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ABSTRACT

SOLUTION OF HELMHOLTZ-TYPE EQUATIONS BY

DIFFERENTIAL QUADRATURE METHOD

Gülay Kuruş

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Münevver Tezer

September 2004, 64 pages

This thesis presents the Differential Quadrature Method (DQM) for

solving Helmholtz, modified Helmholtz and Helmholtz eigenvalue-eigenvector

equations. The equations are discretized by using Polynomial-based and Fourier

expansion-based differential quadrature technique which use basically polynomial

interpolation for the solution of differential equations.

The procedure is applied to several problems which are governed with

Helmholtz or modified Helmholtz equations together with Dirichlet and/or

Neumann type boundary conditions. Magnetohydrodynamic flow problem in a

rectangular channel is also solved by reducing the coupled differential equations

into two modified Helmholtz equations and then applying DQ method.

Solutions are presented in terms of graphics comparing with the exact

solutions. It is found that Differential Quadrature Method exhibits high accuracy

and efficiency with considerably small number of mesh points comparing to the

other numerical methods.

DQM can also be used for obtaining eigenvalues of Helmholtz type

eigenvalue-eigenvector problems with very high accuracy.

Keywords: Helmholtz equation, modified Helmholtz equation, Helmholtz

eigenvalue-eigenvector problem, Differential Quadrature Method.
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ÖZ

HELMHOLTZ TİPİ DENKLEMLERİN DİFERANSİYEL

KUADRATÜR METODU İLE ÇÖZÜMÜ

Gülay Kuruş

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Münevver Tezer

Eylül 2004, 64 sayfa

Bu tez, Helmholtz, modifiye edilmiş Helmholtz ve Helmholtz öz

değer-öz vektör denklemlerini çözmek için Diferansiyel Kuadratür Metodunu

sunmuştur. Denklemler, diferansiyel denklemlerin çözümü için temelde polinom

interpolasyonunu kullanan polinoma ve Fourier genişlemesine dayalı diferansiyel

kuadratür teknikleri kullanılarak ayrıklaştırılır.

Bu yöntem Dirichlet ve/veya Neumann sınır koşullarna sahip Helmholtz

veya modifiye edilmiş Helmholtz denklemleri ile kontrol edilen bir çok probleme

uygulanmıştır. Ayrıca magnetohidrodinamik kanal problemini de tanımlayan,

diferansiyel denklem sistemi, modifiye edilmiş iki Helmholtz denklemine

indirgendikten sonra Diferansiyel Kuadratür Metodu uygulanarak çözülmüştür.

Çözümler analitik çözümlerle karşılaştırılarak grafikler ile sunulmuştur.

Diğer nümerik metodlarla karşılaştırıldığında, Diferansiyel Kuadratür

Metodunun, oldukça az sayıda nokta ile yüksek doğruluk ve etkinlik gösterdiği

bulunmuştur.

Diferansiyel Kuadratür Metodu aynı zamanda Helmholtz tipi öz değer-

öz vektör problemlerinde, öz değerleri çok yüksek doğrulukla elde etmek için

kullanılabilmektedir.

Anahtar Kelimeler : Helmholtz denklemi, modifiye edilmiş Helmholtz denklemi,

Helmholtz öz değer-öz vektör problemi, Diferansiyel Kuadratür Metodu.
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CHAPTER 1

INTRODUCTION

The Differential Quadrature Method (DQM) is a numerical solution

technique for initial and/or boundary value problems. It was developed by the

late Richard Bellmann and his associates in the early 70’s and since then, the

method has been successfully employed in a variety of problems in engineering

and physical sciences. The method has been projected by its proponents as a

potential alternative to the conventional numerical solution techniques such as

the finite difference and finite element methods (Bert and Malik (1996)).

The DQ method, akin to the convential integral quadrature method,

approximates the derivative of a function at any location by a linear summation

of all the functional values along a mesh (grid) line. The key procedure in the

DQ application lies in the determination of the weighting coefficients. The DQ

method and its applications were rapidly developed after the late 1980’s, thanks

to the innovative work in the computation of the weighting coefficients by other

researchers. As a result, the DQ method has emerged as a powerful numerical

discretization tool in the past decade. (Shu and Richards (1990), Shu (2000)).

In 1996, Bert and Malik presented a comprehensive review of the

chronological development and the application of the DQ method up to date.

There is no abundant book which systematically describes both the theoretical

analysis and the application of the DQ method. The DQ method was mentioned

for the first time in a book written by Bellman and Roth in 1986. There are many

innovative ideas contained in this book. The textbook of Shu (2000) represents

the first comprehensive work on the DQ method and applications. Since there

are many achievements in the DQ method, the number of reference books on the

DQ method and its applications will increase.

In seeking an efficient discretization technique to obtain accurate numerical

solutions using a considerably small number of grid points, Bellman (1971, 1972)

introduced the method of DQ where a partial derivative of a function with respect
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to a coordinate direction is expressed as a linear weighted sum of all the functional

values at all grid points along that direction. Bellman (1972) suggested two

methods to determine the weighting coefficients of the first order derivative. The

first method solves an algebraic equation system. The second uses a simple

algebraic formulations, but with the coordinates of grid points chosen as the

roots of the shifted Legendre Polynomials. Unfortunately, when the order of the

algebraic equation system is large, its matrix is ill-conditioned. Thus, it is difficult

to obtain the weighting coefficients for a large number of grid points using this

method.

To further improve the computation of weighting coefficients, Quann and

Chang(1989 a, b) applied Lagrange interpolated polynomials as test functions

and obtained explicit formulations to calculate the weighting coefficients for the

discretization of the first and second order derivatives.

Shu and Richards (1990), and Shu (1991), generalized all the current

methods for determination of the weighting coefficients under the analysis of

a high order polynomial approximation and the analysis of a linear vector space.

The weighting coefficients of the first order derivative are determined by a simple

algebraic formulation whereas the weighting coefficients of the second and higher

order derivatives are determined by a recurrence relationship.

There are two versions of DQ method. One is based on the high order

polynomial approximation, which is regarded as polynomial-based differential

quadrature (PDQ) approach, the other is based on the Fourier series expansion,

which is noted as Fourier expansion-based differential quadrature (FDQ)

approach. The PDQ approach is the original DQ method. The FDQ approach

was developed by Shu and Chew (1997), and Xue (1997). In the development

of FDQ, a linear vector space containing trigonometric functions analysis is also

employed. From these processes, it is evident that the mathematical fundamentals

of PDQ and FDQ lie in the analysis of a linear vector space and the analysis of

a function approximation.

Shu’s (2000) general DQ approach depends on the approximation of the

solution of a partial differential equation (PDE) by a polynomial of high degree.

If the degree of the approximated polynomial is N -1 then it constitutes an

2



N -dimensional linear vector space VN with the operation of vector addition and

scalar multiplication, and can be expressed in different forms. Base polynomials

in this approximation can be monomials xk−1,

f(x) =
N∑

k=1

ckx
k−1

or Lagrange interpolated polynomials rk(x),

f(x) =
N∑

k=1

rk(x)f(xk)

for a distributed grid points xk, k = 1, ..., N .

If one set of base polynomials satisfies a linear operator so does another set

of base polynomials according to the property of a linear vector space.

So, the coefficients in the derivatives of the approximated function f(x) can

be easily obtained with the help of these two sets of base polynomials.

Similarly, in Fourier expansion-based differential quadrature two sets of base

polynomials are used in approximating the solution of a (PDE). One set of base

polynomials is

1, sin πx, cos πx, sin 2πx, ..., sin(
Nπx

2
), cos(

Nπx

2
)

and the other set of base polynomials are Lagrange interpolated base polynomials

in terms of these trigonometric polynomials.

The one-dimensional PDQ and FDQ formulations can be directly extended

to the multi-dimensional case if the discretization domain is regular (Shu (1991)).

For the irregular physical domain, one has to first perform a coordinate

transformation to map the irregular physical domain into a regular computational

domain. Imposition of boundary conditions and ordering of the unknowns in the

final algebraic system is also important for obtaining a non-singular coefficient

matrix. Weighting coefficient matrices can also be modified for the imposition of

higher order derivative boundary conditions (Fung (2003)).

Applications of DQ method may be found in the available literature

include biosciences, transport processes fluid mechanics, static and dynamic

structural mechanics, acoustic, waveguide analysis, static aeroelasticity and

3



lubrication mechanics. It has been claimed that the DQ method has the

capability of producing highly accurate solutions with minimal computational

effort (Bert and Malik (1996)). Acoustic waves and microwaves can be simulated

by the Helmholtz equation.

The Helmholtz and modified Helmholtz equation can be solved numerically

by using several methods such as finite difference method, finite element method

and boundary element method (BEM). Among all the methods, the finite element

method is extensively used to obtain the solution of Helmholtz equation. It is

well known that the numerical phase accuracy of the finite element solutions

deteriorate rapidly as the wave number is increased. This is due to the use of low

order polynomial approximation to highly oscillatory wave propagation solutions

(Shu and Xue, 1999).

Chang (1990) uses a least-squares finite element method for the numerical

solution of the Helmholtz equation with the homogenous Dirichlet boundary

conditions. He converted the Helmholtz equation into a system of first order

equations by identifying the derivatives of the solution as additional unknowns.

It was possible to achieve O(h2) accuracy when using the C0-piecewise linear

vector functions over a triangulation.

Harari and Hughes (1991) presented finite element method for the radiation

problem governed by the Helmholtz equation in an exterior domain. Exterior

boundary conditions for the computational problem over a finite domain were

derived from an exact relation between the solution and its derivatives on that

boundary. Galerkin, Galerkin/ least squares and Galerkin/ gradient least squares

finite element methods were evaluated by comparing errors pointwise and in

integral norms. The Galerkin/ least squares method was shown to exhibit

superior behavior for this class of problems.

El-Sayed, and Kaya (2004) implemented a relatively new numerical

technique, A domain’s decomposition method for solving the linear Helmholtz

partial differential equations. They demonstrated that the new method is quite

accurate and rapidly implemented than the finite-difference method.

Harris (1992) considered a numerical method for solving the exterior

Helmholtz problem using the boundary integral formulation derived from

4



Green’s theorem. Computational difficulties in evaluating singular integrals were

overcome by employing special quadrature rules and the numerical results showed

that it is possible to obtain accurate numerical solution to a wide range of

problems using this scheme.

Chen, et al (2002) derived the dual integral formulation for the modified

Helmholtz equation in solving the propagation of oblique incident wave passing a

thin barrier (a degenerate boundary). Fundamental solution of Laplace equation

was made use of since it is dual reciprocity BEM procedure and improper integrals

are converted to regular integrals by using Gaussian quadrature rules. A dual

boundary element method program was developed to solve the water scattering

problem passing a barrier.

As compared to the conventional low order finite difference and finite

element methods, the DQ method can obtain very accurate numerical results

using a considerably smaller number of grid points and hence requiring relatively

little computational effort.

Shu and Xue (1999) applied the polynomial-based differential quadrature

and the Fourier expansion-based differential quadrature methods to solve the

two dimensional Helmholtz equation. They demonstrated through some sample

example that the accurate numerical solution can be obtained by using only 2 to

3 mesh points per wavelenght. It was found that the FDQ approach can generally

obtain more accurate numerical results than the PDQ approach.

Shu (2000,a) presented a new approach for elliptical waveguide analysis.

This approach applies the global method of a Differential Quadrature to discretize

the Helmholtz equation and then reduces it into an eigenvalue equation system.

It is demonstrated that the DQ results are in excellent agreement with theoretical

values using just a few grid points and, thus requiring very small computational

effort, that is DQ is a very efficient method for elliptical waveguide analysis.

In this thesis, DQM is applied to the Helmholtz and modified Helmholtz

equations in two-dimensional space. The equations are supplemented with

Dirichlet or Dirichlet-Neumann type boundary conditions to form a boundary

value problem. The DQM is demonstrated for the one-dimensional case and

then extended to two-dimensions in the applications. Differential Quadrature
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Method approximates the derivatives in the partial differential equations by a

linear weighted summation of all the functional values (unknown function values).

As a result, a linear algebraic system of equations is obtained and solved

by using LU factorization. Application of modified Helmholtz equation is a

magnetohydrodynamic (MHD) channel flow problem which is a actually a system

of coupled partial differential equations in terms of velocity and the magnetic

field. Thus, the solution of this problem implements the solution of an important

physical problem.

Finally, Helmholtz equation is solved as an eigenvalue problem keeping both

the function and the constant in the equation as unknowns. Therefore, the thesis

gives differential quadrature solution of Helmholtz type equations and Helmholtz

eigenvalue-eigenvector problems.

1.1 Plan of The Thesis

In Chapter 2, first the theory of the Differential Quadrature Method is

given in one dimensional case and then the extension to the two dimensional

case and the application to Helmholtz, modified Helmholtz and Helmholtz

eigenvalue-eigenvector problems is explained. Implementation of Dirichlet and

Neumann type boundary conditions to the final algebraic linear system of

equations is also presented. Choice of the grid points is also explained in details.

Chapter 3 presents test problems which are solved by DQ method using

PDQ and FDQ approaches. These problems are defined in terms of Helmholtz

equations which are well defined boundary value problems. Applications to

magnetohydrodynamic flow and Helmholtz eigenvalue-eigenvector problem are

also given. MHD fluid flow problem in a rectangular channel is solved by reducing

the coupled equations first to the decoupled modified Helmholtz equations and

then applying again DQM to these equations.

6



CHAPTER 2

DIFFERENTIAL QUADRATURE METHOD FOR

HELMHOLTZ-MODIFIED HELMHOLTZ EQUATIONS AND

EIGENVALUE-EIGENVECTOR PROBLEMS

This Chapter presents the application of Differential Quadrature Method

(DQM) to Helmholtz, modified Helmholtz equations and then to Helmholtz type

eigenvalue-eigenvector problems.

The two-dimensional Helmholtz equation for a field problem can be written

as

∇2φ(x, y) + k2φ(x, y) = f(x, y) (x, y) ∈ Ω (2.1)

supplemented by one of the boundary conditions,

1. Dirichlet type : φ(x, y) = f1(x, y) on ∂Ω

2. Neumann type : ∂φ
∂n

(x, y) = f2(x, y) on ∂Ω

3. Mixed type : αφ + β ∂φ
∂n

= γ on ∂Ω

where ∇2 is the Laplacian operator, given by

∇2 =
∂2

∂x2
+

∂2

∂y2

φ(x, y) and the constant k are potential(unknown) function and the given wave

number respectively, f is a given continuous source function, f1, f2 are known

continuous functions defined on the boundary ∂Ω of the region Ω, α, β, γ are

known constants.
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The two-dimensional modified Helmholtz equation is defined as

∇2φ(x, y)− k2φ(x, y) = f(x, y) (2.2)

and a well defined boundary value problem can be obtained similarly with proper

boundary conditions defined above in a two dimensional domain.

In a Helmholtz type eigenvalue-eigenvector problem, the wave number is

also unknown and there is no source function

∇2φ(x, y)∓ k2φ(x, y) = 0 (x, y) ∈ Ω (2.3)

φ(x, y) = 0 (x, y) ∈ ∂Ω.

In this thesis to demonstrate the high efficiency and accuracy of the PDQ

and FDQ method, we study the Helmholtz field problems on a rectangular

domain. The efficiency and accuracy of PDQ and FDQ approaches are validated

by their application to some test problems, which have exact solutions.

2.1 Differential Quadrature Method

The Differential Quadrature Method was presented by R. E. Bellman and

his associates in early 1970’s and it is a numerical discretization technique

for the approximation of derivatives. In seeking an efficient discretization

technique to obtain accurate numerical solutions using a considerably small

number of grid points, Belmann (1971, 1972) introduced the method of differential

quadrature, where a partial derivative of a function with respect to a coordinate

direction is expressed as a linear weighted sum of all the functional values at

all grid points along that direction. The key to DQ method is to determine

the weighting coefficients for the discretization of a derivative of any order.
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A major breakthrough in computing the weighting coefficients was made by

Shu and Richards (1990) in which all the current methods for determination

of the weighting coefficients are generalized under the analysis of a high order

polynomial approximation and the analysis of a linear vector space. In Shu’s

approach, the weighting coefficients of the first order derivative are determined by

a simple algebraic formulation without any restriction on the choice of grid points,

whereas the weighting coefficients of the second and higher order derivatives are

determined by a recurrence relationship. Clearly, all the above work is based

on the polynomial approximation, and accordingly, the related DQ method can

be considered as the polynomial-based differential quadrature (PDQ) method.

Recently, Shu and Chew (1997) and Shu and Xue (1997) have developed explicit

formulations for computing the weighting coefficients of the first and second order

derivatives in the DQ approach when the function or the solution of a partial

differential equation (PDE) is approximated by a Fourier series expansion. These

formulations are different from PDQ and the approach can be termed as the

Fourier expansion-based differential quadrature (FDQ) method.

2.1.1 One Dimensional Polynomial-Based Differential Quadrature

Method

For simplicity, the one-dimensional problem is chosen to demonstrate the

PDQ Method. When a structured grid is used, the one dimensional results can

be directly extended to the multi-dimensional cases and thus to our problem in

two dimensions.

Following the idea of integral quadrature, the Differential Quadrature

Method approximates the derivative of a smooth function at a grid point by a

9



linear weighted summation of all the functional values in the whole computational

domain (Shu, 2000). For example, the first and second order derivatives of a

function u(x) at a point xi are approximated by

ux(xi) =
du

dx
|xi

=
N∑

j=1

aiju(xj), i = 1, 2, ..., N (2.4)

uxx(xi) =
du2

dx2
|xi

=
N∑

j=1

biju(xj), i = 1, 2, ..., N (2.5)

where aij, bij are the weighting coefficients and N is the number of grid points in

the whole domain. It should be noted that the weighting coefficients aij (and bij)

are different at different location of xi since they depend on coordinates of the

points. The important procedure in DQ approximation is to determine the

weighting coefficients aij and bij efficiently.

When the function u(x) is approximated by a high order polynomial, one

needs some explicit formulations to compute the weighting coefficients within the

scope of a high order polynomial approximation and a linear vector space. In

accordance with the Weierstrass polynomial approximation theorem, it is known

that the solution of a one dimensional differential equation is approximated by a

(N -1)th degree polynomial

u(x) =
N−1∑
k=0

ckx
k (2.6)

where ck’s are constants. The polynomial of degree less than or equal to N -1

constitutes an N -dimensional linear vector space VN with respect to the operation

of vector addition and scalar multiplication.

Obviously, in the linear vector space VN , a set of vectors (monomials)

1,x,x2,...,xN−1 is linearly independent. Thus,

sk(x) = xk−1, k = 1, 2, ..., N (2.7)
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is a basis of VN .

For the numerical solution of a differential equation, we need to find out the

solution at certain discrete points. Now, it is supposed that in a closed interval

[a, b], there are N distinct grid points with the coordinates a = x1, x2, ..., xN = b,

and the functional value at a grid point xi is u(xi). Then the constants in equation

(2.6) can be determined from the following system of equations

c0 + c1x1 + c2x
2
1 + ... + cN−1x

N−1
1 = u(x1)

c0 + c1x2 + c2x
2
2 + ... + cN−1x

N−1
2 = u(x2)

.................................................................

c0 + c1xN + c2x
2
N + ... + cN−1x

N−1
N = u(xN).

(2.8)

The matrix equation (2.8) is of Vandermonde form which is not singular.

Thus the equation can give unique solutions for constants c0, c1, ..., cN−1. Once

these are determined, the approximated polynomial is obtained. However, when

N is large, the matrix is highly ill-conditioned and its inversion is very difficult

to find. Then it is hard to determine the constants c0,c1,...,cN−1.

Here, if rk(x), k = 1, 2, ..., N are the base polynomials in VN , u(x) can then

be expressed by

u(x) =
N∑

k=1

dkrk(x). (2.9)

Clearly, if all the base polynomials satisfy a linear constrained relationship

such as equation (2.4) or equation (2.5), so does u(x). In the linear vector space,

there may exist several sets of base polynomials. Each set of base polynomials can

be expressed uniquely by another set of base polynomials. This means that every

set of base polynomials would give the same weighting coefficients. However,

the use of different sets of base polynomials will result in different approaches to

compute the weighting coefficients. Since there are many sets of base polynomials
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in the linear vector space, we have many approaches to compute the weighting

coefficients.

The property of linear vector space also gives us the ability to apply

the weighting coefficients for the discretization of a differential equation.

Remembering that the solution of a differential equation is approximated by a

polynomial of degree (N -1) which constitutes the N -dimensional vector space, the

actual expression of the polynomial contains the unknown constants ck’s which

are to be determined. On the other hand, in the linear vector space, the set

of base polynomials can be chosen to be independent of the solution. From the

property of a linear vector space, if one set of base polynomials satisfies a linear

operator so does any polynomial in the space. This indicates that the solution of

the partial differential equation also satisfies the linear operator.

For generality, two sets of base polynomials are used to determine the

weighting coefficients (Shu (2000)). The first set of base polynomials is chosen as

the Lagrange interpolated polynomials,

rk(x) =
(x− x0)(x− x1)...(x− xk−1)(x− xk+1)...(x− xN)

(xk − x0)(xk − x1)...(xk − xk−1)(xk − xk+1)...(xk − xN)

in interpolating the function u(x) as

u(x) =
N∑

k=1

u(xk)rk(x).

Here, polynomials rk(x) are given by

rk(x) =
M(x)

(x− xk)M (1)(xk)
, k = 1, 2, ..., N (2.10)

with the property rk(xi) = δik where,

M(x) = (x− x1)(x− x2)...(x− xN) (2.11)
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and

M (1)(xk) =
N∏

j=1,j 6=k

(xk − xj) (2.12)

being the derivative of M(x).

Here x1, x2, ...xN are the coordinates of grid points and may be chosen

arbitrarily but distinct.

For obtaining an efficient procedure to compute the polynomials rk(x) at

discrete points we make use of Kronecker operator δij as

M(x) = N(x, xk)(x− xk), k = 1, 2, ..., N (2.13)

with

N(xi, xj) = M (1)(xi)δi,j. (2.14)

Using equation (2.13), equation (2.10) can be simplified to

rk(x) =
N(x, xk)

M (1)(xk)
, k = 1, 2, ..., N (2.15)

and at the point xi (i = 1, 2, ..., N)

rk(xi) =
N(xi, xk)

M (1)(xk)
, k = 1, 2, ..., N. (2.16)

From equation (2.14), we can obtain the following expression as

N(xi, xk) =


0 if i 6= k

M (1)(xi) if i = k
(2.17)

giving rk(xi) = 0 if i 6= k and rk(xi) = 1 for i = k. Using this property of

rk(x) when i = k in the equation (2.9) at the point xi, we obtain

u(xi) =
N∑

k=1

dkrk(xi) = di. (2.18)
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Then u(xi) takes the form

u(xi) =
N∑

k=1

u(xk)rk(xi). (2.19)

Thus the first and second order derivatives of u(x) with respect to x at the

point xi are

ux(xi) =
N∑

k=1

r′k(xi)u(xk) (2.20)

uxx(xi) =
N∑

k=1

r′′k(xi)u(xk). (2.21)

From equation (2.4) and equation (2.5), the coefficients aij and bij in the

first and second order derivatives of u(x) at the point xi become

r′k(xi) = aik (2.22)

r′′k(xi) = bik. (2.23)

Thus the coefficients aij and bij can be computed by taking first and second

order derivatives of rk(x) as follows,

r′j(xi) =
N (1)(xi, xj)

M (1)(xj)
= aij i, j = 1, ..., N (2.24)

r′′j (xi) =
N (2)(xi, xj)

M (1)(xj)
= bij i, j = 1, ..., N (2.25)

where N (1)(x, xj) and N (2)(x, xj) are the first and second order derivatives of the

function N(x, xj).

M (1)(xj) can be easily computed by equation (2.12), to evaluate N (1)(xi, xj)

and N (2)(xi, xj) we successively differentiate equation (2.13) with respect to x and

obtain the following recurrence formulation

M (m)(x) = N (m)(x, xk)(x− xk) + mN (m−1)(x, xk)

for m = 1, 2, ..., N − 1, k = 1, 2, ..., N (2.26)
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where M (m)(x) and N (m)(x, xk) indicate the mth order derivative of M(x) and

N(x, xk) respectively.

From the equation (2.26), we can easily obtain

N (1)(xi, xj) =
M (1)(xi)

xi − xj

, i 6= j (2.27)

N (1)(xi, xi) =
M (2)(xi)

2
. (2.28)

Similarly, using equation (2.26) for m = 2 gives

N (2)(xi, xj) =
M (2)(xi)− 2N (1)(xi, xj)

xi − xj

, i 6= j (2.29)

N (2)(xi, xi) =
M (3)(xi)

3
. (2.30)

Substituting equation (2.27) and (2.28) into equation (2.24) and equation

(2.29) and (2.30) into equation (2.25), we finally obtain the coefficients aij and bij

aij =
M (1)(xi)

(xi − xj)M (1)(xj)
, i 6= j (2.31)

aii =
M (2)(xi)

2M (1)(xi)
(2.32)

bij = M (2)(xi)−
2N (1)(xi, xj)

(xi − xj)M (1)(xj)
, i 6= j (2.33)

bii =
M (3)(xi)

3M (1)(xi)
. (2.34)

Finally by substituting equations (2.31) and (2.32) into equations (2.33)

and (2.34) we get a relationship between aij and bij,

bij = 2aij(aii −
1

xi − xj

), i 6= j. (2.35)

It is observed that, if xi is given, it is easy to compute M (1)(xi) from equation

(2.12), and hence aij and bij for i 6= j (equations (2.31) and (2.35)). However the
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calculation of aii and bii (equations (2.32) and (2.34)) involve the computation

of the second order derivative M (2)(xi) and the third order derivative M (3)(xi)

which are not easy task. This difficulty can be removed by the property of the

linear vector space.

According to the theory of a linear vector space, one set of base polynomials

can be expressed uniquely by another set of polynomials. Thus if one set of

base polynomials satisfies a linear constrained relationship, say equation (2.4)

or (2.5), so does another set of base polynomials. As a consequence, equations

(2.4) and (2.5) should also be satisfied by the second set of base polynomials

xk−1, k = 1, 2, ..., N . Thus, aii and bii satisfy the following equation which is

obtained by the base polynomial xk−1 when k = 1, for i = 1, 2, ..., N

N∑
j=1

aij = 0 or aii = −
N∑

j=1,j 6=i

aij (2.36)

and
N∑

j=1

bij = 0 or bii = −
N∑

j=1,j 6=i

bij. (2.37)

From above equations, aii and bii can be determined from aij, bij (i 6= j).

2.1.2 One Dimensional Fourier Expansion-Based Differential Quadra-

ture Method

The polynomial approximation is suitable for most engineering problems.

However, for some problems, especially for those with periodic behaviours such as

the Helmholtz problems, polynomial approximations may not be the best choice

for the accurate solution. In contrast, Fourier series expansion for the unknown

function could be better approximation.

Fourier expansion-based differential quadrature method is also going to be

explained in one dimensional case which can be easily extended to two dimensional
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problems. The FDQ approximation for the discretization of derivatives is

similar to the polynomial-based differential quadrature approximation where the

approximation is in terms of trigonometric polynomials. The only difference

between FDQ method and PDQ method is in the computations of the weighting

coefficients (Shu (2000)). Consider a one-dimensional continuous function u(x)

over an interval [a, b] with length L and suppose that there are N grid points in

the whole domain with coordinates x1, x2, ..., xN . Now it is supposed that u(x)

is approximated by a Fourier series expansion of the form

u(x) = c0 +
N/2∑
k=1

(ck cos
kπx

L
+ dk sin

kπx

L
). (2.38)

Similar to PDQ, it is easy to show that u(x) in equation (2.38) constitutes a

(N+1) dimensional linear vector space with respect to the operation of addition

and multiplication. Here, if rk, k = 0, 1, ..., N , r0 = 1 are the base functions,

any function in the space can be expressed as a linear combination of rk,

k = 0, 1, ..., N , r0 = 1.

For generality, two sets of base functions are used to derive explicit

formulations to compute the weighting coefficients of the first and second order

derivatives in FDQ. The first set of base functions are chosen as Lagrange

interpolated trigonometric polynomials,

rk(x) =
sin x−x0

2L
π... sin x−xk−1

2L
π sin x−xk+1

2L
π... sin x−xN

2L
π

sin xk−x0

2L
π... sin xk−xk−1

2L
π sin xk−xk+1

2L
π... sin xk−xN

2L
π

, (2.39)

for k = 0, 1, 2, ..., N.

For simplicity, we set

M(x) =
N∏

k=0

sin
x− xk

2L
π = N(x, xk) sin

x− xk

2L
π (2.40)
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where

N(xi, xi) =
N∏

k=0,k 6=i

sin
xi − xk

2L
π = P (xi) (2.41)

N(xi, xj) = N(xi, xi)δij, (2.42)

δij is again the Kronecker operator.

Equation (2.39) can then be reduced to

rk(x) =
N(x, xk)

P (xk)
, k = 0, ..., N (2.43)

with the property rk(xi) = δik. Using the same fashion as in PDQ, we let all the

base functions given by (2.43) satisfy two linear constrained relations (2.4) and

(2.5), and obtain

r′j(xi) =
N (1)(xi, xj)

P (xj)
= aij, i, j = 1, ..., N (2.44)

r′′j (xi) =
N (2)(xi, xj)

P (xj)
= bij i, j = 1, ..., N (2.45)

where N (1)(x, xk), N (2)(x, xk) are respectively the first and second order

derivatives of N(x, xk). It is observed from equation (2.44) and (2.45) that

the computation of aij and bij is equivalent to evaluation of N (1)(xi, xj) and

N (2)(xi, xj) since P (xj) can be easily calculated by equation (2.41). To evaluate

N (1)(xi, xj), N (2)(xi, xj), we successively differentiate equation (2.40) and then

obtain

M (1)(x) = N (1)(x, xk) sin
x− xk

2L
π +

π

2L
N(x, xk) cos

x− xk

2L
π (2.46)

M (2)(x) = N (2)(x, xk) sin
x− xk

2L
π +

π

L
N (1)(x, xk) cos

x− xk

2L
π

−(
π

2L
)2N(x, xk) sin

x− xk

2L
π (2.47)
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M (3)(x) = N (3)(x, xk) sin
x− xk

2L
π + 3(

π

2L
)N (2)(x, xk) cos

x− xk

2L
π

−3(
π

2L
)2N (1)(x, xk) sin

x− xk

2L
π − (

π

2L
)3N(x, xk) cos

x− xk

2L
π.

(2.48)

Applying these equations at the grid points, we get

N (1)(xi, xj) =
πP (xi)

2L sin xi−xj

2L
π

, j 6= i (2.49)

N (1)(xi, xi) = L
M (2)(xi)

π
(2.50)

N (2)(xi, xj) =
M (2)(xi)− π

L
N (1)(xi, xj) cos xi−xj

2L
π

sin xi−xj

2L
π

, j 6= i (2.51)

N (2)(xi, xi) =
2L

3π
[M (3)(xi) +

π3

8L3
N(xi, xi)] (2.52)

substituting equations (2.49), (2.50) into equation (2.44), we obtain

aij =
π

2L

P (xi)

sin xi−xj

2L
πP (xj)

, j 6= i (2.53)

aii =
LM (2)(xi)

πP (xi)
. (2.54)

Similarly, substituting equations (2.51), (2.52) into equation (2.45) and

using equations (2.53), (2.54), we obtain

bij = aij[2aii −
π

L
cot

xi − xj

2L
π], j 6= i (2.55)

bii =
2L

3π
[
M (3)(xi)

P (xi)
+

π3

8L3
]. (2.56)

From equations (2.53), (2.55), aij and bij can be easily computed. However

the calculation of aii (equation (2.54) and bii (equation (2.56)) involve the

computation of M (2)(xi) and M (3)(xi) which are not easy to compute. This
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difficulty can be removed using again the property of a linear vector space and

substituting the second set of the base functions in FDQ which can be observed

from equation (2.38),

1, sin πx, cos πx, sin 2πx, ..., sin(
Nπx

2
), cos(

Nπx

2
).

Among the set of base vectors, we only apply the vector 1. Let the vector

1 satisfy the equations (2.4) and (2.5), we get for i = 1, 2, ..., N

N∑
j=0

aij = 0 or aii = −
N∑

j=0,j 6=i

aij (2.57)

and
N∑

j=0

bij = 0 or bii = −
N∑

j=0,j 6=i

bij. (2.58)

From the above equations, aii and bii can be easily calculated from aij (i 6= j)

and bij (i 6= j).

2.2 Application of Differential Quadrature Method to Helmholtz and

Modified Helmholtz Equations

The Helmholtz equation is frequently encountered in various fields of

engineering and physics. For example, the wave guide problems in an

electromagnetic field, the vibration of membranes, and the water wave diffraction

problems in offshore structure engineering are governed by the Helmholtz

equation. It is also used for analizing acoustics and elastic wave problems. The

numerical solution of the Helmholtz equation can be obtained by using several

techniques such as the finite difference technique (R. P. Shaw (1974)), boundary

integral technique (P. J. Harris (1992), S. Amini and S. M. Kirkup (1995), F. Q.

Hu (1995)) and the finite element technique (C. I. Goldstein (1982), J. Haslinger
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and P. Neittaanmaki (1984), A. Bayliss, C. I. Goldstein and E. Turkel (1985), C.

I. Goldstein (1986), C. L. Chang (1990), I.Harari and T. J. R. Hughes (1991),

L. L. Thompson and P. M. Pinsky (1995)). It is well known that in all these

method solutions deteriorate rapidly as the wave number (k) is increased. This is

due to the use of low order polynomial approximation to highly oscillatory wave

propagation solutions. To obtain an acceptable level of accuracy more than 10

elements per wavelength should be used. For large wave numbers, refining the

mesh or its boundary to this requirement may become prohibitively expensive.

Thus the global method of differential quadrature is an efficient approach to solve

the Helmholtz equation (Shu and Xue ( 1999)).

In previous Section Differential Quadrature Method was explained in

approximating derivatives for one-dimensional case. In this Section the DQM

is applied to two-dimensional Helmholtz and modified Helmholtz equations.

The two-dimesional Helmholtz equation for a field problem

∂2φ(x, y)

∂x2
+

∂2φ(x, y)

∂y2
+ k2φ(x, y) = f(x, y) (x, y) ∈ Ω (2.59)

where φ and k are the potential and the wave number defined in the

two-dimensional domain Ω surrounded by the boundary ∂Ω, f is a source

function. The boundary condition considered is one of the following types,

Dirichlet type: φ(x, y) = f1(x, y) on ∂Ω

Neumann type: ∂φ
∂n

(x, y) = f2(x, y) on ∂Ω

By applying the PDQ or FDQ method, equation (2.59) can be discretized

in the Cartesian coordinate system as

N∑
k=1

w
(2)
ik φkj +

M∑
k=1

w̄
(2)
jk φik + k2φij = fi,j (2.60)

where N, M are the number of grid points in the x and y directions, w
(2)
ik and w̄

(2)
jk
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are the weighting coefficients in the x and y directions, respectively. When PDQ

method is used , w
(2)
ik and w̄

(2)
jk are computed by equations (2.31), (2.35), (2.36),

(2.37), while for the FDQ approach , w
(2)
ik and w̄

(2)
jk are computed by equation

(2.53), (2.55), (2.57), (2.58). Similarly, the derivative in the Neumann boundary

condition can be discretized by the PDQ or FDQ approach.

Applying equation (2.60) at all interior points leads to the following

algebraic equation system (since i and j indicate any point (xi, yj) in the region)

[A]{φ} = {b} (2.61)

where φ is a vector of unknowns which consists of functional values at all interior

points, {b} is a known vector, [A] is the coefficient matrix resulting from the

differential quadrature discretization of second order derivatives in Laplacian of φ.

The two-dimensional modified Helmholtz equation for a field problem

written as

∂2φ(x, y)

∂x2
+

∂2φ(x, y)

∂y2
− k2φ(x, y) = f(x, y) (x, y) ∈ Ω (2.62)

where φ and k are again the potential and the wave number defined in the

two-dimensional domain Ω surrounded by the boundary ∂Ω, f is a source

function.

This kind of problem would arise in the analysis of the small displacement

of a tightly stretched membrane, if one adds the condition that membrane be

elastically restrained. The minus sign is not the only difference between the

Helmholtz and modified Helmholtz equation. When the sign is changed, the

Helmholtz equation is being an important physical problem.
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Similar to Helmholtz equation, modified Helmholtz equation can be

discretized in the Cartesian coordinate system as

N∑
k=1

w
(2)
ik φkj +

M∑
k=1

w̄
(2)
jk φik − k2φij = fi,j (2.63)

The weighting coefficients w
(2)
ik , w̄

(2)
jk and w

(1)
ik , w̄

(1)
jk are computed using PDQ

method or FDQ method from the same equations with the Helmholtz equation.

Applying equation (2.63) at all interior points we obtain the same algebraic

equation system (2.61)

[A]{φ} = {b}

The coefficient matrix [A] involves the differences coming from the

Differential Quadrature discretization of the modified Helmholtz equation.

2.3 Application of Differential Quadrature Method to Eigenvalue -

Eigenvector Problems

Eigenvalue problems frequently arise in oscillation problems and in stability

analysis. For example a biological system involving an investigation of a chemical

substance’s instability or a problem involving the oscillation of a membrane give

rise to an eigenvalue problem.

A two-dimensional eigenvalue-eigenvector problem is in general in the form

∇2u(x, y) + λf(x, y)u(x, y) = 0 (x, y) ∈ Ω (2.64)

u(x, y) = 0 (x, y) ∈ ∂Ω

where f(x, y) is a given positive function, Ω ⊂ R2, u(x, y) and λ are the

eigenvectors and eigenvalues which are sought.
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Then one solution u(x, y) of the problem is given by the so-called trivial

solution u ≡ 0; we ask now whether we can also find a nontrivial solution to this

problem. We note that if there does exist such a nontrivial solution, then because

of the homogenity of the equation and of the boundary condition, any multiple

of that solution is also a solution. Helmholtz eigenvalue-eigenvector problem in-

volves the computation of the eigenvalues-eigenvectors of the Helmholtz-modified

Helmholtz equation,

∂2φ(x, y)

∂x2
+

∂2φ(x, y)

∂y2
= ∓λ2φ(x, y) (x, y) ∈ Ω (2.65)

φ(x, y) = 0 or
∂φ(x, y)

∂n
= 0 (x, y) ∈ ∂Ω. (2.66)

By applying the DQ method, equation (2.65) can be discretized in the

Cartesian coordinate system as

N∑
k=1

w
(2)
ik φkj +

M∑
k=1

w̄
(2)
jk φik = ∓λ2φij (2.67)

where N and M are respectively the numbers of grid points in the x and y

directions, w
(2)
ik , w̄

(2)
jk are the weighting coefficients of the second order derivatives

with respect to x and y respectively. Applying equation (2.67) all the interior

points with the given boundary conditions gives the following eigenvalue equation

system

[A]{φ} = ∓λ2{φ}. (2.68)

From the equation (2.65), the (λ) values (wavenumbers) can be obtained

from the eigenvalues of the matrix [A].

To compute the eigenvalues of the matrix [A], routine EVCRG in Fortran

is used. The routine computes the eigenvalues and eigenvectors of a real

matrix. The matrix is first balanced. Orthogonal similarity trnasformations
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are used to reduce the balanced matrix to a real upper Hessenberg matrix. The

implicit double-shifted QR algorithm is used to compute the eigenvalues and

the eigenvectors of the Hessenberg matrix. The balancing routine is based on

EISPACK routine BALANC. The reduction routine is based on the EISPACK

routine ORTHES and ORTRAN. The QR algorithm is based on the EISPACK

routine HQR2.

2.4 Choice of Grid Points

Since the weighting coefficients w
(2)
ik , w̄

(2)
jk and w

(1)
ik , w̄

(1)
jk corresponding to the

discretization of the second and first order derivatives respectively, contain grid

points xi, yi’s, the choice of these grid points becomes quite important. Equally

spaced grid points, due to the their obvious convenience, have been in use by

most investigators. However, uniquely spaced grid points especially the zeros of

orthogonal polynomials like Legendre and Chebyshev polynomials usually give

more accurate solutions then the equally spaced grid points.

The naturally choice for the grid points is the equally spaced points which

is given by

xi =
i− 1

N − 1
a, i = 1, 2, ..., N (2.69)

and

yj =
j − 1

M − 1
b, j = 1, 2, ...,M (2.70)

in the x and y directions, respectively for a region [0, a]× [0, b]. For this uniform

grid (equally spaced) with step sizes ∆x and ∆y in x and y directions respectively,

one can obtain

xk − xi = (k − i)∆x, yk − yj = (k − j)∆y
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M (1)(xi) = (−1)N−1(∆x)N−1(i− 1)!(N − i)! i = 1, 2, ..., N

M (1)(yj) = (−1)M−1(∆y)M−1(j − 1)!(N − j)! j = 1, 2, ...,M

and the coefficients for the first order derivatives reduce to

w
(1)
ij = (−1)i+j (i− 1)!(N − i)!

∆x(i− j)(j − 1)!(N − j)!
i, j = 1 . . . N, i 6= j

w̄
(1)
ij = (−1)i+j (i− 1)!(M − i)!

∆y(i− j)(j − 1)!(M − j)!
i, j = 1 . . . M, i 6= j.

The so-called Chebyshev-Gauss-Lobatto point distribution offer a better

choice and have been found consistently better than the equally spaced, Legendre

and Chebyshev points in a variety of problems (Bert and Malik (1996)).

These points are the Chebyshev collection points which are the roots of

|TN(x)| = 1 and given by (Shu (2000))

xk = cos(
k − 1

N − 1
π) 1 ≤ k ≤ N

for an interval [−1, 1]. TN(x) is the N ’th degree Chebyshev polynomial. For a

region on [0, a]× [0, b]

xi =
1

2
[1− cos(

i− 1

N − 1
)π]a, i = 1, 2, ..., N (2.71)

and

yj =
1

2
[1− cos(

j − 1

M − 1
)π]b, j = 1, 2, ...,M (2.72)

in the x and y directions respectively.

For the Chebyshev-Gauss-Lobatto points we have (in x direction)

M (1)(xi) = (−1)i+1N2

M (2)(xi) = (−1)iN2 xi

1− x2

and the corresponding weighting coefficients simplify greatly.
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2.5 Implementation of Boundary Conditions

Proper implementation of boundary conditions is very important for the

accurate solution. The insertion of Dirichlet type boundary conditions is

straightforward since these known values contribute to the right hand side vector

{b} in the system (2.61). If the boundary condition involves normal derivatives

of the unknown function φ then these derivatives can also be approximated by

the Differential Quadrature Method. In this section implementation of boundary

conditions are explained for the Helmholtz and the modified Helmholtz equations.

Dirichlet Type Boundary Condition:

For imposing the Dirichlet Type boundary conditions, equations (2.60) and

(2.63) should only be applied at the interior points since the solution at the

boundary grid points is known. Thus equations (2.60) and (2.63) can be rewritten

as
N−1∑
k=2

w
(2)
ik φkj +

M−1∑
k=2

w̄
(2)
jk φik ∓ k2φij = fi,j − sij (2.73)

where 2 ≤ i ≤ N − 1, 2 ≤ j ≤ M − 1 and

sij = (w
(2)
i1 φ1j + w

(2)
iN φNj + w̄

(2)
j1 φi1 + w̄

(2)
jMφiM).

Equation (2.73) is set of DQ algebraic equations which can be written in

matrix form

[A]{φ} = {b} − {s} (2.74)

where {φ} is a vector of unknown functional values at all the interior points given

by

{φ} = {φ22, φ23, ..., φ2,M−1, φ32, ..., φ3,M−1, ..., φN−1,2, ..., φN−1,M−1}T
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and {b} is a vector and {s} vector contains known values of φ at the boundary

grid points. The size of the matrix [A] is (N − 2)× (M − 2).

We can show from the equation (2.73) that there isn’t any difference

in implementation of the Dirichlet type boundary conditions to Helmholtz or

modified Helmholtz equation. However the elements of the matrix [A] in equation

(2.74) change because of the sign of (k2).

In this work, the solution of equation system (2.74) can be obtained by

using the routine LSARG in Fortran. The routine solves a system of linear

algebraic equations having a real general coefficient matrix. It first uses the

routine LFCRG to compute an LU factorization of the coefficient matrix and to

estimate the condition number of the matrix. The solution of the linear system

is then found using the iterative refinement routine LFIRG. LSARG fails if U ,

the upper triangular part of the factorization, has a zero diagonal element or if

the iterative refinement algorithm fails to converge. These error occur only if [A]

is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine

precision), a warning error is issued. This indicates that very small changes

in [A] can cause very large changes in the solution x. Iterative refinement can

sometimes find the solution to such a system. LSARG solves the problem that is

represented in the computer; however, this problem may differ from the problem

whose solution is desired.

Neumann Type Boundary Condition:

For the Neumann conditions the normal derivatives on the boundary should

also be discretized by Differential Quadrature Method.
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The normal derivative of φ can be written as

∂φ

∂n
=

∂φ

∂x
nx +

∂φ

∂y
ny (2.75)

and ∂φ/∂x and ∂φ/∂y are discretized by using PDQ or FDQ method.

Now,

∂φij

∂x
=

N∑
k=1

w
(1)
ik φkj, i = 1, 2, ..., N (2.76)

and

∂φij

∂y
=

M∑
k=1

w
(1)
jk φik, j = 1, 2, ...,M (2.77)

where w
(1)
ik and w̄

(1)
jk are the weighting coefficients with respect to x

and y directions and obtained analogous in the one dimensional case.

(equation (2.31) and equation (2.32)).

Thus,

w
(1)
ik =

M
(1)
(xi)

(xi − xk)M (1)(xk)
, i 6= k (2.78)

w
(1)
ii =

M (2)(xi)

2M (1)(xi)
(2.79)

w̄
(1)
jk =

M (1)(yj)

(yj − yk)M (1)(yk)
, j 6= k (2.80)

w̄
(1)
jj =

M (2)(yj)

2M (1)(yj)
(2.81)

Assuming ∂φi1/∂y = ci (i = 1, 2, ..., N) and ∂φi1/∂x = 0 are given on one

part of the boundary, we can write

∂φi1

∂y
=

M∑
k=1

w̄
(1)
1k φik = ci. (2.82)

Rewriting equation (2.82) as

w̄
(1)
11 φi1 +

M∑
k=2

w̄
(1)
1k φik = ci (2.83)
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φi1 is easily obtained as a value on the boundary

φi1 =
1

w̄
(1)
11

(ci −
M∑

k=2

w̄
(1)
1k φik), i = 1, 2, ..., N. (2.84)

These N equations for the unknowns φi1, (i = 1, 2, ..., N) are going to be

added to the DQ system of equations (2.60) and (2.63) for the Helmholtz equation

and modified Helmholtz equation which is written for j 6= 1, i = 1, 2, ..., N for the

case of Neumann type of boundary conditions ∂φi1

∂y
= ci on y = y1, (j = 1 case ).

When normal boundary conditions are implemented at all the related grid points,

the final system of DQ equations will be again in the form of equation (2.74)

[A]{φ} = {b} − {s}

where the vector {s} contains known values of φ at the boundary grid points.

Thus, equations found by discretizing the normal derivatives of φ on the

boundary are updated using interior φ values which are not known yet.

The mixed type boundary conditions which are combinations of the

Dirichlet and Neumann conditions are implemented in a similar fashion.
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CHAPTER 3

PROBLEMS AND RESULTS

In this Chapter, application of Differential Quadrature Method for

Helmholtz, modified Helmholtz and eigenvalue problems, described in Chapter 2

as equations (2.1), (2.2) and (2.3) respectively, are given. First three

problems are Helmholtz equations with Dirichlet type boundary conditions.

The fourth problem is the solution of a modified Helmholtz equation with

Dirichlet-Neumann type boundary conditions. The fifth problem gives the

solution of magnetohydrodynamic flow in a channel which is transformed to two

modified Helmholtz equations together with Dirichlet boundary conditions. This

problem is very attractive from the physical point of view since the velocity and

induced magnetic field inside the channel can be computed numerically with very

small number of grid points with Differential Quadrature Method, compared to

the other domain discretization methods. As a last application of DQ method

the solution of Helmholtz eigenvalue-eigenvector problem if the constant (k) is

also considered as an unknown, is presented. The computational domain is a

rectangle for all problems considered and the discretizations of the regions are

performed by using Chebyshev-Gauss-Lobatto grid distribution.

Solutions of Helmholtz or modified Helmholtz equations show critical

behaviours close to the boundaries. Thus, using equally spaced grid points

is not suitable for these type of equations but Chebyshev-Gauss-Lobatto grid

distribution is the best choice since the points are clustered through the

boundaries.
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All the problems are solved by using both PDQ and FDQ formulations and

the results are compared in terms of graphics and tables. Also the effect of the

variation of the constant (k) in solving the equations is studied.

When Helmholtz or modified Helmholtz equation is discretized with DQM,

the resulting system of algebraic equations is solved by using subroutine LSARG

in Fortran. From the DQ application of differential eigenvalue-eigenvector

equations an algebraic eigenvalue-eigenvector equation system is obtained and

again subroutine EVCRG in Fortran package is made use of for obtaining the

smallest eigenvalue.

Computer programs are written in Fortran Language and run in PC

platform. All the graphics are obtained using MATLAB graphic program.
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3.1 Problem 1

This problem is the Laplace equation (k = 0 in Helmholtz equation) with

Dirichlet type boundary conditions

∇2u = 0 (x, y) ∈ (0, π)× (0, π) (3.1)

φ(0, y) = −y2, at x = 0 (3.2)

φ(π, y) = π2 − y2, at x = π (3.3)

φ(x, 0) = x2, at y = 0 (3.4)

φ(x, π) = x2 − π2, at y = π. (3.5)

in which the constant k is taken as zero in the Helmholtz equation.

The exact solution of the problem is given as

φ = x2 − y2. (3.6)

The number of grid points in x and y directions is taken as equal (M = N)

and it is varied starting from small values to larger to see the effect on the solution.

From N = 5 to N = 23 several values are tested and it is found that N = 15 is the

right number of grid points since agreement with the exact solution is excellent

with that value of N and there is no need to increase it further. Even with a

small value of N (e.g. N=9, 11) the agrement with exact solution is obtained.

But N = 15 gives very smooth behavior in the domain.

PDQ and FDQ approaches are compared for the solution of Laplace

equation and it is found that these two formulations are equivalently good and

they both require around 15 number of grid points. Figures (1) and (2) show

the closeness of the two solutions even for very small N and Figure(3)-Figure(4)
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show that very well agreement of the DQ method solution of Laplace equation

with the exact solution if PDQ and FDQ approaches are used respectively.

The performance of PDQ and FDQ approaches is measured by maximum

error, 4φmax, which is defined as

4φmax = max|φi,j − φ(xi, yj)| (3.7)

where φi,j is the numerical solution at mesh points (xi, yj) and φ(xi, yj) is the

exact solution at the same mesh point.
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Figure 3.1: Problem 1 with PDQ, N = 5

Figure 3.2: Problem 1 with FDQ, N = 5
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Figure 3.3: Problem 1 with PDQ, N = 15

Figure 3.4: Problem 1 with FDQ, N = 15
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3.2 Problem 2

This application is the solution of nonhomogeneous Helmholtz equation with

Dirichlet boundary conditions

∇2φ + 0.5φ = (−2π2 + 0.5) sin(πx) sin(πy) (x, y) ∈ (0, 1)× (0, 1) (3.8)

φ = 0 x = 0, x = 1; y = 0, y = 1 (3.9)

where the exact solution is

φ = sin(πx) sin(πy). (3.10)

Since k 6= 0 in this problem a larger number of grid points is required as

N ≥ 19, N = 23 is found to be the right number of grid points. Figures (5),

(6), (7) and (8) show the improvement of the solution with the increase of N .

It can be seen that there is no need to increase N further. When k 6= 0 FDQ

formulation is a better choice since it is suitable for problems with oscillatory

behaviours. Thus, FDQ method requires a smaller number of grid points than

PDQ method. In this problem N = 19 or N = 21 gives the accuracy as obtained

from PDQ method with N = 23. This can be observed from figures (9) and (10).
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Figure 3.5: Problem 2 with PDQ, N = 13

Figure 3.6: Problem 2 with PDQ, N = 17
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Figure 3.7: Problem 2 with PDQ, N = 23

Figure 3.8: Problem 2 with PDQ, N = 25
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Figure 3.9: Problem 2 with FDQ, N = 19

Figure 3.10: Problem 2 with FDQ, N = 21
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3.3 Problem 3

This problem is also nonhomogeneous Helmholtz equation with Dirichlet

boundary conditions but the constant k is varied to see the effect on the solution.

∇2φ + k2φ = −k2 sin(kx) sin(ky) (x, y) ∈ (0, π)× (0, π) (3.11)

φ = 0 x = 0, x = π; y = 0, y = π (3.12)

in which the exact solution is given as

φ = sin(kx) sin(ky). (3.13)

For this problem as N increases both PDQ and FDQ formulations give

better results in terms of maximum error. As (k) increases N must be increased

to get good accuracy. These effects of N and (k) are listed in Table (3.1).

FDQ method gives better accuracy then the PDQ method as expected from

the results of problem 2 also, since k 6= 0. Thus, especially for large (k) FDQ

method is recommended since it requires less number of grid points than PDQ

method.

Table (3.1) displays the maximum absolute errors between the numerical

results and the exact solution for various meshes and k = 1, 2, 3, 4, 5, 6. It can

be observed from table (3.1) that for a fixed (k), as the mesh size is increased,

the PDQ results are gradually improved. However, the FDQ results seem to

be improved suddenly. Figures (11), (12) and (13) show the solutions for this

nonhomogeneous problem for k=1, 2 and 3 respectively.

In Figures (14) and (15) we present distribution of the solutions along the

line y = π
2

for k = 7 respectively for PDQ and FDQ formulations. Figure (14)

shows that PDQ formulation with N = 15 gives better result than with N = 13

41



in comparison with the exact solution. Figure (15) implies that FDQ method is

better than PDQ method showing the very well agreement with the exact solution

by using N = 15.

Table 3.1: Comparison of 4φmax for problem 3

k = 1 3× 3 5× 5 7× 7 9× 9 11× 11 13× 13

PDQ 6.100×10−1 1.017×10−2 2.447×10−5 1.512×10−7 5.929×10−7 2.483×10−6

FDQ 1.192×10−7 2.118×10−7 1.236×10−7 7.118×10−7 9.988×10−8 1.188×10−6

k = 2 5× 5 7× 7 9× 9 11× 11 13× 13 15× 15

PDQ 1.909×10−1 3.935×10−3 1.312×10−4 4.522×10−6 1.965×10−6 1.511×10−6

FDQ 2.661×10−7 4.212×10−7 1.945×10−7 2.286×10−7 1.715×10−6 1.773×10−6

k = 3 5× 5 7× 7 9× 9 11× 11 13× 13 15× 15

PDQ 4.830×10 2.138×10−1 8.864×10−3 1.164×10−4 6.861x10−6 1.477×10−6

FDQ 5.924×100 1.828×10−6 7.891×10−7 4.851×10−7 2.170×10−6 1.498×10−6

k = 4 7× 7 9× 9 11× 11 13× 13 15× 15 17× 17

PDQ 2.623×10−1 4.394×10−2 2.766×10−3 2.578×10−4 1.274×10−5 1.085×10−6

FDQ 1.824×10−1 1.557×10−6 6.797×10−7 1.549×10−6 1.096×10−6 3.053×10−6

k = 5 9× 9 11× 11 13× 13 15× 15 17× 17 19× 19

PDQ 5.295×10−1 4.287×10−2 4.860×10−3 1.412×10−4 2.143×10−5 3.442×10−6

FDQ 9.944×10−1 1.869×10−6 1.791×10−6 1.306×10−6 2.499×10−6 1.335×10−6

k = 6 11× 11 13× 13 15× 15 17× 17 19× 19 21× 21

PDQ 1.258x10−1 1.931×10−2 2.054×10−3 1.903×10−4 1.379×10−5 1.511×10−6

FDQ 6.177×10−2 3.949×10−6 1.543×10−6 2.584×10−6 4.721×10−6 1.476×10−6
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Figure 3.11: Problem 3 with PDQ, k = 1, N = 25

Figure 3.12: Problem 3 with PDQ, k = 2, N = 27
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Figure 3.13: Problem 3 with PDQ, k = 3, N = 31
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Figure 3.14: Problem 3 with PDQ, k = 7, N = 13 and N = 15, y = π
2

Figure 3.15: Problem 3 with FDQ, k = 7, N = 13 and N = 15, y = π
2
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3.4 Problem 4

As a fourth test problem we consider homogeneous modified Helmholtz

equation

∇2u− u = 0 0 ≤ x, y ≤ 1

with Dirichlet-Neumann type boundary conditions

u(0, y) = y

u(1, y) = ey + cosh(y)

u(x, 1) = ex + xcosh(1)

∂u

∂y
(x, 0) = ex

which has the exact solution

φ(x, y) = yex + xcosh(y).

DQ discretization of this problem requires the discretization of the modified

Helmholtz equation and the derivative condition at y = 0

N∑
k=1

w
(2)
ik ukj +

N∑
k=1

w̄
(2)
jk uik − uij = 0 i = 1, ..., N ; j = 2, ..., N

N∑
k=1

w̄
(1)
jk uik = 0 i = 1, ..., N.

Thus, the resulting system of algebraic linear equations contain the last

N-rows from the Neumann boundary condition.

Figures (3.16) and (3.17) show the DQ solution with N=11 using PDQ and

FDQ approaches respectively. The agrement with the exact solution is very well

and, since k = 1 in this problem, the number of grid points (N) does not have to

be large as has been observed in problem 3.
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Figure 3.16: Problem 4 with PDQ , N = 11

Figure 3.17: Problem 4 with FDQ , N = 11
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3.5 Problem 5

In this example we will deal with the well known Maxwell equations of

electromagnetism and the basic equations of fluid mechanics which lead to the

coupled system of equations in the velocity and magnetic field. These equations

of steady, laminar, fully developed flow of viscous, incompressible and electrically

conducting fluid in a rectangular duct Ω, subjected to a constant and uniform

applied magnetic field B0, can be put in the following non-dimensional form

∇2V + M
∂B

∂x
= −1

∇2B + M
∂V

∂x
= 0 in Ω (3.14)

with the boundary conditions

V = B = 0 on ∂Ω (3.15)

meaning that the boundaries of the duct are insulating.

Figure 3.18: Physical problem
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V (x, y), B(x, y) are the velocity and the induced magnetic field respectively,

M is the Hartmann number. Here it is assumed that the applied magnetic field

B0 is parallel to x-axis, V (x, y), B(x, y) are in the z-direction which is the axis of

the duct, and the fluid is driven down the duct by means of a constant pressure

gradient.

Equations (3.14) may be decoupled by the change of variables

u1 = V + B , u2 = V −B (3.16)

as

∇2u1 + M
∂u1

∂x
= −1

∇2u2 −M
∂u2

∂x
= −1 in Ω (3.17)

with the boundary conditions

u1 = u2 = 0 on ∂Ω. (3.18)

Furthermore, if we define a transformation

U1 = e
M
2

xu1

U2 = e−
M
2

xu2 (3.19)

equations (3.17) become

∇2U1 =
M2

4
U1 − e

M
2

x

∇2U2 =
M2

4
U2 − e−

M
2

x in Ω (3.20)

with

U1 = U2 = 0 on ∂Ω. (3.21)
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When the solutions U1 and U2 are obtained by solving the corresponding

system of linear equations, it is possible to go back to the original unknowns

V (x, y) and B(x, y), through the equations (3.19) and (3.16). The discretization

of equations (3.20) by using PDQ method will result

N∑
k=1

w
(2)
ik U1

kj +
N∑

k=1

w̄
(2)
jk U1

ik −
M2

4
U1

ij = −e
M
2

xi

N∑
k=1

w
(2)
ik U2

kj +
N∑

k=1

w̄
(2)
jk U2

ik −
M2

4
U2

ij = −e−
M
2

xi (3.22)

and

U1 = U2 = 0 on the boundary points.

Calculated results of V (x, y) and B(x, y) with PDQ method are compared

with the Shercliff’s (1953) exact solution which may be written as

V =
1

2
(1− y2)−

∞∑
k=1

Ak
sinh m1 cosh m2x + sinh m2 cosh m1x

sinh(m1 + m2)
cos ωky (3.23)

B =
∞∑

k=1

Ak
sinh m1 sinh m2x− sinh m2 sinh m1x

sinh(m1 + m2)
cos ωky (3.24)

where

α = M/2

and

m1 = −α + µk , m2 = α + µk (3.25)

ωk =
(2k − 1)π

2
, µk = (α2 + ω2)1/2

Ak =
16

π3

(−1)k+1

(2k − 1)3
.
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In the computations, domain is defined by |x| ≤ 1 , |y| ≤ 1 taking the

origin at the center of the section and axes parallel to the sides. In the PDQ

formulation we choose 16× 16 uniform mesh. The values of the velocity V (x, y)

and the induced magnetic field B(x, y) are obtained as a result of PDQ method

application at the interior points.

In Figures (3.19) - (3.20), (3.21) - (3.22) and (3.23) - (3.24), (3.25) - (3.26)

we present equal velocity and current contours respectively for M = 2, M = 5,

M = 10 and M = 15. One can see that agreement with the exact values are

excellent for these moderate values of Hartmann number M . For higher values

of M we can still obtain the values but increase the number of grid points N. For

example for M =20 we need to take N as about 40. Figures (3.27) and (3.28)

exhibit equal velocity and current lines for M=20.

Also, we notice that as M increases boundary layer formulation starts close

to the walls which is the well known behavior of MHD flow.
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Figure 3.19: Equal velocity lines for M = 2

Figure 3.20: Current lines for M = 2
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Figure 3.21: Equal velocity lines for M = 5

Figure 3.22: Current lines for M = 5
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Figure 3.23: Equal velocity lines for M = 10

Figure 3.24: Current lines for M = 10
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Figure 3.25: Equal velocity lines for M = 15

Figure 3.26: Current lines for M = 15
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Figure 3.27: Equal velocity lines for M = 20

Figure 3.28: Current lines for M = 20
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3.6 Problem 6

Last example is the application of differential quadrature method to the

differential eigenvalue problem which is

∇2u = λu

u = 0 (3.26)

in a rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 1. Here λ is the eigenvalue and u is the

corresponding eigenvector.

The discretization with the PDQ method will result

N∑
k=1

w
(2)
ik ukj +

M∑
k=1

w̄
(2)
jk uik − λuij = 0. (3.27)

This is now an algebraic eigenvalue-eigenvector problem

AU = λU (3.28)

where A is the coefficient matrix U and λ’s are eigenvectors and eigenvalues of

the matrix A.

In this problem the smallest eigenvalue of the matrix [A] is obtained for

several sizes of [A] which means different number of points are taken in the region.

Table (3.2) represents the smallest eigenvalues for different sizes and compares

with the exact value of the smallest eigenvalue of [A]

λmn = π

√
m2

4
+ n2, m, n = 1, 2, 3, ... . (3.29)

One can see that as the mesh is increased to approximately 11x11 or 15x15

the accuracy is increased but there is no need to increase the size further since the

accuracy is not increased further, probably due to the ill-conditioned behaviour
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of coefficient matrix. The smallest eigenvalue is obtained with an accuracy 10−8

by only using 11× 11 mesh.

It is possible to obtain all the eigenvalues of the problem with DQ method

together with the corresponding eigenvectors. Thus, DQ method is very effective

in calculating these eigenvalue-eigenvector pairs.

Table 3.2: Variation of the smallest eigenvalue with the mesh discretization

Mesh Smallest eigenvalue of [A]

3x3 3.162277660168380

4x4 3.651483708915398

5x5 3.504280415679706

6x6 3.511994561313923

7x7 3.512421409571974

8x8 3.512411780273009

9x9 3.512407710743190

10x10 3.512406992741640

11x11 3.512407468976294

12x12 3.512407153284894

13x13 3.512406974091619

14x14 3.512408815127528

15x15 3.512407994467541

exact 3.512407463262003
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CHAPTER 4

CONCLUSION

In this thesis, the Differential Quadrature Method is used for solving

Helmholtz, modified Helmholtz and Helmholtz type eigenvalue-eigenvector

problems. The DQ method discretizes the domain of the problem by using

considerably small number of grid points and approximates the derivatives of

the solution at any location by a linear summation of all the functional values

along a grid line. Both, polynomials and Fourier series are made use of in these

approximations since for some problems (e.g. with oscillatory behaviour ) Fourier

expansion based polynomials are much suitable for approximating the solutions.

When the differential equations or differential eigenvalue-eigenvector problems are

discretized by using DQ technique, the resulting system of algebraic linear equa-

tions or algebraic eigenvalue-eigenvector problems are solved with the known so-

lution techniques. For the discretization of the domain Chebyshev-Gauss-Lobatto

points are used in which the roots are clustered through the boundaries.

The numerical prosedure presented is applied to several Helmholtz, modified

Helmholtz equations with Dirichlet, Diriclet-Neumann type boundary conditions.

The solutions are presented in terms of contours for several values of parameter

(k) in the equations.

It is observed that when the value of (k) is increased, the number of grid

points N must also be increased. FDQ method needs less number of grid points

than PDQ method for solving Helmholtz equation. An important application

from the physical point of view is the solution of magnetohydrodynamic flow in a
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rectangular region. This problem is governed with coupled differential equations

for the velocity and induced magnetic field. The equations are transformed first

to decoupled modified Helmholtz equations and then solved by PDQ method.

Solutions are obtained with very high accuracy for moderate values of Hartmann

number M (M ≤ 50). The DQ method is also applied for finding the smallest

eigenvalue of a Helmholtz type eigenvalue-eigenvector problem.

Thus, DQM has the advantage of saving computational time and space

compared to the other numerical methods since it gives very well accuracy using

quite a small number of grid points for discretization.

60



REFERENCES

Amini, S. and Kirkup, S.M. ”Solution of Helmholtz equation in the exterior

domain by elementary boundary integral methods”, J Comput Phys, 118,

208-221, (1995).

Bayliss, A. and Goldstein, C. I. and Turkel, E. ”The numerical solution of the

Helmholtz equation for wave propogation problems in underwater acoustics”,

Comput Methods Appl, 11, 655-665, (1985).

Bellman, R. and Roth, R.S. ”Method of approximation: tecchnics for mathemat-

ical modeling”, D. Reidel Publishing Company, Dordrecht, Holland, (1986).

Bellman, R. and Casti, J. ”Differential quadrature and long-term integration”, J

Math Anal Appl, 34, 235-238, (1971).

Bellman, R, Kashef, B.G, and Casti, J. ”Differential quadrature: A technique

for the rapid solution of nonlinear partial differential equations”, J Com-

put Phys, 10, 40-52, (1972).

Bert, W. and Malik, M. ”Differential quadrature method in computational

mechanics: A review”,Appl Mech Rev, 49, (1996).

Chang, C. L. ”A least-squares finite element methods for the Helmholtz

equation”, Comput Methods Appl Mech Engrg, 83, 1-7, (1990).

Chen, K. H, Chen, J. T, Chou, C. R, Yueh, C. Y. ”Dual boundary element

analysis of oblique incident wave passing a thin submerged breakwater”,

Engrg Analysis with Boundary Elements, 26, 917-928, (2002).

61



El-Sayed, M. S. and Kaya, D. ”Comparing numerical methods for the Helmholtz

equation model problem”, Appl. Math. and computation 150, 763-773,

(2004).

Fung, T. C. ”Imposition of boundary conditions by modifying the weighting

coefficient matrices in the differential quadrature method”, Int J for Num

Meth in Eng, 56(3), 405-432, (2003).

Goldstein, C. I. ”A finite element method for solving Helmholtz type equations

in waveguides and other unbounded domains”, J Comput Math Comput, 39,

303-324, (1982).

Goldstein, C. I. ”The weak element method applied to Helmholtz type equations”,

Appl Numer Math, 2, 409-426, (1986).

Harari, I. and Hughes, T.J.R. ”Finite element method for the Helmholtz type

equation for the exterior domain: model problems”, Comput Methods Appl

Mech Engrg, 87, 59-96, (1991).

Harris, P. J. ”A boundary element method for the Helmholtz equation using finite

part integration”, Comput Methods Appl Mech Engrg, 95, 331-342, (1992).

Haslinger, J. and Neittaanmaki, P. ”On different finite element method for

approximating the gradient of the solution to the Helmholtz equation”,

Comput Methods Appl Mech Engrg, 42, 131-148, (1984).

Hu, F. Q. ”A spectral boundary integral equation method for the 2D Helmholtz

equation”, J Comput Phys, 120, 340-347, (1995).

62



Quan J.R. and Chang C. T. ”New insights in solving distributed system

equations by the quadrature methods”, I. Comput Chem Eng, 13, 779-788,

(1989 a).

Quan J.R. and Chang C. T. ”New insights in solving distributed system

equations by the quadrature methods”, II. Comput Chem Eng, 13, 1017-

1024, (1989 b).

Shaw, R. P. ”Time harmonic wave scattering by obstacles in an infinite

homogeneous medium”, Comput Methods Appl Mech Engrg, 95, 331-342,

(1992).

Shu, C. and Chew, Y. T. ”Fourier expansion-based differential quadrature and

its application to Helmholtz eigenvalue problems”, Commun Numer Methods

Eng, 13(8), 643-653, (1997).

Shu, C. and Richards B. E. ”High resolution of natural convection in a square

cavity by generalized differential quadrature”, Proc. of 3rd. Conf. on Adv. in

Num. Meth. in Eng: Theory and Appl; 2, 978-985, (1990).

Shu, C. and Xue, H. ”Explicit computation of weighting coefficients in the

harmonic differential quadrature”, J Sound Vib, 204(3), 549-555, (1997).

Shu, C. and Xue, H. ”Solution of Helmhotz equation by differential quadrature

method”, Comput Meth Appl Mech Eng, 175, 203-212, (1999).

Shu, C. ”Generalized differential-integral quadrature and application to the

simulation of incompressible viscous flows including parallel computation”,

Ph. D. Thesis, University of Glasgow, UK, (1991).

63



Shu, C. ”Differential quadrature and its application in engineering”, Springer

Verlag, London, (2000).

Shu, C. ”Analysis of elliptical waveguides by Differential Quadrature Method”,

IEEE Trans Microwave Theory Tech, 48, 319-322, (2000 a).

Thompson, L. L. and Pinsky, P. M. ”A Galerkin Least-Squares finite element

methods for the two-dimensional Helmholtz equation”, Int J Numer Methods

Engrg, 38, 371-397, (1995).

64


