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ABSTRACT 

 

 

“FREE FLEXURAL (or BENDING) VIBRATIONS ANALYSIS OF 
COMPOSITE ORTHOTROPIC PLATE AND/OR PANELS WITH 

VARIOUS BONDED JOINTS” 
(- - - IN AERO-STRUCTURAL SYSTEMS - - - ) 

 

 

Özen GÜVENDİK 

(M.S.) in Department of Aerospace Engineering 

Supervisor: Prof. Dr. Umur YÜCEOĞLU 

 

September 2004, 491 Pages 

 

 

 In this “Thesis”, the problems of the “Free Flexural (or Bending) Vibrations 

of Composite, Orthotropic Plates and/or Panels with Various Bonded Joints” are 

formulated and investigated in detail. The composite bonded plate system is 

composed of “Plate Adherends” adhesively bonded by relatively very thin adhesive 

layers. The general problem is considered in terms of the three “Main PROBLEMS”, 

namely “Main PROBLEM I”, “Main PROBLEM II” and “Main PROBLEM III”. 

The theoretical formulation of the “Main PROBLEMS” is based on “Mindlin Plate 

Theory” which is a “First Order Shear Deformation Plate Theory (FSDPT)”. Thus, 

the transverse shear deformations, the transverse and the rotary moments of inertia of 

the plates are included in the formulation. Very thin, elastic deformable adhesive 

layers are considered as continua with transverse normal and shear stresses. The 

damping effects in the plates and the adhesive layers are neglected. 

 



 v

The entire composite bonded joint assembly is assumed to be simple 

supported along the two opposite edges, so that the “Classical Levy’s Solutions” can 

be applied in this direction. The dynamic equations of the “Bonded Joint System” 

which combines together the “Mindlin Plate” dynamic equations with the adhesive 

layer equations are reduced to a system of “First Order Ordinary Differential 

Equations” in the “state vector” form. This “special form” of the “Governing System 

of the First Order Ordinary Differential Equations” are numerically integrated by 

means of the “Modified Transfer Matrix Method” which is a combination of the 

“Classical Levy’s Method”, the “Transfer Matrix Method” and the “Integrating 

Matrix Method (with Interpolation Polynomials and/or Chebyshev Polynomials)”. 

 

The “Main PROBLEMS” are investigated and presented in terms of the mode 

shapes and the corresponding natural frequencies for various sets of boundary 

conditions. The significant effects of the “hard” and the “soft” adhesive layer elastic 

constants on the mode shapes and on the natural frequencies are demonstrated. Some 

important parametric studies such as the influences of the “Joint Length Ratio”, the 

“Joint Position Ratio”, the “Bending Stiffness Ratio”, etc. on the natural frequencies 

are computed and plotted for the “hard” and “soft” adhesive cases for several support 

conditions. 

 

Keywords: Composite Orthotropic Plate Vibrations, Bonded Plates, Lap Joint, 

Symmetric Single Lap Joint, Symmetric Double Lap Joint. 
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ÖZ 
 

 

“ÇEŞİTLİ YAPIŞTIRICILARLA BİRLEŞTİRİLMİŞ, KOMPOZİT, 

ORTOTROPİK LEVHA (PLAKA) VE/VEYA PANELLERİN 

SERBEST EĞİLME TİTREŞİMLERİNİN ANALİZİ” 

(HAVA-ARACI YAPISAL SİSTEMLERİNDE) 
 

Özen GÜVENDİK 

(Yüksek Lisans), Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Umur YÜCEOĞLU 

 

Eylül 2004, 491 Sayfa 

 

 Bu tezde, “Çeşitli Yapıştırıcılarla Birleştirilmiş, Ortotropik, Kompozit Levha 

(Plaka) ve/veya Panellerin Serbest Titreşim Analizi” problemleri incelenmiştir. 

Kompozit plaka ve/veya panel sistemi, üst ve alt plakalardan ve nispeten çok ince 

olan yapışkan yüzeylerden oluşmaktadır. Tezde incelenen genel problemler “Ana 

PROBLEM I”, “Ana PROBLEM II”, ve “Ana PROBLEM III” olarak üçe ayrılmıştır. 

“Ana PROBLEMLER” in teorik formülleştirilmesi bir çeşit “Birinci Derece Kayma 

Deformasyonu Plaka Teorisi” olan “Mindlin Plaka Teorisi”ne dayanmaktadır. Yani 

enine kayma deformasyonu ve plakalardaki dönme atalet momenti denklemlerde 

dahil edilmiştir. Çok ince, elastik olarak deforme olabilen yapıştırıcı tabakaların 

enine dik streslerle ve kayma stresleri ile süreklilik gösterdiği düşünülmüştür. 

Plakalardaki ve yapıştırıcı tabakalardaki titreşim sönümleyici özellikler ihmal 

edilmiştir. 
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Yapıştırıcıyla birleştirilmiş kompozit sistemin karşılıklı iki kenarının basit 

mesnetli sınır koşullarına sahip olduğu kabul edilmiştir, bu nedenle bu yönde “Klasik 

Lévy Çözümü” uygulanmaktadır. ”Ortotropik Mindlin Plaka Teorisi” denklemleri ile 

yapıştırıcı yüzeylere ait olan denklemleri birleştiren dinamik denklemler, “durum 

vektörü” halindeki “Esas Birinci Derece Basit Diferansiyel Denklemler Sistemi” ne 

indirgenmiştir. “Birinci Derece Basit Diferansiyel Denklemler”in özel hali olan bu 

denklemlerin integrali numerik olarak “Değiştirilmiş Transfer Matris Metodu 

(Interpolasyon Polinomları ve/veya Chebyshev Polinomlarıyla)” ile alınmıştır. Bu 

teknik, “Klasik Lévy Çözümü”, “Transfer Matris Metodu” ve “Integral Alma Matris 

Metodu”nu birleştirmektedir. 

 

Her “Ana PROBLEM” için çeşitli sınır koşullarında detaylı olarak mod 

şekilleri ve ilgili frekans değerleri verilmiştir. “Sert” ve”Yumuşak” yapıştırıcıların 

mode şekilleri ve frekans değerleri üzerindeki etkileri gösterilmiştir. “Birleştirici 

Uzunluk Oranı”, “Birleştirici Pozisyon Oranı” ve “Eğilme Şiddeti Oranı” gibi çeşitli 

parametrik çalışmalar hazırlanmıştır ve “Sert” ve “Yumuşak” sınır koşulları için 

çizilmiştir. 

 

Anahtar Kelimeler: Kompozit Ortotropik Plakaların Titreşimleri, Yapıştırılmış 

Plakalar, Üst Üste Binmiş Ekler, Simetrik Üst Üste Binmiş Ekler, Simetrik Çift 

Taraftan Üst Üste Binmiş Ekler 
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CHAPTER 1 
 

INTRODUCTION 
 

 

1.1 Introductory Remarks 
 

In recent years, the “Advanced Composites” and the “Advanced Metal Alloys” 

technologies have been developing so rapidly with the “Adhesive Bonding” 

techniques and the epoxy-based adhesives, the. (Lubin [I.1], Hoskins [I.2], Marshall 

[I.3], ASM International Handbook[I.4], Schwartz [I.5], Baker [I.6]). These systems 

are more and more being used as very efficient, and light-weight primary and 

secondary structural systems and components in air and space vehicle, hydrodynamic 

and other vehicle structures. The “joining and/or extension” (and also “stiffening 

and/or repairing”) of these aero-structural systems and components are usually 

constructed in the forms of various types of “Adhesive (or Bonded) Joints”. The 

main reasons for using “Adhesive (or Bonded) Joints” are their smoothness, light-

weight, damping and the crack-retarding, and ease of manufacture characteristics. 

 

In general, Composites are materials that are combinations of two or more 

components or phases. One material serves as a “resin” or "matrix," which is the 

material that holds everything together, while the other material serves as a 

“reinforcement”, in the form of fibers embedded in the matrix.  

 
In the analysis and design of flight vehicle structures, the stress analysis and 

the dynamic response of “Adhesive (or Bonded) Joints” are extremely important. 

This is because of the dynamic stress concentrations, dynamic crack propagation, 
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fatigue and fracture, sound transmission, sonic fatigue, etc. and the subsequent 

complex failure modes that occur in joints under operational conditions. 
 
 Therefore, there are considerable number of studies and investigations in 

stress analysis of “Adhesive Joints” in open engineering and scientific literature all 

over the world. These are not the concern of the present study and will not be 

reviewed here. However, the studies on the dynamic response of “Adhesive (or 

Bonded) Joints”, are relatively few and far between. Here, in the present Thesis, the 

various types of bonded joints in plates are to be considered. 

 

 The “Adhesive (or Bonded) Joints” are, in general, employed for; 

• “joining and/or extension” of and,  

• “stiffening and/or repairing” of the aircraft and spacecraft primary and/or 

secondary structural systems, panels and components. 

 

Some major applications of composites in aircraft structures are given in Table 

1.1. (Hoskins and Baker[I.2], ASM International Handbook [I.4]) 
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1.2 Literature Survey and Brief Review 
 

Some research studies about the “joining and extension of plates and/or 

panels” can be found in [I.7], and investigations related to “stiffening and/or 

repairing of plates and/or panels” are available in [I.6]. In particular, the free 

vibrations of the “Bonded Lap Joints” in beams or beam-like plate strips are 

considered in [VIII.4, VIII.6, VIII.7, VIII.11]. The free vibrations of the orthotropic 

rectangular plates with “Bonded Single Lap Joints” are analyzed in Yuceoglu et al 

[IV.2, VIII.13].For the free vibration problems of the second group mentioned above 

(i.e. in (2)), mainly for the stiffening of and, in some cases for repairing of the 

composite plates or panels by bonded plate strips, Yuceoglu and Özerciyes [IV.2, 

IV.13] can be mentioned. 

 

The “Single and Double Lap Joints” are, excluding Yuceoglu et al [IV.2, IV.13], 

analyzed as beams and/or beam-like plate strips and the plate action and the plate 

dynamic response of the entire “Bonded Lap Joint Assembly” are completely 

neglected.  
 
Therefore, the main purpose of this study is to investigate the “Free Flexural (or 

Bending) Vibrations of Composite, Orthotropic Mindlin Plates or Panels with 

various Bonded Joints”. This study is an extension of a previous work by Yuceoglu 

et al [IV.2, IV.13]. In the present theoretical analysis, the transverse shear 

deformations and the rotatory moments of inertia are to be taken into account in the 

manner of the “Mindlin Plate Theory” [V.3] which is a “ First Order shear 

Deformation Plate Theory (FSDPT)”[V.2, V.3]. The important effect of the 

transverse shear deformations in multi-layer plates, even if the individual layers are 

very thin, are pointed out by Whitney [VI.2], and by Whitney and Pagano [VI.3]. 

This last point is important for instance, in the “overlap regions” or the two-layer or 

three-layer regions of the all types of “Bonded Joint”. 
 
 Another important consideration is that Khdeir and Librescu [VI.8] showed 

that the natural frequencies of the multi-layer composite plates obtained by the 

(FSDPT) and by the (HSDPT) are not significantly different. Therefore, in the 
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percent study a (FSDPT) such as “Mindlin Plate Theory” [V.3] is used. In this 

connection, one can refer to reviews, up to 1994 of the “First Order Shear 

Deformation Plate Theories (FSDPT)” and the “Higher Order Shear Deformation 

Plate Theories (HSDPT)” which can be found in Kapania and Raciti [II.4], and in 

Reddy [28] and Reddy and Robbins [III.2], respectively. 
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a) Mc-Donell Douglas “F/A-18 (Hornet)” 

 
b) “Saab JAS 39 Gripen” 

 

Figure 1.1 Some Examples of Composites in Aircraft Systems 

(Shaded areas are made of composites) 
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CHAPTER 2 
 

MAIN PURPOSE AND SCOPE 
 

 

2.1 Introductory Remarks and Motivation for Present Study 
 

 In this Section, certain group or class of the “Free Flexural (or Bending) 

Vibration Problems of Mindlin Plates with Various Bonded Lap Joints” will be 

considered. 

 

The knowledge about the free and forced vibrations of the “Single Layer 

and/or Multi-Layer Composite Plates or Panels” is extremely important in the studies 

of panel flutter, fatigue and fracture, dynamic crack propagation, sonic fatigue and 

sound transmission, dynamic structural stability, etc in complex air and space vehicle 

structures and systems.  

 

 From the brief review and studies available in the scientific and the 

engineering literature on plates bonded with lap joint, and also from the practical 

applications in aerospace vehicles structures (or aero-structures), following free 

vibrations problems shall be considered. The “Free Dynamic Response” of “Bonded 

Joints”composite orthotropic and/or isotropic base plates or panels have great 

importance from the point of view of the “structural integrity and safety”. The 

“Bonded Joints” are mostly, in flight vehicla structures, used in  

 

• The "joining and/or extension" of “Single Layer and/or Multi-layer 

Composite Structural Systems” in flight vehicle structures in the form 

of various types of "Adhesively Bonded Joints”. 

 



 8

• The “Bonded Repairing and/or Strengthening” of relatively slender and 

already cracked “Advanced Composite” or “Advanced Metal Alloy” 

plate or panel systems in aero-structures or (aero-structural systems). 

 

The motivation and justification for the present Thesis are based on the above 

mentioned general free flexural (or bending) vibration problems encountered in aero-

structures. In order to give a general idea about the practical applications and 

importance of these problems, one may refer to the three basic cases presented in this 

Thesis. These cases are properly defined and referred to as the “ Main PROBLEMS”. 

The “Main PROBLEMS” are properly defined in Chapter 3 in detail. Some general 

ideas, however, are given in this chapter. 

 

2.2 Main Purpose, Scope and Objectives 
 

 The “main purpose” of this “Thesis” is to analyze the “Free Flexural (or 

Bending) Vibrations of Orthotropic Composite Mindlin Plates or Panels with 

Various Bonded Joints” specially, in “Aero-Structural Systems”. 

 

 The “scope” of the present study (or “Thesis”) is concantrated on the linear 

free dynamic response with all types of damping effects being neglected. The 

“Bonded Joints” types are limited to the joints defined in the “Main PROBLEMS”. 

 

 The “main objectives” of this study is firstly to determine the free dynamic 

response characteristics in terms of their natural frequencies and corresponding mode 

shapes, secondly, to perform some important parametric studies in order to help the 

aerospace vehicle designers. Finally, based on the free dynamic response and the 

parametric studies, the important conclusions and recommandations will be stated. 
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2.3 Statements of “Main PROBLEMS” and General Configurations 
 

The “Main PROBLEMS” are considered as follows: 

 

• The “Main PROBLEM I” is defined as the “Free Vibrations of 

Orthotropic, Composite Mindlin Plates or Panels with a Bonded Lap Joint”. 

 

 The general configuration, the geometry, the coordinate system and the 

longitudinal cross section of this type of the bonded plate system (i.e. “Main 

PROBLEM I”) are shown in Figure 3.2.a, Figure 3.2.b, Figure 3.3.a and Figure 3.3.b, 

respectively. The analysis will be based on Mindlin Plate Theory [VI.3,VaI.4], and 

thus the transverse shear deformations, and the transverse and the rotatory inertias in 

the plate layers will be included in the formulation.  

 

• The “Main PROBLEM II” is defined as the “Free Vibrations of 

Orthotropic Composite Mindlin Plates or Panels with a Bonded Symmetric 

Single Lap Joint (Symmetric Single Doubler Joint)”. 

 

The general configuration, the geometry, the coordnate system, and the 

longitudinal cross section of this type of the bonded plate system (i.e. “ Main 

PROBLEM II”) are presented in Figure 3.4.a, Figure 3.4.b, Figure 3.5.a and Figure 

3.5.b, respectively. The analysis will be based on Mindlin Plate Theory [VI.3,VI.4] 

taking into account the transverse shear deformations, and the transverse, and the 

rotatory inertias in the plate layers. 

 

• The “Main PROBLEM III” is defined as the “Free Vibrations of 

Orthotropic Composite Mindlin Plates or Panels with a Bonded Symmetric 

Doubler Lap Joint (Symmetric Double Doubler Joint)”. 

 

Again, the general configuration, the geometry, the coordnate system and the 

longitudinal cross section of this type of the bonded plate system (i.e. “ Main 

PROBLEM III”) are given in Figure 3.6.a, Figure 3.6.b, Figure 3.7.a and Figure 
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3.7.b,respectively. The analysis will be based on the Mindlin Plate Theory 

[VI.3,VI.4] taking into account the transverse shear deformations, and the transverse 

and the rotatory inertias in the plate layers. 

 

2.4 Original Contributions 
 

• Papers published on the dynamic response of “Adhesive (or Bonded) Joints”, 

are relatively few and far between. The detailed study of the free dynamic 

response of the “Bonded Joints” systems in “Mindlin Plates” is an important 

contribution of this “Thesis”. 

 

• “Free Flexural Vibrations Response of the Orthotropic Composite Mindlin 

Plates with Various Bonded Joints” are obtained as a result of the present 

“Thesis” which will significantly affect the design of aero-structures or aero-

structural systems and components. (These systems are not yet investigated 

and their dynamic response is not available in the open literature). 
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CHAPTER 3 
 

MAIN PROBLEMS 
 

3.1 Introductory Remarks 
 

 In this Chapter, “Higher Order” and the “First Order” shear deformation 

theories for the multi-layer plates will be briefly reviewed. Also the complete set of 

dynamic equations of the Mindlin Plate Theory will be developed for easy reference. 

 

After then, proper definitions of the “Main PROBLEMS (I, II, III)” will be 

stated. Corresponding theoretical formulations of these problems will be given in the 

following chapters. 

 

3.2 Brief Remarks on “Higher Order Shear Deformation Plate Theories 
(HSDPT)” used in Multi-Layer Plates 

 

The “Classical Plate Theory (CLPT)” does not include the effect of the 

transverse shear deformations, the rotatory moments of inertia, and the transverse 

normal stresses. New and improved theories, such as “First Order Shear Deformation 

Plate Theories (FSDPT)” have been proposed by research workers in order to 

improve the “Classical Plate Theory (CLPT)”. Improved methods showed that the 

results obtained by using “Classical Plate Theory (CLPT)” are not accurate enough 

for a lot of practical problems, such as vibration problems, elastic wave propagation 

problems, the analysis of anistropic plates, the stresses concentration due to holes or 

cut-outs, etc. 
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The simplest ones of all the improved plate theories were produced by 

Reissner [V.1] and Mindlin [V.3, V.4]. The Reissner’s theory includes the effect of 

shear deformations and results in the following displacements of the form; 
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where z is the coordinate that is normal to the middle or reference plane, 0u , 0v , and 

w0 are dependent to the in-plane coordinates x and y, and ψx, ψy and w0 are actually 

weighted averages. Reissner [V.1,V.2] assumed bending stresses are linearly 

distributed over the thickness of the plates as in the standard theory of thin plates. 
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 (3.2) 

 

 The equilibrium equations in terms of resultants and stress-strain relations are 

obtained by using Castigliano’s theorem combined with the Lagrangian multiplier 

method of the calculus of variations accounting the energy of transverse shear 

stresses. 

 

 In the same order of approximation, Mindlin [V.3,V.4] assumed 

displacements of the form in (3.1) and obtained governing equations by predicting a 

uniform shear stress through the thickness with a “Shear Correction Factor”. Mindlin 

used shear correction factor “κ2” which is evaluated by comparison with an exact 

elasticity solution in wave propagation. However, this “κ2” (which is difficult to 

evaluate) depends on the frequencies and the material characteristics. 
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 The terms in the displacement function (3.1) are the first terms in a power 

series in z. So both Mindlin and Reissner theories can be considered as the “First 

Order Shear Deformation Plate Theories (FSDPT)”. 

 

 In the “Higher Order Shear Deformation Plate Theories (HSDPT)”, in-plane 

displacement functions have a non-linear dependence on z. One of these theories is 

based upon the following displacement forms: 
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 This form of displacements has been used to derive a general “Higher Order 

Shear Deformation Plate Theory (HSDPT)” and also to derive the corresponding 

“Higher Order Shear Deformation Shell Theory (HSDST)”.and “Theory of 

Laminated Cylindrical Shells”. (see the review by Kapania and Raciti [II.3,II.4]) 

 

 Another “Higher Order Shear Deformation Plate Theory (HSDPT)” is based 

upon the following displacement forms: 
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 This form of displacement field has been used for multi-layer plates, and it 

was seen that the second order terms in z do not provide significant advantages over 

first order theories such as Reissner and Mindlin theories [V.3,V.4]. 

 

 Reissner [V.5] has another theory for bending as, 

 



 14
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 Reissner [V.1, V.6] used the above displacement field for pure bending of an 

infinite plate with a circular hole and obtained very accurate results than the ones 

obtained by using the other theories. The disadvantage of this theory is that it 

considers only out-of-plane effects, but it does not account for the effect of in-plane 

modes of deformation. 

 

 Another researcher, Reddy [III.2] proposed a theory which includes in-plane 

modes of deformation and out-of-plane modes of deformation by using the 

displacement field of the following form: 
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In this theory, “Shear Correction Factors” are not needed. 

 

 In general, the governing equations and the natural boundary conditions of a 

laminated plate system based upon (3.6) can be derived from the “Hamilton’s 

Principle” in terms of “functionals” such that, 

 ( ) 0
0

=−+∫
T

dtKVU δδδ  (3.7) 

where δ stands for the variations of the strain energy U, the work done by applied 

forces V and the kinetic energy K of the entire system. In this way, the governing 

partial differential equations and the natural (or consistent) boundary conditions are 

obtained. 

 

 Reddy’s theory [III.2] has been used for some class of laminated plate 

problems. This theory can also be applied to other classes of plate problems such as, 
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cutouts, loaded holes, surface cracks, and also problems involving impact caused 

localized stress gradients that are essentially three-dimensional in nature. 

 

 In the stress analysis, “Higher Order Shear Deformation Plate Theories 

(HSDPT)” proved to be more accurate than “First Order Shear Deformation Plate 

Theories (FSDPT). There are significant differences in the stresses obtained from 

(HSDPT) and (FSDPT) in vibration and buckling problems. However, the natural 

frequencies obtained from both theories were very close as was shown by Reddy 

[V.6] and Khdeir and Librescu [VI.8] (with differences about 0.01). On the other 

hand, the differences in natural frequencies obtained by using the (CLPT)’s and the 

(HSDPT)’s are approximately 0.1. Orthotropic plates under uniformly distributed 

transverse loads were also analyzed and it was seen that there are no differences in 

deflection shapes but some differences in stresses. It can be concluded that for 

moderately thick plates and multi-layer plates, it is more practical to use a “First 

Order Shear Deformation Plate Theory (FSDPT)” such as “Mindlin’s Plate Theory” 

[V.3] instead of a complicated and cumbersome “Higher Order Shear Deformation 

Plate Theory (HSDPT)”, to obtain natural frequencies and corresponding mode 

shapes. 

 

 The higher order moment and transverse shear force resultants, which are due 

to the particular form of the proposed displacement field, is another disadvantage of 

higher order plate theories. They can not easily be seen to have physical meaning and 

they may create a complicated, unusual and formidable image for the analysis of 

composite plate systems. 

 

 Some of the significant differences between “Classical Plate Theory 

(CLPT)”, “First Order Shear Deformation Plate Theories (FSDPT)” and “Higher 

Order Shear Deformation Plate Theories (HSDPT)” are very briefly  as follows: 

 

• In the “Classical Plate Theory (CLPT)”, normals to the mid-plane before 

deformation remain straight and normal to the mid-plane after deformation. 

Also, the rotatory moments of inertia, are neglected. 
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• In “First Order Shear Deformation Plate Theories (FSDPT)”, plane sections 

originally perpendicular to the mid-plane of the plate remain plane after 

deformation, but not necessarily perpendicular to the mid-plane. The “Shear 

Correction Factors yx κκ , ” are used to account for the transverse shear 

stresses and also the rotatory moments of inertia. Also, the extensional, 

transverse and the rotary moments of inertia are included. The transverse 

shear deformations in the plate are accounted for in the theory. 

 

• In “Higher Order Shear Deformation Plate Theories (HSDPT)”, the distorsion 

(of third order) of normals to the mid-plane of the undeformed plate is 

allowed. This eliminates the “Shear Correction Factors” from the equations. 

However, complicated inertia and stress resultant terms which does not have 

the customary or the usual physical meanings, appear in the governing 

equations. 

 

3.3 “First Order Shear Deformation Theories of Plates (FSDPT)” and 
Mindlin’s Plate Theory 

 
There is no difference in the natural frequencies obtained by the (FSDPT)’s 

and the (HSDPT)’s .as mentioned in Section 3.1. Therefore, in the present study, 

Mindlin Plate Theory” which is a “First Order Shear Deformation Plate Theory 

(FSDPT)” is used for the theoretical formulations of the “Main PROBLEMS. 

 

 The general coordinate system and the positive sign convention for the 

displacements, stress resultants and external surface loads or stresses for the “Main 

PROBLEMS” are given in Figure 3.1. The basic assumptions of the Mindlin Plate 

Theory [V.3] are that the in-plane displacement u and v are proportional to z and 

transverse displacement w is independent of z. Then, 
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 where angle of rotations ψx and ψy are negative of the rotations in xz and yz-

planes, respectively. (see also Figures 4.1 and 4.2 in Chapter 4) 

 

Hooke’s law or strain-stress relations for orthotropic materials, 
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 The equation containing the strain “εz” which is normal to the faces of the 

plate (planes at z=±h/2) is ignored. The remaining equations are then solved for σx, 

σy, τxy, τxz and τyz in terms of εx, εy, γxy, γxz, γyz and σz . 
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 In the above equations, the coefficients Bij can be expressed for orthotropic 

materials in terms of the engineering material constants as, 

 

1266221211212112

1355
2112

2
22

2344
2112

1
11

,

,
1

,
1

GBBBBB

GBEB

GBEB

====

=
−

=

=
−

=

νν
νν

νν

 (3.11) 

 

 where E and G are moduli of elasticity and rigidity respectively,ν is 

Poisson’s ratio and subscripts denote the directions parallel to the coordinate axes of 

the plate. 
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Figure 3.1 Coordinate System and Sign Convention for Displacements and Stress 

Resultants in Mindlin Plates in Bending (or Flexure) 
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 The bending and twisting moments per unit length and the transverse shear 

resultants per unit length, are written in the integral form as, 
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 In order to obtain the plate stress resultants – strain relations, the integrations 

are performed across the thickness of the plate. The results are then altered in two 

respects: 

 

(1) The weighted average of σz is ignored, since this stress is very small compared 

with the bending and twisting stresses. Therefore, the integrals containing σz  are 

dropped. This assumption is also made in other “First Order Shear Deformation 

Plate Theories (FSDPT)” and the “Classical Plate Theory (CLPT)”.  

(2) The coefficients of the integrals containing γxz and γyz are replaced by constants 

whose magnitudes are to be determined later. 

 

 After integrating, the following relations between stress resultants and strains 

are obtained, 

 

Stress Resultants – Strain Relations 
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where 

 

( ) ( )

( ) ( )

Γ Γ Γ

Γ Γ

x y xy x y xy
h

h

xz yz xz yz
h

h

zdz

dz

, , , ,

, ,

=

=

−

−

∫

∫

ε ε γ

γ γ

2

2

2

2
 (3.14) 

 

 In the present study, κ2, is taken as used in Mindlin’s Plate Theory. In 

Mindlin’s Plate Theory the “Shear Correction Factor” is determined by equating the 

exact results obtained from three dimensional elasticity equation and the result based 

on the “Mindlin’s Plate Theory” for the case of straight-crested flexural waves in an 

infinite plate. These values are found to be π2/12 (or, in Reissner's Plate Theory, is 

5/6). [ V.3] in isotropic plates. In orthotropic plates, the “Shear Correction Factors” 

are defined as κx
2,κy

2, respectively and these are obtained from a study by Wittrick 

[V.11]. 

 

 By considering the strain-displacement equations in three dimensional 

elasticity and inserting the assumed form of the displacement functions, strain 

displacement relations can be obtained as follows, 

 

Strain Displacement Equations in 3D Elasticity , 
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Inserting (3.8) in to (3.15), 
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Strain Displacements Relations, 
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 Therefore, the following relations between stress resultants and plate 

displacements functions are obtained: 

 

Stress Resultants – Displacement Relation 
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 Also, in terms of the ‘‘Orthotropic Plate Stiffnesses’’, 

 



 22

 









+=







 +=









+=

+=

+=

y
wAQ

x
wAQ

xy
DM

y
D

x
DM

y
D

x
DM

yy

xx

yx
yx

yx
y

yx
x

∂
∂ψ

∂
∂ψ

∂
∂ψ

∂
∂ψ

∂
∂ψ

∂
∂ψ

∂
∂ψ

∂
∂ψ

44

55

66

2212

1211

 (3.17.b) 

 

where the “Bending Stiffness D’s” and the “Shear Stiffness A’s” of the Orthotropic 

Mindlin Plate are given as, 
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 The relation between stress resultants and the plate displacements are 

obtained. .Now, the equations of motion of the three dimensional elasticity theory are 

needed. These equations are, 

 

Equations of Motion (3D Elasticity) 
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 The first two governing equations of the Mindlin Plate Theory for orthotropic 

plates are obtained by multiplying the first two equations by “z” and integrating 

across the thickness (between –h/2 and +h/2) as, 
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where )(+
zxq  , )(+

zyq  and )(−
zxq , )(−

zyq  are the surface stresses at z=+h/2 and z=-h/2, 

respectively.) The coefficient terms in the right hand sides of (3.19) are for the 

rotatory moments of inertia. 

 

 Additionally, the third equation of (3.18) is integrated over the plate thickness 

and, using (3.12) yields; 
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where )(+
zq  and )(−

zq  are the surface stresses at z=+h/2 and z=-h/2, respectively. 

Equations (3.19) and (3.20) are the “Dynamic Equations of the Mindlin Plate 

Theory”. 

 

 In the present study My, Myx, Qy, ψx, ψy and w are chosen as intrinsic 

variables whereas Mx, Qx are chosen as auxiliary variables. For reduction of the 

differential equations to the “First Order Systems of the ordinary Differential 

Equations” (see the preceding chapters), the partial derivatives of the intrinsic 

variables with respect to “y” should be written in terms of other intrinsic variables. 

These equations can be obtained from (3.17), (3.19) and (3.20) as,  
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 (3.21) will be used in the theoretical formulation of the “Main PROBLEMS” 

in Chapter 4, 5 and 6. 

 

 In order to solve the dynamic equations of the “Mindlin Plates” boundary 

conditions (support conditions) along the edges of the plate shall be prescribed. 

“Mindlin Plate Theory” requires prescription of three Boundary conditions along 

each edge,  

 

Boundary Conditions (Support Condition) 

(F) (free) Mnt=Mn=Qn=0 

(S) (simply supported) w=ψt=Mn=0 (3.22) 

(C) (clamped) w=ψn=ψt=0 

 

where n and t are normal and tangential coordinates of the edges. 
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3.4 Definition of “Main PROBLEMS” and Some “Special CASES”, and 
Limitations 

 

 In general, three “Main PROBLEMS” are considered in the present “Thesis”. 

The appropriate definitions of the “Main PROBLEMS” are given as in the following: 

 

• “Main PROBLEM I” 

 

“Free Vibrations of Orthotropic Composite Mindlin Plates or Panels 

with a Bonded Single Lap Joint”. 

 

I.a) “Free Flexural (Or Bending) Vibrations Of Orthotropic 
Composite Mindlin Plates With a Centrally Bonded Single Lap 
Joint” (Main PROBLEM I.a) 

 

I.b) “Free Flexural (Or Bending) Vibrations Of Orthotropic 

Composite Mindlin Plates With a Non-Centrally Bonded 

(Eccentrically) Single Lap Joint” (Main PROBLEM I.b) 

 

• “Main PROBLEM II” 

 

“Free Vibrations of Orthotropic Composite Mindlin Plates or Panels 

with a Bonded Symmetric Single Lap Joint (Symmetric Doubler Joint)”. 

 

II.a) “Free Flexural (or Bending) Vibrations of Orthotropic Composite 

Mindlin Plates or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (Symmetric Doubler Joint)” (Main PROBLEM 

II a) 

 
II.b) “Free Flexural (or Bending) Vibrations of Orthotropic Composite 

Mindlin Plates or Panels with a Non-Centrally Bonded Symmetric 

Single Lap Joint (Symmetric Doubler Joint)” (Main PROBLEM 

II b) 
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• “Main PROBLEM III” 

 

“Free Vibrations of Orthotropic Composite Mindlin Plates or Panels 

with a Bonded Symmetric Double Lap Joint (Symmetric Double Doubler 

Joint)”. 

 

III.a) “Free Flexural (or Bending) Vibrations of Orthotropic Composite 

Mindlin Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (Symmetric Double Doubler Joint)” (Main 

PROBLEM III a) 

 
III.b) “Free Flexural (or Bending) Vibrations of Orthotropic Composite 

Mindlin Plates or Panels with a Non-Centrally Bonded Symmetric 

Double Lap Joint (Symmetric Double Doubler Joint)” (Main 

PROBLEM III b) 

 

The general configurations, the geometries and the coordinate systems of the 

above defined “Main PROBLEMS” are given in Figures 3.2.a and 3.2.b, 3.3.a and 

3.3.b, and 3.4.a and 3.4.b, respectively. 

 

Also some  “Special CASES” to be considered in this study are defined next; 

• “Special CASE of Main PROBLEM II” 

• “Special CASE of Main PROBLEM III” 

 
In the analytical formulation of the above “Main PROBLEMS”, the “Mindlin 

Plate Theory” is used taking into account the influences of the thickness shear 

deformations and the rotatory and the transverse moments of inertia of plates in the 

dynamic equations. The basic equations of the theory are systematically derived from 

the fundamental equations of three-dimensional elasticity in the preceding section. 

The transverse normal and shear strains and the corresponding stresses in the 

relatively very thin adhesive layers are included in the formulation.  
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In all three “Main PROBLEMS”, the entire system are assumed to have 

simple support boundary conditions at the two opposite edges (in the x-direction) 

while the other two opposite edges (in the y-direction) may have arbitrary support 

conditions in the sense of the “Mindlin Plate Theory”. This allows to use the 

“Classical Lévy’s Solution” in the x-direction. 

 

 The “Method of Solution” employed in this work is the “Modified Transfer 

Matrix Method" which is very effective and accurate in handling certain class of 

plate and shell free vibrations problems. This is a semi-analytical and numerical 

technique which combines, the ‘‘Classical Levy’s Method”, the “Integrating Matrix 

Method with Interpolation Polynomials and/or Chebyshev Polynomials)” and the 

“Transfer Matrix Method” for continuous systems. This solution method is used 

successfully in Yuceoglu and Özerciyes [IV.4-IV.13]. This semi-analytical and 

numerical solution tecnique is a considerable extension, modification and further 

development of the method employed earlier in Yuceoglu et al [VII.2]. 
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Figure 3.2.a General Configuration and Coordinate System of “Composite , 

Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

(‘‘Main PROBLEM Ia’’) 

 
Figure 3.2.b Longitudinal Cross-Section of “Composite , Orthotropic Plates and/or 

Panels with a Centrally Bonded Single Lap Joint” 

(‘‘Main PROBLEM Ia’’) 
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Figure 3.3.a General Configuration and Coordinate System of “Composite, 

Orthotropic Plates and/or Panels with a Non-Centrally (or Eccentrically) Bonded 

Single Lap Joint” 

(‘‘Main PROBLEM I b’’) 

 
Figure 3.3.b Longitudinal Cross-Section of “Composite, Orthotropic Plates and/or 

Panels with a Non-Centrally (or Eccentrically) Bonded Single Lap Joint” 

(‘‘Main PROBLEM Ib’’)
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Figure 3.4.a General Configuration and Coordinate System of “Composite, 

Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Single Lap 

Joint (or Symmetric Doubler Joint)” 

(‘‘Main PROBLEM II a’’) 

 
Figure 3.4.b Longitudinal Cross-Section of “Composite, Orthotropic Plates and/or 

Panels with a Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler 

Joint)” 

(‘‘Main PROBLEM II a’’)
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Figure 3.5.a General Configuration and Coordinate System of “Composite, 

Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Single 

Lap Joint (or Symmetric Doubler Joint)” 

(‘‘Main PROBLEM II b’’) 

 
Figure 3.5.b Longitudinal Cross-Section of “Composite, Orthotropic Plates and/or 

Panels with a Non-Centrally Bonded Symmetric Single Lap Joint (or Symmetric 

Doubler Joint)” 

(‘‘Main PROBLEM II b’’)
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Figure 3.6.a General Configuration and Coordinate System of “Composite, 

Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Double Lap 

Joint (or Symmetric Double Doubler Joint)” 

(‘‘Main PROBLEM III a’’) 

Figure 

3.6.b Longitudinal Cross-Section of “Composite, Orthotropic Plates and/or Panels 

with a Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double 

Doubler Joint)” 

(‘‘Main PROBLEM III a’’)
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Figure 3.7.a General Configuration and Coordinate System of “Composite, 

Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Double 

Lap Joint (or Symmetric Double Doubler Joint)” 

(‘‘Main PROBLEM III b’’) 

 
Figure 3.7.b Longitudinal Cross-Section of “Composite, Orthotropic Plates and/or 

Panels with a Non-Centrally Bonded Symmetric Double Lap Joint (or Symmetric 

Double Doubler Joint)” 

(‘‘Main PROBLEM III b’’) 
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Figure 3.8.a General Configuration and Coordinate System of “Composite, 

Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Single Lap 

Joint (or Symmetric Doubler Joint) with a Gap” 

(“Special Case of Main PROBLEM II a’’) 

 
Figure 3.8.b Longitudinal Cross-Section of “Composite, Orthotropic Plates and/or 

Panels with a Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler 

Joint) with a Gap” 

(“Special Case of ‘Main PROBLEM II a’’)
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Figure 3.9.a General Configuration and Coordinate System of “Composite, 

Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Single 

Lap Joint (or Symmetric Doubler Joint) with a Gap” 

(‘‘Special Case of Main PROBLEM II b’’ 

 
Figure 3.9.b Longitudinal Cross-Section of “Composite, Orthotropic Plates and/or 

Panels with a Non-Centrally Bonded Symmetric Single Lap Joint (or Symmetric 

Doubler Joint) with a Gap” 

(‘‘Special Case of Main PROBLEM II b’’)
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Figure 3.10.a General Configuration and Coordinate System of “Composite, 

Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Double Lap 

Joint (or Symmetric Double Doubler Joint) with a Gap” 

(‘‘Special Case of Main PROBLEM III a’’) 

 
Figure 3.10.b Longitudinal Cross-Section of “Composite, Orthotropic Plates and/or 

Panels with a Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double 

Doubler Joint) with a Gap” 

(‘‘Special Case of Main PROBLEM III a’’)
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Figure 3.11.a General Configuration and Coordinate System of “Composite, 

Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Double 

Lap Joint (or Symmetric Double Doubler Joint) with a Gap” 

(‘‘Special Case of Main PROBLEM III b’’) 

 
Figure 3.11.b Longitudinal Cross-Section of “Composite, Orthotropic Plates and/or 

Panels with a Non-Centrally Bonded Symmetric Double Lap Joint (or Symmetric 

Double Doubler Joint) with a Gap” 

(‘‘Special Case of Main PROBLEM III b’’) 
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CHAPTER 4 
 
 

(“Main PROBLEM I”)__FREE FLEXURAL (or BENDING) 
VIBRATIONS of COMPOSITE ORTHOTROPIC or ISOTROPIC 

PLATES with a BONDED SINGLE LAP JOINT 
 

In this section, the “Governing System of Coupled Ordinary Differential 

Equations” will be presented in the coupled matrix or the “state vector” form for the 

“Overlap Region” (or Part I region), and for “Single Layer Regions” (or Part II and 

Part III regions) for the “Main PROBLEM I” without making any distinction for the 

“Main PROBLEM I a ” and the “Main PROBLEM I b” as described below. 

4.1 Statement of “Main PROBLEM Ia” 
 

Figure 3.2.a shows the general configuration, geometry and the coordinate 

system of the “Composite Orthotropic or Isotropic Plate System with a Centrally 

Bonded Single Lap Joint”. This system is composed of two dissimilar “Orthotropic 

Plates or Adherends” lap-jointed centrally over a certain length. In this problem, 

adherends are bonded by a relatively very thin elastic adhesive layer. 

4.2 Statement of “Main PROBLEM Ib” 
 

Figure 3.2.b shows the general configuration, geometry and the coordinate 

system of the “Composite Orthotropic or Isotropic Plate System with Non-Centrally 

(or eccentrically) Bonded Single Lap Joint”. This system is composed of two 

dissimilar orthotropic plates or adherends lap-jointed non-centrally over a certain 

length. In this problem adherends are bonded by a relatively very thin elastic 

adhesive layer. 
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4.3 Main assumptions and Analytical Modeling 
 

The analytical formulation of “Main PROBLEM I” is based on the following 

assumptions; 

 

(i) The analysis is carried out only for the free flexural (or bending) vibrations of 

the composite plate system. The in-plane or extensional moments of inertia are 

neglected, but the rotatory and the transverse moments of inertia of the plates 

are included in the formulation. 

(ii) The rotatory and transverse moments of inertia of the adherends as well as their 

transverse shear deformations are taken into account in the sense of the 

“Mindlin Plate Theory”. 

(iii) There is no slip and separation on the interfaces of the adhesive layer and plates 

or adherends. 

(iv) Since the thickness of the adhesive layer is very small relative to the thickness 

of the plate adherends, the inertias and the masses of the adhesive layers are 

neglected and both adhesive normal and shear stresses are to be constant across 

its thickness. 

(v) The damping effects in Mindlin Plates and in the adhesive layers are neglected. 

(vi) The plates are assumed to be simply supported along edges x=0 and x=a while 

arbitrary support conditions may be specified in the y-direction. 

(vii) The coordinate system of each plate is attached to its medium plane or the 

reference plane. 

(viii) The principal directions of orthotropy in plates are parallel to the edges and to 

the coordinates as shown in Figure 3.2.a and in Figure 3.3.a. 

(ix) It is assumed that the following relations exist between the deformations of the 

plate adherends in z-direction.  

)1()2( ww >  
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For the general formulation of the problem, the entire “Composite Bonded Plate 

or Panel System” is divided into three parts, namely, Part I, Part II, Part and III in the 

y-direction as shown in Figure 3.2.a and Figure 3.2.b Part I corresponds to the 

“Overlap Region” which contains two plates 1,2, Part II correspond the continuation 

of the upper plate 1 and Part III correspond the continuation of the lower plate 2 as a 

single plates in the y-direction. 

 

4.4 Theoretical Formulation of “Main PROBLEM I” (Theoretical 
Analysis) 

4.4.1 Analysis of Adhesive Layer in the “Overlap Region” 
 

The system in “Overlap Region” (or Part I) is composed of two plates which 

are adhesively bonded by very thin elastic adhesive layers. The stresses at the upper 

and lower faces of the plates due to the adhesive layers are considered as external 

surface stresses or loads on the plates. The adhesive stresses should be related to the 

unknown displacement functions and angle of rotations of the adherends in the 

“Overlap Region”. Figures 4.1 and Figure 4.2 show an exaggerated view of the 

deformation of an infinitesimal element of two-layer plate system. The positive sign 

convention for displacements, stress resultants and angles of rotation are also shown 

on the same figures.(see also Figures 3.1, 4.1 and 4.2) 
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Figure 4.1 Stress Distributions at Plate Adhesive Layer Interfaces in the “Overlap 

Region” 
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Figure 4.2 Deformations of Adherends (Mindlin Plates) and in-between Adhesive 

Layers in the “Overlap Region” 
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The purpose of this section is to obtain the relations between the stresses in 

adhesive layer and the plate interfaces and displacements of the adherends. The shear 

strains ( )γ xz
j  and ( )γ yz

j  at interfaces is found by considering the distortion in the right 

angles of the adhesive infinitesimal element after deformation as,  

 

 ( ) ( ) ( ) 1,2,j =β+α=γ j
x

j
x

j
xz  (4.1) 

 

with the assumption of small deformations, α(j) and β(j) can be expressed as the 

slopes of the adherends and the displacements in x and y directions, respectively. 

That is, 

 

Between Plates 1 and 2 for Part I, 
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where ha is the thicknesses of the adhesive layer, and (uA)s, (uB)s are axial 

deformation of points A, B in s direction respectively. Axial deformations (uA)s, (uB)s 

are caused only by the bending of the plates, then the displacement components can 

be written as, 
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 The shear strains in the interfaces can be expressed in terms of displacements 

and angles of rotation of the adherends by using (4.1) through (4.3) 
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Adhesive Strains Between Plates 1 and 2 for Part I 
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 It should be mentioned here that in some previous studies by Yuceoglu and 

Özerciyes [IV.4-IV.13], the double underlined terms (=) are neglected. In this present 

study these terms are included in the theoretical formulation. 

 

 The interface shear stresses in the adhesive layers can be expressed by using 

the interface shear strains as, 

 

Adhesive Stresses Between Plates 1 and 2 for Part I, 
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 The thicknesses ha of the adhesive layers are assumed to be much smaller 

than the thicknesses of the plates and ( ) ( )j
y

j
x ψψ ,  have the same order of magnitudes 

when compared with 
( )

x
w j

∂
∂  and 

( )

y
w j

∂
∂ . Therefore, one may assume that the variation 

of the transverse displacements in the adhesive layers is linear that is equivalent to 

assuming that the normal strain εz is constant across the thickness. Ea is the modulus 

of elasticity (or Young’s modulus) and Ga is the modulus of rigidity (or shear 

modulus) of the adhesive layer. 



45 45

 

4.4.2 Analysis of Part I (or the “Overlap Region”) of Composite Plate 
System 

 

4.4.2.1 Implementation of the Adhesive Layer Equations to Governing 
Equations (equation of motions) of Plate Adherends 

 
 Adhesive stresses are related to unknown displacement functions and angle of 

rotations of the adherends in the “Overlap Region” since they are considered as 

surface loads or external stresses acting on the upper and lower faces of the plate 

adherends. Normal and tangential stresses at the interface may be considered as the 

‘‘compatibility or coupling conditions’’ of the two plates in the “Overlap Region”. 

 

The governing equations (or plate equations of motion) given in (3.19) and (3.20) 

can be written by using the adhesive stresses as load terms qzx’s and qzy’s as, 
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  (4.6.a) 

 

For Plate 2 in Part I; 
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 In the above equations, the “underlined terms” are the “coupling terms” 

between the adherends. 

 

 At this stage, the “Classical Levy’s Method” with the trigonometric series 

expansions is to be considered. The “Classical Lévy’s Method” is restricted to 

rectangular plates with any two opposite edges simply supported. However, the other 

two edges may have arbitrary boundary conditions. 

 

 In the present study, the edges at x=0 and x=a are simply supported 

“Boundary Conditions” which have to be satisfied along these edges are as follows,  

 

 at x=0,a  → ( ) ( ) ( )w Mj
x
j

y
j= = =0 0 0, , ψ  (j=1,2) (4.7) 

 

 By using the “Classical Lévy’s Method” angles of rotations and 

displacements of the adherends can be expressed as, 

 

Displacements and Angles of Rotation, 
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where "m" is the number of half-waves in the x-direction, superscript (j) denotes 

upper plate adherend for j=1 and, lower plate adherend for j=2. “i” is defined as −1  

and the “barred” (__) quantities are the dimensionless transverse displacements and 

angles of rotation. The nondimensional independent space variablesη , and Iξ are 

defined as x/a, and yI/ l I, respectively. "ωmn " is the dimensionless circular frequency 

or the natural frequency of the flexural (or bending) vibrations of the entire 

composite plate or panel system. 
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 “Stress Resultants” can also be expressed in trigonometric series in the x-

direction as, 

Stress Resultants for Part I; 
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where the “barred” (__) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j
mnx

j
mny

j
mny

j
mnyx

j
mnx

j
mny

j
mnx

j
mn Q,Q,M,M,M,,,W ΦΦ  are 

“dimensionless fundamental dependent variables”. 

 

 For non-dimensionalization of equations, parameters in the governing 

differential equations shall be nondimensionalized with respect to main or reference 

quantities which are chosen as ( )" " ," " ," "B h11
1

1 1ρ and “a”. 

 

The dimensionless coordinates or independent space variables are, 

η=x/a, 

ξI=yI/lI, ξII =yII/lII, ξIII =yIII/lIII  (4.10) 

 

 The dimensionless parameters related to orthotropic elastic constant and the 

adhesive layers are, 
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 The dimensionless parameters related to the densities and the geometry of the 

plates and adhesive layers are, 
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a
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2

lll ===

==

ρ
ρ=ρ

 (4.12) 

 The dimensionless frequency parameter mnω  of the entire doubly stiffened, 

composite plate or panel system is; 

 
( )

mn

mnmn Bha
ω

ωρω
=Ω

= 1
11

2
1

24
1  (m,n=1,2,3...) (4.13) 

 

where the dimensionless natural frequency parameter mnω  is ordered in terms of its 

magnitudes as Ω1<Ω2<Ω3<.... with the subscript indicating the first, second, third, 

dimensionless natural frequencies depending on the given m, n values. 
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4.4.2.2 Reduction to “Governing Systems of First Order Ordinary 
Differential Equations” for “Main PROBLEM I”, 

 

 Here, My, Mxy,Qy, ψx, ψy and w are chosen as intrinsic variables and Mx,Qx 

are chosen as auxiliary variables, Then, from the Stress Resultants and Moment 

Resultant Equations given in (3.2a), first order partial differential equations can be 

written with respect to the dimensionless independent variables  ξ and η as, 

 

For the “Overlap Region” or Part I; 

( )

( )

( ))(
z

)(
z

)j(
x

)j(

jj
I

)j(
y

I

)(
zy

)(
zy

j)j(
y

)j(
yx

)j(
yjj

I

)j(
y

ı

)(
zx

)(
zx

j)j(
x

)j(
x

)j(
xjj

I

)j(
yx

I

)j(
y

)j(
y)j(

jyI

)j(

I

)j(
y)j(

yx)j()(
jI

)j(
x

I

)j(
x)j()j(

y
j

)j(
I

)j(
y

I

qq
Q

at
wh

Q
l

qq
h

Q
M

at
hM

l

qq
h

Q
M

at
hM

l

Q
Bh

w
l

a
M

Bhl

a
BM

hBl

−+

−+

−+

−−
∂

∂
−

∂
∂

=
∂

∂

+−+
∂

∂
−

∂

∂
=

∂

∂

+−+
∂

∂
−

∂
∂

=
∂

∂

−=
∂
∂

∂

∂
−=

∂
∂












∂
∂

−=
∂

∂

η
ρ

ξ

η
ψρ

ξ

η
ψρ

ξ

ψ
κξ

η
ψ

ξ
ψ

η
ψ

ξ
ψ

11

2
1

12
1

2
1

12
1

11

1121

11211

2

2

2

23

2

23

44
2

66
3

123
22

 (j=1,2) (4.14) 

 

where q’s are surface loads and the stresses on the upper (-) and lower (+) surfaces of 

the plates. Also, note that superscript and subscript (j) denotes the upper plate 

adherend for j=1 and lower plate adherend for j=2. 

 
By substituting (4.8) and (4.9) in to (4.14) and making the necessary non-

dimensionalizations with respect to (4.10), (4.11) and (4.12), “Governing System of 

First Order Ordinary Differential Equations” for the bonded plate or panel system are 

developed as, 
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For Plate 1, in Part I (Overlap Region); 
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where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly 

underlined terms”). 
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For Plate 2, in Part I (Overlap Region); 
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where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly 

underlined terms”). 
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The quantities having the subscript “mn” are “dimensionless fundamental 

dependent variables” of the problem in Part I Region (or “Overlap Region”).A 

‘‘Two-Point Boundary Value Problem” is created in the ‘‘Overlap Regions’’ (or Part 

I region) by reducing the system of partial differential equations to a ‘‘Governing 

System of First Order Ordinary Differential Equations’’ in ξI or yI direction. 

 

 Thus “Governing System of First Order Ordinary Differential Equations” in 

the compact matrix or ‘‘state vector’’ form for the ‘‘Overlap Region’’ (or Part I 

region) can be written as, 
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 (4.18) 

 

with the ‘‘Arbitrary Boundary Conditions’’ and the ‘‘Continuity Conditions’’. 

 

where Iξ  is defined as yI/ Il . The superscripts show the related plate layer, the sub-

matrices [ ji,C ] are partitioned square matrices of dimension (6x6) which explicitly 

include the nondimensional geometric and material characteristics of the plate 

adherends, and of the adhesive layers and dimensionless natural frequency parameter 

mnω  of the entire composite system. ( )j
mnY  (j=1,2) are the ‘‘state vectors’ 

corresponding to the “state variables” or ‘‘dimensionless fundamental dependent 

variables’’ of the problem under study as, 
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j
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j
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j
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j
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j
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j
mn Q,M,M;W,,Y ΨΨ= , (j=1,2) (4.19) 

 

4.4.3 Analysis of Part II (or Single Layer) of Composite Plate System 
 

 The “Governing System of Ordinary Differential Equations” can be obtained 

for the plate adherend in Part II region by using the same procedure in the previous 

section. There is no adhesive layer in Part II. Therefore, coupling terms in (4.15) 

including the adhesive layer elastic constants are dropped. The “Governing System 
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of First Order Ordinary Differential Equations” in the ‘‘state vector’’ form, for Part 

II region, 

 

( ){ } [ ] ( ){ }1
mn

1
mn YY D=

ξ IId
d  (0<ξII<1) (Upper Plate) (4.20) 

 with the ‘‘Arbitrary Boundary Conditions’’ at ξII=0 and the ‘‘Continuity 

Conditions’’ at ξII =1 for the orthotropic plate adherend. 

 

where ξII is defined as yII/ IIl  and [D ] is the “Coefficient Matrix” of dimension 

(6x6) which explicitly includes dimensionless geometric and material characteristics 

of the upper plate adherend as well as the dimensionless natural frequencies mnω  of 

the entire composite plate system. The column matrix or the “state vector” ( ){ }1
mnY  is 

defined as, 
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mnY , (4.21) 

4.4.4 Analysis of Part III (or Single Layer) of Composite Plate System 
 
 The “Governing System of Ordinary Differential Equations” can be obtained 

for the plate adherend in Part III region by using the same procedure in the previous 

section. There is no adhesive layer in Part III. Therefore, coupling terms in (4.16) 

including the adhesive layer elastic constants are dropped. The “Governing System 

of First Order Ordinary Differential Equations” in the ‘‘state vector’’ form, for Part 

III region, 

 

( ){ } [ ] ( ){ }2
mn

2
mn YY E=

ξ IIId
d , (0<ξIII<1) (Lower Plate) (4.22) 

with the ‘‘Arbitrary Boundary Conditions’’ at ξIII =1 and the ‘‘Continuity 

Conditions’’ at ξIII =0 for the orthotropic plate adherend. 

 

where ξIII is defined as yIII/ IIIl  and [E ] is the “Coefficient Matrix” of dimension 

(6x6) which explicitly includes dimensionless geometric and material characteristics 

of the lower plate adherend as well as the dimensionless natural frequencies mnω  of 
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the entire composite plate system. The column matrix or the “state vector” ( ){ }2
mnY  is 

defined as, 
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4.4.5 System of Governing Ordinary Differential Equations for (“Main 
PROBLEM I”) 

 

 In the previous sections, the “Governing System of Coupled Ordinary 

Differential Equations” are obtained in the matrix or “state vector” form for the 

“Overlap Region” (or Part I region), and for “Single Layer Regions” (or Part II and 

Part III regions). These equations can be written in “open matrix form” as, 
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 (0<ξI<1) (Upper Plate) 

 (0<ξI<1) (Lower Plate)  (4.24 a) 

 

 The elements, in the “open matrix form”, of the ‘‘Coefficient Sub-Matrix 

related to the plate layers are, 
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For plate 1 (Upper Plate Adherend), 
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For Plate 2 (Lower Adherend Plate), 
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For Part II region (or Single Layer Orthotropic Plate Adherend), 
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where the elements of the above ‘‘Coefficient Matrix [ ]D ’’ are, 
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For Part III region (or Single Layer Plate Adherend), 
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The “Boundary Conditions” at x=0 and x=a are already satisfied by 

trigonometric expansion in ‘‘Classical Lévy’s Type Solution’’. The ‘‘Appropriate 

Boundary Conditions’’ and the ‘‘Continuity Conditions’’ are needed to solve the 

‘‘Governing System of First Order Ordinary Differential Equations’’. Then, 

 

The ‘‘Boundary Conditions’’ along the edges in the y-direction, 

F (Free): ( ) ( ) ( ) 0=== j
y

j
y

j
yx QMM  

C (Clamped): ( ) ( ) ( )w j
x
j

y
j= = =ψ ψ 0  (j=1,2) (4.27) 

S (Simply Supported): ( ) ( ) ( ) 0=== j
y

j
x

j Mw ψ   

 

The ‘‘Continuity Conditions’’ between Part I and Part II, 
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1ξ III
YY == =  (4.28) 

  

The ‘‘Continuity Conditions’’ between Part I and Part III, 
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1ξ
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0ξ IIII
YY == =  (4.29) 

 

 Finally, as a summary, the entire set of the “Governing System of First Order 

Ordinary Differential Equations” for “Main PROBLEM I” is given as, 
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(4.30 a,b,c) 

with the “Appropriate Boundary Conditions” and the “Continuity 

Conditions” in each Part I, Part II Regions respectively. 

 

 The above entire system of equations forms a “Two-Point Boundary Value 

Problem” for the “Main PROBLEM I” between the left and the right supports in the 



59 59

y-direction. It is obvious that, once the natural frequencies are obtained, then, the 

Equations (4.30.a,b,c) can be integrated numerically for a given particular geometry, 

materials and the support conditions by making use of “Modified Transfer Matrix 

Method (with Interpolation Polynomials and/or Chebyshev Polynomials)”. 
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CHAPTER 5 
 
 

(“Main PROBLEM II”)__FREE FLEXURAL (or BENDING) 
VIBRATIONS of COMPOSITE ORTHOTROPIC or ISOTROPIC 

PLATES with a BONDED SYMMETRIC SINGLE LAP JOINT (or 
SYMMETRIC DOUBLER JOINT) 

 
In this section, the “Governing System of Coupled Ordinary Differential 

Equations” will be presented in the compact matrix or the “state vector” form for the 

“Overlap Region” (or Part I and Part II regions), and for “Single Layer Regions” (or 

Part III and Part IV regions) for “Main PROBLEM II” without making any 

distinction for “Main PROBLEM II a ” and “Main PROBLEM II b”. 

 

5.1 Statement of “Main PROBLEM II a” 
 

Figure 3.4.a shows the general configuration, the geometry and the coordinate 

system of the “Composite Orthotropic or Isotropic Plate System with a Centrally 

Bonded Symmetric Single Lap Joint”. This system composed of an “Orthotropic 

Doubler” and “Orthotropic or Isotropic Adherends” bonded centrally by a relatively 

very thin elastic adhesive layer. 

5.2 Statement of “Main PROBLEM IIb” 
 

Figure 3.5.a shows the general configuration, the geometry and the coordinate 

system of the “Composite Orthotropic or Isotropic Plate System with Non-Centrally 

(or eccentrically) Bonded Symmetric Single Lap Joint”. This system composed of a 

“Orthotropic Doubler” and “Orthotropic or Isotropic Adherends” bonded non-

centrally by a relatively very thin elastic adhesive layer. 
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5.3 Main assumptions and Analytical Modeling 
 

The analytical formulation of “Main PROBLEM II” is based on the following 

assumptions; 

 

(i) The analysis is carried out only for the free flexural (or bending) vibrations of 

the plate system. The in-plane or extensional moments of inertia are neglected, 

but the rotatory and the transverse moments of inertia of the plates are included 

in the formulation. 

(ii) The rotatory and the transverse moments of inertia of the adherends as well as 

their transverse shear deformations are taken into account in the sense of the 

“Mindlin Plate Theory”. 

(iii) There is no slip and separation on the interfaces of the adhesive layers and 

plates. 

(iv) Since the thickness of the adhesive layers are very small relative to the 

thickness of the plates, the inertias and the masses of the adhesive layers are 

neglected, and both adhesive normal and shear stresses are to be constant across 

the thickness. 

(v) The damping effects in Mindlin Plates and in the adhesive layers are neglected. 

(vi) The plates are assumed to be simply supported along edges x=0 and x=a while 

arbitrary support conditions may be specified in the y-direction. 

(vii) The coordinate system of each plate is attached to its medium plane or the 

reference plane. 

(viii) The principal directions of orthotropy in plates are parallel to the edges and to 

the coordinates as shown in Figure 3.4.a and in Figure 3.5.a. 

(ix) It is assumed that the following relations exist between the deformations of the 

plate adherends and doublers in z-direction.  

)1()2( ww >

I;PartFor
 

)1()3( ww >

II;PartFor
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For the general formulation of the problem, the entire “Composite Bonded Plate 

or Panel System” is divided into four parts, namely, Part I, Part II, Part  III and Part 

IV in the y-direction as shown in Figure 3.4.b and in Figure 3.5.b. Part I corresponds 

to the “Overlap Region” which contains two plates 1,2, Part II corresponds to the 

“Overlap Region” which contains two plates 1,3 and Part II and Part III correspond 

the continuation of the lower plates 2 and 3 respectively, as a single plate in the y-

direction. 

 

5.4 Theoretical Formulation of “Main PROBLEM II” (Theoretical 
Analysis) 

5.4.1 Analysis of Adhesive Layer in the “Overlap Region” 
 

The system in “Overlap Region” (or Part I and Part II region) is composed of 

two plates which are adhesively bonded by very thin and elastic adhesive layers. The 

stresses at the upper and lower faces of the plates due to the adhesive layers are 

considered as external surface stresses or loads on the plates. The adhesive stresses 

should be related to the unknown displacement functions and angles of rotations of 

the adherends in the “Overlap Region”. Figures 5.1 and Figure 5.2 show an 

exaggerated view of the deformations of an infinitesimal element of two-layer plate 

system. The positive sign convention for displacements, stress resultants and angles 

of rotation are also shown in the same figures. (see also Figures 3.1 and 5.1 and 5.2). 
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Figure 5.1 Stress Distributions at Plate Adhesive Layer Interfaces in the “Overlap 

Region” for Part I 
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Figure 5.2 Stress Distributions at Plate Adhesive Layer Interfaces in the “Overlap 

Region” for Part II 
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Figure 5.3 Deformations of Adherends (Mindlin Plates) and in-between Adhesive 

Layers in the “Overlap Region” for Part I 
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Figure 5.4 Deformations of Adherends (Mindlin Plates) and in-between Adhesive 

Layers in the “Overlap Region” for Part II 
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The purpose of this section is to obtain the relations between the stresses in 

the adhesive layers and the plate interfaces and displacements of the adherends. The 

shear strains ( )γ xz
j  and ( )γ yz

j  at interfaces are found by considering the distortion in the 

right angles of the adhesive infinitesimal element after deformation as,  
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with the assumption of small deformations, α(j) and β(j) can be expressed as the 

slopes of the adherends and the displacements in x and y directions, respectively. 

That is, 

 

Between Plates 1 and 2 for Part I, 
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Between Plates 1 and 3 for Part II; 
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where ha is the thicknesses of the upper and lower adhesive layers, respectively and 

(uA)s, (uB)s are axial deformation of points A, B in s direction respectively. Axial 

deformations (uA)s, (uB)s are caused only by the bending of the plates, then the 

displacement components can be written as, 
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 The shear strains in the interfaces can be expressed in terms of displacements 

and angles of rotation of the adherends by using (5.1) through (5.3) 

 

Adhesive Strains Between Plates 1 and 2 for Part I 
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Adhesive Strains Between Plates 1 and 3 for Part II 
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 It should be mentioned here that in some previous studies by Yuceoglu and 

Özerciyes [IV.4-IV.13], the double underlined terms (=) are neglected. In this present 

study these terms are not neglected in the theoretical formulation. 

 

 The interface shear stresses in the adhesive layers can be expressed by using 

the interface shear strains as, 
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Adhesive Stresses Between Plates 1 and 2 for Part I, 
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Adhesive Stresses Between Plates 1 and 3 for Part II 
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 The thicknesses ha of the adhesive layers are assumed to be much smaller 

than the thicknesses of the plates and ( ) ( )j
y

j
x ψψ ,  have the same order of magnitudes 

when compared with 
( )

x
w j

∂
∂  and 

( )

y
w j

∂
∂ . Therefore, one may assume that the variation 

of the transverse displacements in the adhesive layers is linear that is equivalent to 

assuming that the normal strain εz is constant across the thickness. Ea is the modulus 

of elasticity (or Young’s modulus) and Ga is the modulus of rigidity (or shear 

modulus) of the adhesive layer. 



70 70

 

5.4.2 Analysis of Part I and Part II (or the “Overlap Region”) of 
Composite Plate System 

5.4.2.1 Implementation of the Adhesive Layer Equations to Governing 
Equations (equation of motions) of Plate Adherends. 

 

The adhesive stresses are related to unknown displacement functions and 

angle of rotations of the adherends in the “Overlap Region” since they are considered 

as surface loads or external stresses acting on the upper and lower faces of the plates. 

The normal and tangential stresses at the interface may be considered as the 

‘‘compatibility or coupling conditions’’ of the two plates in the “Overlap Region” of 

Part and Part II.  

 

 The governing equations (or plate equations of motion) given in (3.19) and 

(3.20) can be written by using the adhesive stresses as load terms qzx’s and qzy’s as, 
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For Plate 1 in Part II; 
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For Plate 2 in Part I; 
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For Plate 3 in Part II; 
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 In the above equations, the “underlined terms” are the “coupling terms” 

between the adherends and the doubler due to in-between adhesive layers. 

 

 At this stage, the “Classical Levy’s Method” with the trigonometric series 

expansions is to be considered. The “Classical Lévy’s Method” is restricted to 

rectangular plates with any two opposite edges simply supported. However, the other 

two edges may have arbitrary boundary conditions. 

 

 In the present study, the edges at x=0 and x=a are simply supported. The 

“Boundary Conditions” which have to be satisfied along these edges are as follows,  

 

 at x=0,a  → ( ) ( ) ( )w Mj
x
j

y
j= = =0 0 0, , ψ  (j=1,2,3) (5.7) 

 

In the “Classical Lévy’s Method”, the angles of rotations and the displacements of 

the adherends can be expressed as, 
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Displacements and Angles of Rotation for Part I, 
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Displacements and Angles of Rotation, for Part II, 
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where "m" is the number of half-waves in the x-direction, the superscript (j) denotes 

adherend plates for j=2 and j=3, respectively and the doubler for j=1. In the above 

equations, “i” is defined as −1  and the “barred” (__) quantities are the dimensionless 

transverse displacements and angles of rotation. The nondimensional independent 

space variables η , Iξ  and IIξ are defined as x/a, yI/ l I, and yII/ l II respectively. And, 

"ωmn " is the dimensionless circular frequency or the natural frequency of the flexural 

(or bending) vibrations of the entire composite bonded plate or panel system. 

 

 The “Stress Resultants” can also be expressed in trigonometric series in the x-

direction as, 
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Stress Resultants for Part I;  
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Stress Resultants for Part II;  
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where the “barred” (__) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j

mnx
j

mny
j
mny

j
mnyx

j
mnx

j
mny

j
mnx

j
mn QQMMMW ,,,,,,, ΨΨ  are the 

“dimensionless fundamental dependent variables” which will appear in the “state 

vectors” of the problem under consideration. 

 

 For non-dimensionalization of equations, the parameters in the governing 

differential equations shall be nondimensionalized with respect to the main or 

reference quantities which are chosen as ( )" " ," " ," "B h11
1

1 1ρ and “a”. 
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The dimensionless coordinates or independent space variables are, 

η=x/a, 

ξI=yI/lI, ξII =yII/lII, ξIII =yIII/lIII ξIV =yIV/lIV (5.12) 

 

 The dimensionless parameters related to orthotropic elastic constants of the 

plates and the adhesive layers are, 
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 The dimensionless parameters related to the densities and the geometry of the 

plates and adhesive layers are, 
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ρ
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 (5.14) 

 The dimensionless frequency parameter mnω  of the entire doubly stiffened, 

composite bonded plate or panel system is; 
( )

mn

mnmn Bha
ω

ωρω
=Ω

= 1
11

2
1

24
1  (m,n=1,2,3...) (5.15) 

where the dimensionless natural frequency parameter mnω  depending on the given m, 

n values is ordered in terms of its magnitudes as Ω1<Ω2<Ω3<.... with the subscript 

indicating the first, second, third, dimensionless natural frequencies. 
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5.4.2.2 Reduction to “Governing Systems of First Order Ordinary 
Differential Equations” for “Main PROBLEM I”, 

 

 Here, My, Mxy,Qy, ψx, ψy and w are chosen as intrinsic variables and Mx,Qx 

are chosen as auxiliary variables, Then, from the Stress Resultants and Moment 

Resultant Equations given in (3.20), first order partial differential equations can be 

written with respect to the dimensionless independent variables  ξ and η as, 

 

For the “Overlap Region” or Part I; 
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For the “Overlap Region” or Part II; 
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where q’s are surface loads and the stresses on the upper (-) and lower (+) surfaces of 

the plates. Also, note that the superscript and the subscript “j” denotes the doubler for 

j=1, and the plate adherends for j=2 and j=3. 

 
By substituting (5.10) and (5.11) in to (5.17) and making the necessary non-

dimensionalizaitons with respect to (5.13), (5.14) and (5.15), “Governing System of 

First Order Ordinary Differential Equations” for the bonded plate or panel system are 

obtained as,
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For Plate 1, in Part I (Overlap Region); 
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 (5.18) 

 
 

where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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For Plate 1, in Part II (Overlap Region); 
 

( )

)3(
4

1

)1(
3

1

)1(
55

2

)1(
4

1

2

1

)1(
55

2
)1(

11
2

1

24
1

)(

)3(
3

4

1

)1(

1
)1(

44
2

1

)1()1(
4

1

4

1
)1(

11
2

1

24
1

)1(

)3(
3

4

1

)1(
3

1

3

1

)1(
55

2)1(

)1(
22

)1(
12

)1(

4

1

)1(
55

2
4

1

)1(
22

2)1(
12

2

1
)1(

11
2

1

2
1

4

)1(

)1(

1

)1(

)1(
44

2

2
1

)1(

)1(

)1(
22

)1(
12)1(

2
1

)1(
22

)1(

)1()1(
2

1
)1(

66

)1(

42

2412

4

2

4

1
1212

1

12

12

mn
a

a
IImnxxII

mn
a

a
IIxII

mn
II

II

j
mny

mny
a

a
IIymna

y

II
II

mnyxIImnya
II

a

a
II

mnII

II

mny

mnx
a

a
II

mn
aII

xIImnyII

mnx

a

a
IIxII

IImnII

II

mnyx

mnyIImny

y

II

II

mn

mnxIImny
II

II

mny

mnyIImnyx
II

II

mnx

W
h
E

h
aLm

h
aBL

W
h
E

h
aL

h
amBL

Bh
a

L
d
Qd

h
h
a

h
GLQ

h
aG

B

L
h
aL

MmLG
h
aL

h
G

h
aL

Bh
aL

d
Md

h
h
a

h
GL

W
h
amGLm

h
aBLMm

B

BL

h
a

h
GLB

h
aL

B

B
h
amL

Bh
aL

d
Md

h
aLQ

Ba
hL

d
Wd

m
B

BLM
a
h

B

L
d
d

mLM
a
h

B

L
d
d









−Ψ








+





















+








+−=

Ψ







+
















++

+Ψ




















−








+−=

Ψ







+





















+








+−

Ψ



































+








+














−








+−

=

Ψ−





=

Ψ+





=

Ψ

Ψ−





=

Ψ

πκ

πκ
ωρ

ξ

κ

π
ωρ

ξ

ππκπ

κ

πωρ

ξ

κξ

π
ξ

π
ξ

 (5.19) 

 

where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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For Plate 2, in Part I (Overlap Region); 
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where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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For Plate 3, in Part II (Overlap Region); 
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 (5.21) 

 

where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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The quantities having the subscript “mn” are “dimensionless fundamental 

dependent variables” of the problem in Part I and Part II Region (or “Overlap 

Region”). A ‘‘Two-Point Boundary Value Problem” is created in the ‘‘Overlap 

Regions’’ or (Part I and Part II regions) by reducing the system of partial differential 

equations to a ‘‘Governing System of First Order Ordinary Differential Equations’’ 

in ξI or yI and ξII or yII direction. 

 

 Thus, “Governing System of First Order Ordinary Differential Equations” in 

the compact matrix or ‘‘state vector’’ form for the ‘‘Overlap Regions’’ (or Part I and 

Part II regions) can be written as, 
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with the ‘‘Arbitrary Boundary Conditions’’ and the ‘‘Continuity Conditions’’. 
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 (in Part II) (5.23) 

 with the ‘‘Arbitrary Boundary Conditions’’ and the ‘‘Continuity 

Conditions’’. 

 

where Iξ  and IIξ  are defined as yI/ Il , yII/ Il  respectively. The superscripts show 

the related plate layer, the sub-matrices [ ji,C ] and  [ ji,C ′ ] are partitioned square 

matrices of dimension (6x6) which explicitly include the nondimensional geometric 

and material characteristics of the plate adherends, doubler plate and of the adhesive 

layer and dimensionless natural frequency parameter mnω  of the entire composite 

system. ( )j
mnY  (j=1,2,3) are the ‘‘state vectors’ corresponding to the “state variables” 

or the ‘‘dimensionless fundamental dependent variables’’ of the problem under study 

as; 
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mn Q,M,M;W,,Y ΨΨ= , (j=1,2,3) (5.24) 
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5.4.3 Analysis of Part III (or Single Layer) of Composite Plate System 
 

 The “Governing System of the Ordinary Differential Equations” can be 

obtained for the plate adherend in Part III region by using the same procedure in the 

previous section. There is no adhesive layer in Part III. Therefore, coupling terms in 

(5.20) including the adhesive layer elastic constants are dropped. The  “Governing 

System of First Order Ordinary Differential Equations” in the ‘‘state vector’’ form, 

for Part III region, 
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III

YY
d

d D=
ξ

 (0<ξIII<1) (in Part III) (5.25) 

 with the ‘‘Arbitrary Boundary Conditions’’ at ξIII=0 and the ‘‘Continuity 

Conditions’’ at ξIII =1 for the orthotropic plate adherend. 

 

where ξIII is defined as yIII/ IIIl  and [D ] is the “Coefficient Matrix” of dimension 

(6x6) which explicitly includes dimensionless geometric and material characteristics 

of the plate adherend in the Part III region as well as the dimensionless natural 

frequencies mnω  of the entire composite bonded plate system. The column matrix or 

the “state vector” ( ){ }2
mnY  is defined as, 

 ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }T
mnymnymnyxmnmnymnx

2
mn Q,M,M;W,,Y 222222 ΨΨ= , (5.26) 

5.4.4 Analysis of Part IV (or Single Layer) of Composite Plate System 
 
 The “Governing System of First Order Ordinary Differential Equations” can 

be obtained for the plate adherend in Part IV region by using the same procedure in 

the previous section. There is no adhesive layer in Part IV. Therefore, coupling terms 

in (5.21) including the adhesive layer elastic constants are dropped. The “Governing 

System of First Order Ordinary Differential Equations” in the ‘‘state vector’’ form, 

for Part IV region, 
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ξ

, (0<ξIV<1)  (in Part IV) (5.27) 
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with the ‘‘Arbitrary Boundary Conditions’’ at ξIV =1 and the ‘‘Continuity 

Conditions’’ at ξIV =0 for the orthotropic plate adherend. 

 

where ξIV is defined as yIV/ IVl  and [E ] is the “Coefficient Matrix” of dimension 

(6x6) which explicitly includes dimensionless geometric and material characteristics 

of the plate adherend in the Part IV region as well as the dimensionless natural 

frequencies mnω  of the entire composite bonded plate system. The dimensionless 

column matrix or the “state vector” ( ){ }3
mnY  is defined as, 
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5.4.5 System of Governing Ordinary Differential Equations for (“Main 
PROBLEM II”) 

 

 In the previous sections, the “Governing System of First Order Ordinary 

Differential Equations” are obtained in the matrix or the “state vector” form for the 

“Overlap Region” (or Part I and Part II regions), and for the “Single Layer Regions” 

(or Part III and Part IV regions). These equations can be written in “open matrix 

form” as, 
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 (0<ξI<1) (in Part I) (5.29 a) 
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The elements, in the “open matrix form”, of the ‘‘Coefficient Sub-Matrix” related to 

the plate layers are, 
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For Plate 2 (Adherend Plate), 
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For Part II region or the “Overlap Region” (or Two-Layer Composite Plate Region), 
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 (0<ξII<1) (in Part II) (5.30 a) 

 

The elements, in the open form, of the ‘‘Coefficient Sub-Matrix related to the plate 

layers are, 
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For Plate 3 (Adherend Plate), 
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For Part III region (or Single Layer Orthotropic Plate Adherend), 
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 (0<ξIII<1) (in Part III) (5.31 a) 

where the elements of the above ‘‘Coefficient Matrix [ ]D ’’ are, 
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For Part IV region (or Single Layer Plate Adherend), 
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 (0<ξIV<1) (in Part IV) (5.32.a) 

 

where the elements of the above ‘‘Coefficient Matrix [ ]E ’’ are, 
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The “Boundary Conditions” at x=0 and x=a are already satisfied by 

trigonometric expansion in ‘‘Classical Lévy’s Type Solution’’. The ‘‘Appropriate 

Boundary Conditions’’ and the ‘‘Continuity Conditions’’ are needed to solve the 

‘‘Governing System of First Order Ordinary Differential Equations’’. 

 

The ‘‘Boundary Conditions’’ along the edges in the y-direction, 

F (Free): ( ) ( ) ( ) 0=== j
y

j
y

j
yx QMM  

C (Clamped): ( ) ( ) ( )w j
x
j

y
j= = =ψ ψ 0  (j=1,2,3) (5.33) 

S (Simply Supported): ( ) ( ) ( ) 0=== j
y

j
x

j Mw ψ   

 

The ‘‘Continuity Conditions’’ between Part I and Part II, 
( ){ } ( ){ }1

1ξ
1

0ξ III
YY == =  (5.34) 

  

The ‘‘Continuity Conditions’’ between Part I and Part III, 
( ){ } ( ){ }2

1ξ
2

0ξ IIII
YY == =  (5.34) 

 

The ‘‘Continuity Conditions’’ between Part II and Part IV, 
( ){ } ( ){ }3

1ξ
3

0ξ IIVI
YY == =  (5.35) 

 

 Finally, as a summary, the entire set of the “Governing System of First Order 

Ordinary Differential Equations” for the “Main PROBLEM II” is given as; 
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 (5.36 a,b,c,d) 

with the “Appropriate Boundary Conditions” and the “Continuity 

Conditions” in each Part I, Part II, and Part III Regions respectively. 

 

 The above system of equations forms a “Two-Point Boundary Value 

Problem” for the “Main PROBLEM II” between the left and right supports in y-

direction. It is obvious that, once the natural frequencies are obtained, then, the 

Equations (5.36.a,b,c,d) can be integrated numerically for a given particular 

geometry, materials and the support conditions by making use of the “Modified 

Transfer Matrix Method (with Interpolation Polynomials and/or Interpolation 

Polynomials)”. 
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CHAPTER 6 
 
 

(“Main PROBLEM III”)__FREE FLEXURAL (or BENDING) 
VIBRATIONS of COMPOSITE ORTHOTROPIC or ISOTROPIC 
PLATES with a BONDED SYMMETRIC DOUBLE LAP JOINT 

(or SYMMETRIC DOUBLE DOUBLER JOINT) 
 

In this section, the “Governing System of Coupled Ordinary Differential 

Equations” will be presented in the compact matrix or the “state vector” form for the 

“Bonded Region” (or Part I and Part II regions), and for “Single Layer Regions” (or 

Part III and Part IV regions) for the “Main PROBLEM III” without making any 

distinction for the “Main PROBLEM III a ” and the “Main PROBLEM III b” as 

described below. 

 

6.1 Statement of “Main PROBLEM IIIa” 
 

Figure 3.6.a shows the general configuration, geometry and coordinate system 

of the “Composite Orthotropic or Isotropic Plate System with Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)”. This system is 

composed of two “Orthotropic Doublers” and the “Orthotropic or Isotropic 

Adherends” joined centrally by a relatively very thin elastic adhesive layer. 

6.2 Statement of “Main PROBLEM IIIb” 
 

Figure 3.7.a shows the general configuration, geometry and coordinate system 

of the “Composite Orthotropic or Isotropic Plate System with Non-Centrally Bonded 

Symmetric Double Lap Joint”. This system composed of two “Orthotropic Doublers” 

and the “Orthotropic or Isotropic Adherends” joined non-centrally by a relatively 

very thin elastic adhesive layer. 
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6.3 Main assumptions and Analytical Modeling 
 

The analytical formulation of “Main PROBLEM III” is based on the following 

assumptions; 

 

(i) The analysis is carried out only for the free flexural (or bending) vibrations of 

the composite plate system. The in-plane or extensional moments of inertia are 

neglected, but the rotatory and the transverse moments of inertia of the plates 

are included in the formulation. 

(ii) The rotatory and the transverse moments of inertia of the adherends as well as 

their transverse shear deformations are taken into account in the sense of the 

“Mindlin Plate Theory”. 

(iii) There is no slip and separation on the interfaces of the adhesive layers and 

plates or adherends. 

(iv) Since the thickness of the adhesive layers are very small relative to the 

thickness of the plates, the inertia and the mass of the adhesive layers are 

neglected, and both adhesive normal and shear stresses are to be constant across 

their thicknesses. 

(v) The damping effects in Mindlin Plates and in the adhesive layers are neglected. 

(vi) The plates are assumed to be simply supported along edges x=0 and x=a while 

arbitrary support conditions may be specified in the y-direction. 

(vii) The coordinate system of each plate is attached to its medium plane or the 

reference plane. 

(viii) The principal directions of orthotropy in plates are parallel to the edges and to 

the coordinates as shown in Figure 3.6.a and Figure 3.7.a. 

(ix) It is assumed that the following relations exist between the deformations of the 

plate adherends and doublers in z-direction.  

)()()( www 124

I;PartFor

>>
 

)()()( www 134

II;PartFor

>>
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For the general formulation of the problem, the entire “Composite Bonded Plate 

or Panel System” is divided into four parts, namely, Part I, Part II, Part III and Part 

IV in the y-direction as shown in Figure 3.6.b and Figure 3.7.b Part I corresponds to 

the “Bonded Region” which contains three plates 1,2,4, Part II corresponds to the 

“Bonded Region” which contains three plates 1,3,4 and Part II and Part III 

correspond the continuation of the middle plates 2 and 3 respectively, as a single 

plates in the y-direction. 

 

6.4 Theoretical Formulation of “Main PROBLEM III” (Theoretical 
Analysis) 

6.4.1 Analysis of Adhesive Layer in the “Bonded Region” 
 

The system in “Bonded Region” (or Part I and Part II region) is composed of 

three plates which are adhesively bonded by very thin elastic adhesive layers. The 

stresses at the upper and lower faces of the plates due to the adhesive layers are 

considered as external surface stresses or loads on the plates. The adhesive stresses 

could be related to the unknown displacement functions and angle of rotations of the 

adherends in the “Bonded Region”. Figures 6.1 and Figure 6.2 show an exaggerated 

view of the deformation of an infinitesimal element of three-layer plate system. The 

positive sign convention for displacements, stress resultants and angles of rotation 

are also shown on the same figures (see also Figures 3.1 and 6.1 and 6.2). 
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Figure 6.1 Stress Distributions at Plate Adhesive Layer Interfaces in the “Bonded 

Region” for Part I 



95 95

 

 
 

Figure 6.2 Stress Distributions at Plate Adhesive Layer Interfaces in the “Bonded 

Region” for Part II 



96 96

 
 

 

Figure 6.3 Deformations of Adherends (Mindlin Plates) and in-between Adhesive 

Layers in the “Bonded Region” for Part I 
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Figure 6.4 Deformations of Adherends (Mindlin Plates) and in-between Adhesive 

Layers in the “Bonded Region” for Part II 
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The purpose of this section is to obtain the relations between the stresses in 

the upper and lower adhesive layers and the plate interfaces and displacements of the 

adherends. The shear strains ( )γ xz
j  and ( )γ yz

j  at interfaces are found by considering the 

distortion in the right angles of the adhesive infinitesimal element after deformation 

as,  

 

 
( ) ( ) ( )

( ) ( ) ( ) II)Partfor1,3,4j(

I)Partfor1,2,4j(

=+=

=+=
j

y
j

y
j
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j
x

j
x

j
xz

βαγ

βαγ
 (6.1) 

 

with the assumption of small deformations, α(j) and β(j) can be expressed as the 

slopes of the adherends and the displacements in x and y directions, respectively. 

That is, 

 

Between Plates 1 and 2 for Part I, 
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Between Plates 1 and 3 for Part II; 

( )( )
( )

( )

( )( ) ( ) ( ) )(

1

''tan

tan

j
s

a

sAsBj
s

j
s

j
j
s

h
uu

s
w

ββ

αα

≈
+

=

≈
∂

∂
=

 (j=1,3) (6.2.b) 

 

Between Plates 2 and 4 for Part I, 
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Between Plates 3 and 4 for Part II; 
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where ha1 and ha4 are the thicknesses of the upper and lower adhesive layers, 

respectively and (uA)s, (uB)s (uC)s and (uD)s are axial deformation of points A, B C 

and D in s direction respectively. Axial deformations (uA)s, (uB)s (uC)s and (uD)s are 

caused only by the bending of the plates, then the displacement components can be 

written as, 
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 The shear strains in the interfaces can be expressed in terms of displacements 

and angles of rotation of the adherends by using (6.1) through (6.3) 
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Adhesive Strains Between Plates 1 and 3 for Part II 
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Adhesive Strains Between Plates 2 and 4 for Part I,  
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Adhesive Strains Between Plates 2 and 4 for Part I, and Between Plates 3 

and 4 for Part II 
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 It should be mentioned here that in some previous studies by Yuceoglu and 

Özerciyes [IV.4-IV.13], the double underlined terms (=) are neglected. In this present 

study these terms are not neglected in the theoretical formulation. 

 

 Interface shear stresses in the adhesive layers can be expressed by using the 

interface shear strains as, 
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Adhesive Stresses Between Plates 1 and 2 for Part I, 
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Adhesive Stresses Between Plates 1 and 3 for Part II 
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Adhesive Stresses Between Plates 2 and 4 for Part I, 
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Adhesive Stresses Between Plates 3 and 4 for Part II, 
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 The thicknesses ha1 and ha4 of the adhesive layers are assumed to be much 

smaller than the thicknesses of the plates and ( ) ( )j
y

j
x ψψ ,  have the same order of 

magnitudes when compared with 
( )

x
w j

∂
∂  and 

( )

y
w j

∂
∂ . Therefore, one may assume that 

the variation of the transverse displacements in the adhesive layers is linear. This is 

equivalent to assume that the normal strain εz is constant across the thickness. Ea1 

and Ea4 are the modulai of elasticity (or Young’s modulus) and Ga1 and Ga4 are the 

modulus of rigidity (or shear modulus) of the upper and lower adhesive layers, 

respectively. 

 

6.4.2 Analysis of Part I and Part II (or the “Bonded Region”) of 
Composite Plate System 

6.4.2.1 Implementation of the Adhesive Layer Equations to Governing 
Equations (equation of motions) of Plate Adherends. 

 

The adhesive stresses are related to unknown displacement functions and 

angle of rotations of the adherends in the “Bonded Region” since they are considered 

as surface loads or external stresses acting on the upper and lower faces of the plates. 

The normal and tangential stresses at the interface may be considered as the 

‘‘compatibility or coupling conditions’’ of the three plates in the “Bonded Region” in 

of Part I and Part II.  
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 The governing equations (or plate equations of motion) given in (3.19) and 

(3.20) can be written by using the adhesive stresses as load terms qzx’s and qzy’s as, 
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For Plate 1 in Part II; 
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For Plate 2 in Part I; 
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For Plate 3 in Part II; 
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For Plate 4 in Part I; 
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For Plate 4 in Part I; 
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 (6.6.f) 

 

 In the above equations, the singly and doubly “underlined terms” are the 

“coupling terms” between the middle plates and the upper and lower doublers. 

 

 At this stage, the “Classical Levy’s Method” with the trigonometric series 

expansions is to be considered. The “Classical Lévy’s Method” is restricted to 
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rectangular plates with any two opposite edges simply supported. However, the other 

two edges may have arbitrary boundary conditions. 

 

 In the present study, the edges at x=0 and x=a are simply supported. 

“Boundary Conditions” which have to be satisfied along these edges are as follows,  

 

 at x=0,a  → ( ) ( ) ( )w Mj
x
j

y
j= = =0 0 0, , ψ  (j=1,2,3,4) (6.7) 

 

 By using the “Classical Lévy’s Method” angles of rotations and 

displacements of the adherends can be expressed as, 

 

Displacements and Angles of Rotation for Part I, 
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Displacements and Angles of Rotation, for Part II, 
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where "m" is the number of half-waves in the x-direction, the superscript “j” denotes 

the middle adherend plates for j=2 and j=3, upper doubler for j=1 and the lower 

doubler for j=4. In the above equations, “i” is defined as −1  and the “barred” (__) 

quantities are the dimensionless transverse displacements and angles of rotation. The 

nondimensional independent space variables η , Iξ  and IIξ are defined as x/a, yI/ l I, 
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and yII/ l II respectively. Here, "ωmn " is the dimensionless circular frequency or the 

natural frequency of the flexural (or bending) vibrations of the entire composite 

bonded plate or panel system. 

 

 The “Stress Resultants” can also be expressed in trigonometric series in the x-

direction as, 

Stress Resultants for Part I; 
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 (j=1,2,4) (6.10) 

 

Stress Resultants for Part II; 
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 Where again the “barred” (__) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j

mnx
j

mny
j
mny

j
mnyx

j
mnx

j
mny

j
mnx

j
mn QQMMMW ,,,,,,, ΨΨ  

are the “dimensionless fundamental dependent variables” of the problem under 

consideration. 
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 For non dimensionalization of equations, the parameters in the governing 

differential equations shall be nondimensionalized with respect to the main or 

reference quantities which are chosen as ( )" " ," " ," "B h11
1

1 1ρ and “a”. 

 

The dimensionless coordinates or independent space variables are, 

η=x/a, 

ξI =yI/lI, ξII =yII/lII, ξIII =yIII/lIII ξIV =yIV/lIV (6.12) 

 

 The dimensionless parameters related to orthotropic elastic constants of 

adherends and the adhesive layers are, 
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 The dimensionless parameters related to the densities and the geometry of the 

plates and the adhesive layers are, 
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 The dimensionless frequency parameter mnω  of the entire, composite bonded 

joint plate or panel system is; 

 



108 108

( )

mn

mnmn Bha
ω

ωρω
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= 1
11

2
1

24
1  (m,n=1,2,3...) (6.15) 

where the dimensionless natural frequency parameter mnω  depending on the given m, 

n values, is ordered in terms of its magnitudes as Ω1<Ω2<Ω3<.... with the subscript 

indicating the first, second, third, etc. dimensionless natural frequencies. 

 

6.4.2.2 Reduction to “Governing Systems of First Order Ordinary 
Differential Equations” for “Main PROBLEM III”, 

 
 As was done in previous “Main PROBLEMS” My, Mxy,Qy, ψx, ψy and w are 

chosen as intrinsic variables and Mx,Qx are chosen as auxiliary variables. Thus, from 

the Stress Resultants and Moment Resultant Equations given in (3.20), first order 

partial differential equations can be written with respect to the dimensionless 

independent variables  ξ and η as, 

 

For the “Bonded Region” or Part I; 
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For the “Bonded Region” or Part II; 
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where q’s are surface loads and the stresses on the upper (-) and lower (+) surfaces of 

the plates. Also, note that the superscript and the subscript “j” denotes the middle 

adherends for j=2 and j=3, the upper doubler for j=1 and the lower doubler for j=4. 

 
By substituting (6.10) and (6.11) in to (6.17) and making the necessary non-

dimensionalizaitons with respect to (6.13), (6.14) and (6.15), “Governing System of 

First Order Ordinary Differential Equations” for the entire bonded joint plate or 

panel system are obtained as, 
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For Plate 1, in Part I (Bonded Region); 
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 (6.18) 

 

where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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For Plate 1, in Part II (Bonded Region); 
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where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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For Plate 2, in Part I (Bonded Region); 
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where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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For Plate 3, in Part II (Bonded Region); 
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where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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For Plate 4, in Part I (Bonded Region); 
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where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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For Plate 4, in Part II (Bonded Region); 
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where double underlined terms come from 
x
w
∂
∂  and 

y
w
∂
∂  terms which can be 

neglected. (Later on, the natural frequencies and associated mode shapes will be 

obtained and compared with and without 
x
w
∂
∂  and 

y
w
∂
∂  terms or “doubly underlined 

terms”). 
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The quantities having the subscript “mn” are the “dimensionless fundamental 

dependent variables” of the problem in Part I and Part II Region (or “Bonded 

Region”). The ‘‘Two-Point Boundary Value Problem” is created in the ‘‘Bonded 

Regions’’ or (Part I and Part II regions) by reducing the system of partial differential 

equations to a ‘‘Governing System of First Order Ordinary Differential Equations’’ 

in ξI or yI and ξII or yII direction. 

 

 Thus, “Governing System of First Order Ordinary Differential Equations” in 

the compact matrix or the ‘‘state vector’’ form for the ‘‘Bonded Regions’’ (or Part I 

and Part II regions) can be written as, 
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 (in Part I) (6.24) 

 

with the ‘‘Arbitrary Boundary Conditions’’ and the ‘‘Continuity Conditions’’. 
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 with the ‘‘Arbitrary Boundary Conditions’’ and the ‘‘Continuity 

Conditions’’. 

 

where Iξ  and IIξ  are defined as yI/ Il , yII/ Il  respectively. The superscripts show 

the related plate layer, the “Coefficient Sub-Matrices” [ ji,C ] and  [ ji,C ′ ] are 

partitioned square matrices of dimension (6x6) which explicitly include the 

nondimensional geometric and material characteristics of the plate adherends, the 

doubler plates and of the adhesive layers and the dimensionless natural frequency 

parameter mnω  of the entire composite bonded joint system. ( )j
mnY  (j=1,2,3,4) are the 

‘‘state vectors’ corresponding to “state variables” or the ‘‘dimensionless fundamental 

dependent variables’ of the problem under study, 
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 ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }Tj
mny

j
mny

j
mnyx

j
mn

j
mny

j
mnx

j
mn Q,M,M;W,,Y ΨΨ= , (j=1,2,3,4) (6.26) 

 

6.4.3 Analysis of Part III (or Single Layer) of Composite Plate System 
 

 The “Governing System of Ordinary Differential Equations” can be obtained 

for the plate adherend in Part III region by using the same procedure in the previous 

section. There is no adhesive layer in Part III. Therefore, coupling terms in (6.20) 

including the adhesive layer elastic constants are dropped. The “Governing System 

of First Order Ordinary Differential Equations” in the ‘‘state vector’’ form, for Part 

III region, 

 

( ){ } [ ] ( ){ }2
mn

2
mn

III

YY
d

d D=
ξ

 (0<ξIII<1) (in Part III) (6.27) 

 with the ‘‘Arbitrary Boundary Conditions’’ at ξIII=0 and the ‘‘Continuity 

Conditions’’ at ξIII =1 for the orthotropic plate adherend. 

 

where ξIII is defined as yIII/ IIIl  and [D ] is the “Coefficient Matrix” of dimension 

(6x6) which explicitly includes dimensionless geometric and material characteristics 

of the plate adherend in the Part III region as well as the dimensionless natural 

frequencies mnω  of the entire composite plate system. The column matrix or the 

“state vector” ( ){ }2
mnY  is defined as, 

 ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }T
mnymnymnyxmnmnymnx

2
mn Q,M,M;W,,Y 222222 ΨΨ= , (6.28) 

6.4.4 Analysis of Part IV (or Single Layer) of Composite Plate System 
 
 The “Governing System of Ordinary Differential Equations” can be obtained 

for the plate adherend in Part IV region by using the same procedure in the previous 

section. There is no adhesive layer in Part IV. Therefore, coupling terms in (6.21) 

including the adhesive layer elastic constants are dropped. The “Governing System 

of First Order Ordinary Differential Equations” in the ‘‘state vector’’ form, for Part 

IV region, 
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( ){ } [ ] ( ){ }3
mn

3
mn

III

YY
d

d E=
ξ

, (0<ξIV<1) (in Part IV) (6.29) 

with the ‘‘Arbitrary Boundary Conditions’’ at ξIV =1 and the ‘‘Continuity 

Conditions’’ at ξIV =0 for the orthotropic plate adherend. 

 

where ξIV is defined as yIV/ IVl  and [E ] is the “Coefficient Matrix” of dimension 

(6x6) which explicitly includes dimensionless geometric and material characteristics 

of the plate adherend in the Part IV region as well as the dimensionless natural 

frequencies mnω  of the entire composite bonded joint plate system. The column 

matrix or the “state vector” ( ){ }3
mnY  is defined as, 

 

( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }T
mnymnymnyxmnmnymnx

3
mn Q,M,M;W,,Y 333333 ΨΨ= , (6.30) 

 

6.4.5 System of Governing First Order Ordinary Differential Equations 
for (“Main PROBLEM III”) 

 

 In the previous sections, the “Governing System of First Order Ordinary 

Differential Equations” are obtained in the matrix or “state vector” form for the 

“Bonded Region” (or Part I and Part II regions), and for the “Single Layer Regions” 

(or Part III and Part IV regions). These equations can be written in “open matrix 

form” as, 
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For Part I region or the “Bonded Region” (or Three-Layer Composite Plate 

Region),
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 (0<ξI<1) (6.40 a) 

 

The elements, in the “open matrix form”, of the ‘‘Coefficient Sub-Matrices” related 

to the plate layers are, 
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For Plate 2 (Adherend Plate), 
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For plate 4 (Lower “Doubler” Plate), 
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For Part II region or the “Bonded Region” (or Three-Layer Composite Plate 

Region),
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) 

















































































































































































′′′

′′′′

′′′′

′′

′′

′′

′′′′

′′′′′

′′′′′

′′

′′

′′

′′′

′′′′

′′′′′′

′′

′′

′′

=

4

4

4

4

4

4

3

3

3

3

3

3

1

1

1

1

1

1

4

4

4

4

4

4

3

3

3

3

3

3

1

1

1

1

1

1

mnyQ

mnyM

mnyxM
mnW

mny

mnx

mnyQ

mnyM

mnyxM
mnW

mny

mnx

mnyQ

mnyM

mnyxM
mnW

mny

mnx

mnyQ

mnyM

mnyxM
mnW

mny

mnx

mnyQ

mnyM

mnyxM
mnW

mny

mnx

mnyQ

mnyM

mnyxM
mnW

mny

mnx

IId

d

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ξ

00018,15c018,13c00018,9c00000000
17,18c017,16c017,14c0000017,8c0000000

016,17c016,15c016,13c0000016,7c000000
15,18c00015,14c0000000000000

014,17c00014,13c000000000000

0013,16c013,14c0000000000000

00012,15c0000012,9c012,7c00012,3c00

000011,14c011,12c011,10c011,8c0000011,2c0

0000010,13c010,11c010,9c010,7c0000010,1c

0000009,12c0009,8c0000000

00000008,11c0008,7c000000

000000007,10c07,8c0000000

0000000006,9c000006,3c06,1c

00000000005,8c05,6c05,4c05,2c0

000000000004,7c04,5c04,3c04,1c

0000000000003,6c0003,2c0

00000000000002,5c0002,1c

000000000000001,4c01,2c0

 (0<ξII<1) (6.41 a) 

 

The elements, in the open form, of the ‘‘Coefficient Sub-Matrices” related to the 

plate layers are, 
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For plate 4 (Lower “Doubler” Plate), 
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For Part III region (or Single Layer Orthotropic Plate Adherend), 
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where the elements of the above ‘‘Coefficient Matrix [ ]D ’’ are, 
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For Part IV region (or Single Layer Plate Adherend), 
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where the elements of the above ‘‘Coefficient Matrix [ ]E ’’ are, 
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The “Boundary Conditions” at x=0 and x=a are already satisfied by 

trigonometric expansion in ‘‘Classical Lévy’s Type Solution’’. The ‘‘Appropriate 

Boundary Conditions’’ and the ‘‘Continuity Conditions’’ are needed to solve the 

‘‘Governing System of First Order Ordinary Differential Equations’’. Then, 

 

The ‘‘Boundary Conditions’’ along the edges in the y-direction, 
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The ‘‘Continuity Conditions’’ between Part I and Part II, 
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The ‘‘Continuity Conditions’’ between Part I and Part III, 
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The ‘‘Continuity Conditions’’ between Part II and Part IV, 
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 Finally, as a summary, the entire set of the “Governing System of First Order 

Ordinary Differential Equations” for the “Main PROBLEM III” is given as; 
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 (6.48 a,b,c,d) 

with the “Appropriate Boundary Conditions” and the “Continuity 

Conditions” in each Part I, Part II, Part III and Part III regions, respectively. 

 

 The above entire system of equations forms a “Two-Point Boundary Value 

Problem” for the “Main PROBLEM III” between the left and right supports in y-

direction. It is obvious that, once the natural frequencies are obtained, then, the 

Equations (6.48.a,b,c,d) can be integrated numerically for a given particular 

geometry, materials and the support conditions by making the “Modified Transfer 

Matrix Method (with Interpolation Polynomials and/or Chebyshev Polynomials)”. 

 



 129

 
 
 

CHAPTER 7 
 

METHOD OF SOLUTION 

7.1 Introduction 
 

Over the years, several different numerical methods and approximate 

methods have been developed for the solution of the “Initial and Boundary Value 

Problems of Plates”. Few analytical and/or closed form solutions are available in the 

open engineered and scientific literature and in some graduate level texts, therefore, 

the solution of complicated plate problems are, in general, attempted by means of the 

numerical and some approximate methods. 

 

 In the present “Thesis”, the “Modified Transfer Matrix Method (MTMM)” 

has been employed. This solution technique is a combination of the “Classical 

Levy’s Method”, the “Transfer Matrix Method” and the “Integrating Matrix 

Method”. 

 

 Yuceoglu and Özerciyes and also Özerciyes and Yuceoglu and Yuceoglu et al 

[VI.4-VI.13] have developed several versions of the present method of solution that 

is the “Modified Transfer Matrix Method (MTMM)”; 

• “Modified Transfer Matrix Method (with Interpolation Polynomials)” 

• “Modified Transfer Matrix Method (with Chebyshev Polynomials)” 

• “Modified Transfer Matrix Method (with Eigenvalue Approach)” 

 

Aforementioned methods are essentially semi-analytical and numerical 

techniques which can be easily applied to a certain class of plates, shell vibration 

problems. 

 
In this “Thesis”, the first method mentioned above is employed. The present 

method of solution will be systematically applied to the “Main PROBLEM I, II, III”. 



 130

7.2 Method of Solution for “Main PROBLEM I a and “Main PROBLEM 
I b” 

 

In this section, the application of the present solution technique will be 

explained in detail for the “Main PROBLEM I” without making any distinction 

between the “Main PROBLEM I.a” and the “Main PROBLEM I.b”. 

 

The initial step is to write the “Governing System of First Order Ordinary 

Differential Equations” in a “state vector” form as in (4.18), (4.20) and (4.22). In 

order to eliminate the first order ordinary differential operator and obtain 

fundamental dependent variables, only single step numerical integration is required. 

This is one of the advantages of the present method of solution. 

 

The entire set of the “Governing System of Equations” may be rewritten in 

the compact “matrix form” with the unknown “state vectors” and the “Coefficient 

Matrices” as (recalling that the entire set, now, creates a “Two-point BVP”), 

 

“Governing System of First Order Ordinary Differential Equations”, 
( )

( ) [ ] ( ) 























=
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mn

(1)
mn

2
mn

1
mn

Y
Y

Y
Y

Id

d
C

ξ
, (0<ξI<1) (in Part I) 

( ){ } [ ] ( ){ }1mn1
mn YY

IId
d D=
ξ

, (0<ξII<1) (in Part II) (7.1.a,b,c) 

( ){ } [ ] ( ){ }2mn2
mn YY

IIId
d E=
ξ

, (0<ξIII<1) (in Part III) 

with the “Appropriate Boundary Conditions” and the “Continuity 

Conditions” for the particular problem under consideration in Part I, Part II, 

Part III. 

 

where ξI, ξII, ξIII are defined as yI/ l I, yII/ l II, yIII/ l III, respectively and the 

“Coefficient Matrix [C ]” is of dimension (12x12) which explicitly includes the 

nondimensional geometric and material characteristics of the upper and lower plate 

adherends and the adhesive layer and the unknown dimensionless natural frequency 
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parameter ωmn  of the composite bonded system. Similarly, the “Coefficient Matrix 

[D ]” and the “Coefficient Matrix [E ]” are both of dimensions (6x6) which 

explicitly include dimensionless geometric and material characteristics of the upper 

plate in Part II Region and lower plate in Part III Region, and the unknown 

dimensionless natural frequency parameter ωmn .The “Column Matrix ( ){ }jmnY ” (j=1,2) 

are the “state vectors” including state variables or “dimensionless fundamental 

dependent variables” of the problem, 

 

( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }Tj
mny

j
mny

j
mnyx

j
mn

j
mny

j
mnx QMMW ,,;,,ΨΨ=j

mnY   (j=1,2)  (7.2) 
 
 The next step involves discretization of the “fundamental dependent 

variables” of the problem and the “Coefficient Matrices” in (7.1) with respect to the 

independent space variables ξI, ξII, ξIII, (which are taken as dimensionless spatial 

coordinates) along Part I, Part II, and Part III, respectively. 

 

 The discretization procedure is performed by dividing Part I, Part II and Part 

III regions into sufficient number (n1 for Part I, n2 for Part II, and n3 for Part III) of 

segments or stations along ξI, ξII and ξIII directions, respectively and pre-multiplying 

discrete version of “Coefficient Matrices” by the appropriate “Global Integrating 

Matrix [ ]L ” which includes “Integrating Sub-Matrices [L]”. For convenience, “mn” 

subscript will be dropped from the equations. Then, 

 

For Part I Region (Two-Layer Composite Plate), 
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For Part II Region (Single Layer Orthotropic or Isotropic Upper Plate), 
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For Part III region (Single Layer Orthotropic or Isotropic Lower Plate), 
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( ) ( )
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YYY ELIII ,  (in Part III) (7.5) 

 

where subscripts I, II, III in [L] indicate integration performed for Part I, Part II, 

and Part III and 
( )











 • j

Y , (j=1,2) is discrete versions of “state vector ( ){ }jmnY ” and in 

matrices 








































 .
E

.
D

.
C ,,  (“dot” or “·” indicating the discretization along the ξ-

direction) are the discrete versions of “Coefficient Matrices” 























EDC ,,  in 

(7.1), respectively. The “state vector ( ){ }j1Y ” represents the “initial” end point, i.e. at 

ξI=0, ξII=0, and ξIII=0.for Part I, Part II and Part III, respectively The superscripts “1” 

denotes the upper plate and the superscript “2” denotes lower plate. 

 

 The more detailed forms of the “state vectors” at “general station” and “state 

vectors” at “initial end points” is given below; 
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Discretization of “State Vectors” evaluated at the “general station” and “State 

Vectors” evaluated at the “initial end point” 
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Discretization of “Coefficient Matrix” for Part I, 

































































=








••

•

•••

•

nxn
12,12

nxn
12,1

nxn
2,12

nxn
1,12

nxnnxn

...
.....
.....

....

..

CC

C

CCC 1,21,1

C  (7.7) 



 134

 

Discretization of “Coefficient Matrix” for Part II, 
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Discretization of “Coefficient Matrix” for Part III, 
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 In the above matrices, the second subscript in (7.6), (7.7), (7.8) and (7.9) 

indicate the discretization point or the “station” with which they are associated and 

[Ci,j], [Di,j] and [Ei,j] are the diagonal “Sub-Matrices” composed of the elements of 

the related “Coefficient Matrix”. 

 

 The relation between the “state vector” at a ‘‘general station’’ along ξI in Part 

I, ξII in Part II, and ξIII in Part III, and the “state vector” at the “initial end points’’ at 

ξI=0 in Part I, at ξII=0 in Part II, at ξIII=0 in Part III, respectively, can be written by 

rearranging the above equations as, 
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 From Equation (7.3); 

 

For the “Overlap Region” or Part I region, 
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where 



 •

U  is the “Discretized Modified Transfer Matrix” for Part I region, 
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Similarly, from Equation (7.4), 

For Part II region, 
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where 



 •

V  is the “Discretized Modified Transfer Matrix” for Part II region, 
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 Similarly, from Equation (7.5), 

For Part III region, 
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W  is the “Discretized Modified Transfer Matrix” for Part III 

region, 
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 In the above expressions, as defined before, [LI], [LII] and [LIII] are the 

“Global Integrating Matrices” for Part I, Part II and Part III, respectively. 

 

 The discretized versions of the “Modified Transfer Matrix” between a 

‘‘general station’’ along ξI, ξII, ξIII and the “initial end point ξI=0, ξII=0, 

ξIII=0,respectively, can be expressed in open form as, 

 

 For Part I region (Two-Layer Composite Plate), 
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 For Part II region (Single-Layer Orthotropic or Isotropic Plate), 
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 For Part III region (Single-Layer Orthotropic or Isotropic Plate),, 
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 The matrix 



 •

U  is composed of (12×12) square blocks of dimension n1 and 

each individual block represents a relation between a “state variable” (an element of 

the appropriate “state vector”) at any “general station ξI” and the state variable at the 

“initial end point ξI=0”. The subscript n1 is the number of discretization points in Part 

I region or in the “Overlap Region”. 

 

 The matrix 



 •

V  is composed of (6×6) blocks of dimension n2 and each 

individual block represents a relation between a state variable at any “general station 

ξII” and the "state variable” (an element of the appropriate “state vector”) at the 

“initial end point ξII=0”. The subscript n2 is the number of discretization points in 

Part II Region. 

 

 The matrix 



 •

W  is composed of (6×6) blocks of dimension n3 and each 

individual block represents a relation between a “state variable” (an element of the 

appropriate “state vector”) at any “general station ξIII” the state variable at the “initial 
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end point ξIII=0”. The subscript n3 is the number of discretization points in Part III 

Region. 

 
 Then, by summing the elements related with the each group of “state vectors” 

at “initial end point”, on the integer multiples of nth row of 



 •

U , 



 •

V  and 



 •

W  

one can obtain the following, 
 
For Part I region (Two-Layer Composite Plate), 

 

( )

( )

( )

( ) ( )

( )

( )

( )

( ) 



























































=

































∑

∑∑

+=

+==

2
y1

1
y1

1
x1

12n

111ni
in,

2n

1ni
in,

n

1i
in,

2
yn

1
yn

1
xn

Q

.

.

.

Ψ

Ψ

....

.....

.....

.....

...

Q

.

Ψ

Ψ

1

1

1

12,12

1,21,1

U

UU

&

&&

.

.  (7.19.a) 

 

 Then, in compact matrix form, 
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For Part II region (Single-Layer Orthotropic or Isotropic Plate), 

 
( )

( )

( )

( )

( )

( ) 















































































=

































∑

∑∑

+=

•

+=

•

=

•

1
y1

1
y1

1
x1

6n

15ni in,

2n

1ni in,

n

1i in,

1
yn

1
yn

1
xn

Q
.
.
.

Ψ

Ψ

....

.....

.....

.....

...

Q

.

.
Ψ

Ψ

2

2

2

1,6

1,21,1

V

V,V

.

 (7.20.a) 



 139

 

 Then, in compact matrix form,  
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For Part III region (Single-Layer Orthotropic or Isotropic Plate), 
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 Then, in compact matrix form,  
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 In the above equations, [ ]U~ , [ ]V~  and [ ]W~  are the “final form” of the 

discretized “Modified Transfer Matrices” for Part I, Part II and Part III regions, 

respectively. They transfer the discretized quantities from the “initial end point ξt=0” 

(t=Parts I, II, III) to the general end point ξt=1” (t=Parts I, II, III), respectively. 
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 At this stage, further combination of equations is needed. Thus, the equations 

(7.19), (7.20) and (7.21) can be rewritten in a compact matrix form, such that, 

 

For the “Overlap Region” or Part I region, 
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For Part II region,  

{ } [ ] { }(1)
0ξ

(1)
1ξ IIII YY == = 011,1V~  (0≤ξII≤)  (7.23) 

 

For Part III region, 

{ } [ ] { }(2)
0ξ

(2)
1ξ IIIIII Y~Y == = 011,1W  (0≤ξIII≤)  (7.24) 

 

where the subscript (01) in the above matrix expressions means that the “final form” 

of the appropriate “Modified Transfer Matrix” transfers the above quantities from the 

“initial end point, “0”, to the “final end point, “1” along ξI, ξII, ξIII, directions 

respectively. 

 

 The matrices [ ]ji,U~ , [ ]ji,V~  and [ ]ji,W~  are the partitioned square matrices of 

dimension (6x6) which implicitly includes the unknown dimensionless natural 

frequencies ωmn  of the entire composite bonded plate system of the “Main 

PROBLEM I” 

  

 Now, natural frequencies of the entire system will be determined by using the 

“Boundary Conditions” at the supports and the “Continuity Conditions” between the 

regions or parts in the y-direction (see also the longitudinal cross section of the 

“Main PROBEM I”). Any combination of the “Boundary Conditions” at ξII=0, ξI=1 

for the upper plate, and ξI=0, ξIII=1 for the lower plate in the y-direction can be 

prescribed. 
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 The “Continuity Conditions” between Part I and Part II can be written for 

upper plate adherend and the “Continuity Condition” between Part I and Part III can 

be written for lower plate adherend as follows, 

 

The ‘‘Continuity Conditions’’ between the Part I and Part II, 
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The ‘‘Continuity Conditions’’ between the Part I and Part III, 
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By using Equations (7.23) and (7.25), 
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Then, one can write,  

 

 

( )

( )

( )

( )























=













=

=

=

=

2
0ξ

1
0ξ

2
0ξ

1
0ξ

I

II

I

I

Y

Y

I

~

Y

Y

0

01,1V
 (7.28) 

 
By using Equations (7.24) and (7.26), 
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Then, one can write,  
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After substituting (7.28) and (7.30) into (7.23) one can obtain, 
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where [I] is a unit matrix with dimension (6x6). And, by further rearrangement of 

(7.31) yields, 
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 Then the final form of the “Discretized Modified Transfer Matrix [ ]01Q ” can 

be written as follows;, 
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 Thus, [ ]01Q  transfers the “state variables” in the “state vectors” from left to 

support (initial end point) to the right support (final end point)along ξ or y-direction 

for the entire bonded plate system. 

 

 The “final form” of the “Modified Transfer Matrix” can be reduced to (6x6) 

by substitution of the “Boundary Conditions” in the y-direction at ξII=0, ξI=1 for the 

upper plate, and ξI=0, ξIII=1 for the lower plate. After the boundary conditions are 

inserted, the following “matrix equation” (which implicitly includes the unknown 

dimensionless natural frequency parameter mnω ) can be obtained, 

 

[ ] { } { }0YC (I)0(I)0 =)( mnω  ⇒  Determinant of “Coefficient Matrix” 

= [ ] 0=(I)0C  (7.34) 

where subscript (I) in the above matrix expression indicate the “Main PROBLEM I” 

 

 The “Coefficient Matrix [ ](I)0C ” is obtained by eliminating the rows 

corresponding to nonzero “state variables” at the “final end point’’ and the columns 
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corresponding to zero “state variables” at the “initial end point’’ in (7.33). Here, 

{Y0} is a vector whose elements are the nonzero components of ( ) ( ){ }T2
0ξ

1
0ξ III
Y,Y == . 

  

 For a non-trivial solution of (7.34), determinant of the “Coefficient Matrix 

[ ](I)0C ” must be equal to zero. This procedure should be repeated for a specific set 

of “Boundary Conditions” and the given material and the Geometric Characteristics 

in order to find the roots of the determinant of the “Coefficient Matrix [ ](I)0C ” 

which includes the nondimensional natural frequencies, ωmn  of the entire composite 

bonded plate system of the “Main PROBLEM I.”. One can easily find the 

corresponding mode shapes, after the natural frequencies (and eigenvectors) are 

obtained for a particular set of “Boundary Conditions” in the y-directions. 
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7.3 Method of Solution for “Main PROBLEM II a” and “Main PROBLEM 
II b” 

 
In this section, the application of the present solution technique will be 

explained in detail for the “Main PROBLEM II” without making any distinction 

between the “Main PROBLEM II.a” and the “Main PROBLEM II.b”. 

 

First step is to write the sets of the “Governing System of First Order 

Ordinary Differential Equations” in a “state vector” form in Part I, Part II, Part III 

and Part IV regions as in (5.23, 5.25, 5.27), 

 

“Governing System of First Order Ordinary Differential Equations” 
( )

( ) [ ] ( ) 
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ξ
, (0<ξI<1) (in Part I) 
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Y

Y

Y

Y

IId

d
C

ξ
, (0<ξII<1) (in Part II) (7.35.a,b,c,d) 

( ){ } [ ] ( ){ }2mn2
mn YY

d
d

III
D=

ξ
, (0<ξIII<1) (in Part III) 

( ){ } [ ] ( ){ }3mn3
mn YY

d
d

IV
E=

ξ
, (0<ξIV<1) (in Part IV) 

with the “Appropriate Boundary Conditions” and the “Continuity 

Conditions” for the particular problem under consideration. 

 

where ξI, ξII, ξIII and ξIV are defined as yI/ l I, yII/ l II, yIII/ l III and yIV/ l IV, 

respectively. The “Coefficient Matrices [C ] and [C ′ ]” are of dimension (12x12) 

and [D ], [ ]E  are of dimension (6x6). In the above, [C ] is the “Coefficient 

Matrix” for Part I of the “overlap region” and [C ′ ] is the “Coefficient Matrix” for 

Part II of the “Overlap Region”. They include the dimensionless geometric and 

material characteristics of the adherends as well as the unknown dimensionless 
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natural frequencies ωmn . The “Column Matrix ( ){ }jmY  (j=1,2,3) are the “state 

vectors” including the “dimensionless fundamental state variables” of the adherends, 

 

 ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }Tj
my

j
my

j
myx

j
m

j
my

j
mx Q,M,M;W,Ψ,Ψ=j

mY  (j=1,2,3) (7.35 e) 

 

 The Discretized “Modified Transfer Matrix” for Part I, Part II, Part III and 

Part IV can be obtained (similar to the “Main PROBLEM I”) as for the “Main 

PROBLEM II”, 

 

For the “Overlap Region” Part I, 
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For the “Overlap Region” Part II, 
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For Part III Region, 

{ } [ ] { })2(
001

)2(
1

~
== = IIIIII YY ξξ 1,1V , (in Part III) (7.38) 

 

For Part IV Region, 

{ } [ ] { })3(
001

)3(
1 == = IVıV YY ξξ 1,1W& , (in Part IV) (7.39) 

 

where subscript (01) in the above expressions means that the “final form” of the 

“Modified Transfer Matrix” transferring the above quantities from the “initial end 

point 0”, to the “final end point 1” in their respective parts and regions. 

 

 Next, the natural frequencies of the entire composite bonded plate system will 

be determined by using the “Boundary Conditions” and the “Continuity Conditions” 

in the y-direction. Any combination of the “Boundary Conditions” at ξI=0, ξII=1 for 
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the upper plate, ξIII=0, ξI=1 for the lower left plate, and ξII=0, ξIV=1 for the lower 

right plate in the y-direction can be prescribed. 

 

 The “Continuity Conditions” between Part I and Part II can be written for 

upper plate, the “Continuity Conditions” between Part I and Part III for lower left 

plate and the “Continuity Conditions” between Part II and Part IV for middle right 

plate can be written as in the following, 

 

The ‘‘Continuity Conditions’’ between the Part I and Part II, 

{ } { })()(
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YY

1
0

1
1 == = ξξ  (7.40) 

 
The ‘‘Continuity Conditions’’ between the Part I and Part III, 
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2
1 == = ξξ  (7.41) 

 

The ‘‘Continuity Conditions’’ between the Part II and Part IV, 
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IVII
YY
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3
1 == = ξξ  (7.42) 

 

From Equations (7.36), (7.38),(7.41) one can obtain, 
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 (7.43) 

 

Similarly, by Equations (7.37), (7.39), (7.42), 
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 Then, Equation (7.43) and (7.44) is manipulated by using Equation (7.40) and 

“final form” of the “Modified Transfer Matrix” which transfers the “state vectors” 
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from the left support (initial end point) to the right support (final end point) is 

obtained as, 
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or, finally, by simply multiplying and rearranging, 
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QQQ
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QQQ

 (7.46) 

where  [ ]01Q  is the “final form” of the “Modified Transfer Matrix”. 

 

 The “final form” of the “Modified Transfer Matrix” can be reduced to (9x9) 

by the substitution of the “Boundary Conditions” in the y-direction at ξI=0, ξII=1 for 

the upper plate, ξIII=0, ξI=1 for the lower left plate and. ξII=0, ξIV=1 for the lower 

right plate. After inserting the “Boundary Condition” the following matrix equation 

which implicitly includes the unknown dimensionless natural frequency parameter 

mnω  can be obtained, 

 

 [ ] { } { }0YC (II)0(II)0 =)( mnω  ⇒ Determinant of “Coefficient Matrix”= 

[ ] 0=(II)0C  (7.47) 

where subscript “II” indicates the “Main PROBLEM II”, and the “Coefficient Matrix 

[ ](II)0C ” is obtained by eliminating the rows corresponding to nonzero “state 

variables” at the “final end point’’ and the columns corresponding to zero state 
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variables at the “initial end point’’ in (7.46). Here, {Y0} is a vector whose elements 

are the nonzero components of 
( ) ( ) ( ){ }T3

0ξ
2

0ξ
1
0ξ IIIIII

Y,,YY === . 

 

 For a non-trivial solution, the determinant of the “Coefficient Matrix 

[ ](II)0C ” must be equal to zero. Again this procedure should be repeated for a given 

specific set of “Boundary Conditions” with given the material and geometric 

characteristics for the problem under consideration. The roots of the determinant of 

the “Coefficient Matrix [ ](II)0C ” correspond to the nondimensionalized natural 

frequencies, ωmn  of the entire composite bonded plate system of the “Main 

PROBLEM II”. The roots of the above determinant should be numerically obtained. 

One can easily find the corresponding mode shapes, after the natural frequencies 

(and eigenvectors) are obtained for a particular set of “Boundary Conditions” in the 

y-directions. 

 

7.4 Method of Solution for Special case of “Main PROBLEM II a” and 
“Main PROBLEM II b” 

 
In this section, the application of the present solution technique will be 

explained in detail for the Special Case of the “Main PROBLEM IIa” and the “Main 

PROBLEM IIb”. 

 

 “Modified Transfer Matrix” for Part I, Part II, Part III, Part IV and Part V can 

be obtained similarly for “Main PROBLEM II” as; 
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For the “Overlap Region” Part II, 
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For Part III Region, 
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~)2(

01 IIIIII YY ξξ 1,1V  (in Part III) (7.50) 

 

For Part IV Region, 
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For Part V Region, 
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01 VV YY ξξ 1,1Z  (in Part V) (7.52) 

 

where subscript (01) in the above expressions means that the “final form” of the 

“Modified Transfer Matrix” transferring the above quantities from the “initial end 

point 0”, to the “final end point 1”. 

 

 Now natural frequencies of the entire system will be determined by using the 

“Boundary Conditions” and the “Continuity Conditions” in the y-direction.  

 

The ‘‘Continuity Conditions’’ between the Part I and Part V, 
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The ‘‘Continuity Conditions’’ between the Part I and Part III, 

{ } { })()(

IIII
YY

2
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The ‘‘Continuity Conditions’’ between the Part II and Part IV, 
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3
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1 == = ξξ  (7.55) 

 

The ‘‘Continuity Conditions’’ between the Part II and Part V, 
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1 == = IIV YY ξξ  (7.56) 
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 Then, from Equations (7.48) and (7.56), final form of the “Modified Transfer 

Matrix” is obtained as, 
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or, simply rearranging, 
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where  [ ]01Q  is the “final form” of the “Modified Transfer Matrix”. 

 

 When the boundary condition applied the following matrix equation which 

implicitly includes the unknown dimensionless natural frequency parameter mnω  can 

be obtained, 

 

 [ ] { } { }0YC (II)0(II)0 =)( mnω  ⇒ Determinant of the “Coefficient Matrix”= 

[ ] 0=(II)0C  (7.59) 

where the subscript (II) indicates the “Special Case of Main PROBLEM II”. 

 

 The “Coefficient Matrix [ ](II)0C ” is obtained by eliminating the rows 

corresponding to nonzero state variable at the “final end point’’ and the columns 

corresponding to zero state variables at the “initial end point’’. Here, {Y0} is a vector 
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whose elements are the nonzero components of 
( ) ( ) ( ){ }T3

0ξ
2

0ξ
1
0ξ IIIIII

Y,,YY === similarly 

as “Main PROBLEM II”. 

 

 For non-trivial solution, determinant of the “Coefficient Matrix [ ](II)0C ” 

shall be equal to zero which correspond to the nondimensionalized natural 

frequencies, mnω  of the entire composite plate system of the Special Case of “Main 

PROBLEM II”. 

 

7.5 Method of Solution for “Main PROBLEM III a” and “Main PROBLEM 
III b” 

 
In this section, the application of the present solution technique will be 

explained in detail for the “Main PROBLEM III” without making any distinction 

between the “Main PROBLEM III.a” and the “Main PROBLEM III.b”. 

 

The first step in the solution procedure is to write, the sets of the “Governing 

System of First Order Ordinary Differential Equations” in a “state vector” form in 

Part I, Part II, Part III and Part IV regions” as was done in (6.24, 6.25, 6.27, 6.29), 
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with the “Appropriate Boundary Conditions” and the “Continuity 

Conditions” for the particular problem under consideration. 

 

where ξI, ξII, ξIII and ξIV are defined as yI/ l I, yII/ l II, yIII/ l III and yIV/ l IV, 

respectively. The “Coefficient Matrices [C ] and [C ′ ]” are of dimension (18x18) 

and [D ], [ ]E  are of dimension (6x6). [C ] is the “Coefficient Matrix” for Part I 

of the “Bonded Region” and [C ′ ] is the “Coefficient Matrix” for Part II of the 

“Bonded Region”. They include the dimensionless geometric and material 

characteristics of the adherends as well as the unknown dimensionless natural 

frequenciesωmn . The “Column Matrix ( ){ }jmY  (j=1,2,3,4) are the “state vectors” 

including the “dimensionless fundamental state variables” of the adherends (or rather 

of the problems under study), 
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 The next step involves the discretization of the “fundamental dependent 

variables” of the problem under investigation and the “Coefficient Matrices” with 

respect to the independent space variables ξI, ξII, ξIII, ξIV respectively.  

 

 The discretization is performed by dividing the Part I, Part II, Part III and Part 

IV regions into sufficient number (n1 for Part I, n2 for Part II, n3 for Part III and n4 for 

Part IV) of segments or stations along ξI, ξII, ξIII and ξIV directions respectively and 

by pre-multiplying the discrete version of “Coefficient Matrices” by the appropriate 

“Global Integrating Matrix [ ]L ” which includes integrating sub-matrices [L]. For 

convenience, “mn” subscript will be dropped from the equations. Then, 
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For Part II region (Three-Layer Composite Plates), 
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For Part III region (Single Layer Orthotropic or Isotropic Base Plate), 
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DLIII ,  (in Part III) (7.63) 

 

For Part IV region (Single Layer Orthotropic or Isotropic Base Plate), 
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ELIV ,  (in Part IV) (7.64) 

 

where the subscript in [L] indicates the corresponding part (Part I, Part II, Part III 

and Part IV) ( ){ }jY&  is discrete version of “state vector” ( ){ }jmnY  and 
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 ••••

EDCC ,,,  (“dot” or “·” indicating the discretization along the ξ-

direction) are the discrete versions of the “Coefficient Matrices” [ ] [ ] [ ] [ ]EDCC ,,, ′ . 

The “state vector” ( ){ }j1Y  is evaluated at the “initial end point”, (i.e. at ξI=0, ξII=0, 

ξIII=0 and ξIV=0.for Part I, Part II, Part III and Part IV, respectively) The superscripts 

(1,2,3,4) denote the adherends.  

 

 One can write the “state vector” at a “general station” as ( ){ }jY& , with respect 

to the “state vector” at the “initial end point” with the subscript “1” as ( ){ }j1Y  and 

discretized version of the “Coefficient Matrix” as, 
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“State Vectors” evaluated at the “general station” and “State Vectors” 

evaluated at the “initial end point” 
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and the “Coefficient Matrices” [ ] [ ] [ ] [ ]EDCC &&&& ,,, ′  are, 
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 The second subscripts in (7.66), (7.67), (7.68) and (7.69) indicate the 

discretization point or the “station” with which they are associated and [Ci,j], [C’i,j], 
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[Di,j] and [Ei,j] are the diagonal “Sub-Matrices” composed of the elements of the 

related “Coefficient Matrix”. 

 

 The equations in more compact form are, 

 

For the “Bonded Region” or Part I region, 
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where [ ]
•

U  is the discretized form of “Modified Transfer Matrix” for Part I 

region, 
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For the “Bonded Region” or Part II region, 
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where 



 ′

•

U  is the discretized form of “Modified Transfer Matrix” for Part 

II region, 
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For Part III region, 
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where 



 •

V  is the discretized version of “Modified Transfer Matrix” for Part 

III region, 
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For Part IV region, 
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where 
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W  is the discretized version of “Modified Transfer Matrix” for 

Part IV region, 
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 The matrices, [LI], [LII], [LIII] and [LIV] are the “Global Integrating 

Matrices” for Part I, Part II, Part III and Part IV, respectively. They include the 

“Integrating Sub-Matrices [L]”. Rewriting the equations (7.58-7.65) in “open form”, 
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 For the “Bonded Region” or Part I region (Three-Layer Composite Plate), 
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 For the “Bonded Region” or Part II region (Three-Layer Composite Plate), 
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 For Part III region (Single-Layer Base Plate), 
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 For Part IV region (Single-Layer Base Plate), 
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 The matrices 



 •

U  and 



 ′

•

U  are composed of (18×18) square blocks of 

dimension n1 and dimension n2 respectively, and each individual block represents a 

relation between a “state variable” at any “general station” and the “state variable” at 
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the “initial end point”. The subscript n1 and n2 are the number of discretization points 

in Part I and Part II. 

 

 The matrix 



 •

V  is composed of (6×6) blocks of dimension n3 and each 

individual block represents a relation between a “state variable” at any “general 

station and “state variable” at the “initial end point. The subscript n3 is the number of 

discretization points in Part III. 

 

 The matrix 



 •

W  is composed of (6×6) blocks of dimension n4 and each 

individual block represents a relation between a “state variable” at any “general 

station and “state variable” at the “initial end point. The subscript n4 is the number of 

discretization points in Part IV. 

 

 Then, from (7.78), (7.79), (7.80) and (7.81), one can obtain the relation 

between the “state vector” at the “initial end points ξI=0, ξII=0, ξIII=0 and ξIV=0” and 

the “final end points ξI=1, ξII=1, ξIII=1 and ξIV=1” and along Part I, Part II, Part III 

and Part IV regions, respectively.  

 

 Then, by summing up the elements related with the each group of “state 

vectors” at “initial end point”, on the integer multiples of nth row of the discretized 

version of “Modified Transfer Matrix one can obtain the following, 
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For the “Bonded Region” or Part I region (Three-Layer Composite Plate), 
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 (7.82) 

or in more compact from, 
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For the “Bonded Region” or Part II region (Three-Layer Composite Plate), 
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 (7.84) 

or in more compact from, 
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For Part III region (Single-Layer Base Plate), 
( )

( )

( )

( )

( )

( ) 















































































=

































∑

∑∑

+=

+==

3
y1

3
y1

3
x1

6n

15ni in,

2n

1ni in,

n

1i in,

3
yn

3
yn

3
xn

Q
.
.
.

Ψ

Ψ

....
.....
.....
.....

...

Q
.
.
.

Ψ

Ψ

3

3

3

1,6

1,21,1

V

VV

.

..

 (7.86) 

or in more compact from, 
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For Part IV region (Single-Layer Base Plate), 
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or in more compact from, 
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where in the above expressions [ ]U~ , [ ]U′~ , [ ]V~  and [ ]W~  are the “final form” of 

the “Modified Transfer Matrices” for Part I, Part II, Part III and Part IV regions, 

respectively. They transfer the discretized quantities from the “initial end point ξt=0” 

(t=Parts I, II, III,IV) to the “final end point ξt=1” (t=Parts I, II, III,IV), respectively. 

 

 For the “Bonded Region” Part I, 
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 For the “Bonded Region” Part II, 
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 (in Part II) (7.91) 

 

 For Part III Region, 

 { } [ ] { })()(
IIIIII Y~Y
2

001

2
1 == = ξξ 1,1V  (in Part III) (7.92) 

 

 For Part IV Region, 

 { } [ ] { })()(
IVıV YY
3

001

3
1 == = ξξ 1,1W&  (in Part IV) (7.93) 

 

where the subscript (01) in the above expressions means that the “final form” of the 

“Modified Transfer Matrix” transferring the above quantities from the “initial end 

point 0”, to the “final end point 1”. 

 

 Now the natural frequencies of the entire system will be determined by using 

the “Boundary Conditions” and the “Continuity Conditions” in the y-direction. Any 

combination of the “Boundary Conditions” at ξI=0, ξII=1 for the upper plate, ξIII=0, 

ξI=1 for the middle left plate, ξII=0, ξIV=1 for the middle right plate and ξI=0, ξII=1 

for the lower plate in the y-direction can be prescribed. 
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 “Continuity Conditions” between Part I and Part II can be written for upper 

plate and lower plate, the “Continuity Condition” between Part I and Part III for 

middle left plate, the “Continuity Condition” between Part II and Part IV for middle 

right plate can be written as follows, 

 

The ‘‘Continuity Conditions’’ between the Part I and Part II, 

{ } { })1(
0

)1(
1 == = III YY ξξ  (7.94) 

{ } { })4(
0

)4(
1 == = III YY ξξ  (7.95) 

 
The ‘‘Continuity Conditions’’ between the Part I and Part III, 
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The ‘‘Continuity Conditions’’ between the Part II and Part IV, 
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From the Equations (7.90), (7.92), (7.94), (7.96),one can obtain, 
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Similarly by Equations (7.91), (7.93), (7.95), (7.97), 
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After some manipulation the “final form” of the “Modified Transfer Matrix” is 

obtained as, 
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 (7.100) 

Or finally by multiplying and, simply rearranging, 
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where [ ]01Q  is the final form of the “Modified Transfer Matrix”. 

 The final form of the “Modified Transfer Matrix” can be reduced to (12x12) 

by substitution of the “Boundary Conditions” in the y-direction at ξI=0, ξII=1 for the 

upper plate and lower plate, ξIII=0, ξI=1 for the middle left plate and. ξII=0, ξIV=1 for 

the middle right plate. After inserting the “Boundary Conditions” the following 

matrix equation which implicitly includes the unknown dimensionless natural 

frequency parameter mnω  can be obtained, 

 

[ ] { } { }0YC (III)0(III)0 =)( mnω  ⇒ Determinant of the “Coefficient Matrix”= 

[ ] 0=(III)0C  (7.102) 

where the subscript (III) indicates the “Main PROBLEM III”. 

 The “Coefficient Matrix [ ](III)0C ” is obtained by eliminating the rows 

corresponding to nonzero “state variables” at the “final end point’’ and the columns 

corresponding to zero “state variables” at the “initial end point’’ in (1.89). Here, 
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{Y0} is a vector whose elements are the nonzero components of 

( ) ( ) ( ) ( ){ }T4
0ξ

3
0ξ

2
0ξ

1
0ξ IIIIIII

Y,Y,Y,Y ====  

  

 For a non-trivial solution, the determinant of the “Coefficient Matrix 

[ ](III)0C ” mustl be equal to zero. This procedure should be repeated for a specific 

set of “Boundary Conditions”. The roots of the determinant of the “Coefficient 

Matrix [ ](III)0C ” correspond to the nondimensionalized natural frequencies, mnω  of 

the entire composite bonded plate system of the “Main PROBLEM III”. The roots of 

the determinant must carefully be obtained numerically. One can easily find the 

corresponding mode shapes, after the natural frequencies (and eigenvectors) are 

obtained for a particular set of “Boundary Conditions” in the y-directions. 
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7.6 Method of Solution for Special case of “Main PROBLEM III a” and 
“Main PROBLEM III b” 

 
In this section, the application of the present solution technique will be 

explained in detail for the Special Case of the “Main PROBLEM IIIa” and the “Main 

PROBLEM IIIb”. 

 

 “Modified Transfer Matrix” for Part I, Part II, Part III, Part IV and Part V can 

be obtained similarly for “Main PROBLEM III” as; 

 

For the “Bonded Region” Part I, 
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For the “Bonded Region” Part II, 
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For Part III Region, 

{ } [ ] { })()(
IIIIII Y~Y
2

001

2
1 == = ξξ 1,1V  (in Part III) (7.105) 

 

For Part IV Region, 

{ } [ ] { })()(
IVıV YY
3

001

3
1 == = ξξ 1,1W&  (in Part IV) (7.106) 

 

For Part V Region, 
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where subscript (01) in the above expressions means that the “final form” of the 

“Modified Transfer Matrix” transferring the above quantities from the “initial end 

point 0”, to the “final end point 1”. 

 

 Now natural frequencies of the entire system will be determined by using the 

“Boundary Conditions” and the “Continuity Conditions” in the y-direction.  

 

The ‘‘Continuity Conditions’’ between the Part I and Part V, 

{ } { })1(
0

)1(
1 == = VI YY ξξ  (7.108) 

{ } { })4(
0

)4(
1 == = VI YY ξξ  

 
The ‘‘Continuity Conditions’’ between the Part I and Part III, 

{ } { })2(
0

)2(
1 == = IIII YY ξξ  (7.109) 

 

The ‘‘Continuity Conditions’’ between the Part II and Part IV, 

{ } { })3(
0

)3(
1 == = IVII YY ξξ  (7.110) 

 

The ‘‘Continuity Conditions’’ between the Part II and Part V, 

{ } { })1(
0

)1(
1 == = IIV YY ξξ  (7.111) 

{ } { })4(
0

)4(
1 == = IIV YY ξξ  

 

 Then, from Equations (7.103) and (7.111), final form of the “Modified 

Transfer Matrix” is obtained as, 
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  (7.112) 

or, simply rearranging, 
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where [ ]01Q  is the final form of the “Modified Transfer Matrix”. 

 

 When the boundary condition applied the following matrix equation which 

implicitly includes the unknown dimensionless natural frequency parameter ωmn  can 

be obtained, 

 

 [ ] { } { }0YC (III)0(III)0 =  ⇒  Determinant of the “Coefficient Matrix”= 

[ ] 0=(III)0C  (7.115) 

where the subscript (III) indicates the “Special Case of Main PROBLEM III”. 

 

 The “Coefficient Matrix [ ](III)0C ” is obtained by eliminating the rows 

corresponding to nonzero state variable at the “final end point’’ and the columns 

corresponding to zero state variables at the “initial end point’’. Here, {Y0} is a vector 
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whose elements are the nonzero components of 

( ) ( ) ( ) ( ){ }T4
0ξ

3
0ξ

2
0ξ

1
0ξ IIIIIII

Y,Y,Y,Y ==== similarly as “Main PROBLEM III”. 

 

 For non-trivial solution, determinant of the “Coefficient Matrix [ ](III)0C ” 

shall be equal to zero which correspond to the nondimensionalized natural 

frequencies, ωmn  of the entire composite plate system of the Special Case of “Main 

PROBLEM III”. 

 

7.7 Integrating Matrix Method 
 

Here, in this section, the “Integrating Matrix Method” will be explained in 

general terms for all the “Main PROBLEMS” considered in the present “Thesis”. 

 

 The “Integrating Matrices” can be obtained from Hunter’s [VII.1]  detailed 

discussion. In this part, the algorithm of the “Integrating Matrix” which is used to 

integrate the discretized “Coefficient Matrices” will be explained. The “Integrating 

Matrix” is a means by which a continuous function may be integrated with the use of 

a finite-difference approach. This numerical method is based upon the assumption 

that the function f(x) may be represented by a polynomial of degree “r” as follows, 

 

Interpolation Polynomial (of degree r) 

f(x)=a0+a1x+a2x2+..........+arxr (7.116) 

 

 The “Integrating Matrix” is developed by expressing (7.116) in the form of 

“Newton’s Forward Difference Interpolation” formula. The integrand may be 

represented conveniently by polynomials of any degree. When the “Integrating 

Matrix” is employed, any number of stations “n” may be chosen (so long as n≥r) (see 

Hunter [VII.1]).  

 

 The “Global Integrating Matrix [L]” works as an operator, in a similar way 

to the conventional integral symbol such that, 
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( )∫↔
s

0

ds..............................L  (7.117) 

[ ] Matrix)(Diagonal=
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L

L
L

000
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000
00

..
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...L

L  (7.118) 

 

 In the above, each basic block “Integrating Sub-Matrix [L]” is responsible for 

the integration of one single “state variable” (or “fundamental dependent variable”) 

of the problem. 

 

 Here, [ ]IL  for “Main PROBLEM I”, [ ]IL  and [ ]IIL  for “Main 

PROBLEM II” are used as a “Global Integrating Matrix” for the “Two-Layer 

Region”, which are square block diagonal matrices composed of (since the “state 

vector” is composed of 12 “dimensionless fundamental dependent variables”) 

(12×12) ‘‘basic’’ square blocks of dimension ns, (i.e. ns=12). And, “n” is the number 

of discretization points along the “Overlap Region”. Therefore, the dimension of the 

“Global Integrating Matrix [ ]L ” is (12n×12n) for the “Two-Layer Region(s)” for 

the “Main PROBLEM I” and for the “Main PROBLEM II” respectively. 

 

 Similarly, [ ]IL  for “Main PROBLEM III” is used as a “Global Integrating 

Matrix” for “Three-Layer Region”, which is a square block diagonal matrix 

composed of (since the “state vector” is composed of 18 “dimensionless fundamental 

dependent variables” for “Overlap Region” or Part I region) (18×18) ‘‘basic’’ square 

blocks of dimension ns, (i.e. ns=18). And “n” is the number of discretization points 

along the “Overlap Region”. Therefore, the dimension of the “Global Integrating 

Matrix [ ]L ” is (18n×18n) for “Overlap Region” for the “Main PROBLEM III” 

 

 Similarly, [ ]IIL  and [ ]IIIL  (subscripts here corresponds to Part I, Part II, 

and Part III respectively) for “Main PROBLEM I”, [ ]IIIL  and [ ]IVL  for “Main 
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PROBLEM II” and “Main PROBLEM III” are used as the “Global Integrating 

Matrices” for “Single Layer” region. They are square block diagonal matrices 

composed of (since the “state vector”” is composed of six “dimensionless 

fundamental dependent variables” for the “Single Layer” region) (6x6) ‘‘basic’’ 

square blocks of dimension ns, (i.e. ns=6). And “n” is the number of “discretization 

points” along the “Single Layer” region. Therefore, the dimensions of the “Global 

Integrating Matrices [ ]L  is (6n×6n) for “Single Layer” region for all “Main 

PROBLEM(s)” 

 

 It is important to note here that, the accuracy and convergence of the present 

method are affected by the “degree” of the “Approximating Polynomial (or 

Interpolation Polynomial)” and the “number” of “discretization points”. A proper 

degree of the “Assumed Interpolation Polynomial” may result in convergence with 

fewer discretization points. However, it is not expected to obtain more accurate 

results as the degree of the “Assumed Polynomial” increases arbitrarily since the 

polynomial shows more oscillating behavior as the degree of it increases. This does 

not necessarily resemble the actual behavior of the plate system. Therefore, one has 

to be careful in that regard. Another important point is that, one has to check zero of 

the support conditions at the far end right side boundary. 

 

 The “Integrating Sub-Matrix [L]” which is a component of the “Global 

Integrating Matrix [L]” is normalized for integrations in the unitary interval [0, 1] 

in the following way, 

 

 [ ] [ ][ ]nWS=L  (7.119) 

 

where [S] is an (n×n) “Lower Triangular Matrix”. Here, n is the number of 

discretization point in the related part. The “Lower Triangular Matrix [S]” is given 

as, 
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where [Wn] is the “Weighting Matrix”: 
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  (7.121) 

where ∆n is the “step size”, given by, 

 ( )1
1
−

=∆
n

n  (7.97) 

 

 The above expression (7.121), is based on a “5th Order Interpolation 

Polynomial”. Moreover, the “Weighting Matrix [Wn]” for the “6th Order 

Interpolation Polynomial” that is given in Hunter [VII.1] which is also used in this 

present “Thesis” is given. 
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8 NUMERICAL SOLUTIONS 

8.1 Some Remarks on Material and Geometric Characteristics and 
Boundary Conditions 

 
In this section, the mode shapes corresponding to the several support 

conditions, in the “hard” and the “soft” adhesive cases and some parametric studies 

will be presented and discussed in some detail. 

 

The theoretical formulation of the “Composite Plate and/or Panel System 

with Bonded Lap Joints” were given as “Main PROBLEM I”, “Main PROBLEM II 

and Main PROBLEM III in the previous chapters.  

 

 For “Main PROBLEM I”, the “Material and Geometric Characteristics” are 

given in Table 8.1 for the “Composite, Orthotropic Plate and/or Panel System (Upper 

Plate Adherend is Graphite-Epoxy and Lower Plate Adherend is Kevlar-Epoxy)”. 

 

 For “Main PROBLEM II”, the “Material and Geometric Characteristics” are 

presented in Table 8.2 for “Composite, Orthotropic  Plate and/or Panel System 

(Doubler is Graphite-Epoxy and Plate Adherends are Kevlar Epoxy)”. 

 

For “Main PROBLEM III the “Material and Geometric Characteristics” are 

shown in Table 8.3 for “Composite, Orthotropic  Plate and/or Panel System 

(Doublers are Graphite-Epoxy and Plate Adherends are Kevlar Epoxy)”. 

 

Two different adhesive cases, “hard” and “soft” adhesive cases are considered 

to show the significant effects of the adhesive layer elastic constants on the mode 

shapes and natural frequencies. 

 

 The “Classical Levy’s Solution” is used for the theoretical formulation of all 

cases of “Main PROBLEMS”. The “Boundary Conditions” are assumed to be simply 

supported are at x=0 and x=a. Therefore, in the following numerical results only 

“Boundary Conditions” at y=0 and y=L will be given (since these are arbitrarily 

prescribed support conditions). 
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 In the figures and parametric studies, the “Boundary Conditions” are 

indicated in terms of the following notations: 

 

(S) “Simply Support Condition” 

(C) “Clamped Support Condition” 

(F) “Free Edge Condition” 

 

 The “Boundary Conditions” read from left to right for “Main PROBLEMs”. 

For the “Main PROBLEM Ia”, the first two letters are for the “Upper Plate 

Adherend”, third and fourth letters are for the “Lower Plate Adherend”. For example, 

(CFFC) means the “Upper Plate Adherend” has “Clamped Support Condition” at the 

left (y=0), “Free Edge Condition” at the right (y=b1), and “Lower Plate Adherend” 

has “Free Edge Condition” at the left (y=ℓI), “Clamped Support Condition” at the 

right (y=L). 

 

For the “Main PROBLEM II”, the first two letters are for the “Doubler”, third 

and fourth letters are for the “Left Plate Adherend” and fifth and sixth letters are for 

the “Right Plate Adherend” For example, (FFCFFC) means the “Doubler” has “Free 

Support Condition” at the left and the right edges, “Left Plate Adherend” has 

“Clamped Support Condition” at the left (y=0), “Free Edge Condition” at the right 

(y=b2) and “Right Plate Adherend” has “Free Edge Condition” at the left (y= ℓI+ ℓII), 

“Clamped Support Condition” at the right (y=L). 

 

For the “Main PROBLEM III”, the first two letters are for the “Upper 

Doubler”, third and fourth letters are for the “Left Plate Adherend” and fifth and 

sixth letters are for the “Right Plate Adherend” and last two letters are for the “Lower 

Doubler” For example, (FFCFFCFF) means the “Upper and Lower Doublers” have 

“Free Support Condition” at the left and the right edges, “Left Plate Adherend” has 

“Clamped Support Condition” at the left (y=0), “Free Edge Condition” at the right 

(y=b2) and “Right Plate Adherend” has “Free Edge Condition” at the left (y= ℓI+ ℓII), 

“Clamped Support Condition” at the right (y=L). 
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Table 8.1 Material and Geometric Characteristics of “Composite Plate or Panel 

System” for “Main PROBLEM I” 

 

Kevlar-Epoxy 

(Upper Plate 

Adherend) 

j=1 

Graphite-Epoxy 

(Lower Plate 

Adherend) 

j=2 

Adhesive layer 

(Hard) 

Adhesive layer 

(Soft) 

Ea=4.0 Gpa 

 
Ga= 1.4 GPa 

Ea/ (1)
11B =10-4 

Ga/ (1)
11B =

)υ2(1
10

a

-4

+

υ a=0.43 υ a=0.3 

Exj=5.5. GPa 

Eyj=76.0 GPa 

Gxyj=2.10 GPa 

Gxzj=1.5 GPa 

Gyzj=2.0 Gpa 

νxyj=0.024 

νyxj=0.34 

ρj=1.3 gr/cm3 

hj=0.01 m 

a=0.5 m 

Exj=11.71. GPa 

Eyj=137.8 GPa 

Gxyj=5.51 GPa 

Gxzj=2.5 GPa 

Gyzj=3.0 Gpa 

νxyj=0.0213 

νyxj=0.25 

ρj=1.6 gr/cm3 

hj=0.01 m 

a=0.5 m 

ha=0.15x10-3 m 

ρa=neglected 

ha=0.15x10-3 m 

ρa=neglected 
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Table 8.2 Material and Geometric Characteristics of “Composite Plate or Panel 

System” for “Main PROBLEM II” 

 

Kevlar-Epoxy 

Doubler Plate 

j=1 

Graphite-Epoxy 

(Plate Adherends) 

j=2.3 

Adhesive layer 

(Hard) 

Adhesive layer 

(Soft) 

Ea=4.0 Gpa 

 
Ga= 1.4 GPa 

Ea/ (1)
11B =10-4 

Ga/ (1)
11B =

)υ2(1
10

a

-4

+

υ a=0.43 υ a=0.3 

Exj=5.5. GPa 

Eyj=76.0 GPa 

Gxyj=2.10 GPa 

Gxzj=1.5 GPa 

Gyzj=2.0 Gpa 

νxyj=0.024 

νyxj=0.34 

ρj=1.3 gr/cm3 

hj=0.01 m 

a=0.5 m 

Exj=11.71. GPa 

Eyj=137.8 GPa 

Gxyj=5.51 GPa 

Gxzj=2.5 GPa 

Gyzj=3.0 Gpa 

νxyj=0.0213 

νyxj=0.25 

ρj=1.6 gr/cm3 

hj=0.01 m 

a=0.5 m 

ha=0.15x10-3 m 

ρa=neglected 

ha=0.15x10-3 m 

ρa=neglected 
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Table 8.3 Material and Geometric Characteristics of “Composite Plate or Panel 

System” for “Main PROBLEM III” 

 

Kevlar-Epoxy 

Doubler Plates 

j=1,4 

Graphite-Epoxy 

(Plate Adherends) 

j=2,3 

Adhesive layer 

(Hard) 

 

Adhesive layer 

(Soft) 

Ea1=4.0 Gpa Ea1/ (1)
11B =10-4 

Ga1= 1.4 GPa  Ga1/ (1)
11B =

)υ2(1
10

a

-4

+

υ a1=0.43 υ a1=0.3 

Ea4=4.0 Gpa Ea4/ (1)
11B =10-4 

Ga4= 1.4 GPa Ga4/ (1)
11B =

)υ2(1
10

a

-4

+

υ a4=0.43 υ a4=0.3 

Exj=5.5. GPa 

Eyj=76.0 GPa 

Gxyj=2.10 GPa 

Gxzj=1.5 GPa 

Gyzj=2.0 Gpa 

νxyj=0.024 

νyxj=0.34 

ρj=1.3 gr/cm3 

hj=0.01 m 

a=0.5 m 

Exj=11.71. GPa 

Eyj=137.8 GPa 

Gxyj=5.51 GPa 

Gxzj=2.5 GPa 

Gyzj=3.0 Gpa 

νxyj=0.0213 

νyxj=0.25 

ρj=1.6 gr/cm3 

hj=0.01 m 

a=0.5 m ha1=0.15x10-3 m 

ha4=0.15x10-3 m 

ρa=neglected 

ha1=0.15x10-3 m 

ha4=0.15x10-3 m 

ρa=neglected 
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8.2 Numerical Results and Discussion for “Main PROBLEM I.a” 
 

In the “Main PROBLEM Ia.”, the “Composite Orthotropic Plates and/or 

Panels with a Centrally Bonded Single Lap Joint” is analyzed. The upper adherend is 

made of Graphite-Epoxy and the lower plate adherend is Kevlar-Epoxy. For the in-

between adhesive layer, the “hard” and the “soft” adhesive cases are taken into 

account. The “Geometric and the Material Characteristics” of the single lap joint 

system are given in Table 8.1. 

 

 In Figures 8.1 – 8.10, the mode shapes and the corresponding natural 

frequencies (from the first to fifth), in the “hard” and the subsequent “soft” adhesive 

cases with various boundary conditions are presented. 

 

 From aforementioned Figures, in the “hard” adhesive case it is easy to 

observe that regardless of the boundary conditions, there exists an almost “stationary 

region” in the mode shapes. And this region moves from left to the right part (or vice 

versa) in the composite single lap joint system. In the “soft” adhesive case, however, 

an almost “stationary region” does not exist in mode shapes. The general trend in the 

mode shapes, for the “soft” adhesive case is that, the “Overlap Region” moves or 

bends with the rest of the lap joint system. And the mode shapes are completely 

different in comparison with those of the “hard” adhesive cases with the same 

support conditions. 

 

 Next, for the “Main PROBLEM Ia”, in Figures 8.11 through 8.28, 

several important parametric studies are presented. In Figures 8.11-8.16, the 

“Dimensionless Natural FrequencyΩ ” versus “Joint Length Ratio /LIl ” from the 

first up to the fifth mode, are plotted, for both the “hard” and the “soft” adhesive 

cases, corresponding to the various support conditions.  

 

 From Figures 8.11, 8.13, 8.15, in the “hard” adhesive case, it is 

obvious that, as the wet area or the “Overlap Region” spreads (in the y-direction), the 

natural frequencies, at first gradually, and then, relatively sharply increases. These 
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results of course, are the consequences of the increasing overall stiffness of the lap 

joint system due to the spreading of the “Overlap Region”. 

 

In the “soft” adhesive case, in Figures 8.12, 8.14, 8.16, the increases in the 

natural frequencies are relatively gradual. And no sharp increases can be observed as 

the “Overlap Region” spreads along the y-direction. This also can be expected. It is 

because, due to the “soft” adhesive, the “Overlap Region” connects both adherends 

rather loosely and thus, a relatively loose lap joint system is created. 

 

 In Figures 8.17 through 8.22, the effect of the “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” on the natural frequencies (from the first up to the fifth) in the “hard” and 

“soft” adhesive cases, are investigated for various boundary conditions. In the “hard” 

adhesive case, in Figures 8.17, 8.19, 8.21, the first natural frequency, in spite of the 

increasing “Bending Rigidity Ratio”, does remain practically constant. In the third 

and higher modes, the natural frequencies increase sharply at first and after the 

“Bending Rigidity Ratio=1.8” they become almost flat or constant regardless of the 

increase in “Bending Rigidity Ratio”. 

 

 In the “soft” adhesive cases, in the Figures 8.18, 8.20, 8.22, the first 

and the second frequencies remain more or less constant as the “Bending Rigidity 

Ratio (1)
11

(2)
11 /DD ” increases. In the third and higher modes, the natural frequencies 

increase significantly. In some cases, though, after “Bending Rigidity Ratio=1.0”, the 

fifth frequency reaches a constant value. 

 

Lastly, the direct effects of the adhesive layer elastic constants Ea, and also Ga 

on the dimensionless natural frequencies are investigated for the “Main PROBLEM 

I.a”. In order to show these effects, the “Dimensionless Natural Frequencies” versus 

the “Adhesive Elastic Modulus Ratio Ea/ (1)
11B ” are plotted (while the other elastic 

constant kept constant) in Figures 8.23 through 8.25 for various boundary condition. 

Similarly, the “Dimensionless Natural Frequencies” versus the “Adhesive Shear 

Modulus Ratio Ga/ (1)
11B ” are presented in Figures 8.26 through 8.28 for various 

support condition. 
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 It can be seen from the Figures 8.23, 8.24, 8.25, the influence of the 

“Adhesive Elastic Modulus Ratio (1)
11a /BE ” on the natural frequencies, is not 

significant. In Figures 8.26, 8.27, 8.28, we can see that the “Shear Modulus 

Ratio (1)
11a /BG ”, after the first and second modes, in higher modes, significantly 

affects the natural frequencies. Also, in those Figures, one can observe a “transition 

region” which takes the frequencies to considerably higher levels. After then, the 

frequencies don’t increase and they remain practically constant. 
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8.2.1. Natural Frequencies and Corresponding Mode Shapes for “Main PROBLEM Ia” 
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a) First Mode with Ω 1=ω 11=1027.406 
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b) Second Mode with Ω 2=ω 21=1213.235 
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c) Third Mode with Ω 3=ω 12=1355.670 
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d) Fourth Mode with Ω 4=ω 31=1622.912 
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e) Fifth Mode with Ω 5=ω 22=1672.817 
 
 

(“Hard” Adhesive Case) 
 

Fig 8.1 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction CFFC) 
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a) First Mode with Ω 1=ω 11=54.007 
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b) Second Mode with Ω 2=ω 12=2331.807 
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c) Third Mode with Ω 3=ω 21=233.171 
 



 186

 

0.2

0.5

0.8

1.1

1.4

1.7

z

0
0.1

0.2
0.3

0.4
x

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

y

X Y

Z

 

d) Fourth Mode with Ω 4=ω 22=417.335 
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e) Fifth Mode with Ω 5=ω 31=739.349 
 

(“Soft” Adhesive Case) 
 

Fig.8.2 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction CFFC) 
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a) First Mode with Ω 1=ω 11=544.104 
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b) Second Mode with Ω 2=ω 21=692.859 
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c) Third Mode with Ω 3=ω 12=733.913 
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d) Fourth Mode with Ω 4=ω 22=993.558 
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e) Fifth Mode with Ω 5=ω 31=1098.416 
 

(“Hard” Adhesive Case) 
 

Fig.8.3 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction SFFS) 
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a) First Mode with Ω 1=ω 11=36.374 
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b) Second Mode with Ω 2=ω 12=127.987 
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c) Third Mode with Ω 3=ω 21=200.521 
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d) Fourth Mode with Ω 4=ω 22=296.208 
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e) Fifth Mode with Ω 5=ω 13=448.798 
 

(“Soft” Adhesive Case) 
 

Fig.8.4 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction SFFS) 
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a) First Mode with Ω 1=ω 11=40.084 
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b) Second Mode with Ω 2=ω 21=126.280 
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c) Third Mode with Ω 3=ω 31=451.374 
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d) Fourth Mode with Ω 4=ω 12=1054.832 
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e) Fifth Mode with Ω 5=ω 41=1278.577 
 

(“Hard” Adhesive Case) 
 

Fig.8.5 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction CFFF) 
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a) First Mode with Ω 1=ω 11=15.423 
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b) Second Mode with Ω 2=ω 12=56.689 
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c) Third Mode with Ω 3=ω 21=98.994 
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d) Fourth Mode with Ω 4=ω 13=238.560 
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e) Fifth Mode with Ω 5=ω 22=238.649 
 

(“Soft” Adhesive Case) 
 

Fig.8.6 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction CFFF) 
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a) First Mode with Ω 1=ω 11=40.077 
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b) Second Mode with Ω 2=ω 21=126.277 

0.2

0.5

0.8

1.1

1.4

1.7

z

0
0.1

0.2
0.3

0.4
x

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

y

X Y

Z

 

c) Third Mode with Ω 3=ω 31=451.372 
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d) Fourth Mode with Ω 4=ω 12=723.534 
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e) Fifth Mode with Ω 5=ω 22=991.487 
 

(“Hard” Adhesive Case) 
 

Fig.8.7 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction SFFF) 
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a) First Mode with Ω 1=ω 11=15.350 
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b) Second Mode with Ω 2=ω 12=45.005 
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c) Third Mode with Ω 3=ω 21=98.984 
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d) Fourth Mode with Ω 4=ω 13=175.062 
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e) Fifth Mode with Ω 5=ω 22=223.906 
 

(“Soft” Adhesive Case) 
 

Fig.8.8 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction SFFF) 
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a) First Mode with Ω 1=ω 11=40.035 
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b) Second Mode with Ω 2=ω 12=60.490 
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c) Third Mode with Ω 3=ω 21=126.268 
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d) Fourth Mode with Ω 4=ω 22=214.437 
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e) Fifth Mode with Ω 5=ω 31=451.370 
 

(“Hard” Adhesive Case) 
 

Fig.8.9 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFF) 
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a) First Mode with Ω 1=ω 11=15.240 
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b) Second Mode with Ω 2=ω 12=18.801 
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c) Third Mode with Ω 3=ω 13=61.620 
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d) Fourth Mode with Ω 4=ω 21=98.932 
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e) Fifth Mode with Ω 5=ω 22=157.029 
 

(“Soft” Adhesive Case) 
 

Fig.8.10 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3 m, b1=0.65 m, b2=0.65m, b~ =0.5m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFF) 
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8.2.2. Some Parametric Studies for “Main PROBLEM Ia” 
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a) Dependency of natural frequency on the number of half waves in 

y- and x-direction with (CFFC) B.C.’s, ‘‘Hard’’ Adhesive 
b)  
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b) “Various Modes with (CFFC) B.C.’s, ‘‘Hard’’ Adhesive 

 
Fig 8.11 “Dimensionless Natural Frequencies (Ω )” versus “Joint Length Il /L” in 

“Composite, Orthotropic Plates and/or Panels with Centrally Bonded Single 
Lap Joint” 

 
(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length Il =varies, 0.5b =
~ , a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFC) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (CFFC) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.12 “Dimensionless Natural Frequencies (Ω )” versus “Joint Length Il /L” in 
“Composite, Orthotropic  Plates and/or Panels with Centrally Bonded Single 

Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =varies, 0.5b =

~ , a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (CFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.13 “Dimensionless Natural Frequencies (Ω )” versus “Joint Length Il /L” in 
“Composite, Orthotropic  Plates and/or Panels with Centrally Bonded Single 

Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =varies, 0.5b =

~ , a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (CFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.14 “Dimensionless Natural Frequencies (Ω )” versus “Joint Length Il /L” in 
“Composite, Orthotropic  Plates and/or Panels with Centrally Bonded Single 

Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =varies, 0.5b =

~ , a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFF) B.C.’s, ‘‘Hard’ Adhesive 
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b) “Various Modes with (FFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.15 “Dimensionless Natural Frequencies (Ω )” versus “Joint Length Il /L” in 
“Composite, Orthotropic  Plates and/or Panels with Centrally Bonded Single 

Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =varies, 0.5b =

~ , a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction FFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.16 “Dimensionless Natural Frequencies (Ω )” versus “Joint Length Il /L” in 
“Composite, Orthotropic  Plates and/or Panels with Centrally Bonded Single 

Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =varies, 0.5b =

~ , a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction FFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFC) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (CFFC) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.17 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio (1)

11
(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness constants are kept constant) 

(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFC) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (CFFC) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.18 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio (1)

11
(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness constants are kept constant) 

(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (CFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.19 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio (1)

11
(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness characteristics are kept constant) 

(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFF) 



 212

 

0

250

500

750

1000

1250

1500

0.20 1.00 1.80 2.60 3.40 4.20 5.00 5.80

Bending Rigidity Ratio

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

m=1,n=1
m=1,n=2
m=2,n=1
m=2,n=2
m=3,n=1
m=1,n=3

(1)
11

(3)
11

(1)
11 )/DD(D =

 
 

a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (CFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.20 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio (1)

11
(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness characteristics are kept constant) 

(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.21 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio (1)

11
(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness characteristics are kept constant) 

(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction FFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.22 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio (1)

11
(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness characteristics are kept constant) 

(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction FFFF) 



 215

 

900

1000

1100

1200

1300

1400

1500

1600

1700

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

Elastic Modulus Ratio

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

m=1,n=1
m=1,n=2
m=2,n=1
m=2,n=2
m=3,n=1

(1)
11a /BE

 
 

a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFC) B.C.’s 

 

900

1000

1100

1200

1300

1400

1500

1600

1700

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

Elastic  Modulus Ratio

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

First Mode
Second Mode
Third Mode
Fourth Mode
Fifth Mode

(1)
11a /BE

 
 

b) “Various Modes with (CFFC) B.C.’s 
 
 

Fig 8.23 “Dimensionless Natural Frequencies (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic  Plates and/or Panels with Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFC) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFF) B.C.’s 
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b) “Various Modes with (CFFF) B.C.’s 
 

Fig 8.24 “Dimensionless Natural Frequencies (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic  Plates and/or Panels with Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFF) B.C.’s 
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b) “Various Modes with (FFFF) B.C.’s 
 

Fig 8.25 “Dimensionless Natural Frequencies (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic  Plates and/or Panels with Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction FFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFC) B.C.’s 
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b) “Various Modes with (CFFC) B.C.’s 
 
 

Fig 8.26 “Dimensionless Natural Frequencies (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” of “Composite, Orthotropic  Plates and/or Panels with Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFC) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFF) B.C.’s 
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b) “Various Modes with (CFFF) B.C.’s 
 

Fig 8.27 “Dimensionless Natural Frequencies (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” of “Composite, Orthotropic  Plates and/or Panels with Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFF) B.C.’s 
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b) “Various Modes with (FFFF) B.C.’s 
 

Fig 8.28 “Dimensionless Natural Frequencies (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” of “Composite, Orthotropic  Plates and/or Panels with Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.5 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction FFFF 
Shear Modulus Ratio axis is plotted in Log Scale 
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8.2.3. Influences of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural Frequencies” 

Table 8.4 Comparison of “Dimensionless Natural Frequencies” obtained by 

adding 
x
w
∂
∂

 and 
y
w
∂
∂

 terms to adhesive layer equations for “Main PROBLEM Ia” 

 
a) “Hard” Adhesive Case 

 
Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 1034.499 1027.406 7.093 
2 1218.612 1213.235 5.377 
3 1362.327 1355.670 6.657 
4 1628.133 1622.912 5.221 C

FF
C

 

5 1681.695 1672.817 8.878 
1 547.414 544.104 3.310 
2 695.704 692.859 2.845 
3 737.971 733.913 4.058 
4 998.561 993.558 5.003 SF

FS
 

5 1101.310 1098.416 2.894 
1 40.232 40.084 0.148 
2 126.465 126.280 0.185 
3 451.613 451.374 0.239 
4 1062.629 1054.832 7.797 C

FF
F 

5 1278.883 1278.577 0.306 
1 40.201 40.035 0.166 
2 60.808 60.490 0.318 
3 126.457 126.268 0.189 
4 214.881 214.437 0.444 FF

FF
 

5 451.611 451.370 0.241 

 
b) “Soft” Adhesive Case 

 
Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 54.410 54.007 0.403 
2 233.281 231.807 1.474 
3 233.871 233.171 0.700 
4 418.450 417.335 1.115 C

FF
C

 

5 741.900 739.349 2.551 
1 36.724 36.374 0.350 
2 128.471 127.987 0.484 
3 201.702 200.521 1.181 
4 297.005 296.208 0.797 SF

FS
 

5 449.189 448.798 0.391 
1 15.502 15.423 0.079 
2 57.047 56.689 0.358 
3 99.076 98.994 0.082 
4 239.235 238.560 0.675 C

FF
F 

5 240.109 238.649 1.460 
1 15.317 15.24 0.077 
2 18.911 18.801 0.11 
3 61.929 61.62 0.309 
4 99.014 98.932 0.082 FF

FF
 

5 157.258 157.029 0.229 
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a) “Hard” Adhesive Case 
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b) “Soft” Adhesive Case 

 

Figure 8.29 Influences of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Single 
Lap Joint” 

(Boundary Conditions in y-direction CFFC) 
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a) “Hard” Adhesive Case 
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b) “Soft” Adhesive Case 

 
 

Figure 8.30 Influences of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Single 
Lap Joint” 

(Boundary Conditions in y-direction CFFF) 
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8.3 Numerical Results and Discussion for “Main PROBLEM I.b” 
 

In the “Main PROBLEM Ib.”, the “Composite Orthotropic Plates and/or 

Panels with a Non-Centrally Bonded Single Lap Joint” is analyzed. The upper 

adherend is made of Graphite-Epoxy and the lower plate adherend is Kevlar-Epoxy. 

For the in-between adhesive layer, the “hard” and the “soft” adhesive cases are taken 

into account. The “Geometric and the Material Characteristics” of the single lap joint 

system are given in Table 8.1. 

 

 In Figures 8.29 – 8.38, the mode shapes and the corresponding natural 

frequencies (from the first to fifth), in the “hard” and the subsequent “soft” adhesive 

cases with various boundary conditions are presented. 

 

 From aforementioned Figures, in the “hard” adhesive case it is easy to 

observe that, regardless of the boundary conditions, there exists an almost “stationary 

region” in the mode shapes. And this region moves from left to the right part (or vice 

versa) in the composite single lap joint system. In the “soft” adhesive case, however, 

an almost “stationary region” does not exist in mode shapes. The general trend in the 

mode shapes, for the “soft” adhesive case is that, the “Overlap Region” moves or 

bends with the rest of the lap joint system. And the mode shapes are completely 

different in comparison with those of the “hard” adhesive cases with the same 

support conditions. 

 

 Next, for the “Main PROBLEM Ib”, in Figures 8.39 through 8.56, 

several important parametric studies are presented. In Figures 8.39-8.44, the 

“Dimensionless Natural FrequencyΩ ” versus “Position Ratio /Lb~ ” from the first up 

to the fifth mode are plotted, for both the “hard” and “soft” adhesive cases, 

corresponding to the various support conditions.  

 

 From Figures 8.39, 8.41 8.43, in the “hard” adhesive case, it is 

obvious that as position of the “Overlap Region” changes (in the y-direction), the 

natural frequencies gradually increase up to a certain position and then decreases. 
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These results are consequences of the movement of the half waves from left to right 

because of the change in the position of the “Overlap Region”. 

 

In the “soft” adhesive case, in Figures 8.40, 8.42, 8.44, the natural frequencies 

increase with the position of the “Overlap Region”. This also can be expected due to 

the “soft” adhesive which makes the system loose and which shows a similar 

behavior in mode shapes up to b~ =0.5m. 

 

 In Figures 8.45 through 8.50, the effect of the “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” on the natural frequencies (from the first up to the fifth) in the “hard” and 

“soft” adhesive cases, are investigated for various boundary conditions. In the “hard” 

adhesive case, in Figures 8.45, 8.47, 8.49, the first natural frequency, in spite of the 

increasing “Bending Rigidity Ratio”, does remain practically constant. In the third 

and higher modes, the natural frequencies increase sharply at first and after the 

“Bending Rigidity Ratio=2.6” they become almost flat or constant regardless of the 

increase in “Bending Rigidity Ratio”. 

 

 In the “soft” adhesive cases, in the Figures 8.46, 8.48, 8.50, the first 

and the second frequencies remain more or less constant as the “Bending Rigidity 

Ratio (1)
11

(2)
11 /DD ” increases. In the third and higher modes, the natural frequencies 

increase significantly. In some cases, though, in the fifth frequency, after “Bending 

Rigidity Ratio=1.8”, the fifth frequency reaches a constant value. 

 

Lastly, the direct effects of the adhesive layer elastic constants Ea, and also Ga 

on the dimensionless natural frequencies are investigated for the “Main PROBLEM 

I.b”. In order to show these effects, the “Dimensionless Natural Frequencies” versus 

the “Adhesive Elastic Modulus Ratio Ea/ (1)
11B ” are plotted (while the other elastic 

constant kept constant) in Figures 8.51 through 8.53 for various boundary condition. 

Similarly, the “Dimensionless Natural Frequencies” versus the “Adhesive Shear 

Modulus Ratio Ga/ (1)
11B ” are presented in Figures 8.54 through 8.56 for various 

support condition. 
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 It can be seen from the Figures 8.51, 8.52, 8.53, the influence of the 

“Adhesive Elastic Modulus Ratio (1)
11a /BE ” on the natural frequencies, is not 

significant. In Figures 8.54, 8.55, 8.56, we can see that the “Shear Modulus 

Ratio (1)
11a /BG ”, after the first and second modes, in higher modes, significantly 

affects the natural frequencies. Also, in those Figures, one can observe a “transition 

region” which takes the frequencies to considerable higher levels. After then, the 

frequencies don’t increase and they remain practically constant. 
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8.3.1 Natural Frequencies and Corresponding Mode Shapes for “Main PROBLEM Ib” 
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a) First Mode with Ω 1=ω 11=433.304 
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b) Second Mode with Ω 2=ω 21=549.786 
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c) Third Mode with Ω 3=ω 31=919.501 
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d) Fourth Mode with Ω 4=ω 41=1800.220 
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e) Fifth Mode with Ω 5=ω 12=2314.154 
 

(“Hard” Adhesive Case) 
 

Fig.8.31 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.55 m, b2=0.75m,  0.4b =
~ , a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction CFFC) 
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a) First Mode with Ω 1=ω 11=52.953 
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b) Second Mode with Ω 2=ω 21=208.986 
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c) Third Mode with Ω 3=ω 12=222.164 
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d) Fourth Mode with Ω 4=ω 22=392.751 
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e) Fifth Mode with Ω 5=ω 31=627.854 
 

(“Soft” Adhesive Case) 
 

Fig.8.32 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.55 m, b2=0.75m,  =b~ 0.4m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction CFFC) 
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a) First Mode with Ω 1=ω 11=224.047 
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b) Second Mode with Ω 2=ω 21=335.817 
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c) Third Mode with Ω 3=ω 31=700.731 
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d) Fourth Mode with Ω 4=ω 41=1582.946 
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e) Fifth Mode with Ω 5=ω 12=1743.746 
 

(“Hard” Adhesive Case) 
 

Fig.8.33 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.55 m, b2=0.75m,  =b~ 0.4m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction SFFS) 
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a) First Mode with Ω 1=ω 11=34.595 
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b) Second Mode with Ω 2=ω 12=118.174 
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c) Third Mode with Ω 3=ω 21=170.651 
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d) Fourth Mode with Ω 4=ω 22=290.486 
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e) Fifth Mode with Ω 5=ω 13=400.059 
 

(“Soft” Adhesive Case) 
 

Fig.8.34 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.55 m, b2=0.75m,  =b~ 0.4m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction SFFS) 
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a) First Mode with Ω 1=ω 11=19.441 
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b) Second Mode with Ω 2=ω 21=99.265 
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c) Third Mode with Ω 3=ω 31=414.284 
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d) Fourth Mode with Ω 4=ω 12=447.394 
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e) Fifth Mode with Ω 5=ω 22=612.756 
 

(“Hard” Adhesive Case) 
 

Fig.8.35 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.55 m, b2=0.75m,  =b~ 0.4m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction CFFF) 
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a) First Mode with Ω 1=ω 11=10.958 
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b) Second Mode with Ω 2=ω 12=54.475 
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c) Third Mode with Ω 3=ω 21=88.852 
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d) Fourth Mode with Ω 4=ω 22=221.455 
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e) Fifth Mode with Ω 5=ω 13=228.393 
 

(“Soft” Adhesive Case) 
 

Fig.8.36 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.55 m, b2=0.75m,  =b~ 0.4m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction CFFF) 
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a) First Mode with Ω 1=ω 11=19.439 
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b) Second Mode with Ω 2=ω 21=99.264 

0.2

0.5

0.8

1.1

1.4

1.7

z

0
0.1

0.2
0.3

0.4
x

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

y

X Y

Z

 

c) Third Mode with Ω 3=ω 31=414.282 
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d) Fourth Mode with Ω 4=ω 12=447.012 
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e) Fifth Mode with Ω 5=ω 22=612.672 
 

(“Hard” Adhesive Case) 
 

Fig.8.37 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.55 m, b2=0.75m,  =b~ 0.4m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction SFFF) 
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a) First Mode with Ω 1=ω 11=10.914 
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b) Second Mode with Ω 2=ω 12=43.875 
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c) Third Mode with Ω 3=ω 21=88.848 
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d) Fourth Mode with Ω 4=ω 13=174.532 
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e) Fifth Mode with Ω 5=ω 22=214.527 
 

(“Soft” Adhesive Case) 
 

Fig.8.38 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.75 m, b2=0.75m,  =b~ 0.4m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction SFFF) 
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a) First Mode with Ω 1=ω 11=19.432 
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b) Second Mode with Ω 2=ω 21=99.259 
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c) Third Mode with Ω 3=ω 12=170.514 
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d) Fourth Mode with Ω 4=ω 22=355.359 
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e) Fifth Mode with Ω 5=ω 31=414.280 
 

(“Hard” Adhesive Case) 
 

Fig.8.39 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.55 m, b2=0.75m,  =b~ 0.4m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFF) 
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a) First Mode with Ω 1=ω 11=10.825 
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b) Second Mode with Ω 2=ω 12=24.204 
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c) Third Mode with Ω 3=ω 13=62.211 
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d) Fourth Mode with Ω 4=ω 21=88.803 
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e) Fifth Mode with Ω 5=ω 22=173.182 
 

(“Soft” Adhesive Case) 
 

Fig.8.40 Mode Shapes and Dimensionless Natural Frequencies of “ Composite, 
Orthotropic Plates and/or Panels with a Non-Central Single Lap Joint” 

 
(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 

(Joint Length ℓI=0.3m., b1=0.55 m, b2=0.75m,  =b~ 0.4m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFF) 
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8.3.2 Some Parametric Studies for “Main PROBLEM Ib” 
 

0

500

1000

1500

2000

2500

3000

3500

0.2 0.25 0.3 0.35 0.4 0.45 0.5

Position Ratio

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

m=1,n=1
m=1,n=2
m=2,n=1
m=2,n=2
m=3,n=1
m=4,n=1

/Lb~

 
 

a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFC) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (CFFC) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.41 “Dimensionless Natural Frequencies (Ω )” versus “Position Ratio b~ / L” 
in “Composite, Orthotropic Plates and/or Panels with Non-Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=varies, a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFC) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (CFFC) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.42 “Dimensionless Natural Frequencies (Ω )” versus “Position Ratio b~ / L” 
in “Composite, Orthotropic Plates and/or Panels with Non-Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=varies, a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (CFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.43 “Dimensionless Natural Frequencies (Ω )” versus “Position Ratio b~ / L” 
in “Composite, Orthotropic Plates and/or Panels with Non-Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=varies, a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (CFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (CFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.44 “Dimensionless Natural Frequencies (Ω )” versus “Position Ratio b~ / L” 
in “Composite, Orthotropic Plates and/or Panels with Non-Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=varies, a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.45 “Dimensionless Natural Frequencies (Ω )” versus “Position Ratio b~ / L” 
in “Composite, Orthotropic Plates and/or Panels with Non-Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=varies, a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction FFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.46 “Dimensionless Natural Frequencies (Ω )” versus “Position Ratio b~ / L” 
in “Composite, Orthotropic Plates and/or Panels with Non-Centrally Bonded 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=varies, a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction FFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (CFFC) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (CFFC) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.47 “Dimensionless Nat. Freq’s. (Ω )” versus “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness constants are kept constant) 

(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (CFFC) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (CFFC) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.48 “Dimensionless Nat. Freq’s. (Ω )” versus “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness constants are kept constant) 

(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (CFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (CFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.49 “Dimensionless Nat. Freq’s. (Ω )” versus “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness constants are kept constant) 

(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (CFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (CFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.50 “Dimensionless Nat. Freq’s. (Ω )” versus “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness constants are kept constant) 

(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction CFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (FFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.51 ““Dimensionless Nat. Freq’s. (Ω )” versus “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness constants are kept constant) 

(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction FFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (FFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.52 “Dimensionless Nat. Freq’s. (Ω )” versus “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Bonded Single Lap Joint” 
 

( (2)
11D increases while other stiffness constants are kept constant) 

(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 
(Boundary Conditions in y-direction FFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (CFFC) B.C.’s 
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b) “Various Modes with (CFFC) B.C.’s 
 
 

Fig 8.53 “Dimensionless Nat. Freq’s (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Bonded Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFC) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (CFFF) B.C.’s 
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b) “Various Modes with (CFFF) B.C.’s 
 

Fig 8.54 “Dimensionless Nat. Freq’s (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Bonded Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (FFFF) B.C.’s 
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b) “Various Modes with (FFFF) B.C.’s 
 

Fig 8.55 “Dimensionless Nat. Freq’s (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Bonded Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction FFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (CFFC) B.C.’s 
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b) “Various Modes with (CFFC) B.C.’s 
 

Fig 8.56 “Dimensionless Natural Freq’s (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFC) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-

direction with (SFFS) B.C.’s 
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b) “Various Modes with (SFFS) B.C.’s 
 
 

Fig 8.57 “Dimensionless Natural Freq’s (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction CFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFF) B.C.’s 
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b) “Various Modes with (FFFF) B.C.’s 
 

Fig 8.58 “Dimensionless Natural Freq’s (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” in “Composite, Orthotropic  Plates and/or Panels with Non-Centrally 

Single Lap Joint” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy) 
(Joint Length Il =0.3m, b~=0.4 m., a=0.5 m, L=1.0m) 

(Boundary Conditions in y-direction FFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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8.3.3 Influences of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural Frequencies” 

Table 8.5 Comparison of “Dimensionless Natural Frequencies” obtained by 

adding 
x
w
∂
∂

 and 
y
w
∂
∂

 terms to adhesive layer equations for “Main PROBLEM Ib” 

a) “Hard” Adhesive Case 
 

Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 434.843 433.304 1.539 
2 551.360 549.786 1.574 
3 918.154 916.501 1.653 
4 1801.978 1800.220 1.758 C

FF
C

 

5 2339.476 2314.154 25.322 
1 224.837 224.047 0.790 
2 336.660 335.817 0.843 
3 701.671 700.731 0.940 
4 1584.013 1582.946 1.067 SF

FS
 

5 1763.952 1743.746 20.206 
1 19.487 19.441 0.046 
2 99.327 99.265 0.062 
3 414.373 414.284 0.089 
4 448.998 447.394 1.604 C

FF
F 

5 614.441 612.756 1.685 
1 19.481 19.432 0.049 
2 99.325 99.259 0.066 
3 172.054 170.514 1.540 
4 357.180 355.359 1.821 FF

FF
 

5 414.370 414.280 0.090 

 
b) “Soft” Adhesive Case 

 
Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 53.342 52.953 0.389 
2 210.056 208.986 1.070 
3 222.640 222.164 0.476 
4 393.920 392.751 1.169 C

FF
C

 

5 628.916 627.854 1.062 
1 34.915 34.595 0.320 
2 118.530 118.174 0.356 
3 171.289 170.651 0.638 
4 291.735 290.486 1.249 SF

FS
 

5 400.745 400.059 0.686 
1 10.990 10.958 0.032 
2 54.841 54.475 0.366 
3 88.887 88.852 0.035 
4 222.622 221.455 1.167 C

FF
F 

5 228.876 228.393 0.483 
1 10.859 10.825 0.034 
2 24.411 24.204 0.207 
3 62.535 62.211 0.324 
4 88.838 88.803 0.035 FF

FF
 

5 173.712 173.182 0.53 
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a) “Hard” Adhesive Case 
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b) “Soft” Adhesive Case 

 

Figure 59 Influence of 
x
w
∂
∂

 and 
y
w
∂
∂

 

on “Dimensionless Natural FrequencyΩ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Single Lap Joint” 
(Boundary Conditions in y-direction CFFC) 
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a) “Hard” Adhesive Case 
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b) “Soft” Adhesive Case 

 
 

Figure 60 Influence of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 
Single Lap Joint” 

(Boundary Conditions in y-direction CFFF) 
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8.4 Numerical Results and Discussion for “Main PROBLEM II.a” 
 

In the “Main PROBLEM IIa.”, the “Composite Orthotropic Plates and/or 

Panels with a Centrally Bonded Symmetric Single Lap Joint” is analyzed. The 

doubler is made of Graphite-Epoxy and the lower plate adherends are Kevlar-Epoxy. 

For the in-between adhesive layer, the “hard” and the “soft” adhesive cases are taken 

into account. The “Geometric and the Material Characteristics” of the symmetric 

single lap joint system are given in Table 8.2. 

 

 In Figures 8.57 – 8.66, the mode shapes and the corresponding natural 

frequencies (from the first to fifth), in the “hard” and the subsequent “soft” adhesive 

cases with various boundary conditions are presented. 

 

 From aforementioned Figures, in the “hard” adhesive case it is easy to 

observe that that there exists an almost “stationary region” in the mode shapes with 

respect to the symmetry of the “Boundary Conditions”. And symmetric and skew 

symmetric modes flow each other in the composite symmetric single lap joint 

system. If the boundary conditions are not symmetric the “almost stationary area” 

changes the position from left to right. In the “soft” adhesive case, however, an 

almost “stationary region” does not exist in mode shapes. The general trend in the 

mode shapes, for the “soft” adhesive case is that, the “Bonded Region” moves or 

bends with the rest of the lap joint system. And the mode shapes are completely 

different in comparison with those of the “hard” adhesive cases with the same 

support conditions. 

 

 Next, for the “Main PROBLEM IIa”, in Figures 8.67 through 8.84, 

several important parametric studies are presented. In Figures 8.67-8.72, the 

“Dimensionless Natural FrequencyΩ ” versus “Joint Length Ratio )/L( II ll + ” from 

the first up to the fifth mode are plotted, for both the “hard” and the “soft” adhesive 

cases, corresponding to the various support conditions.  
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 From Figures 8.67, 8.69 8.71, in the “hard” adhesive case, it is 

obvious that as the wet area or the “Bonded Region” spreads (in the y-direction), the 

natural frequencies, at first gradually, and then, relatively sharply increases. These 

results of course, are the consequences of the increasing overall stiffness of the lap 

joint system due to the spreading of the “Bonded Region”. 

 

In the “soft” adhesive case, in Figures 8.67-8.72, the natural frequencies does 

not significantly change. And no sharp increases can be observed as the “Bonded 

Region” spreads along the y-direction. This also can be expected. It is because, due 

to the “soft” adhesive, the “Bonded Region” connects both adherends rather loosely 

and a thus relatively loose doubler joint system is created. 

 

 In Figures 8.74, 8.76 8.78, the effect of the “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” on the natural frequencies (from the first up to the fifth) in the “hard” and 

“soft” adhesive cases, are investigated for various boundary conditions. In the “hard” 

adhesive case, in Figures 8.73, 8.75, 8.77, the first two natural frequencies, in spite of 

the increasing “Bending Rigidity Ratio”, does remain practically constant. In the 

higher modes, the natural frequencies increase sharply at first and after the “Bending 

Rigidity Ratio=2.8” they become almost flat or constant regardless of the increase in 

“Bending Rigidity Ratio”. 

 

 In the “soft” adhesive cases, in the Figures 8.74, 8.76, 8.78, the first 

and the second frequencies remain more or less constant as the “Bending Rigidity 

Ratio (1)
11

(2)
11 /DD ” increases. In the third and higher modes, the natural frequencies 

increase. 

 

Lastly, the direct effects of the adhesive layer elastic constants Ea, and also Ga 

on the dimensionless natural frequencies are investigated for the “Main PROBLEM 

II.a”. In order to show these effects, the “Dimensionless Natural Frequencies” versus 

the “Adhesive Elastic Modulus Ratio Ea/ (1)
11B ” are plotted (while the other elastic 

constant kept constant) in Figures 8.79 through 8.81 for various boundary condition. 

Similarly, the “Dimensionless Natural Frequencies” versus the “Adhesive Shear 
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Modulus Ratio Ga/ (1)
11B ” are presented in Figures 8.82 through 8.84 for various 

support condition. 

 

 It can be seen from the Figures 8.79, 8.80, 8.81, the influence of the 

“Adhesive Elastic Modulus Ratio (1)
11a /BE ” on the natural frequencies, is not 

significant. In Figures 8.82, 8.83, 8.84, we can see that the “Shear Modulus 

Ratio (1)
11a /BG ”, significantly affects the natural frequencies. Also, in those Figures, 

one can observe a “transition region” which takes the frequencies to considerable 

higher levels. After then, no change is observed in the frequencies. 



 271

 

8.4.1 Natural Frequencies and Corresponding Mode Shapes for “Main PROBLEM IIa” 
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a) First Mode with Ω 1=ω 11=1005.579 
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b) Second Mode with Ω 2=ω 12=1057.842 
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c) Third Mode with Ω 3=ω 21=1204.653 



 272

 

0

1

2

z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

d) Fourth Mode with Ω 4=ω 22=1209.066 
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e) Fifth Mode with Ω 5=ω 31=1613.390 
 

(“Hard” Adhesive Case) 
 

Fig 8.61 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Single Lap 

Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
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a) First Mode with Ω 1=ω 11=49.307 
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b) Second Mode with Ω 2=ω 12=200.524 
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c) Third Mode with Ω 3=ω 21=220.317 
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d) Fourth Mode with Ω 4=ω 22=363.804 
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e) Fifth Mode with Ω 5=ω 13=659.942 
 

(“Soft” Adhesive Case) 
 

Fig.8.62 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
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a) First Mode with Ω 1=ω 11=535.732 
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b) Second Mode with Ω 2=ω 12=549.712 
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c) Third Mode with Ω 3=ω 21=687.711 
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d) Fourth Mode with Ω 4=ω 22=690.588 
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e) Fifth Mode with Ω 5=ω 31=1092.787 
 

(“Hard” Adhesive Case) 
 

Fig.8.63 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFSFFS) 
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a) First Mode with Ω 1=ω 11=35.776 
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b) Second Mode with Ω 2=ω 12=112.564 
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c) Third Mode with Ω 3=ω 21=191.054 
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d) Fourth Mode with Ω 4=ω 22=253.241 
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e) Fifth Mode with Ω 5=ω 13=378.531 
 

(“Soft” Adhesive Case) 
 

Fig.8.64 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFSFFS) 
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a) First Mode with Ω 1=ω 11=39.800 
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b) Second Mode with Ω 2=ω 21=125.909 
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c) Third Mode with Ω 3=ω 31=450.831 



 280

 

0

1

2

z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

d) Fourth Mode with Ω 4=ω 12=1015.306 
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e) Fifth Mode with Ω 5=ω 13=1080.462 
 

(“Hard” Adhesive Case) 
 

Fig.8.65 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
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a) First Mode with Ω 1=ω 11=15.161 
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b) Second Mode with Ω 2=ω 12=51.276 
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c) Third Mode with Ω 3=ω 21=98.636 
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d) Fourth Mode with Ω 4=ω 13=205.961 
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e) Fifth Mode with Ω 5=ω 22=205.961 
 

(“Soft” Adhesive Case) 
 

Fig.8.66 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
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a) First Mode with Ω 1=ω 11=39.800 
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b) Second Mode with Ω 2=ω 21=125.909 
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c) Third Mode with Ω 3=ω 31=450.831 
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d) Fourth Mode with Ω 4=ω 12=542.453 
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e) Fifth Mode with Ω 5=ω 22=689.145 
 

(“Hard” Adhesive Case) 
 

Fig.8.67 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFSFFF) 
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a) First Mode with Ω 1=ω 11=15.132 
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b) Second Mode with Ω 2=ω 12=41.579 
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c) Third Mode with Ω 3=ω 21=98.618 
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d) Fourth Mode with Ω 4=ω 13=153.876 
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e) Fifth Mode with Ω 5=ω 22=201.673 
 

(“Soft” Adhesive Case) 
 

Fig.8.68 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFSFFF) 
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a) First Mode with Ω 1=ω 11=39.755 
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b) Second Mode with Ω 2=ω 12=39.845 

0

1

2

z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

c) Third Mode with Ω 3=ω 21=125.780 
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d) Fourth Mode with Ω 4=ω 22=126.038 
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e) Fifth Mode with Ω 5=ω 31=450.666 
 

(“Hard” Adhesive Case) 
 

Fig.8.69 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
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a) First Mode with Ω 1=ω 11=14.435 
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b) Second Mode with Ω 2=ω 12=15.654 
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c) Third Mode with Ω 3=ω 13=53.687 
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d) Fourth Mode with Ω 4=ω 21=97.015 
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e) Fifth Mode with Ω 5=ω 22=100.244 
 

(“Soft” Adhesive Case) 
 

Fig.8.70 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Single Lap 

Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
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8.4.2 Natural Frequencies and Corresponding Mode Shapes for “Special Case of 
Main PROBLEM IIa” 
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a) First Mode with Ω 1=ω 11=925.059 
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b) Second Mode with Ω 2=ω 12=1023.842 
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c) Third Mode with Ω 3=ω 21=1208.468 
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d) Fourth Mode with Ω 4=ω 22=1209.277 
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e) Fifth Mode with Ω 5=ω 31=1623.867 
 

(“Hard” Adhesive Case) 
 

Fig 8.71 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Single Lap 

Joint (or Symmetric Doubler Joint) with a Gap” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1 m., b1=0.3 m, b2=b3=0.4m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
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a) First Mode with Ω 1=ω 11=44.380 
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b) Second Mode with Ω 2=ω 12=181.109 
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c) Third Mode with Ω 3=ω 21=200.948 
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d) Fourth Mode with Ω 4=ω 22=343.393 
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e) Fifth Mode with Ω 5=ω 13=673.881 
 

(“Soft” Adhesive Case) 
 

Fig 8.72 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Single Lap 

Joint (or Symmetric Doubler Joint) with a Gap” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1 m., b1=0.3 m, b2=b3=0.4m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
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a) First Mode with Ω 1=ω 11=39.930 

0

1

2
z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

b) Second Mode with Ω 2=ω 21=126.206 
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c) Third Mode with Ω 3=ω 31=451.278 
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d) Fourth Mode with Ω 4=ω 12=970.103 

0

1

2
z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

e) Fifth Mode with Ω 5=ω 13=1041.537 
 

(“Hard” Adhesive Case) 
 

Fig 8.73 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Single Lap 

Joint (or Symmetric Doubler Joint) with a Gap” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1 m., b1=0.3 m, b2=b3=0.4m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
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a) First Mode with Ω 1=ω 11=13.513 

0

1

2
z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

b) Second Mode with Ω 2=ω 12=46.648 
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c) Third Mode with Ω 3=ω 21=97.136 
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d) Fourth Mode with Ω 4=ω 13=186.796 
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e) Fifth Mode with Ω 5=ω 22=241.403 
 

(“Soft” Adhesive Case) 
 

Fig 8.74 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Single Lap 

Joint (or Symmetric Doubler Joint) with a Gap” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1 m., b1=0.3 m, b2=b3=0.4m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
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8.4.3 Some Parametric Studies for “Main PROBLEM Ia” 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFC) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFC) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.75 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFC) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFC) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.76 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.77 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

 (Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.78 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

 (Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 

 

0

2000

4000

6000

8000

10000

12000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Joint Length ratio b1/L

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

First Mode
Second Mode
Third Mode
Fourth Mode
Fifth Mode

 
 

b) “Various Modes with (FFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.79 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

 (Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII)=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFFFF) B.C.’s, ‘‘Soft’ Adhesive 
 
 

Fig 8.80 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII)=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFC) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFC) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.81 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

 (Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFC) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFC) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFC) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.82 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

 (Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFC) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.83 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

 (Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFF) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 

Fig 8.84 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

 (Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFF) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.85 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFFFF) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 

Fig 8.86 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFFFF) 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFC) B.C.’s 
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b) “Various Modes with (FFCFFC) B.C.’s 
 

Fig 8.87 “Dimensionless Natural Frequencies (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFF) B.C.’s 
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b) “Various Modes with (FFCFFF) B.C.’s 
 

Fig 8.88 “Dimensionless Natural Frequencies (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFFFFF) B.C.’s 
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b) “Various Modes with (FFFFFF) B.C.’s 
 

Fig 8.89 “Dimensionless Natural Frequencies (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFC) B.C.’s 
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b) “Various Modes with (FFCFFC) B.C.’s 
 

Fig 8.90 “Dimensionless Natural Frequencies (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFCFFF) B.C.’s 
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b) “Various Modes with (FFCFFF) B.C.’s 
 

Fig 8.91 “Dimensionless Natural Frequencies (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency in natural frequency on the number in half waves in y- and x-
direction with (FFFFFF) B.C.’s 
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b) “Various Modes with (FFFFFF) B.C.’s 
 

Fig 8.92 “Dimensionless Natural Frequencies (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII)=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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8.4.4 Influences of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural Frequencies” 

Table 8.6 Comparison of “Dimensionless Natural Frequencies” obtained by 

adding 
x
w
∂
∂

 and 
y
w
∂
∂

 terms to adhesive layer equations for “Main PROBLEM IIa” 

a) “Hard” Adhesive Case 
 

Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 1011.615 1005.579 6.036 
2 1067.327 1057.842 9.485 
3 1213.155 1204.653 8.502 
4 1214.521 1209.066 5.455 C

FF
C

 

5 1621.474 1613.390 8.084 
1 538.675 535.732 2.943 
2 554.514 549.712 4.801 
3 692.221 687.711 4.510 
4 693.497 690.588 2.910 SF

FS
 

5 1097.295 1092.787 4.508 
1 40.016 39.800 0.216 
2 126.173 125.909 0.264 
3 451.174 450.831 0.342 
4 1021.641 1015.306 6.335 C

FF
F 

5 1090.067 1080.462 9.605 
1 40.011 39.755 0.256 
2 40.020 39.845 0.175 
3 126.099 125.780 0.319 
4 126.247 126.038 0.209 FF

FF
 

5 451.072 450.666 0.406 
 

b) “Soft” Adhesive Case 
 

Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 49.714 49.307 0.407 
2 201.252 200.524 0.727 
3 221.791 220.317 1.475 
4 364.919 363.804 1.115 C

FF
C

 

5 660.568 659.942 0.626 
1 35.130 34.776 0.354 
2 113.069 112.564 0.504 
3 192.234 191.054 1.180 
4 253.967 253.241 0.726 SF

FS
 

5 378.945 378.531 0.414 
1 15.240 15.161 0.079 
2 51.647 51.276 0.371 
3 98.718 98.636 0.083 
4 206.656 205.961 0.695 C

FF
F 

5 226.211 224.750 1.461 
1 14.505 14.435 0.070 
2 15.746 15.654 0.092 
3 54.015 53.687 0.328 
4 97.096 97.015 0.081 FF

FF
 

5 100.330 100.244 0.086 
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b) “Soft” Adhesive Case 

 

Figure 93 Influence of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded 
Symmetric Single Lap Joint” 

(Boundary Conditions in y-direction FFCFFC) 
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a) “Hard” Adhesive Case 
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b) “Soft” Adhesive Case 

 
 

Figure 94 Influence of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded 
Symmetric Single Lap Joint” 

(Boundary Conditions in y-direction FFCFFF) 
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8.5 Numerical Results and Discussion for “Main PROBLEM II.b” 
 

In the “Main PROBLEM IIb.”, the “Composite Orthotropic Plates and/or 

Panels with a Non-Centrally Bonded Symmetric Single Lap Joint” is analyzed. The 

doubler is made of Graphite-Epoxy and the lower plate adherends are Kevlar-Epoxy. 

For the in-between adhesive layer, the “hard” and the “soft” adhesive cases are taken 

into account. The “Geometric and the Material Characteristics” of the single lap joint 

system are given in Table 8.2. 

 

 In Figures 8.85 – 8.94, the mode shapes and the corresponding natural 

frequencies (from the first to fifth), in the “hard” and the subsequent “soft” adhesive 

cases with various boundary conditions are presented. 

 

 From aforementioned Figures, in the “hard” adhesive case it is easy to 

observe that with respect to the position of the “Bonded Region”, there exists an 

almost “stationary region” in the mode shapes. And this region moves from left to 

the right part (or vice versa) in the composite symmetric single lap joint system. In 

the “soft” adhesive case, however, an almost “stationary region” does not exist in 

mode shapes. The general trend in the mode shapes, for the “soft” adhesive case is 

that, the “Bonded Region” moves or bends with the rest of the lap joint system. And 

the mode shapes are completely different in comparison with those of the “hard” 

adhesive cases with the same support conditions. 

 

 Next, for the “Main PROBLEM IIb”, in Figures 8.95 through 8.112, 

the several important parametric studies are presented. In Figures 8.95-8.100, the 

“Dimensionless Natural FrequencyΩ ” versus “Position Ratio /Lb~ ” from the first up 

to the fifth mode are plotted, for both the “hard” and the “soft” adhesive cases, 

corresponding to the various support conditions.  

 

 From Figures 8.95, 8.97 8.99, in the “hard” adhesive case, it is 

obvious that, as position of the “Bonded Region” changes (in the y-direction), the 

natural frequencies gradually increase up to a certain position and then decreases. 
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These results are the consequences of the movement of the half waves from left to 

right because of the change in the position of the “Bonded Region”. 

 

In the “soft” adhesive case, in Figures 8.96, 8.98, 8.100, the natural 

frequencies increase with the position of the “Bonded Region”. This also can be 

expected due to the “soft” adhesive which makes the system loose and which shows 

a similar behavior in mode shapes up to b~ =0.5m. 

 

 In Figures 8.101 through 8.106, the effect of the “Bending Rigidity 

Ratio (1)
11

(2)
11 /DD ” on the natural frequencies (from the first up to the fifth) in the 

“hard” and “soft” adhesive cases, are investigated for various boundary conditions. 

In the “hard” adhesive case, in Figures 8.101, 8.103, 8.105, the first two natural 

frequencies, in spite of the increasing “Bending Rigidity Ratio”, do remain 

practically constant. In the higher modes, the natural frequencies increase sharply at 

first and after the “Bending Rigidity Ratio=2.6” they become almost flat or constant 

regardless of the increase in “Bending Rigidity Ratio”. 

 

 In the “soft” adhesive cases, in the Figures 8.102, 8.104, 8.106, the 

first and the second frequencies remain more or less constant as the “Bending 

Rigidity Ratio (1)
11

(2)
11 /DD ” increases. In the third and higher modes, the natural 

frequencies increase. 

 

Lastly, the direct effects of the adhesive layer elastic constants Ea, and also Ga 

on the dimensionless natural frequencies are investigated for the “Main PROBLEM 

II.b”. In order to show these effects, the “Dimensionless Natural Frequencies” versus 

the “Adhesive Elastic Modulus Ratio Ea/ (1)
11B ” are plotted (while the other elastic 

constant kept constant) in Figures 8.107 through 8.109 for various boundary 

condition. Similarly, the “Dimensionless Natural Frequencies” versus the “Adhesive 

Shear Modulus Ratio Ga/ (1)
11B ” are presented in Figures 8.110 through 8.112 for 

various support condition. 
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 It can be seen from the Figures 8.107-8.109, the influence of the “Adhesive 

Elastic Modulus Ratio (1)
11a /BE ” on the natural frequencies, is not significant. In 

Figures 8.110-8.112, we can see that the “Shear Modulus Ratio (1)
11a /BG ”, 

significantly affects the natural frequencies. Also, in those Figures, one can observe a 

“transition region” which takes the frequencies to considerable higher levels. After 

then, no change is observed in the frequencies. 
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8.5.1 Natural Frequencies and Corresponding Mode Shapes for “Main PROBLEM IIb” 
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a) First Mode with Ω 1=ω 11=430.476 
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b) Second Mode with Ω 2=ω 21=547.545 
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c) Third Mode with Ω 3=ω 31=914.429 
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d) Fourth Mode with Ω 4=ω 41=1798.165 
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e) Fifth Mode with Ω 5=ω 12=2295.530 
 

(“Hard” Adhesive Case) 
 

Fig 8.95 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Single 

Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFCFFC) 
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a) First Mode with Ω 1=ω 11=49.116 
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b) Second Mode with Ω 2=ω 12=191.144 
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c) Third Mode with Ω 3=ω 21=205.773 
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d) Fourth Mode with Ω 4=ω 22=353.509 
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e) Fifth Mode with Ω 5=ω 13=578.172 
 

(“Soft” Adhesive Case) 
 

Fig.8.96 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFCFFC) 
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a) First Mode with Ω 1=ω 11=222.617 
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b) Second Mode with Ω 2=ω 21=334.522 
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c) Third Mode with Ω 3=ω 31=699.417 
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d) Fourth Mode with Ω 4=ω 41=1581.499 
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e) Fifth Mode with Ω 5=ω 12=1606.664 
 

(“Hard” Adhesive Case) 
 

Fig.8.97 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFSFFS) 
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a) First Mode with Ω 1=ω 11=33.635 

0

1

2
z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

b) Second Mode with Ω 2=ω 12=104.878 
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c) Third Mode with Ω 3=ω 21=169.516 
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d) Fourth Mode with Ω 4=ω 22=262.938 
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e) Fifth Mode with Ω 5=ω 13=358.832 
 

(“Soft” Adhesive Case) 
 

Fig.8.98 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFSFFS) 
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a) First Mode with Ω 1=ω 11=19.349 
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b) Second Mode with Ω 2=ω 21=99.125 
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c) Third Mode with Ω 3=ω 31=414.051 
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d) Fourth Mode with Ω 4=ω 12=445.060 
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e) Fifth Mode with Ω 5=ω 22=611.701 
 

(“Hard” Adhesive Case) 
 

Fig.8.99 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFCFFF) 
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a) First Mode with Ω 1=ω 11=10.807 
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b) Second Mode with Ω 2=ω 12=50.353 
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c) Third Mode with Ω 3=ω 21=88.680 
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d) Fourth Mode with Ω 4=ω 13=196.562 
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e) Fifth Mode with Ω 5=ω 22=216.953 
 

(“Soft” Adhesive Case) 
 

Fig.8.100 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFCFFF) 
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a) First Mode with Ω 1=ω 11=19.349 
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b) Second Mode with Ω 2=ω 21=99.125 
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c) Third Mode with Ω 3=ω 31=414.051 
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d) Fourth Mode with Ω 4=ω 12=445.022 

0

1

2
z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

e) Fifth Mode with Ω 5=ω 22=611.701 
 

(“Hard” Adhesive Case) 
 

Fig.8.101 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFSFFF) 
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a) First Mode with Ω 1=ω 11=10.793 
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b) Second Mode with Ω 2=ω 12=41.547 
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c) Third Mode with Ω 3=ω 21=88.674 
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d) Fourth Mode with Ω 4=ω 13=154.011 
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e) Fifth Mode with Ω 5=ω 22=208.673 
 

(“Soft” Adhesive Case) 
 

Fig.8.102 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFSFFF) 
 

 



 339

 

0

1

2

z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

a) First Mode with Ω 1=ω 11=19.349 
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b) Second Mode with Ω 2=ω 21=99.125 
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c) Third Mode with Ω 3=ω 12=120.837 
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d) Fourth Mode with Ω 4=ω 22=221.938 
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e) Fifth Mode with Ω 5=ω 31=414.051 
 

(“Hard” Adhesive Case) 
 

Fig.8.103 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFFFFF) 
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a) First Mode with Ω 1=ω 11=10.701 
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b) Second Mode with Ω 2=ω 12=22.477 
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c) Third Mode with Ω 3=ω 13=56.748 
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d) Fourth Mode with Ω 4=ω 21=88.584 
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e) Fifth Mode with Ω 5=ω 22=121.365 
 

(“Soft” Adhesive Case) 
 

Fig.8.104 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Single 

Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m, b1=0.3 m, b2=0.4m, b3=0.6m, b~ =0.4 m, a=0.5 m. L=1 m)

(Boundary Conditions in y-direction FFFFFF) 
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8.5.2 Natural Frequencies and Corresponding Mode Shapes for “Special Case of 
Main PROBLEM IIb” 
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a) First Mode with Ω 1=ω 11=425.639 
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b) Second Mode with Ω 2=ω 21=549.082 
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c) Third Mode with Ω 3=ω 31=917.091 
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d) Fourth Mode with Ω 4=ω 41=1801.284 
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e) Fifth Mode with Ω 5=ω 12=1925.877 
 

(“Hard” Adhesive Case) 
 

Fig 8.105 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Single 

Lap Joint (or Symmetric Doubler Joint) with a Gap” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length ℓI=0.1m, ℓII=0.1m, b1=0.3m, b2=0.35m, b3=0.55m, 

b~ =0.5m, a=0.5m, L=1m) 
(Boundary Conditions in y-direction FFCFFC) 
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a) First Mode with Ω 1=ω 11=44.145 
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b) Second Mode with Ω 2=ω 12=180.932 
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c) Third Mode with Ω 3=ω 21=190.066 
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d) Fourth Mode with Ω 4=ω 22=339.208 
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e) Fifth Mode with Ω 5=ω 13=547.773 
 

(“Soft” Adhesive Case) 
 

Fig 8.106 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Single 

Lap Joint (or Symmetric Doubler Joint) with a Gap” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length ℓI=0.1m, ℓII=0.1m, b1=0.3m, b2=0.35m, b3=0.55m, 

b~ =0.5m, a=0.5m, L=1m) 
(Boundary Conditions in y-direction FFCFFC) 
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a) First Mode with Ω 1=ω 11=19.402 
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b) Second Mode with Ω 2=ω 21=99.235 
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c) Third Mode with Ω 3=ω 31=414.233 
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d) Fourth Mode with Ω 4=ω 12=439.504 
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e) Fifth Mode with Ω 5=ω 22=613.532 
 

(“Hard” Adhesive Case) 
 

Fig 8.107 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Single 

Lap Joint (or Symmetric Doubler Joint) with a Gap” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length ℓI=0.1m, ℓII=0.1m, b1=0.3m, b2=0.35m, b3=0.55m, 

b~ =0.5m, a=0.5m, L=1m) 
(Boundary Conditions in y-direction FFCFFF) 
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a) First Mode with Ω 1=ω 11=10.069 
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b) Second Mode with Ω 2=ω 12=45.679 
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c) Third Mode with Ω 3=ω 21=88.017 
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d) Fourth Mode with Ω 4=ω 13=186.090 
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e) Fifth Mode with Ω 5=ω 22=200.332 
 

(“Soft” Adhesive Case) 
 

Fig 8.108 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Single 

Lap Joint (or Symmetric Doubler Joint) with a Gap” 
 

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length ℓI=0.1m, ℓII=0.1m, b1=0.3m, b2=0.35m, b3=0.55m, 

b~ =0.5m, a=0.5m, L=1m) 
(Boundary Conditions in y-direction FFCFFF) 
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8.5.3 Some Parametric Studies for “Main PROBLEM IIb” 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFC) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFC) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.109 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFC) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFC) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.110 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.111 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.112 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFFFFF) B.C.’s, ‘‘Hard’ Adhesive 
 
 

Fig 8.113 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.114 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFC) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFC) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.115 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non--Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D  increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFC) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFC) B.C.’s, ‘‘Soft’’ Adhesive 
 

Fig 8.116 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D  increase while other stiffness constants are kept constant) 

 (Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFC) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.117 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D  increase while other stiffness constants are kept constant) 

 (Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 

Fig 8.118 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D  increase while other stiffness constants are kept constant) 

 (Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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Fig 8.119 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D  increase while other stiffness constants are kept constant) 

 (Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 

 

0

150

300

450

600

750

0.20 1.00 1.80 2.60 3.40 4.20 5.00 5.80

Bending Rigidity Ratio

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

First Mode
Second Mode
Third Mode
Fourth Mode
Fifth Mode

(1)
11

(3)
11

(1)
11 )/DD(D =

 
 

b) “Various Modes with (FFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 

Fig 8.120 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 

 
( (2)

11D and (3)
11D  increase while other stiffness constants are kept constant) 

 (Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFC) B.C.’s 
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b) “Various Modes with (FFCFFC) B.C.’s 
 

Fig 8.121 “Dimensionless Nat. Freq’s. (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic Plates and/or Panels with a Non-Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFF) B.C.’s 
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b) “Various Modes with (FFCFFF) B.C.’s 
 

Fig 8.122 “Dimensionless Nat. Freq’s. (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic Plates and/or Panels with a Non-Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFF) B.C.’s 
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b) “Various Modes with (FFFFFF) B.C.’s 
 

Fig 8.123 “Dimensionless Nat. Freq’s. (Ω )” versus “Elastic Modulus Ratio 
(1)
11/BaE ” in “Composite, Orthotropic Plates and/or Panels with a Non-Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFC) B.C.’s 
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b) “Various Modes with (FFCFFC) B.C.’s 
 

Fig 8.124 “Dimensionless Nat. Freq’s. (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” in “Composite, Orthotropic Plates and/or Panels with a Non-Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFC) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFF) B.C.’s 
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b) “Various Modes with (FFCFFF) B.C.’s 
 

Fig 8.125 “Dimensionless Nat. Freq’s. (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” in “Composite, Orthotropic Plates and/or Panels with a Non-Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFF) B.C.’s 
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b) “Various Modes with (FFFFFF) B.C.’s 
 

Fig 8.126 “Dimensionless Nat. Freq’s. (Ω )” versus “Shear Modulus Ratio 
(1)
11/BaG ” in “Composite, Orthotropic Plates and/or Panels with a Non-Centrally 

Bonded Symmetric Single Lap Joint (or Symmetric Doubler Joint)” 
 

(Plate 1=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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8.5.4 Influences of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural Frequencies” 

Table 8.7 Comparison of “Dimensionless Natural Frequencies” obtained by 

adding 
x
w
∂
∂

 and 
y
w
∂
∂

 terms to adhesive layer equations for “Main PROBLEM IIb” 

 
a) “Hard” Adhesive Case 

Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 432.834 430.476 2.358 
2 549.791 547.545 2.245 
3 916.705 914.429 2.275 
4 1800.549 1798.165 2.384 C

FF
C

 

5 2318.570 2295.530 23.040 
1 223.785 222.617 1.168 
2 335.704 334.522 1.183 
3 700.695 699.417 1.278 
4 1582.930 1581.499 1.431 SF

FS
 

5 1622.422 1606.664 15.758 
1 19.417 19.349 0.067 
2 99.217 99.125 0.092 
3 414.183 414.051 0.131 
4 447.498 445.060 2.438 C

FF
F 

5 614.117 611.702 2.415 
1 19.417 19.349 0.067 
2 99.217 99.125 0.092 
3 121.874 120.837 1.037 
4 223.120 221.983 1.137 FF

FF
 

5 414.183 414.051 0.131 
 

b) “Soft” Adhesive Case 
Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 49.507 49.116 0.391 
2 191.691 191.144 0.547 
3 206.889 205.773 1.116 
4 354.729 353.509 1.221 C

FF
C

 

5 578.942 578.172 0.770 
1 33.960 33.635 0.325 
2 105.281 104.878 0.403 
3 170.173 169.516 0.658 
4 264.247 262.983 1.264 SF

FS
 

5 359.521 358.832 0.689 
1 10.840 10.807 0.033 
2 50.724 50.353 0.371 
3 88.716 88.680 0.035 
4 197.113 196.562 0.550 C

FF
F 

5 218.179 216.953 1.225 
1 10.735 10.701 0.034 
2 22.674 22.477 0.197 
3 57.067 56.748 0.319 
4 88.620 88.584 0.036 FF

FF
 

5 121.613 121.365 0.248 
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a) “Hard” Adhesive Case 
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b) “Soft” Adhesive Case 

 

Figure 127 Influence of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 
Symmetric Single Lap Joint” 

(Boundary Conditions in y-direction FFCFFC) 
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a) “Hard” Adhesive Case 
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b) “Soft” Adhesive Case 

 
 

Figure 128 Influence of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 
Symmetric Single Lap Joint” 

(Boundary Conditions in y-direction FFCFFF) 
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8.6 Numerical Results and Discussion for “Main PROBLEM III.a” 
 

In the “Main PROBLEM IIIa.”, the “Composite Orthotropic Plates and/or 

Panels with a Centrally Bonded Symmetric Double Lap Joint” is analyzed. The 

doublers are made of Graphite-Epoxy and the plate adherends are Kevlar-Epoxy. For 

the in-between adhesive layer, the “hard” and the “soft” adhesive cases are taken into 

account. The “Geometric and the Material Characteristics” of the symmetric double 

lap joint system are given in Table 8.3. 

 

 In Figures 8.113 – 8.122, the mode shapes and the corresponding 

natural frequencies (from the first to fifth), in the “hard” and the subsequent “soft” 

adhesive cases with various boundary conditions are presented. 

 

 From aforementioned Figures, in the “hard” adhesive case it is easy to 

observe that, that there exists an almost “stationary region” in the mode shapes with 

respect to the symmetry of the “Boundary Conditions”. And symmetric and skew 

symmetric modes flow each other in the composite symmetric double lap joint 

system. If the boundary conditions are not symmetric the “almost stationary area” 

changes the position from left to right. In the “soft” adhesive case, however, an 

almost “stationary region” does not exist in mode shapes. The general trend in the 

mode shapes, for the “soft” adhesive case, the “Bonded Region” moves or bends 

with the rest of the lap joint system. And the mode shapes are completely different in 

comparison with those of the “hard” adhesive cases with the same support 

conditions. 

 

 Next, for the “Main PROBLEM IIIa”, in Figures 8.123 through 8.140, 

several important parametric studies are presented. In Figures 8.123-8.128, the 

“Dimensionless Natural FrequencyΩ ” versus “Joint Length Ratio )/L( II ll + ” from 

the first up to the fifth mode are plotted, for both the “hard” and the “soft” adhesive 

cases, corresponding to the various support conditions.  
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 From Figures 8.123, 8.125, 8.127, in the “hard” adhesive case, it is 

obvious that as the wet area or the “Bonded Region” spreads (in the y-direction), the 

natural frequencies, at first gradually, and then, relatively sharply increases. These 

results of course, are consequences of the increasing stiffness of the lap joint system 

due to the spreading of the “Bonded Region”. 

 

In the “soft” adhesive case, in Figures 8.124, 8.126, 8.128, the natural 

frequencies does not significantly change. And no sharp increases can be observed as 

the “Bonded Region” spreads along the y-direction. This also can be expected. It is 

because, due to the “soft” adhesive, the “Bonded Region” connects both adherends 

rather loosely and thus a relatively loose doubler joint system is created. 

 

 In Figures 8.129 through 8.134, the effect of the “Bending Rigidity 

Ratio (1)
11

(2)
11 /DD ” on the natural frequencies (from the first up to the fifth) in the 

“hard” and “soft” adhesive cases, are investigated for various boundary conditions. 

In the “hard” adhesive case, in Figures 8.129, 8.131, 8.133, the first two natural 

frequencies, in spite of the increasing “Bending Rigidity Ratio”, does remain 

practically constant. In the higher modes, the natural frequencies increase sharply at 

first and after the “Bending Rigidity Ratio=1.8” they become almost flat or constant 

regardless of the increase in “Bending Rigidity Ratio”. 

 

 In the “soft” adhesive cases, in the Figures 8.130, 8.132, 8.134, the 

first and the second frequencies remain more or less constant as the “Bending 

Rigidity Ratio (1)
11

(2)
11 /DD ” increases. In the third and higher modes, the natural 

frequencies increase. 

 

Lastly, the direct effects of the adhesive layer elastic constants Ea1, Ea4, and 

also Ga1, Ga4 on the dimensionless natural frequencies are investigated for the “Main 

PROBLEM III.a”. In order to show these effects, the “Dimensionless Natural 

Frequencies” versus the “Adhesive Elastic Modulus Ratio (Ea1=Ea4)/ (1)
11B ” are plotted 

(while the other elastic constant kept constant) in Figures 8.135 through 8.137 for 

various boundary condition. Similarly, the “Dimensionless Natural Frequencies” 
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versus the “Adhesive Shear Modulus Ratio (Ga1=Ga4)/ (1)
11B ” are presented in Figures 

8.138 through 8.140 for various support condition. 

 

 It can be seen from the Figures 8.135-8.137, the influence of the “Adhesive 

Elastic Modulus Ratio (Ea1=Ea4)/ (1)
11B ” on the natural frequencies, is not significant. 

In Figures 8.138- 8.140, we can see that the “Shear Modulus Ratio (Ga1=Ga4)/ (1)
11B ”, 

significantly affects the natural frequencies. Also, in those Figures, one can observe a 

“transition region” which takes the frequencies to significant higher levels. After 

then, no change is observed in the frequencies. In Figure 8.140, the “Dimensionless 

Natural Frequency” versus “Shear Modulus Ratio (Ga1=Ga4)/ (1)
11B ” is given for 

FFFFFF Boundary Condition. The natural frequencies are almost constant for lower 

frequencies but changes significantly for the fifth mode. Since this is not the 

expected trend for the effect of the shear modulus ratio, this parametric study will be 

observed in detail in the future studies. 
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8.6.1 Natural Frequencies and Corresponding Mode Shapes for “Main PROBLEM IIIa” 
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b) Second Mode with Ω 2=ω 12=1140.849 
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c) Third Mode with Ω 3=ω 21=1280.051 
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d) Fourth Mode with Ω 4=ω 22=1334.096 
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e) Fifth Mode with Ω 5=ω 31=1686.086 
 

(“Hard” Adhesive Case) 
 

Fig 8.129 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Double Lap 

Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) First Mode with Ω 1=ω 11=55.997 
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b) Second Mode with Ω 2=ω 12=211.316 
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c) Third Mode with Ω 3=ω 21=261.748 
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d) Fourth Mode with Ω 4=ω 22=411.243 
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e) Fifth Mode with Ω 5=ω 13=732.919 
 

(“Soft” Adhesive Case) 
 

Fig.8.130 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) First Mode with Ω 1=ω 11=592.791 
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b) Second Mode with Ω 2=ω 12=600.165 
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c) Third Mode with Ω 3=ω 12=729.047 
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d) Fourth Mode with Ω 4=ω 22=759.748 
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e) Fifth Mode with Ω 5=ω 31=1134.688 
 

(“Hard” Adhesive Case) 
 

Fig.8.131 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFSFFSFF) 
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a) First Mode with Ω 1=ω 11=44.097 

0

1

2
z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

b) Second Mode with Ω 2=ω 12=129.450 
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c) Third Mode with Ω 3=ω 21=232.746 
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d) Fourth Mode with Ω 4=ω 22=294.211 
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e) Fifth Mode with Ω 5=ω 13=410.652 
 

(“Soft” Adhesive Case) 
 

Fig.8.132 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFSFFSFF) 
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a) First Mode with Ω 1=ω 11=43.395 
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b) Second Mode with Ω 2=ω 21=130.238 
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c) Third Mode with Ω 3=ω 31=456.283 
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d) Fourth Mode with Ω 4=ω 12=1120.601 
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e) Fifth Mode with Ω 5=ω 13=1168.753 
 

(“Hard” Adhesive Case) 
 

Fig.8.133 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
 



 385

 

0

1

2

z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

a) First Mode with Ω 1=ω 11=19.342 
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b) Second Mode with Ω 2=ω 12=57.769 
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c) Third Mode with Ω 3=ω 21=104.508 
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d) Fourth Mode with Ω 4=ω 13=215.871 
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e) Fifth Mode with Ω 5=ω 22=265.094 
 

(“Soft” Adhesive Case) 
 

Fig.8.134 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) First Mode with Ω 1=ω 11=43.391 
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b) Second Mode with Ω 2=ω 21=130.231 
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c) Third Mode with Ω 3=ω 31=456.274 
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d) Fourth Mode with Ω 4=ω 12=596.477 
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e) Fifth Mode with Ω 5=ω 22=743.880 
 

(“Hard” Adhesive Case) 
 

Fig.8.135 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFSFFFFF) 
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a) First Mode with Ω 1=ω 11=19.341 
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b) Second Mode with Ω 2=ω 12=49.979 
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c) Third Mode with Ω 3=ω 21=104.481 
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d) Fourth Mode with Ω 4=ω 13=167.815 
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e) Fifth Mode with Ω 5=ω 22=242.699 
 

(“Soft” Adhesive Case) 
 

Fig.8.136 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFSFFFFF) 
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a) First Mode with Ω 1=ω 11=42.512 
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b) Second Mode with Ω 2=ω 12=44.280 
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c) Third Mode with Ω 3=ω 21=129.043 
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d) Fourth Mode with Ω 4=ω 22=131.438 
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e) Fifth Mode with Ω 5=ω 31=454.695 
 

(“Hard” Adhesive Case) 
 

Fig.8.137 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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a) First Mode with Ω 1=ω 11=18.190 
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b) Second Mode with Ω 2=ω 12=20.308 
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c) Third Mode with Ω 3=ω 13=59.902 
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d) Fourth Mode with Ω 4=ω 21=102.747 
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e) Fifth Mode with Ω 5=ω 22=106.283 
 
 

(“Soft” Adhesive Case) 
 

Fig.8.138 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Double Lap 

Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3 m., b1=b4=0.3 m, b2=b3=0.5m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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8.6.2 Natural Frequencies and Corresponding Mode Shapes for “Special Case of 
Main PROBLEM IIIa” 
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a) First Mode with Ω 1=ω 11=1016.715 
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b) Second Mode with Ω 2=ω 12=1169.859 
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c) Third Mode with Ω 3=ω 21=1293.002 
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d) Fourth Mode with Ω 4=ω 22=1312.249 
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e) Fifth Mode with Ω 5=ω 31=1710.846 
 

(“Hard” Adhesive Case) 
 

Fig 8.139 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Double Lap 

Joint (or Symmetric Double Doubler Joint) with a Gap” 
 

(Plate 1=Plate 4= Graphite-Epoxy, Plate2=Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1 m., b1=0.3 m, b2=b3=0.4m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) First Mode with Ω 1=ω 11=46.845 
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b) Second Mode with Ω 2=ω 12=188.090 
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c) Third Mode with Ω 3=ω 21=228.259 
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d) Fourth Mode with Ω 4=ω 22=388.537 
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e) Fifth Mode with Ω 5=ω 13=735.333 
 

(“Soft” Adhesive Case) 
 

Fig 8.140 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Double Lap Joint 

(or Symmetric Double Doubler Joint) with a Gap” 
 

(Plate 1=Plate 4= Graphite-Epoxy, Plate2=Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1 m., b1=0.3 m, b2=b3=0.4m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) First Mode with Ω 1=ω 11=43.224 
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b) Second Mode with Ω 2=ω 21=130.101 
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c) Third Mode with Ω 3=ω 31=456.166 
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d) Fourth Mode with Ω 4=ω 12=1024.385 
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e) Fifth Mode with Ω 5=ω 13=1191.559 
 

(“Hard” Adhesive Case) 
 

Fig 8.141 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Double Lap 

Joint (or Symmetric Double Doubler Joint) with a Gap” 
 

(Plate 1=Plate 4= Graphite-Epoxy, Plate2=Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1 m., b1=0.3 m, b2=b3=0.4m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) First Mode with Ω 1=ω 11=17.445 
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b) Second Mode with Ω 2=ω 12=49.432 
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c) Third Mode with Ω 3=ω 21=103.417 
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d) Fourth Mode with Ω 4=ω 13=193.253 
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e) Fifth Mode with Ω 5=ω 22=231.705 
 

(“Soft” Adhesive Case) 
 

Fig 8.142 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric Double Lap 

Joint (or Symmetric Double Doubler Joint) with a Gap” 
 

(Plate 1=Plate 4= Graphite-Epoxy, Plate2=Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1 m., b1=0.3 m, b2=b3=0.4m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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8.6.3 Some Parametric Studies for “Main PROBLEM IIIa” 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFCFF) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.143 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFCFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.144 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.145 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.146 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFFFFFFF) B.C.’s, ‘‘Hard’ Adhesive 
 
 

Fig 8.147 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.148 “Dimensionless Natural Freq. (Ω )” versus “Joint Length (ℓI+ℓII )/ L” in 
“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded Symmetric 

Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=varies, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s, ‘‘Hard’’ Adhesive 

 

1000

1250

1500

1750

2000

2250

2500

2750

3000

0.20 1.00 1.80 2.60 3.40 4.20 5.00 5.80

Bending Rigidity Ratio 

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

First Mode
Second Mode
Third Mode
Fourth Mode
Fifth Mode

(1)
11

(3)
11

(1)
11 )/DD(D =

 
 

b) “Various Modes with (FFCFFCFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.149 “Dimensionless Natural Freq. (Ω )” versus “Bending Rigidity Ratio 
( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 
Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFCFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFCFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.150 “Dimensionless Natural Freq. (Ω )” versus “Bending Rigidity Ratio 
( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 
Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFCFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.151 “Dimensionless Natural Freq. (Ω )” versus “Bending Rigidity Ratio 
( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 
Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.152 “Dimensionless Natural Freq. (Ω )” versus “Bending Rigidity Ratio 
( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 
Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFCFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFFFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.153 “Dimensionless Natural Freq. (Ω )” versus “Bending Rigidity Ratio 
( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 
Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 

Fig 8.154 “Dimensionless Natural Freq. (Ω )” versus “Bending Rigidity Ratio 
( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 
Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 
(Boundary Conditions in y-direction FFFFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s 
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b) “Various Modes with (FFCFFCFF) B.C.’s 
 

Fig 8.155 “Dimensionless Nat. Freq’s. (Ω )” versus “Elastic Modulus Ratio 
(1)
11a4a1 )/BE(E = ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s 
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b) “Various Modes with (FFCFFFFF) B.C.’s 
 

Fig 8.156 “Dimensionless Nat. Freq’s. (Ω )” versus “Elastic Modulus Ratio 
(1)
11a4a1 )/BE(E = ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s 
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b) “Various Modes with (FFFFFFFF) B.C.’s 
 

Fig 8.157 “Dimensionless Nat. Freq’s. (Ω )” versus “Elastic Modulus Ratio 
(1)
11a4a1 )/BE(E = ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s 
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b) “Various Modes with (FFCFFCFF) B.C.’s 
 
 

Fig 8.158 “Dimensionless Nat. Freq’s. (Ω )” versus “Shear Modulus Ratio 
(1)
11a4a1 )/BG(G = ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s 
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b) “Various Modes with (FFCFFFFF) B.C.’s 
 
 

Fig 8.159 “Dimensionless Nat. Freq’s. (Ω )” versus “Shear Modulus Ratio 
(1)
11a4a1 )/BG(G = ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s 
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b) “Various Modes with (FFFFFFFF) B.C.’s 
 
 

Fig 8.160 “Dimensionless Nat. Freq’s. (Ω )” versus “Shear Modulus Ratio 
(1)
11a4a1 )/BG(G = ” in “Composite, Orthotropic Plates and/or Panels with a Centrally 

Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.5 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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8.6.4 Influences of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural Frequencies” 

Table 8.8 Comparison of “Dimensionless Natural Frequencies” obtained by 

adding 
x
w
∂
∂

 and 
y
w
∂
∂

 terms to adhesive layer equations for “Main PROBLEM IIIa” 

 
a) “Hard” Adhesive Case 

Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 1118.553 1113.502 5.050 
2 1145.500 1140.840 4.661 
3 1284.693 1280.051 4.643 
4 1337.712 1334.096 3.616 C

FF
C

 

5 1690.808 1686.086 4.722 
1 595.064 592.791 2.273 
2 602.327 600.165 2.162 
3 731.395 729.047 2.348 
4 761.677 759.748 1.929 SF

FS
 

5 1137.201 1134.688 2.513 
1 43.503 43.395 0.108 
2 130.376 130.238 0.138 
3 456.471 456.283 0.188 
4 1125.654 1120.601 5.053 C

FF
F 

5 1173.786 1168.753 5.033 
1 42.614 42.512 0.102 
2 44.393 44.280 0.114 
3 129.180 129.043 0.137 
4 131.576 131.438 0.138 FF

FF
 

5 454.891 454.695 0.196 
 

b) “Soft” Adhesive Case 
Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 56.551 55.997 0.553 
2 212.514 211.316 1.197 
3 263.784 261.748 2.036 
4 412.997 411.243 1.755 C

FF
C

 

5 733.591 732.919 0.672 
1 44.598 44.097 0.501 
2 130.291 129.450 0.842 
3 234.398 232.746 1.652 
4 295.312 294.211 1.101 SF

FS
 

5 411.070 410.652 0.419 
1 19.437 19.342 0.096 
2 58.283 57.769 0.513 
3 104.586 104.508 0.079 
4 267.126 265.094 2.031 C
FF

F 

5 217.024 215.871 1.153 
1 18.284 18.190 0.094 
2 20.411 20.308 0.103 
3 60.365 59.902 0.463 
4 102.835 102.747 0.088 FF

FF
 

5 106.352 106.283 0.069 
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a) “Hard” Adhesive Case 
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b) “Soft” Adhesive Case 

 

Figure 161 Influence of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded 
Symmetric Double Lap Joint” 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) “Hard” Adhesive Case 
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b) “Soft” Adhesive Case 

 

Figure 162 Influence of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Centrally Bonded 
Symmetric Double Lap Joint” 

 
(Boundary Conditions in y-direction FFCFFFFF) 
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8.7 Numerical Results and Discussion for “Main PROBLEM III.b” 
 

In the “Main PROBLEM IIIb.”, the “Composite Orthotropic Plates and/or 

Panels with a Non-Centrally Bonded Symmetric Double Lap Joint” is analyzed. The 

doublers are made of Graphite-Epoxy and the plate adherends are Kevlar-Epoxy. For 

the in-between adhesive layer, the “hard” and the “soft” adhesive cases are taken into 

account. The “Geometric and the Material Characteristics” of the single lap joint 

system are given in Table 8.2. 

 

 In Figures 8.366 – 8.386, the mode shapes and the corresponding 

natural frequencies (from the first to fifth), in the “hard” and the subsequent “soft” 

adhesive cases with various boundary conditions are presented. 

 

 From aforementioned Figures, in the “hard” adhesive case it is easy to 

observe that with respect to the position of the “Bonded Region”, there exists an 

almost “stationary region” in the mode shapes. And this region moves from left to 

the right part (or vice versa) in the composite symmetric double lap joint system. In 

the “soft” adhesive case, however, an almost “stationary region” does not exist in 

mode shapes. The general trend in the mode shapes, for the “soft” adhesive case is 

that, the “Bonded Region” moves or bends with the rest of the lap joint system. And 

the mode shapes are completely different in comparison with those of the “hard” 

adhesive cases with the same support conditions. 

 

 Next, for the “Main PROBLEM IIIb”, in Figures 8.151 through 8.168, 

several important parametric studies are presented. In Figures 8.151-8.156, the 

“Dimensionless Natural FrequencyΩ ” versus “Position Ratio /Lb~ ” from the first up 

to the fifth mode are plotted, for both the “hard” and the “soft” adhesive cases, 

corresponding to the various support conditions.  

 

 From Figures 8.151, 8.153, 8.155, in the “hard” adhesive case, it is 

obvious that as position of the “Bonded Region” changes (in the y-direction), the 

natural frequencies gradually increase up to a certain position and then decreases. 
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These results are consequences of the movement of the half waves from left to right 

because of the change in the position of the “Bonded Region”. 

 

In the “soft” adhesive case, in Figures 8.152, 8.154, 8.156, the natural 

frequencies increase with the position of the “Bonded Region”. This also can be 

expected due to the “soft” adhesive which makes the system loose and which shows 

a similar behavior in mode shapes up to b~ =0.5m. 

 

 In Figures 8.157 through 8.162, the effect of the “Bending Rigidity 

Ratio (1)
11

(2)
11 /DD ” on the natural frequencies (from the first up to the fifth) in the 

“hard” and “soft” adhesive cases, are investigated for various boundary conditions. 

In the “hard” adhesive case, in Figures 8.157, 8.159, 8.161, the first natural 

frequency, in spite of the increasing “Bending Rigidity Ratio”, does remain 

practically constant. In the higher modes, the natural frequencies increase sharply at 

first and after the “Bending Rigidity Ratio=2.6” they become almost flat or constant 

regardless of the increase in “Bending Rigidity Ratio”. 

 

 In the “soft” adhesive cases, in the Figures 8.158, 8.160, 8.162, the 

first three frequencies remain more or less constant as the “Bending Rigidity Ratio 
(1)
11

(2)
11 /DD ” increases. In the higher modes, the natural frequencies increase. 

 

Lastly, the direct effects of the adhesive layer elastic constants Ea1, Ea4, and 

also Ga1, Ga4 on the dimensionless natural frequencies are investigated for the 

“Main PROBLEM III.b”. In order to show these effects, the “Dimensionless Natural 

Frequencies” versus the “Adhesive Elastic Modulus Ratio (Ea1=Ea4)/ (1)
11B ” are plotted 

(while the other elastic constant kept constant) in Figures 8.163 through 8.165 for 

various boundary condition. Similarly, the “Dimensionless Natural Frequencies” 

versus the “Adhesive Shear Modulus Ratio (Ga1=Ga4) / (1)
11B ” are presented in Figures 

8.166 through 8.168 for various support condition. 

 

 It can be seen from the Figures 8.163-8.165, the influence of the “Adhesive 

Elastic Modulus Ratio (Ea1=Ea4)/ (1)
11B ” on the natural frequencies, is not significant. 
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In Figures 8.166-8.168, we can see that the “Shear Modulus Ratio(Ga1=Ga4) / (1)
11B ”, 

significantly affects the natural frequencies. Also, in those Figures, one can observe a 

“transition region” which takes the frequencies to considerable higher levels. After 

then, no change is observed in the frequencies 
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8.7.1 Natural Frequencies and Corresponding Mode Shapes for “Main PROBLEM IIIb” 
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a) First Mode with Ω 1=ω 11=463.952 
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b) Second Mode with Ω 2=ω 21=581.094 
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c) Third Mode with Ω 3=ω 31=948.958 
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d) Fourth Mode with Ω 4=ω 41=1834.358 
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e) Fifth Mode with Ω 5=ω 12=2195.680 
 
 

(“Hard” Adhesive Case) 
 

Fig 8.163 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Double 

Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) First Mode with Ω 1=ω 11=56.262 
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b) Second Mode with Ω 2=ω 12=200.966 
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c) Third Mode with Ω 3=ω 21=244.320 
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d) Fourth Mode with Ω 4=ω 22=385.357 
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e) Fifth Mode with Ω 5=ω 31=557.076 
 

(“Soft” Adhesive Case) 
 

Fig.8.164 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) First Mode with Ω 1=ω 11=239.941 
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b) Second Mode with Ω 2=ω 21=352.640 
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c) Third Mode with Ω 3=ω 31=719.203 
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d) Fourth Mode with Ω 4=ω 41=1603.578 
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e) Fifth Mode with Ω 5=ω 12=1733.026 
 

(“Hard” Adhesive Case) 
 

Fig.8.165 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFSFFSFF) 
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a) First Mode with Ω 1=ω 11=42.914 
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b) Second Mode with Ω 2=ω 12=116.324 
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c) Third Mode with Ω 3=ω 21=198.564 
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d) Fourth Mode with Ω 4=ω 22=299.401 
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e) Fifth Mode with Ω 5=ω 13=357.365 
 

(“Soft” Adhesive Case) 
 

Fig.8.166 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFSFFSFF) 
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a) First Mode with Ω 1=ω 11=20.474 
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b) Second Mode with Ω 2=ω 21=100.629 
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c) Third Mode with Ω 3=ω 31=416.120 
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d) Fourth Mode with Ω 4=ω 12=479.445 
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e) Fifth Mode with Ω 5=ω 22=647.892 
 

(“Hard” Adhesive Case) 
 

Fig.8.167 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) First Mode with Ω 1=ω 11=12.634 
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b) Second Mode with Ω 2=ω 12=57.056 
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c) Third Mode with Ω 3=ω 21=91.213 
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d) Fourth Mode with Ω 4=ω 13=205.441 
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e) Fifth Mode with Ω 5=ω 22=255.170 
 

(“Soft” Adhesive Case) 
 

Fig.8.168 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) First Mode with Ω 1=ω 11=20.473 
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b) Second Mode with Ω 2=ω 21=100.626 
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c) Third Mode with Ω 3=ω 31=416.116 
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d) Fourth Mode with Ω 4=ω 12=479.438 
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e) Fifth Mode with Ω 5=ω 22=647.759 
 

(“Hard” Adhesive Case) 
 

Fig.8.169 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFSFFFFF) 
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a) First Mode with Ω 1=ω 11=12.634 
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b) Second Mode with Ω 2=ω 12=49.657 
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c) Third Mode with Ω 3=ω 21=91.201 
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d) Fourth Mode with Ω 4=ω 13=167.652 
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e) Fifth Mode with Ω 5=ω 22=248.819 
 

(“Soft” Adhesive Case) 
 

Fig.8.170 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFSFFFFF) 
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a) First Mode with Ω 1=ω 11=20.465 
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b) Second Mode with Ω 2=ω 21=100.614 

0

1

2

z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

c) Third Mode with Ω 3=ω 12=137.930 
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d) Fourth Mode with Ω 4=ω 22=240.732 
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e) Fifth Mode with Ω 5=ω 31=416.100 
 

(“Hard” Adhesive Case) 
 

Fig.8.171 Mode Shapes and Dimensionless Natural Frequencies of 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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a) First Mode with Ω 1=ω 11=12.528 
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b) Second Mode with Ω 2=ω 12=31.342 
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c) Third Mode with Ω 3=ω 13=65.722 
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d) Fourth Mode with Ω 4=ω 21=91.134 
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e) Fifth Mode with Ω 5=ω 22=138.086 
 

(“Soft” Adhesive Case) 
 

Fig.8.172 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Double 

Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b1=b4=0.3m, b2=0.4m,b3=0.6m, b~ =0.4m, a=0.5 m L=1m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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8.7.2 Natural Frequencies and Corresponding Mode Shapes for “Special Case of 
Main PROBLEM IIIb” 
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a) First Mode with Ω 1=ω 11=459.654 
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b) Second Mode with Ω 2=ω 21=579.969 
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c) Third Mode with Ω 3=ω 31=948.126 
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d) Fourth Mode with Ω 4=ω 12=1702.401 
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e) Fifth Mode with Ω 5=ω 41=1833.595 
 

(“Hard” Adhesive Case) 
 

Fig 8.173 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Double 

Lap Joint (or Symmetric Double Doubler Joint) with a Gap” 
 

(Plate 1=Plate 4= Graphite-Epoxy, Plate2=Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1m., b1=0.3m, b2=0.35m, b3=0.55m 

b~ =0.5m, a=0.5m. L=1m) 
(Boundary Conditions in y-direction FFCFFCFF) 
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a) First Mode with Ω 1=ω 11=47.295 
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b) Second Mode with Ω 2=ω 12=185.838 

0

1

2

z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 
c) Third Mode with Ω 3=ω 21=218.545 
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d) Fourth Mode with Ω 4=ω 22=363.346 
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e) Fifth Mode with Ω 5=ω 13=532.933 
 

(“Soft” Adhesive Case) 
 

Fig 8.174 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Double 

Lap Joint (or Symmetric Double Doubler Joint) with a Gap” 
 

(Plate 1=Plate 4= Graphite-Epoxy, Plate2=Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1m., b1=0.3m, b2=0.35m, b3=0.55m 

b~ =0.5m, a=0.5m. L=1m) 
(Boundary Conditions in y-direction FFCFFCFF) 
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a) First Mode with Ω 1=ω 11=20.423 
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b) Second Mode with Ω 2=ω 21=100.586 
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c) Third Mode with Ω 3=ω 31=416.085 
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d) Fourth Mode with Ω 4=ω 12=474.740 

0

1

2
z

0

0.2

0.4
x

0.1

0.3

0.5

0.7

0.9

y

X Y

Z

 

e) Fifth Mode with Ω 5=ω 22=646.943 
 

(“Hard” Adhesive Case) 
 

Fig 8.175 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Double 

Lap Joint (or Symmetric Double Doubler Joint) with a Gap” 
 

(Plate 1=Plate 4= Graphite-Epoxy, Plate2=Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1m., b1=0.3m, b2=0.35m, b3=0.55m 

b~ =0.5m, a=0.5m. L=1m) 
(Boundary Conditions in y-direction FFCFFFFF) 
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a) First Mode with Ω 1=ω 11=11.949 
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b) Second Mode with Ω 2=ω 12=48.474 
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c) Third Mode with Ω 3=ω 21=90.793 
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d) Fourth Mode with Ω 4=ω 13=189.999 
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e) Fifth Mode with Ω 5=ω 22=226.767 
 

(“Soft” Adhesive Case) 
 

Fig 8.176 Mode Shapes and Dimensionless Natural Frequencies of “Composite, 
Orthotropic Plates and/or Panels with a Non-Centrally Bonded Symmetric Double 

Lap Joint (or Symmetric Double Doubler Joint) with a Gap” 
 

(Plate 1=Plate 4= Graphite-Epoxy, Plate2=Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI=0.1m, ℓII=0.1m., b1=0.3m, b2=0.35m, b3=0.55m 

b~ =0.5m, a=0.5m. L=1m) 
(Boundary Conditions in y-direction FFCFFFFF) 
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8.7.3 Some Parametric Studies for “Main PROBLEM IIIb” 
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a) Dependency of natural frequency on the number of half waves in y- and x-direction 
with (FFCFFCFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFCFF) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.177 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 



 456

 

0

100

200

300

400

500

600

700

800

900

0.2 0.25 0.3 0.35 0.4 0.45 0.5
Position Ratio

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

m=1,n=1
m=1,n=2
m=1,n=3
m=2,n=1
m=2,n=2
m=3,n=1

/Lb~

 
 

a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFCFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.178 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-direction 
with (FFCFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.179 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.180 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s, ‘‘Hard’ Adhesive 
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b) “Various Modes with (FFFFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.181 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5m. L=1m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFFFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 
 

Fig 8.182 “Dimensionless Natural Freq. (Ω )” versus “Position Ratio /Lb~ ” in 
“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 

Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =varies, a=0.5 m. L=1m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-direction 
with (FFCFFCFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFCFFCFF) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.183 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity Ratio 
( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a Non-Centrally 
Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)” 

 
( (2)

11D and (3)
11D increase while other stiffness constants are kept constant) 

(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1m) 
(Boundary Conditions in y-direction FFCFFCFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFCFF) B.C.’s, ‘‘Soft’’ Adhesive 
 

Fig 8.184 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double 

Doubler Joint)” 
 

( (2)
11D and (3)

11D increase while other stiffness constants are kept constant) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1m) 

(Boundary Conditions in y-direction FFCFFCFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 

 

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0.20 1.00 1.80 2.60 3.40 4.20 5.00 5.80

Bending Rigidity Ratio 

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

First Mode
Second Mode
Third Mode
Fourth Mode
Fifth Mode

(1)
11

(3)
11

(1)
11 )/DD(D =

 
 

b) “Various Modes with (FFCFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 
 

Fig 8.185 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double 

Doubler Joint)” 
 

( (2)
11D and (3)

11D increase while other stiffness constants are kept constant) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
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b) “Various Modes with (FFCFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 

Fig 8.186 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double 

Doubler Joint)” 
 

( (2)
11D and (3)

11D increase while other stiffness constants are kept constant) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1m) 

(Boundary Conditions in y-direction FFCFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
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b) “Various Modes with (FFFFFFFF) B.C.’s, ‘‘Hard’’ Adhesive 
 

Fig 8.187 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double 

Doubler Joint)” 
 

( (2)
11D and (3)

11D increase while other stiffness constants are kept constant) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 

 

0

150

300

450

600

750

0.20 1.00 1.80 2.60 3.40 4.20 5.00 5.80

Bending Rigidity Ratio

D
im

en
si

on
le

ss
 N

at
ur

al
 F

re
qu

en
cy

First Mode
Second Mode
Third Mode
Fourth Mode
Fifth Mode

(1)
11

(3)
11

(1)
11 )/DD(D =

 
 

b) “Various Modes with (FFFFFFFF) B.C.’s, ‘‘Soft’’ Adhesive 
 

Fig 8.188 “Dimensionless Natural Frequencies (Ω )” versus “Bending Rigidity 
Ratio ( ) (1)

11
(2)
11 D/DD (3)

11= ” in “Composite, Orthotropic Plates and/or Panels with a 
Non-Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double 

Doubler Joint)” 
 

( (2)
11D and (3)

11D increase while other stiffness constants are kept constant) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1m) 

(Boundary Conditions in y-direction FFFFFFFF) 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s 
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b) “Various Modes with (FFCFFCFF) B.C.’s 
 
 

Fig 8.189 “Dimensionless Nat. Freq’s. (Ω )” versus “Elastic Modulus Ratio 
(1)
11a4a1 )/BE(E = ” in “Composite, Orthotropic Plates and/or Panels with a Non-

Centrally Bonded Symmetric Double Lap Joint (Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s 
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b) “Various Modes with (FFCFFFFF) B.C.’s 
 
 

Fig 8.190 “Dimensionless Nat. Freq’s. (Ω )” versus “Elastic Modulus Ratio 
(1)
11a4a1 )/BE(E = ” in “Composite, Orthotropic Plates and/or Panels with a Non-

Centrally Bonded Symmetric Double Lap Joint (Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s 
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b) “Various Modes with (FFFFFFFF) B.C.’s 
 
 

Fig 8.191 “Dimensionless Nat. Freq’s. (Ω )” versus “Elastic Modulus Ratio 
(1)
11a4a1 )/BE(E = ” in “Composite, Orthotropic Plates and/or Panels with a Non-

Centrally Bonded Symmetric Double Lap Joint (Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFFFF) 
Elastic Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFCFF) B.C.’s 
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b) “Various Modes with (FFCFFCFF) B.C.’s 
 
 

Fig 8.192 “Dimensionless Nat. Freq’s. (Ω )” versus “Shear Modulus Ratio 
(1)
11a4a1 )/BG(G = ” in “Composite, Orthotropic Plates and/or Panels with a Non-

Centrally Bonded Symmetric Double Lap Joint (Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFCFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFCFFFFF) B.C.’s 
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b) “Various Modes with (FFCFFFFF) B.C.’s 
 
 

Fig 8.193 “Dimensionless Nat. Freq’s. (Ω )” versus “Shear Modulus Ratio 
(1)
11a4a1 )/BG(G = ” in “Composite, Orthotropic Plates and/or Panels with a Non-

Centrally Bonded Symmetric Double Lap Joint (Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFCFFFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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a) Dependency of natural frequency on the number of half waves in y- and x-
direction with (FFFFFFFF) B.C.’s 
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b) “Various Modes with (FFFFFFFF) B.C.’s 
 
 

Fig 8.194 “Dimensionless Nat. Freq’s. (Ω )” versus “Shear Modulus Ratio 
(1)
11a4a1 )/BG(G = ” in “Composite, Orthotropic Plates and/or Panels with a Non-

Centrally Bonded Symmetric Double Lap Joint (Symmetric Double Doubler Joint)” 
 

(Plate 1=Plate 4=Graphite-Epoxy, Plate 2= Kevlar-Epoxy, Plate 3= Kevlar-Epoxy) 
(Joint Length (ℓI+ℓII )=0.3m, b~ =0.4 m, a=0.5 m. L=1 m) 

(Boundary Conditions in y-direction FFFFFFFF) 
Shear Modulus Ratio axis is plotted in Log Scale 
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8.7.4 Influences of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural Frequencies” 

Table 8.9 Comparison of “Dimensionless Natural Frequencies” obtained by 

adding 
x
w
∂
∂

 and 
y
w
∂
∂

 terms to adhesive layer equations for “Main PROBLEM IIIb” 

 
a) “Hard” Adhesive Case 

Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 465.240 463.952 1.287 
2 582.342 581.094 1.249 
3 950.271 948.958 1.313 
4 1835.778 1834.358 1.419 C

FF
C

 

5 2221.909 2195.680 26.229 
1 240.558 239.941 0.617 
2 353.284 352.640 0.644 
3 719.927 719.203 0.724 
4 1604.417 1603.578 0.839 SF

FS
 

5 1747.963 1733.026 14.936 
1 20.507 20.474 0.032 
2 100.675 100.629 0.046 
3 416.190 416.120 0.070 
4 480.790 479.445 1.345 C

FF
F 

5 649.248 647.892 1.356 
1 20.497 20.465 0.032 
2 100.660 100.614 0.046 
3 138.489 137.930 0.558 
4 241.365 240.732 0.634 FF

FF
 

5 416.170 416.100 0.070 
 

b) “Soft” Adhesive Case 
Boundary 
Condition  without 

x
w
∂
∂

 and 
y
w
∂
∂

 with 
x
w
∂
∂

 and 
y
w
∂
∂

 Difference 

1 56.806 56.262 0.544 
2 201.818 200.966 0.852 
3 245.848 244.320 1.528 
4 386.993 385.357 1.636 C

FF
C

 

5 558.110 557.076 1.034 
1 43.382 42.914 0.467 
2 116.911 116.324 0.587 
3 199.325 198.564 0.761 
4 301.247 299.401 1.846 SF

FS
 

5 358.402 357.365 1.038 
1 12.669 12.634 0.034 
2 57.580 57.056 0.524 
3 91.244 91.213 0.031 
4 206.305 205.441 0.865 C
FF

F 

5 256.867 255.170 1.697 
1 12.564 12.528 0.036 
2 31.638 31.342 0.296 
3 66.172 65.722 0.450 
4 91.166 91.134 0.032 FF

FF
 

5 138.365 138.086 0.279 
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b) “Soft” Adhesive Case 

 

Figure 195 Influence of 
x
w
∂
∂

 and 
y
w
∂
∂

 on “Dimensionless Natural FrequencyΩ ” in 

“Composite, Orthotropic Plates and/or Panels with a Non-Centrally Bonded 
Symmetric Double Lap Joint” 

(Boundary Conditions in y-direction FFCFFCFF) 
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CHAPTER 9 
 

CONLUSIONS 
 
 

9.1 Conclusions for “Main PROBLEM I.a” and “Main PROBLEM I.b” 
 

The analytical modeling for the ‘‘Free Flexural (Or Bending) Vibrations of 

Composite Orthotropic Mindlin Plates with a Bonded Single Lap Joint” (Main 

PROBLEM I)” is based on the Mindlin Plate Theory... The solution technique 

employed is the “Modified Transfer Matrix Method (MTMM)” which is a 

combination of the ‘‘Classical Levy’s Method”, the “Integrating Matrix Method” and 

the “Transfer Matrix Method”. From the numerical results given in Chapter 8, the 

following conclusions are obtained: 

 

• The analytical formulation of the problem in the “state vector” form and the 

present solution procedure (i.e. “Modified Transfer Matrix Method”) is fairly 

general, and very efficient and can be extended to other composite plate 

bonded joint systems. 

 

• “Classical Lévy’s Solutions” were used in the formulation of the problem. 

Therefore, the only limitation in the solution technique is that the plate 

adherends are to be simply supported at two opposite edges, (i.e. the edges at 

x=0 and x=a), while other edges, (that is, the edges at y=0 and y=L), may 

have arbitrary boundary conditions. 

 

• The mode shapes and the corresponding natural frequencies of the composite 

bonded plate or panel system are significantly affected by the “hardness” and 

the “softness” (i.e. elastic constants) of the adhesive layers. It is important to 
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note here in the “hard” adhesive case, the “overlap region” and the left side 

plate adherend are almost stationary at least up to the fourth mode. In the 

“soft” adhesive case, however, the mode shapes and the natural frequencies 

are very much different and there is no almost stationary region in the left 

plate adherend. 

 

• The position (Central or Non-Central) as well as the length (or wet area) of 

the “single lap joint” have drastic influences on the modes and the natural 

frequencies of the entire single lap joint system. 

 

• Due to the transverse shear deformable nature of the Mindlin Plates, the 

adhesive elastic constant Ga, rather the Ea, affects the natural frequencies. 
 

• As the constraining or the stiffenning effect of the boundary conditions in the 

y-direction increases so do the natural frequencies of the composite bonded 

plate or panel system. 

 

9.2 Conclusions for “Main PROBLEM II.a” and “Main PROBLEM II.b” 
 

The analytical modeling for the “Free Flexural (or Bending) Vibrations of 

Composite Orthotropic Mindlin Plates or Panels with a Bonded Symmetric 

Single Lap Joint (Symmetric Doubler Joint)” (Main PROBLEM II)” is based on 

the Mindlin’s Plate Theory. The solution technique employed is the “Modified 

Transfer Matrix Method (MTMM)” which is a combination of the ‘‘Classical Levy’s 

Method”, the “Integrating Matrix Method” and the “Transfer Matrix Method”. From 

the numerical results given in Chapter 8, the following conclusions can be stated; 

 

• The analytical formulation of the problem in the “state vector” form and the 

present solution procedure (i.e. “Modified Transfer Matrix Method”) is fairly 

general, and very efficient. and can be extended to other composite plate 

bonded joint systems. 
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• “Classical Lévy’s Solutions” were used in the formulation of the problem. 

Therefore, the only limitation in the solution technique is that the plate 

adherends are to be simply supported at two opposite edges, (i.e. the edges at 

x=0 and x=a), while other edges, (that is, the edges at y=0 and y=L), may 

have arbitrary boundary conditions. 

 

• The mode shapes and the corresponding natural frequencies of the composite 

plate or panel system are significantly affected by the “hardness” and the 

“softness” (i.e. elastic constants) of the adhesive layers. The mode shapes in 

the “hard” adhesive cases, have an almost stationary area corresponding to 

the “Symmetric Double Lap Joint” region (in higher modes this may not 

necessarily be the case). In the “soft” adhesive cases in there is generally no 

almost stationary area in the mode shapes. 

 

• The position (Central or Non-Central) and also the length of the “Symmetric 

Double Lap Joint” have serious effects on the mode shapes and the natural 

frequencies of the entire plate or panel system. 

 

• The adhesive layer shear modulus Ga, rather than the elastic modulus Ea, 

affects the natural frequencies of the bonded plate or panel system. 
 

• As the constraining or the stiffenning effect of the boundary conditions in the 

y-direction increases so do the natural frequencies of the composite plate or 

panel system. 

 

9.3  Conclusions for “Main PROBLEM III.a” and “Main PROBLEM III.b” 
 

The analytical formulation for the “Free Flexural (or Bending) Vibrations 

of Composite Orthotropic Mindlin Plates and/or Panels with a Bonded 

Symmetric Double Lap Joint (Symmetric Double Doubler Joint)” (Main 

PROBLEM III)” is based on the Mindlin Plate Theory. The solution technique 

employed is the “Modified Transfer Matrix Method (MTMM)” which is a 

combination of the ‘‘Classical Levy’s Method”, the “Integrating Matrix Method” and 



 479

the “Transfer Matrix Method”. From the numerical results given in Chapter 8, one 

may state the following conclusions; 

 

• The analytical formulation of the problem in the “state vector” form and the 

present solution procedure (i.e. “Modified Transfer Matrix Method 

(MTMM)”) is fairly general, very efficient. and can be extended to other 

composite plate systems. 

 

• “Classical Lévy’s Solutions” were used in the formulation of the problem. 

Therefore, the only limitation in the solution technique is that the plate 

adherends are to be simply supported at two opposite edges, (i.e. the edges at 

x=0 and x=a), while other edges, (that is, the edges at y=0 and y=L), may 

have arbitrary boundary conditions. 

 

• The mode shapes and the corresponding natural frequencies of the composite 

plate or panel system are significantly affected by the “hardness” and the 

“softness” (i.e. elastic constants) of the adhesive layers. The mode shapes in 

the “hard” adhesive cases, have an almost stationary area corresponding to 

the “Double Doubler Lap Joint” region (in higher modes this may not 

necessarily be the case). In the “soft” adhesive cases in there is generally no 

almost stationary area in the mode shapes. 

 

• The location (Central, Non-Central) and also the length (or wet area) of the 

“Symmetric Double Doubler Joint” have considerable effect on the mode 

shapes and the natural frequencies of the entire bonded plate or panel system. 

 

• The shear modulus Ga, rather than the elastic modulus Ea, influences the 

mode shapes and the natural frequencies of the entire bonded plate or panel 

system. 
 

• As the constraining or the stiffenning effect of the boundary conditions in the 

y-direction increases so do the natural frequencies of the composite plate or 

panel system. 
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CHAPTER 10 
 

RECOMMENDATIONS FOR FUTURE STUDY 
 
 

In this section, some recommendations for future research will be considered. 

Various types of vibration problems may be solved for the composite bonded plate 

system with the present technique (which is the “Modified Transfers Matrix Method 

(MTMM)”). In the future the following problems may be solved by either extension 

of the present method or by some modifications in the method of solution. 

 

• The damping effects in the plate system may be considered in terms of 

complex damping by employing some modifications in the present method of 

solution and the numerical procedures. Also, the adhesive layers in between 

the plate adherends and the doublers may be considered as viscoelastic layers 

with damping characteristics 

 

• The elastic support conditions in terms of mechanical springs, that is, 

torsional and/or extensional springs, can be considered in the boundary 

conditions in the y-direction.  

 

• Considering the supports in the y-direction stationary, one can obtain higher 

order “state vectors”, and consequently increase the number of governing 

system of equations by adding u and v displacements and the membrane 

stress resultants. In this case, the solution procedure needs some 

modifications. 

 

• The plate adherends may be replaced by a multi-layer composite plate. Then, 

the present solution technique will need considerable changes. 
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• For “Symmetric Single Doubler” or “Symmetric Double Doubler” cases, 

slightly curved plates or shallow shell panels may be considered instead of 

rectangular plates.  

 

• The non-linear governing system of equations by using non-linear ‘‘strain-

dislacement’’ and ‘‘strain-stress’’ relations (or Hooke’s Law) may be 

developed and investigated. 

 

• The anisotropic plate adherends and the doublers which have arbitrary 

directions of orthotropy, can be analyzed. 

 

• The extension of problems here into forced vibrations, flutter problems, etc., 

may be considered. 
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