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ABSTRACT 

 

 

SOFTWARE DEVELOPMENT FOR MULTI-LEVEL PETRI NET 

BASED DESIGN INFERENCE NETWORK 

 

 

 

COŞKUN, Çağdaş 

M.S., Department of Mechanical Engineering 

Supervisor : Prof. Dr. Abdülkadir ERDEN 

 

 

July 2004, 118 Pages 

 

 

This thesis presents the computer implementation of a multi resolutional 

concurrent, design inference network, whose nodes are refined by PNDN 

(Petri Net Based Design Inference Network) modules. The extended design 

network is named as N-PNDN and consists of several embedded PNDN 

modules which models the information flow on a functional basis to 

facilitate the design automation at the conceptual design phase of an 

engineering design.  

 

Information flow in N-PNDN occurs between parent and child PNDN 

modules in a hierarchical structure and is provided by the token flow 

between the modules. In this study, computer implementation of the design 

network construction and token flow algorithms for the N-PNDN structure 

is restored and therefore the previous DNS (Design Network Simulator) is 

adapted for the multi layer design and decomposition of mechatronic 
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products. The related algorithms are developed by using an object oriented, 

visual programming environment. The graphical user interface is also 

modified. The further developed DNS has been used for the application of 

the N-PNDN structure in the conceptual design of 5 mechatronic systems. 

 

In the guidance of this study, it has been understood that the further 

developed DNS is a powerful tool for designers coming from different 

engineering disciplines in order to interchange their ideas. 

 

Keywords: Design Network Simulator (DNS), Petri Net, Modularity, 

Functional Decomposition, Mechatronic Design 
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ÖZ 

 

 

ÇOK KATMANLI PETRİ NET TABANLI TASARIM-ÇIKARIM AĞI 

İÇİN ALGORİTMA GELİŞTİRİLMESİ 

 

 

 

COŞKUN, Çağdaş 

M.S., Department of Mechanical Engineering 

Supervisor  : Prof. Dr.Abdülkadir ERDEN 

 

 

Temmuz 2004, 118 Sayfa 

 

 

Bu tezde düğümleri PNDN modülleriyle modellenmiş çok katmanlı, eş 

zamanlı bir tasarım çıkarım ağının bilgisayar uygulaması sunulmaktadır. Bu 

tasarım ağı PNDN modüllerinden oluşan ağ anlamında N-PNDN olarak 

adlandırılmıştır ve PNDN ağının içine gömülmüş pek çok PNDN 

modülünden oluşmakta olup, bir mühendislik tasarımında kavramsal tasarım 

otomasyonunu kolaylaştımak amacıyla bilgi akışı fonksiyonel temelde 

modellenmiştir. 

 

N-PNDN’de bilgi akışı üst ve alt PNDN modülleri arasında 

gerçekleşmektedir, bu sebeple yapı hiyerarşiktir. Modüller arası bilgi akışı 

simge akışı ile gösterilmektedir. Bu tez çalışmasında çok katmanlı tasarım-

çıkarım ağının kurulması ve bu ağdaki bilgi akışının bilgisayar uygulaması 

yeniden yapılandırılmıştır. Bu nedenle, bir önceki Petri net tabanlı tasarım 
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çıkarım ağı için geliştirilen algoritma, mekatronik ürünlerin çok katmanlı ve 

işlevsel tasarımına imkan verecek hale getirilmiştir. İlgili algoritmalar bir 

nesneye yönelik görsel programlama ortamı kullanılarak tamamlanmıştır. 

Buna ek olarak grafik kullanıcı arayüzü de son yapılan değişikliklere uygun 

hale getirilmiştir. Geliştirilmiş DNS, 5 mekatronik sistemin kavramsal 

tasarımında N-PNDN mimarisinin uygulaması için kullanılmıştır. 

 

Bu çalışmaların sonucunda, DNS’in tasarımcılar arasındaki fikir alışverişini 

kolaylaştıran, görsel zeminde detaylı bir arayüz sunduğu gözlemlenmiştir. 

 

Anahtar Kelimeler: Tasarım Ağı Benzetimcisi (DNS), Petri Net, 

Modülerlik, İşlevsel Tasarım, Mekatronik Tasarım  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vii 



 

 

 

 

 

 

 

 

 

 

 

 
TO MY FAMILY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii 



 

 
ACKNOWLEDGMENTS 

 

 

I would like to express sincere appreciation to Prof. Dr. Abdülkadir Erden 

for his valuable guidance, encouragement, insight and patience throughout 

the study. I would also like to thank Dr. Zühal Erden for conducting a 

doctoral thesis on such an interesting and challenging topic, and for 

providing me the knowledge. 

 

I am grateful to Serkan Güroğlu for his continuous help, encouragement, 

creative ideas and support. 

 

Finally I would like to thank my mother and sister for their never ending 

love, support and patience in every stage of my life as well as throughout 

this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ix 



 

 

TABLE OF CONTENTS 

 

 

ABSTRACT .......................................................................................................iv 

ÖZ.......................................................................................................................vi 

DEDICATION ................................................................................................. vii 

ACKNOWLEDGEMENTS .............................................................................. ix 

TABLE OF CONTENTS ....................................................................................x 

LIST OF TABLES. ......................................................................................... xiii 

LIST OF FIGURES......................................................................................... xiv 

LIST OF SYMBOLS...................................................................................... xvii 

CHAPTERS 

1. INTRODUCTION...................................................................................1 

2. LITERATURE SURVEY .......................................................................8  

2.1    Literature Survey on the Conceptual Mechatronic  
         Design.............................................................................................8 
 
2.2 Functional Representation Schemes.............................................12 
  
 2.2.1 Functional Block Diagram ..................................................12 
 
 2.2.2 AND/OR Tree .....................................................................12 
 
 2.2.3 Functional Design Tree .......................................................12 
 
 2.2.4 FR/DP Tree..........................................................................13 
 
 2.2.5 Function/Means Tree...........................................................14 
 

x 



2.3 Behavioral Design ........................................................................14 
  
 2.3.1 Finite Automata......................................................... ..........15 
  
 2.3.2 Hybrid Automata.......................................................... .......15 
 
 2.3.3 Discrete Event System Modeling ........................................15 

 
 2.3.4 Petri Nets .............................................................................15 
 
2.4    Previous Petri Net Tools...............................................................16 
 
 2.4.1 Petri Tool...................................................................... .......16 
 
 2.4.2 Cabarnet...............................................................................17 
 
 2.4.3 Alpha / Sim..........................................................................17 
 
 2.4.4 PNDN.............................................................................. ....17 
 
 2.4.5 N-PNDN.......................................................................... ....17 
 
2.5    Evaluation of Literature Survey ...................................................18 
 

3. BASICS OF N-PNDN...........................................................................19 

3.1    Architecture of N-PNDN..............................................................19 
 

3.1.1 Definition of Functional State Set ......................................20 
 

3.1.2 Definition of Variables .......................................................22 
 
3.1.3 Definition of Instantiations.................................................23 
 
3.1.4 Definition of Decision Functions .......................................24 
 
3.1.5 Definition of I-Mappings....................................................25 
 
3.1.6 Definition of O-Mappings ..................................................27 

 
3.2   Token Flow in N-PNDN ...............................................................31 

                
            3.3   Evaluation of features of PNDN ...................................................34 

 

 

xi 



 

4. THE DESIGN NETWORK SIMULATOR FOR THE  
            IMPROVED N-PNDN THEORY.........................................................36 

 
4.1   An Overview of Further Developed DNS.................................... .36 

 
4.1.1    Programming Environment .............................................36  
 

4.1.2    Structure of the Software Package ..................................37 
 

4.2     Graphical User Interface .............................................................38 
 

            4.3     Software Modules of DNS ..........................................................43 
 

4.1.1    Creation of Design Network............................................43 
  
4.1.2    Token Flow in N-PNDN (Simulation) ............................49 

 
5.  CASE STUDIES ..........................................................................................60 
 

5.1 N-PNDN Model of a Mouse ...........................................................60 
 
5.2 N-PNDN Model of CD player.........................................................69 
 
5.3 N-PNDN Model of Coffee Machine ...............................................76 
 
5.4 N-PNDN Model of Lathe ................................................................82 
 
5.5 Evaluation of Case Studies..............................................................91 
 

6.  CONCLUSIONS..........................................................................................93 
 
            6.1 Future Work ....................................................................................97 
 
REFERENCES..................................................................................................99 
 
APPENDICES 
 
A. Petri Net Tool Survey.................................................................................106 

     
  
 
 
 

 

xii 



 

LIST OF TABLES 

 

 

TABLES 

 

A.1   Existing Tools for the Petri Nets ............................................................106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xiii 



 

 

LIST OF FIGURES 
 
 

 
 
FIGURES 
 
3.1   The Functional Design Tree of Dish Machine ..........................................22 
 
3.2   N-PNDN of the Dish Machine, the top most level of Dish   
        Machine .....................................................................................................29 
 
3.3   The Sub-Layer of the Functional State of Dish Machine  
        and its Functional decomposition..............................................................30 
 
3.4   The Sub-Layer of the Functional State of Take Water-In  
        and its Functional decomposition..............................................................30 
 
3.5   Token Flow................................................................................................32 
 
3.5   Token Flow (continued) ............................................................................32 
 
3.6   Token Flow (continued) ............................................................................32 
 
3.7   Token Flow (continued) ............................................................................32 
 
3.8   Token Flow (continued) ............................................................................32 
 
3.9   Token Flow (continued) ............................................................................33 
 
3.10 Token Flow (continued) ............................................................................33 
 
3.11 Token Flow (continued) ............................................................................33 
 
3.12 Token Flow (continued) ............................................................................33 
 
4.1 Architecture of Design Network Simulator.................................................37 
 
4.2 Graphical User Interface .............................................................................39 
 
4.3 Object Inspector of DNS .............................................................................40 
 
4.4   The tool bar of the DNS ............................................................................41 

xiv 



 
4.5   The control panel of DNS .........................................................................42 
 
4.6    Algorithm for the Creation for N-PNDN .................................................46 
 
4.7    Creation of N-PNDN for the dish machine ..............................................46 
 
4.8   Creation of N-PNDN for the dish machine (continued)...........................47 
 
4.9    Creation of N-PNDN for the dish machine (continued)...........................47 
 
4.10   The algorithm for Deterministic Token Flow in N-PNDN .....................48 
 
4.11   Token Flow in N-PNDN .........................................................................48 
 
4.12   Token Flow in N-PNDN .........................................................................49 
 
4.13   Token Flow (continued) ..........................................................................51 
 
4.14   Token Flow (continued) ..........................................................................52 
 
4.15   Token Flow (continued) ..........................................................................53 
 
4.16   Token Flow (continued) ..........................................................................53 
 
4.17   Token Flow (continued) ..........................................................................54 
 
4.18   Token Flow (continued) ..........................................................................55 
 
4.19   Token Flow (continued) ..........................................................................55 
 
4.20   Token Flow (continued) ..........................................................................56 
 
4.21   Token Flow (continued) ..........................................................................57 
 
4.22   Token Flow (continued) ..........................................................................58 
 
4.23   Token Flow (continued) ..........................................................................58 
 
4.24   Token Flow (continued) ..........................................................................59 
 
5.1    Functional Design Tree of Mouse ............................................................61 
 
5.2   PNDN of Mouse at the first level decomposition .....................................68 
 
5.3   PNDN model of Mouse for the second level ............................................69 

xv 



 
5.4   Functional Design Tree of CD player .......................................................70 
 
5.5   PNDN model of CD player .......................................................................75 
 
5.6   PNDN model of “Rotate CD” subfunction ...............................................75 
 
5.7 Functional Design Tree of Coffee Machine ................................................76 
 
5.8 PNDN of. Coffee Machine..........................................................................81 
 
5.9 PNDN of Coffee Machine (continued) .......................................................82 
 
5.10 Functional Design Tree Lathe ...................................................................83 
 
5.11 PNDN model for Lathe .............................................................................90 
 
5.12 PNDN model of “Rotate Workpiece” subfunction ...................................91 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

xvi 



 
 
 
 

LIST OF SYMBOLS 

 

 

 

CD Compact Disc 

dfi Decision function 

DNS Design Network Simulator 

FDT Functional Design Tree  

Fi Functional State 

FS Functional State Set 

GUI Graphical User Interface 

I Input Mapping 

MI Instantiation Marking 

Mv Variable Marking 

PNDN Petri Net Based Design 

 Inference Network 

O Output Mapping 

  

 

 

 

 
         
 
 
 
 
 

xvii 



CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Automation of design process is being imposed as an imperative enrollment 

in engineering applications and this feature necessitates development of new 

tools in order to achieve a faster and more successful design process. 

 

Design automation aims to minimize the human involvement at each step of 

design process by the help of systematic computer implementation where 

necessary. This automation provides guidance to the human designer and 

makes it easy to create various design alternatives. These alternatives can be 

handled faster leading to better designs with improved functionality, low 

cost and better quality which means a better and pretentious place in the 

competitive market.  

 

If the flow of work in engineering design is considered, the phases are: 

 

1. Clarification of the task – determines the definition of the problem, 

requirements to be fulfilled and the constraints.  

 

2. Conceptual Design – involves client requirements and constraints, 

the evaluation of concept variants against design objectives, the 

definition of function structures and creation of design alternatives. 
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3. Embodiment Design – selects the proper standard elements in order 

to perform these functions together with the determination of layout 

and development of a technical product or system.  

 

4. Detail Design and Documentation – is the phase where all 

production documents are prepared for the technical and economical 

calculations. 

 

It can easily be seen that the conceptual design phase is the vital stage for 

the automation of design phase and it differs from traditional detailed design 

in the aspect of faster and efficient designs.   

 

The conceptual design is used for evaluating the contents of a potential 

production project in an early phase, thus providing the customer with the 

best possible input for deciding on the future of the project and makes it 

possible to assess different solutions and thereby create a broad and sound 

foundation for making decisions with regard to time, solutions, and price. It 

also combines both engineering creativity and human intelligence. In 

addition to those advantages, the conceptual design phase provides an 

information transfer to the embodiment design, detail design and 

documentation phases. Therefore it plays the most important role in the 

automation and a special emphasis should be given. 

 

The automation in engineering design is achieved to a certain extend in 

detail design and documentation, through the use of commercial software 

packages like MATHCAD MATLAB, ANSYS, etc...While those software 

programs have dramatically decreased the time required to move a new 

concept from design through manufacture and production, there are few 

tools that specialize in driving that process at the earliest phases of design. 

Engineers need innovative engineering tools to increase their productivity 
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during the conceptual design phase rather than the core detailed design 

through manufacturing process. 

 

A functional and task independent design model was previously developed 

and applied to mechatronic design problems in order to accomplish this 

automation. This function based design architecture is called PNDN (Petri 

Net Based Design Network) (Erden, 1999). It is a design inference network 

that supports domain integration for the conceptual design of mechatronic 

products. It is based on the Petri Net theory (Reisig, 1985; Reisig, 1992).  

 

Hybrid Automata (Alur et al., 1994) while considering those engineering 

systems are hybrid systems that consist of both discrete and continuous 

behaviors. It provides a mathematical model that combines the discrete 

dynamics of finite automation with the continuous dynamics of a dynamical 

system. While designing network model, the hybrid automata is used as an 

intermediate framework to support automatic transition from the functional 

representation of a system to the PNDN of the same system.   

 

PNDN has following features: 
 

1. Engineers from different engineering disciplines do not have time 

for training and must become productive rapidly without learning 

specialized skills. Therefore team members can easily use this tool.  

2. It gives the ability to evaluate a number of functional design 

alternatives in a short time. 

3. It supports the information flow. 

4. Uncertainties can be handled and can be reduced during the 

information flow. 

 

The information flow is represented by a token flow in PNDN and this 

token flow is applicable to both deterministic and non-deterministic PNDN.  
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PNDN theory provided an important progress in the automation of 

conceptual design phase. On the other hand, during the detail design 

automation and manufacturing automation, the relevant design phase needs 

a computer implementation. The computer implementation of PNDN is 

accomplished (DNS - Design Network Simulator) and has been developed 

in Borland C++ Builder integrated development environment (Güroğlu, 

1999). 

 

With the introduction of DNS (Design Network Simulator), the information 

flow and interchange of different design alternatives among team members, 

simulation functionality both for deterministic and non-deterministic token 

flow models, easy manipulation of previously created designs, have been 

accomplished.  

 

PNDN can also handle the lower functional hierarchy levels of mechatronic 

products. A network of  N-PNDN - defined as multi resolutional design 

inference network which is based on the modularity feature of PNDN and 

understanding of Function-Subfunction structure existing in the functional 

decomposition, (Korkmazel, 2001) - modules are used to model  the product 

in every resolution level. In this model the structure of information flow 

between modules of PNDN fits into a hierarchical definition that makes the 

vertical communication between subordinate and super-ordinate modules 

possible. This is a good way of controlling the complexity of systems and 

therefore the information flow is utilized in N-PNDN.  

 

This thesis focuses on computer implementation of N-PNDN theory which 

consists of design network creation of those N-PNDN modules. 

 

The software will be the modification of DNS (Güroğlu, 1999) software for 

the N-PNDN theory and it should support the following features: 
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1. N-PNDN modules should be constructed separately and for every 

resolution level.  

2. The N-PNDN modules should be independent of each other.  

3. It should allow modeling the complex systems and therefore high 

resolution levels can easily be handled. 

4. The information flow which is represented by token flow in each 

level and from one level to another should be provided. 

5. The modified software can easily be used with minimum computer 

hardware resources. 

6. The software should support the easy manipulation of previously 

created designs. 

7. The software should give the possibility of further modifications 

other than information flow like material and energy flow at lower 

levels of resolution. 

 

SCOPE OF THE RESEARCH 

 

The main objective of the present research is to develop a new algorithm for 

the improved N-PNDN theory (Korkmazel, 2001) in order to implement the 

modular and multi level resolution of functional states in a computer 

environment.  

 

In this thesis the algorithm and implementation of this algorithm for 

deterministic token flow simulation and analysis parts for N-PNDN modules 

are developed and case studies are carried out to evaluate and verify the 

range of applicability of the N-PNDN model. 

 

While decomposing the functional model of mechatronic products, a 

vertical hierarchical design tree is considered. Therefore models can be 

thought as a collection of sub models and the process of hierarchically 
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decomposing of a model into a more detailed and complex sub models is 

called hierarchical refinement. If the refinement is accomplished by 

substituting models with the same functionality but with more detailed and 

accurate results then this refinement is called as a horizontal refinement. 

 

One of the main criteria, in order to accomplish a complete conceptual 

design network using PNDN theory, is the vertical refinement for the 

modeling. Both in PNDN and N-PNDN theories this criterion is taken into 

account during functional modeling of the products. 

 

While developing the algorithm for the N-PNDN, the modularity feature is 

also considered which aims to identify independent, standardized 

interchangeable units. Function modules help to implement technical 

functions independently or with other functions. Function modules are 

classified as basic, auxiliary, adaptive, and non modules according to (Pahl 

and Beitz, 1988). 

 

The goals of research as follows: 

1. Developing an algorithm for the construction of a multi-level PNDN 

structure. 

2. Developing an algorithm for the token flow in the multi level 

resolution. 

3. Developing an algorithm for the transition from one level to another 

without loosing the related data which belongs to the previous 

design or level.  

4. Providing a user friendly GUI (Graphical User Interface) so that the 

people coming from different engineering disciplines can easily use 

the software package. 

 

This thesis is composed of 6 chapters. Chapter 2 deals with the literature 

survey of previous studies about PNDN and N-PNDN. Chapter 3 
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concentrates on the N-PNDN theory and the methodology of representation 

of mechatronic products and their computer implementations. Chapter 4 

involves the detailed understanding and explanation of further developed 

DNS software for the improved PNDN theory. The algorithms that are 

developed for the N-PNDN modules are presented. Chapter 5 includes the 

case studies and explanations. Finally, discussions, conclusions and 

recommendations for future work are provided in Chapter 6.  
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 

This thesis focuses on the computer implementation of a multi-resolution 

functional model of mechatronic products by N-PNDN structure. Since N-

PNDN is an inheritance of PNDN (Erden, 1999) the structure, literature 

survey of design concepts, previous algorithms of conceptual mechatronic 

design and Petri Nets will be handled respectively. 

 

2.1 LITERATURE SURVEY ON THE CONCEPTUAL 

MECHATRONIC DESIGN  

 

The involvement of faster microprocessors and developments in computer 

technology contributes the evolution of a new concept called mechatronics. 

In order to perform required functions, this new discipline involves the 

synergistic integration of software based control systems, electronic devices 

and mechanical structures in the same product (Fraser and Milne, 1994; 

Buur, 1992; Acar, 1993). At the same time, this integration plays a crucial 

role for further development of mechanical elements, machines, and 

precision mechanics toward mechatronic systems (R. Isermann, 1996). 

 

According to (Amerongen, 2003), design of a mechatronic system covers 

design of the mechanical structure and its embedded control system. 

Therefore, previously developed design strategies for other engineering 

disciplines, are not applicable for the development of mechatronic products. 
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Pahl and Beitz (Pahl and Beitz, 1988), who had performed one of the 

important previous efforts to systematize design process of products, give 

the generally accepted flow of work definition throughout the design as 

follows: 

 

• Clarification of the task, 

• Conceptual design, 

• Embodiment design, 

• Detail design 

 

Conceptual design phase, which determines the working principles of a 

product, is the major concern of this literature survey. 

 

During conceptual design, the aim is not to complete a final design, but 

rather to identify the performance-limiting factors of the design proposal(s) 

and to choose satisfactory specifications for these factors (Coelingh, 2002). 

 

According to (Rzevski, 2003), conceptual design is an early stage of 

design in which designers select concepts that will be employed in solving a 

given design problem and decide how to interconnect these concepts into an 

appropriate system architecture. For theoretical functional modeling to be 

applied early in design, the work-flow must always go from global or 

abstract to detailed or particular design specifications (Aleixos, Company, 

Contero, 2004). This avoids undertaking different design alternatives by 

reducing the uncertainty in a controlled manner and delays to have a 

particular design solution at the beginning of the design process.  

 

Another definition of the conceptual design phase states that it is an early 

stage of the product development process having characteristics of fuzzy 
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problems, tolerating a high degree of uncertainty (Quin, Harrison, West, 

Jordanov, Wright, 2003).  

 

As an example for design automation tool, Schemebuilder Mechatronics 

(Porter, Council, 1998), is an intelligent knowledge-based computer 

software for the conceptual design of mechatronic systems. The software is 

the combination of expert knowledge (rules) with object oriented 

representation together with simulation module where the expert knowledge 

depends on design principles that consist of physical understanding, design 

rules and observations. The knowledge base enables to resuse of previously 

generated design information and to infer new design rules by interacting 

with the user (Porter, 2002). In software package the modeling of designs 

(schemes) is achieved by creating models from object oriented descriptions 

of conceptual models. The objects which represents the real physical objects 

are connected with Bond Graph type ports. Schemebuilder represents 

designs as schemes based on the Function/Means Tree approach. In this 

approach functions are represented as the leaves of the tree. However, the 

function definition of this study is not flexible and abstract enough. 

Therefore it restricts the designer and prevents to think independently.  

 

The system theory (Boardman, 1990) explains the basics of the 

mechatronics by a set of rules for abstract modeling of technical artifacts 

and hierarchically decomposed form of those artifacts as subsystems. A 

decomposition hierarchy places a partial ordering on the systems and their 

interrelationships such that higher level systems and their relationships are 

compositions of lower level systems and relationships (Kannapan and 

Marshek, 1991). Decomposition approach reduces the complexity of the 

system by dividing it into sub modules which means easy management and 

implementation.  
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Hierarchical decomposition approach is applied at the two levels of 

mechatronic systems, yielding “Functional Decomposition” and “Structural 

Decomposition” concepts be developed (Korkmazel, 2001). 

 

Functional decomposition is defined as partitioning a given complex 

functional structure hierarchically into more manageable functions such that 

it is easier to match design concepts with these functions and arrive at a 

solution to the problem (Korkmazel, 2001). At the same time, structural 

decomposition approach is used in redesign procedure or in reverse 

engineering problems which leads to restrict the solution and design process 

in a small sub module of the system.  

 

The literature search has revealed that automation of conceptual design 

phase of mechatronic products necessitates a functional approach to the 

problem in order to develop a systematic design process. Considering the 

importance of conceptual design which generates design alternatives, design 

automation requires system functions to accomplish for given task. 

Therefore different functional decomposition approaches besides functional 

design tree are used for to define functional structure of mechatronic 

systems. 

 

From the mathematical point of view, functions can be divided into two as 

continuous and discontinuous. The mechatronic system is composed of both 

continuous and discontinuous behaviors (Erden, 1999). For this reason an 

integrated view, which comprises from these behaviors, is required. In order 

to satisfy this need PNDN (Petri Net Based Design Inference Network) has 

been developed by Erden (Erden et. al., 1999). 
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2.2 FUNCTIONAL REPRESENTATION SCHEMES 

 

In order to create the functional structure of a system, different 

representation schemes are used. These are Functional Block Diagrams, 

Functional Decomposition Tree, Function/Means Trees, FR/DP (Functional 

Requirement Design Parameters) and AND/OR Trees. 

 

2.2.1 Functional Block Diagram 

 

According to (Pahl and Beitz, 1988) and (Blanchard and Fabrycky, 1998) 

functional block diagram is mentioned as a convenient mechanism for 

communicating the functional information of an artifact. They structure the 

system requirements and represent them as functions in a sequence together 

with their series and parallel interrelationships. Since the sequences of 

functions are not primarily considered in PNDN approach, the FBD 

(Functional Block Diagram) methodology is not appropriate for this study. 

 

2.2.2 AND/OR Tree 

 

AND/OR tree defines design requirements and design specifications in the 

form of a hierarchy (Kusiak et al., 1991). A desired requirement is divided 

into sub requirements until it matches its corresponding function. 

Unfortunately this methodology needs the rules of passing from functional 

domain to physical domain; therefore it is not suitable for this study. 

 

2.2.3 Functional Design Tree 

 

The functional structure of a system is presented hierarchically in 

“Functional Design Tree (FDT)” with the definitions of “Functional Cells 

(FC)” and “Atomic Functional Cells (AFC)” (Erden, 1996; Erden, 1999). In 

this hierarchic structure “Functional Cells” and “Atomic Functional Cells” 
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correspond to subfunctions of the system at different levels and leaves of the 

tree respectively. Towards the leaves of the tree, in other words from more 

abstract representation to a particular solution, FCs gain precision and AFCs 

find their interpretation as a component of a machine element or a formula 

based representation. However FDT lacks of means for each function which 

is necessary for further decomposition and embodiment design.  

 

2.2.4 FR/DP Tree  

 

According to (Suh, 1998), the system is defined as the assemblage of sub-

systems, hardware and software components, and people designed to 

perform a set of tasks to satisfy specified functional requirements and 

constraints. The first step in design process of a system is determining the 

customer needs and the functional requirements (a minimum set of 

independent requirements that completely characterizes the functional needs 

of the product (or software, organizations, systems, etc.) in the functional 

domain) together with constraints of the system (Suh, 1998). The functional 

requirements should be specified without thinking the solution in the sense 

of creativity and close to the customer needs. Next step is the 

conceptualization process which is to map the FRs of the functional domain 

into physical domain by identifying the design parameters (DP) that 

characterize the design. Design Parameters can be a mechanical component, 

a sensor or a computer code depending on the design. Having chosen the 

design parameters, process variables (PV) should be identified that generate 

the specified design parameters.  

 

The mapping should support the independence axiom which quarentees the 

independence of functional requirements. An ideal design is the design that 

has equal FRs and DPs. According to the information axiom the design with 

least information is the best design. The information axiom guides the 

designer to select the DPs and helps the designer to select the best design 
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among others. It is the best tool when there are more than one functional 

solution.  

 

2.2.5 Function/Means Tree 

 

The Function/Means tree is a graphical representation (Andreasen, 1980) 

based on the Hubka’s “Law of Vertical Causality” (Hubka and Eder, 1988). 

The “Law of Vertical Causality” states that the decomposition of a 

particular function into subfunctions is only possible, when a means has 

been chosen to realize the function (Andreasen, 1980). Means can be a 

particular solution to a problem, an organ, a machine part, a detailed 

component which can realize the function. Number of alternative means can 

be proposed once the function is identified. According to the “Law of 

Vertical Causality”, there should be a causal relationship between the 

functions and means that realize them. As the decomposition proceeds, the 

means becomes simpler and that results in less complex modules. 

Function/Means tree is a practical tool for analysis work and one can 

visualize the design alternatives in more effective way. It supports the 

designer in thinking about his/her design in an axiomatic way (Suh, 1998), 

which enables some quick feedback concerning the completeness and 

quality (clarity) of a design (Ringstad, 1997). 

 

2.3 BEHAVIORAL DESIGN 

 

As a definition behavior is the response of an artifact to its environment. In 

the same manner, behavioral design aims to define states and state change 

conditions of the considered design. The following sections mention some 

behavioral design techniques in literature namely, Finite Automata, Hybrid 

Automata, Discrete Event System Modeling and Petri Nets. 
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2.3.1 Finite Automata 

 

A finite automaton is defined as an abstract model describing a synchronous 

sequential machine (Kohavi, 1978; Hopcroft and Ullman, 1979; Lewis and 

Papadimitriu, 1981) where network outputs at any given time are functions 

of the external inputs and stored information at that time. The continuous 

behavior of the machine is not modeled and is described as a sequence of 

discrete events instead of continuous state changes (Erden, 1999). 

 

2.3.2 Hybrid Automata 

 

A hybrid automaton is a formal model for a hybrid system which can be 

described as a dynamic system with discrete and continuous components. 

(Henziger et al., 1995; Puri and Varaiya, 1994; Puri and Varaiya, 1995).  

 

2.3.3 Discrete Event System Modeling 

 

A discrete event system (DES) is a dynamic system that evolves in 

accordance with the abrupt occurrence, at possibly unknown irregular 

intervals, of physical events (Ramadage and Wonham, 1989; Mortazavian 

and Lin, 1991; Zeigler, 1989).  

 

2.3.4 Petri Nets 

 

Petri Nets are models for procedures, organizations and devices where 

regulated flows, in particular information flows play an important role 

(Reisig, 1985; Reisig, 1992; Tabak and Levis, 1985). As another definition 

Petri Nets are bipartite directed multi-graphs, which are used to model 

procedures, organizations and devices (systems in general), in which 

regulated flow of objects and information occurs (Andreadakis, 1988; 

Reisig, 1985; Reisig, 1992). 
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Petri Nets are under development since Carl Adam Petri has firstly defined 

language in 60’s. It is the first system that discrete parallel system is defined 

and it is a generalization of automata theory such that the concept of 

concurrently occurring events can be expressed. By this way it is possible to 

model the dynamic behavior of the systems. Modeling, Control and 

Performance Analysis, Intelligent Task Planning, Management of 

Manufacturing Systems are the most common application areas of Petri 

Nets. 

 

Petri Nets consist of passive components, active components and directed 

links. Passive components are the places which are denoted by circles (O). 

The active components are the transitions and denoted by boxes (   ). 

Directed links represent the abstract relationships between components. 

 

2.4 Previous Petri Net Tools 

 

Some of the previous Petri tools and their properties are given below. 

Additional and detailed information about Petri Tools can be found in 

Appendix. 

 

2.4.1 Petri Tool 

 

Petri Tool (Brink, 1996) was written in Java and it is one of the few tools 

which was developed in Java. Java is an Object Oriented language and at 

the same time it is an interpreted language. Therefore any machine with 

Java Virtual Machine can run this software providing a high portability 

feature. 
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2.4.2 Cabarnet 

 

Cabarnet (Computer Aided software engineering environment Based on 

ERNETs) was developed for the real time systems. Robot Arm control was 

one of its strong application area. This tool was written in C++ in UNIX 

environment as operating system.  

 

2.4.3 Alpha/Sim 

 

ALPHA/Sim is a general purpose graphical discrete-event simulation tool 

based on Petri Nets. Communication networks and computer, flexible 

manufacturing systems are the basic application areas (AlphaTech, 2004). 

 

2.4.4 PNDN 

 

PNDN is a Petri Net-based Design Network which was developed by 

(Erden, 1999) and developed for the representation and analysis of the 

functions and their interrelationships through information flow for the 

conceptual design stage of engineering systems and at the first level of 

design. PNDN structure accomplished a great improvement in the 

automation of conceptual design phase. The computer implementation of 

PNDN was accomplished for the first decomposition level in Borland C++ 

Builder IDE (Integrated Development Environment) which was called DNS 

(Güroğlu, 1999). 

 

2.4.5 N-PNDN 

 

N-PNDN is the extension of PNDN (Korkmazel, 2001) which is an 

improved model and obtained multi-resolutional feature in terms of 

functionality and modeling. Functional decomposition rules were utilized in 

the extended design inference network, N-PNDN, were provided. Details of 
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computer implementation of N-PNDN and the contributions of this study 

will be given in the next chapters. 

 

2.5 Evaluation of Literature Survey 

 

In the light of the facts mentioned in previous sections, Function/Means 

Trees are more useful for representing different design alternatives during 

the conceptual design phase. Function/Means tree can model and represent 

the whole design process from the most abstract level representation to the 

specific descriptions of the solutions to problems. It enables the designer to 

evaluate different design alternatives by providing various kinds of means 

for each subfunction. Therefore, designer’s ability to select functions and 

subfunctions independently results in high engineering creativity. Passing 

from functional domain to physical domain is easier than the other 

functional approaches. 

 

The above mentioned Petri Net tools support only Petri Nets which is based 

on Place-Transition Nets or time dependent Petri Nets. On the other hand 

PNDN reveals a new approach to design modeling and defines new network 

elements. This entails to develop a new design modeling tool for the 

mechatronic products. The survey on Petri Net tools showed that the new 

developed tool should not need additional programming effort. Moreover, 

Windows or a X-Windows based operating system is much more convenient 

to use and these operating system environments present a sophisticated 

graphical user interface which one can not find at other operating systems.  

In addition to those major facilities of the software package such as printing, 

saving, griding properties should be developed. The survey showed that the 

recent software packages lack of these properties. Finally token flow feature 

should be provided in the new design tool in order to model the dynamic 

behavior of a system in multi level representation since multi level modeling 

is also a missing part of the current Petri Net software packages. 
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CHAPTER 3 

 

 

BASICS OF N-PNDN 

  

 

PNDN is a design inference network developed for the representation and 

analysis of the function and their interrelationship through information flow 

for the conceptual design stage of engineering systems in order to facilitate 

design automation. (Erden et al., 1998). The formal structure is based on the 

theory of Petri Nets and Hybrid Automata. Therefore the extended design 

network is named as the network of PNDN modules, N-PNDN, and consists 

of embedded PNDN modules in the topmost level PNDN network. 

 

3.1 ARCHITECTURE OF N-PNDN  

 

The N-PNDN theory handles the functional decomposition phase of the 

mechatronic products in multi resolutional level. For this reason it will be 

more convenient to give a design application of a mechatronic product in 

order to go to deep of the design details. Dish machine is taken as the 

sample mechatronic device to illustrate the procedure using N-PNDN in 

multi resolution levels. 

 

Creation of N-PNDN consists of following steps: 

 Functional Representation Using Functional Design Tree. 

 Definition of Variables  

 Definition of Instantiation of Variables 

 Definition of Decision of Functions 

 Definition of Input Mappings 

19 



 Definition of Output Mappings 

 Repeat The Steps Given Above For Each Resolution Level of Each 

Functional State. 

 Create and STOP Functional State for the each sub level of 

Functional State in order to finish the performance of the relevant 

function during token flow. 

 

3.1.1 DEFINITION OF FUNCTIONAL STATE SET 

 

The first step for the functional representation of a system is to establish a 

functional design tree, a hierarchical structure that involves sub-functions of 

systems at various levels of resolution where top most nod is to satisfy the 

required function. 

F( S ) = {F1 , F2 , …………FN  } where ; 

F( S ) = Overall function of the required system. 

Fi = Sub-function of the system at the first level of functional decomposition 

N = Number of sub-functions 

 

The functional states in Petri Nets are represented by transitions and denoted 

by (T). As mentioned before, the dish machine will be designed by N-

PNDN and will consist of different layers. Therefore each layer of 

resolution involves different functional states. For the first layer and the sub 

layer the functional states are follows: 

 

FIRST LEVEL: 

 

F (S) = { F1 , F2 ,  F3 , F4 }   

F1 = START (CLEAN DISHES) 

F2 = LOAD – UNLOAD DISHES 

F3 = WASH DISHES 

F4 = DRY 

20 



F5 = STOP 

SECOND LEVEL 

 

The functional state Wash Dishes can be decomposed to the following 

functional states: 

 

F1= WASH DISHES 

F2 = TAKE WATER IN 

F3 = HEAT WATER 

F4 = SUPPLY WATER TO PROPOLLER 

F5 = ROTATE PROPOLLER 

F6 = TAKE DETERGENT 

F7 = TAKE WATER-OUT 

F8 = STOP 

 

THIRD LEVEL  

 

The functional state “TAKE WATER IN” can also be decomposed into one 

more layer and the functional states follows  

 

F1 = TAKE WATER IN 

F2 = OPEN THE INLET VALVE 

F3 = STOP 

 

The functional design tree of the dish machine is given in the following 

page. 
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Figure 3.1 The Functional Design Tree of Dish Machine 
(Korkmazel, 2001) 

 
 

3.1.2 DEFINITION OF VARIABLES 

 

Variable sets are grouped into 2: 

 

 Continuous Variable Set (CVS): represents the cont. behavior of the 

system. 

 Discrete Variable Set (DVS): represents the type of configuration 

based information that is required to be perceived and controlled by 

the system to be designed. 

 

In PNDN variables are defines as finite set of places and they are 

represented by the symbol (O) 

Based on this information the variables have been given below for the each 

level of functional decomposition.  

 

FIRST LEVEL
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p10 = button (information about the start button, on or off) 

p20 = clean (information about the cleanliness of the dishes) 

p30 = door (information about the door of the machine, close or open 

 

SECOND LEVEL  

 

p10 = detergent (information for the amount of detergent) 

p20 = water – temp (information for the water temperature) 

p30 = water level (information for the water level) 

 

THIRD LEVEL  

 

p10 = water condition 

p20 = filter 

 

3.1.3 DEFINITION OF INSTANTIATIONS 

 

Instantiations of the continuous variables are obtained by defining a 

threshold value to the continuous variables. They can take 1 or 0 in 

deterministic case and a value which varies between 0 and 1 for the non-

deterministic case. They are also represented by the symbol (O) In dish 

machine design case: 

 

FIRST LEVEL 

 

p11 = on (button pressed) 

p12 = off (button not pressed) 

p21 = water – temp (dishes are clean) 

p22 = water level (dishes are dirty) 

p31=closed (door is closed) 

p32 = open (door is open)    
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SECOND LEVEL  

 

p11 = det (there is detergent in the machine) 

p12 = nodet (there is no detergent in the machine) 

p21 = T>Ts (water temperature is higher than washing temperature) 

p22 = T<Ts (water temperature is lower than washing temperature) 

p23 = T=Ts (water temperature is equal to washing temperature) 

p31 = excess (there is excess water in the machine) 

p32 = enough (there is enough water in the machine) 

p33 = not enough (there is not enough water in the machine)   

p34 = none (there is no water in the machine) 

 

THIRD LEVEL 

 

p11 = good  

p12 = nogood 

p21= notfull 

p22 = full 

 

3.1.4 DEFINITION OF DECISION FUNCTIONS 

 

In PNDN, decision functions are represented as switches, which are the 

special form of transitions (Tabak and Levis, 1985). They are used in order 

to decide which instantiation is going to be fired and to process the 

corresponding variable. 

 

In the dish machine example: 

 

FIRST LEVEL 
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DF={df1 , df2 , df3 }   

 

df1 = Decision Function for button variable 

df2 = Decision Function for clean variable 

df3 = Decision Function for door variable 

 

SECOND LEVEL 

 

DF={df1 , df2 , df3 }   

 

df1 = Decision Function for detergent variable 

df2 = Decision Function for water-temp variable 

df3 = Decision Function for water level variable 

 

THIRD LEVEL 

 

DF={df1 , df2 } 

 

df1 = Decision Function for water-cond variable 

df2 = Decision Function for filter variable 

 

3.1.5 DEFINITION OF I – MAPPINGS 

 

By definition it is the mapping from places to transitions and represented by 

0 and 1. There are 2 types of I-Mappings. 

 

 Type 1  : I-Mapping from variables to its decision functions 

 Type 2  : I-Mapping from instantiations to Functional states 

 

The I-Mapping for the top and sub levels are given below: 
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FIRST LEVEL  

Type 1 

 

I (button, df1) = 1 I(clean, df2) =1 I (door, df3) = 1 

 

Type2 

 

I (on, F3) = 1  I (off, F2) = 1  I (closed, F3) = 1 

I (on, F4) = 1  I (clean, F4) = 1 I (closed, F4) = 1 

I (on, F5) = 1  I (dirty, F3) = 1 I (open, F2) = 1 

I (open, F5)=1 

 

SECOND LEVEL 

 

Type1 

 

I (detergent, df1) = 1 I(water temp, df2) =1  I (water level, df3) = 1 

 

Type 2 

 

I (det, F6) = 1  I (nodet, F7) = 1  I (none, F8) = 1 

I (T<Ts, F3) = 1 I (nodet, F8) = 1  I (nenough, F4) = 1 

I (T>Ts, F2) = 1 I (nenough, F2) = 1  I (enough, F2) = 1 

 

THIRD LEVEL 

 

Type 1 

 

I (water cond, df1) = 1  I(filter, df2) =1  I (good, F2) = 1 
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Type 2 

 

I (nogood, F2) = 1  I (nogood, F3) = 1 I (notfull, F2) = 1 

I (notfull, F3) = 1  I (full, F8) = 1  

 

3.1.6 DEFINITION OF O-MAPPINGS 

 

By definition it is the mapping from transitions to places and represented by 

0 and 1. There are 2 types of O-Mappings. 

 

 Type 1 - O-Mapping from decision functions to instantiations 

 Type 2 - O-Mapping of functional states 

 

FIRST LEVEL 

 

Type 1 

 

O (df1,on) = 1  O(df2, clean) =1  O (df3, closed) = 1 

O (df1,off) = 1  O(df2, dirty) =1  O (df3, open) = 1 

 

Type 2 

 

O(F1, button ) = 1 O(F2, button ) = 1  O(F3, button ) = 1 

O(F1, clean ) = 1 O(F2, clean ) = 1  O(F3, clean ) = 1 

O(F1, door ) = 1 O(F2, door ) = 1  O(F3, door ) = 1 

O(F4, button ) = 1 O(F4, clean ) = 1  O(F4, door ) = 1 

 

SECOND LEVEL 

 

Type 1 
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O (df1,det) = 1  O(df2, T<Ts) =1  O (df3, enough) = 1 

O (df1,nodet) = 1 O(df2, T=Ts) =1  O (df3, nenough) = 1 

O (df2,T>Ts) = 1 O(df3, excess) =1  O (df3, none) = 1 

 

Type 2 

 

O(F1, detergent ) = 1     O(F1, water temp ) = 1 O(F1, water level ) = 1 

O(F2, detergent ) = 1     O(F2, water temp ) = 1 O(F2, water level ) = 1 

O(F3, detergent ) = 1     O(F3, water temp ) = 1 O(F3, water level ) = 1 

O(F4, detergent ) = 1     O(F4, water temp ) = 1 O(F4, water level ) = 1 

O(F5, detergent ) = 1     O(F5, water temp ) = 1 O(F5, water level ) = 1 

O(F6, detergent ) = 1     O(F6, water temp ) = 1 O(F6, water level ) = 1 

O(F7, detergent ) = 1     O(F7, water temp ) = 1 O(F7, water level ) = 1 

 

THIRD LEVEL 

 

Type 1  

 

O (df1,good) = 1 O(df2, nogood) =1  O (df3, notfull) = 1 

O (df1, full) = 1 

 

Type 2 

 

O(F1, water cond) = 1   O(F2, water cond ) = 1 O(F3, water cond ) = 1 

O(F1, filter ) = 1   O(F2, filter) = 1  O(F3, filter ) = 1 

 

Having defined the O-Mapping, the N-PNDN construction is completed for 

the dish machine design. As a result the NPNDN for the dish machine is 

given in Figure 3.2, Figure 3.3 and Figure 3.4 
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At the first level of clean dishes functional state decomposed into “Load-

Unload”, “Wash Dishes”, “Dry”, “Stop” functional states. The variables 

“Button”, “Clean”, “Door” and the relevant instantiations have been 

connected through decision functions. At the second level “Wash Dishes” 

functional state decomposed into “Take Water In”, “Heat Water”, “Bring 

Water to Propeller”, “Rotate Propeller”, “Take Detergent”, “Take Water 

Out” and “Stop” functional states. Finally at the third level “Take Water In” 

functional state decomposed to “Open Inlet Valve”, “Actuate Water 

Condition Unit” and “Stop” functional states together with their variables 

which are denoted by place sets and instantiations. 
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Figure 3.2  N-PNDN of the Dish Machine, the top most level of Dish 

Machine, (Korkmazel, 2001) 
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Figure 3.3  The sub-layer of the functional state Wash Dishes and its 

functional decomposition, (Korkmazel, 2001) 

 

TAKE
WATER IN

STOP

ACTUATE WATER
COND. UNIT

  P11

  P21

  P12

  P22

OPEN INLET
VALVE

Water Cond

Filter

good

nogood

full

not-full

 
 

Figure 3.4  The sub-layer of the functional state Take Water - In and its 

functional  decomposition, (Korkmazel, 2001) 
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3.2 TOKEN FLOW IN N-PNDN 

 

The token flow in N-PNDN is the same with the PNDN; however token 

flow in each level is independent from other levels. Therefore the token 

flows are uncorrelated from each other. In order to understand the details of 

token flow in N-PNDN, some basic definitions should be explained. 

 

In order to enable a decision function, it’s input places should have token 

and all of its output places should have a token. This is called variable 

marking (MV). If those conditions prevail, the enabled decision functions 

fire simultaneously by removing the input tokens from their places and then 

putting it in one of its transitions. This is called instantiation marking (MI). 

Instantiation marking makes the transitions enable which means that all the 

instantiations (places) of the relevant transition have tokens on them. When 

a transition fires, it removes the token on its transitions and inserts it on its 

relevant places. This results in also variable marking (MV). In N-PNDN 

structure if one of the functional state or in other words if one of the enabled 

transition has sub layer, the token goes through the start transition of the sub 

– layer and the token flow on the upper layer stops for a while until the 

token flow at the sub-level finishes. The termination criterion in order to 

finish a token flow is the visit of the token to the STOP transition. This 

means that the relevant function perform has finished and it is time to back 

to the upper layer. This goes on and repeats until all token flow at sub levels 

have finished, including every resolution level. Later on the token flow goes 

on like the single layer PNDN structure and the program restarts. Having 

first inserted and started the token flow from CLEAN DISHES transition, 

variable marking for dish machine is given starting from Figure 3.5 to 

Figure 3.12 step by step. Figure 3.5 shows variable (MV) marking for dish 

machine at the top most level. Figure 3.6 gives Token Flow through 

decision functions to instantiations of variable places. In Figure 3.7 “WASH 

DISHES” transition fires and the token flows through the sub level of that 
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transition which is given in Figure 3.8. The token will come back to the top 

most level when it visits the stop transitions of its sub levels. When the 

WASH DISHES transition is fired, the variable marking automatically takes 

place and the token flows to the variable places of child PNDN of the 

WASH DISHES functional state. The variable marking is given in Figure 

3.8 for the second level. The token flows through the decision functions to 

instantiation of variable places and is given in Figure 3.9. In Figure 3.10 

“Take Water In” transition is fired (Korkmazel, 2001). 
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          Figure 3.5 Token Flow                    Figure 3.6 Token Flow 
       First Step for Dish Machine        Second Step for Dish Machine   

(Korkmazel, 2001)            (Korkmazel, 2001) 
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                   Figure 3.9 Token Flow               Figure 3.10 Token Flow 
                Fifth Step for Dish Machine           Sixth Step for Dish Machine 
  (Korkmazel, 2001)          (Korkmazel, 2001) 
 
 
Since the “Take Water In” transition has also a sub level the token will go 

through the sub level of the fired transition and the token flow starts at the 

final resolution level by variable marking (MV) which is shown in Figure 

3.11. Later on as shown in Figure 3.12 instantiation marking. The token 

flow will continue here unless the token visits the STOP transition. This is 

shown in Figure 3.13. When this happens the considered task for the 

functional state TAKE WATER – IN finishes and the token returns back 

again to its upper layer where first the TAKE WATER – IN transition has 

been fired and token flow restarts as shown in Figure 3.14. 
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        Figure 3.11 Token Flow                  Figure 3.12 Token Flow 
             Seventh Step for Dish Machine            Eight Step for Dish Machine 
  (Korkmazel, 2001)   (Korkmazel, 2001) 
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3.3 Evaluation of features of PNDN 

 

In this section it has been shown that PNDN is a module which can be used 

to model every resolution level in the functional decomposition of 

mechatronic products. This modularity concept is used and as an application 

of this feature dish machine example is given. The term “Modularity” is 

used to describe the use of common units to create different products and it 

represents a common modeling unit for the different subfunctions of the 

system. Modularity is a powerful way of representing the flow of 

information contained within every subfunction of the system. Hence the 

subfunctions of the system are uncoupled which constitutes the functional 

independence. Using the common modeling approach following benefits has 

been provided: 

 

Incrementability : The current functional model does not need any 

modification when it is necessary to add a new subfunction. 

 

Modifiability: Each subfunction model is independent of each other so new 

replacements can be made independently. 

 

Transparency: The whole subfunction structure makes the system 

understandable and the user can analyze the internal structure of subfunction 

modules easily. 

 

Those modularity features of PNDN and therefore N-PNDN are explored by 

information flow between levels in dish machine example. For the 

modularity of PNDN, the “START” transition is replaced with another 

transition named after the subfunction it represents. This is the modification 

which is made in PNDN theory and that establishes the N-PNDN.  
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Mechatronic systems consist of sensory, cognitive and motoric subsystems. 

Assuming that mechatronic systems are the formation of function tree, each 

function is fulfilled by the typical sensory, motoric, cognitive subsystems. 

Those sub systems compromises a mechatronic module. If we consider the 

dish machine example; transitions represent subfunctions or activities of a 

mechatronic system, places represent the sensory information coming from 

environment and decision functions represent processor which possesses the 

sensory information coming from the environment. 
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CHAPTER 4 

 

 

THE DESIGN NETWORK SIMULATOR FOR THE IMPROVED  

N-PNDN THEORY 

 

 

The Design Network Simulator (Güroğlu, 1999) is further developed for the 

N-PNDN theory which enables us to decompose and represent a 

mechatronic product in multi level form. As mentioned before each level is 

based on PNDN theory and independent of each other. 

 
In this chapter an overview of the software package will be given. 

Furthermore the algorithm developed for the construction of N-PNDN and 

the algorithm for the token flow of N-PNDN will be presented. 

 

4.1 AN OVERVIEW OF FURTHER DEVELOPED DNS 

 

4.1.1 Programming Environment 

 

The visual programming environment of Design Network Simulator makes 

it possible to decompose the mechatronic systems into its functional states. 

The integrated development environment (IDE) of Borland C++ Builder is 

used during the development of the program. The fundamental elements of 

N-PNDN (transitions, place sets, I/O Mapping and switches) are designed as 

separate elements, and creating new layer for each transition is enabled. For 

convenience, the above mentioned features are combined and the user does 

not need any additional programming. 
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4.1.2 Structure of the Software Package 

 

DNS is composed of two parts. 

 

• Graphical User Interface 

• Software Modules 

 

Graphical User Interface 

 

Graphical User Interface consists of the design window, the tool bar and the 

control panel. 

 

Software Modules 

 

Software modules are subdivided into three parts which are shown in the 

Figure 4.1. The creation and simulation of N-PNDN is also involved in 

modules and will be investigated in the next section of this chapter. 

 

 

              

DNS

DESIGN NETWORK
CREATION

DETERMINISTIC NON-
DETERMINISTIC

SIMULATION (TOKEN
FLOW) ANALYSIS

 
 

        Figure 4.1 Architecture of Design Network Simulator. 
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4.2 GRAPHICAL USER INTERFACE 

 

The Graphical User Interface should support both for single and multi level 

network creation. In addition to this, it should also support storing, 

retrieving and printing designs. GUI includes design window, object 

inspector, tool bar, control panel, help part. 

 

Design Window 

 

Design window is a basic form which is provided by Borland C++ Builder 

IDE (Integrated Development Environment). In this form the user can place 

the transitions, place sets, switches and create links between the net 

elements in order to create the design network.  

 

When it is necessary the user can also change the locations of the elements 

of net by dragging. For the further applications, the created design network 

can be saved as text file in a directory and can be regenerated by retrieving 

it.   

 

Furthermore DNS allows to print the design network and those basic 

features are all combined in Design Window. It is also possible to divide the 

design window into grids and therefore the user can align the elements of 

the design network. This provides a more tidy structure. When the user 

clicks an element to put on the design window, the upper left corner of the 

element is attached on the selected grid.  

 

When the program first executes, the base form appears on the screen with 

control panel and tool bar. The user should open a new design window or 

retrieve a design which is saved before. At the same time object inspector 

window also appears near to the design window in order to inform the user 

about the elements. 
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In Figure 4.2 the screen shot of the main screen of DNS is given. 

 

         
Figure 4.2 Graphical User Interface 

 

 

Object Inspector 
 

Object Inspector window is used for data access for the network elements. 

The user can easily edit or enter the information for the related network 

element. Figure 4.3 shows the screen shot of the object inspector window 

for the on off button component of dish machine. 
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Figure 4.3 Object Inspector of DNS 

 

The first row of the object inspector window indicates the name of the 

component clicked on. In the second row, for convenience, the caption can 

be replaced by an abbreviation which makes easy to inform the user. The 

third row determines the type of the component such as Transition, Place 

Set and Switch and is defined automatically. Any attempt to change the 

name, number and sub number property of the network components are not 

allowed. The primary index which has been given in the fourth row is only 

defined for the transitions (functional states), place sets (variables and 

instantiations), switches (decision functions). On the other hand the 

secondary index is only defined for the place sets of the design network and 

used to distinguish the variables and the instantiations.  Info tab of the 

component is used for the information access and that access is done by text 

box.  
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Tool Bar 

 

The tool bar is the part on which the buttons are offered for the network 

construction operations and located on the left hand side of the design 

window. Figure 4.4 shows the tool bar and its buttons.  
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Figure 4.4 . The tool bar of the DNS 
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The edit button calls for the object inspector window and enables the user to 

do the events that are explained in the previous part. The basic components 

of design network are created by clicking once on functional state, add 

variable, add instantiation button. In order to create a new layer to the 

selected transition the user should click on the open new layer button. 

Connect, Or link and Disconnect buttons are used for creating and removing 

input and output mappings between the components of the design network. 

Erase button is used in order to delete a component. Once a component is 

deleted, it is impossible to recall the deleted item. Move button is for 

dragging the selected items to the desired location of the design window.  If 

we want to establish or remove a functional output then one should click on 

the Add FS output or Remove FS output buttons respectively. As mentioned 

before if the user wants to divide the design window into grids, one should 

click on the grid button. During the simulation the token insertion is done by 

clicking on the place token button and vice versa is done by clicking on the 

remove token button.  

 

Control Panel 

 

Control panel presents the basic facilities to the user like new, open save, 

print commands. Other than these commands are explained below. The 

Figure 4.5 shows the control panel of DNS. 
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Figure 4.5 – The control panel of DNS 
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As shown above, the first group indicates the “new”, “open”, “save”, “print” 

buttons. Later on “run”, “stop” and “pause” buttons come for which, one 

uses during the simulation and therefore token flow. 

 

Deterministic and non-deterministic buttons determine the simulation type 

and also indicate which type of simulation is valid through the run time of 

program. The MsWord and MatLab icons open those program interfaces. 

Exit button terminates the program execution.  

 

4.3 SOFTWARE MODULES OF DNS 

 

4.3.1 Creation of Design Network 

 

Creation of design network starts with placement of the start transition on 

the design window. The caption of the first transition is “START”. The 

second step is place the variables. When the user clicks on the variable 

button and then clicks on the design window a variable is automatically 

created. At the same time the O-Mapping of the START transition is also 

established by DNS.  

 

In addition to that, having placed the variables of the design network, 

decision functions of the related variables are also placed with their I-

Mappings automatically. 

 

In the following step one should define the instantiation of the variables and 

O-Mapping for decision functions. When this is done, the O-Mappings for 

decision functions are also created automatically. 

 

As last step, by placing the other functional states which are represented by 

transitions and after creating the following I/O Mappings, the first layer 

PNDN network is completed. 
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Now if one wants to expand and decompose a functional state, “Open 

NewLayer” button should be clicked. When this is done, the valid design 

window is saved as text file and then removed from stack in order to avoid 

stack overflow. Later on DNS opens a new design window and makes it 

possible to create a new PNDN network for the relevant functional state. In 

this case a new button with a caption “BACK” appears on the left bottom 

corner of the new created design window. The user can return to the one 

upper level by clicking this button when he desires. The point on which the 

user should give his attention that; a “STOP” transition in each sub level 

should be created since the aim is to return the token to the upper level 

during simulation. The algorithm for the creation of N-PNDN is given 

Figure 4.6: 
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               Figure 4.6 Algorithm for the Creation for N-PNDN 
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In this algorithm; 

 

i is a counter for Variables 

N is the number of Variables 

K is a counter of Instantiations 

Si  is the number of Instantiations for the ith  Variable 

H is a counter for Functional States, 

M is the number of Functional States. 

L is the counter for level 

 

The algorithm is applied to the dish machine example. As mentioned before 

the first step is to place the “START” transition on the design window. The 

O-Mapping of START transition; Decision Functions and I-Mappings for 

decision functions are created automatically. 

 

                   
 

 Figure 4.7 Creation of N-PNDN for the dish machine 
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   Figure 4.8 Creation of N-PNDN for the dish machine (continued) 
           
 

                  
   
 Figure 4.9 Creation of N-PNDN for the dish machine (continued) 
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Figure 4.10 Creation of N-PNDN for the dish machine (continued) 

 

                 
 
       Figure 4.11 Creation of N-PNDN for the dish machine (continued) 

 
 

48 



            
 

       Figure 4.12 Creation of N-PNDN for the dish machine (continued) 
 

Figure 4.7–4.12 illustrates the creation of N-PNDN modeling of dish 

machine example. As it can be seen easily each time when a new level is 

created a button with a caption “BACK” is automatically created in order to 

return to the upper level during construction.  

 

4.3.2 Token Flow in N-PNDN (Simulation)  

 

Having modeled the product in N-PNDN, it is easy to simulate and model 

the dynamic behavior of the design. The main purpose in modeling is the 

information flow between the network elements. The DNS presents two 

types of token flow. Those are deterministic and non-deterministic token 

flows. DNS enables both type of token flow for the single level 

decomposition. However the developed algorithm supports only 

deterministic token flow for the multi-level decomposition of mechatronic 

products. 
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Deterministic Token Flow 

 

The new developed algorithm for the deterministic token flow is given 

below in Figure 4.10. The simulation begins with placing the tokens on the 

place sets. This variable marking, MV, enables the decision functions. When 

the token flow starts, enabled decision functions fire and tokens are re-

placed in one of the instantiations of their variables.  

 

After the instantiation marking, the functional states which have tokens in 

their instantiations are enabled. This means that the enabled transitions can 

fire during the token flow.  

 

When one or more of the transitions have sub levels, the design window that 

carries the PNDN structure of that transition opens and the present design 

window is saved and deleted from stack. As the new design window opens, 

the token passes to the start transition of the sub level and the token flow is 

restarted by the user. At this stage, the back button doesn’t appear since the 

token flow is active and DNS does not allow the user to return to the upper 

level. 

 

In the sub level of DNS, the token flow goes on till the stop transition fires 

and the PNDN rules prevail also in this level. The firing of “STOP” 

transition means that the function of the decomposed transition is finished 

and the token can pass to the upper level. If the existing transitions have also 

sub levels in the active window, the process goes on till the token visits all 

the stop transitions of the relevant level. The N-PNDN structure is time 

independent. Therefore the token, flows only through the active design 

window.  

 

When the stop transition fires, the active design window is saved as text file 

by DNS. The token passes to the upper level and places again in the 
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transition where token flow is lastly interrupted because of the sub level 

decomposition of that transition.  
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Figure 4.13 The algorithm for Deterministic Token Flow in N-PNDN 

 

Figure 4.13 shows the deterministic Token Flow on N-PNDN of dish 

Machine and the firing of “START” transition. The user should place the 

token in the variables which is called variable marking. 
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The user places the tokens on the selected variables. Figure 4.14 shows that 

the variables “BUTTON”, “CLEAN” and “DOOR” have tokens and the 

DNS gives the message of “Please place the tokens on instantiations”. 

 

After this stage as it is shown in Figure 4.14, DNS is waiting the user to 

place the tokens on one of its instantiations. The instantiations of “ON”, 

“DIRTY” and “CLOSED” are selected by placing tokens on them in order 

to fire the “WASH DISHES” functional state. As it is mentioned in previous 

chapter the “WASH DISHES” functional state has multi level 

decomposition. 

 

                    
 
         Figure 4.14 Token Flow in N-PNDN 
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       Figure 4.15 Token Flow in N-PNDN (continued) 

  

                             
         

                    Figure 4.16 Token Flow in N-PNDN (continued) 
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                                   Figure 4.17 Token Flow (continued)     
 
 

When the functional state of “WASH DISHES” is fired, the new design 

window and the sub level of the functional state are automatically retrieved 

as seen in Figure 4.17.  Now the user should start the token flow again. This 

is done by clicking the run button and a token is placed on the “START” 

transition. Therefore the token flow starts for the “WASH DISHES” 

functional state as shown in Figure 4.17 

 

Then DNS waits the user to place the tokens on the variables and gives the 

related message. After placing the tokens on variables the next step is again 

to place the tokens on the desired instantiations as shown in Figure 4.18. 
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                                       Figure 4.18 Token Flow (continued)       
 

                                           

 
       
                                     Figure 4.19 Token Flow (continued) 
 

The instantiations of “DET”, “T>Ts” and “NOT ENOUGH” are selected in 

order to fire the “TAKE WATER” functional state as shown in Figure 4.19. 

The “TAKE WATER” functional state has sub level and the information 
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flow will go on till the token reaches to the final resolution level of the 

related functional state. 

 
When the “TAKE WATER” functional state is fired the active design 

window is closed and the sub level of “TAKE WATER” functional state is 

opened. The PNDN structure of that functional state is given in Figure 4.20 

and the user should start the token flow and therefore the information flow 

by placing the token in “START” transition. 

 

               
 
               Figure 4.20 Token Flow (continued) 
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                                   Figure 4.21 Token Flow (continued) 
  

After placing the tokens on the “WATER CONDITION” and “FILTER” 

place sets, the DNS waits the designer to place the tokens on one of the 

instantiations of the relevant place sets as shown in the Figure 4.21. 

 

In Figure 4.22, having placed the tokens on the instantiations, the “STOP” 

transition is fired in order to finish the token flow and therefore the 

information flow for the “TAKE WATER IN” functional state. 

 

When the STOP transition is fired the active design window is closed which 

indicates the end of token flow for the active design window. 
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   Figure 4.22 Token Flow (continued) 
 

               
  

       Figure 4.23 Token Flow Figure (continued) 
 
 

In Figure 4.24 the upper level and therefore the PNDN structure of “WASH 

DISHES” is opened. 
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Now DNS is waiting for the user again to place the tokens in one the 

instantiation of the place sets and so the token flow restarts. 

 

                       

 
  
                                  Figure 4.24 Token Flow 
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CHAPTER 5 

 

 

CASE STUDIES 

 

 

In this chapter 4 case studies have been given and note that FDT is 

dependent on the designer. This means that different designers can form 

different functional models which yields different physical systems based on 

decisions made by different designers. 

 

5.1 N-PNDN Model of Mouse 

 

The N-PNDN model of mouse has “Change Position of Cursor in 2D”, 

“Detect and measure changes in X & Y”, “Send Data”, “Apply Control 

Gain”, “Stop” transitions in the first level of decomposition.  

 

The functional state of “Detect and measure changes in X & Y”, is 

decomposed as “Generate light pulses”, “Convert into X and Y movement” 

and “Stop” transition in the second level of decomposition. “Control Gain” 

functional state is decomposed as “D/A Conversion” and “Apply Gain” and 

“Stop” transition. Finally the functional state “Send Data” is decomposed as 

“A/D Conversion”, “Generate IR Signal”, “Receive IR signal” and “Stop” 

transition. The functional design tree of mouse is given in Figure 5.1 and the 

following computer implementation of mouse is given in Figure 5.2 and 

Figure 5.3. 
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     Figure 5.1 Functional Design Tree of Mouse 

 
 

Definition of Functional States 

 

FIRST LEVEL: 

 

F (S) = { F1 , F2 ,  F3 , F4, F5 }   

F1 = Change Position of Cursor in 2D, 

F2 = Detect and measure changes in X & Y, 

F3 = Send Data (distance / direction / speed) to Computer 

F4 = Apply Control Gain 

F5 = Stop 
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SECOND LEVEL 

 

Functional decomposition of the functional state “F2-Detect and measure 

changes in X & Y” 

 

F (S) = {F1, F2, F3, F4}  

F1= Generate Light Pulses 

F2 = Convert Pulses into X and Y movement 

F3 = Stop 

 

The decomposition of the functional state “F3-Send data 

distance/direction/speed to Computer” as follows: 

 

F ( S ) = {F1 , F2 ,  F3 , F4}   

F1= Analog/Digital Conversion (Convert Pos. Info to IR Signal) 

F2 = Generate IR signal 

F3 = Receive IR signal 

F4 = Stop 

 

The decomposition of the functional state “F4-Apply Control Gain” as 

follows: 

 

F ( S ) = { F1 , F2 ,  F3) 

F1= Digital/Analog Conversion (Convert IR Signal to Position Signal) 

F2 = Apply Gain 

F3 = Stop 

 

Definition of Variables

 

FIRST LEVEL
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p10 = movement (information about existence of movement) 

p20 = RS data (information about information in serial port) 

 

SECOND LEVEL  

 

The variables for the sub-level of the functional state “Detect & Measure”: 

 

p10 = motion movement (information about existence of motion) 

p20 = pulse check  

 

The variables for the sub-level of the functional state “Send Data”: 

 

p10 = Measurement Info  

p20 = pulse check (the information about the existence of the pulse) 

 

The variables for the sub-level of the functional state “Control Gain”: 

 

p10 = signal (is there any signal or not) 

p20 = Gain (the amount of gain to be applied) 

 

Instantiations of Variables 

 

FIRST LEVEL 

 

p11 = mov (there is movement  

p12 = nomov (there is no movement) 

p21 = data (there is information in serial port) 

p22 = nodata (there is no information in serial port) 
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SECOND LEVEL  

 

The instantiation variables for the sub-level of the functional state “Detect & 

Measure”: 

 

p11 = motion (motion is detected) 

p12 = no motion (no motion is detected) 

p21 = Exist (pulse exist) 

p22 = No Exist (no pulse exist) 

 

The instantiation variables for the sub-level of the functional state “Send 

Data”: 

 

p11 = info (there is info) 

p12 = no-info (there is no info) 

p21 = signal (there is signal) 

p22 = no-signal (there is no signal) 

 

The instantiation variables for the sub-level of the functional state “Control 

Gain”: 

 

p11 = signal exist(there is signal) 

p12 = no-signal (there is no signal) 

p21 = gain 1 (apply gain G1) 

p22 = gain 2 (apply gain G2) 

p23= gain 3 (apply gain G3) 
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Decision Functions 

 

FIRST LEVEL 

 

DF={df1 , df2 }  

 

df1= decision function for the movement variable 

df2= decision function for the serial port  

  

SECOND LEVEL 

 

The decision functions for the sub level of the function state “Detect & 

Measure” follows: 

 

DF={df1, df2}  

 

df1= decision function for the motion variable 

df2= decision function for the pulse check  

 

The decision functions for the sub level of the function state “Send Data” 

follows: 

 

DF={df1, df2}  

 

df1= decision function for the measurement info variable 

df2= decision function for the signal variable 
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The decision functions for the sub level of the function state “Control Gain” 

follows: 

 

DF={df1, df2}  

 

df1= decision function for the measurement info variable 

df2= decision function for the signal variable 

 

DEFINITION OF I – MAPPINGS 

 

FIRST LEVEL  

 

I (movement, df1) = 1 I(data, df2) =1   

I (mov, F1) = 1  I (nomov, F4) = 1 

I (data, F3) = 1  I (nodata, F4) = 1 I (mov, F2) = 1 

 

SECOND LEVEL 

 

The I-Mappings in the sub level of the functional state of “Detect & 

Measure”: 

 

I (motion, df1) = 1 I (pulse check, df2) =1   

I (motion, F1) =1 I (notexist, F1) =1 

I (exist, F2) =1  I (no motion, F3) =1  

 

The I-Mappings in the sub level of the functional state of “Send Data”: 

 

I (measure info, df1) = 1 I(signal, df2) =1   

I (info, F1) = 1   I (no signal, F2) = 1    

I (info, F2) = 1   I (signal, F3) = 1 
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I (no info, F4) = 1   

 

The I-Mappings in the sub level of the functional state of “Control Gain”: 

 

I (signal, df1) = 1  I (gain, df2) =1   

I (signal exist, F1) = 1  I (signal exist, F2) = 1    

I (gain 1, F2) = 1  I (gain 2, F2) = 1   

I (gain 3, F2) = 1  I (no signal, F3) = 1 

 

DEFINITION OF O – MAPPINGS 

 

FIRST LEVEL 

 

O (df1, mov) = 1   O(df2, data) =1  O (F3, movement) = 1 

O (df1, nomov) = 1   O(df2, nodata) = 1  O(F3, RSdata) = 1 

O(F1, movement) = 1   O(F2, movement ) = 1           O(F4, movement) = 1 

O(F1, RSdata) = 1   O(F2, RSdata ) = 1  O(F4, RSdata ) = 1 

 

SECOND LEVEL 

 

The O-Mappings of sub level of the functional state of “Detect & Measure”: 

 

O (df1, motion) = 1      O(df1, no motion)=1 O (df2, Exist) = 1 

O(df2, no exist)=1      O(F1,Motion ) = 1           O(F2,Pulse Check) = 1 

O(F1, Pulse Check) = 1    O(F2, Motion) = 1  

 

The O-Mappings of sub level of the functional state of “Send Data”: 

 

O (df1, info) = 1      O(df1, no info)=1  O (df2, Signal) = 1 

O (df2, no signal) = 1        O(F1,Measure Info)=1 O(F2,Measure Info)=1 
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O(F3,Measure Info)=1      O(F1,Signal)=1 O(F2,Signal)=1 

O(F3,Signal)=1  

  

The O-Mappings of sub level of the functional state of “Control Gain”: 

 

O (df1,signal) = 1  O(df1, no signal) =1   

O(df2, gain 1) = 1  O(df2, gain 2) = 1 O(df2, gain 3) = 1 

O(F1, A signal) = 1  O(F2, Signal) = 1 

O(F1, gain ) = 1  O(F2, gain) = 1 

 

 
                                                
               Figure 5.2 PNDN of Mouse at the first level decomposition 
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     Figure 5.3 PNDN model of Mouse for the second level 

 

 

5.2 N-PNDN Model of CD player 

 

In the N-PNDN model of CD player “Start”, “Import CD”, “Rotate CD”, 

“Read Data on CD”, “STOP/ Export CD” come in the first decomposition 

level. The functional state “Import CD” is decomposed to “Import 

Electricity”, “Actuate Electricity” and “Convert Electricity” and “Stop” 

functional states in the second level. In addition to that, the functional state 

in the first level “Rotate CD” is decomposed into “Import Electricity”, 

“Convert Electrical energy into Mechanical Energy” and “Stop” functional 

states. The functional state in the first level “Read Data on CD” is 

decomposed into “Import Electricity”, “Convert Electrical Energy into 

Optic Energy”, “Send out Optic Energy”, “Collect the Reflected Energy”, 

“Analog to Digital Conversion” and “Stop” functional states in the second 
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level. Lastly the functional state “Export CD” in the first level is 

decomposed into “Import Electricity”, “Actuate Electricity”, “Convert 

Electricity” and “Stop” functional states. 

 

 The relevant functional design tree is given in Figure 5.4. The following 

computer implementation of CD player is given in Figure 5.5 and Figure 

5.6. The figures show the first level decomposition and the sub level of the 

functional state “Rotate CD”. 

 

 

           
 

      Figure 5.4 Functional Design Tree of CD player 
 

Definition of Functional States 

 

FIRST LEVEL: 
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F ( S ) = { F1 , F2 ,  F3 , F4, F5 }   

F1 = Import CD 

F2 = Rotate CD 

F3 = Read data on CD 

F4 = Export CD / Stop 

 

SECOND LEVEL 

 

Functional decomposition of the functional state “Import CD” into its 

subfunctions follows:  

 

F ( S ) = { F1 , F2 ,  F3 , F4 }  

F1= import Electrical Energy 

F2 = actuate electricity 

F3 =convert electric energy to mechanical energy 

F4= transfer mechanical energy 

F5=Stop 

 

Functional decomposition of the functional state “Rotate CD” into its 

subfunctions follows:  

 

F ( S ) = { F1 , F2 ,  F3 , F4 }  

F1= import Electricity 

F2 =convert electric energy to mechanic energy 

F3 =transfer mechanical energy 

F4= Stop 

Functional decomposition of the functional state “Read Data on CD” into its 

subfunctions follows:  

 

F ( S ) = { F1 , F2 ,  F3 , F4 }  

F1= import electricity 
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F2 =convert electric energy to optic energy 

F3 =send out optic energy 

F4= collect reflected energy 

F5= analog to digital conversion 

F6= Stop 

 

Definition of Variables

 

FIRST LEVEL 

 

p10 = availability of CD  

p20 = Play command 

 

SECOND LEVEL 

 

The variables for the sub level of the functional state of “Rotate CD”: 

 

p10 = command  

p20 = availability of CD 

 

Instantiations of Variables 

 

FIRST LEVEL 

 

p11=yes (there is CD inside) 

p12=no(there is no CD inside) 

SECOND LEVEL 

 

The instantiation variables for the sub-level of the functional state “Rotate 

CD”: 

 

72 



p21=yes (play the CD) 

p22=no( do not play the CD) 

 

Decision Functions 

 

FIRST LEVEL 

 

DF={df1 , df2 , df3 }  

df1= decision function for availability of CD 

df2= decision function for play command 

 

SECOND LEVEL 

 

The decision functions for the sub level of the function state “Rotate CD” 

follows: 

 

DF={df1, df2}  

 

df1= decision function for command 

df2= decision function for availability of CD 

 

DEFINITION OF I – MAPPINGS 

 

FIRST LEVEL 

 

I (availability, df1)=1 I(play, df2)=1  

I(av. yes,F2)=1  I(av. yes, F3)=1  I(av. no, F1)=1 

I(pl. yes, F1)=1 I(pl. yes, F2)=1             I(pl. yes,F3)=1 

I(pl. no,F4)=1   

 

SECOND LEVEL 
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The I-Mappings for the sub level of the functional state “Rotate CD” 

 

I(command, df1)=1 I(availability, df2)=1 

I(comm. yes, F1)=1 I(comm. yes, F2)=1 

I(comm. yes, F3)=1 I(comm. no, F4)=1  I(avail. yes, F2)=1 

I(avail. yes, F3)=1 I(avail. no, F4)=1 

 

DEFINITION OF O – MAPPINGS 

 

FIRST LEVEL

 

O(df1, av. yes)=1 O(df2, play yes)=1 O(F1, av. of CD)=1 

O(df1, av. no)=1 O(df2,play no)=1 O(F2, av. of CD)=1 

O(F3, av. of CD)=1 O(F1, play com.)=1 O(F2, play com.)=1 

O(F3, play com.)=1  

 

SECOND LEVEL 

 

The O-Mappings for the sub level of the functional state “Rotate CD” 

 

O(df1,yes)=1  O(df1, no)=1  O(df2,yes)=1 

O(df2, no)=1  O(F1,command)=1 O(F2, command)=1 

O(F3, command )=1 O(F1,av. of CD)=1 O(F2, av. of CD)=1 

O(F3, av. of CD)=1 
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                    Figure 5.5 PNDN model of CD player 

 

          
          Figure 5.6 PNDN model of “Rotate CD” subfunction 
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5.3 N-PNDN Model of Coffee Machine 

 

In the N-PNDN model of Coffee Machine “Start”, “Import Water”, “Import 

Coffee”, “Generate Heat”, “Mix Coffee and Water” come in the first 

decomposition level. The functional state “Generate Heat” is decomposed to 

“Import Electricity”, “Convert Electricity to Heat” and “Sense Heat” and “ 

Stop” functional states in the second level. In addition to that, the functional 

state in the first level “Mix Hot water and Coffee” is decomposed into 

“Guide Water” and “Generate Mixture” and “Stop” functional states. The 

relevant functional design tree is given in Figure 5.11. The following 

computer implementation of coffee machine is given in Figure 5.12 and 

Figure 5.13. The figures show the first level decomposition and the sub 

level of the functional state “Generate Heat”. 

 

                

 
                                            

       Figure 5.7 Functional Design Tree of Coffee Machine 
 
 

Definition of Functional States 

 

FIRST LEVEL: 
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F ( S ) = { F1 , F2 ,  F3 , F4, F5 }   

F1 = Import Water 

F2 = Import Coffee  

F3 = Generate Heat 

F4 = Mix Hot Water and Coffee 

F5 = Stop 

SECOND LEVEL 

 

Functional decomposition of the functional state “Generate Heat” into its 

subfunctions follows:  

 

F ( S ) = { F1 , F2 ,  F3 , F4 }  

F1= Import Electricity 

F2 =Convert Electricity to Heat 

F3 =Stop 

 

Functional decomposition of the state “Mix Hot Water and Coffee” in to its 

subfunctions follows:  

 

F ( S ) = { F1 , F2 ,  F3 , F4 }  

F1= Guide Water 

F2 =Generate Mixture 

F3 =Stop 

 

Definition of Variables

 

FIRST LEVEL

 

p10 = Check Water (information about existence of water) 

p20 = Check Coffee (information about coffee in the machine) 

77 



p30 = Electricity (is electricity actuated or not?) 

 

SECOND LEVEL  

 

The variables for the sub-level of the functional state “Generate Heat”: 

 

p10 =command (on or off) 

p20 = Thermostat (is the water temperature is less or greater than 70) 

 

The variables for the sub-level of the functional state “Mix Hot Water and 

Coffee”: 

 

p10 =water flow (yes or no) 

p20 = Filter (yes or no) 

 

Instantiations of Variables 

 

FIRST LEVEL 

 

p11 = yes (there is water) 

p12 = no (there is no water) 

p21 = yes (there is coffee) 

p22 = no (there is no coffee) 

p31 = yes (electricity is actuated) 

p32 = no (electricity is not actuated) 

 

SECOND LEVEL  

 

The instantiation variables for the sub-level of the functional state “Generate 

Heat”: 
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p11 = on  

p12 = off 

p21 = T<70 (temperature is below 70 C) 

p22 = T>70 (temperature above70 C) 

 

The instantiation variables for the sub-level of the functional state “Mix Hot 

Water and Coffee”: 

 

p11 = yes-there is water flow)  

p12 = no- there is no water flow 

p21 = yes-coffee in filter 

p22 = no-no coffee in filter 

 

Decision Functions 

 

FIRST LEVEL 

 

DF={df1 , df2, df3 }  

df1 = decision function for the water 

df2 = decision function for the coffee 

df3 = decision function for the electricity 

  

SECOND LEVEL 

 

Decision functions for the sub level of the functional state “Generate Heat” 

 

DF={df1, df2 }  

df1= decision function for the water 

df2= decision function for the filter 

 

Decision functions for the functional state “Mix Hot Water and Coffee” 
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DF={df1, df2 }  

df1= decision function for the command 

df2= decision function for the thermostat 

 

DEFINITION OF I – MAPPINGS 

 

FIRST LEVEL  

I (check water, df1) = 1  I(check coffee, df2) =1      I(electricity, df3) =1 

I(yes, F3) = 1     I (no, F1) = 1  I(yes, F3) = 1 

I(no, F2) = 1     I (yes, F3) = 1 I (yes, F4) = 1 

I (no, F5) = 1      

 

SECOND LEVEL 

 

The I-Mappings for the sub level of the functional state “Generate Heat” 

 

I(on, F1) =1  I(on F2) =1  

I(off, F3) =1  I (T<70, F1) = 1           I (T<70, F2) = 1 

I (T>70, F2) = 1 

 

The I-Mappings for the sub level of the functional state “Mix Hot Water aod 

Coffee” 

 

I(yes, F1) =1  I(yes F2) =1  

I(no, F3) =1  I (yes, F2) = 1           I (no, F1) = 1 

 

DEFINITION OF O – MAPPINGS 

 

FIRST LEVEL 

 

O (df1,yes) = 1  O(df2, yes) =1  O (df3, yes) = 1 
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O(df1, no ) = 1  O(df2, no) = 1  O(df3, no) = 1 

O(F1, check water ) = 1  O(F1, check coffee ) = 1  

O(F1, electricity) = 1              O(F1, check water ) = 1 

O(F2, check coffee) = 1  O(F2, electricity) = 1 

O(F3, check water ) = 1  O(F3, check coffee ) = 1  

O(F3, electricity) = 1 

 

SECOND LEVEL 

 

The O-Mappings of the sub level of functional state “Generate Heat” 

 

O (df1,on) = 1   O (df1,off) = 1 

O(df1, T>70)=1  O (df1,T<70) = 1 

O(F1, command) = 1  O(F1, Thermostat) = 1 

O(F2, command) = 1  O(F2, Thermostat) = 1 

 

            
                         Figure 5.8 PNDN of. Coffee Machine     
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      Figure 5.9 PNDN of Coffee Machine (continued) 
                                                                   

 

 
5.4 N-PNDN Model of Lathe 

 

In the N-PNDN model of Lathe (Korkmazel, 2001) “Start”, “Rotate 

Workpiece”, “Change Rotational Speed”, “Position the Tool”, “Feed The 

Tool” come in the first decomposition level. The functional state “Rotate 

Workpiece” is decomposed to “Rotate Counter Wise”, “Rotate Counter 

Clock Wise” and “Stop” functional states in the second level. In addition to 

that, the functional state in the first level “Change Rotational Speed” is 

decomposed into “Increase”, “Decrease” and “Stop” functional states. The 

functional state “Position the tool”, “Feed the Tool” is decomposed into “X-

Dir”, “Y-Dir” and “Stop” functional states. The relevant functional design 

tree is given in Figure 5.11. The following computer implementation of 

coffee machine is given in Figure 5.12 and Figure 5.13. The figures show 

the first level decomposition and the sub level of the functional state “Rotate 

Work Piece”. 
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                                    Figure 5.10  Functional Design Tree Lathe 

 

Definition of Functional States 

 

FIRST LEVEL: 

 

F ( S ) = { F1 , F2 ,  F3 , F4, F5 }   

F1 = Rotate Work piece 

F2 = Change Rotational Speed 

F3 = Position the tool 

F4 = Feed the tool 

F5 = Stop 

 

SECOND LEVEL 

 

Functional decomposition of the functional state “Rotate Work Piece” into 

its subfunctions follows:  
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F ( S ) = { F1 , F2 ,  F3 , F4 }  

F1= Rotate Work piece 

F2 =Rotate CW 

F3 =Rotate CCW 

F4= Stop 

 

Functional decomposition of the functional state “Change Rotational Speed” 

into its subfunctions follows:  

 

F ( S ) = { F1 , F2 ,  F3 , F4 }  

F1= Change Speed 

F2 =Increase speed 

F3 =Decrease speed 

F4= Stop 

 

Functional decomposition of the functional state “Position the Tool” into its 

subfunctions follows:  

 

F ( S ) = { F1 , F2 ,  F3 , F4 }  

F1= Position tool 

F2 =Move toolpost in X-dir 

F3 =Move toolpost in Y-dir 

F4= Stop 

 

Definition of Variables

 

FIRST LEVEL 

 

p10 = Rotation  

p20 = Speed 
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p30 = Position 

 

SECOND LEVEL 

 

The variables for the sub level of the functional state of “Rotate Work 

Piece”: 

 

p10 = Rotate 

p20 = Direct 

 

The variables for the sub level of the functional state of “Change Speed”: 

 

p10 = Sp. 

p20 = Sit 

 

The variables for the sub level of the functional state of “Position Tool”: 

 

p10 = pos  

p20 = xpos 

p30 = ypos 

 

Instantiations of Variables 

 

FIRST LEVEL 

 

p11: rot=0 

p12: rot =1 

p21:  sp=0 

p22:  sp=1 

p31:  rot=0 

p32:  rot=1 
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SECOND LEVEL 

 

The instantiation variables for the sub-level of the functional state “Rotate 

Work piece”: 

 

p11: rot=0 

p12: rot =1 

p21: dir=0 

p22: dir=1 

The instantiation variables for the sub-level of the functional state “Change 

Speed”: 

 

p11: SP=0 

p12: SP =1 

p21:  increase 

p22:  decrease 

 

The instantiation variables for the sub-level of the functional state “Position 

Tool”: 

 

p11: pos=0 

p12: pos=1 

p21:  xpos=0 

p22:  xpos=1 

p31:  ypos=0 

p32:  ypos=1 

 

Decision Functions 

 

FIRST LEVEL 
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DF={df1 , df2 , df3 }  

 

df1= decision function for rotation 

df2= decision function for speed 

df2= decision function for position 

 

SECOND LEVEL 

 

The decision functions for the sub level of the function state “Rotate Work 

piece” follows: 

 

DF={df1, df2}  

 

df1= decision function for rotation 

df2= decision function for direction 

 

The decision functions for the sub level of the function state “Change 

Speed” follows: 

 

DF={df1, df2}  

 

df1= decision function for speed increment 

df2= decision function for speed reduction 

 

The decision functions for the sub level of the function state “Position the 

tool” follows: 

 

DF={df1, df2, df3}  

 

df1= decision function for position 
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df2= decision function for x position 

df3= decision function for y position 

 

DEFINITION OF I – MAPPINGS 

 

FIRST LEVEL 

 

I (Rotation, df1)=1 I(Speed, df2)=1 I(Position, df3)=1 

I(rot=0,F6)=1  I(rot, F2)=1  I(rot=1, F3)=1 

I(rot=1, F5)=1  I(speed=0, F5)=1 I(speed=1,F3)=1 

I(pos=0,F5)=1  I(pos=1,F4)=1 

 

SECOND LEVEL 

The I-Mappings for the sub level of the functional state “Rotate Work 

piece” 

 

I(Rotation, df1)=1 I(Direct, df2)=1 

I(Rot=0, F2)=1  I(Rot=1, F3)=1 

I(Rot=0, F4)=1  I(Dir=0, F3)=1  I(Dir=1, F2)=1 

 

The I-Mappings for the sub level of the functional state “Change Rotational 

Speed” 

 

I(SP, df1)=1  I(Sit, df2)=1 

I(SP=1, F2)=1  I(SP=1, F3)=1 

I(SP=0, F4)=1  I(inc, F2)=1  I(dec, F3)=1 

 

The I-Mappings for the sub level of the functional state “Position Tool” 

 

I(pos, df1)=1  I(xpos, df1)=1  I(ypos, df3)=1 

I(pos=1, F2)=1  I(pos=1, F3)=1  I(pos=0, F4)=1 
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I(xpos=0, F4)=1 I(xpos=1, F2)=1 I(ypos=0,F4)=1 

I(ypos=1, F3)=1 

 

DEFINITION OF O – MAPPINGS 

 

FIRST LEVEL

 

O(df1,rot=0)=1 O(df2,speed)=1 O(F3,Rotation)=1 

O(df1,rot=1)=1 O(df2,speed)=1 O(F3,Speed)=1 

O(F1,Rotation)=1 O(F2,Rotation)=1 O(F4,Rotation)=1 

O(F1,Speed)=1 O(F2,Speed)=1 O(F4,Speed)=1 

O(F5,Rotation)=1 O(F5,Speed)=1 

 

SECOND LEVEL 

 

The O-Mappings for the sub level of the functional state “Rotate Work 

piece” 

 

O(df1,rot=0)=1 O(df2,Dir=0)=1 O(df1,Rot=1)=1 

O(df2,Dir=1)=1 O(F1,Rot)=1  O(F2,Rot)=1 

(F1,Direct)=1  O(F2,Speed)=1 O(F3,Rot)=1 

O(F3,Direct)=1 

 

The O-Mappings for the sub level of the functional state “Change Speed” 

 

O(df1,SP)=1  O(df2,inc)=1  O(df1,SP=1)=1 

O(df2,dec)=1  O(F1,SP)=1  O(F2,SP)=1 

(F1,Sit)=1  O(F2,Sit)=1  O(F3,SP)=1 

O(F3,Sit)=1 

 

The O-Mappings for the sub level of the functional state “Position Tool” 
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O(df1,pos=1)=1 O(df2, xpos=1)=1 O(df3,ypos=1)=1 

O(df1,pos=0)=1 O(df2, xpos=0)=1 O(df3, ypos=0)=1 

O(F1,pos)=1  O(F2,pos)=1  O(F3,pos)=1 

O(F1,xpos)=1  O(F2,xpos)=1  O(F3,xpos)=1 

O(F1,ypos)=1  O(F3,ypos)=1  O(F3,ypos)=1 

 

 

 
Figure 5.11 PNDN model for Lathe 
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Figure 5.12 PNDN model of “Rotate Workpiece” subfunction 

 

5.5 Evaluation of Case Studies 

 

In this thesis with the computer implementation of N-PNDN, mechatronic 

systems are modeled as a network of embedded modules. In application N-

PNDN brings the PNDN modules together with sub modules and therefore 

the functions of the system are modeled in every resolution level. While 

developing the algorithms for N-PNDN no modification is made on the 

original PNDN formalism other than the replacement of START transition 

with the sub PNDN modules which reveals the N-PNDN formalism. As it is 

expected PNDN modules in N-PNDN possessed the following properties: 

 

1. Reachability: As a definition reachability is the set of all possible 

markings that can be reachable from an initial marking, M0
V, in a 

PNDN therefore in N-PNDN. This property is used to check if the 
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all functional states are reachable from an initial marking to provide 

the use of related functional states. The PNDN modules in N-PNDN 

have also reachability property. 

2. Concurrency: Concurrency is accomplished in the network through 

the development of N-PNDN as suggested by (Erden, 1999). In N-

PNDN, firing transition can denote a child PNDN which means the 

machine has another state for the relevant subfunction. This has been 

shown in different case studies. 

3. Liveness: PNDN and therefore N-PNDN is said to be live if one 

functional state fires under any reachable instantiation marking MI. 

Liveness of N-PNDN guarantees dead-lock free operations in which 

two or more transitions are not allowed to fire simultaneously. This 

property is accomplished and supported by the program in all level 

of decomposition. 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

N-PNDN is a design artifact modeling tool which models the mechatronic 

products at the multi level of functionality and is based on the PNDN 

theory. The architecture of N-PNDN is developed at the functional level 

since the computerized conceptual design tools need formal representation 

of functions and their relationships. This functional representation enables 

designers to find the best conceptual design solution in a more efficient way 

and in shorter time independent of any specific domain.  

 

In general functionality of the system follows the functional decomposition 

hierarchy and subfunctions are related with the overall function. The theory 

of PNDN and therefore N-PNDN makes it possible to integrate local 

inferences and it models this integration. For this reason it is a suitable tool 

for modeling mechatronic products which consist of multidisciplinary 

engineering aspects. 

 

The network structure makes it possible to define system subfunctions and 

also enables to model information, material and energy flows. In this study, 

PNDN formalism is conserved and this structure is extended in a network 

structure by replacing the upper level transitions with their sub PNDN 

modules. As a result N-PNDN is created and implemented. N-PNDN is a 

concurrent design modeling tool for the mechatronic products, and this 

criterion is considered while developing the algorithm. By definition 

concurrency is defined as a machine accomplishing more than one of its 

subfunctions simultaneously. With the introduction of N-PNDN multi 

resolution of mechatronic products together with concurrency is 
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incorporated in PNDN (Erden, 1999). This concludes that N-PNDN 

provides a concurrent structure since the systems consists of upper and 

lower level states. 

 

In case studies functional decomposition hierarchy which is called 

Functional Design Tree in different resolution levels are investigated and 

applied to various mechatronic products. It has been realized that an 

important condition has to be satisfied that the means of accomplishing 

function should be specified in order to decompose the functions into 

subfunctions. This law was proposed as “Law of Vertical Causality” (Hubka 

1976, Andreasen 1980) which states that the decomposition of a particular 

function into subfunctions is possible when a mean has been chosen to 

realize the function. 

 

Another reason for the functional decomposition is to provide the 

modularity of the system since functional decomposition hierarchy is 

composed of function-subfunction structures at each abstract level. 

Therefore this structure can be considered as a functional module in 

functional design tree. Thus PNDN (also N-PNDN) has a modular structure 

and function subfunction modules can be represented in every resolution of 

FDT by this powerful tool. 

 

N-PNDN’s modularity feature enables us to model the mechatronic modules 

which consist of sensor, processing unit and an actuator. Those modules can 

find their physical representations in N-PNDN structure. These 

representations are places, decision functions, transitions which refer to 

sensor, processing, actuator respectively. Information flow is modeled in a 

structure that begins from upper level PNDN to lower level PNDN and no 

information flow is allowed in the same layer. 
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In this study, computer implementation of N-PNDN theory, the further 

development of DNS , is achieved successfully. The goals which had been 

specified in Chapter 1 and scope of the research part were: 

 

1. Developing a new algorithm for the multi level PNDN. 

2. Developing a new algorithm which enables the token flow between 

layers. 

3. Transition from one level to another without loosing the previous 

design window. 

4. User friendly graphical user interface 

5. Exploring the modularity features of PNDN 

 

At the end of this thesis the achieved targets which have been mentioned 

above: 

 

1. Developing an algorithm for the construction of multi-level PNDN 

structure. 

2. Constructing the N-PNDN modules separately and for every 

resolution level independent of each other which enables to model 

the complex systems and therefore high resolution levels can easily 

be handled. 

3. Developing algorithm for the token flow in the multi level resolution 

which represents the information flow between the levels. 

4. Developing an algorithm for the transition from one level to another 

without loosing the related data which belongs to the previous 

design or level.  

5. Providing a user friendly GUI so that the people coming from 

different engineering disciplines can easily use the software package. 

6. Supporting and manipulating of previously created designs. 
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Through the guidance of those achievements, the main contributions of this 

thesis work are: 

 

1. It has been showed that PNDN is a modeling module for the 

mechatronic products and modules. 

2. N-PNDN structure is applied and modeled to different products. 

3. Modularity features of PNDN are explored. 

4. Functional decomposition is used in N-PNDN  

5. Multi resolutional features are incorporated in the program. 

6. Concurrency is integrated and implemented by N-PNDN 

 

Summarizing the advantages of N-PNDN yields: 

 

1. N-PNDN allows us to create and model mechatronic modules which 

have different engineering components where these modules can 

find their interpretations. 

2. N-PNDN facilitates the creation and modeling of mechatronic 

modules. 

3. N-PNDN shortens the design time and gives the designer to evaluate 

the different design alternatives. 

4. N-PNDN is a tool for visualization and simulation for the dynamic 

behavior of the system. 

5. N-PNDN brings modularity which provides transparency, 

modifiability and incrementability. 

 

The further developed DNS software has tool bar and control panel which 

provides the user to place the transitions, place sets, decision functions, in 

other words enables the user to access the tools that are used in network 

creation, token game and displaying the information dialog boxes for the 

network elements. It has also warning features for the users by text 

messages. In addition to that the tool tip feature which is provided by 
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Borland C++ Builder is also added to the program. A detailed user manual 

is also available in the help part of the software. 

 

The goal of rapid multi level network creation is achieved by further 

developed DNS. The further developed DNS has the same rules for all 

applications and those are the automatically created functional states, links, 

and decision functions. Therefore the user does not need to redefine the 

elements during the design phase and this makes it easy to handle the 

networks and this results in faster and more efficient network network 

creation. 

 

Having built on those features, during the design of the DNS, the operating 

system called Windows compatibility has been also taken into account. Like 

the all windows programs, the DNS has also “Open”, “Save” and “Print” 

basic features. As mentioned before all created networks are saved as text 

file and it enables the user for the further modifications by any text editor. 

 

One other factor in this study is the simulation feature. The token flow 

which represents the information flow through the all network resolution 

levels is achieved. Computer implementation of deterministic token flow for 

the N-PNDN is completed and the non-deterministic part is left for the 

future study. The N-PNDN theory is in progress and therefore the further 

developed DNS, which is the main study of this thesis, is not final version. 

 

6.1 FUTURE WORK 

 

 Implementation of non-deterministic part for N-PNDN 

 Developing the analysis part 

 Developing for the modules for the information and energy flow 

through network in both single and multi level 
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The uncertainties in N-PNDN can be handled by using non deterministic 

token flow. Therefore computer implementation of the non deterministic 

part is also needed. 

 

Analysis part of Petri Net simulation is also an important feature which has 

to be implemented to the program. This consists of “performance analysis” 

and “structural analysis”. Performance type of analysis is valid only for 

timed Petri Nets and therefore it is not suitable for DNS since PNDN theory 

is independent of time. ON the other hand PNDN has some properties like 

liveness or reachability which are inherited from the Petri Net theory. These 

properties are important for the analysis part hence it would result in 

improvements to add those features. 

 

In this thesis after the applications, some improvements are made but it also 

needs some more application in order to have a better performance and 

reliability. Finally after completing these new implementations on DNS, it 

will be a more powerful software package for the automation of conceptual 

design phase. 
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APPENDIX A 

 
 

 

PETRI NET TOOL SURVEY 

 

 

The existing tools, the Petri Net type that they support and the operating 

system that they are used in as environment are given below Table A.1 

which is taken from 

 

Table A.1 Existing Tools for the Petri Nets 

Features Overview 

PN Supported Components 

Environments 

ALPHA/Sim 
 
  
 
 

High-level Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
Simple 
Performance 
Analysis 

SunOS 
Solaris 
MS Windows 
NT 

ARP 
 
  
 
 

Place/Transition 
Nets 
Petri Nets with 
Time 

Fast Simulation 
State Spaces 
Place Invariants 
Transition 
Invariants 
Structural 
Analysis 
Simple 
Performance 
Analysis 

MS DOS 

Artifex 
 
  
 
 

Object-oriented 
PNs 
High-level Petri 
Nets 
Place/Transition 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
Structural 

Sun, SunOS 
HP, HP-UX 
Silicon Graphics, 
IRIX 
PC, Linux 
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Nets 
Petri Nets with 
Time 

Analysis 
Advanced 
Performance 
Analysis 

PC, MS 
Windows NT 
PC, MS 
Windows 2000 
PC, MS 
Windows XP 

CoopnTools 
 
  
 
 

High-level Petri 
Nets 

Graphical Editor
Fast Simulation 
Structural 
Analysis 

Java 

CPN-AMI 
 
  
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 

Graphical Editor
Fast Simulation 
State Spaces 
Place Invariants 
Transition 
Invariants 
Structural 
Analysis 
services for 
modular 
modeling 

Sun 
Linux 
Macintosh 

CPN Tools 
 
  
 
 

High-level Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
State Spaces 
Simple 
Performance 
Analysis 
Interchange File 
Format 

PC, MS 
Windows 2000 
PC, MS 
Windows XP 

Design/CPN 
 
  
 

High-level Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
State Spaces 
Simple 
Performance 
Analysis 
Interchange File 
Format 

Sun 
HP 
Silicon Graphics 
Linux 
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DPNSchematic 
 
  
 

Place/Transition 
Nets 
 
D-extended PN 

Graphical Editor
Fast Simulation 
 
Schematic Tool 

PC, MS 
Windows 98 
PC, MS 
Windows NT 
PC, MS 
Windows 2000 
PC, MS 
Windows XP 

EDS Petri Net 
Tool 
 
 
 
 

Place/Transition 
Nets 
Stochastic Petri 
Nets 
Petri Nets with 
Time 
 
Colored Nets 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
Structural 
Analysis 
Simple 
Performance 
Analysis 
Interchange File 
Format 
 
Transition 
programming 
language  

MS Windows 

ExSpect 
 
  

High-level Petri 
Nets 
Place/Transition 
Nets 
Stochastic Petri 
Nets 
Petri Nets with 
Time 
 
Hierarchy in 
modeling  

Graphical Editor
Token Game 
Animation             
Fast Simulation 
Simple 
Performance 
Analysis 
Advanced 
Performance 
Analysis 
 
Simulation 
engine available 
as COM 
component 

MS Windows 
 
 
 
 
 
 
 
 

F-net 
 
  
 

Stochastic Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
State Spaces 
Place Invariants 
Transition 
Invariants 

MS Windows 
OS/2 
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Structural 
Analysis 
Simple 
Performance 
Analysis 
Advanced 
Performance 
Analysis 

GDToolkit 
 
  
 

High-level Petri 
Nets 
Place/Transition 
Nets 

Automatic layout Sun 
Linux 
MS Windows 

GreatSPN 
 
  
 

High-level Petri 
Nets 
Stochastic Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
State Spaces 
Condensed State 
Spaces 
Place Invariants 
Transition 
Invariants 
Structural 
Analysis 
Advanced 
Performance 
Analysis 

Sun 
Linux 

HiQPN-Tool 
 
  
 
 

High-level Petri 
NetsStochastic 
Petri Nets 

Graphical Editor
Token Game 
Animation 
State Spaces 
Place Invariants 
Transition 
Invariants 
Advanced 
Performance 
Analysis 
Interchange File 
Format 

Sun 

HPSim 
 
  

Place/Transition 
Nets 
Stochastic Petri 

Graphical Editor
Token Game 
Animation 

PC, MS 
Windows 95 
PC, MS 
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Nets 
Petri Nets with 
Time 

Fast Simulation 
Simple 
Performance 
Analysis 

Windows 98 
PC, MS 
Windows NT 
PC, MS 
Windows 2000 
PC, MS 
Windows XP 

 
INA 
 
  
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 
Petri Nets with 
Time 

 
State Spaces 
Condensed State 
Spaces 
Place Invariants 
Transition 
Invariants 
Net Reductions 
Structural 
Analysis 
Simple 
Performance 
Analysis 
Advanced 
Performance 
Analysis 
Interchange File 
Format 
 
CTL-based 
model checker  

 
Sun 
Linux 
MS Windows 

INCOME 
Process 
Designer 
  
 
  

High-level Petri 
Nets 
Place/Transition 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 

Sun, SunOS 
HP, HP-UX 
PC, Linux 
PC, MS 
Windows 2000 
Java 

JARP 
 
  
 
 

Place/Transition 
Nets 

Graphical Editor
Token Game 
Animation 
State Spaces 
Interchange File 
Format 

Java 

JFern 
 
  
 

Object-oriented 
PNs 
High-level Petri 
Nets 

Graphical Editor
Token Game 
Animation 
Fast Simulation 

Java 
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 Place/Transition 
Nets 
Petri Nets with 
Time 

State Spaces 
Simple 
Performance 
Analysis 
Interchange File 
Format 

Maria 
 
  
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 
Modular high-
level nets 
Labeled state 
transition systems 

Token Game 
Animation 
Fast Simulation 
State Spaces 
 
Modular state 
spaces 
LTL model 
checker with 
fairness 
assumptions 
Very high-level 
data types and 
operations 

Sun, SunOS 5.7 
and 5.8 (32-bit 
and 64-bit) 
Digital, UNIX 
4.0 
Silicon Graphics, 
IRIX 6.5 (32-bit 
and 64-bit) 
HP-UX 11.22 
NetBSD, 
FreeBSD, 
OpenBSD 
PC, Linux 
PC, MS 
Windows 95 and 
later 
Apple, Mac OS 
X 10.1 

Marigold 
 
  
 
 

Place/Transition 
Nets 
 
Data flow 
constructs 

Graphical Editor Java 

MISS-RdP 
 
  
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 
Stochastic Petri 
Nets 
Petri Nets with 
Time 
 
Hybrid model 
(continuous and 
discontinuous) 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
Advanced 
Performance 
Analysis 

Sun 
MS Windows 

The Model-
Checking Kit 
 
  

High-level Petri 
Nets 
Place/Transition 

State Spaces 
Condensed State 
Spaces 
 

Sun 
Linux 
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Nets CTL-/LTL-
Model-
Checking, 
Deadlock-
Checking, 
Reachability-
Checking 

Nevod 
 
  
 
 

Inhibitor Petri nets Graphical Editor
Token Game 
Animation 
Fast Simulation 

MS DOS 

Opera 
 
  

Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
State Spaces 
Condensed State 
Spaces 
Place Invariants 
Transition 
Invariants 
Net Reductions 
Structural 
Analysis 
Simple 
Performance 
Analysis 
Advanced 
Performance 
Analysis 
Interchange File 
Format 

MS DOS 

PACE 
 
  
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 
Stochastic Petri 
Nets 
Petri Nets with 
Time 
 
Attributed Petri 
Nets 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
Net Reductions 
 
Fuzzy Technics, 
Net 
Optimizations 

PC, MS 
Windows 95 
PC, MS 
Windows 98 
PC, MS 
Windows NT 
PC, MS 
Windows 2000 
PC, MS 
Windows XP 
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PED 
 
  
 
 

Place/Transition 
Nets 
Petri Nets with 
Time 

Graphical Editor Sun 
Linux 

PEP 
 
  
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
State Spaces 
Condensed State 
Spaces 
Place Invariants 
Transition 
Invariants 
Net Reductions 
Structural 
Analysis 
Interchange File 
Format 
Model Checking
Petri Net 
Generators 

Sun 
Linux 

Petrigen 
 
 

Place/Transition 
Nets 

Graphical Editor
Token Game 
Animation 
 
synthesis 

PC, Linux 
PC, MS 
Windows 95 
PC, MS 
Windows 98 
PC, MS 
Windows NT 
PC, MS 
Windows 2000 
PC, MS 
Windows XP 

Petri Net 
Kernel 
  
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 
 
DAWN-Nets 
User definable 

Graphical Editor
Token Game 
Animation 
Interchange File 
Format 
 
INA-pilot 
User definable 

Java 

Petri Net 
Toolbox 
 
  
 

Place/Transition 
Nets 
Stochastic Petri 
Nets 
Petri Nets with 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
State Spaces 
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 Time 
 
GSPN 

Place Invariants 
Transition 
Invariants 
Structural 
Analysis 
Simple 
Performance 
Analysis 
Advanced 
Performance 
Analysis 
Interchange File 
Format 

PetriSim 
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 
Petri Nets with 
Time 

Graphical Editor
Fast Simulation 

MS DOS 

Platform 
Independent 
Petri Net 
Editor 
 
 

Place/Transition 
Nets 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
State Spaces 
Condensed State 
Spaces 
Place Invariants 
Transition 
Invariants 
Structural 
Analysis 
Simple 
Performance 
Analysis 
Interchange File 
Format 
 
Extensible 
Analysis 
Modules and File 
Formats 

Java 

PNSim 
 
 

Place/Transition 
Nets 

Graphical Editor
Token Game 
Animation 

MS Windows 
Java 
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Structural 
Analysis 
 
Simple Net 
Analysis 

PNtalk 
 
 

High-level Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
Simple 
Performance 
Analysis 

Sun 
MS Windows 

Poses++ 
 
 

High-level Petri 
Nets 

Fast Simulation Sun 
Linux 
MS Windows 

Predator 
 
 

Place/Transition 
Nets 
Stochastic Petri 
Nets 
 
hierarchical Petri 
Nets (Subnets) 

Graphical Editor
Place Invariants 
Transition 
Invariants 
Interchange File 
Format 
 
Dynamic 
Loading of 
Analysis 
modules 

Java 

PROD 
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 

State Spaces 
Condensed State 
Spaces 
 
LTL Model 
Checking, CTL 
Model Checking 

Sun, SunOS 
HP, HP-UX 
PC, Linux 
PC, MS 
Windows 95 
PC, MS 
Windows NT 

Renew 
 
  
 
 

Object-oriented 
PNs 
High-level Petri 
Nets 
Place/Transition 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
Interchange File 
Format 

Java 

Romeo 
 

Petri Nets with 
Time 

Graphical Editor
State Spaces 

PC, Linux 
Macintosh, Mac 
OS X 
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SEA 
 
 

High-level Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
 
Abstract 
Graphical 
Visualization 

Sun 

SIPN-Editor 
 
 

 
 
Interpreted Petri 
Nets 

Graphical Editor
 
Code Generation 
for PLC, 
Translation into 
SMV Code 

Java 

SimulaWorks 
 
 

Place/Transition 
Nets 
Stochastic Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 

PC, MS 
Windows 95 
PC, MS 
Windows 98 
PC, MS 
Windows NT 
PC, MS 
Windows 2000 
PC, MS 
Windows XP 

SPNP 
 
 

High-level Petri 
Nets 
Stochastic Petri 
Nets 

Advanced 
Performance 
Analysis 

PC, MS 
Windows 98 

StpnPlay 
 
 

Stochastic Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Fast Simulation 
Simple 
Performance 
Analysis 
Interchange File 
Format 

PC, MS 
Windows 95 
PC, MS 
Windows 98 
PC, MS 
Windows NT 
PC, MS 
Windows 2000 
PC, MS 
Windows XP 

SYROCO 
 
 

High-level Petri 
Nets 
Petri Nets with 
Time 
 

Graphical Editor
Fast Simulation 
Simple 
Performance 
Analysis 

C++ 
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Dynamic 
instantiation of 
nets, C++ code 
associated to 
transitions and 
places, priority 

Interchange File 
Format 
 
C++ code 
generation 

TimeNET 
 
 

High-level Petri 
Nets 
Place/Transition 
Nets 
Stochastic Petri 
Nets 
Petri Nets with 
Time 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
State Spaces 
Place Invariants 
Structural 
Analysis 
Simple 
Performance 
Analysis 
Advanced 
Performance 
Analysis 
Interchange File 
Format 

Sun 
Linux 

Tina 
 
 

Place/Transition 
Nets 
Petri Nets with 
Time 
 
Time Petri Nets 

Graphical Editor
State Spaces 
Condensed State 
Spaces 
Place Invariants 
Transition 
Invariants 
Structural 
Analysis 
 
State Class 
Spaces 

Sun 
Linux 
MS Windows 

Visual Object 
Net ++ 
 
 

Place/Transition 
Nets 
Petri Nets with 
Time 
 
Hybrid Dynamic 
Nets and Hybrid 
Object Nets 

Graphical Editor
Token Game 
Animation 
Fast Simulation 
Structural 
Analysis 
Simple 
Performance 
Analysis 
 
supports object 

MS Windows 
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hierarchies 
WebSPN 
 
 

Stochastic Petri 
Nets 

Graphical Editor
Token Game 
Animation 
Advanced 
Performance 
Analysis 
 
prd, prs, pri 
memory policies 

Java 

WINSIM 
 
 

Generalized 
Evaluation Nets 
Extended Petri 
nets 

Fast Simulation PC, MS 
Windows 98 
PC, MS 
Windows NT 
PC, MS 
Windows 2000 
PC,Windows XP 

 
                         Table A.1 Existing Tools for the Petri Nets 
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