
 

 

 

 

A STUDY  OF  KANGAROO TRANSACTION MODEL FOR MOBILE 

 TRANSACTION MANAGEMENT 

 

 
 
 
 
 

A THESIS SUBMITTED TO 
 

THE GRADUATE SCHOOL OF INFORMATICS 
 

OF 
 

THE MIDDLE EAST TECHNICAL UNIVERSITY 
 
 
 
 

BY 
 
 
 
 

ZÜLFÜ ÖRENÇ 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 
 

MASTER OF SCIENCE 
 

IN 
 

THE DEPARTMENT OF INFORMATION SYSTEMS 
 
 
 
 
 

JUNE 2004 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced 

all material and results that are not original to this work. 

 
 
 
 

 
 Zülfü ÖRENÇ 

Author 



 
 
 
Approval of the Graduate School of Informatics 

 

 

Prof.Dr. Neşe YALABIK 

Director 

 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree of Master 
of Science 

 

 

Assoc.Prof.Dr. Onur DEMİRÖRS 

Head of Department 

 
 
This is to certify that we have read this thesis and that in our opinion it is fully adequate, 
in scope and quality, as a thesis for the degree of Master of Science. 
 
 

Assoc.Prof.Dr. Ahmet COŞAR 
 

Supervisor 
 
 
 
Examining Committee Members  
 
Assoc.Prof.Dr. Nazife BAYKAL   _____________________ 
 
 
Assoc.Prof.Dr. Ahmet COŞAR                  _____________________ 
   
 
Assoc.Prof.Dr. İ.Hakkı TOROSLU   _____________________ 
 
 
Assist.Prof.Dr. Erkan MUMCUOĞLU   _____________________ 
 
 
Dr. Altan KOÇYİĞİT                        ___________________ 



 iii

 

 
 
 

ABSTRACT 
 
 
 

 A STUDY  OF  KANGAROO TRANSACTION MODEL FOR MOBILE 

 TRANSACTION MANAGEMENT 

 
 
 

Örenç, Zülfü 
 
 
 

M.S. Department of Information Systems 
 

Supervisor: Assoc.Prof.Dr. Ahmet COŞAR 
 

 
June 2004, 75 pages 

 
 
 
 
 

Wireless network technology has advanced to the point that it is possible to use 

Internet connectivity to perform job tasks while moving in a city. We simulate and 

experimentally evaluate Dunham’s Kangaroo Transaction (KT) model, and a modified 

version of it. Our results show that the modified-KT model does not have much 

communication overhead (although more than the original KT model) and it is more 

resilient to failures of base stations.  

 
 
 
Keywords: Kangaroo Transaction, Joey Transaction, Mobile Unit, Mobile Support 
Station. 

 



 iv

 
 
 
 

ÖZ 
 
 
 

HAREKETLİ İŞLEM YÖNETİMİ UYGULAMASI 
 
 
 

Örenç, Zülfü 
 
 
 

Yüksek Lisans, Bilişim Sistemleri Bölümü 
 

Tez Yöneticisi: Doç. Dr. Ahmet COŞAR 
 
 

Haziran 2004, 81 sayfa 
 
 
 
 
 

Donanım, kablosuz iletişim teknolojisi ve taşınabilir işlem cihazlarındaki hızlı 
gelişmeler,fiziksel yerleri ve hareketli olup olmadığı önemli olmadan, taşınabilir işlem 
cihazları taşıyan kullanıcılara bilgiye ve hizmetlere ulaşma imkanı veren, hareketli 
işlem diye isimlendirilen yeni bir model oluşturdu. Bu çalışmada hareketli işlem 
ortamında,geleneksel merkezi ve dağıtık istemci sunucu modellerinden farklı olan  
hareketli işlem yönetimi incelenmiştir. Hareketli işlem modellerinden biri olan,hem veri 
hem de hareketi yakalayan kanguru işlem modeli, seyyar oto tamir servisine 
uygulanmıştır. 
 
 

 
 
 
 

Anahtar Kelimeler : Kanguru İşlemi, Joey İşlemi, Bölge İşlemi, Hareketli Birim, 
Hareketi Destek İstasyonu 
 
 



 v

 
 
 

 
 

ACKNOWLEDGEMENTS 
 
 
 
 
 

 
I express sincere appreciation to Assoc.Prof.Dr.Ahmet COŞAR for his guidance, 

assistance and insight throughout the research. To my wife, Hale, I offer sincere thanks 

for her unshakable faith in me and her willingness to endure with me.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi

 

 

TABLE OF CONTENTS 

 

ABSTRACT..................................................................................................................................................iii 

ÖZ..................................................................................................................................................................iv 

ACKNOWLEDGEMENT..............................................................................................................................v 

TABLE OF CONTENTS..............................................................................................................................vi 

LIST OF TABLES.......................................................................................................................................viii 

LIST OF FIGURES................................................................................................................................ ..... ix 

LIST OF ACRONYMS................................................................................................................................. x 

1         INTRODUCTION............................................................................................................................ 1 
1.1 PROBLEM STATEMENT .................................................................................................................. 2 
1.2 APPROACH TAKEN ........................................................................................................................ 3 
1.3 THESIS OUTLINE ............................................................................................................................ 3 

2 BACKGROUND .............................................................................................................................. 5 
2.1 THE BASIC CHARACTERISTICS OF A MOBILE ENVIRONMENT .......................................................... 5 
2.2 A MOBILE COMPUTING MODEL .................................................................................................... 7 
2.3 TRANSACTIONS ............................................................................................................................. 8 

2.3.1 Transaction operations...................................................................................................... 9 
2.3.2 Mobile Transactions Characteristics .............................................................................. 10 
2.3.3 System Log....................................................................................................................... 11 

2.4 OVERVIEW OF MOBILE TRANSACTION MODELS.......................................................................... 11 
2.5 SAGAS ......................................................................................................................................... 13 

3 SIMULATOR FOR KANGAROO TRANSACTION MODEL ................................................ 16 
3.1 CONCEPTUAL OVERVIEW ............................................................................................................ 16 

3.1.1 Mobile Auto Repair Service............................................................................................. 16 
3.1.2 Kangaroo Transaction .................................................................................................... 17 
3.1.3 Kangaroo Execution........................................................................................................ 21 

3.2 CONCEPTUAL MODEL FOR MOBILE TRANSACTION ENVIRONMENT............................................. 23 
3.2.1 Entities and Objects......................................................................................................... 23 
3.2.2 System Capability Requirements ..................................................................................... 24 
3.2.3 Transactions Terminology............................................................................................... 28 
3.2.4 Processing Modes............................................................................................................ 28 
3.2.5 Assumptions and Limitations........................................................................................... 28 

4 DESIGN AND IMPLEMENTATION OF KANGAROO TRANSACTION MODEL ............ 29 
4.1 GENERAL OVERVIEW OF THE SIMULATION TOOL........................................................................ 29 

4.1.1 Logical Architecture........................................................................................................ 29 
4.1.2 Communication between MU and MSS ........................................................................... 30 



 vii

4.1.3 Mobile User Migration Scheme....................................................................................... 30 
4.1.4 Disconnection Operation Scheme ................................................................................... 31 
4.1.5 Script Execution .............................................................................................................. 31 

4.1.5.1 CONNECT ...............................................................................................................................32 
4.1.5.2 BEGIN......................................................................................................................................33 
4.1.5.3 MOVE ......................................................................................................................................34 
4.1.5.4 DISCONNECT.........................................................................................................................35 
4.1.5.5 SELECT ...................................................................................................................................36 
4.1.5.6 INSERT ....................................................................................................................................37 
4.1.5.7 UPDATE ..................................................................................................................................37 
4.1.5.8 SAVE........................................................................................................................................38 

4.1.6 Client Layer..................................................................................................................... 39 
4.1.6.1 Graphical User Interface...........................................................................................................39 

4.1.6.1.1 Login Window..............................................................................................................39 
4.1.6.1.2 Network Mobility Window ..........................................................................................39 
4.1.6.1.3 Transaction Keywords, Edit and Display Result Window............................................40 

4.1.7 Middle Layer ................................................................................................................... 42 
4.1.7.1 Mobile Support Station (MSS) .................................................................................................42 
4.1.7.2 Data Access Agent (DAA)........................................................................................................43 
4.1.7.3 Initialization..............................................................................................................................43 
4.1.7.4 Transaction Management..........................................................................................................43 

4.1.7.4.1 Status values .................................................................................................................45 
4.1.7.4.2 Data structures..............................................................................................................45 
4.1.7.4.3 Transactions ID generation...........................................................................................45 
4.1.7.4.4 System Initiated Abort..................................................................................................46 

4.1.8 Server Layer .................................................................................................................... 46 
4.1.8.1 DBMS Installation ....................................................................................................................46 
4.1.8.2 Database Model ........................................................................................................................47 

5 EXPERIMENTAL SET UP AND RESULTS.............................................................................. 48 
5.1 EXPERIMENTAL ENVIRONMENT IN A LAN................................................................................... 48 
5.2 SYSTEM TESTING......................................................................................................................... 49 
5.3 SIMULATION PARAMETERS.......................................................................................................... 50 
5.4 EXPERIMENTAL RESULTS ............................................................................................................ 51 

6 CONCLUSIONS AND FUTURE WORK ................................................................................... 55 
6.1 FUTURE WORK............................................................................................................................. 56 

REFERENCES.......................................................................................................................................... 57 
APPENDIX ................................................................................................................................................ 59 

 

 

 

 

 

 



 viii

 

 

LIST OF TABLES 

 

Table 1: Mobile Transaction Models.................................................................... 13 
Table 2: Kangaroo Transaction Example Status Table Records .......................... 22 
Table 3: Kangaroo Transaction Example Log Records........................................ 23 
Table 4: Script Language Commands................................................................... 41 
Table 5: Transaction Data Values......................................................................... 44 
Table 6: Transaction Status Values ...................................................................... 45 
Table 7: Test Summary......................................................................................... 50 
Table 8: Simulation Parameters............................................................................ 51 
Table 9: Transaction Execution Time................................................................... 52 

 

 

 

 

 

 

 

 

 

 

 



 ix

 

 

LIST OF FIGURES 

 

Figure 1: Mobile-Computing Model (from [1]) ..................................................... 7 
Figure 2: Mobile Auto Repair Service.................................................................. 17 
Figure 3: Basic structure of Kangaroo Transaction (from [1])............................. 19 
Figure 4: Kangaroo Execution (from [1])............................................................. 20 
Figure 5: Use Case Diagram of System................................................................ 26 
Figure 6: Logical Model ....................................................................................... 29 
Figure 7: Activity diagram of ‘CONNECTION’ script........................................ 32 
Figure 8: Activity diagram of ‘BEGIN’ script ..................................................... 33 
Figure 9: Activity diagram of ‘MOVE’ script...................................................... 34 
Figure 10: Activity diagram of ‘DISCONNECTION’ script ............................... 35 
Figure 11: Activity diagram of ‘SELECT’ script ................................................. 36 
Figure 12: Activity diagram of ‘INSERT and UPDATE’ script .......................... 37 
Figure 13: Activity diagram of ‘SAVE’ script ..................................................... 38 
Figure 14: Login Window .................................................................................... 39 
Figure 15: Base Stations Window ........................................................................ 40 
Figure 16: Transaction Keywords, Edit and Display Result Window ................. 42 
Figure 17: Physical Architecture .......................................................................... 48 
Figure 18: Kangaroo Model.................................................................................. 53 
Figure 19: Modified Kangaroo Model.................................................................. 53 
Figure 20: Comparison of KM and MKM............................................................ 54 

 

 

 

 

 

 

 



 x

 

 

LIST OF ACRONYMS 

 

ACID            : Atomicity, Consistency, Isolation, and Durability. 

DAA             : Data Access Agent 

DB                : Database 

DBMS          : Database Management System 

FH                : Fixed Host 

GDBS           : Global Database System 

GT                : Global Transaction 

GST              : Global Sub Transaction 

JT                 : Joey Transaction 

KM              : Kangaroo Model 

KT                : Kangaroo Transaction 

LLT              : Long-lived transactions 

LT                : Local Transaction 

MDSTPM   : Multidatabase Transaction Processing Manager  

MH              : Mobile Host 

MKM          : Modified Kangaroo Model 

MKT            : Modified Kangaroo Transaction 

MSS             : Mobile Support Station 



 xi

MTM           : Mobile Transaction Manager 

MU              : Mobile Unit 

RMI             : Remote Method Invocation 

SQL             : Structured Query Language 

ST                : Site Transaction 

TM              : Transaction Management 



 1

 

 

CHAPTER 1 

 

1   INTRODUCTION 

 

Advances in portable computing devices, computer technology and wireless 

communication networks have lead to the emergence of mobile computing systems that 

have provided users the opportunity to access information and services regardless of 

their physical location or movement behavior [1]. 

Mobile computing enables enterprises to increase employee productivity, improve 

customer service and reduce costs. Many organizations deploy mobile solutions, by 

extending their existing applications or building new ones [5]. 

Wireless technology offers enterprises two fundamental opportunities – to run a 

company more efficiently using the wireless Internet, and to exploit new business 

opportunities that arise by providing customers, partners, suppliers, and employees with 

expanded access to the Internet from a variety of wireless devices. Early adopters of 

wireless technology are transforming their business and seeing competitive advantages 

in their respective industries in the form of cost reduction and productivity. 

Example applications for mobile computing systems may be found in both 

business and personal communities. Shipping providers use mobile computing systems 

to track packages as each carrier navigates a route. Individuals carrying a web enabled 

cellular device may obtain stock quotes, submit trade orders, and receive order 

confirmation all while walking in a large city. The “Wishard Memorial Hospital 

Ambulatory Service of Indianapolis, Indiana” implemented a mobile computing system. 



 2

The system enabled emergency medical technicians to access data from a remote server 

using a portable-computing device while responding to a call for service. Medical 

technician access patient history records and writes updates to the data. At the same time, 

the treatment center staff accesses the data and prepare for the patient’s arrival. The 

system enables real-time data access and sharing of potentially life saving data [2]. 

All of the example applications mentioned exhibit characteristics commonly found 

in the mobile environment. These characteristics include high mobility, frequent 

disconnection, limited battery power, user pauses resulting in long duration transactions, 

and data access [15]. 

1.1 Problem Statement  

In Kangaroo Transaction model each time a mobile host connects to a different 

base station, communication will take place with the previous base stations in order to 

transfer transaction information to the new base station. Then, a new JT (Joey 

transaction) will be created in the new base station. 

Each Kangaroo Transactions use either the “compensating mode” or the” split 

mode”. In split mode if  a JT fails, no extra operation is needed on previously committed 

JTs. n compensating mode, however all of the previously executed (and committed) JTs 

must be compensated for by using compensating transactions. This requires a linked list 

of all these JTs to be maintained by keeping the previous “base station id” at each JT 

site. However, when/if a base station fails/ (or is disconnected) it will not be possible to 

find out the preceding JTs. 

In order to eliminate this problem, we propose to store JT information on the 

database server. Thus, it will be possible to identify all involved JTs and compensate for 

them. However, storing extra JT information and accessing the database server will 

increase the transaction execution time. In the rest of this thesis, we refer to this method 

as Modified Kangaroo Transaction (MKT) model. 

We use simulation of Kangaroo Transactions using the Modified Kangaroo 

Transaction model to experimentally determine the overhead of MKT. 



 3

1.2 Approach Taken 

The purpose of this thesis is to simulate a transaction model that copes with the 

hopping behavior of the mobile user and compare two different models (Kangaroo 

model and Modified Kangaroo model). The study is performed in three phases: 

development of the simulation model and testing environment, and generation of 

experimental mobile transaction scripts and running of the experiments. 

In the first phase, Kangaroo transaction model is simulated via a computer 

program developed using the java programming language. The simulation model has 

been applied to a mobile auto repair service. 

In the second phase, we have created 4 different mobile transaction scripts, to 

simulate mobility of the transactions. 

In the last phase, as a result of this simulation, the two models (Kangaroo model 

and Modified Kangaroo model) are compared and their advantages and disadvantages 

are investigated. 

1.3 Thesis outline 

This study is divided into six chapters, namely introduction, background, 

simulator for Kangaroo transaction model, design and implementation of Kangaroo 

transaction model, experimental results and conclusions. 

After an introduction is given in chapter 1, the background of the research is 

described in chapter 2. In the background chapter, the basic characteristics of mobile 

environment, mobile computing model, transactions and mobile transaction models are 

explained. 

In Chapter 3, the simulator developed in this work for Kangaroo model is 

presented. In this chapter, conceptual overview and conceptual model for mobile 

transaction environment are also given . 



 4

In Chapter 4, design and implementation of the simulation tool is described. After 

general overview of the simulation tool, its database model is presented. 

In chapter 5, experimental set up is discussed and results are reported. 

Finally, Chapter 6 summarizes conclusions and discusses some possible related 

future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5

 

 

CHAPTER 2 

 

2 BACKGROUND 
 

In this chapter, firstly the basic characteristic of mobile environment, a mobile 

computing model, transaction operations, Kangaroo transaction model and other mobile 

transactions models are presented.  

2.1 The basic characteristics of a mobile environment 

Three essential properties pose difficulties in the design of applications for the 

mobile computing environment: wireless communication, mobility, and portability [6]:  

· Wireless Communication: Mobile computers use wireless network access for 

communication. Lower bandwidths, higher error rates, and more frequent spurious 

disconnections often characterize wireless communication. 

Wireless communication has some problems in the areas of: 

1. Disconnection: Wireless networks are inherently more prone to disconnection. 

Since computer applications that rely heavily on the network may cease to function 

during network failures, proper management of disconnection is of vital importance in 

mobile computing 

2. Limited Bandwidth: Wireless networks deliver lower bandwidth than wired 

networks. Cutting-edge products for portable wireless communication achieve only 1 

megabit per second for infrared communication, 2 Mbps for radio communication, and 9 

– 14 kbps for cellular telephony. On the other hand, Ethernet provides 10 Mbps, fast 



 6

Ethernet and FDDI, 100 Mbps, and ATM (Asynchronous Transfer Mode) 155 Mbps [6]. 

Available bandwidth is often divided among users sharing a cell. Thus, high utilization 

is of vital importance.  

· Mobility: The ability to change location while keeping network connection is 

very important for mobile computing. As mobile computers move, they encounter 

heterogeneous networks with different features. A mobile computer may need to switch 

interfaces and protocols. Security considerations exist because a wireless connection can 

be easily compromised. Appropriate security measures must be taken to prevent 

unauthorized disclosure of information. The amount of data stored locally should be 

minimal; backup copies must be propagated to stationary servers as soon as possible as 

is done in replicated systems. 

· Portability: Mobile computers generally small, light, durable, operational under 

wide environmental conditions, and require minimal power usage for long battery life. 

Concessions have to be made in each of the areas to enhance functionality [6]. Some of 

the design pressures that result from portability constraints include: 

1. Low Power: Batteries are the largest single source of weight in portable 

computers. Reducing battery weight is important, however too small a battery can 

undermine the value of portability. Applications should be designed to require less 

communication and computation. Preference should be given to listening rather than 

transmitting since receptions consumes a fraction of the power it takes to transmit. 

2. Limited Storage capacity: Physical size and power requirements effectively 

limit storage space on portable computers. Disk drives, which are an asset in stationary 

computers, are a liability in mobile computers because they consume more power than 

memory chips. This restricts the amount of data that can be stored on mobile devices. 

Solutions include compressing files systems, accessing remote storage over the network, 

shared code libraries, and compressing virtual memory [7]. 

 



 7

2.2 A Mobile Computing Model 

A widely accepted model of mobile computing is shown in Figure 1. 

 

 

 

Figure 1: Mobile-Computing Model (from [1]) 

The model consists of stationary and mobile components. A Mobile Host (MH) is 

a portable computing device capable of connecting to the fixed network via a wireless 

link to a base station. A Fixed Host (FH) is a computer connected to a fixed network and 

not capable of connecting to wireless devices. A Database Management System resides 

on the FH to provide data storage and management facilities. A Mobile Support Station 

(MSS), also called “base station”, is in the middle layer and capable of connecting to 



 8

both wired and wireless devices. Each MSS communicates with MHs located in its 

coverage area called a cell. A cell could be either a cellular connection, satellite 

connection, or a wireless local area network. A MH can communicate with a MSS if it is 

located within the cell governed by the MSS. MHs can move within a cell or between 

cells, effectively disconnecting from one MSS and connecting to another. At any point 

in time a MH can be connected to only one MSS. MHs are portable computers that vary 

in size, processing power, memory, etc. The size of a cell is dependent upon the cellular 

technology available. A MH may move within a cell or from cell to cell while retaining 

networking connectivity [3]. 

The MSS is an interface between the MH and the database residing on the FH. It 

also serves as an application server for MH to download software and access messages. 

Each MH is assigned a unique identifier and "home" MSS .The home MSS stores 

information such as user profiles, login files, and access rights. 

The MH may act as both a data client and data server. As a data client, it submits 

requests for data and stores the results locally. The MH transmits location information to 

the MSS when connected. If the MH supports data access in disconnected mode, then it 

acts as a data server and must support basic transaction operations such as local read, 

write, commit, and abort [14]. 

2.3 Transactions 

A common element of all mobile computing systems is the use of a transaction. A 

transaction is defined as a collection of database operations that form a single, logical 

unit of work. A traditional relational database management system is responsible to 

maintain four key properties for all transactions. The properties are Atomicity, 

Consistency, Isolation, and Durability. The meaning of each is provided below. 

• Atomicity: All operations occur or none at all. 

• Consistency: Relations and constraints among data elements must 

preserve consistency of the data. 



 9

• Isolation: Each transaction must appear to execute as if no other 

transaction is executing at the same time. 

• Durability: The effect of the transaction must be permanent and persist, 

even if there are system failures [13]. 

Collectively the four properties referred to as the ACID properties by members of 

the database community. The acronym is derived from the first letter of each property. 

The ANSI standard structured query language (SQL) contains statements to both 

define and control the logic of a transaction. The start of a transaction is an implicit 

BEGIN. In normal operation, a transaction ends when a COMMIT or ROLLBACK is 

issued. The COMMIT statement ends the current transaction by making all pending data 

changes permanent and automatically begins a new one. The ROLLBACK statement 

ends the current transaction by discarding all pending data changes. If a transaction 

terminates due to system crash, the state of the database depends upon the DBMS 

implementation. The DBMS may issue an implicit ROLLBACK to discard all pending 

changes and restart the database [8]. 

2.3.1 Transaction operations                                                                                         

• Begin transaction. This marks the beginning of transaction execution.  

• Read or Write. These specify read or write operations on the database 

items that are executed as part of a transaction.  

• Commit transaction: This signals a successful end of the transaction so 

that any changes (updates) executed by the transaction can be safely 

committed to the database and will not be undone.  

• Rollback (or Abort): This signals that the transaction has ended 

unsuccessfully, so that any changes or effects that the transaction may 

have applied to the database must be undone. 



 10

• End transaction. This specifies that read and write transaction operations 

have ended and marks the end of transaction execution. However, at this 

point it may be necessary to check whether the changes introduced by the 

transaction can be permanently applied to the database (committed) or 

whether the transaction has to be aborted because it violates serializability 

[13].                                                                                                                                         

2.3.2 Mobile Transactions Characteristics 

The access to the future information systems through mobile computers will be 

performed with the help of mobile transactions. 

However, a transaction in this environment is different from the transactions in the 

centralized or distributed databases in the following ways. 

• The mobile transactions might have to split their computations into sets of 

operations, some of which execute on mobile host while others on 

stationary host. A mobile transaction share their states and partial results 

with other transactions due to disconnection and mobility. 

• The mobile transactions require computations and communications to be 

supported by stationary hosts. 

• As the mobile hosts move from one cell to another, the states of 

transaction, states of accessed data objects, and the location information 

also move.  

• The mobile transactions are long-lived transactions due to the mobility of 

both the data and users, and due to the frequent disconnections. 

• The mobile transactions should support and handle concurrency, recovery, 

disconnection and mutual consistency of the replicated data objects [4]. 

 



 11

2.3.3 System Log 

To be able to recover from failures that affect transactions, the system maintains a 

log to keep track of all transaction operations that affect the values of database items. 

This information may be needed to permit recovery from failures. The log is kept on 

disk, so any type of failure except for disk or catastrophic failure does not affect it. In 

addition, the log is periodically backed up to archival storage (tape) to guard against 

such catastrophic failures. 

2.4 Overview of Mobile Transaction Models 

• Kangaroo Transaction  Model 

The architecture of the Kangaroo Transaction Model consists of three tiers. An 

important addition to the common mobile computing architecture is the inclusion of a 

Data Access Agent (DAA) in the middle tier. It is assumed that each MSS is capable of 

hosting a DAA. A major function performed by the services in the middle tier is Mobile 

Transaction Management (MTM). MTM involves tracking the execution status of all 

transactions, logging recovery information, forwarding mobile host (MH) transaction 

requests to the underlying DBMS, and participating in network handoff as the MH hops 

from station to another [1]. 

• Reporting and Co-Transactions 

Chrysanthis[12] has proposed a transaction view for mobile computing .Like 

Kangaroo model, they view MTs as being built using concepts developed for 

multidatabase transactions. To manage mobile transactions, they assume that a GDBS 

exists at each base station to control the execution of the mobile transaction. They do 

assume that the subtransactions of the mobile transaction will commit or abort 

independently and that if a subtransaction aborts, all others, which are yet to be 

committed will also abort. However, they also have two additional types of 

subtransactions (reporting and co-transactions). 

 



 12

• Clustering model 

With the clustering model [16, 17], the database is divided into clusters. A cluster 

defines a set of mutually consistent data. Inconsistencies are allowed to exist between 

clusters. In a mobile computing environment, data at an MU is in a different cluster than 

data in the fixed network. Transactions that execute at the MU do not ensure consistency 

between these two clusters. For each transaction executed at an MU, a proxy, which has 

only the associated update operations, will be executed later in the fixed network. 

• Semantics-based model 

The semantics-based mobile transaction-processing scheme [18] views mobile 

transaction processing as a concurrency and cache coherency problem. The model 

assumes a mobile transaction to be a long lived one characterized by long network 

delays and unpredictable disconnections. This approach utilizes the object organization 

to split large and complex objects into smaller manageable fragments. A stationary 

database server dishes out the fragments of a object on a request from a mobile unit. On 

completion of the transaction, the mobile hosts return the fragments to the server. These 

fragments are put together again by the merge operation at the server. If the fragments 

can be recombined in any order then the objects are termed reorderable objects. 

Aggregate items, sets, and data structures like stacks and queues are examples of 

fragmentable objects. 

• Multidatabase Transaction Processing Manager (MDSTPM) 

Yeo and Zaslavsky examined how multidatabase transactions could be submitted 

from mobile workstations [11]. A major premise of this article is that mobile units may 

voluntarily disconnect from the network prior to having any associated transactions 

completed. Yeo’s view, like Kangaroo and like Chrysanthis’, is that mobile transactions 

should be built on top of multidatabase global transactions. These authors also indicate 

that any mobile transaction model should support the concept of “long-duration 

transactions and sagas” [11]. 



 13

A summary of the features and infrastructure associated with a selection of 

proposed models is shown in Table 1. 

Of all previously proposed mobile transaction models, the Kangaroo model is the 

only one that captures the movement nature of the MU. So Kangaroo model is selected 

for study. 

 

Table 1: Mobile Transaction Models 

 
Models Database system 

model 
Additional 

infrastructure 
Execution in 

Reporting 
and 
Co-Transactions 
 

Multidatabase 
 

Transtion Manager 
modified 
 

MU or Fixed 
Network 

Kangaroo 
model 
 

Heterogeneous 
multidatabase 
 

Data access agent 
 

Fixed Network 
 

Clustering 
model 
 

Fully distributed 
database 
 

Strict and Weak 
transactions 
 

MU or Fixed 
Network 
 

Semantics 
based model 
 

Distributed 
multidatabase 
 

Fragmentation 
based model object 
 

Restricted 
Server/MU 
 

 
MDSTPM 
 

Heterogeneous 
multidatabase 
systems 
 

MDSTPM layer 
 

MU or Fixed 
Network 
 

 

2.5 Sagas 

Transactions in the mobile computing environment exhibit characteristics that 

require special control mechanisms. Mobile environment transactions are long-lived in 

nature, subject to frequent disconnection, and may start and end at different cells. 

Transaction processing in the mobile computing environment is different from fixed host 

transaction or distributed transaction processing [1]. During the late 1980's, Hector 



 14

Garcia-Molina and Kenneth Salem authored a paper titled Sagas. The paper describes 

the results of their study on long-lived transactions (LLT) and suggested transaction 

processing control mechanism. 

A long-lived transaction is a transaction that takes a substantial amount of time to 

execute. Execution may take several hours or days to complete. Since long-lived 

transactions are transactions, the database management system must apply the ACID 

properties. Most database management systems will lock resources requested by a 

transaction until it completes. Locking resources for extended periods will cause a 

conflict with other transactions. This results in a deadlock and a high abort rate [10]. 

The authors introduced the concept of a saga and a control mechanism to resolve 

the problems introduced by LLT. A saga is a collection of sub-transactions that may be 

intermixed with other transactions. The sub-transactions in a saga are related and 

collectively must satisfy the atomicity property. Each sub-transaction must be executed. 

Any partial execution of the saga is unfavorable and must be compensated for. The 

concept of a saga relaxes the atomic property so resources may be released as each sub-

transaction is executed. The saga as a whole must satisfy the atomic property[10]. 

For illustration purposes, consider a saga consisting of transactions  T1, T2, T3, 

and  T4.Associated with each transaction is a compensating transaction C1, C2,C3, and 

C4.The purpose of each compensating transaction is to undo any actions performed by 

the transaction. Executing an action and its compensating transaction returns the 

database to the "same" state as before. However, the meaning of "same" database state 

does not guarantee the database will be restored to a state identical to that which existed 

before. Each compensating transaction may not return the database to the identical state 

that existed prior to the execution of the transaction. It is possible that some other 

transaction was executed between the time the action was executed and its compensating 

transaction. No effort is made to notify the other transactions at the time a compensating 

transaction is executed. The net effect on the database state is as if neither the actions 

nor the compensating transaction was executed. The execution of a saga consisting of 

transactions T1…Tn and compensating transactions C1…Cn-1 is guaranteed to result in 



 15

two possible outcomes. The first outcome is optimistic in the sense all transactions 

execute in the order T1…Tn. The second outcome addresses the partial execution 

scenario in which the order of execution is as follows: T1, T2,….Tj , Cj,…..C2,C1 for 

some 0 ≤  j ≤ n [10]. It may appear from the description that a saga is a nested 

transaction. However, a saga is a special type of nested transaction. Sagas limit the 

number of levels to two - the top level and simple sub-transactions. This limit enables 

the DBMS to utilize traditional concurrency control mechanisms such as locking on the 

sub-transactions and compensating transactions for the overall transaction [10]. 

 

 

 

 

 

 

 

 

 

 

 



 16

 

 

CHAPTER 3 

 

3    SIMULATOR FOR KANGAROO TRANSACTION 
MODEL 

In this chapter, conceptual overview and conceptual model for mobile transaction 

environment are discussed. 

3.1 Conceptual Overview 

3.1.1 Mobile Auto Repair Service 

Mobile auto repair service is given here as an example application. Figure 2 shows 

the advantage of mobile transactions in comparison to classical transactions. In this 

example when a car breakdown is reported, auto repair service must physically repair 

the automobile or have it towed to a service center. In a classical system after gathering 

needed information, repair service personnel go to location of the automobile. After 

repair, repair service will return to the service center for the next job to be assigned. 

However, in mobile environment, repair service can receive the needed information 

while it is moving towards the breakdown location, so it convenes time by obtaining 

information while it is moving. Also, it can be assigned to the next job remotely, without 

requiring it to go back to the service center. Of course, it will receive required 

information (such as location, payment method, insurance, etc) about the next job using 

again mobile transactions. 

 



 17

 
Figure 2: Mobile Auto Repair Service  

 
 

3.1.2 Kangaroo Transaction 

A mobile transaction model has been defined addressing the movement behavior 

of transactions [1]. Mobile transactions are named as Kangaroo Transactions, which 

incorporate the property that the transactions in a mobile environment hop from one base 

station to another as the mobile unit moves. The model captures this movement behavior 

and the data behavior reflecting the access to data located in databases throughout the 

static network. 

The reference model assumed in [1] has a Data Access Agent (DAA), which is 

used for accessing data in the database (of fixed host, base station or mobile unit) and 

each base station hosts a DAA. When it receives a transaction request from a mobile 

user, the DAA forwards it to the specific base stations or fixed hosts that contain the 



 18

required data. DAA acts as a Mobile Transaction Manager and data access coordinator 

for the site. It is built on top of an existing Global Database System (GDBS). A GDBS 

assumes that the local DBMS systems perform the required transaction processing 

functions including recovery and concurrency. A DDA’s view of the GDBS is similar to 

that seen by a user at a fixed terminal and GDBS is not aware of the mobile nature of 

some nodes in the network. DDA is also not aware of the implementation details of each 

requested transaction. 

When a mobile transaction moves to a new cell, the control of the transaction may 

move or may retain at the originating site. If it remains at the originating site, messages 

would have to be sent from the originating site to the current base station any time the 

mobile unit requests information. If the transaction management function moves with 

the mobile unit, the overhead of these messages can be avoided. For the logging side of 

this movement, each DAA will have the log information for its corresponding portion of 

the executed transaction. 

The model is based on traditional transaction concept which is a sequence of 

operations including, read, write, begin transaction, end transaction, commit and abort 

transaction operations. The basic structure is mainly a Local transaction (LT) to a 

particular DBMS. 

On the other hand, Global Transactions (GT) can consist of either sub-transactions 

viewed as LTs to some DBMS (Global Sub-transaction -GST) or sub-transactions 

viewed as sequence of operations which can be global themselves (GTs). This kind of 

nested viewing gives a recursive definition based on the limiting bottom view of local 

transactions. A hopping property is added to model the mobility of the transactions and 

Figure 3 shows this basic Kangaroo Transaction (KT) structure and Figure 4 shows the 

relationship between movement of a mobile unit between cells and the corresponding 

Kangaroo Transaction. 

 



 19

 

Figure 3: Basic Structure of Kangaroo Transaction (from [1]) 

 
 

 
(a) Movement of Mobile Unit through Cells 

 

 

 

(b) Hopping from Base Station to Base Station 

 

 



 20

 

(c) Kangaroo Transaction 

Figure 4: Kangaroo Execution (from [1]) 

 

Each sub-transaction represents the unit of execution at one base station and is 

called a Joey Transaction (JT). The sequence of global and local transactions which are 

executed under a given KT is defined as a Pouch. The origin of base station initially 

creates a JT for its execution. A GT and a JT are different from each other only JT is a 

part of KT and it must be coordinated by a DAA at some base station site. A KT has a 

unique identification number consisting of the base station number and unique sequence 

number within the base station. When the mobile unit moves from one cell to another, 

the control of the KT changes to a new DAA at another base station. The DAA at the 

new base station site creates a new JT as the result of the handoff process. JTs have also 

identifications numbers in sequence where a JT ID has both the KT ID and the sequence 

number. 

The mobility of the transaction model is captured by the use of split transactions. 

The old JT is thus committed independently of the new JT. In Figure 4, JT1 is 

committed independently from JT2 and JT3. If a failure of any JT occurs, that may result 

the entire KT to be undone by compensating any previously completed JTs since the 

autonomy of the local DBMSs must be assured. Therefore, a Kangaroo Transaction 

could be in a Split Mode or in a Compensating Mode. A split transaction divides an 

ongoing transaction into serializable sub-transactions. Earlier created sub-transaction 

may be committed and the second one can continue to its execution. However, the 



 21

decision as to abort or commit currently executing ones is left up to the component 

DBMSs. Previously JTs may not be compensated so that neither Splitting Mode nor 

Compensating Mode guarantees serializability of kangaroo transactions. Although 

Compensating Mode assures atomicity, isolation may be violated because locks are 

obtained and released at the local transaction level. With the Compensating Mode, Joey 

sub-transactions are serializable. The Mobile transaction Manager (MTM) keeps a 

Transaction Status Table on the base station DAA to maintain the status of those 

transactions. It also keeps a local log into which the MTM writes the records needed for 

recovery purposes, but the log does not contain any records related to recovering 

database operations. Most records in the log are related to KT transaction status and 

some compensating information. Kangaroo Transaction model captures both the data 

and moving behavior of mobile transactions and it is defined as a general model where it 

can provide mobile transaction processing in a heterogeneous, multidatabase 

environment. The model can deal with both short-lived and long-lived transactions. The 

mobile agents concept [9] for multi-node processing of a KT can be used when the user 

requests new sub-transactions based on the results of earlier ones. This idea is discussed 

in [1] as pointing out that there will be no need to keep status table and log files in the 

base stations DAA. In this case, agent infrastructure must provide the movement of the 

state information with the moving agent. 

3.1.3 Kangaroo Execution 

The flow of a Kangaroo Transaction is outlined in Tables 2 and 3. The processing 

mode under consideration is Compensating mode and involves two MSSs. The process 

begins when the MU requests a transaction from MSS1 and ends when the MU indicates 

the end of the transaction. The status values assigned are Active (1), Committing (2), or 

Aborting (3). The Log records shown in table 3 either Begin (B) or End (E) followed by 

the transaction type. Handoff from one MSS to another is recorded in the log as Hand 

Off KT and Continue KT record types. Compensating transaction data is stored in the 

status table for all site transaction records. Each transaction identifier is a string formed 

by concatenating the MSS name and a sequence number. The KTID assigned in the 

example is MSS1.1. An example JTID is MSS1.1.1. 



 22

Table 2: Kangaroo Transaction Example Status Table Records 

 
Status Table MSS1 Status Table MSS2 Sequence Action 

Type ID Status Type ID Status

1 MU requests transaction 

at MSS1.  

KT MSS1.

1 

1    

2 MSS1 creates a JT to 

execute locally.  

JT MSS1.

1.1 

1    

3 A site transaction (ST) is 

executed. 

ST MSS1.

1.1.1 

1    

4 MSS1 COMMIT site 

transaction.  

ST MSS1.

1.1.1 

2    

5 A second ST executes 

locally as part of the JT.  

ST MSS1.

1.1.2 

1    

6 MSS1 COMMIT site 

transaction 

ST MSS1.

1.1.2 

2    

7 Handoff between MSS1 

and MSS2 occurs. 

JT MSS1.

1.1 

2 JT MSS1. 

1.2 

1 

8 A site transaction is 

executed.  

   ST MSS1 

.1.2.1 

1 

9 Site transaction 

committed.  

   ST MSS1 

.1.2.1 

2 

10 MU indicates intent to 

end transaction 

   JT MSS1. 

1.2 

2 

11 MSS1 updates KT status 

to COMMIT.  

KT MSS1.

1 

2    

 

KT        :  Kangaroo Transaction JT         :  Joey Transaction 

ST         :  Site Transaction Status   : 1(Active), 2(Commit) 

 



 23

Table 3: Kangaroo Transaction Example Log Records 

 

Log Record MSS1 Log Record MSS2 Sequence 

Type Contents Type Contents 

1 BKT KTID        (MSS1.1)   

2 BJT JTID         (MSS1.1.1)   

3 BST STID        (MSS1.1.1.1)   

4 EST STID        (MSS1.1.1.1)   

5 BST STID        (MSS1.1.1.2)   

6 EST STID        (MSS1.1.1.2)   

7 EJT JTID         (MSS1.1.1)   

7 HOKT KTID       (MSS1.1) CKT KTID      (MSS1.1) 

7   BJT JTID       (MSS1.1.2) 

8   BST STID      (MSS1.1.2.1)

9   EST STID      (MSS1.1.2.1)

10   EJT JTID       (MSS1.1.2) 

11 EKT KTID   (MSS1.1)   

  
BKT    : Begin kangaroo transaction EKT  : End kangaroo transaction 
BJT     :  Begin joey transaction EJT   : End joey transaction 
BST     : Begin site transaction EST   : End site transaction 
HOKT : Hand-off  kangaroo transaction 
 

CKT  : Continue kangaroo transaction 

 

3.2 Conceptual Model for Mobile Transaction Environment 

3.2.1 Entities and Objects 

Mobile Unit (MU) 

• Mobile computer capable of connecting to a fixed host via wireless link. 



 24

• Client side user interface to submit queries and display results. 

Fixed Host (FH) 

• Commercial DBMS resides on FH along with other services offered to 

clients. 

• Communicates with clients using wired network. 

Mobile Support Station (MSS) 

• Interface between MU and FH. It can establish wireless link(s) to MUs 

and has permanent wired connectivity to FH. 

• Host Data Access Agent (DAA) responsible for transaction management. 

• Location management services provide previous MSS information when a 

new MSS is connected. 

Database (DB) 

• A database is a collection of related data of mobile auto repair service. 

3.2.2 System Capability Requirements  

To develop transaction script language to simulate mobility and realize the 

mobile transactions. High-level requirements shall be: 

• When a transaction is initially created, a “kangaroo transaction” will be 

created, along with a local “joey transaction”. 

• System shall allow mobile users to login and connect from within any cell. 

• System shall execute a transaction script, after authenticating the mobile 

user. 

• System shall send the result of each script line to mobile user. 



 25

• System shall allow the mobile user unrestricted movement among Mobile 

Support Station (MSS). 

• After any handoff, system shall allow the new MSS to create a new local 

“joey transaction” and continue execution of the remaining part of the 

“kangaroo transaction”. 

• When a mobile user is disconnected, system shall start a timer and holdup 

execution of the “kangaroo transaction”. 

• System shall allow a mobile user to reconnect and resume transaction 

processing at any MSS before a timeout occurs (currently set to five 

minutes). 

• System shall abort all “joey transactions” and the “kangaroo 

transaction” execution, if mobile user fails to reconnect within the 

timeout interval. 

• System shall execute each “joey transaction” independently. 

• After any handoff, the local “joey transaction” shall commit 

independently. 

• When the last “joey transaction” of a “kangaroo transaction” is 

committed, the “kangaroo transaction” is removed from the system. 

The planned system is represented in appendices (J-K) as data flow diagrams in 

Level-0 and level-1 levels. 

Use case diagram in Figure 5 is used to capture the functional requirements of the 

system.  

 

 

 



 26

 

Figure 5: Use Case Diagram of System 

 

 

 

 



 27

Use Case: Create Connection 

               Actor actions:                                         System response:  
The mobile user will connect to MSS. The system creates connection after 

authentication. 

 

Use Case: Begin Transaction 

The mobile user starts transaction 

execution. 

The system creates kangaroo transaction 

and joey transaction. 

 

Use Case: Selection, Insertion and Update  

The mobile user realizes transaction 

operation (read/write). 

The system returns the result of each 

transaction operation. 

 

Use Case: Move New Cell  

The mobile user comes into new cell. The system continues the remaining 

transaction execution. 

 

Use Case: Disconnection 

The mobile user disconnect to MSS 

because of failure. 

If mobile user reconnects in limited 

time, the system resumes transaction, 

otherwise abort transaction execution. 

 

Use Case: End Transaction 

The mobile user finishes kangaroo 

transaction execution. 

The system commit joey transaction and 

kangaroo transaction execution 

respectively 

 



 28

3.2.3 Transactions Terminology 

 A mobile transaction is processed as a sequence of sub-transactions and execution 

moves with the MU. Transaction operations executed at a MSS are called Joey 

Transactions. A sequence of Joey Transactions defines a Kangaroo Transaction.  

3.2.4  Processing Modes 

There are two different processing modes for Kangaroo Transactions. 

Compensating Mode and Split Mode. The system (simulator) supports split mode. The 

split mode is the default mode. In this mode, when a JT fails no new global or local 

transactions are requested as part of the KT. However, the decision as to commit or abort 

currently executing ones is, of course, left up to the component DBMSs. Previously 

committed JTs will not be compensated for.  

3.2.5 Assumptions and Limitations 

• According to Kangaroo model (KM), if a handoff occurs, new MSS 

communicates with the previous MSS to get transaction status information. 

However, in Modified Kangaroo model (MKM), the new MSS will get 

transaction status information directly from the central database. 

• We simulate a wireless network on an Ethernet network by closing an 

existing TCP connection and creating a new TCP connection to the new 

MSS, an extra delay is introduced to account for the “handoff” delay. 

• Only four MSSs and one mobile user are used to demonstrate the 

execution of mobile transaction. 

• It is assumed that mobile user knows the SQL syntax. 

 

 

 



 29

 

 

CHAPTER 4 

 

4   DESIGN AND IMPLEMENTATION OF KANGAROO 
TRANSACTION MODEL 

In this chapter, simulation tool is described. Client layer, middle layer, server 

layer, system testing and experimental result are explained. 

4.1 General Overview of the Simulation Tool 

4.1.1 Logical Architecture 

The logical architecture for the simulation is shown in Figure 6. 

 

 

                                                  Figure 6: Logical Model 



 30

The architecture consists of three tiers representing the client layer, the middle 

layer, and the server layer. 

The client layer is shown in the model as a MU connected to the system using a 

portable computer. The user interacts with the system through a graphical user interface 

written for the simulation tool. The interface enables the user to connect to the system, 

access data, and simulate movement in the network. 

The middle layer represents the MSS. Each MSS consists of software installed on 

a office computer. The MSS accepts client connections from a MU on a specified port 

using java remote method invocation (RMI). Also located in the middle layer is software 

to implement the DAA. The DAA utilizes the fixed network to open a JDBC connection 

to the DBMS. The MSS acts as a data client by invoking DAA methods to query and 

manipulate the data. The DAA acts as a data server and returns result sets to the client. 

The server layer consists of a windows machine located off office with the DBMS 

installed. Connectivity to the DBMS is enabling through a specified port. The DAA 

software contains parameters to identify the port, user account, password, and database 

name to open a connection. 

4.1.2 Communication between MU and MSS 

Communication between a MU and MSS is achieved by java remote method 

invocation. The public methods accessible by a MU and implemented by the MSS class 

are defined in an interface file MSSBaseServer. Associated with each script keyword is 

a method in the interface. During script execution, the MU creates a MSS object, looks 

up the name in the registry service, and invokes the method associated with the current 

line. The MSSBaseServerImpl class contains methods to read each line in the script file, 

write results to the transactions result window. 

4.1.3 Mobile User Migration Scheme 

A MU may migrate from one MSS to another at any frequency. Mobility is 

simulated in a script file using the MOVE keyword. When a user moves to a new MSS, 



 31

the site is responsible for remaining kangaroo transaction execution. The user must only 

provide the new MSS with its login id and password to establish a new connection. The 

new MSS responds to the connection request by performing a user validation security 

check. Upon successful validation, the new MSS create new joey transaction and 

resumes transaction execution. 

4.1.4 Disconnection Operation Scheme 

A MU may disconnect from the network at anytime. In real world scenarios, the 

disconnection may be voluntary or involuntary due to communication failure. 

Disconnection is considered a temporary interruption of transaction processing. The 

interruption may last a few seconds, minutes, or hours depending upon the cause. It is 

unusual and unlikely for a communication failure to result in an interruption of service 

lasting days. Transaction processing resumes when the mobile user reconnects to the 

network. To simulate disconnection and thus suspension of any transaction the script 

keyword list includes DISCONNECT. During script execution, the keyword 

DISCONNECT results in the immediate change of the kangaroo and joey transaction 

status to DISCONNECTED. No site transactions may be added to the joey transaction 

until the user reconnects. The system allows the MU five minutes to reconnect and 

resume the transaction. If the user fails to reconnect within the time limit, the transaction 

is aborted. 

4.1.5 Script Execution 

Each script execution begins with the user pressing the 'Execute' button and 

invoking the appropriate method in the MSSBaseServer interface. A description of each 

script is provided below and the Appendix contains sequence diagrams for each script 

keyword. 

. 

 

 



 32

4.1.5.1 CONNECT 

The connect method is used to establish a connection with an MSS. The method 

accepts two parameters for the login id and password. The return value is a boolean 

representing the success or failure of the request. Any MSS may receive a connection 

request. The MSS calls local methods validate the mobile user. The DAA method 

setUserConnect queries the login table for a record matching the login id and password 

parameters. The getCell_id method returns the cell_id value. If the parameters are valid 

connection is success. The method isUserAuthorized check. User hashtable, if 

connection already exists ,responses ‘connection exists’. Activity diagram of 

‘CONNECTION’ script is shown in Figure 7. 

 

                 Figure 7: Activity diagram of ‘CONNECTION’ script 



 33

4.1.5.2 BEGIN 

Begin indicates the start of a kangaroo transaction. Any MSS may receive a 

request to begin a transaction. The begin method create kangaroo_id , joey_id , get 

current time and insert related entries user_trans and joey_trans table.Returns a boolean 

representing success or failure of the request. Activity diagram of ‘BEGIN’ script is 

shown in Figure 8. 

 

 

                         

                        Figure 8: Activity diagram of ‘BEGIN’ script 

 

 



 34

4.1.5.3 MOVE 

The move method is used to establish a connection with other MSS. The method 

accepts two parameters for the login id and password. The return value of type boolean 

represents the success or failure of the request. Any MSS may receive a move request. 

The logic is similar to that of the connect method. The method calls local methods to 

validate the mobile user and, set connection .The same  methods are called to access the 

DBMS. Activity diagram of ‘MOVE’ script is shown in Figure 9. 

 

Figure 9: Activity diagram of ‘MOVE’ script 



 35

4.1.5.4 DISCONNECT 

The disconnect method is used to simulate interruption in transaction processing. 

The method accepts a single parameter representing the login id. The return value is of 

type boolean representing the success or failure of the request. Any MSS may receive a 

disconnection request. The method calls a  method disconnectionControl to set Timer 

and update user_trans table status field DISCONNECTED(2).If mobile user  reconnect 

limited time , transaction continue. Otherwise, transaction aborted. Activity diagram of 

‘DISCONNECT’ script is shown in Figure 10.  

 

 

              Figure 10: Activity diagram of ‘DISCONNECTION’ script 



 36

4.1.5.5 SELECT 

The select method is used to query the database. The method accepts parameter 

values and returns a value of type String. The logic begins with lookup the user_trans 

and joey_trans table. If  kangaroo transaction is active and joey transactions is not 

committed, an instance of the SiteTrans class is constructed with status ACTIVE, after 

generating a site transaction identifier and its object is added to the site hashtable 

through a call to the put method. On the other hand, if joey transaction is committed then 

a new joey transaction is created and other operations are performed as mentioned in the 

previous process. After execution, the query the method execute_query receives a result 

string. The site transaction status is updated to COMMIT in the local site hashtable. The 

result string is returned to the calling program. Activity diagram of ‘SELECT’ script is 

shown in Figure 11. 

 

Figure 11: Activity diagram of ‘SELECT’ script 



 37

4.1.5.6 INSERT 

The insert method is used to add records to tables in the DBMS. The method 

accepts insert statement  request and returns a value of type boolean representing the 

success or failure of the request.  

4.1.5.7 UPDATE 

The update method is used to change records to tables in the DBMS. The method 

accepts update statement request and returns a value of type boolean representing the 

success or failure of the request.  

Activity diagram of ‘INSERT’ and ‘UPDATE’ script is shown in Figure 12. 

 

Figure 12: Activity diagram of ‘INSERT and UPDATE’ script 



 38

4.1.5.8 SAVE 

The ‘SAVE’ script state ending of kangaroo transaction. The method accepts the 

login id as a parameter and returns a boolean value. Any MSS may receive a save 

request.The local MSS commits it’s joey transaction, kangaroo transaction and 

disconnect database. Activity diagram of ‘SAVE’ script is shown in Figure 13. 

 

 

 

                          Figure 13: Activity diagram of ‘SAVE’ script 



 39

4.1.6 Client Layer 

The client layer consists of software developed to enable data access, simulate 

user mobility, and simulate common characteristics of mobile computing 

4.1.6.1 Graphical User Interface 

User is mobile. The features and windows are described below.  

4.1.6.1.1 Login Window 

A login window is included in the user interface to capture a login id and 

password pair. A snapshot of the window is shown in Figure 14 below. The password 

value is entered in a java password field and encrypted using an alphabet substitution 

scheme. Both the login id and encrypted password are parameters in the CONNECT and 

MOVE script commands. The encryption scheme utilized is primitive yet provides a 

level of security adequate for this project. 

 

 

Figure 14: Login Window 

 

4.1.6.1.2 Network Mobility Window 

Mobility is simulated through network commands CONNECT and MOVE. The 

base stations window shown in Figure 15. The name of each office computer running the 

MSS programs is shown. Each workstation defines the boundaries of a simulated 



 40

network cell. The script command, login name and password values, and cell selected 

are written to the script text area in the transaction keywords, edit and display window 

(Figure 16) when the user clicks on the okay button. Clicking on the cancel button does 

not write to the script text area.        

                                                                                                                                                            

 

Figure 15: Base Stations Window 

 

4.1.6.1.3 Transaction Keywords, Edit and Display Result Window 

Transaction Keywords panel located in the top, left of the main window contains 

the list of transaction keywords. A script line is created by the action of selecting 

keywords from the list. Several characteristics of the mobile computing environment are 

simulated through specialized scripting commands. The scripting commands simulate 

user mobility between cells, disconnection, and data access. Changes to the underlying 

data model will not result in changes to the scripting commands. The user need only 

know the syntax of the scripting commands to write valid scripts. Traditional transaction 

processing actions such as begin, abort, commit, and rollback are available to users in 

the scripting commands. The reserved words, syntax, and meaning of each scripting 

command is provided in Table 4. 



 41

When the user clicks on the Execute button in the script text panel, the system call 

method execute_guery and writes result of each script line the transactions result 

window. The result value of most lines is a SUCCESS or FAIL status message. 

 

Table 4: Script Language Commands 
 
CONNECT Open connection to MSS with specified cell_name for user 

with login id userName and password password . 

BEGIN SQL BEGIN transaction statement. Begin the kangaroo 

transactions. 

MOVE Simulate user mobility by opening a connection to MSS 

specified by cell_name for user userName and authenticated 

by password . 

DISCONNECT Send request to close connection. 

SELECT SQL SELECT statement with attribute and predicate values. 

INSERT SQL INSERT statement to insert record in table 

breakdown_log. 

UPDATE SQL UPDATE statement to update record(s) in table 

breakdown_log and breakdown_profile. 

SAVE SQL COMMIT statement. Terminate the Kangaroo transaction 

execution. 

 

 



 42

 

Figure 16: Transaction Keywords, Edit and Display Result Window 

 

4.1.7 Middle Layer 

The middle layer consists of software developed for the MSS and DAA functions. 

4.1.7.1 Mobile Support Station (MSS) 

The MSS implementation consists of class and interface files to perform 

transaction management operations. These operations included tracking transaction 

status, invoking methods to read and write data to the DBMS, and coordinating 

resumption and recovery operations when failure occurs. To fail safe operations and 

provide audit trail the MSS maintains logs for all active and completed mobile 

transactions. The MSS acts as a data client and forwards requests from MH for data to 

the DAA. All result sets are returned to the MH. Communication between the MH and 



 43

MSS is in the form of remote method invocation and scripting commands. Network 

handoff in response to MH mobility is accomplished through remote method invocation 

from one MSS to another. 

4.1.7.2 Data Access Agent (DAA) 

The DAA is responsible for opening a connection to the DBMS, executing SQL 

commands, closing the connection, and returning the result set. An instance of the DAA 

class is created  during construction of a MSS object. Connection parameters such as 

user login account and password information are passed to the DAA constructor. The 

DAA class utilizes JDBC to connect to a data source and Java SQL package methods to 

execute statements. 

4.1.7.3 Initialization 

With the registry service running, an MSS is started by typing on the command 

line the following: java MSSBaseServerImpl <cellname> .The parameter cellname  

assign to the MSS a cell name.The cell name used for the project is the Sun workstation 

name. The port specified in the project is 1099.  

An MSSBaseServer object is created when the main program calls the constructor 

with the parameter value entered on the command line. The value is assigned to variable 

to store the local cellname. The constructor also creates an instance of the DAA class for 

data access and three instances of the HashTable class to store transaction data. The 

DAA constructor is called with values for the database user and password as parameters. 

The three HashTable objects represent the kangaroo, joey, and site transaction data 

storage needs. All HashTable objects are declared as private data members. 

4.1.7.4 Transaction Management 

Transaction management is the primary function of the MSS. As script execution 

proceeds, each MSS involved must store and share sufficient data to perform resumption, 

commit, and recovery operations. Transaction data values representing the User, 

Kangaroo, Joey, and Site entities must be stored both in memory and log file format. 



 44

The User entity contains values specific to each MU. The Kangaroo entity contains 

values for the global transaction execution. The Joey entity contains values for the 

actions executed at the local cell. Each MSS contains one data structures to store each 

entity. The user hash data structure contain if there is exist connection and kangaroo 

hash data  only contain value for transaction executed by subscribers assigned to the 

MSS. Thus a MSS will only store user and global data values for its subscribers. The 

values reside in the data structures in memory until the transaction terminates. Class files 

to represent each entity were created for the project. The class files User, 

Hashtable_kangaroo contain methods and variables to construct an instance. Properties 

of each entity are shown in Table 5 below. The User class contains properties to 

described data values associated with a subscriber. The key values are the subscriber Id, 

identifier of any global transaction associated with the subscriber, and the transaction 

status. The compensating transaction data is utilized when the site receives a request to 

abort the transaction and undo all changes. 

 

Table 5: Transaction Data Values 
 
 
Entity Property Description 

userName login id user 

password Password 

record _id  

id Transaction ID 

type Kangaroo, joey, site 

status Transaction status 

pr_joey_id  Previous joey transaction  id 

hashtable_kangaroo 

next_joey_id Next joey transaction id 

 
 
 
 



 45

4.1.7.4.1 Status values 

Associated with each kangaroo, joeys and site transaction are status values. The 

MSS utilizes the status values when coordinating resumption, save, and recovery 

operations. Table 6 lists status values and meanings.  

 

Table 6: Transaction Status Values 
 

Status Code Status 

Display 

Meaning 

 

ACTIVE 1 User connected, transaction is executing 

DISCONNECTED 2 User disconnected, reconnection expected 

COMMIT 3 Transaction committed successfully 

ABORT 4 Transaction aborted 

 

4.1.7.4.2 Data structures 

Data storage needs required the choice of a structure to efficiently perform lookup, 

insertion, and deletion operations. The data structure chosen for the project is a hash 

table implemented as an array of linked lists. The structure is implemented in the class 

file HashTable and instantiated in the MSSBaseServerImpl constructor. For user the 

hash function  applied utilizes the login id and for Hashtable_kangaroo function utilizes 

the record id as the key. The linked list is navigated in both a forward and backward 

fashion depending upon the type of lookup request using a list iterator. Insertion 

operations always add to the end of the list using methods provided in the Java util 

package. 

4.1.7.4.3 Transactions ID generation 

The MSSBaserServerImpl class defines a property for assignment of a unique 

identifier for kangaroo, joey and site transactions. Identifier assignment involves a call 



 46

by MSS to the DAA to query the DBMS for the last value assigned and followed up 

with an update call after assignment. The database provides permanent storage and 

guarantees uniqueness. The uniqueness of the identifier is not compromised in the event 

of a MSS failure and restart. The table structure was chosen for storage. A database 

sequence is an alternative structure to consider if supported by the DBMS. 

4.1.7.4.4 System Initiated Abort 

The system will initiate an abort of a kangaroo transaction in the event a MU fails 

to reconnect and resume execution within the allowed time. The clock starts when the 

MU disconnects. The MSS logic updates the status in the kangaroo and joey hash 

structure to DISCONNECTED. The insertUserTrans method of the DAA class is 

invoked to insert a record in the user_trans table. The disconnectionControl class 

contains a subclass RemindTask which extends the Java TimerTask interface. 

disconnectionControl schedules the RemindTask run event to check the DBMS for 

expired user_trans records every 10 seconds. The RemindTask class calls the DAA 

selectUserTrans method to query the DB and return the kangaroo id and cell name of 

each expired transaction. If time is up the cell executes the steps necessary to abort the 

kangaroo transaction.  

4.1.8 Server Layer 

4.1.8.1 DBMS Installation 

The DBMS utilized for the project is MySQL. MySQL is an open source DBMS 

that supports transactions with commit, rollback, and savepoint statements. The version 

downloaded for the project is version 4.0.14 and JDBC driver version 3.0.8. The 

database instance created for the project is called 'project'. All JDBC connection requests 

utilized port 3306. Administrator scripts to create the tables with constraints and insert 

initial data in the tables were written using SQL commands. The scripts may be run from 

within the MySQL command line interface. A special user account was created with 

password protection and granted privileges on the project database. 



 47

4.1.8.2 Database Model 

The database model developed for the sample mobile application is based on a 

mobile auto repair service application. The model includes tables and relations between 

the entities.  

Login table consists of entries (username, password) for authenticating the user. 

User_trans and joey_trans tables store the transactions’ status data. Network cells are 

defined in the cell table and are identified with a cell name and cell_ id. Each subscriber 

is assigned to a cell and this cell is referred to as the home cell. A cell may be assigned 

zero or more subscribers. 

The service is organized as a mobile auto repair service. Each mobile service has a 

unique id (service_id) and service area (service_area) entity, which states the 

responsibility area of the service.  

Service records data into breakdown_profile table and notifies relevant auto repair 

service to fix when it gets a report for a car breakdown. In addition to that, the service 

may check the status on whether the mobile service successfully repaired the automobile 

or had it towed to a service center for further labor (status: 1= mobile service not 

reached yet, 2=malfunction fixed, 3=vehicle towed to the service center). 

After repair, mobile service inserts a record into breakdown_log table. This 

includes description of repair done, bill data, date and time data. In addition to these, 

mobile service updates the status field in the breakdown_profile table as discussed in the 

previous paragraph. 

The ER diagram for the database model and sql script to create the physical 

database is given in the Appendix of this thesis.  

 

 

 

 



 48

 

 
 

CHAPTER 5 

 

5       EXPERIMENTAL SET UP AND RESULTS 

 

In this chapter, we discuss how experiments were designed to be performed, and 

what results were obtained from these experiments. In our experiments, we tried to 

measure the effect of MKM on transaction performances. 

5.1 Experimental environment in a LAN 

The physical architecture for simulation tool is shown in Figure 17.  

        Office Network                                                                       Database                                      

Figure 17: Physical Architecture 



 49

The office network partition includes four computers from the office labeled 

MSS1 to MSS4 in Figure 17 and one mobile user connected to the office network using 

portable computing devices (laptop). 

Each computer represents a MSS in the mobile computing model. The coverage 

area or cell for each MSS is defined by the machine name and a specific port registered 

with the java naming service upon startup. The simulation tool simulates characteristics 

of the mobile environment such as movement between cells and disconnection. 

Movement between cells is simulated in the MU software using the registered port to 

open a new connection and send messages to the new MSS. Disconnection is also 

simulated in the software through method calls on the registered port. The port utilized 

for the communicating with MSSs is 1099. 

The database server is a Desktop PC running Windows XP and the DBMS. The 

DBMS used in the tests is the open source MySQL version 4.0.14. The MySQL process 

listens for connection requests on port 3306. 

The simulation tool supports multiple users and a configurable number of MSS. 

To facilitate debug and system testing, four computers were configured as MSS sites and 

one mobile user was present.  

5.2 System testing 

System testing involved executing tests to determine operation under different 

conditions. Table 7 summarizes the tests conducted and provides a reference to the script 

utilized. Hardcopy of each script is included in the Appendix-A. 

 

 

 

 

 

 



 50

Table 7: Test Summary 
 
Test 

No. 

Test description System capability under 

Test 

Script name 

1 Connect to MSS, begin 

transaction operations, include 

mobility, and commit changes. 

• Connectivity and mobility 

• Select/Insert/Update 

• Commit 

Basic.txt 

2 Execute transaction across 

multiple cells and resumption at 

remote cell. 

• Disconnection 

• Resumption 

Resume.txt 

3 Attempt connection with invalid 

user id and password values. 

• User validation 

• Scrip execution halts 

Validate.txt 

4 Begin a transaction and 

disconnect. Do not reconnect to 

resume. System will detect 

timeout and abort transaction. 

• Resumption timeout 

• System generated abort 

Kangaroo transaction 

Disconnection 

Control.txt 

5 Transaction script for user with 

no mobility. 

• Single MSS execution  ZeroMobile.txt 

6 Transaction script for highly 

mobile user. 

• Multiple MSS execution 

sites. 

HighMobile.txt 

 
 

5.3 Simulation parameters 

In the experiments, we designed scripts with increasing number of Joey 

transactions, from 1 up to 4. In order to measure execution times accurately and 

minimize O/S interference, each script was run 10 times consecutively and total time 

was divided by 10 to obtain execution time of that script. 

 

 



 51

Table 8: Simulation Parameters 

 
 

Parameters 
 

 
Description 

 
1 movement 

Mobile user remains in the same MSS during the 

“Kangaroo transaction”, no handoff occurs. 

 
2,3 and 4 movements 

Mobile user changes connect to 2, 3 and 4 MSSs. That is to 

say 1, 2 and 3 handoffs occur. 

 
Transaction execution 

time 

 
Time difference between begin transaction and end 

transaction. 

 
Site transaction 

 
Sequence of read and write operations, all performed on the 

local DBMS. 

 

For each script with a certain number of Joey transactions are also increase the 

number of site transactions from 4 to 6, 8, and 10. Thus, we can also observe the effect 

of having longer running transactions. 

For simulating wireless handoff operations, we assumed it takes just the same time 

as required on a LAN. We also assumed no packet error would occur, while these would 

have to be considered in a more realistic simulation to better reflect the real world 

operation. 

5.4 Experimental Results 

The mobile transaction execution time was measured for both approaches and 

compared their execution times. The transaction start and transaction end times are 

stored in the central database. When a MSS executes ‘BEGIN’ command in the 

transaction script, I insert the transaction starting time information into the “user_trans” 

table (using “kangaroo transaction” id) and after execution a ‘SAVE’ command from 



 52

the transaction script, the transaction ending time information is updated in the 

“user_trans” table.  

Two models (MKM and KM) are compared using transaction execution time 

under various MSS handoff scenarios. Comparison graphics for two models are 

illustrated in Figure 18 through Figure 20. The vertical axis shows transactions’ 

execution time (in milliseconds) for “kangaroo transaction” script execution time. The 

horizontal axis represents the number of site transaction. 

Times of transactions with varying number of site transaction vs. number of 

movements (in milliseconds) are shown in Table 9. 

  

Table 9: Transaction Execution Time 

 

4 site trans. 6 site trans. 8 site trans. 10 site trans. 
movements

KM MKM KM MKM KM MKM KM MKM 

 
1 

 
40 

 
100 

 
90 

 
410 

 
190 

 
430 

 
220 

 
540 

 
2 

 
100 

 
190 

 
180 

 
620 

 
320 

 
890 

 
380 

 
990 

 
3 

 
220 

 
380 

 
270 

 
920 

 
600 

 
1390 

 
670 

 
1580 

 
4 

 
270 

 
450 

 
400 

 
1040 

 
730 

 
1630 

 
910 

 
1820 

 

 

 

 

 



 53

Kangaroo Model

0
100
200
300
400
500
600
700
800
900

1000

4 6 8 10

site transaction

tra
ns

ac
tio

n 
ex

ec
ut

io
n 

tim
e(

m
ill

is
ec

on
ds

)

1 movement
2 movements
3  movements
4  movements

 

Figure 18: Kangaroo Model  

 
 

Modified Kangaroo Model

0

500

1000

1500

2000

4 6 8 10

site transaction

tra
ns

ac
tio

n 
ex

ec
ut

io
n 

tim
e(

m
ill

is
ec

on
ds

)

1 movement
2 movements
3  movements
4  movements

 

Figure 19: Modified Kangaroo Model  



 54

Comparison of KM and MKM

0

500

1000

1500

2000

4 6 8 10

Number of site transactions (with 1,2,3,4 
movements for KM and MKM)

tr
an

sa
ct

io
n 

ex
ec

ut
io

n 
tim

e(
m

ill
is

ec
on

ds
)

Kangaroo Model

Modified Kangaroo
Model

 

Figure 20: Comparison of KM and MKM  

 

 

 

 

 

 

 

 



 55

 

 

CHAPTER 6 

 

6      CONCLUSIONS AND FUTURE WORK 

 

A simulation environment was developed, in which base stations are modeled as 

processes running on a computer(s) and serving connection requests. Once MU-MSS 

connection is established, the commands sent by the mobile host are performed. 

In order to be able to perform compensating transactions when/if intermediate 

base stations fail, making it possible to determine all previous JT base stations, we 

proposed to store this information in a central database. 

We measured, using simulated workload, the amount of overhead required by the 

Modified Kangaroo transaction model was compared with the original Kangaroo 

transaction model. 

Our results showed that the overhead of MKT is not prohibitive. Also, as the 

transactions become longer the overhead of MKT becomes even a smaller percentage of 

the transaction execution time. 

We were not able to simulate complete transaction, as that would require a 

complete system implementation. We have not able to obtain real-life communication 

parameters either. By using more accurate parameter values, more detailed analyses of 

Kangaroo transaction and other transaction models could be performed. 

 



 56

The following observations have been made: 

• When movements increase, the transaction execution time also increases 

for both models. 

• According to the Modified Kangaroo model (MKM), (MSS check 

transaction status information directly from the central database), 

transaction execution times are always longer than the Kangaroo model. 

• Modified Kangaroo model is more resilient to base station failures than 

Kangaroo model. In Kangaroo model in case of any failure of a MSS, the 

“kangaroo transaction” execution cannot continue. However, Modified 

Kangaroo model, since the new MSS will get transaction information 

directly from a central database, it does not need any information from 

preceding MSS therefore the mobile user will be able to continue 

transaction execution in case the previous MSS fails. 

6.1 Future work  

Data management in the mobile computing environment is an area rich with 

research opportunities. This project focused on the issue of transaction processing and 

examined one of the many proposed models (Kangaroo transaction), also providing a 

small modification to this model. 

This work considers the disconnected operation. All transaction execution 

occurred on the FH. The model enabled disconnected users to resume transaction 

processing but did not facilitate offline processing. Future work could propose a 

modified version of the Kangaroo model that supports transaction execution on the MH 

(while disconnected) and realizes compensating transactions. 

 

 

 



 57

 

 

 

REFERENCES 

 

[1] Dunham, M.H., Helal, A., and Balakrishnan, S. “A Mobile Transaction Model that 

Captures Both the Data and Movement Behavior”, ACM-Baltzer Journal on Mobile 

Networks and Applications  , vol.2, no.2, October 1997, pp.149-161. 

[2] Bukhres, O. and S. Morton. “Utilizing Mobile Computing in the Wishard  Memorial 

Hospital Ambulatory Service.” Proceedings of the 1997 ACM symposium on applied 

computing. 1997: 287-294. 

[3] Budiarto, S. and M. Tsukamoto "Data management issues in mobile and peer-to-peer 

environments." Data & Knowledge Engineering. 41 (2002): 183-204. 

[4]   Madria, S.K, and Bhargava, B.”A Transaction Model for Mobile Computing”, 

An International Journal, Kluwer Publishers, 1999. 

 [5] Oracle Corporation. Oracle Application Server Wireless: Complete Mobile Platform 

An Oracle Technical White Paper August 2003. 

[6] Forman, G. H. and Zahorjan, J.”The Challenges of Mobile Computing”, IEEE 

Computer Volume: 27(4), pp. 38-47, April 1994. 

[7] R. Alonso and H. F. Korth. Database System Issues in Nomadic Computing. In 

Proceedings of the 1993 ACM SIGMOD International Conference on Management of 

Data, pp. 388 – 392, 1993. 

 [8] Garcia-Molina, H. et al. Database Systems the Complete Book. New Jersey: 

Prentice Hall Inc, 2002. 



 58

 [9] D.Chess, C.Harrison, A.Kershenbaum, “Mobile Agents: Are they a good 

idea?”,IBM Research Report, T.J.Watson Research Center, NY, 1995. 

[10]  Garcia-Molina, H. and K. Salem. "Sagas." Proceedings of the ACM SIGMOD 

1987. 16 (1987):249-259. 

[11] Yeo, L. H. and A. Zaslavsky. "Submission of Transactions from Mobile 

Workstations in a Cooperative Multidatabase Processing Environment." Proceedings of 

the 14 th International Conference on Distributed Computing Systems. 1994: 372-379. 

[12]  Chrysanthis, P. K., “Transaction Processing in Mobile Computing Environment”, 

In IEEE Workshop on Advances in Parallel and Distributed Systems, pages 77-82, 

October 1993. 

 [13] Elmasri, R. and Navathe, S.[2000],”Fundamental of Database Systems”, Third 

Edition,Addison-Wesley,2000. 

[14] Dunham, M.H.,Helal, A., “Mobile Computing and Databases: Anything New?”, 

ACM SIGMOD Record vol.24, no.4, December 1995, pp.5-9. 

[15] Dunham, M.H.,Kumar, V., “Impact of Mobility on Transaction Management”, 

Proceedings of the International Workshop on Data Engineering for Wirelss and Mobile 

Access, MobiDE ’99, Seattle, WA, USA, August 1999, pp.14-21. 

[16] Pitoura, E. and Bhargava, P., “Revising transaction Concepts for Mobile 

Computing”. Proceedings of the Workshop on Mobile Computing Systems and 

Applications, 1994, pp. 164-167. 

[17] Pitoura, E. and Bhargava, P.. “Maintaining Consistency of Data in Mobile 

Distributed Environment.” 15th Int. Conference on Distributed Computing Systems, 

Vancouver, Canada, May, 1996. 

[18] Walborn, D. G., and Chrysanthis, P. K. “Supporting Semantics Based Transaction 

Processing in mobile Database Applications”. Proc. 14th IEEE Symp. on Reliable 

Distributed Systems, September 1995. 

 



 59

 

 

 

APPENDIX 

 

Appendix A: System Testing Scripts 

 

Test No. 1: basic.txt 

CONNECT|test|abc123|192.168.11.1 

BEGIN 

SELECT location , contact_number from breakdown_profile  

INSERT INTO breakdown_log valueS(‘15’,’rnt1’,’breakdown is  solved’,’12/03/2004’, 

50000000,’23’) 

UPDATE breakdown_profile SET service_status=’2’ where id=’12’ 

MOVE   

CONNECT|test|abc123|192.168.11.128 

SELECT  location , contact_number from breakdown_profile where service_status=’1’ 

SAVE 

 

Test No. 2: resume.txt 

CONNECT|test|abc123|192.168.11.1 

BEGIN 



 60

SELECT  location , contact_number from breakdown_profile  

INSERT INTO breakdown_log values(‘15’,’rnt1’,’breakdown is  solved’,’12/03/2004’, 

50000000,’23’) 

DISCONNECT 

CONNECT|test|abc123|192.168.11.128 

SELECT  location , contact_number from breakdown_profile  

UPDATE breakdown_profile SET service_status=’2’ where id=’12’ 

SELECT  location , contact_number from breakdown_profile  

SAVE 

 

Test No. 3: validate.txt 

CONNECT|test|abc123|192.168.11.128 

BEGIN 

SELECT  location from breakdown_profile where service_status=’1’ 

SAVE 

  

Test No. 4: DisconnectionControl.txt 

CONNECT|test|abc123|192.168.11.1 

BEGIN 

SELECT  location from breakdown_profile where service_status=’1’ 

INSERT INTO breakdown_log valueS(‘15’,’rnt1’,’breakdown is  solved’,’12/03/2004’, 

50000000,’23’) 



 61

DISCONNECT 

Test No. 5: zeromobile.txt 

CONNECT|test|abc123|192.168.11.128 

BEGIN 

SELECT  location from breakdown_profile  

INSERT INTO breakdown_log valueS(‘15’,’rnt1’,’breakdown is  solved’,’12/03/2004’, 

50000000,’23’) 

SELECT  contact_number from breakdown_profile  

SAVE 

 

Test No. 6: highmobile.txt 

CONNECT|test|abc123|192.168.11.1 

BEGIN 

SELECT  location ,contact_number from breakdown_profile  

INSERT INTO breakdown_log valueS(‘15’,’rnt1’,’breakdown is  solved’,’12/03/2004’, 

50000000,’23’) 

MOVE 

CONNECT|test|abc123|192.168.11.128 

SELECT  location ,contact_number from breakdown_profile  

MOVE 

CONNECT|test|abc123|192.168.11.129 

UPDATE breakdown_profile SET service_status=’2’ where id=’12’ 



 62

MOVE 

CONNECT|test|abc123|192.168.11.130 

SELECT  location ,contact_number from breakdown_profile  

SAVE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 63

 

 

Appendix B: Sequence diagram for ‘CONNECT’ keyword 

 

 

 

 

 



 64

 

 

Appendix C: Sequence diagram for ‘BEGIN’ keyword 

 

 

 

 

 



 65

 

 

Appendix D: Sequence diagram for ‘MOVE’ keyword 

 

 

 

 

 



 66

 

 

Appendix E: Sequence diagram for ‘DISCONNECT’ keyword 

 

 

 

 

 

 

 



 67

 

 

Appendix F: Sequence diagram for ‘SELECT’ keyword 

 

 

 

 

 



 68

 

 

Appendix G: Sequence diagram for ‘INSERT’ keyword 

 

 

 

 

 



 69

 

 

Appendix H: Sequence diagram for ‘UPDATE’ keyword 

 

 

 

 

 



 70

 

 

Appendix I: Sequence diagram for ‘SAVE’ keyword 

 

 

 

 

 

 

 



 71

 

 

Appendix J: Data Flow Diagram (Level 0) 

 

 

 

 

 

 

 

 

 

 

 

 



 72

 

 

Appendix K: Data Flow Diagram (Level 1) 

 

 

 



 73

 

 

Appendix L: Entity-relationship (ER) Diagram of simulation tool’s database 

 

 

 

 

 

 



 74

 

 

Appendix M: Physical Database Scheme Scripts 

 
 
 
CREATE TABLE login 
( 
  userName        VARCHAR(6)  PRIMARY KEY, 
  password      VARCHAR(6) 
); 
 
*********************************************************************** 
 
CREATE TABLE     user_trans 
( 
         login_id         VARCHAR(6)  NOT NULL REFERENCES login(userName),   
         kangaroo_id           VARCHAR(15) NOT NULL, 
         status                      VARCHAR(1),  
         start_time               DOUBLE, 
         finish_time             DOUBLE, 
         PRIMARY  KEY(kangaroo_id) 
); 
 
*********************************************************************** 
 
CREATE TABLE     joey_trans 
( 
        id                     INTEGER NOT NULL,                 
        kangaroo_id            VARCHAR(15) REFERENCES user_trans(kangaroo_id), 
        joey_id                    VARCHAR(15), 
        status                       VARCHAR(1), 
        pr_joey_id               VARCHAR(15), 
        next_joey_id     VARCHAR(15), 
        PRIMARY  KEY(id) 
); 
 
*********************************************************************** 
 
CREATE TABLE service 
( 
       service_name     VARCHAR(100)  PRIMARY KEY, 
       address                  VARCHAR(200), 



 75

       phone_number         INTEGER        
); 
 
*********************************************************************** 
 
CREATE TABLE mobile_service 
( 
        service_id      VARCHAR(100)  PRIMARY KEY, 
        service_name      VARCHAR(100)  REFERENCES service(service_name), 
        service_area       VARCHAR(100)       
); 
 
*********************************************************************** 
 
CREATE table breakdown_profile 
( 
        id                           VARCHAR(6)   PRIMARY KEY, 
        service_id              VARCHAR(100) REFERENCES mobile_service(service_id), 
        location                 VARCHAR(200), 
        auto_mark             VARCHAR(25), 
        auto_model           VARCHAR(25), 
        contact_number    INTEGER,  
        service_status        VARCHAR(1)       
);           
 


