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ABSTRACT 
 

 

 

IMPLEMENTATION OF TURBULENCE MODELS INTO A NAVIER-STOKES 

SOLVER 

 

 

 

08ù7$, Mustafa Nail 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Haluk Aksel 

 

 

September 2004,91 pages 

 

 

In order to handle turbulent flow problems, one equation turbulence 

models are implemented in to a previously developed explicit, Reynolds averaged 

Navier-Stokes solver. Discretization of Navier-Stokes solver is based on cell-

vertex finite volume formulation combined with single step Lax-Wendroff 

numerical method which is second order accurate in space. Turbulent viscosity 

is calculated by using one equation Spalart-Allmaras and Baldwin-Barth 

turbulence transport equations. For the discretization of Spalart-Allmaras and 

Baldwin-Barth equations, both finite volume scheme which is used for Navier-

Stokes equation in this work and explicit finite difference discretization method 

are used.   

In order to increase the convergence rate of the solver, local time 

stepping technique is applied. Stabilization of non-physical oscillations 



 v 

resulting from the numerical scheme is maintained by adding second and fourth 

order artificial smoothing terms. 

 

Three test cases are considered. In order to validate the accuracy of the 

Navier-Stokes solver, solver is tested over a laminar flat plate. The results are 

compared with analytical solutions. Later, in order to check the performance of 

the turbulence models, turbulent flow over flat plate and turbulent transonic 

flow over NACA-0012 airfoil are handled. For turbulent flow over flat plate 

obtained results are compared with analytical and empirical solutions, whereas 

for transonic turbulent flow obtained results are compared with numerical and 

experimental solutions.  

 

Keywords: Navier-Stokes Equations, Finite Volume Method, Finite 

Difference Method, Spalart-Allmaras Turbulence Model, Baldwin-Barth 

Turbulence Model. 
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 7�UE�ODQVOÕ� DNÕú� SUREOHPOHULQL� KHVDSODPDN� LoLQ�� GDKD� |QFHGHQ� JHOLúWLULOHQ�
5H\QROGV�DYHUDMOÕ��EHOLUOL�]DPDQ�LOHUOHPHOL��1DYLHU -Stokes çözücüsüne, tek denklemli  

türbülans modelleri eklenmLúWLU�� 1DYLHU -6WRNHV� GHQNOHPOHULQLQ� VD\ÕVDO� RODUDN�
D\UÕúWÕUÕOPDVÕ��K�FUH�N|úHOL�VRQOX�KDFLP�\|QWHPLQLQ�WHN�DGÕPOÕ�X]D\GD�LNLQFL�GHUHFHGH�
hassasiyete sahip Lax-:HQGURII�Q�PHULN�\|QWHPL\OH�ELUOHúPHVLQH�GD\DQPDNWDGÕU��
7�UE�ODQV� YLVNRVLWHVLQLQ� KHVDSODQPDVÕ� LoL n tek denklemli Spalart-Allmaras ve 

Baldwin-%DUWK� GHQNOHPOHUL� NXOODQÕOPÕúWÕU�� 6SDODUW -Allmaras ve Baldwin-Barth 

GHQNOHPOHULQLQ� VD\ÕVDO� RODUDN� D\UÕúWÕUÕOPDVÕ� LoLQ� EX� oDOÕúPDGD� 1DYLHU -Stokes 

GHQNOHPL�LoLQ�NXOODQÕODQ�VRQOX�KDFLP�\|QWHPL�YH�VRQOX�IDUNODU�VD\ÕV DO�D\UÕúWÕUPD�
\|QWHPL�NXOODQÕOPÕúWÕU��  

d|]�F�Q�Q�\DNÕQVDPD�KÕ]ÕQÕ�DUWÕUPDN�LoLQ�\HUHO�]DPDQ�DGÕPODPD�WHNQL÷L�
X\JXODQPÕúWÕU��6D\ÕVDO�\|QWHPLQ�VRQXFX�RODQ�VDOÕQÕPODUÕ�JLGHUPHN�LoLQ�LNLQFL�YH�
G|UG�QF��GHUHFHGHQ�\DSD\�V|Q�POHPHOHU�HNOHQPLúWLU�  



 vii 

 

Üç adet test duUXPX� NXOODQÕOPÕúWÕU�� 1DYLHU -Stokes çözücüsünün 

GR÷UXOX÷XQXQ� VD÷ODQPDVÕ� LoLQ� o|]�F�� G�]� ELU� SODND� �]HULQGH� ODPLQHU� ELU� DNÕú�
SUREOHPL� �]HULQH� WHVW� HGLOPLúWLU�� 'DKD� VRQUD� W�UE�ODQV� PRGHOOHULQLQ�
SHUIRUPDQVODUÕQÕQ�WHVW�HGLOPHVL�LoLQ�G�]�ELU�SODND��]HULQH�W�UE�O DQVOÕ�DNÕú�YH�1$&$ -

�����XoDN�NDQDW�NHVLGL��]HULQH�VHVFLYDUÕ�W�UE�ODQVOÕ�DNÕú�SUREOHPOHUL�HOH�DOÕQPÕúWÕU��
7�UE�ODQVOÕ� G�]� ELU� SODND� LoLQ� � HOGH� HGLOHQ� VRQXoODU� DQDOLWLN� YH� NRUHODV\RQ�
VRQXoODUÕ\OD� NDUúÕODúWÕUÕOÕUNHQ�� 1$&$ -0012 çözümleri nümerik ve deneysel 

soQXoODUOD�NDUúÕODúWÕUÕOPÕúWÕU�  

 
Anahtar Kelimeler: Navier-Stokes Denklemleri, Sonlu Hacim Yöntemi, 

Sonlu Farklar Yöntemi, Spalart-Allmaras Türbülans Modeli, Baldwin-Barth 

Türbülans Modeli. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 WHAT IS CFD? 

 

The governing equations of fluid flow problem in macroscale are 

conservation of mass, conservation of momentum, and the energy equations. These 

equations form nonlinear partial differential equations (PDE). Because of the 

nonlinear nature of the problem analytical solutions can be possible only for few 

cases [1]. 

In order to include all the physical details of the problem formulation, during 

the end of 1960's total numerical simulation stepped in, in such away that it can 

handle the governing equations in their complete form. Throughout the time it 

became a popular and reliable tool in engineering analysis. Today numerical 

(computational) procedures support experiments, enrich the range of analytical 

solutions and finally contribute in product development [1]. So Computational Fluid 

Dynamics (CFD) can be described as the art of replacing the differential equations 

governing the Fluid Flow, with a set of algebraic equations which are obtained by 

discretizing the governing differential equations, which in turn can be solved with the 

aid of a computer to get an approximate solution [2]. 
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The rapid increase in the performance of the computers and decrease in the 

cost of computations compared to the cost of performing experiments has made CFD 

an alternative. The calculation of aerodynamic characteristics related to any new 

design through the application of CFD is becoming cheaper than the making the 

prototype and measuring these characteristics in a wind tunnel. Beside the 

economical advantages of CFD over experimental studies there are several others, 

such as reduction of lead times of new designs, ability to study systems where it is 

difficult or impossible to control experiments and ability to study systems under 

hazardous conditions. Moreover numerical simulation provides detailed flow field 

information when required. Even in very reliable experiments, measurements are 

generally taken at a few points, whereas unlimited level of detail of results can be 

obtained in CFD [2]. 

Nowadays, CFD methodologies are not only routinely used for design 

purposes such as aircraft, turbomachinery, car, and ship design, but also applied in 

the fields of physical and applied sciences such as meteorology, oceanography, 

astrophysics, oil recovery and architecture [1]. On the other hand, it should not be 

thought that CFD represent a mature technology now, since there are many problems 

in CFD like turbulence and combustion modeling, efficient solution techniques for 

viscous flows, heat transfer, robust but accurate discretization methods, etc. Also the 

connections of CFD with other disciplines like structural mechanics require further 

research. New opportunities arise in the design optimization by using CFD [1]. 

 

1. 2. TURBULENCE MODELING FOR CFD 

1.2.1 What is Turbulence? 

Turbulent flow is the most common type of flow; also the most complicated 

form of the fluid motion. It is so common that almost all fluid flow which we 

encounter in daily life is turbulent. Some typical examples are flow around cars, 

airplanes and buildings. Moreover the flow during the combustion process in 

engines, in piston engines, gas turbines and combustors are highly turbulent. 
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Turbulence is that state of fluid motion which is characterized by apparently 

random and chaotic three-dimensional vorticity. If there is no three-dimensional 

vorticity, there is no real turbulence [3]. A brief explanation to this is its ability to 

generate new vorticity from old vorticity that is essential to turbulence and only in a 

three dimensional flow is the necessary stretching and turning of vorticity by the 

flow is possible When turbulence is present it usually dominates all other flow 

phenomena and results in increased energy dissipation, mixing, heat transfer and 

drag [4]. 

Although turbulence is defined by Von Karman and G.I.Taylor in 1937, 

Hinze in 1975 and various other scientists throughout the time [5], there is no exact 

definition on the turbulent flow, but it has a number of features which are defined 

below [5, 6]: 

I. Irregularity: Turbulent flow is irregular, random and chaotic. Although 

turbulence is chaotic it is deterministic and it is described by the Navier-Stokes 

equations. 

II. Diffusivity: In turbulent flow the diffusivity increases, which causes rapid 

mixing of fluids. This means that the spreading rate of boundary layers, jets, etc. 

increases as the flow becomes turbulent. As the diffusivity increases, the exchange of 

momentum, heat and mass transfer also increases. Moreover, increased diffusivity 

also increases the resistance (wall friction) in internal flows such as in channels and 

pipes. 

III. Large Reynolds Numbers: Turbulent flow occurs at high Reynolds 

number. For instance, the transition to turbulent flow in pipes occurs at Re x =~ 2000, 

and in boundary layers Re d =~ 100000. 

IV. Three Dimensional: Turbulent flow is always three-dimensional. 

However, when the equations are time averaged one can treat the flow as two-

dimensional and if the velocity fluctuations are two dimensional one cannot talk 

about random vorticity fluctuations which characterize turbulence.                                                                                                                                                                                                                                                                                                                                                                                                                                                            
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V. Dissipation: Turbulent flow is dissipative, which means that kinetic 

energy in the small dissipative eddies are transformed into internal energy. As a 

consequence of the cascade process, dissipation occurs in turbulent flow. In the 

cascade process, small turbulent scales (eddies) receive their kinetic energy from 

slightly larger eddies and the slightly larger receive their energy from even larger 

eddies and the largest eddies extract energy from the mean flow. Turbulence needs a 

continuous supply of energy. If energy is not supplied, turbulence decays suddenly. 

VI. Continuum: Turbulence is a continuum phenomenon, governed by the 

equations of fluid mechanics. Even though the small turbulent scales in the flow are 

much larger than the molecular scale, the flow can be treated as continuum. 

VII. Turbulence is a feature of fluid flow but not a feature of fluids. 

 

1.2.2 Reasons of Studying Turbulence Modeling: 

First of all there is no sufficient information about turbulence to consider 

engineering problems since there are always fewer equations than unknowns in any 

attempt to predict anything other than the instantaneous motions. This is known as 

the famous turbulence closure problem [4]. 

On the other hand, closure is not a problem with so called Direct Numerical 

Simulations (DNS). In DNS, three dimensional time dependent Navier-Stokes 

equations are solved numerically to give an adequately exact description of 

turbulence. But despite the performance of modern super computers today, DNS is 

applicable to only simple flow problems. Unfortunately using DNS to engineering 

problems can be performed if present computers are much more developed and this 

will take probably too many years [3]. Moreover, the details of unsteady, three 

dimensional effects of turbulence are not required for design purposes. Time 

averaged or space averaged (filtered) quantities are appropriate and cost effective. 

But however it is pity that averaging leads to additional terms, which require semi-

empirical models [3, 7]. 
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1.2.3 Turbulence Modeling:   

Turbulence models for general-purpose CFD must be frame-invariant i.e. 

independent of any particular coordinate system-and hence must be expressed in 

tensor form. This rules out simpler models such as ‘boundary-layer type’ (e.g. 

mixing-length models). 

Turbulent flows are computed either by solving the Reynolds-averaged 

Navier-Stokes equations with suitable models for turbulent fluxes or by computing 

the fluctuating quantities directly. Some of the main approaches are summarized 

below [6, 8]: 

i. Large-eddy simulation (LES) 

In LES one can take advantage of the fact that the most of the transport of 

momentum or thermal energy is carried out by the larger eddies. The small eddies are 

slightly affected by the boundary conditions of the flow, they are nearly isotopic 

statistically speaking. They are also weak and do not considerably contribute to 

turbulent transport. So in LES, large eddies are resolved and statistically simpler 

subgrid-scale (SGS) eddies are modeled. Obtained solutions in LES are almost as 

well as DNS, but at as much less computing cost [3]. 

ii. Reynolds-Averaged Navier-Stokes (RANS) Models 

Reynolds averaged Navier-Stokes equations were established by Reynolds in 

1895. Reynolds averaging method was the first method for the approximate 

treatment of turbulent flows. In this method, the Reynolds equations are derived by 

decomposing the dependent variables in the conservation equations into mean and 

fluctuating components. The governing equations are then solved for the mean 

values, which are obtained by an averaging procedure. Reynolds averaging leads to 

an additional tensor of stresses in momentum equation. These stresses are called the 

Reynolds stresses. Reynolds stresses are six additional terms in the momentum 

equations. They characterize the transfer of momentum by turbulence. These are 

unknowns and must be modeled [7].  
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1.3. MODELING THE REYNOLDS STRESSES 

A satisfactory model must characterize the transfer of momentum by the 

turbulence but can only do so in terms of the mean flow and mean values of the 

Reynolds Stresses. This is because averaging removes all information about the 

turbulent energy cascade and the scales of the turbulence which yield the lost of a 

huge amount of information about a complex process and limit the applicability of 

the model. Reynolds Stress modeling can be divided into two. First order models 

which are algebraic, one and two equation models using the Boussinesq eddy 

viscosity approximation and Reynolds stress equation models (RSM). 

 

1.3.1 First Order Closure Models:  

 These models based on the eddy-viscosity hypothesis of Boussinesq 

approximation. 

 

1.3.2. The Boussinesq Eddy-Viscosity Approximation 

The Boussinesq (1877) approximation proposes that the transport of the 

momentum by the turbulence is a diffusive process and therefore the Reynolds 

stresses can be modeled using an eddy viscosity, which is analogous to molecular 

viscosity. The original basis for the approximation is that eddies behaves like 

molecules. The other assumptions are isotropic turbulence and the local equilibrium 

between stress and strain. Of course these assumptions are not valid; there are 

applications for which the Boussinesq hypothesis fails. These cases are listed below 

[5]. 

i. Flows with sudden change of mean strain 

ii. Flows with significant streamline curvature 

iii. Flows with rotation and stratification 



 7 

iv. Secondary flows in ducts and in turbomachinery 

v. Flows with boundary layer separation and reattachment 

The limitations of the eddy-viscosity approach are caused by the assumptions 

of equilibrium between the turbulence and the mean strain field, as well as by the 

independence on system rotation. The results can be notably improved by using 

appropriate correction terms in the turbulence models. In order to remove these 

restrictions imposed by the assumptions of equilibrium between the turbulence and 

the mean strain rate further non-linear eddy viscosity model is applied.Non-linear 

eddy viscosity was firstly proposed by Lumley in 1970 which is the extension of the 

linear Boussinesq approach by higher-order products of strain and rotation tensors. 

This can be viewed as a Taylor series expansion. Following the Lumley, numerous 

non-linear eddy viscosity models were proposed. 

 

1.3.3. Type of First Order Models: 

First order models deal with the mean equations so second order correlations 

are modeled. These models based on the eddy-viscosity hypothesis of Boussinesq 

and according to the number of additional transport equations that are involved by 

the closure procedure. Once the eddy viscosity constant tµ  is known, Navier-Stokes 

can easily be extended to simulate turbulent flow by introducing averaged variable 

and by adding tµ  to the laminar viscosity, which is also what is done in this study.  

These models can be divided in to three [5]: 

i. Zero equation (algebraic closure) models, 

ii. One Equation Models, 

iii. Two Equation Models. 

Zero equation models (algebraic models): Prandtl (1925)  introduced the 

mixing length which was in agreement with the eddy viscosity concept Van Dierst 
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(1956) improved the mixing length model which become a basis to all algebraic 

models used today. Cebeci and Smith (1974) refined the eddy-viscosity -mixing-

length and established well known Cebeci-Smith model. Baldwin and Lomax (1978) 

proposed an alternative albegraic model which removed the necessity of defining 

boundary layer thickness. Since this model is more robust model than the Cebeci-

Smith model, it was widely used for many years [5]. 

One equation models: The first successful one equation model was 

formulated by Bradshaw, Ferris and Atwell (1967). Most of the older models solved 

an equation for the turbulent kinetic energy (or the turbulent shear stress), but like the 

algebraic models, depend on the specification of an algebraic length scale. One 

equation models were formulated which were based on rather than then kinetic 

energy. Nee-Kovasznay (1968) formulated a transport equation which solves 

kinematic eddy viscosity but still it needs a length scale. More recently, Baldwin and 

Barth (1990), Goldberg (1991) and Spalart and Allmaras (1992) postulated transport 

equation based on the eddy viscosity. These more recent works were motivated 

primarily by the ease with which such model equations can be solved numerically, 

relative to two equation models and stress transport models [5].  

Two Equation models: Kolmogorov (1941) proposed the first two equation 

model of turbulence. Kolmogorov chose the kinetic energy of the turbulence k and 

the dissipation per unit turbulence kinetic energy,ω as his turbulence parameters. 

Details about this model can be found in Wilcox [10]. The k-ε  model is the most 

widely used and most validated two equation model today. The parameterε  is a 

turbulence dissipation rate. This model is first proposed by Harlow and Nakayama 

(1968). This study was followed by the papers of Launder (1972) and Launder and 

Spalding (1974). This model has been utilized and improved by many other 

researchers. One can refer to Wilcox [5] for more information. 
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1.3.4. Reynolds Stress Equation Models:  

Reynolds stress equation models are the most complex classical turbulence 

model, which are also called the second order or second moment closure model. In 

these models the exact Reynolds stress transport equation are modeled term by term 

which result in a set of PDE’s for the Reynolds stresses . Then these sets of PDE’s are 

solved with the Reynolds-averaged momentum equations and continuity equation. 

After sufficient computer resources became available in 1970’s, the most significant 

contributions to this model were made by Donaldson and Rosenbaum (1968), Daly 

and Harlow (1970) and Lounder, Reece and Rodi (1975). The more recent 

contributions made by Lumley (1978), Speziale (1985, 1987, 1991) and Reynolds 

(1987) added mathematical contribution to the closure process. Since these models 

do not rely on the eddy-viscosity concept, they have given very accurate calculation 

of mean flow properties and all Reynolds stresses for many simple and more 

complex flows such as wall jets, asymmetric channel and non circular duct flows and 

curved flows. However because of computing costs (seven extra PDE’s), their 

complexity and not validated as the other RANS models, they have found very 

limited number of applications. 

Algebraic Stress Models: These models are a simplification of RSM’s and 

emerge as a two equation models with anisotropic eddy-viscosity. The idea of 

simplification of RSM’s firstly proposed by Rodi (1976) and various studies have 

been made since then. These models are cheaper to account for Reynolds stress 

anisotropy and successfully applied to isothermal and buoyant thin shear layers. On 

the other hand they, have not been validated widely and shown good performance to 

very restricted flows because of the simplifications made.  

1.4. PRESENT STUDY 

In the present thesis Spalart-Allmaras and Baldwin-Barth one equation 

turbulence models have been implemented into a previously developed Navier-

Stokes solver.  
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Baldwin-Barth [9, 10, and 11] turbulence model was developed in 1990. This 

model is derived from standard k-ε  two equation model in a procedure of combining 

standard k-ε  model to provide a single equation model in terms of turbulence 

Reynolds number. 

Other one equation turbulence model, which is the Spalart-Allmaras [12] 

turbulence model, was developed in 1992. Model has similarities with the other one 

equation models of Nee and Kovasznay, Secundov et all, and Baldwin-Barth. The 

model is based on kinematic eddy viscosity and it is powerful enough to be 

calibrated on 2-D mixing layers, wakes and flat-plate boundary layers [12]. Later on 

Edwards and Chandra made modifications on Spalart-Allmaras turbulence model 

[13]. The modified Spalart-Allmaras model allows smooth, rapid convergence while 

retaining the near wall accuracy of the original formulation. 

The method used to solve Navier -Stokes equations in this study is one step 

Ni [14] type Lax-Wendroff scheme , which is second order accurate in space and 

explicit finite volume method. The discretization method used for Navier Stokes 

equations in this study is cell-vertex for inviscid and cell-centered for viscous terms. 

For the turbulence closure equations both finite difference method [11] and Ni [14] 

type Lax-Wendroff methods are used. 

In order to damp numerical oscillations, artificial viscosity terms are added to 

the equations which are discretized by Lax-Wendroff method. For stability artificial 

viscosity coefficient is applied higher to the turbulence transport equations than to 

the Navier -Stokes equations. Moreover same time stepping is used both for 

turbulence and Navier- Stokes equations. 

The outline of the thesis is as follows: Chapter 2 describes the governing 

equations of the flow that is Navier-Stokes equations and turbulence closure models. 

Chapter 3 covers the method of discretization, which is based on the type of 

formulations used by Ni [14] and finite difference discretization of the turbulence 

models. Artificial viscosity, time stepping terms and calculation of viscous and heat 

conduction terms are also explained in this chapter. Chapter 4 explains the initial and 

boundary conditions which are used in this study. Chapter 5 gives the results 
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obtained for the test cases and discusses them. Finally Chapter 6 presents the 

summary of the work and conclusions with future recommendations about this work. 
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CHAPTER 2 
 

 

GOVERNING EQUATIONS 

 

 

 

In this study the governing Navier-Stokes equations are considered for viscid, 

heat-conducting and compressible flows with respect to the stationary reference 

frame. It is also assumed that flows are under no external or body force and no heat 

generation occurs within the flows. In order to close the system of equations perfect 

gas relations are assumed. Auxiliary relations are used for the calculation of viscosity 

and conductivity. To calculate the laminar viscosity Sutherland’s law of viscosity is 

used and for the turbulent viscosity one equation turbulence models are used. 

 

The Navier-Stokes equations implemented in the numerical scheme of the 

thesis are two-dimensional and conservative form in a Cartesian coordinate system. 

Details about these equations and auxiliary relations are presented below. 

 

 

2.1. NAVIER-STOKES EQUATIONS 

 

The compressible Navier-Stokes equations are written in a vectorial form as 

follows: 
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[ ]TS 00000=                                                                                (2.3e) 

 

where, the total stresses, τ , given by Stokes law of viscosity can be expressed as: 
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where u and v are the velocity components in the x and y directions, respectively, ρ  

is the density, p is the static pressure and µ total  is the total effective viscosity (sum of 

the laminar and turbulent viscosities). 

 

Using the equation of state, pressure can be written in terms of the 

conservative variable as: 

 

( ) ( )[ ]
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where e is the total internal energy per unit volume. The total enthalpy per unit mass, 

h is defined as: 
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The total heat fluxes given by 
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where kthermal is the total thermal conductivity and T stands for the temperature  

 

A dimensionless parameter that is used is the Prandtl number given as 

follows: 

 

thermal

p
r k

c
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µ
=                                           (2.8) 

 

while another dimensionless parameter known as the Reynolds number is used in the 

formulation and is given by 
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refrefref al
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µ
ρ
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where the subscript ref in the above equation stands for the reference quantities. ρref, 

aref, µref, are set at free stream values. The above equations are completed with the 

following relations 
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=

γ
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and the speed of sound, a 
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RTa γ=                                                                                                  (2.11) 

 

where R stands for the gas constant of the fluid and γ  stands for the specific heat 

ratio .  

 

2.2.THERMAL CONDUCTIVITY AND COEFFICIENT OF VISCOSITY  

 

The total effective viscosity µtotal is composed of two parts. The laminar as 

well as the turbulent viscosities are added together based on the Boussinesq eddy-

viscosity approximation.  

 

turlamtotal µµµ +=                                                            (2.12)  

   

Reynolds proposed a similar assumption and hence, forming the total 

effective conductivity is based on the addition of turbulent and laminar thermal 

conductivities given as: 
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where the subscripts lam and tur stand for laminar and turbulent flows, respectively. 

Furthermore, the Prandtl numbers used are constants for both laminar and turbulent 

cases and they are set depending on the flow in consideration. 

 

2.2.1 Calculation of the Laminar Viscosity 

 

The dynamic viscosity of air is assumed to be a function of temperature only, 

following Sutherland’s law.  

 

0.110
1045.1

2
3

6

+
= −

T
T

xlamµ                             (2.15) 

 

In the above equation, temperature is in Kelvin and dynamic viscosity is 

calculated in units of Pa.s. 

 

 

2.3 CALCULATION OF TURBULENT VISCOSITY 

 

2.3.1 Spalart and Allmaras Turbulence Model: 

 

The model proposed by the Spalart and Allmaras solves a transport equation 

for a quantity, which is the modified form of the turbulent kinetic viscosity. The 

governing equation is derived by using empiricism, dimensional analysis, Galilean 

invariance and selected dependence on the molecular viscosity. The Spalart-Allmaras 

model is compatible with any type of grid structure and 2-D or 3-D Navier-Stokes 

solver. The model includes eight closure coefficients and three closure functions 

[12]. 
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The transported variable in the Spalart-Allmaras model,ν~  which is a 

modified version of kinematics viscosity, is identical to the kinematic viscosity 

except in the near wall (viscous-affected) region. It can be written in tensor form as 

follows [11]. 
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In above equation, the left-hand side represents advection term while the 

terms on the right-hand side represent production, diffusion, non-conservative 

diffusion, destruction and the trip term respectively.       

 

Modeling of the Turbulent Viscosity: 

 

The turbulent viscosity, tµ  is computed from 

 

tµ = 1
~

vfνρ                           (2.17) 

 

where the viscous damping function 1vf  is given by 
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and  
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Modeling of the Turbulent Production: 

 

The production term is modeled as 

 

C )1(~~
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in the above equations 1bC  , 4tC , 3tC and κ are constants, d is the distance from the 

wall and S is a scalar measure of the deformation tensor. 

 

S= ijij ΩΩ2                         (2.19e) 

 

where ijΩ  is the mean rate of rotation tensor and is defined by 
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ijΩ = 
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The justification for the default expression for S is that, for the wall-bounded 

flows that were of most interest when the model was formulated, turbulence is found 

only where vorticity is generated near walls. However, it has been acknowledged that 

one should also take in to account the effect of mean strain on the turbulence 

production, and a modification to the model has been proposed by the Dacles [23]. 

This modification combines measures of both rotation and strain tensors in the 

definition of S. 
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where prodC =2.0, ijΩ = ijij ΩΩ2  and ijijij SSS 2=  with the mean strain rate, ijS  

is defined as 
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In the original version, S
~

was defined in such a way that it could become negative. 

But this could disturb the value of r and stall convergence. So the function 3νf  is 

introduced and the definition of the function 2vf  has been changed. This 

modification was suggested by Spalart in order to prevent S
~

from being negative [1]. 

 

Modeling of the Turbulent Destruction:  

 

The destruction term is modeled as follows: 
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where 1wC , 2wC  and 3wC  are constants and  large values of  r should be truncated to a 

value about 10. 

 

Modeling of the Trip term:  

 

This term allows one to specify explicitly the boundary layer transition 

location and which is 
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where d t  is the distance to the nearest trip point, tw  is the vorticity at the wall at the 

trip point, U∆ is the norm of the difference between the velocity at the trip point  
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(zero if the wall stationary) and )/,1.0min( xUg tt ∆∆= ω  where x∆ is the spacing 

along the wall at the trip point. 

Although the model allows the transition point localization, all the computed 

flow fields are assumed to be fully turbulent in this work when the Spalart-Allmaras 

model is used. Hence, this term is not used. 

 

Model Constants 

 

The model constants 3211~,21 ,,,,, wwwvbb CCCCCC νσ , Ct 3t , C 4t , and κ have the 

following default values. 

 

1bC =0.1355, ,2bC =0.622, νσ =2/3, 1vC =7.1, 2wC =0.3, κ =0.4187 

 

4tC =2, ,3tC =1.1, 2tC =2, ,1tC =1. and 
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2.3.2 Spalart-Allmaras Equation in Vectorial Form 

 

Spalart-Allmaras equation in Equation (2.16) can also be written in vectorial 

form. If Equation (2.18) is multiplied by density ρ , Spalart-Allmaras equation can be 

represented in conservative form .This form of Spalart-Allmaras equation can easily 

be descritized and coupled with Navier-Stokes equations [1]. 
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where 
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2.4 Baldwin Barth Turbulence Model: 

 

The Baldwin-Barth one equation model is obtained from the standard two 

equation k-ε  model in terms of the turbulent Reynolds number Re T = νε/2k . The 

variables in the turbulent Reynolds number, which are k, ε  and ν  stand for turbulent 

kinetic energy, dissipation of turbulence and kinematic viscosity, respectively [9, 10 

and 11]. 
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In the above equation the left-hand side represents advection term, while the 

terms on the right-hand side represent production, diffusion and the destruction term 

respectively.       
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Modeling of the Turbulent Viscosity: 

 

The turbulent viscosity, tµ  is computed from 

 

tµ = 21)( DDRC Tνµ ρ                        (2.28a) 

 

where 1D  and 2D  are the viscous damping functions which extend the validity of the 

model to near-wall regions. These terms are given as 
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where +y  is the non-dimensional wall distance calculated as  
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and τu  is the friction velocity defined as follows: 
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Modeling of the Turbulent Production: 
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The production term is based on Boussinesq assumption and modeled as 

follows 

 

(C PCf teR)122 νεε −                        (2.29a)
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using Equation (2.28a) and (2.28b) production term can be written as follows 

 

(C tSDDCCf eR) 21122 νµεε −                      (2.28d)

         

Modeling of the Turbulent Destruction:  

 

The destruction term is given as follows 
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same function εσ  is also used in the diffusion term, so all the terms  are 

already defined for the diffusion term. 

 

Model Constants 

 

The model constants +ACCC ,,,, 21 κµεε and +
2A have the following default 

values: 

 

1εC =1.2, ,2εC =2.0, κ =0.4187,                 

                                

(2 .30) 

µC =0.04, +A =26 and +
2A =10       

 

For the ease of discretization, destruction and diffusion terms are modified 

which is suggested by Hoffman [11], as result final form of the Equation (2.26) is 

given as follows 
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CHAPTER 3 

 

 

SOLUTION METHOD 

 

 

 

In this chapter, mainly numerical techniques used for the discretization of 

Navier-Stokes equations and turbulence closure equations are presented. For the 

discretization of Navier-stokes equations coupled with Spalart-Allmaras turbulence 

model, Ni’s [14] scheme is used. Spalart -Allmaras turbulence model is also 

discretised by finite difference method besides the Baldwin-Barth turbulence model. 

Details about implementation procedures of these numerical methods are discussed 

in this chapter. Moreover, formulations of the time stepping terms and artificial 

smoothing terms are also presented. 

 

  

3.1. DISCRETIZATION METHOD 
 

The discretization technique used for the Navier-Stokes equations coupled with 

Spalart-Allmaras equation is an explicit finite volume method. In the application 

process of this method, for the inviscid and source terms first order approach; and for 

the viscous terms and second order inviscid terms cell centered approach is used. 

This technique is based on a one-step Lax-Wendroff scheme. It was firstly 

introduced by Ni [14] for the solution of Euler equations and later improved to solve 

for Navier-Stokes equations [15, 16]. The derivation of the scheme starts with the 

second order Taylor series expansion of the time derivatives.  
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where U is the conservative variable vector and the superscript n denotes the time 

step. By using equation (2.1), the term 
t

U
∂

∂
can be defined as below 
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Inserting Equation (3.2) into Equation (3.1) and define the change term; 

residual n1n UUU −= +δ ; one can obtain 
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The second order viscous and the source terms are generally neglected, due to 

the fact that they have negligible effect on the convergence history and final solution 

[16, 17, and 18]. Besides this fact, the terms on the right hand sight of the Equation 

(3.3) are known and stand for the same time level, so the superscript n can be 

removed from this equation. With these considerations, Equation (3.3) becomes 
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the last term in the above equation is the second order inviscid flux term; it can be 

rearranged as below: 
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where, 
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also Jacobians of the inviscid flux vectors can be written as below [14]. 
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Substituting these definitions into Equation (3.2) one can obtain 
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The change of U∆  and Jacobians of inviscid fluxes can be expressed as 

follows Ni [14]: 
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All the terms in  F∆  and G∆  can be expressed by the terms in U∆  by using 

following relations. 
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In order to understand the finite volume integration procedure better, it is 

better to define the mesh structure of a typical cell, 
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Figure 3.1 Mesh structure around node 1 

 

as shown for particular node 1 in Figure 3.1. There are two types of control volumes. 

The primary one is represented by the thick lines and formed by joining the cell 

nodes; and the transformed one is represented by dashed lines and formed by joining 

the cell centers of the four surrounding cells of node 1.  The primary control volume 

is used to calculate the first order inviscid terms and the source terms. On the other 

hand transformed control volume is used to handle the second order source terms and 

viscous terms. 

 

Integrating form of Equation (3.8) over control volumes, one can obtain 
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where ∀
�

is the volume of the control volume surrounding a particular node. 
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 In order to calculate the total contribution of the changes on node 1, Equation 

(3.11) can be split into four equations. These equations are the integral equations of 

the four portions of the control volumes within the cells of numbered I-II-III and IV. 

So, the summation of the contributions from the surrounding four cells can be written 

as below. 

 

IVIIIIII UUUUU 11111 δδδδδ +++=                                     (3.12) 

   

 In Equation (3.12), IU1δ  stands for the part of the contribution of the change 

in cell I into node 1 and  can be expressed as follows:  
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 In the above equation, in front of the first and second integrals, which are the first 

order inviscid term and source term respectively, there is coefficient of ¼. This is due 

to the equal distribution of the total change of cell I among its nodes. On the other 

hand, the third and fourth integrals, which are first order viscous and second order 

inviscid fluxes respectively, don’t have this coefficient of 1/4 since these integrals 

are evaluated on the one-fourth of the transformed control volume.  

 

By using Gauss’ divergence theorem, the volume integrals in Equation (3.13) 

can be converted into area integrals as follows 
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The terms in Equation (3.14) can be grouped as follows: 
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Substituting above defined groups back into Equation (3.14), one can get  
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The inviscid term, iU∆  in Equation (3.15a) and (3.16) can be evaluated by using 

trapezoidal integration rule. In this integration average fluxes are used.  
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In the Equation (3.17), the used surface vectors used are defined according to Figure 

(3.2) as shown below. 
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Figure 3.2 Surface vectors on cell I 

 

Surface vectors are the projection of the faces along the axis’s .For instance 

S x1  is projection of face 1 on the y axis. Therefore, the surface vectors in Equation 

(3.17) can be calculated easily as follows.  

 

S 1 =(y 4 -y 1 )
→
i  +(x 1 -x 4 )

→
j                     S 2 =(y 3 -y 2 )

→
i +(x 2 -x 3 )

→
j            (3.18)   

  S 3 =(y 1 -y 2 )
→
i + (x 1 -x 2 )

→
j                    S 4 =(y 4 -y 3 )

→
i +(x 3 -x 4 )

→
j  

                       

After the evaluation of the first order inviscid changes, iU∆ , the second order 

inviscid terms can be calculated using these values in each cell. As mentioned before 

for the integration of the second order terms, transformed control volume in cell I, 

which is 1ehg, is used. Calculations are performed due to the fluxes passing through 

the faces of e-h and g-h, which is shown in Figure 3.2. So the surface integrals are 

evaluated by considering these two faces. The vectors of these faces are defined as 

1A
→

 and 2A
→

 as shown in Figure 3.2. Referring Figure 3.2, Equation (3.15c) can be 

expressed as follows: 
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where surface vectors 1A
→

and 2A
→

can be expressed as follows: 
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  For an easier representation of Equation (3.19), following notation can be 

defined.  

 

yxi AGAFf 11 ⋅∆+⋅∆=∆                                    (3.21) 

yxi AGAFg 22 ⋅∆+⋅∆=∆                                    (3.22) 

 

    By substituting these terms into Equation (3.19) one can obtain following 

terms 
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So far, the first and second order inviscid flux terms have been handled.  

Viscous flux terms can be evaluated in the same way as the second order inviscid 

flux terms. The formulation of viscous flux terms given in Equation (3.15b) can be 

expressed as follows: 
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Introducing the following notation  
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yvxvv AGAFf 11 ⋅+⋅=∆                       (3.25a) 

yvxvv AGAFg 22 ⋅+⋅=∆                       (3.25b)

       

By rearranging Equation (3.24) using Equation (3.25), one can obtain 
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The calculation of viscous terms is completed. It should also be noted that Fv 

and Gν  are calculated separately for each node of the cell. Calculation procedure 

will also be discussed in this chapter in Section 3.2. 

       

Now, the source term, sU∆  in Equation (3.15d) is formulated by carrying out 

the integral in the primary control volume as stated below.  
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Up to now changes in node 1 due to cell-1 have been examined. The 

contribution of the changes in cell-I to the four nodes of this cell can be given as 

follows: 
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Finally the conservative variables can be updated at every node of the cell as 

follows: 
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3.2. CALCULATION OF VISCOUS AND HEAT CONDUCTION TERMS 

 

The terms containing the derivative of a conservative variable is written in 

the physical space (x, y) can be transformed into computational space (ξ,η) for any 

conservative variable U.  
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Using the chain rule, the transformation of derivatives can be written as: 
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where the terms yxx ξηξ ,,  and yη  are obtained with following procedure. For the 

transformation from (x, y) space to ),( ηξ  space, the total differentials for dx and dy 

can be given as 
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or in matrix form 
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  The jacobian of the transformation then 
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 For the transformation from ),( ηξ  plane to (x, y) plane, the total differentials 

for ηd  and ξd  are 
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or in matrix form 
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 Inverse transformation is possible whenever 
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By equating Equations (3.37) and (3.40); one can obtain 
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Then the equations for the metric terms in the Jacobian matrix are 
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Now, the shear stresses can be expressed in terms of gradients in curvilinear 

coordinates as follows 
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and the heat flux equations can be expressed as 
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Ni [14] suggested that, first order finite difference approximation to the above 

derivatives can be formulated in each cell separately for each node as follows:  
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Let Q denote any conservative variable or a Cartesian coordinate x or y, then 

for node 1 of cell I, one can write the following expressions for 
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The derivatives for the other nodes can be handled in a similar way: The idea is to 

remain in the cell, and use either a forward or a backward difference, whichever 

appropriate. 

 

 

3.3. ARTIFICIAL SMOOTHING 

 

The second-order Lax-Wendroff scheme gives satisfactory results in the 

regions where the variation of the properties is smooth.  The major drawback of the 

scheme is that it causes oscillations around the discontinuities; around a shock wave 

or in the boundary layer etc. So in order to damp these oscillations, artificial 

smoothing terms must be introduced.  

 

  So in this study, artificial smoothing terms are added to the distribution 

formulas, given by Equations 3.28.a-h. The artificial smoothing terms consist of 

second-order and fourth order damping terms.  The second order smoothing terms 

method is supplied from Ni [].On the other hand the fourth-order damping terms are 

WDNHQ�IURP�7ÕQD]WHSH�>��@��7KHVH�WHUPV�FDQ�EH�JLYHQ�DV�IROORZV�  

 

( )ii UUA
V
t

U −∆
∆
∆=

4
22 σδ                       (3.46a) 



 42 

 

( )ii UUA
V
t

U 2244

4
δδσδ −∆

∆
∆=           (3.46b) 

 

In the above equations, the subscript i denotes the node number of a cell and 

the barred quantities denotes the conservative variables averaged over the cell. ∆Α is 

related to areas of the cell at the cell center, as shown in Figure 3.2 and given as 

follows: 
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Also σ2 and σ4 terms in Equations (3.45a) and (3.45b) are the second and 

fourth order artificial smoothing coefficients, respectively. σ4 should be taken as 1/32 

of σ2 as specified by�7ÕQD]WHSH�>��@���  

 

 Ni [14] states that near the solid walls artificial smoothing term should be 

decreased as much as possible due to the fact that the viscous fluxes in the 

momentum equations are quite large and adequate to provide smoothing near the 

solid boundaries [14,18]. Considering this fact Mach number scaling is used. The 

second order artificial smoothing coefficient is reduced by the local Mach number 
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 Finally, the total change of a node can be written as follows 

 

4142 ,..,iUUUU iiii =++= δδδδ                                             (3.49) 
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3.4. TIME STEPPING CONTROL 

 

The Lax-Wendroff scheme is an explicit scheme, which marches in time; In 

all explicit methods, a limit must be prescribed for the time step at every iteration, 

otherwise the stability of the method will be endangered.   This limit is superimposed 

on the time step ∆t by the CFL condition [14]. 

 

In this study, Ni’s [14] formulation is used to restrict th e time step for the 

solution of the Navier-Stokes equations and can be given as 
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where L
*

 is the displacement vector crossing the cell in the streamwise direction, l
&

is 

a unit vector in the direction L
*

, c is the local speed of sound in the cell and µ is the 

viscosity.  

 

L
*

 can be expressed in the x and y directions, as  
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respectively. 
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 For stability of the scheme, CFL number stays below 1.0 for every cell in the 

computational domain. Local time stepping control is employed, that is a different ∆t 

value is imposed on each cell. All of the variables used in this method are taken as 

average values over a cell. 

 

3.5. DISCRETIZATION OF THE SPALART-ALLMARAS TURBULENCE 

EQUATION BY FINITE DIFFERENCE METHOD 

        

Spalart-Allmaras model is also solved uncoupled to Navier Stokes equations 

in this study. Finite difference method, which is explicit in time, is used to 

discretized the Spalart-Allmaras turbulence equation [12]. Discretization procedure 

in finite difference method is given in Hoffmann [11]. The derivatives in Spalart-

Almaras equation given by Cartesian derivatives given in Equation (2.16) can be 

written in the computational space as follows [11]. 
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A first order upwind method is used for the convective terms First order 

upwind approximation yields [11] 
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For the diffusion terms a second order central difference approximation is 

used. Discretization of the two derivative terms are shown below, discretization of 

the other diffusion terms are similar. For more details one can refer to Hoffman [11].  
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Complete explicit formulation, which is also given in Hoffmann [11] is stated 
as follows: 
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3.6. DISCRETIZATION OF THE BALDWIN-BARTH TURBULENCE    

EQUATION BY FINITE DIFFERENCE METHOD 

        

Since equations of both Spalart-Allmaras and Baldwin-Barth turbulence 

equation are similar, same explicit finite difference discretization procedure, as 

applied to Spalart-Allmaras, is also applied to Baldwin-Barth turbulence Equation 

[2.26]. Equation (2.26) can be stated in computational space as follows: 
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where  

 

R= TeRν                 [3.61] 
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where the coefficients of 321321321 ,,,,,,,, cccbbbaaa  and 4c   given in above 

equation are defined in Appendix. 

 

A first order upwind method is used for the convective terms. First order 

upwind approximation yields [11] 
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For the diffusion terms a second order central difference approximation is 

used [11]. Discretization of the two derivative terms are shown below, discretization 

of the other diffusion terms are similar. For more details one can refer to Hoffman 

[11].  
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Complete explicit formulation which is also given in Hoffmann [19] is stated 
as follows 
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CHAPTER 4 

 

 

INITIAL AND BOUNDARY CONDITIONS 

 

 

 

In this chapter, the initial and boundary conditions, which are necessary to 

obtain a solution of the governing equations, are discussed.  

 

In order to start up time marching computations initial conditions should be 

specified. The initial conditions give the state of fluid at time t=0 or at the first step 

of the iterative scheme. It is obvious that if the initial guess is made better, the 

solution will be obtained better and the probability of breakdown of the numerical 

process will be reduced [1]. Moreover, it should also be noted that in setting initial 

conditions final converged solution should be independent of the flow initialization. 

 

On the other hand, boundary conditions are necessary to obtain a unique and 

accurate solution. The correct implementation of the boundary condition is one of the 

most important aspects of every flow solver. In addition to the accuracy of the 

solution, the robustness and convergence speed are considerably influenced by the 

proper implementation of the boundary conditions [1]. In this study, characteristic 

type boundary conditions are used and will be presented in this chapter.  

 

 

4.1  INITIAL CONDITIONS 
 

In this study initials conditions are set as freestream values of pressure, 

density and velocity (given as Mach number and angle of attack) in the whole 

computational domain which is a common approach in external aerodynamics [1]. 
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Therefore by using the input Mach number, components of the conserved vector 

variables are set as follows: 
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For the turbulence models, the free stream values of turbulence parameters, 

which are used to initialize the flow field, are taken as follows: 

 

 ∞∞ = νν *1.0~                       (4.2)

  

10.eR =∞                        (4.3) 

   

4.2 IMPLEMENTATION OF BOUNDARY CONDITIONS 

 

The characteristic type boundary conditions, which are used in this study, are 

implemented by using the predictor-corrector method. In this method, conservative 

variables of the nodes on the boundaries are updated according to the Lax-Wendroff 

in the predictor step. On the other hand, in the corrector step, the characteristic type 

boundary conditions are applied explicitly by using the predicted values at the 

boundary nodes. The solution is updated as follows: 
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predictedcorrectedboundary UUU −=δ               (4.4)

   

In the above formulation,  predictedU  term stands for the predicted conservative 

variable which is obtained from the solution of Lax-Wendroff method and the 

correctedU  term stands for the corrected conservative variables. 

 

4.3 CHARACTERISTIC TYPE BOUNDARY CONDITIONS 

 

In order to derive the characteristic type boundary conditions, the Euler 

equations are written in terms of primitive variables in the normal and tangential 

directions at a boundary as follows: 

 

0
~~~

=
∂
∂+

∂
∂+

∂
∂

s
G

n
F

t
U

                          (4.5) 

 

where n and s denotes the local coordinates in the normal and tangential directions, 

respectively. Assuming that variations in the normal direction is larger than the 

tangential direction, so the derivatives in tangential direction can be dropped from 

Equation (4.5) to get the following form [15] 
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n
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                 (4.6) 

 

it can also be expressed in quasi-linear form as follows: 

 

0
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∂
∂

n
U

A
t

U
                (4.7) 

In above equation U
~

 stands for the primitive variable vector and A
~

 stands for the 

Jacobian matrix term, and these terms can be given as follows: 
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where un and  us  correspond to normal and tangential velocity vector components 

respectively and c represents the speed of sound. The barred quantities in the  

Jacobian matrix A
~

 are averaged values and taken as constants.  

 

The Jacobian matrix A
~

 can be diagonalized by using matrix L as follows: 

 

Λ=− LAL
~1                (4.10) 

where 
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and 
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Equation (4.10) yields the diagonal matrix Λ is obtained 
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which can also be expressed as follows: 
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In the above formulation 1λ , 2λ , 3λ  and 4λ  are the eigenvalues of the Jacobian 

matrix A
~

. Jacobian matrix A
~

 can also be expressed as 

 
1−Λ= LLA

~                (4.13) 

 

By substituting Equation (4.13) into Equation (4.7) following result can be 

obtained 
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The above formulation can be left multiplied by 1−L   to obtain 

 

011 =
∂
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n
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L
t
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~

L                          (4.15) 

 

The characteristic variable vector can be defined as follows: 

 

U
~

LW δδ 1−=                            (4.16) 

 

Substituting Equation (4.16) into Equation (4.15) , one can obtain following equation 
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where W is the vector of linearized characteristic variables and can be written as 

follows: 
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                                                (4.18) 

 

 For the implementation both physical and numerical types of boundary 

conditions are used. Type of boundary condition used in this study depends on the 

eigenvalues of the characteristic. For the positive eigenvalues, which means that the 

characteristics are entering the flow domain from outside, the physical boundary 

conditions are used and far field values are assigned as corrected value. On the other 

hand for the negative and zero eigenvalues, which means that the characteristic are 

moving outside the domain, numerical boundary conditions are used. In this case, the 

result of numerical scheme is used as corrected value [10, 15].  
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The physical boundary conditions can be expressed by using the non-

reflective boundary conditions, so that the local perturbations propagated along 

incoming characteristics must be vanished [19]. As a result of this statement, 

 

0=
∂

∂
t

W
               (4.19) 

or 

 

0=
∂
∂Λ

n
W

               (4.20) 

 

The above equation can be applied as follows 

 

0=∆W                (4.21) 

 

 Details of boundary condition implementation which depends on the 

eigenvalues are given in following sections:  

 

4.3.1 Subsonic  Inlet 

 

For the case of subsonic inlet, 0>> nuc  so the eigenvalues 321 ,, λλλ  are 

positive and 4λ  is negative. So the fourth characteristic variable has to be determined 

from the interior domain and the other three physical boundary conditions are to be 

specified at the boundary.  
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⇒=∆ 02W   farscorrecteds uu ,, =                     (4.22b) 
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In the above formulations, the subscript corrected stands for the corrected 

value and the subscript predicted stands for the value predicted by Lax-Wendroff 

scheme. Solving the above set of equations for the corrected primitive variables, one 

can obtain 
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farscorrecteds uu ,, =             (4.23d) 

 

 

Finally, for the Spalart-Allmaras and Baldwin-Barth model free stream values 

are used 

 

     ∞=νν~                                   (4.24)          

         

          ∞= tt ReeR                   (4.25) 
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4.3.2 Supersonic  Inlet 

 

In this case cun > , as a result all the eigenvalues 1λ , 2λ , 3λ , 4λ  are positive 

and  all the characteristic values are corrected using the free stream values.  
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Solving above set of equation for primitive variables the following set of 

equations can be obtained 

 

farcorrected pp =                        (4.27a) 

 

farcorrected ρρ =                 (4.27b) 

 

farncorrectedn uu ,, =             (4.27c) 

 

farscorrecteds uu ,, =             (4.27d) 

 

Finally, it should be noted that, the supersonic inlet boundary conditions used 

for the Spalart-Allmaras and Baldwin-Barth turbulence models are just the same as 

the ones in the subsonic case. 
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4.3.3 Subsonic Exit 

  

In the case of subsonic outflow, 0<nu  and cun < . As a consequence, 4λ  is 

positive, and 2,1 ,λλ , 3λ  are negative. Therefore, only one physical boundary condition 

will be imposed which corresponds to 4W   
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By solving above set of equations for corrected values, the following terms 

can be obtained 

 

farcorrected pp =              (4.29a) 
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predictedscorrecteds uu ,, =             (4.29d) 
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 Finally, at the exit, a first order extrapolation is used for the turbulence 

models. Hence for Spalart-Allmaras and Baldwin-Barth models: 

 

 jijiji ,2,1,
~~2~

++ −= ννν               (4.30) 

 

 j2,itj1,itji,t eReR2eR ++ −=              (4.31)

          

4.3.4 Supersonic Exit 

 

 In this case of supersonic outflow, 0<nu . As a result of this all the 

eigenvalues become negative. No physical boundary conditions are used: 
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⇒=∆ 02W    predictedscorrecteds uu ,, =          (4.32b) 

 

⇒=∆ 03W   
c

p
u

c
p

u predicted
predictedn

corrected
correctedn ρρ

+=+ ,,       (4.32c) 

 

⇒=∆ 04W   
c

p
u

c
p

u predicted
predictedn

corrected
correctedn ρρ

+−=+− ,,   (4.32d)    

 

 By solving above set of equations, one can obtain following conditions 

 

farcorrected pp =             (4.33a) 

 

predictedcorrected ρρ =              (4.33b) 
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predictedncorrectedn uu ,, =               (4.33c) 

 

predictedscorrecteds uu ,, =             (4.33d) 

       
 For the Spalart-Allmaras and Baldwin-Barth turbulence models, the same 

first order extrapolation procedure, carried out for the subsonic exit, is used.  

 

4.4  SYMMETRY BOUNDARY CONDITION 

 

In the symmetry boundary condition, the flow velocity is tangent to the 

surface. Therefore normal component of the velocity is set to zero on the boundary 

which means u walln, =0. As a result 21 ,λλ , 3λ  are negative and 4λ  positive. Therefore,  
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The results obtained for corrected values can be stated as follows: 

 

0,, == wallncorrectedn uu             (4.35a) 

 

predictedscorrecteds uu ,, =                (4.35b) 

 

predictednpredictedcorrected ucpp ,ρ−=                        (4.35c) 



 66 

2c

pp predictedcorrected
predictedcorrected

−
+= ρρ           (4.35d)          

and for the turbulence models both for Spalart-Allmaras and Baldwin-Barth, 

a first order extrapolation is used: 

 

1,,
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±= jiji νν
      

       (4.36) 

1ji,tji,t eReR ±=
 

 

4.5 SOLID WALL BOUNDARY CONDITION 

 

This type of boundary condition is also called the no-slip boundary condition. 

In this study all the solid walls are considered stationary. Therefore 

0== vu                (4.37) 

  

In this study, adiabatic boundary condition is used, that is, heat flux on the 

wall is set to zero. 
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n
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               (4.38) 

 

In the normal direction to the solid boundary, using boundary layer 

assumptions, y-momentum equation reduces to  

 

0=
∂
∂
n
p

                   (4.39) 

For the Spalart-Allmaras and Baldwin-Barth models solid wall boundary 

conditions are taken as zero [12, 11]. 
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0~ =ν                                    (4.40)  

0=teR                               (4.41) 

 

4.6 FAR FIELD BOUNDARY CONDITION 

 

In far field boundary condition, the propagating waves should neither be 

reflected nor emitted. In order to implement on ideal far field condition, the boundary 

should be placed sufficiently far, say 50-60 or sometimes 100 characteristic lengths 

away [17], [18].Practical approach is to put the far field boundary closer, say 5 – 6 

characteristic lengths away, but directly imposing the free stream values causes the 

reflection of these waves in non-physical manner from the far field boundaries. 

Viscous mechanism of the Navier-Stokes equations is generally able to dissipate 

these waves provided that the far field boundary is placed far enough from the solid 

body [16].  There are also other methods to reduce the effect of reflection of the 

waves, one of these methods is suggested by Hirsch [19] .In this method special 

corrections based on lift coefficient are added to the free stream values and corrected 

values are found [15]. However, in this study, the free stream values of primitive 

variables are directly imposed on the far field boundaries without any change.  
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CHAPTER 5 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

 Performance and accuracy of the turbulence models implemented into the 

Navier-Stokes solver is tested on various test cases. These test cases include 

transonic flow over NACA 0012 airflow and turbulent flow over flat plate 

 

  Validity and accuracy of Navier-Stokes solver is also verified. For this 

purpose the laminar flat plate problem is chosen. Laminar flat plate test case for a 

Navier-Stokes solver is one of the best test cases since the dominant forces are 

viscous terms in a flat plate problem and viscous terms can be verified [16]. In this 

test case, a free stream Mach number of 0.3 and a free stream Reynolds number of 

35000 are selected. 

 

The next test case is the turbulent flow over a flat plate with a free stream 

Reynolds number of 6,000,000 and a Mach number of 0.3. In this case, the transition 

point is fixed and specified. Both Spalart-Allmaras and Baldwin-Barth turbulence 

models are tested. The numerical results are compared with the analytical solution. 

 

The final test case belongs to transonic flow over the NACA 0012.  This test 

case is handled in Reynolds number of 9,000,000 with an angel of attack 2.26 and 

free stream Mach number of 0.799. Both Spalart-Allmaras and Baldwin-Barth 

turbulence models are tested. The numerical results are compared with the numerical 

VROXWLRQ�RI�7ÕQD]WHSH  [10] and experimental results. 
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5.1 LAMINAR FLOW OVER FLAT PLATE  

  

The main purpose of this test case is to check the validity and performance of 

the Navier–Stokes solver in which turbulence models will be implemented. For this 

purpose the laminar flow over flat plate problem is chosen, which is the best way to 

check whether the solver handles the viscous terms correctly or not. In this test case 

free stream Mach number of 0.3 and Reynolds number of 35000 is chosen. In this 

kind of test case, pressure gradient is zero except the region closed to the leading 

edge. Therefore, the grid is clustered in horizontal direction at the leading edge for 

121x81 H type structured grid, which is shown in Figure 5.1. 

 

 

 

Figure 5.1 H type Grid for Laminar Flat Plate Test Case 

 

The�PLQLPXP� ûx used in the clustering is 0.0005. In order to get sufficient 

accuracy, the grid is also highly clustered near flat plate in y direction; the minimum 

ûy used is 0.00022 of the cord length so that there are more than 20 points in the 

boundary layer. In the upwind direction of this grid, there are 30 nodes on the slip 

surface, 70 nodes on the flat plate and 21 nodes in the wake region.   

 

  

y 

x 
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In this test case, during the solution, second order-smoothing coefficient of 

0.001 and CFL number of 0.5 is taken. The velocity profiles at location of 60% of the 

cord and local skin friction coefficient are compared with Blasius solution. The local 

skin friction coefficient, Cf   is calculated by using following formula: 

 

 
2

2
1

∞∞

=
U

C w
f

ρ

τ
                  (5.1) 

 

where ! ´ , U ´  are free stream values for density and velocity respectively, and 2w is 

the value of wall friction calculated locally on the flat plate. Blasius exact solution 

for the local skin friction coefficient, C f is given as  

 

( ) 506640 .
xf Re.C −=                 (5.2) 

 

where Rex is the Reynolds number at position x on the plate and can be defined as 

follows: 

 

∞

∞∞=
µ

ρ xU
Rex                 (5.3) 

   

Obtained results for tangential velocity profile, normal velocity profile and 

the local skin friction distribution are presented in Figures 5.2, 5.3 and 5.4 

respectively. As shown in Figures 5.2 and 5.3 results obtained for tangential velocity 

and normal velocity profiles are acceptable since there not much deviations from the 

Blasius solution in both figures. But however there is slight deviation for the local 

skin friction distribution at the leading edge, which is presented in Figures 5.4. This 

kind of discrepancy near the leading edge is expected, since the Blasius solution uses 

the boundary layer assumptions and the flow near the leading edge does not satisfy 

the boundary layer assumptions. In fact the flow near the leading edge can only be 

modeled correctly by using the full Navier-Stokes equations.  As a result of  this fact, 

the overall accuracy of the Navier-Stokes solver is acceptable.  
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Figure 5.2 Tangential Velocity Profiles. 
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Figure 5.3 Normal Velocity Profiles. 
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Figure 5.4 Local Skin Friction Coefficient. 

 

 

5.2 TURBULENT FLOW OVER FLAT PLATE  

 

In this test case both Spalart-Allmaras and Baldwin-Barth turbulence models 

are tested. For this test case 121x81 H grid is used. Grid, which is shown in Figure 

5.5, is clustered at both leading and trailing edge with minimum ∆y of 0.000015 and 

minimum ∆x of 0.000032. Besides this, grid consists of 37 nodes in the upstream 

region, 70 nodes on the flat plate, and 8 nodes in the wake region.   
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Figure 5.5   Grid Used for the Turbulent Flat Plate Problem. 

 

For this test case, in order to be consistent with researchers [16, 17, and 18], a 

free stream Mach number of 0.3 and a Reynolds number of 6,000,000 is chosen. 

Moreover transition to turbulence is taken at fixed point which is 0.054 m from 

leading edge which corresponds to a Reynolds number of 324,000.  

 

In order to check the accuracy of the models, both empirical and analytical 

methods are used. For local skin friction, Blasius exact solution, which is given in 

Equation (5.2), is used for laminar flow regime and Prandtl’s 1/5  law is used for the 

turbulent flow region. Prandtl’s 1/5 law is given as follows:   

 

( ) 2.0Re0592.0 −= xfC                      (5.4) 

 

On the other hand calculated turbulent velocity profiles are compared with 

the empirically obtained universal velocity distributions. For the turbulent non-

dimensional velocity profiles the following formula is used: 
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  50, << ++ yy             

u+ =   305,05.3)log(0.5 <<− ++ yy            (5.5) 

  ++ <+ y,.)ylog(. 305552              

 

where +y  is defined in Equation (2.27d) and non-dimensional velocity +u  can be 

given as follows: 

 

Du
u

u =+                  (5.6) 

 

where Du  is friction velocity given in Equation (2.27e). 

 

5.2.1. Spalart-Allmaras Model 

  

Having implemented Spalart-Allmaras model, stability of the numerical work 

is maintained by increasing the second order artificial smoothing coefficient. So 

during discretization of the Spalart-Allmaras model for both finite difference and 

coupled cases second order artificial smoothing coefficient is increased. Therefore 

second order artificial smoothing coefficient for uncoupled discretization of the 

model is increased from 0.001 to 0.3. Moreover, it is increased from 0.001 to 0.41 for 

coupled discretization. Consequently, an additional equation is solved with the 

Navier-Stokes equation and in order to increase the stability, artificial damping factor 

increased more. For both cases CFL number is taken as 0.5. 

 

Numerical results obtained from Spalart-Allmaras model are shown in 

Figures 5.6, 5.7 and 5.8. As seen in Figure 5.6, coupled solution predicts the skin 

friction coefficient quite well. On the other hand finite difference discretization of 

turbulence model underpredicts the local skin friction coefficient just before 

transition. This kind of deviation may result of the discretization of the model in 

finite difference domain since coupled solution give better prediction. It should also 

be noted that velocity profiles deviate from universal velocity distribution at the end  
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of the boundary layer. This kind of deviation in the outer boundary layer is 

reasonable and it is also observed in experimental results [15]. But overall solutions 

are in good agreement with analytical solutions. 
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Figure 5.6 Local Skin Friction Coefficients along the Flat Plate Obtained by          

Spalart-Allmaras Model. 
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Figure 5.7 Non-dimensional Turbulent Velocity Profiles Obtained by Spalart-

Allmaras Model with Coupled Solution. 
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Figure 5.8  Non-dimensional Turbulent Velocity Profiles Obtained by 

             Spalart-Allmaras Model with Finite Difference Solution 

 

5.2.2 Baldwin Barth Turbulence Model 

 

For Baldwin-Barth turbulence model second order artificial smoothing 

coefficient is taken as 0.3 which is the same as the one chosen for Spalart-Allmaras 

turbulence model. CFL number is chosen as 0.5, which again the same as the one is 

chosen for Spalart-Allmaras model. The local skin friction distribution over flat-plate 

and turbulent velocity profiles are given in Figures 5.9 and 5.10 respectively. In 

Figure 5.9, it is seen that the local skin friction distribution is underpredicted before 

the transition, when compared with the analytical result. This deviation may be in 

consequence of the model’s interaction with the laminar part of the flow. This kind 

of deviation is also observed by references [17, 18] in local skin friction distribution 

of �k −  two equation turbulence model and Baldwin-Barth turbulence model is 

derived from �k −  turbulence model. Since this deviation is reasonable and velocity 

profile is in good agreement with universal profile, overall result is acceptable. 
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Figure 5.9 Local Skin Friction Coefficient Along the Flat Plate Obtained by 

Baldwin-Barth Model 
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Figure 5.10 Non-dimensional Turbulent Velocity Profiles Obtained by Baldwin-

Barth model 
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5.2.3. Comparison of the Turbulence Models Over Turbulent Flat Plate  

 

Local skin friction distribution over turbulent flat plate of both one equation 

turbulence models and Baldwin-Lomax turbulence model [18] are compared in 

Figure 5.11. As it can be seen from Figure 5.11 that among the one equation 

turbulence models, the best prediction of the local skin friction distribution is 

obtained by Spalart-Allmaras turbulence model with coupled solution. Finite 

difference solution of both Baldwin-Barth and Spalart-Allmaras turbulence models 

underpredict when they are compared with analytical solution. Both of the finite 

difference solutions of the turbulence models have a deviation in downward direction 

just before the transition. In Figure 5.11 more deviation can be observed in Baldwin-

Barth turbulence model then Spalart-Allmaras turbulence model. For Baldwin-Barth 

solution this deviation may be due to the models interaction with laminar part of the 

flow [15, 18]. But for the Spalart-Allmaras turbulence model, this deviation is 

thought to be due to the discretization of the model in finite difference method. On 

the other hand, it can be observed from Figure 5.11 the best solution is obtained by 

the Baldwin-Lomax turbulence model. Infact zero equation models require less 

amount of computational effort, it is one of the advantageous for this kind of flow 

where small amount of adverse pressure gradient is present [18].   

 

In Figure 5.12 turbulent velocity profiles of one equation models and 

universal velocity distributions are plotted together. As it can be observed, both 

models give similar solutions and they are in good agreement with empirical results. 

 

 Finally, x-momentum averaged residuals are given in Figure 5.13. Solutions 

of the models are allowed to continue until the solver run for 65,000 iterations. 

Number of iterations are enough for convergence of the both turbulence models. 
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Figure 5.11 Comparison of Local Skin friction Distributions of the 

Turbulence Models in Turbulent Flat Plate Problem 
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Figure 5.12 Comparison of Non Dimensional Velocity Profiles Obtained from 

Both of the Turbulence Models in Turbulent Flat Plate Problem 
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       Figure 5.13 Residual History of the Turbulence Models 

 

 

5.3 TURBULENT TRANSONIC FLOW OVER NACA-0012 AIRFOIL 

 

Transonic flow occurs when there is a mixed of subsonic and supersonic flow 

in the same flow field and usually the supersonic part of the flow is terminated by a 

shock wave [20]. This makes the case very challenging and a good test case for the 

computational research. 

 

In this test case, turbulent transonic flow over NACA 0012 airfoil is 

investigated. Transonic flow turbulent flow with a free stream Reynolds number of 

9,000,000 is considered. This test case is handled by other researchers like Baldwin-

%DUWK�>�@�DQG�7ÕQD]W epe [15]. Performance of the models and solver are checked for 

the free stream Mach number of 0.799 with an angle of attack 2.26 degree. In this 

test case CFL number and second order artificial smoothing term are taken as 0.2 and 

5.0 respectively.  

 

257x65 C grid is used for this test case which is the exactly the same as the 

RQH�XVHG�E\�7ÕQD]WHSH�>��@��*ULG�FRQVLVWV�RI�����SRLQWV�RQ�WKH�DLUIRLO�DQG����SRLQWV�
on the wake region. There are 120 grid points on the upper surface and 73 points on 
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the lower surface of the airfoil. Minimum y∆  used in this grid is 0.00001 and 

x∆  is 0.001. Airfoil is clustered around 55% of the where the shock wave is 

expected to occur. Grid around the airfoil is shown in Figure 5.14. 

 

     

 

 

 

 

 

 

 

 

 

 

 

Solutions obtained from both turbulence models are continued until about 

two orders of decrease is achieved in the x-momentum residual. Solutions are 

obtained from both turbulence models of Baldwin-Barth and Spalart-Allmaras 

turbulence models. Both solutions are obtained from uncoupled discretization of 

turbulence models.  The obtained results are compared with the numerical results of 

7ÕQD]WHSH�>��@�DQG�H[SHULPHQWDO�UHVXOWV�  

 

Results obtained from Baldwin-Barth and Spalart-Allmaras turbulence 

models are presented in Figures of 5.16, 5.17 and 5.18. It is observed in Mach 

number plots of both models, there are oscillations around shock wave. Although 

artificial smoothing terms are used for damping the oscillation around shock waves 

or discontinuities, after several tests are handled, it is observed that artificial 

smoothing terms are not enough to prevent oscillations. Moreover, the more increase 

the second order artificial smoothing term, the worse result gets. Oscillations are also 

observed in Cp plot of the both solutions after the shock wave. There are also 

Figure 5.14  C Grid Used For NACA-0012 Transonic Turbulent Flow Test Case 
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deviations at the lower part of the airfoil on the Cp plot of both solutions 

which is presented in Figure 5.18. In spite of the oscillations and deviations, both 

models capture the shock wave and capture the shock position better than the 

Baldwin-Lomax turbulence model solution. In accordance with the Baldwin-Lomax 

turbulence model solutionV�REWDLQHG�E\�7ÕQD]WHSH� >��@��ERWK�PRGHOV�FDSWXUH� WKH�
shock position better. In experimental result shock position is about 48% of the 

chord, in present case both turbulence models predict the shock location at the 53% 

of the cord and shock location is obtDLQHG�DW�DERXW�����RI�WKH�FRUG�E\�7ÕQD]WHSH�
[15]. Conclusively, solver should be enhanced for more complex geometries to 

acquire more accurate solutions. 
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Fig 5.15 Mach Number Contour Plot for the Turbulent Transonic Flow  

NACA -0012 Test Case (Baldwin-Lomax Solution [15]) 

 7ÕQD]WHSH� [15] 
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Fig 5.16 Mach Number Contour Plot for the Turbulent Transonic Flow  

NACA -0012 Test Case (Baldwin-Bart Solution) 

Present Solution with Baldwin-Barth Turbulence Model 

 

Fig 5.17 Mach Number Contour Plot for the Turbulent Transonic Flow  

NACA -0012 Test Case (Spalart-Allmaras Solution) 

Present Solution with Spalart-Allmaras Turbulence Model 
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Fig 5.18 Calculated Pressure Coefficient Distributions on NACA-0012 Airfoil for 

the Turbulent Transonic Test Case 

NACA-0012 Test Case     
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CHAPTER 6 

 

 

DISCUSSION AND CONCLUSION 

 

 

 

6.1 SUMMARY AND DISCUSSION 

 

In this study one equation turbulence models namely Baldwin-Bart and 

Spalart Allmaras eddy viscosity models are implemented into previously developed 

Navier-Stokes solver.  

 

One equation turbulence models are selected for implementation into Navier-

Stokes solver because of their success and popularity. They also do not depend on 

empirically determined algebraic length scales. Moreover, both zero and two 

equation turbulence models have some inadequacies. In spite of the fact that two 

equation models are complete, they have the problems related to numerical 

implementation [9]. Zero equation models are simple models, they don’t consider 

turbulent history effects and they give poor results in separated flow [9]. 

 

In this study three test cases are handled. First test case is the laminar flat 

plate problem. The main purpose of this test case is to check the validity of the 

Navier-Stokes solver before implementation of the turbulence models. The obtained 

results are in good agreement with the analytical solutions and so turbulence models 

are implemented. The next two test cases handled belong to turbulent flow. Accuracy 

and performance of the turbulence models are firstly tested over turbulent flat plate 

problem. The obtained results for the turbulent flat plate test case are satisfactory for 

both turbulence models. Among the Spalart-Allmaras and Baldwin-Barth turbulence 

models, best local skin friction coefficient distribution is obtained by Spalart-
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Allmaras solution. On the other hand, it observed that obtained results of local skin 

friction distributions are not better than Baldwin-Lomax turbulence model. Final test 

case is the transonic flow over NACA-0012 airfoil. This test case is chosen due to 

the fact that the transonic flow is one of the most challenging test cases in 

aerodynamics and testing the solver for flow separation case. In transonic test case, 

although the solver using Baldwin-Barth and Spalart-Allmaras turbulence models 

captures the shock location more accurate than the Baldwin Lomax turbulence model 

and show the flow separation, it is observed that there are oscillations on both Mach 

number and Cp plots.  For damping these oscillations artificial damping factor is not 

satisfactory and it is also observed that increasing artificial damping factor effect the 

solution in bad manner. Moreover, there are deviations at the lower part of the airfoil 

with respect to the experimental solutions on Cp plot. As a conclusion, turbulence 

models implemented solver has adequate capability of shock capturing and giving 

solution of turbulent flows but it should be enhanced more for more precise and 

stable solutions. 

 

6.2. FUTURE RECOMMENDATIONS 

 

 First improvement made to this solver will be related to Navier-Stokes solver. 

Present solver should be enhanced more by addition of a Total Variation 

Diminishing (TVD) scheme. This will damp oscillation on the graphs and eliminate 

the necessity of artificial damping terms. 

 

 Second and final improvement will be made by increasing speed of 

convergence. Because of the huge size of grids used for airfoils results obtained are 

in the order of days. Speed of convergence can be increased by parallel computing 

techniques and addition of multigrid algorithm.  
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APPENDIX 

 

 

 

The aim of this section is to define coefficients of Baldwin–Barth turbulence 

model production term S [19]. 
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