, it is difficult to deposit 

single-crystal metallic films on amorphous substrates like silica. It is also hard to 

induce grain growth to proceed sufficiently far in a metal thin film to give grains 

larger than about 10 times the film thickness, even with extended annealing. 

Some workers have found methods of increasing the grain size of thin films, usually 

involving the addition of a solute element to the conductor material which 

increases the grain boundary mobility in the polycrystalline film. These methods 

are interesting from the point of view of understanding exactly what the interaction is 

between solute and grain boundaries, but are generally rather hard to use 

effectively when a complete metallization scheme is being fabricated. 
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The most elegant way of producing a thin film conductor with a grain structure that 

will resist electromigration failure is to grow interconnects with the 'bamboo' 

structure illustrated in figure 1.5.1. Here narrow conductors are deposited and 

annealed such that almost all the grain boundaries run perpendicular to the long 

direction of the interconnect. The boundaries will tend to migrate into this 

configuration to minimize their surface area. Boundaries running across the 

interconnect cannot contribute to electromigration along the conductor, and by 

this very simple change in the film morphology the electromigration resistance 

can be improved hugely. The preparation of conductors with the bamboo 

structure is usually only possible if the interconnects are rather narrow, but since 

this is the trend in modern integrated circuit. 

 

Grain Boundaries

 

Figure 1.5.1: Sketches of the grain structure in a normal polycrystalline-

interconnect and bamboo structured interconnect. 

A second method for reducing the rate of electromigration depends on the 

reduction of grain boundary diffusivity by the addition of a solute element to the 

conductor material. A small concentration of tantalum in a gold film increases the 

average activation energy for grain boundary diffusion quite markedly. Additions of 

copper, magnesium and nickel have a very similar effect in aluminum, reducing the 

grain boundary diffusion coefficient of aluminum in the boundaries by as much as 
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two orders of magnitude. Rosenberg et al (1972) have suggested that any solute 

species which segregates strongly to the grain boundaries in a conductor film 

will reduce boundary diffusion rates by filling most of the sites in the boundary 

along which diffusive transport occurs. This is equivalent to saying that the solute 

segregates to 'vacancy' sites in the structural units at the boundary core where 

diffusive jumps will be relatively easy. Whether this is correct or not, it is certainly 

observed that the electromigration lifetime of aluminum interconnects can be 

increased from about 30 h for pure aluminum to tens of thousands of hours at 175 

°C and 2 x 106 A cm2 by additions of 4 at.% of copper or 2 at.% of magnesium 

(D'Heurle and Ho 1978). Hillock formation in aluminum films under compressive 

stress is also substantially reduced by the same solute additions. 

Silicon is added to aluminum metallization to stop spiking under the contact. It is 

now expedient to add other alloying elements to increase the electromigration 

resistance. A particularly popular alloy for integrated circuit conductors is 

aluminum with about 1.5 % silicon and 4 % copper. The silicon can have a small 

beneficial effect in reducing the grain boundary diffusion rate as well. This 

composition is very similar to a range of well known age-hardening alloys, and some 

of the properties of the thin film conductor films can be understood by consideration 

of phase transformations in alloys of this kind. From the phase diagram and an 

understanding of the phenomenon of heterogeneous nucleation in poly-crystalline 

materials, we can predict that the equilibrium structure of aluminum 4 at.% copper 

thin films should, after annealing at about 150° C, consist of large CuAl2 

precipitates distributed primarily along the grain boundaries in a matrix which is 
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locally depleted in copper. The regions from which the copper has been depleted 

will be much more prone to electromigration failure than those which preserve the 

full 4% copper level. This is because once the copper atoms are no longer 

segregated to the grain boundaries, the rate of electromigration will immediately 

increase and cracks will start to nucleate at any flux divergence site. Thus the 

equilibrium structure of Al-Cu alloy films does not have the optimum distribution of 

copper for resistance to electro-migration failure. 

 

However, evaporation from Al-Cu alloy sources does not result in homogeneous 

films because the copper has a higher vapor pressure than the aluminum. The 

thin film will have most of the copper concentrated close to the substrate and 

at the top will be severely depleted in this protective element. In addition, the 

evaporated films will certainly not have the equilibrium structure which we have 

predicted above. It has been shown that Al-Cu films contain some metastable 

precipitates immediately after evaporation, but a considerable fraction of the 

copper remains in solid solution in the aluminum matrix. The nucleation of the 

CuAl2 phase in evaporated alloy films has been studied by Vavra and Luby (1980) 

and Thomas et al (1986) and shown to occur in a very inhomogeneous fashion 

because of the variations in composition already present in the film and the 

tendency of this phase to nucleate on the surface of the film and significantly 

roughen the conductor. These reactions will be greatly accelerated if the films are 

heated at any temperature below the solvus in the phase diagram. The copper will 

itself electromigrate away along the grain boundaries, resulting in eventual 
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depletion of this protective element. The diffusion of copper in grain boundaries in 

aluminum is quite rapid. Thus, while these alloy interconnects do indeed have 

improved electromigration resistance by virtue of decreased grain boundary self-

diffusion rates, this resistance is eventually degraded by phase transformations, 

inhomogeneous film structures and electromigration away of the protective element. 

 

We can see that these alloy conductor films are thermodynamically and kinetically 

extremely unstable, but they do have very good electromigration resistance for the 

period of time that the copper remains in solid solution, or as a distribution of fine-

scale precipitates on the grain boundaries. Al-Si-Cu alloys are very widely used for 

interconnects in integrated circuit metallization, and the improvement in 

electromigration resistance which they offer, compared with that of pure aluminum 

films, is shown in figure 1.5.2. Sputtering techniques are normally used to deposit 

these alloys because of the improved homogeneity of the films compared with those 

that are evaporated. We should remember that the alloying element concentration 

is very high in these alloys and so we might expect their bulk resistivities to be 

significantly greater than that of pure aluminum. Fortunately, the increase in 

resistivity is only about 10%, from 2.86µΩ cm for pure aluminum to 3 µΩ cm for 

Al-4%Cu-1.5%Si for instance. This level of increased resistivity does not cause 

any problems in conventional circuit design. However, the dry etching of Al-Cu 

alloys is significantly more difficult than of pure aluminum and the increased 

hardness of the films makes wire-bond joints less reliable as well. 
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Figure 1.5.2: A comparison of 

the measured electromigration 

lifetime of a variety of 

aluminum-based conductor 

alloys tested under identical 

conditions (Pramanik and Saxena 1983). 

Two other methods for increasing the electromigration resistance of aluminum 

conductors deserve a brief mention: glassing and refractory layer additions. 

Howard et al (1977) have shown that if three-layer interconnects are deposited, Al-

4%Cu/Hf/Al-4%Cu for instance, then the electromigration lifetime of the 

interconnects is longer than for single-layer Al-4%Cu interconnects. These 

three-layer structures react to form intermetallic phases like HfAl3 or CrAl7 at 

the centre of the conductors, so that there is a refractory alloy layer separating 

two aluminum alloy films. The improvement in the electromigration lifetime of these 

interconnects is quite simply because with two parallel conductors the chance of 

producing an open circuit is much reduced. The refractory layer acts to block 

void propagation from one conductor to the other and a crack in one of the 

aluminum layers does not damage the electrical integrity of the conductor as a 

whole. Electromigration in the intermetallic phases at the centre of the interconnect 

is very slow and so the possibility of crack formation at the grain boundaries in 

these layers during electromigration is small. However, Grabe and Schreiber (1983), 

amongst others, have shown that Al/TiAls/Al composite interconnects are 

particularly prone to the formation of large spikes like those illustrated in figure 
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1.5.2. These extrusions can cause short circuits between adjacent conductors 

even when the conductors themselves shown no sign of failing by any 

electromigration mechanism. In the case of Al-Cu/refractory metal/Al-Cu 

conductor structures, it has been shown that the presence of the copper in the 

aluminum films increases the activation energy for formation of the intermetallic 

compounds at the centre of the interconnect. This effect will increase the stability 

of the multilayered conductors in service, and it is suggested that the copper 

decreases the rate of grain boundary diffusion in the aluminum because of the 

second-phase precipitates blocking these diffusion paths. 

 

Simply adding an adherent, chemically stable and refractory layer to the 

conventional thin film conductors increases the average electro-migration lifetime 

by at least a factor of 10. Some typical data on the lifetimes of a range of 

aluminum-based interconnects are shown in figure 1.5.1, illustrating how both the 

structure and chemistry of the films have been modified to develop the very stable 

interconnection systems that are being tested for use in the next generation of 

integrated circuits. 

 

Finally, let us consider the effect of passivating glass layers on interconnects in 

which electromigration is occurring. Blech and Herring (1976) have shown that a 

significant stress gradient exists along an aluminum film in which electromigration 

is occurring. Aluminum films on a silicon substrate will always be under 

compression when at elevated temperatures because the thermal expansion 

coefficient of the metal is much larger than that of silicon. An electromigration 
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flux of metal ions towards the anode will gradually relieve the stress at the 

cathode by the depletion of material from this end of the conductor. The stress 

will not be relieved at the anode, which results in the development of the stress 

gradient along the conductor. Aluminum will tend to back diffuse along the 

interconnect under the driving force of this pressure gradient, and this flux will 

eventually balance the electromigration flux. When this occurs, damage to the 

interconnect due to electromigration flux divergence will be very much reduced. A 

glassy passivation layer over the top of the interconnect will also stop the anode 

end of the conductor plastically deforming by grain boundary sliding and hillock 

formation under the high local stress. This will increase the stress gradient 

which is set us along the conductor and the electromigration flux will cease at an 

earlier stage of the process of material transport. Typical stress levels generated in 

the soft aluminum are about 103 MPa, far in excess of the yield stress. However, 

when the metal is encapsulated in a relatively 'stiff glass layer, deformation of the 

aluminum cannot occur. Eventually sufficient stress is generated to crack the 

passivation layer, and short-circuit failure and atmospheric corrosion of the 

interconnect can then occur. Lloyd and Smith (1983) have demonstrated that the 

electromigration resistance of passivated Al-4%Cu conductors depends on the 

thickness of the glassy layers, and that increases in lifetime of between 5 and 10 

times are readily achieved by using sufficiently thick passivation to contain even 

the highest stresses generated in the metal films. Thus the glass layer which is 

frequently used to protect aluminum alloys from corrosion has the fortuitous 

additional advantage of increasing the electromigration lifetime of integrated circuit 

conductors. 
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CHAPTER 2 

 

MORPHOLOGY AND STRUCTURE OF SURFACES & INTERFACES: 

IRREVERSIBLE THERMOKINETIC THEORY OF SURFACES & 

INTERFACES 

 

 

2.1. Introduction 

 

To begin with, it will be useful to give a brief definition of the terms morphology 

and structure. The term morphology is associated with a macroscopic property of 

solids. The word originates from the Greek µορφή, which means form or shape, and 

here it will be used to refer to the macroscopic form or shape of a surface or 

interface. Structure, on the other hand, is associated more with a microscopic, 

atomistic picture and will be used to denote; the detailed geometrical arrangement 

of atoms and their relative positions in space. 

 

The most general macroscopic approach to a problem in the physics of matter is that 

of thermodynamics. The specific features associated with a thermodynamic 

description of an interface are illustrated. This chapter focuses on the irreversible or 

non-equilibrium thermodynamic treatment of the morphological evolution 

dynamics of surfaces and interfaces composed of ordinary points (Ogurtani and 
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Oren, 2001-a). By relying only on the fundamental postulates of linear irreversible 

thermodynamics as advocated by Prigogine (1961) for the bulk phases, Ogurtani 

(2000) has obtained a compact and rigorous analytical theory of a network of 

interfaces by utilizing the more realistic monolayer model of Verschaffelt (1936) 

and Guggenheim (1959) for the description of interfaces and surfaces. A brief 

summary of Ogurtani theory is reported recently by Oren and Ogurtani (2002) in 

connection with their computer simulation studies on the effect of various 

combinations of grain textures on the life time and the failure mechanisms of thin 

film interconnects.  

 

 

2.2. Irreversible Thermo-kinetics of Micro-Discrete Open Composite Systems 

with Interfaces 

 

The term microscopic region refers to any small two or three-dimensional region 

containing a number of molecules sufficiently large not only for microscopic 

fluctuations to be negligible but also all of the intensive properties are homogeneous 

in space. The composite system, considered here, has at least two physico-

chemically distinct domains (or phases in most general sense) separated by thin 

layers of interfaces, that are not only mutually interacting by the exchange of matter 

and energy but they are also completely open to the surroundings through the 

moving or immobile boundaries.  

 

In this theory, the general view points of Guggenheim (1957), Van Der Waals and 

Bakker (1928) are adopted as far as the interface between any two phases or 
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domains is concerned. Namely, the interface is autonomous, finite but a thin layer 

across which the physical properties and/or the structures vary continuously from 

those of the interior of one phase to those of the interior of the other. Since the 

interfacial layer is a material system with well-defined volume and material content, 

its thermodynamic properties do not require any special definition. One may speak 

of its temperature, entropy, free energy, and composition and so on just as for a 

homogeneous bulk phase. The only functions that call for special comment are the 

pressure and the interfacial (surface) tension. 

 

The total reversible work, δ ω∆ , done on a flat surface phase with micro-extent, 

indicated in terms of ∆  space-scaling operator, by variations of its volume σVd∆ , 

and area σAd∆  (keeping its material content unaltered, but stretching) is given by 

the following well known expression, assuming that the component of the stress 

tensor along the surface normal P is quasi-homogeneous in the layer and other 

transverse two components denoted by [P-Q] are equal (rotational symmetry) but 

heterogeneous (in the absence of electrostatic and other non-mechanical force 

fields),  

 

Pd V d Aσ σδ ω γ∆ = − ∆ + ∆  (2.2.1)  

 

where, P  is the mean isotropic pressure in the layer, and γ  is called the surface 

tension, whose value and the location of the surface in which it acts can be uniquely 

determined by the knowledge of the transverse component of the stress tensor as 

demonstrated by Buff (1955). Its value may be given roughly by  
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 ∫=
σ

γ
h

Qdz
0

,  (2.2.2)  

 

where, Q  is the deviatoric part of the stress tensor and σh  is the thickness of the 

surface layer and the integration is performed along the surface normal. The above 

given expression for the reversible work becomes αVdP ∆−  for a homogeneous 

bulk phase in the formulation of the first law of thermodynamics. In the 

conventional theory of irreversible processes (Prigogine, 1961 and Glansdorff and 

Prigogine, 1971), it has been postulated that the Gibbs formula, which is derived for 

the reversible changes, is also valid for irreversible processes. However in the 

present formulation, it is tacitly postulated that the differential form of the 

Helmholtz free energy in equilibrium thermodynamics has the same validity for 

irreversible changes. Mathematically this assumption is exactly equivalent to the 

Gibbs formula used extensively in standard treatment.  

 

The local anisotropic properties of the medium are now automatically embedded in 

the intensive variables, which are characterized by second order tensors or dyadics. 

Hence the Helmholtz free energy for an open surface phase of a micro-extent may 

be written as, 

 

∑∑ ∆−∆+∆+∆−∆−=∆
j

jj

i

ii dAndAdVdPdTSFd σσσσσσσσσσ ξµγ  (2.2.3) 
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where, σS∆  denotes the entropy, i
σµ denotes the chemical potential, inσ∆  is the 

number of thi  chemical species in the micro-element, jd σξ  is the extent of the 

homogeneous thj  chemical reaction taking place in the phase under consideration, 

and jAσ∆  is the affinity of the homogeneous thj  chemical reaction and is related to 

the chemical potentials and the stoichiometric numbers as defined by Th. De 

Donder et al. (1936).   

 

In above relationship, it is assumed that, in a single phase only the homogeneous 

chemical reactions take place and the phase transitions occurring at the mobile 

boundaries are not considered in the last term. The Helmholtz free energy change 

due to the passage of the substance i  from the phase to the surroundings is 

accounted by the fourth term in above expression (frozen chemical reactions). 

Therefore, in the case of a close system, one should subtract only the term given by 

∑ ∆
i

ii nd σσµ , which is closely related to the direct exchange of matter with the 

surroundings.  

 

For the bulk phase, b , ( ) or α β , one may rewrite very similar expression namely, 

 

∑∑ ∆−∆+∆−∆−=∆
j

j
b

j
b

i

i
b

i
bbbbbb dAndVdPdTSFd ξµ  (2.2.4) 

 

In the case of a composite system as defined previously, the total Helmholtz free 

energy differential can be immediately written down from Eqs. (2.2.3 and 2.2.4) by 
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using the fact that the extensive thermodynamic quantities are additive. If there 

would be thermal, hydrostatic and physico-chemical equilibrium in the multi-phase 

system with plane interfaces there is no need to add subscripts to iPT µ and  , ; there 

must have values uniform throughout the various phases (bulk and surface) present 

in the system. For the present non-equilibrium case, first it will be assumed that no 

such restrictions on the system, but later a system at thermal equilibrium will be 

treated. For the present problem the system is an open composite system, and it is 

composed of two bulk phases and two surface phases (the interface between void 

and interconnect, or interconnect and its surrounding).  

 

The entropy of the system is an extensive property; therefore if the system consists 

of several parts, the total entropy of the system is equal to the sum of the entropies 

of each part. 

 

The entropy of any system whether it is close or open can change in two distinct 

ways, namely by the flow of entropy due to the external interactions, exd S∆ , and by 

the internal entropy production due to the changes inside the system, ind S∆ . 

Symbolically, one may write this as, 

 

in exd S d S d S∆ = ∆ + ∆  (2.2.5)  

 

The entropy increase ind S∆  due to changes taking place inside the system is 

positive for all natural or irreversible changes, is zero for all reversible changes and 

is never negative.  
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For a close system external entropy contribution has a very simple definition, and it 

is given by /exd S q Tδ∆ =  where qδ  is the heat received by the system from its 

surroundings. Now, let us generalize the first law of thermodynamics for any 

infinitesimal change associated with an open system. For an open system, in which 

not only the energy but also the matter exchange takes place between the system 

and its surroundings, the conservation of energy becomes, 

 

[ ]d U d F T Sδ δ ω δ ω∆Φ = ∆ − ∆ = ∆ + ∆ − ∆  (2.2.6)  

 

where, δ∆Φ  is the energy received by the system, in terms of heat and matter 

transfer processes from the surroundings, Ud∆  is the internal energy change, and 

δ ω∆  is the reversible work done on the system by the external agents, and this 

work is equal to - VPd∆  or -[ AdVPd ∆−∆ γ ] depending upon whether one deals 

with the bulk phase or the surface phase, respectively.  

 

Eq. (2.2.6) and Eq. (2.2.3 or 2.2.4) results the following formula in regards to the 

total differential of the total entropy for the phase, k  (surface or bulk phases); 

 

ji
jik k

k k
k k ki j

A
d S d n d

T T T
µδ ξ

∆∆Φ
∆ = − ∆ +∑ ∑  (Total Entropy Change) (2.2.7) 

 

where the summations with respect to  i  and j  indicate summation over different 

chemical species and over different reactions taking place simultaneously in the 

same phase, respectively.  
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The Eq. (2.2.7) can be divided into two parts, similar to the Prigogine (1961), who 

applied such a splitting procedure to the systems consist of two open phases but the 

system is closed as a whole:  

 

The first two terms of Eq. (2.2.7), correspond to the rate of external entropy flow 

term (REF): namely, 

 

1 i i
ex k k

k ki

d S d n
dt T dt T dt

µδ∆ ∆∆Φ
= −∑  (Rate of Entropy Flow (REF)) (2.2.8) 

 

And the last term of Eq. (2.2.7), on the other hand constitutes to the internal entropy 

production term (IEP): namely, 

 

0≥
∆

=
∆ ∑

j

j
k

k

j
kin

dt
d

T
A

dt
Sd ξ

 (Internal Entropy Production (IEP)) (2.2.9) 

 

As one might expect that, the IEP in a single phase directly related to the chemical 

reactions taking place in the region whether it is closed or open. Only the REF is 

affected from the matter flow through the open boundary (Ogurtani, 2000). 

 

One may also write down the power dissipation, ∆Ρ , for natural changes, which is 

a very useful function, which is also known as Helmholtz dissipation function 

(Haase, 1969), for the treatment of the isothermal processes taking place in multi-
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phase systems with uniform and continuous temperature distribution, and it is given 

by the following expression.      

 

0≥∆=
∆

=∆Ρ ∑ dt
dA

dt
Sd

T
i

i

iin ξ
 (2.2.10) 

 

Inequalities given by Eqs. (2.2.9 and 2.2.10) are valid for any natural change, taking 

place in any phase whether it is bulk or surface. Only difference between these two 

expressions is that the first one is valid for any type of natural changes taking place 

in the system but the second one is restricted only for the isothermal natural 

processes. 

 

For a global composite system having discontinuous (heterogeneous) phases, there 

are two additional IEP terms, one is due to the internal entropy flow associated with 

the transfer of chemical species from one subdomain to another subdomain; and the 

other one is due to the energy transfer between the subdomains of the composite 

system.  

 

This second IEP term for a composite system immediately drops out if the 

subdomains have identical temperatures. The total differential of the entropy for 

such a system is; 
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,

, ,

i
ik k s
k s

k ki k k
ji

jik k k
k k

k k ki k k j k

d n
T T

d S
A

d n d
T T T

µ δ

µ δ ξ

↔
↔

⎧ ⎫∆Ω
− ∆ +⎪ ⎪
⎪ ⎪

∆ = ⎨ ⎬
∆∆Ω⎪ ⎪− ∆ + +⎪ ⎪

⎩ ⎭

∑ ∑

∑ ∑ ∑
 (Total Entropy Change) (2.2.11) 

 

where the double summations with respect to k  and i  or j  indicate summation 

over various phases (bulk or surface) and over different chemical species or 

reactions taking place simultaneously in the same phase, respectively. kδ∆Ω  is the 

amount of energy transported to the individual phase from the other phases present 

in the global system due to heat or matter exchange. In Eq (2.2.11), the subscript 

sk↔  indicates that the matter and energy exchange takes place between the phases 

of the system, k , and the surrounding, s . 

 

By performing the splitting procedure to the Eq. (2.2.11) similar to the single-phase 

systems: The REF from the surrounding to an open composite system may be 

written as, 

 

,

1i i
ex k k s k s

k ki k k

d S d n
t T t T t

µ δ
δ δ δ

↔ ↔∆ ∆ ∆Ω
= − +∑ ∑   (REF) (2.2.12) 

 

and the IEP due to the irreversible processes:  

 

, ,

1 j ji i
in k k k k k

k k ki k k j k

A dd S d n
t T t T t T t

ξµ δ
δ δ δ δ

∆∆ ∆ ∆Ω
= − + +∑ ∑ ∑  (IEP) (2.2.13) 
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On the other hand the first term contributes to IEP of a composite system as long as 

one has chemical potential differences between respective sub-domains regardless 

the transfer process isothermal or not.  

 

A comparison of the IEP expressions, for the single-phase system, Eq. (2.2.9), and 

the composite system, Eq. (2.2.13), immediately shows us that the internal entropy 

production IEP is not an additive property of a thermodynamic system composed of 

interacting open sub-systems unless the whole system is in complete physico-

chemical equilibrium state (uniform temperature and chemical potential 

distributions). 

 

At the onset, it should be clearly stated that in the case of an open composite system 

having only homogeneous chemical reactions with inactive external boundaries (no 

chemical reaction or phase transition occurring there) any ordinary exchange of 

matter and/or energy with its surroundings only contributes to the total entropy flow 

term, and it is noting to do with the IEP. 

 

 

2.3. Ordinary Point Motion along the Surface Normal 

  

During the derivation of the formula for the global IEP associated with the arbitrary 

virtual displacement, ηd , of the interfacial loop of a finite thickness, which 

separates the second phase, denoted by β , from the interconnect, denoted by b , 

having multi-components, one has to integrate the rate of local entropy density 
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change along the curved interface in order to obtain desired connection between 

generalized forces and conjugate fluxes. The rate of local entropy density change is 

the only quantity, which has the additive property that allows to be integrated. 

Therefore, not only the local internal entropy production (source term), but also the 

external entropy flow term should be evaluated for the virtual displacement. 

B

A C

D

Bulk (b) Bulk (b)

Surface Layer (  ) 
A

B

C

D

Left side Rigth side
Left side Rigth side

Second Phase

+ -

a) b)  

 

Figure 2.3.1: Ordinary point motion along surface normal. a) Macro-structure, b) 

Micro-structure. ABC: interfacial layer and δη : virtual displacement of the 

ordinary point along surface normal. 

 

i. Internal Entropy Production 

 

The IEP of an open composite system is given by the Eq. (2.2.13). As far as the 

second phase – interconnect surface layer is concerned, it is assumed that the whole 

system is in thermal equilibrium, T , and there is no insitu chemical reactions is 
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taking place. These assumptions drop out the second and the third terms of Eq. 

(2.2.13), as discussed before. Then the only non-vanishing term of IEP, which 

represents an additional contribution in the composite system due to internal 

entropy flow associated with the transfer of chemical species from one sub-domain 

to another sub-domain, is given by, 

 

∑
∆

−=
∆

ji

i
ji

j
in

t
n

Tt
S

,

1
δ

δ
µ

δ
δ

 (2.3.1) 

 

Double summations with respect to i  and j  indicate summations over different 

chemical species and over various phases ( ,  and b β σ ), respectively. 

 

Now, let us calculate the internal entropy variation for the left hand side sub-system 

when the ordinary point moves along the surface normal with a distance +δη . From 

figure 2.3.1, one immediately finds the following variational relationships among 

various quantities by assuming that: ++ >>∆ δη  and −− >>∆ δη ; 

 

+++ =∆ θδηδ cos       and  +++ = θδηδ sinH   (2.3.2) 

++++ ∆
Ω

−=∆ δηθδ sin
2

1

b
bn     (2.3.3) 

1 sin
2f

v

nδ θ δη+ + + +∆ = ∆
Ω

 (2.3.4)  

+++

Ω
=∆ δηθδ

σ

σ
σ cos

h
n   (2.3.5) 
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where ,    and  bσ βΩ Ω Ω  are the mean atomic specific volumes, associated with the 

surface layer, bulk and second phases, respectively. +∆  and −∆  denote segment 

lengths of the surface layer just next to the ordinary point right and left hand sides, 

respectively. σh  is the thickness of the surface layer and assumed to be invariant. 

nβδ +∆  and +∆ bnδ  are the number of atoms gain in the reaction zones associated with 

the second phase – interfacial layer and the bulk – interfacial layer respectively, 

while the transformation processes are taking place there during the virtual 

displacement of the interfacial layer. +∆ σδ n  is equal to the net atomic gain by the 

interfacial layer denoted by σ  due to enlargement (extension without stretching) of 

that layer during the displacement operation. δ  and ∆  are variational and micro-

discretization operators, respectively.  

 

One can obtain exactly similar expressions for the other side of the ordinary point, 

which will be identified by a negative sign as superscript in the following formulas: 

 

−−− =∆ θδηδ cos       and  −−− = θδηδ sinH   (2.3.6) 

−−−− ∆
Ω

−=∆ δηθδ sin
2

1

b
bn     (2.3.7) 

1 sin
2

nβ
β

δ θ δη− − − −∆ = ∆
Ω

 (2.3.8)  

coshn σ
σ

σ
δ θ δη− − −∆ =

Ω
  (2.3.9) 
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Also, one should recall that in the case of multi-component system, the variations in 

the number of atomic species could be easily obtained by simply multiplying the 

total atomic number variations by the respective atomic fractions denoted by i
jx . As 

an example, the number of chemical species involved in the left and right hand side 

bulk phases due to the virtual displacement may be given by 

 

++ ∆=∆ j
i
j

i
j nxn δδ  (2.3.10) 

and 

−− ∆=∆ j
i
j

i
j nxn δδ  (2.3.11) 

 

Then, one can write down the rate of entropy production due to ordinary point 

virtual displacement along the surface normal for the left as well as for the right 

hand side domains; 
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1 2

cos
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S
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x
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δ δη
δ δ

θ µ

++
+ + + +
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⎪ ⎪⎢ ⎥⎜ ⎟− ∆

∆ ⎜ ⎟⎪ ⎪Ω Ω⎢ ⎥⎝ ⎠= ⎣ ⎦⎨ ⎬
⎪ ⎪−Γ⎪ ⎪
⎩ ⎭

∑

∑
  (2.3.12) 

and  

1 sin
1 2
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i ib
b
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i
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S
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x
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β
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δ δη
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  (2.3.13)  
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where, /hσ σ σΓ = Ω  corresponds to the specific mean atomic density associated 

with the surface layer. 

  

In above relationship, the special superscript + or - has been employed above the 

atomic fractions as well as the chemical potentials in order to indicate explicitly that 

those quantities may depend upon the orientation of the local surface normal. One 

should also recall that for the multi-component surface phases, ii
σσ µ∑Γ  is exactly 

equal to the specific Gibbs free energy density associated with the interfacial layer. 

This may be denoted by σg . Here, ii xσσσ Γ=Γ , is by definition known as the 

specific surface concentration of chemical species in surface layer. 

 

The terms appearing in the first group on the right side of Eq. (2.3.1.12) and 

(2.3.13) such as, ∑ Ω
i

b
i
b

i
b /µχ  and /i i

i
β β βχ µ Ω∑  are the volumetric Gibbs free 

energy densities. These quantities are denoted by bg  and gβ , and associated with 

the bulk phase and void region having their own instantaneous compositions just 

next to the hypothetical geometric boundaries of the interfacial layer (reaction 

fronts or zones). Furthermore, these quantities are related to the specific Gibbs free 

energy densities by the relationship: σσσ ghg = .  By using these definitions the 

following equations are obtained, 

 

( )1 1 sin cos
2

in
b

S g g g
t T tβ σ

δ δηθ θ
δ δ

+ +
+ + + + + +∆ ⎧ ⎫= − ∆ −⎨ ⎬

⎩ ⎭
  (2.3.14)  

and 
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( )1 1 sin cos
2

in
b

S g g g
t T tβ σ

δ δηθ θ
δ δ

− −
− − − − − −∆ ⎧ ⎫= − ∆ −⎨ ⎬

⎩ ⎭
  (2.3.15)  

 

The total internal entropy production is: 

 

( )
( )

sin sin1 2           
cos cos

in in in

b b

S S S
t t t

g g

T tg g

β β

σ σ

δ δ δ
δ δ δ

θ θ δη
δθ θ

+ −

+ + − −

+ + − −

∆ ∆ ∆
= +

∆⎧ ⎫− +⎪ ⎪= ⎨ ⎬
⎪ ⎪− +⎩ ⎭

  (2.3.16)  

 

where ( )fb f bg g g= − , and it corresponds by definition to the volumetric density of 

Gibbs Free Energy of Transformation (GFET) (negative of the affinity of an 

interfacial reaction such as condensation or adsorption, fbg >0) associated with the 

transformation of the bulk phase into the realistic second phase, which contains 

chemical species even though they are present in a trace amount. In the case of 

thermostatic equilibrium between a second phase and an adjacent bulk phase, GFET 

becomes identically equal to zero, if the reaction front would be a flat interface. 

There is a very simple connection between this quantity GFET and the Specific 

Gibbs Free Energy of transformation between the parent phase and the second 

phase that may be given by b bg g hβ β σ= .  By dividing both sides of the Eq. (2.3.16) 

by ∆ , it is obtained that, 
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b b
in

g g
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σ σ

θ θ
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θ θδ δ

+ + − −

+ −
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   (2.3.17)  

 

Now if one applies the limiting procedures such as; first with respect to 0→tδ , 

and then 0→∆ , and recalls the definition of the local radius of curvature,κ , 

which is given by; 

 

⎟
⎠
⎞

⎜
⎝
⎛
∆

=
→∆ 2/

cos
0

θκ im  (2.3.18) 

 

and also keeps in mind that 
20

πθ =±

→∆
im , b b bg g gβ β β

+ −= =  and σσσ ggg == −+ , one 

immediately obtains the following continuum relationship for the IEP,  

 

( )
ˆ 1in

b
d S dg g

dt T dtβ σ
ηκ∆

= − +   (erg/oK/cm/sec)  (2.3.19) 

 

where dtSd in /ˆ∆  is the surface density of IEP associated with ordinary points. 

 

 

ii. Rate of Entropy Flow 

 

Similarly, the external entropy accumulation in the surface phase due to flow of 

chemical species, i , along the surface layer, iJσ , and the perpendicular incoming 
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flux intensities from the bulk, i
bĴ , and the void, ˆiJβ , phases, can be calculated by 

using the law of conservation of entropy without the source term or IEP.  

 

bulk (b)

second phase
 

Figure 2.3.2: Structure of micro-composite system. 

 

From figure 2.3.2 it can be written as, 
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  (2.3.20) 

 

where, vĴ  and bĴ  are the total atomic flux intensities is such directions that they 

are perpendicular and oriented towards the interfacial layer, just at the reaction 

fronts between the second phase and the interfacial layer and the bulk phase and the 

interfacial layer, respectively. 
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By remembering the definitions of the volumetric Gibbs free energy densities, kg , 

given by ∑ Ω
i

k
i
k

i
kx /µ , where k  represents the different phases, and keeping in 

mind that the global system is in thermal equilibrium, Eq. (2.3.20) can be rewritten 

as: 

 

( ) ( )
ˆ

ˆ ˆex
b

d S g J g J J
dt T

σ
σ σ σ β

∆ Ω ∂⎡ ⎤= − + +⎢ ⎥∂⎣ ⎦
  (2.3.21) 

 

where ˆ /exd S dt∆  is the surface density of REF associated with ordinary points. 

 

In this formula it is also assumed that the mean atomic specific volumes of the bulk 

and the second phases are nearly equal to that of the interfacial layer. 

 

 

iii. The Local Rate of Change in the Entropy Density 

 

The total entropy production has to be calculated since only this term has the 

additive property that will be used to calculate the total entropy production of the 

whole surface layer under isothermal condition by a path integration procedure. By 

using Eqs. (2.3.19 and 2.3.21); 

 

( ) ( ) ( )

ˆ ˆˆ

1 ˆ ˆ         

in ex

b b

d S d Sd S
dt dt dt

dg g g J g J J
T dtβ σ σ σ σ σ β

ηκ

∆ ∆∆
= +

⎧ ∂ ⎫⎡ ⎤= − + +Ω + +⎨ ⎬⎢ ⎥∂⎣ ⎦⎩ ⎭

  (2.3.22) 
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In order to calculate the global rate of entropy change of the whole curved 

interfacial layer, which is between the second phase region and the bulk phase, let 

first take the line integral of Eq. (2.3.22) all along the closed curved interface, 

represented by C  which may be situated at a point denoted by the open interval 

( )εε +− , , where 0→ε . This interface is represented by oC and equal to 

( )εε +−− ,C . 

 

( )

( ) ( )

0

0

ˆ ˆ

1                 
ˆ ˆ

oC

b

b

d S d Sd im d
dt dt

dg g
dtim d

T g J g J J

ε

ε
ε

β σε

ε
ε

σ σ σ σ β

ηκ

−

→
+

−

→
+

∆ ∆
=

⎧ ⎫+⎪ ⎪⎪ ⎪= − ⎨ ⎬∂⎡ ⎤⎪ ⎪+Ω + +⎢ ⎥⎪ ⎪∂⎣ ⎦⎩ ⎭

∫ ∫

∫
  (2.3.23) 

 

In the absence of the particle source and sink terms, the atomic flux divergence is 

proportional with the amount of mass accumulated or depleted on an interfacial 

layer, which causes the interface to move in a local normal direction. However in 

this formulation a more general situation, namely, the additional entropy source 

terms associated with the normal components of the atomic flows coming from the 

bulk phase, and the void region due to condensation or evaporation processes that 

may be summarized by, ˆ ˆ ˆ
b bJ J Jβ β= + , is considered. Hence, the following 

expression can be written for the conservation of atomic species during the virtual 

displacement of curved interface having no stretching and thickness variations: 
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( ) ( )ˆ ˆ ˆ
i

i i
b b b

i i

J Jdc c h c J J J
dt

σ σ
β σ σ β β

ηκ ∂ ∂⎡ ⎤− − = − + = −⎣ ⎦ ∂ ∂∑ ∑   (2.3.24) 

 

where, ,   and bc c cβ σ  are the atomic volumetric concentrations associated with the 

bulk, second phase and surface phases, respectively.  Now if one considers the 

following plausible and highly accurate approximations for second phase, which 

may be treated as polyatomic dilute gas, such as: 0  and  0c hβ σκ= = . One would 

get the following results using the fact that 1−=Ω bb c , which is mostly adapted in 

the literature (Guggenheim, 1959 and Ogurtani and Oren, 2001-a): 

 

ˆ
b b

Jd drn J
dt dt

σ
β

η ∂⎛ ⎞= ⋅ = Ω −⎜ ⎟∂⎝ ⎠
   (2.3.25) 

 

where, rn  and  are the surface normal and the position vectors, respectively.  

 

Now, let us substitute above identity into Eq. (2.3.23), and also remember that it is 

assumed that the mean atomic specific volume of the bulk phase is nearly equal to 

that of the interfacial layer. 

 

( )

( )0
0

ˆ
ˆ

ˆ

b b

C
b

Jg g J
d Sd im d
dt T

g J g J

σ
β σ βε

σ

ε
ε

σ σ σ β

κ−

→
+

⎧ ∂ ⎫⎛ ⎞+ −⎜ ⎟⎪ ⎪∂Ω∆ ⎪ ⎪⎝ ⎠= − ⎨ ⎬
∂⎡ ⎤⎪ ⎪+ +⎢ ⎥⎪ ⎪∂⎣ ⎦⎩ ⎭

∫ ∫   (2.3.26) 
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In order to apply the integration by parts let us write Eq. (2.3.26) in the following 

form, 

 

( )

( )

( ) ( )
0 0

ˆ ˆ

ˆ

b

b b
C

b

Jd g g

d Sd im d g g J
dt T

d g J d g J

ε
σ

β σ
ε
ε

σ
β σ β

ε ε
ε ε

σ σ σ β
ε ε

κ

κ

−

+
−

→
+
− −

+ +

⎧ ⎫∂⎡ ⎤+⎪ ⎪⎢ ⎥∂⎣ ⎦⎪ ⎪
⎪ ⎪

Ω∆ ⎪ ⎪⎡ ⎤= − − +⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪

∂⎪ ⎪+ +⎪ ⎪∂⎩ ⎭

∫

∫ ∫

∫ ∫

 (2.3.27) 

 

The first group of terms on the right side of the Eq. (2.3.27) can be integrated by 

parts, as shown below; In order to save the space the left side of the equation are not 

shown in the following two equations. 

 

( ) ( )

( )

( ) ( )

0
ˆ

ˆ

b b

b bf

b

d g g J d J g g

im d g g J
T

d g J d g J

ε ε

β σ σ σ β σ
ε ε
ε

σ
β σ

ε ε
ε ε

σ σ σ β
ε ε

κ κ

κ

− −

+ +
−

→
+
− −

+ +

⎧ ⎫∂ ∂⎡ ⎤⎡ ⎤+ − +⎪ ⎪⎢ ⎥⎣ ⎦∂ ∂⎣ ⎦⎪ ⎪
⎪ ⎪

Ω ⎪ ⎪⎡ ⎤= − − +⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪

∂⎪ ⎪+ +⎪ ⎪∂⎩ ⎭

∫ ∫

∫

∫ ∫

 (2.3.28) 

 

After some manipulations and rearrangements, 

( ) ( )

( ) [ ] ( )
0

ˆ ˆ

b b

b b b

d J g g g g J

im
T

d g g J g J d g J

ε ε
σ β σ β σ σ ε

εσ
ε εε ε

β σ β σ σ σ βε
ε ε

κ κ

κ

− −

+
+
− −→ −

+
+ +

⎧ ⎫∂⎡ ⎤ ⎡ ⎤+ − +⎪ ⎪⎢ ⎥ ⎣ ⎦∂⎣ ⎦⎪ ⎪Ω
= ⎨ ⎬

⎪ ⎪⎡ ⎤+ + − −⎪ ⎪⎣ ⎦
⎩ ⎭

∫

∫ ∫
 (2.3.29) 
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At the final step after the integration by parts procedure, one should carefully split 

the global rate of entropy change into two parts, namely the REF term and the IEP 

term by carefully inspecting the individual contributions in Eq. (2.3.29). 

 

( ) [ ] [ ]
0

ˆ
REF b

d S im d g J g J g J
dt T

ε
σ

σ β σ σ σ σε εε ε

−

− +→
+

⎧ ⎫Ω ⎪ ⎪= − − +⎨ ⎬
⎪ ⎪⎩ ⎭
∫  (2.3.30) 

 

where, the first term is the integrated entropy flow to the interfacial layer from the 

embedding parent phases through the incoming matter flux, b̂J β . 

 

The remaining terms of Eq. (2.3.29) are related to the IEP and given by, 

 

( ) ( )

( ) ( )
0

ˆ
b b b

IEP

b b

d J g g d g g Jd S im
dt T

g g J g g J

ε ε

σ β σ β σ β
σ

ε ε
ε

β σ σ β σ σε ε

κ κ

κ κ

− −

+ +
→

− +

⎧ ⎫∂⎡ ⎤ ⎡ ⎤+ + +⎪ ⎪⎢ ⎥Ω ⎣ ⎦⎪ ⎪∂⎣ ⎦= ⎨ ⎬
⎪ ⎪⎡ ⎤ ⎡ ⎤− + + +⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∫ ∫
 (2.3.31) 

 

This original result clearly confirms that the bulk flow of particles or substances for 

nonviscous systems appears to be a reversible phenomenon as first discovered by 

Prigogine (1961), in another content using the velocity of the centre of gravity as a 

reference system in the calculation of the possible singularity. In the absence of this 

singularity, the last two terms of Eqs. (2.3.30 and 2.3.31), become identically zero 

and drop out completely.  
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Here it should be clearly stated that the singularities have to be treated individually 

as a special case, where the discrete formulation of irreversible thermodynamics as 

suggested and developed by Ogurtani (2000), may be a very powerful tool to handle 

this problem successfully, as it will be shown in the next section. 

 

After these mentioned drop outs, the following formula obtained for the IEP 

 

( ) ( )
0

ˆ
IEP b b b

d S im d J g g d g g J
dt T

ε ε
σ

σ β σ β σ βε
ε ε

κ κ
− −

→
+ +

⎧ ⎫Ω ∂⎡ ⎤ ⎡ ⎤= + + +⎨ ⎬⎢ ⎥ ⎣ ⎦∂⎣ ⎦⎩ ⎭
∫ ∫  (2.3.32) 

 

Before proceeding further, let us turn back to postulates of irreversible 

thermodynamics: As shown by Prigogine (1961), the internal entropy production of 

the irreversible processes can be written as a sum of the products of generalized 

forces or affinities and the corresponding rates or generalized fluxes, 

 

0≥= ∑
k

kkIEP FJS
dt
d   (2.3.33) 

 

By utilizing this postulate, which means by comparing the Eqs. (2.3.32 and 2.3.33), 

one obtains the following forces from the integrated IEP expression (2.3.32), which 

is valid for any arbitrary closed loop. 

 

( )bF g g
T
σ

σ β σκ
Ω ∂

= +
∂

  (2.3.34) 

and 
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( )b bF g g
T
σ

β β σκ
Ω

= +  (2.3.35) 

 

where,  and σ bF Fβ  denote longitudinal and transverse generalized forces that are 

acting on the interfacial layer respectively.  

 

If one considers the additional contributions due to external forces, denoted by extF ,  

 

( )1
b extF g g t F

Tσ σ β σκ
∂⎡ ⎤= Ω + + ⋅⎢ ⎥∂⎣ ⎦

  (2.3.36) 

and 

( )1
b b extF g g n F

Tβ σ β σκ
⎡ ⎤= Ω + + ⋅⎢ ⎥⎣ ⎦

 (2.3.37) 

 

Here nt  and  denote unit tangent and normal vectors at the surface. The external 

forces were discussed by Ogurtani and Oren (2001-a) in Appendix B of that 

reference for various kind of external forces, such as electrostatic, and magnetic in 

nature.  

 

Here only the electrostatic external forces will be discussed. The external 

generalized forces per particle, i , associated with electromigration is given by, 

 

i
i

em
eZF
T

ϑ= − ∇  (2.3.38) 
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Where, ϑ  is the electrostatic potential and ieZ  is the effective charge of the particle 

i .  The external generalized total force density (per unit volume) associated with 

electromigration and acting on particles may have the following form for a multi- 

component system whether it is a bulk phase or an interfacial layer, 

 

*1 1i i
ext em

i
F F x eZ eZ

T Tσ σ
ϑ ϑ

⎛ ⎞
= = − ∇ = − ∇⎜ ⎟⎜ ⎟Ω Ω⎝ ⎠

∑  (2.3.39) 

 

where, *eZ is the effective charge in multi-component systems. 

 

The last contribution in Eq. (2.3.37), extFn ⋅ , becomes identically zero since the 

normal component of the electric field intensity vanish at the surface. 

 

Then, according to the Onsager theory (de Groot, 1951 and Prigogine 1961), which 

connects generalized forces and conjugate fluxes through generalized mobilities, the 

conjugate fluxes associated with the above forces can immediately be written down, 

by neglecting the cross-coupling terms between generalized forces and fluxes, as: 

 

( ) *
bJ g g eZ

kT
σ

σ σ β σ
σ

ϑκ
⎡ ⎤Μ ∂

= Ω + −⎢ ⎥∂ Ω⎣ ⎦
 (Surface Flux) (2.3.40) 

and 

( )ˆ b
b bJ g g

kT
β

β σ β σκ
Μ

= Ω +  (Incoming net lateral flux density) (2.3.41) 
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where, /   and /bk kσ βΜ Μ  are the generalized phenomenological mobilities 

associated with the respective conjugated forces and fluxes, *eZ  is the mean 

value of the effective electromigration charge associated with the interacting species 

and k  is the Boltzman’s constant. 

 

For multi-component systems, where one is interested only in the net atomic (mass) 

transport regardless to the contributions of individual chemical species, the first 

generalized-mobility, σΜ , may not be easily connected to any combination of the 

intrinsic surface diffusivities of individual chemical species in the interfacial layer 

or in the bulk phase. However, for one component system having minor amount of 

doping elements or impurities, the situation is rather simple where one can easily 

identify the existence of the following relationship between generalized mobility 

and the surface self-diffusivity of host matter denoted by σD~ , 

 

σ
σ

σ

σσσ
σ Γ=

Ω
=

Μ
=Μ

kT
Dh

kT
D

kT

~~
ˆ , (2.3.42) 

 

Hence, for the future discussions, the following compact form will be used, which is 

more suitable to take other driving forces such as the electromigration drift motion of 

surface atoms into considerations: 

 

( ) *ˆ
bJ g g eZσ σ σ β σκ ϑ∂ ⎡ ⎤= Μ Ω + −⎣ ⎦∂

 (Surface Flux) (2.3.43) 
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Where σΜ̂  may be called surface atomic mobility, and it has the dimension given 

by ( ) 1sec. −erg .  

 

The generalized mobility, bβΜ ( )sec/2cm , associated with the incoming bulk 

diffusion flux is related to the transformation rate of chemical species from bulk 

phase to the interfacial layer or vice versa over the activation energy barrier denoted 

by bGβ
∗∆ . Hence, it can be defined according to the transition rate theory of chemical 

kinetics advocated by Eyring (Yeremin, 1979), as: 

 

exp b
b

GkT
h kT

β
β

∗⎛ ⎞∆
⎜ ⎟Μ = −
⎜ ⎟
⎝ ⎠

 (2.3.44) 

 

In the future formula one will use rather normalized mobility, which may be 

defined by ˆ /b b kTβ βΜ =Μ , which has the following dimension ( ) 12 .seccm erg − .   

 

 

2.4. Mathematical Model for the Evolution Dynamics of the Surface of 

interconnect  

 

The present model developed in this chapter considers not only the drift-diffusion of 

chemical species on the realistic surface but also the direct transfer of chemical 

species between bulk phase and the second phase through the interfacial layer as a 

dominant transport mechanisms.  
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The time and the scale variables   and  t  are normalized in the following manner, 

first of all an atomic mobility associated with the mass flow at the surface layer is 

defined as it has been already done in section 2.3.1 by the Eq. (2.3.42). And then a 

new time scale is introduced by; 

 

σσσ
τ

gM
ro

o ˆ2

4

Ω
=  (2.4.1) 

 

where or  is the mean initial radius of void or hillock which can be obtained directly 

from π/oo Ar = , using the fact that the initial cross sectional area is oA . 

Similarly or  is used as a length scale. In the following formulas the bars over the 

symbols indicates the normalized and scaled quantities. 

 

The curvilinear coordinate along the surface (arc length), , the interconnect with 

w , and the local curvature, κ , that represents the capillary effect are normalized 

with respect to length scale and the system time, t , is normalized with respect to 

time scale as shown below:  

 

or/= , orww /= , or κκ =   and ott τ/= ,  (2.4.2) 

 

The volumetric Gibbs free energy difference between the bulk phase and the second 

phase can be normalized by using the specific Gibbs free energy of the interfacial 

layer, denoted by σg , 
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b o
b

g r
g

g
β

β
σ

=   (2.4.3) 

 

The electrostatic potential generated at the surface may be normalized with respect to 

the remote applied electric field denoted by 0E  and it is given by 

 

oorE
ϑϑ =   (2.4.4) 

 

The relative importance of electromigration with respect to capillary forces can be 

easily represented by a single variable, χ , and that may be called as the electron 

wind intensity, as it will be shown later this is a very important experimental 

parameter in the simulations. 

 

σσ
χ

g

rEZe oo

Ω
=

2

 (2.4.5) 

 

and similarly one may normalize the generalized mobility ˆ
bβΜ  associated with the 

interfacial displacement reaction taking place during the growth process, with respect 

to the mobility of the surface diffusion denoted by σΜ̂ , 

 

 
2ˆ

ˆ
b o

b

rβ
β

σ

Μ
Μ =

Μ
     (2.4.6) 
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After these normalizations, the normal displacement velocity for the ordinary points 

can be obtained by using the surface flux, given by Eq. (2.3.40), and the incoming 

net lateral flux density, given by Eq. (2.3.41): 

 

( ) ( )( , )ord b b bv D g gβ β βϑ θ χϑ κ κ∂ ∂⎡ ⎤′′= + + −Μ +⎢ ⎥∂ ∂⎣ ⎦
 (2.4.7) 

 

Where, the angular dependent post factor ),( θϑD ′′  denotes that the surface drift-

diffusion is anisotropic.  

 

The first group of terms in above partial differential equation (2.4.7) represents a 

rather conventional approach and closely related to the mass accumulation due to 

surface diffusion along the void interfacial layer. The second group of terms is due 

to the mass flow associated with the chemical species transfer between bulk phase 

and the second phase having curved advancing boundary as a reaction front. This 

additional contribution to the void displacement process is a natural and rigorous 

out come of the novel application of the irreversible thermodynamics by Ogurtani 

(2000) to the curved interfaces using a rather realistic concept of surface phases 

with finite extent as originally proposed by Guggenheim (1959) and Van Der 

Waals and Baker (1928), rather that the hypothetical Gibbs (1948) description. 
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CHAPTER 3 

 
MATHEMATICAL MODEL  

&  

NUMERICAL PROCEDURES 
 

 

3.1.  Introduction 

 

After the normalization procedures, the normal displacement velocity for the 

ordinary points was obtained as  

 

( ) ( )( , )ord b b bv D g gβ β βϑ θ χϑ κ κ∂ ∂⎡ ⎤′′= + + −Μ +⎢ ⎥∂ ∂⎣ ⎦
 (3.1.1) 

 

According to the extensive experimental studies performed by Blech (1976) and his 

coworkers (Kinsbron et al. 1977), at the end of the incubation period the steady 

state concentration profile established in the sample and over-all drift-diffusion 

phenomenon is controlled by the interface transfer reactions at the cathode and the 

anode ends. These observations give very strong indication that the vacancy 
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concentration stays invariant at the advancing surface layer. Therefore, under any 

circumstances for gross computer simulations, it is a reasonable approximation to 

assume that the normalized Gibbs free energy of interfacial reaction stays constant 

of time and space (isotropic), namely 0bgβ∇ = . Then Eq. (3.1.1) becomes, 

 

( ) ( )( , )ord b b
rv n D g
t β βϑ θ χϑ κ κ∂ ∂ ∂⎡ ⎤′′= ⋅ = + −Μ +⎢ ⎥∂ ∂ ∂⎣ ⎦

 (3.1.2) 

 

In the present model, a constant electric field oE  is imposed far away from the 

surface, which generates an electrical field denoted by E, having zero normal 

components at the second phase – interconnect interfacial layer. In this model it is 

also assumed that the vacancy concentration is kept constant at the upper and lower 

boundaries of interconnect.  

(-)(+)
Surface (Edge) Void

Hillock

Interconnect

 

Figure 3.1.1: The schematic representation of the hillock and edge void together. 

 

3.2.  Numerical Methods 

 

In the following subsections the numerical methods are discussed as in the order as 

the computer program, which is a C++ code. 
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i. Initial System  

 

At the initial state, system composed of the interconnect surface which is simulated 

by a finite number of nodes using predetermined segment lengths. The positions of 

the nodes are defined by reference to the cartesian coordinates and represented by 

the three dimensional vectors, described as 
0
y
x

r i = , for taking the advantage of 

vector algebra. 

 

After knowing the node position vectors, it is straight forward to calculate the 

segment lengths, s , and the centroid position vectors, cr , such as: 

 

i
i rs ∆=  where iii rrr −=∆ +1  (3.2.1) 

and 

2

1 ii
i

c
rrr +

=
+

 (3.2.2) 

 

 

ii. Calculation of the Turning Angles at the Nodes 

 

The turning angles at the nodes are calculated by using the definitions of the vector 

and the dot products of the two vectors and the figure 3.2.2.  
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1
1

1

1

1

arcsin           if  0 

arcsin    otherwise

i i
i i

i i

i
i i

i i

r r r r
r r

r r
r r

θ

π

−
−

−

−

−

⎧ ⎫⎛ ⎞∆ ×∆⎪ ⎪⎜ ⎟ ∆ ⋅∆ ≥
⎪ ⎪⎜ ⎟∆ ∆⎪ ⎝ ⎠ ⎪= ⎨ ⎬

⎛ ⎞⎪ ⎪∆ ×∆⎜ ⎟−⎪ ⎪
⎜ ⎟∆ ∆⎪ ⎪⎝ ⎠⎩ ⎭

 (3.2.3) 

i

i+1i-1
 

Figure 3.2.1: The segment turning angle, iθ , at the node i. 

 

 

iii. Calculation of Node Curvatures 

 

The curvatures at the nodes can be evaluated at each node by using a discrete 

geometric relationship in connection with the fundamental definition of radius of 

curvature and the normal vector. 

 

Let us define some geometric relationships; first of all the curvature of a circle with 

radius iρ  (radius of curvature) is iρ/1  and furthermore three points in the plane 

define a unique circle whose circumference pass from all of these three points. 

Figure 3.2.2 shows such a circle that passes from the three successive surface nodes 

ii   ,1− , at which the local curvature is wanted to calculate, 1  and +i  by using the 

known values of the segment lengths, is , and the segment turning angle iθ . 
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i+1

i-1

i

 

Figure 3.2.2: The unique circle that pass from the three successive void nodes.  

From figure 3.2.2 one can immediately write down the following identities. 

 

2sin( )
i

i
i

sρ
α

=  (3.2.4) 

and 

2sin( )1 i
i

i is
ακ

ρ
= =   (3.2.5)  

 

The tangent of the angle iα  can be formulated as follows: 

 
1

sin( )tan( )
cos( )

i
i

i
i

i

s
s

θα
θ−

=
+

 (3.2.6) 

Using the Eq. (3.2.5) and (3.2.6), the local curvature is given by 

 

1

sin( )2sin atan
cos( )

i

i
i

i
i

i

s
s
s

θ

θ
κ

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=   (3.2.7)  
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iv. Calculation of the Local Line Normal Vectors  

 

In order to calculate the normal vectors at the nodes, one can easily write 

that ( ) 1/ 2i iβ π α −= − . Then first multiply 1ir −∆ , which is the vector that connects 

the successive nodes by the clockwise rotation matrix in order to obtain a vector 

along the local line normal vector as shown below, 

 

1

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

i i
i i

i in r
β β
β β −

− − −
= − − ⋅∆  (3.2.8) 

i-1

i

i+1

 

Figure 3.2.3: The unique circle that pass from the three successive void nodes.  

 

After that it is straightforward to calculate the local line normal vector namely, 

iii nnn /ˆ = . 
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v. Calculation of the Electrostatic Potentials by using the Indirect 

Boundary Element Method solution of the Laplace’s Equation 

 

At this point before proceeding further, a brief description of the indirect boundary 

element method (IBEM) is given, and then by using this method the electrostatic 

potentials at the surface is calculated. 

 

An initial restriction of the BEM was that the fundamental solution (FS) to the 

original partial differential equation was required in order to obtain an equivalent 

boundary integral equation. 

 

In IBEM the solution is again obtained by the superposition of FS’s but instead of 

the sources being located at a finite number of points outside the domain they are 

distributed continuously over its boundary. The intensity of the distribution is 

usually known as the density function (DF). The partial differential equation is 

automatically satisfied at every interior point of the domain, and the only thing that 

is required is to satisfy the boundary conditions by the suitable choice of the DF. 

Once the DF has been solved, physically meaningful results at boundary and 

interior points of the domain are computed by integration over the boundary.  

 

In this problem one is seeking the solution of a Laplace equation in a two 

dimensional domain that is given by the following equation 

 

0)(2 =∇ rϑ  (3.2.9) 
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With the following boundary conditions, namely Neumann boundary conditions, 

 

0ˆ)(ˆ)(ˆ =
∂

∂
⋅=∇⋅ r

r
rnrn ϑϑ  (3.2.10) 

 

Where the scalar function )(rϑ  is the electrostatic potential at the boundaries. 

 

For a two dimensional problem, the source is assumed to be distributed along a line 

of infinite length from −∞=z  to ∞=z  and the fundamental solution ),( QPU , 

which satisfies the Laplace equation and represents the field generated by a 

concentrated unit charge at P (source point) acting at a point Q (field or observation 

point), is given by (Paris and Canas, 1997): 

 

r
QPU 1ln

2
1),(
π

=  (3.2.11) 

 

where r is the distance from source point to field point. 

 

By using the FS, given in Eq. (3.2.11), the directional derivative of the FS, which 

satisfy Laplace equation, can be obtained as,   
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Where θ  is the angle between the line QP and the outward normal n̂  as shown in 

figure 3.2.4. Figure 3.2.5 shows the variation of the directional derivative of FS 

where the flow is in the x direction. 

n̂
θ

Q

r
P

S

 

Figure 3.2.4: Notation for the FS of Laplace Equation. 

 

In the IBEM, one seeks a solution in the form of 

 

( ) ∫=
S

PdSPQPUQu )(),( µ  (3.2.13) 

 

Where the density function )(Pµ  is the intensity of sources, which are continuously 

distributed over the boundary S of the domain. In two-dimensional problems, dS  

means with respect to arc length. The subscript P  means that in the integration the 

point moves over the boundary whilst the point Q stays still. Since ),( QPU  
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satisfies the governing partial differential equation everywhere except at P, )(Qu  as 

defined by Eq. (3.2.13) satisfies the differential equation at all interior points of the 

domain, but not on its surface S. Eq. (3.2.13) is referred to as the integral 

representation. 

 

At this point the only thing that must be satisfied is the boundary conditions. When 

considering how to do this, it should be borne in mind that the solution must satisfy 

the governing partial differential equation at all points inside the domain and also 

on the surface S. The integral representation does not do this, and it follows that for 

the Neumann boundary conditions it is necessary to equate the limiting values as Q 

on S is approached from inside the domain of )(Qu  and )(ˆ Qun ∇⋅  as defined by 

Eq. (3.2.13) to the given boundary data. 

 

ˆ (  )n Q
Q

SQ′

 

Figure 3.2.5: Satisfaction of boundary condition in the IBEM 

For the Neumann condition, one must set the limiting value as Q’ approaches Q 

(Figure 3.2.5) of the derivative in the direction )(Qn  of )'(Qu  as defined by Eq. 

(3.2.13) to its given value )(Qt . The function )',( QPU  is bounded and so it is 

permissible to differentiate under the integral sign: 
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 (3.2.14) 

 

Where )',( QPT  is given by Eq. (3.2.12) 

 

One may now write 

 

)()'(lim
'

QtQ
n
u

QQ
=

∂
∂

→
 (3.2.15) 

 

To illustrate the behavior of the function )'(/ Qnu ∂∂ as Q’ approaches and passes 

through S at Q’ let us take Q to be on a straight part of the boundary of a two-

dimensional domain, and let us suppose that over this straight part of the boundary 

)(Pµ  is constant and therefore equal to )(Qµ . ),( nQS  denotes the straight part AB 

of the boundary as shown in figure 3.2.8, where ε  denotes the distance 'QQ . 

 

)'()'()'( 21 QIQIQ
n
u

+=
∂
∂  (3.2.16) 

 

where 

 

∫=
),(

1 )()',()'(
nQS

PdSPQPTQI µ  (3.2.17) 
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and 

 

∫
−

=
),(

2 )()',()'(
nQSS

PdSPQPTQI µ  (3.2.18) 
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Figure 3.2.6: Limit of integral over AB as Q’ approaches Q 

 

The function )'(2 QI  varies continuously as Q’ approaches and passes through S. 

When Q’ is inside the domain as shown in figure 3.2.6, 

∫∫
−−

==
α

α

θ
π

µµ
π
θ d

r
QdsP

r
QI

n

n 2
1)()(

2
cos)'(1  (3.2.19) 

 

where 
ε

α n1tan −= . By integrating and substituting limits one finds that 

 

π
αµ )()'(1 QQI =  (3.2.20) 

 

and so since α  tents to 2/π  as Q’ approaches Q, 
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)(
2
1)'(lim 1

'
QQI

QQ
µ=

→
 (3.2.21) 

 

When Q’ is at Q, 0)',( =QPT  for all P  in ),( nQS , and so 0)(1 =QI . Therefore, 

 

)(
2
1)(),()'(lim

'
QdSPQPTQ

n
u

S
P

QQ
µµ +=

∂
∂

∫→
 (3.2.22) 

 

Substituting this result into Eq.3.2.15 gives 

 

)()(),()(
2
1 QtdSPQPTQ

S
P =+ ∫ µµ  (3.2.23) 

 

which is the integral equation for the Neumann boundary condition. 

 

For the purpose of numerical analysis there is a significant restriction that is the 

point Q can not be located at an edge or corner, or at any point at which )(Qt  is 

discontinuous. Edges and discontinuous )(Qt  occur frequently in engineering 

analysis. As the point P on S approaches Q, for two-dimensional case it remains 

bounded. It should be borne in mind however that in the analysis leading to this 

conclusion it is supposed that )(Qµ  is bounded and indeed continuous, whereas 

analogy with the distribution of electrical charge over a conducting surface suggest 

that edges, corners and discontinuities of )(Qt . The generality of the method may 

therefore be greater than that suggested by existing mathematical analysis. 
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In the simplest implementation of the IBEM of solution of Laplace’s equation, the 

boundary S is represented by straight-line elements in two dimensions, and it is 

supposed that over each of these elements )(Qµ  is constant. Simultaneous 

equations for the value of )(Qµ  are obtained by taking point Q in Eq. (3.2.13) to be 

located at the centroid of each of these elements in turn. Let there be N elements 

N21 S , ... , , SS , then for the present problem, the simultaneous equations are 

 

( ) ( ) ( )∑
=

=∆+
N

j
ijiji QtQTQ

12
1 µµµ , Ni  , ... 2, ,1=  (3.2.24)

  

where 

 

( )∫=∆
j

j
S

pijij dSQPTT ,  (3.2.25) 

 

Since in Eq. (3.2.24) the point iQ  is at the centroid of an element, the surface 

smoothness condition for validity of that equation is always satisfied. 

 

For a finite domain, the matrix of equation coefficients is singular in the limit as the 

number of elements tends to infinity and it is necessary for example to take )(Qu  to 

be zero at one of the elemental centroids; Eq. (3.2.24) is then written at that centroid 

and at all the others. For an infinite domain, the integral representation can model at 

infinity ∫=
S

p
o

dSP
r

Qu )(1ln)( µ where or  is distance from an arbitrary chosen 

reference point in two dimensions, but not a non-zero constant value. Therefore, the 
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solution of the Neumann boundary value problem, and the matrix of equation 

coefficients are not singular in the limit as the number of elements tends to infinity. 

 

It is possible to evaluate analytically the integral ijT∆ : note that since the elements 

are straight, 0),( =ii QPT  everywhere on the element iS  and so in Eq. (3.2.14), 

0=∆ iiT  and leading diagonal coefficients all equal ½. The matrix coefficients of 

Eq. (3.2.24) are dimensionless in the sense that they have the same numerical values 

regardless of the choice of the unit of distance. 

 

Here let us turn back to the problem at which the direction of the applied electric 

field is in the positive x direction. 

 

Now let us seek a solution as the sum of two parts, these being the electrostatic 

potential due to applied electric field that would exist if the void were not there, and 

a perturbation of that solution chosen so that the sum of the two parts satisfies the 

boundary conditions.  

 

)()()( III rrr ϑϑϑ +=  (3.2.26) 

 

The boundary condition given by Eq. (3.2.10) indicates that the electric field at the 

boundary along the boundary normal direction is zero. 

 

0)()())(())((         

))(()(
IIIIII =Ε+Ε=−−=

−=Ε

QQQgradQgrad

QgradQ

ϑϑ

ϑ
 (3.2.27) 
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For the present problem; if there is no void inside the interconnect the electrostatic 

potential that corresponds the electrostatic applied voltage along the negative x 

direction according to the coordinate system shown in figure 3.2.9, is given by 

 

)cos(
0
0
1

)(I φϑ rErExEQ ooo −=⋅−=−=  (3.2.28) 

 

From the solution in Eq. (3.2.27), the normal component of the electric field on the 

boundaries may be calculated as 

 

)cos()(ˆ))(()( 0
III φϑϑ EQnQgradQ −=∇⋅−=−=Ε  (3.2.29) 

 

By comparing the Neumann boundary conditions given in Eq. (3.2.27) and the Eq. 

(3.2.29) it is found that the normal component of the electric field due to the 

fictitious charges distributed along the boundaries have to be given by 

 

)cos()()( 0
III φEQQ =Ε−=Ε  (3.2.30) 

 

Now the problem is to adjust the magnitude of the fictitious charges, denoted by iµ , 

such that to satisfy the Eq. (3.2.30) in order to satisfy the boundary conditions. 

Noting that the normal derivative of the FS is ),( QPT , the boundary condition at 

the point iQ  can be satisfied by using the Eq. (3.2.24). 



 84

 

( ) ( ) ( )∑
=

Ε=∆+
N

j
ijiji QQTQ

1

I
2
1 µµ , (3.2.31) 

 

where N is the number of charges and ( )jiij QPTT ,∆=∆ . After finding the charge 

distribution that satisfy the boundary conditions the )(II Qϑ  can be calculated as 

 

( ) ( )∑
=
∆=

N

j
jiji QUQ

1

II µϑ , (3.2.32) 

 

where ( )jiij QPUU ,∆=∆  and it may be calculated by using the following integral 

 

( )∫=∆
j

j
S

pijij dSQPUU ,  (3.2.33) 

 

These integrals can be calculated numerically by using the trapezoidal rule. By 

assuming that the charge density function at a given segment distributed uniformly. 

 

Then one obtains the following system of simultaneous equations, which can be 

solved for the unknown fictitious charges iµ . 

I
, iijiT Ε=⋅∆ µ  (3.2.34) 

 

The nodes described in this problem contain three different set at each of which the 

centroids are continuous. These are the upper interconnect edge, the lower 
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interconnect edge and the void circumference, whose number of centroids are 

denoted by un , ln  and vn  respectively. Then the connectivity matrix is given in the 

figure 3.2.7, where if inner void enter the grain u l vmm n n n= + +  , otherwise 

u lmm n n= + . 
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Figure 3.2.7: The connectivity matrix 

 

For the solution of above linear system, Gaussian elimination with back substitution 

method is performed. Also in this method a pivoting strategy is applied for the error 

reduction. 

 

vi. Anisotropic Surface Diffusivity 

 

The anisotropic diffusivity of surface atoms is incorporated into the numerical 

procedure by adapting the following relationship, 

 

( )[ ]{ }φθφθ σσ −Α+= mDD o 2cos1),(~   (3.2.35) 
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where 0
σD  is the minimum surface diffusivity corresponding to a specific surface 

orientation, θ  is the angle formed by the local tangent to the surface and the 

direction of the applied electric field.Α , m, and φ  are dimensionless parameters 

that determine the strength of the anisotropy, the grain symmetry through the 

number of crystallographic directions that corresponds to fast diffusion paths, and 

the orientation of the symmetry direction with respect to the direction of the applied 

electric field oE , respectively. For brevity this angular dependent part of the 

diffusivity in above equations is denoted by ),( θϑD ′′ . Where mN 2=  corresponds 

to the rotational degree of symmetry or fold-number. 

 

The following figures are obtained by using Eq. (3.2.35), in which the minimum 

surface diffusivity is taken as unity namely 1oDσ = . 

 
 

 

 

 

 

 

Figure 3.2.8: Diffusion Anisotropy, 

0 1,   5,   1  and  0D mσ θ= Α = = =   

Figure 3.2.9: Diffusion Anisotropy, 

0 1,   5,   1  and  / 3D mσ θ π= Α = = =  
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Figure 3.2.12: Diffusion Anisotropy,  

a)  0 1,   10,   3  and  0D mσ θ= Α = = =   

b) 0 1,   10,   3  and  / 6D mσ θ π= Α = = =  

 

 

 

 

 

Figure 3.2.10: Diffusion Anisotropy, 

0 1,   5,   2  and  0D mσ θ= Α = = =  

Figure 3.2.11: Diffusion Anisotropy, 

0 1,   5,   2  and  / 4D mσ θ π= Α = = =  

a) b)
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vii. Explicit Euler’s Method 

 

Explicit Euler’s method (Mathews, 1992) is used to perform the time integration of 

Eq. (3.1.2) for the surface evolution. The time step is determined from the 

maximum surface velocity and minimum segment length such that the displacement 

increment is kept constant for all time step increments. This so-called adapted time 

step auto-control mechanism combined with the self-recovery effect associated with 

the capillary term guarantees the long time numerical stability and the accuracy of 

the explicit algorithm even after performing several hundred to several millions 

steps. 

 

 

viii. Remeshing 

 

In the present study the numerical methods require that the segment lengths must 

not be exceeded a critical value in order to keep the accuracy in an acceptable level. 

And also as the number of nodes increase the computation time is also increases. 

These two statements require that the segment lengths must be keep in a range 

between the minimum and the maximum segment lengths, [ ]maxmin , ss , in terms of 

a prescribed percentage of the mean distance. 

 

If the distance between any two neighboring nodes becomes longer than maxs , then 

the mid-point is converted into a node. Similarly, if the distance between any two 
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neighboring nodes becomes shorter than mins , then the further node is removed 

from the mesh and the new segment is formed.  

 

 

ix. The Flowchart of the Program  

 

After explaining the numerical methods used in the program, let us define the all 

program as a flowchart, which can be seen in Figure 3.2.13. 
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Figure 3.2.13: Program flow chart. 
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CHAPTER 4 

RESULTS & DISCUSSION 

 

In these simulation studies, the kinetics of voids and hillocks evolutions, on 

unpassivated and conducting metal single crystal lines, typical of modern sub-

micron interconnects, made of thin metal strips attached to the substrates is 

investigated by computer simulations. The effect of the surface drift-diffusion 

anisotropy on the surface morphological variations under the action of the 

electromigration and capillary forces are fully explored, using variety of tilt angles 

and surface textures in face centered cubic crystals. 

Figure 4.1: Experimental Setup that is 

simulated in this thesis. 

 

The first time in the literature, the formation and the penetration of the 

electromigration (EM) induced voids into the bulk region, under variety of the 

surface textures and tilt angles are observed in the present simulated studies. 

Depending upon the tilt angle and the degree of symmetry, and finally the intensity
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 of the electron wind, these EM induced voids may have very different 

morphologies such as wedge, slit and almost spherical in shapes. The slit and wedge 

shapes EM voids after having short dragging times may reach the interface between 

interconnect and the substrate creating fatal circuit break down. The rounded EM 

voids which occurs mostly under the high electron wind intensities 25χ ≥ , show 

steady drift towards the cathode end without changing their shapes.  

 

The edge void lying on the low symmetry surfaces having large tilt angles 

( )135θ =  with respect to the direction of the electron wind develops oscillatory 

undulations on the surface, which separates only along the windward but also along 

the leeside. In certain surface textures and electron wind combinations the edge 

void may be dispersed completely without leaving any trace on the surface.  

 

In some case the edge Hillock may create a solitary wave moving steadily towards 

the anode end of the interconnect line. In certain combinations, a small peace of 

material may be detached from the Hillock, and taking almost perfect spherical 

shape moving towards the anode due to the shunt effect of the underlayer.  

 

All together 192 different combinations of the surface textures, drift-diffusion 

anisotropy coefficients, and electron wind intensity parameters are subjected to this 

simulation work. We have employed four different electron wind intensity 

parameters, ( 5,  10,  25  and 50χ = ), which covers from the moderate up to the high 

current densities ( 9 12 210 10  A/mj = − ) that are mostly utilized in normal and 

accelerated laboratory test studies. As an initial state for the surface topology, a 
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Gaussian shape void or hillock is introduced on top of the otherwise perfectly 

smooth plane surface. We have also adapted large aspect ratios, 20β =  with 

reference to the width of the void or hillock present at the surface, and utilized 

quasi-infinite boundary conditions such as that the surface curvature and their 

higher derivates are all equal to zero at the anode and cathode edges. The constant 

and uniform electric field is applied to the specimen, which insures that there is 

steady flow of atomic species from the cathode end to the anode edge of the 

specimen. The induced electric field due to surface defects and internal voids are 

calculated by indirect boundary element method (IBEM), using modified Neumann 

boundary conditions, which leaves the cathode and anode edges completely open 

for the current flow, and closes the upper and lower surfaces, and avoids any current 

penetration to the internal voids. We also assumed that the lower surface is rigidly 

attached to the substrate, and system is complete free from internal stresses. 

 

In subsequent sections we will present our finding very systematic fashion for the 

edge voids and the hillocks separately, and discuss their evolution kinetics in terms 

of electron wind intensity parameter and the surface texture morphologies. We will 

also introduce some analytical expression for the incubation times for the formation 

of EM voids and the decay relaxation time for hillock and edge voids. The dragging 

kinetics of EM voids is also examined limited extend, which doesn’t permit to 

produce any analytical expression yet. 
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4.1. Surface Void Configuration: 

 

The morphology of an initially perfectly flat surface having a perturbation in the 

shape of Gaussian edge-void is demonstrated in Fig. 4.1.1., where the positive 

direction of electric field is from the left (anode) to the right (cathode). The scaled 

interconnect width is denoted as w  and the void depth and the specimen length are 

given by   and  La , respectively. These are all scaled with respect to the arbitrary 

length denoted by o . Three different crystal planes in a FCC structure, 

{ } { } { }110 , 100 111and  are considered, which may be charactered by two, four and 

six fold symmetry axises, respectively. 

-10 -8 -6 -4 -2 0 2 4 6 8 10

-1

0

1

 

Figure 4.1.1: Initial System with edge void. 3,   a=1  and L=20w = . 

 

i. Two Fold Crystal Symmetry, { }110  Planes in FCC: 

  

The interconnect having two fold symmetry with zero degree tilt angle 0θ =  with 

respect to the electric field direction tends to transform the Gaussian shape edge-

void into the slit like shape stretched to the windward direction. Eventually, the tip 

of this slit type void breaks down and generates an internal void having various 

different in forms. The actual form of this newly created void is strongly affected by 
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the intensity of the electron wind. At low electron wind intensities 10χ ≤  as can be 

seen from Fig. (4.1.2), at first a large size slit shape internal void forms, which 

migrates slowly towards the lower surface attached to the substrate. Finally it hits 

the lower interface of the sample creating fatal and deep crack there. This process 

doesn’t stop there, and rather repeats itself till the complete electrical breakdown 

takes place. On the other hand, at moderate and high electric wind 

intensities, 25 50χ = − , the almost cylindrical in shape and small in size internal 

void forms, which slowly drifts towards the cathode end of the sample as illustrated 

in Fig. (4.1.3). The size of these internal voids seems to be inversely proportional 

with the electron wind intensities. There is also strong tendency for the formation of 

multiple voids popping out from the same source, namely from the edge void, 

which may act as an continuous source up to certain extent. The incubation times 

for the creation of EM voids strongly depend on the applied electric field. At high 

electric fields, such as X=50, the small size void forms with relatively short 

incubation time. For the moderate electron wind intensities, the incubation time for 

the void creation becomes longer. At low electron wind intensities , a close 

observation shows that during long the incubation period, the slit like void embryo 

grows steadily, and finally detached from the mother edge-void, reaches the lower 

surface of the interconnect and causes fatal failure. 
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Figure 4.1.2: Surface morphology evolution for edge void. Slit like shape stretched 

to the windward direction and detachment of the void.  
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Figure 4.1.3: Morphological evolution of the surface at high electron wind intensity 

(small internal void). 



 97

  

As can be seen from Fig. (4.1.4), in the case of 45θ =  degrees tilt angle, the edge-

void, which is initially established on the flat surface starts to disappear after 

turning on the applied electric field, at low and moderate electron wind 

intensities 25χ ≤  without leaving any trace. The intensity the applied electric field 

and the degree of diffusion anisotropy affect only the total decay time of the edge-

void. At very high electron wind intensities 50χ ≥ , interconnects having 45° tilt 

orientation show EM induced voiding having extremely short life time. In this high 

EM regime, the edge-void perturbation is completely disappearing from the surface 

after popping up few, small and short leaving EM voids.  
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Time = 0.82408

 

Figure 4.1.4: Morphological evolution of edge void to defect free surface (healing 

effect). 
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When the tilt angle changed to 90°, the edge-void changes its morphological 

evolution behavior totally, especially at low and moderate electron wind intensities. 

This is a typical and very unique regime as can be seen in Fig. (4.1.5) at which one 

observes the formation of a Solitary Wave by the transformation of the Gaussian 

shape into the wedge shape having sharp drop on leeside. This Solitary Wave, 

which is first time detected by us in computer simulation experiments, migrates 

towards the cathode edge with constant velocity without showing any indication of 

dispersion and dissipation of energy. At very high electron wind intensity regime, 

the morphological evolution of the edge-void becomes extremely interesting, 

namely: the edge void changes its shape into the wedge form similar to the case 

mentioned above. But now! It starts to emanate very small and rounded shape void 

from its leeward side. This EM induced tiny void, as seen clearly in Fig. (4.1.6), 

starts to drift towards windward side, and passes its slowly dragging mother, and 

then continues in traveling in the direction of the cathode edge while tracing rather 

straight path. The rate of the overall processes is almost linearly depending on the 

diffusion anisotropy coefficient denoted by A in Ogurtani’s formula. 
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Figure 4.1.5: The formation of a Solitary Wave by the transformation of the 

Gaussian shape, and migration to cathode. 
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Figure 4.1.6: Morphological evolution of the surface at high electron wind intensity 

(small internal void). 
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 135θ =  orientation of the tilt angle with respect to the direction of the electron 

wind is very critical for the development of the surface topography. The preset 

edge-void perturbation on the surface becomes unstable immediately after turning 

on the electric field. At first the Gaussian shape edge-void transform into a wedge 

having sharp edge on the windward side, and later the formation of oscillatory wave 

on the lee and windward sides appears with deceasing in amplitude in space. The 

wedge shape edge-void finally ejects a small but rounded internal void to the bulk 

region, and it disappears completely at the background oscillatory waves. These 

surface undulations continue to spread all along the surface in both directions. This 

phenomenon occurs regardless the intensity of the electron wind as long as 1χ ≥ , 

below which it may be stabilized because of the predominating effect of the 

capillary forces over the electron winds. 

 

Geometrical behavior of edge void evolution for two fold crystal symmetry is 

summarized in Table 4.1 in this table failure, decay, and incubation times are also 

given. Abbreviations for the table are as follows: 

D – Decay 
G – Grow 
S – Solitary wave 
ST – Step like shape  
OS – Oscillatory wave 
I – Instability 
F – Rapture 
V – Void formation 
tv – Void incubation time 
td – Void or Hillock decay time 
tf – Failure time 
ts – Starting time 
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Table 4.1.1: Summary of edge void evolution for two fold crystal symmetry.  

VOID θ 0 45 90 135 

 
 

X 

 
 
D   m 
 

 
 
5 

 
5 

D  
td= 0.5441 

D  
 td= 0.1417 

D  
 td = 0.83 

OS  
t= 0.04585 
V   
tv = 0.3419 
F    
tf= 0.3675 

  
10 

V   
tv = 0.1474 
(slit like edge 
 void grow) 

D  
td = 0.08177 

S 
G 

OS  
ts= 0.026 
F    
tf= 0.1793 

 
10 

 
5 

V  
tv =0.04168 

D  
td = 0.09878 

S  
(with little 
grow) 

OS  
ts= 0.01528 
V   
tv = 0.0709 

  
10 

V  
tv = .02011 

D  
td = 0.03143 

S 
G  
ts= 0.00725 

OS  
ts= 0.00628 
 

 
25 

 
5 

V  
tv = 0.003014 

D  
td = 0.0142 

S   
ts= 0.00245 
(without 
growth & 
shape change) 

OS  
ts= 0.00295 
V  
tv = 0.00844 

  
10 

V  
tv = .00175 

D  
td = 0.00323 

S   
ts= 0.00106 

OS  
ts= 0.00141 
V  
tv= 0.00598 

 
50 

 
5 

V  
tv = 0.000325 

V  
tv = 0.000616 

V  
tv = 0.00527 

OS  
ts= 0.001 
V   
tv = 0.0026 

  
10 

V  
tv = 0.0002 

V  
tv = 0.000362 

V  
tv = 0.00183 

OS  
ts= 0.00053 
V   
tv= 0.00236 
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ii. Four Fold Crystal Symmetry,{ }100  planes in FCC: 

  

In Fig. (4.1.7), the effect of the low electron wind intensity 10χ ≤  on the surface 

topology of an interconnect line with FCC structure having four fold crystal 

symmetry, and oriented with a tilt angle 0θ =  degrees is illustrated. The originally 

Gaussian in shape edge-void on the surface starts to evolve into a kink shape 

disturbance , which shows continuous growth in size while drifting towards the 

cathode end of the interconnect line. At the moderate wind intensities 25χ ≈ , the 

kink shape surface disturbance breaks down and creates very large wedge shape 

internal void, while becoming very close to the opposite sidewall of the 

interconnect. On the other hand, at e. the extremely high electron wind intensities 

50χ ≥ , the lower edge of the kinked shape surface void grows so much that 

eventually hits the opposite sidewall before having enough time to break down into 

internal daughter voids. Therefore this type textures are very critical and cause an 

open circuit failure by reaching the other edge. The failure time depends on the 

degree of anisotropy in diffusion coefficient and the electron wind intensity.  
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Figure 4.1.7: Morphological evolution of edge void to a kink shape disturbance. At 

final stage fatal failure of interconnect is seen. 

 

We also investigated the case where the tilt angle is 30θ =  degrees, and the general 

evolution behavior is demonstrated in Fig. (4.1.8) for low and moderate electron 

wind intensities 5 10χ = − . The void shows some shape variations while decaying 

and disappearing completely without leaving any trace on the otherwise flat surface. 

However, at very high electron winds 50χ ≥ a round shape daughter void may be 

created, which migrates towards the cathode edge. There may be multiple daughter 

void emanating from the same source at later times. 
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Figure 4.1.8: Morphological evolution of edge void to defect free surface (healing 

effect). 

 

The effects of 45° tilt on the edge surface topology may be studied at two different 

categories, namely; the low electron wind intensity, 10χ ≤  , and high and moderate 

electron wind intensity, 25χ ≥  regimes. The low current density regime disappears 

completely without leaving any trace on its back. In the case of moderate and 

current density domain, the edge-void changes its Gaussian shape by transforming 

into the slat-like configuration, and then emanates an internal void, which has 

almost perfect wedge form, pointing towards the windward direction. This wedge 

shape inner void migrates along the interconnect line towards the cathode end 

following a straight path. The mother edge-void after releasing the daughter void 
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slowly transforms into sawtooth type surface undulations. This highly localized the 

package of few sawtooth undulations starts to separate by adding more waves by 

keeping the original wave form invariant but increasing the number. This wave 

package drags towards the windward direction while keeping close track with 

motion of the drifting daughter void.  

  

When the tilt angle is changed to 60°, the edge-void starts to decease by generating 

surface undulations in all directions. The amplitudes of these waves become more 

pronounce and their wave form becomes sawtooth-like shape having relative steep 

windward edge. It seems that there is steady translational motion of this wave 

package towards the cathode end with constant growth in amplitudes. 
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Table 4.1.2: Summary of edge void evolution for four fold crystal symmetry.  

VOID θ 0 30 45 60 

 
X 

 
    m 
D 
     

 
5 

 
5 

K D   
td= 0.10695 

S 
(with growth) 

OS  
ts= 0.01448 

  
10 

K 
F    
tf= 0.4706 

D   
td= 0.06198 

S 
(with growth) 

OS  
ts= 0.00851 

 
10 

 
5 

K D   
td= 0.1427 

S 
(with growth) 

OS  
ts= 0.00553 

  
10 

K 
F   
tf= 0.2393 

D  
td= 0.08804 

S 
(with growth) 

OS  
ts= 0.00213 

 
25 

 
5 

K 
V   
tv= 0.10695 

D  
td= 0.0367 

V  
tv= 0.0113 
(move to cathode) 

OS 
ts= 0.00127 

  
10 

K 
F   
tf= 0.10695 

D  
td= 0.02805 

V  
tv= 0.01672 
(move to cathode) 

OS  
ts= 0.00053 

 
50 

 
5 

K 
 

V  
tv= 0.00406 

V  
tv= 0.00306 

OS  
ts= 0.00042 

  
10 

K 
F   
tf= 0.10695 

V  
tv= 0.002223 

V  
tv= 0.0033 

OS  
ts= 0.00022 

 
 

 

iii. Six Fold Crystal Symmetry, { }111  planes in FCC: 

   

The { }111  planes they have the highest symmetries compared to all other crystal 

planes in FCC structure. The orientation of the surface with zero tilt angle with 

respect to the electron wind direction at low current densities doesn’t create very 

much trouble. As may be seen in Fig. (4.1.9) the edge-void while dragging towards 

the cathode end, with increasing in intensity, changes its form into a kink-shape, 

which is somewhat tilted towards the windward side. This form may cause an open 
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circuit failure by reaching the other edge but the failure time becomes very long 

relative to the interconnects having surfaces with other crystalline textures 

(symmetries). At moderate and high electron wind intensities, the tip of the kink-

shape edge-void extents to much to the interior and a bottle neck forms. This bottle 

neck region finally breaks down, and creates very large internal void in wedge 

shape, which touches the opposite edge causes fatal circuit shut down. 
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Figure 4.1.9: Morphological evolution of edge void to kink shape. 

 

For 15° tilt angle, the edge-void regardless the intensity of the electron wind 

transform its shape into an inclined kink-form and migrates towards the cathode end 

with increasing in amplitude. The wave front becomes more and more steep on the 

leeward side, as can be seen in Fig. (4.1.10), during the traveling. At the end, it may 
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generate a step like surface morphology. After the step formed it may move towards 

cathode or stays stable. The situation may be more critical at very high current 

densities 50χ ≥ , and low aspect ratios , because of this steady increase intensity 

combining with steeping of the lee side, may cause substantial decrease in the cross 

section of the interconnect line and eventually circuit break down takes place by 

local joule heating. 
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Figure 4.1.10: Formation of a step like surface morphology. 

 

For 15° tilt angle, the edge-void regardless the intensity of the electron wind 

transform its shape into an inclined kink-form and migrates towards the cathode end 

with increasing in amplitude. The wave front becomes steeper on the leeward side, 

as can be seen in Fig. (4.1.10), during the traveling. At the end, it may generate a 
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step like surface morphology. After the step formed it may move towards cathode 

or stays stable. The situation may be more critical at very high current densities 

50χ ≥ , and low aspect ratios , because of this steady increase intensity combining 

with steeping of the lee side, may cause substantial decrease in the cross section of 

the interconnect line and eventually circuit break down takes place by local joule 

heating. 

 

When the orientation angle becomes 30°, as can be seen from Fig. (4.1.11) at low 

electron wind intensities, the edge-void transforms into a kink-shape step at the 

surface -having a steep edge on the windward side- which may multiply on the 

windward side while the wave package all together drifting towards the cathode 

end. At moderate and high electron wind intensities, a hip or hillock forms in front 

of traveling edge-void, which eventually over hangs and traps the edge-void as such 

that the edge void becomes an interior void. This very unusual process is more 

pronounce and fast when the diffusion anisotropy coefficient is low, about 5A ≤ . 

This self-trapped void becomes wedge shape and drags towards the cathode end. 

During the traveling period, it may or may not touch the opposite edge of the 

interconnect dependence upon the aspect ratio and the size of the initial Gaussian 

edge void with respect to the line width.  
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Figure 4.1.11: The edge-void transforms into kink-shape morphology. 

 

The tilt angle 45° in six fold symmetry, transform the Gaussian edge-void into 

oscillatory waves. These waves start to appear with small amplitudes and they 

spread in all directions while enhancing their strength. The meanwhile, the distorted 

edge-void with decreasing in strength drags towards the cathode end carrying the all 

package of subsidiary oscillations. This resembles the light source making 

translational motion while constantly emanating light waves in all directions. There 

is one difference, the source strength for the present case increases with time. This 

is a good example for the behavior of a completely regenerative nonlinear system, 

where the source even appealingly decaying in size itself (better to say the 

broadening in space), still it soaks constant energy from the blowing electron winds.  
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Table 4.1.3: Summary of edge void evolution for six fold crystal symmetry.  

VOID θ 0 15 30 45 

 
Χ 

 
    m 
D 

  
 
5 

 
5 

K 
F  tf= 0.9 

D 
ST 

K 
G 

OS  
ts= 0.00833 

  
10 

K 
F  tf= 0.5832 

D  
ST 

K 
G 

OS  
ts= 0.00546 

 
10 

 
5 

K D  
ST 

K OS  
ts= 0.00397 

  
10 

K 
F  tf= 0.135 

D  
ST 

K OS  
ts= 0.001907 

 
25 

 
5 

V tf= 0.07426 
(huge) 

D  
ST 

V  
tv= 0.079332 

OS 
ts= 0.000839 

  
10 

F tf= 0.06993 D  
ST 

K OS 
ts= 0.000457 
 

 
50 

 
5 

V tv= 0.0018 
(move to 
cathode) 

D  
ST 

V   
tv= 0.02618 

OS  
ts= 0.000268 
V   
tv= 0.00093 

  
10 

V tv= 0.02415 D  
ST 

K OS  
ts= 0.000150 

 
 
 

4.2. Edge Hillock Configuration 

 

During the examination of the evolution behavior of the edge- hillock morphologies 

under the action of the capillary and electrostatic fields, the following sample 

geometry is taken under consideration as in Fig. 4.1.1. As stated earlier the electric 

field is applied to the interconnect line from left to right direction. The scaled 

interconnect width and length is given by w  and  L  , respectively. The height of 

the Gaussian shape Hillock is denoted as a . 
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Fig. 4.2.1: Initial System with hillock. 3,   a=1  and L=20w = . 

 

 

i. Two Fold Crystal Symmetry, { }110  plane in FCC: 

 

The interconnect line with zero degree tilt angle and having a Gaussian shape of 

edge- Hillock shows two different types evolution behavior depending upon the 

applied electron wind intensity. As can be seen in Fig. (4.2.2), at very low current 

densities 5χ ≤ , the Hillock due time completely disappears leaving behind almost 

perfect flat surface. At low to high current densities, the situation is completely 

different. The top of the Hillock starts to over hangs on the leeward side. On the 

other hand, the lee side of the Hillock becomes more and more protruding deep into 

the bulk region, creating a bottle neck. The finally, the intruding part of the Hillock 

breaks down from the bottle neck portion becomes an interior wedge void. This 

newly created inner void, the size of which is somehow smaller higher the applied 

electron wind intensity, drifts towards the cathode end. The remaining part of the 

Hillock has still very long intrusion, which may act as a source for the multiple 

inner void generations by breaking-up. 
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Figure 4.2.2: Morphological evolution of Hillock to perfect flat surface. 

 

We also investigated the tilt angle 45° in our simulation studies,  and the typical 

results obtained are illustrated in Fig. (4.2.3) and Fig. (4.2.4). There are two distinct 

regimes for this tilt angle, depending upon the applied electron wind intensities.  

For low and moderate electron wind forces  5 25χ = − , the edge-Hillock without 

changing its general form slowly broadens and finally disappears completely 

without leaving any trace behind. The decay time depends upon the electric field 

intensity inversely and the diffusion anisotropy linearly as can be seen in Table 

(4.2.1). For high electron wind intensities 50χ ≥ , very interesting topological 

evolution occurs, which first time is observed by the computer simulation in the 

literature.  Namely, the edge Hillock because of very high wind starts to bend over 
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the leeside with certain degree of extrusion. Subsequently, this extruded part breaks 

up from the bottle neck portion, and becomes completely independent peach of 

object. In order to study the further behavior of this broken peace of metal, we 

allow it to be exposed to the electric applied electric field utilizing the fact that 

underlayer can act as shunt. The result as shown in Fig. (4.2.4) indicates that the 

broken peace takes the perfect circular shape and slowly drags towards the anode 

side of the interconnect line. The surface after the ejection of this peace of material 

becomes almost flat without any trace of perturbations.  
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Figure 4.2.3: Morphological evolution of Hillock to perfect flat surface. 
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Figure 4.2.4: Morphological evolution of Hillock to the bottle neck and detachment 

of piece of metal. 

The 90° tilting shows almost identical evolution morphologies regardless the 

intensity of the electron wind, only one modification, which occurs very high 

winds. The edge-Hillock transforms into edge-void shape, which migrates towards 

the cathode end. At moderate intensities a second edge-void may form behind the 

first one, creating doublet. For very high electron winds, the Hillock again 

transforms into an edge-void, which becomes intruded to the lee side, and finally 

breaking up from the neck region and generating a tiny inner void. It seems this 

process may repeat itself many times, since the leeward side of the edge void drifts 

much faster than the windward side; the both regions combine together at the top by 

trapping an empty space, which is nothing but a formation of an inner void. These 

newly formed inner voids migrate towards to cathode end. Strangely, this tiny void 

doesn’t follow a straight path but rather takes a route which closely traces the 
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contour line of the edge-void. This is due to the strong current crowding taking 

place between the inner void and the edge-void because of the extremely high 

electron current densities plus the very close proximities between these two defects. 

The tilt angle 135° always represent extreme instability and the formation of 

oscillatory wave packages on the lee as well as on the windward sides of the edge-

Hillock. The formation of the oscillatory waves doesn’t cause any reduction of the 

strength of the Hillock. Eventually for the moderate and high electron wind 

intensities, the windward edge of the hillock starts to intrude to the interior of the 

bulk region. This follows up by necking and ejection of an interior void. Hillocks 

also join these waves. These oscillatory waves also detach into grain and migrate 

towards cathode.  

 

Table 4.2.1: Summary of hillock evolution for two folds crystal symmetry.  

HILLOCK θ 0 45 90 135 
 

X 
 
    m 
D 

  
 
5 

 
5 

D  
td = 0.03404 

D  
td = 0.02509 

S 
(With growth) 

OS  
ts = 0.0221 

  
10 

D  
td = 0.0204 

D  
td = 0.01635 

S 
(With growth) 

OS  
ts = 0.0103 

 
10 

 
5 

V  
tv = 0.06384 

D  
td = 0.01627 

S 
(With growth) 

OS  
ts = 0.0165 

  
10 

V  
tv = 0.03606 

D  
td = 0.007115 

S 
(With growth) 

OS  
ts = 0.0034 

 
25 

 
5 

V  
tv = 0.00953 

D 
td = 0.01369 

S 
(With growth) 

OS  
ts = 0.0045 

  
10 

V  
tv = 
0.006703 

D  
td = 0.004735 

S 
(With growth) 

OS  
ts = 0.0016 

 
50 

 
 
5 

V  
tv = 0.0028  

Detachment of 
piece of metal 
t=0.002095 

V  
tv = 0.01125 

OS  
ts = 0.001 
Vtv = 0.00321 

  
10 

V  
tv = 0.00181 

Detachment of 
piece of metal 
t=0.0009407 

V  
tv = 0.00946 

OS  
ts = 0.0005 
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ii. Four Fold Crystal Symmetry 

 

The four fold crystal symmetry combined with the zero tilt angle may be very 

troublesome for the interconnects. In all range of electron wind intensities 

5 50χ = −  studied in this work, the edge-Hillock converts into a kink-like wave 

form, which immediately starts to multiply along the windward direction, especially 

at high electron wind intensities. The form of the individual waves are stabilized 

due time, by adapting almost perfect sawtooth shape. This spreading wave package 

shifts towards the cathode end. For the moderate electron winds, such as 25χ = , the 

lee side of the hillock transform into wedge shape intrusion pointing to the 

windward direction. This intrusion produces a very large internal void. This giant 

size void has very unusual form as illustrated in Fig. (4.2.5), namely; wedge shape-

doublet. Definitely it causes a fatal break down of the interconnect line, when hits 

the opposite edge.   
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Figure 4.2.5: Hillock morphological evolution to a sawtooth shape. 

 

As can be seen in Fig. (4.2.6), when the tilt angle becomes 30°, the edge-hillock at 

low and moderate electron wind intensities  5 25χ = −  dies off gradually,  with 

minor modification in shape such as small bending to lee side. At high intensities as 

illustrated in Fig. (4.2.7) the Gaussian shape hillock transforms into finger shape 

hillock bending towards the leeside. This bend finger shape hillock grows without 

any change in form, and shift rather fast towards the cathode edge, if one uses a 

high diffusion anisotropy coefficient such as 10A = . 
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Figure 4.2.6: Morphological evolution of Hillock to perfect flat surface. 
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Figure 4.2.7: Morphological evolution of hillock to finger shape hillock. 
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The general evolution behavior of the edge-Hillock at 45° tilt angle is illustrated in 

Fig. (4.2.8) and Fig. (4.2.9), for low and high electron wind intensities, respectively. 

In both extreme cases, the first edge-hillock transforms into the sawtooth 

morphology, and shifts towards the cathode end. In the case of high electron winds, 

the multiplication in the number of saw teeth is very obvious while it is drifting 

steadily along the windward direction.   
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Fig 4.2.8: Morphological evolution of hillock to sawtooth morphology. 
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Figure 4.2.9: Morphological evolution of hillock to sawtooth morphology. 

 

When the tilt angle changes to 60°,  the surface becomes very unstable, and the 

oscillatory waves on lee as well as on windward sides start to appear with 

increasing in intensities. In later stages, the form of these waves transforms into the 

sawtooth shape having rather sharp windward front. A typical situation is illustrated 

in Fig. (4.2.10), where 25χ =  and 10.A =  the intensity of the electron winds 

doesn’t affect the overall evolution behavior. 



 122

-10 -5 0 5 10

-1
0
1
2  a)

Time = 0.0013828

-10 -5 0 5 10

-1
0
1
2  b)

Time = 0.0096935

-10 -5 0 5 10

-1
0
1
2  c)

Experiment parameters: χ = 25, A = 10, m = 2, θ = 60

Time = 0.015656

 

Figure 4.2.10: Formation of oscillatory waves from initial hillock. 
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Table 4.2.2: Summary of hillock evolution for four folds crystal symmetry.  

HILLOCK θ 0 30 45 60 

 
X 

 
    m 
D 

   
 
5 

 
5 

K D 
td = 0.03638 

S  
G 

OS  
ts = 0.01259 

  
10 

K D 
td = 0.01725 

S  
G 

OS 
ts = 0.00635 

 
10 

 
5 

K D 
td = 0.03604 

S  
G 

OS 
ts = 0.004659 

  
10 

K D 
td = 0.01894 

S  
G 

OS 
ts = 0.002054 

 
25 

 
5 

V 
tv = 0.11135 

D 
td = 0.01711 

S  
G 

OS 
ts = 0.001345 

  
10 

F 
tf = 0.0525 

D 
td = 0.0175 

S  
G 

OS 
ts = 0.0006202 

 
 

50 

 
5 

K 
G 

Hillock move 
to cath. with 
decay 
td = 0.11818 

Double edge 
void 

OS 
ts = 0.000358 

  
10 

K 
G 

Hillock move 
to cathode 
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Double edge 
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OS 
ts = 0.000226 

 
 

 

iii. Six Fold Crystal Symmetry, { }111  planes in FCC: 

 

The finally we have performed very extensive simulation studies to investigate the 

evolution behavior of { }111  planes in FCC structures which are subjected to the 

Gaussian shape extrusions (hillocks) and oriented with various degrees of tilting 

with respect to the applied electric field. Again the surface drift-diffusion 

coefficient is chosen as anisotropic, 5 10A = −  and the applied electron wind 

intensity spanning a large range of values, 5 50χ = − .  
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The orientation or tilt angle zero with respect to the wind direction results almost 

similar and sawtooth shape oscillations formations after edge-hillocks convert 

themselves into the kink-shapes. This evolution kinetics is very speedy at very high 

electron winds 50χ ≥  such as that immediately formation of the daughter kink 

shape perturbation takes place on the windward side of the hillock while it was 

converted in form. The latter stage, the lee side of the converted hillock protrudes 

and finally hangs over itself creating a bottle neck. The large peace of material 

ruptures from this bottle neck, leaves the interconnect line, and drifts towards the 

anode end.  In order to simulate this event, which is illustrated in Fig. (4.1.11), the 

underlayer is assumed to be acting as a shunt for the applied electrostatic field. 

Therefore, the broken away peace is still subjected to the applied electron wind. 

After this rupture, the remaining part of the hillock becomes sawtooth in shape and 

continuous to drift to the cathode end. Meanwhile more and more subsidiary waves 

are generated on the windward side. The complete package, made up by sawtooth 

waves, drags towards the cathode end by constantly increasing the number of their 

members at the front (multiplication). However, this process breaks down when the 

lower edge of the preceding wave, which is nothing but the original hillock with 

different face, touches the opposite edge of the interconnect line. At low electron 

wind, the hillock transform into step like wave front, and proceeds drifting towards 

the cathode.  
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Figure 4.2.11: Morphological evolution of hillock to the kink-shapes and 

detachment of piece of metal. 

 

For 15° tilt angle, the edge hillock transforms into step like wave, which slowly 

decays off while shifting towards the cathode side. However, at moderate and high 

electron winds 25χ ≥ , the step like wave starts to grow steadily, while drifting with 

constant speed in the windward direction. Eventually, the lower edge of the wave 

front may touch the opposite edge of the interconnect line, and terminates the 

process completely (electrical shut down). 
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The edge-hillock transforms into a negative kink-shape wave by lifting up the 

leeward side, when the tilt angle becomes 30°. This negative kink-wave drifts 

towards the cathode end with increasing intensity without showing any change in its 

form. At high electron wind intensities such as 50χ ≥ , the multiplication takes 

place on the windward side. The overall picture looks like a chain of sawtooth 

waves shifting with uniform speed towards the cathode edge. This process may 

continue till the lower edge of the preceding wave touches the opposite side of the 

interconnect line, and breaking the electrical circuit.  
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Figure 4.2.12: Morphological evolution of hillock to the negative kink-wave. 
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 We have also investigated a single crystal (FCC) interconnect line having { }111  

surface structure with 45 degrees tilt angle. The Gaussian shape hillock on this 

plane regardless the intensity of the electron wind shows very unstable behavior. 

Immediately after it is exposed to the electron wind, the oscillatory waves are 

produced in both directions. As illustrated in Fig. (4.1.13) these waves grow, while 

they are drifting towards the cathode end. The anode end shows very much 

depletion at very high electron wind intensities. This may be due to limited size of 

the interconnect length adopted in the present simulations experiments in order save 

the computation time. 
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Figure 4.2.13: Morphological evolution of hillock to the oscillatory waves. 
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Table 4.2.3: Summary of hillock evolution for six folds crystal symmetry.  

HILLOCK θ 0 15 30 45 

 
Χ 

 
D   m 

    
 
 
5 

 
5 

K 
F  
tf = 1.112 

D  
td = 0.0329 

K 
G 

OS  
ts = 0.0094 

  
10 

K 
F  
tf = 0.4152 

D 
td = 0.03445 

K 
G 

OS  
ts = 0.0030 

 
10 

 
5 

K D 
td = 0.04625 

K 
G 

OS  
ts = 0.0025 

  
10 

K D 
td = 0.01556 

K 
G 

OS  
ts = 0.0015 
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K 
F  
tf = 0.3105 

D  
ST 

K 
G 

OS 
ts = 0.00056 

  
10 

K 
F  
tf = 0.07425 

ST 
F tf = 0.1264 

K 
G 

OS 
ts = 0.00028 

 
 

50 
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Detachment of 
piece of metal 
t= 0.0285 

V 
td = 0.002478 
 

K 
G 

OS 
ts = 0.00021 

  
10 

K D  
ST 

K 
G 

OS 
ts = 0.000113 
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CHAPTER 5 

CONCLUSIONS 

 

 This computer simulation experiments show that the surface crystal structure is 

extremely important in the determination of the life time of thin film single crystal 

interconnect lines. Under the applied electrostatic field not only the degree of 

rotational symmetry (parameter, m) but also the orientation of the surface plane 

play dominant role in the development of the surface topology and the formation of 

the fatal EM induced voids. The degree of anisotropy in the surface diffusion 

coefficient, and the intensity of the electron wind parameter may have great 

influence on the evolution regime actually taking place on the surfaces and at 

sidewalls of the interconnects.  

 

 Also it has been discovered that the changing the tilt angle for a given crystal plane 

can cause a significant topological changes at the surface. The stable void or hillock 

formation or their complete disappearance may dependent on the tilt angle. 

Similarly, the large tilt angles such as 130° in two fold symmetry causes extreme in 

surface instabilities. The conditions under which the EM induced inner void may be 

created? And if they do! Then what type morphology (wedge, slit or round) may be 

adapted by them?  The answers for all these questions are strictly rely on the surface 

texture of the interconnect lines, and their service operating conditions such as 

temperature and current density. 
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APPENDIX 
 
 
 

SELECTED EXPERIMENT RESULTS 
 
 
Initial states of hillock and edge void configuration: 
 
 
Initial Edge Void Configuration: 
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Initial Hillock Configuration: 
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Figure A.1: 

Figure  A.2: 
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EXPERIMENT RESULTS: 
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* Result is shown for Edge Void with χ = 25, A = 5, m = 3, θ = 30

Time = 0.051487

 
 
 

Figure A.27: 

Figure A.28: 
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* Result is shown for Edge Void with χ = 50, A = 5, m = 3, θ = 30

Time = 0.03905
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* Result is shown for Edge Void with χ = 5, A = 10, m = 3, θ = 45

Time = 0.13403
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Figure A.30: 
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* Result is shown for Edge Void with χ = 10, A = 10, m = 3, θ = 45

Time = 0.10504

 
 
Figure A.31: 


