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ABSTRACT 

 
 

A COMPARISON OF SUBSPACE BASED FACE RECOGNITION 
METHODS 

 
 
 

Gönder, Özkan 
M.Sc., Department of Electrical and Electronics Engineering 

Supervisor      : Prof. Dr. Uğur Halıcı 
 
 

August 2004, 95 pages 
 
 
 

Different approaches to the face recognition are studied in this thesis. 

These approaches are PCA (Eigenface), Kernel Eigenface and Fisher LDA. 

Principal component analysis extracts the most important information contained 

in the face to construct a computational model that best describes the face. In 

Eigenface approach, variation between the face images are described by using a 

set of characteristic face images in order to find out the eigenvectors (Eigenfaces) 

of the covariance matrix of the distribution, spanned by a training set of face 

images. Then, every face image is represented by a linear combination of these 

eigenvectors. Recognition is implemented by projecting a new image into the 

face subspace spanned by the Eigenfaces and then classifying the face by 

comparing its position in face space with the positions of known individuals. In 

Kernel Eigenface method, non-linear mapping of input space is implemented 

before PCA in order to handle non-linearly embedded properties of images (i.e. 
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background differences, illumination changes, and facial expressions etc.). In 

Fisher LDA, LDA is applied after PCA to increase the discrimination between 

classes.  

These methods are implemented on three databases that are: Yale face 

database, AT&T (formerly Olivetti Research Laboratory) face database, and 

METU Vision Laboratory face database. Experiment results are compared with 

respect to the effects of changes in illumination, pose and expression. 

Kernel Eigenface and Fisher LDA show slightly better performance with respect 

to Eigenfaces method under changes in illumination. Expression differences did 

not affect the performance of Eigenfaces method. 

From test results, it can be observed that Eigenfaces approach is an 

adequate method that can be used in face recognition systems due to its 

simplicity, speed and learning capability. By this way, it can easily be used in real 

time systems. 

 

Keywords: Face recognition, eigenface, principal component analysis, subspace 

LDA, Kernel eigenface. 
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ÖZ 

 
 

ALT-UZAY TABANLI YÜZ TANIMA YÖNTEMLERİNİN 
KARŞILAŞTIRILMASI 

 
 
 
 

Gönder, Özkan 
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Uğur Halıcı 
 

Ağustos 2004, 95 sayfa 
 
 

Bu tezde yüz tanımada kullanılan farklı yöntemler üzerinde çalışılmıştır. 

Bu yöntemler  Ana Bileşen Analizi(Özyüz), Kernel Özyüz ve Fisher Doğrusal 

Ayırtaç Analizleridir (DAA). Ana Bileşen Analizi yüzü en iyi tanımlayabilen 

hesaplayıcı model oluşturabilmek için yüz resmi içindeki en önemli bilgileri 

çıkarmaya çalışır. Özyüz yönteminde yüzler arasındaki farklılıklar eğitim 

kümesinde yer alan yüzlerin kovaryans matrisinin özvektörlerinin(özyüzlerin) 

hesaplanmasıyla bulunur. Özvektörler (Özyüzler) elde edilerek diğer yüzler bu 

özvektörlerın lineer kombinasyonu ile ifade edilir Tanıma olayı yeni yüzün elde 

edilen bu özyüzler tarafından oluşturulan yüz uzayına projeksiyonu ile ve 

projeksiyon sonucu elde edilen konumlar sisteme tanıtılan yüzlerin konumlarıyla 

karşılaştırılnasıyla yapılmaktadır. Kernel Özyüz yönteminde, Ana Bileşen 

Analizinden önce eğitim seti lineer olmayan üst uzaya projeksiyonu 
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yapılmaktadır. Böylelikle yüzlerin lineer olarak değişmeyen özelliklerinin(arka 

planda farklılıkları, ışık değişiklikleri ve yüz ifadeleri vb. ) de ele alınması 

hedeflenmiştir. Fisher Doğrusal Ayırtaç Analizinde (DAA), Doğrusal ayırtaç 

analizi Ana Bileşen Analizinden sonra sınıflar arasında ayrımı arttrımak için 

uygulanmaktadır. 

Bu yöntemler üç veritabanı üzerinde uygulanmıştır. Bunlar: Yale 

veritabanı, AT&T veritabanı ve ODTÜ Görüntü İşleme Laboratuvarı yüz 

veritabanıdır. Deney sonuçları ışık, poz ve ifade farklılıklarına göre 

değerlendirilmiştir. 

Kernel Özyüz ve Fisher Doğrusal Ayırtaç Analizi Özyüz yöntemine göre 

ışık farklılıklarında daha iyi performans göstermektedirler. Yüz ifade değişikliği 

Özyüz yönteminin performansını etkilememektedir. 

Test sonuçları Özyüz yönteminin kolay olması, hızlı ve özel donanım 

kullanmadan bile gerçek zamanda çalışabilmesi sebebiyle yüz tanıma 

sistemlerinde kullanılabilir bir yöntem olduğunu göstermektedir. 

 

Anahtar Kelimeler : Yüz tanıma, özyüz, ana bileşen analizi, altuzay doğrusal 

ayrışım analizi, Kernel özyüz. 
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CHAPTER 1 

INTRODUCTION 

 
Face recognition has an important part in human activities. The way 

we interact with other people is firmly based on our ability to recognize 

them. Face recognition from still and video images is an active research area 

with numerous commercial and law enforcement applications. Face 

recognition systems can be used to allow access to an ATM machine o a 

computer, to control the entry of people into restricted areas, to recognize 

people in specific areas (banks, stores), or in a specific database (police 

database). Biometrics are methods to automatically verify or identify 

individuals using their physiological or behavioral characteristics.  

 
Biometric technologies include  
 
- Face Recognition 

- FingerPrint Identification 

- Hand Geometry Identification 

- Iris Identification 

- Voice Recognition 

- Signature Recognition 

- Retina Identification 
 

A  face  recognition  system would  allow  user  to  be  identified  by  

a surveillance camera. Human beings often recognize one another by unique 
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facial characteristics. One of the newest biometric technologies, automatic 

face recognition, is based on this feature. Face recognition is the most 

successful form of human surveillance. Face  recognition technology  is  

being used  to  improve  human  efficiency when  recognizing  faces,  is  one  

of  the  fastest growing  fields  in  the  biometric  industry. 

The purpose of this thesis is to develop a face recognition system that 

operates under various conditions such as varying illuminations and 

backgrounds. 

Subspace based methods for face recognition are studied in this 

thesis. These methods are PCA (Principal Component Analysis), Kernel 

Eigenface and Fisher LDA. 

These methods are implemented on three databases that are: Yale face 

database, AT&T (formerly Olivetti Research Laboratory) face database, and 

METU Vision face database. Experiment results are compared with respect to the 

effects of changes in illumination, pose and expression. 

1.1 Thesis Outline 

In Chapter 2, the overview of face recognition methods in literature are 

introduced.  

In Chapter 3, the statistical pattern recognition methods used in the thesis are 

presented. Taking these into account, the selected methods -Principal Component 

Analysis (Eigenfaces), Kernel Eigenfaces, Linear Discriminant Analysis (LDA) 

and the motivation around these topics are explained in details 
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In Chapter 4, applications of the selected methods for face recognition are 

discussed. Simulation results of these methods with the common face databases: 

Yale face database, AT&T (formerly ORL) face database and Computer Vision 

and METU Vision face database are compared.  

In Chapter 5, concluding comments and some future directions are given. 

“METU Vision” is used for “Intelligent Systems Research Laboratory in 

Electrical and Electronics Engineering Department of METU” in this thesis. 
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CHAPTER 2 

A SURVEY ON 

FACE RECOGNITION METHODS 

Face recognition is a pattern recognition task that classifies a face either 

"known" or "unknown", after comparing it with previously known individuals. 

Some of the algorithms that have been developed for face recognition are 

overviewed in this chapter. These algorithms may be broadly classified as 

template-matching methods, feature-based methods, Karhunen-Loeve Expansion-

Based Methods, Linear Discriminate-Based Methods or more recently, model-

based methods. For each of these approaches some of the most popular 

algorithms will be briefly described. These algorithms are summarized and 

compared in terms of their accuracy, robustness and complexity. 

2.1 Template matching 

This technique consists of representing an image as single or multiple 

arrays of pixel values. The arrays are compared with single or multiple templates 

representing the faces in the training set via a suitable metric. The features of 

interest can be located manually or by using a more sophisticated automatic 

approach based on a multi-layer perceptron as detailed in Hutchinson and Welsh 

[1], a deformable template as described by Yuille [4] or an active contour model 



5

 

(snake) as reported by Huang and Chen [37] and as originally described by Kass 

[5]. 

2.1.1 Isodensity line maps 

 A different template-based approach was proposed by Nakamura [8]. The 

technique they presented making use of grey-level isodensity line maps to 

represent face images. Summarized in their own words, if the brightness of an 

image is viewed as the height of a mountain, then an isodensity line corresponds 

to contour lines of equal altitude. A database of 10 subjects with one training 

image and one test image for each subject was used. Three subjects wore glasses, 

two men had a thin beard and two women had different make-up and hair styles 

in the test and training images. Recognition experiments were carried out and 

successful results were reported.  

2.1.2 Multiple template correlation methods 

One of the first studies based on multiple template representation was 

carried out by Baron [6]. A database of 42 subjects was used and each was 

represented by up to five manually selected face features (full face, mouth, right 

eye, chin and hair), and each face feature contained up to four distinct templates. 

A total of up to 20 pictorial templates were stored for each subject, with each 

template being a 15x16 array of pixels. A test image was first reduced to a 15x16 

full face array and then compared with each full face template in the training set. 

If the correlation value between the reduced test image and one of the full face 
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templates exceeded a threshold of recognition, the test image was recognized as 

the corresponding subject. If the correlation value fell between the threshold of 

recognition and a lower value called the threshold of recall, then the other face 

features were recalled and used for recognition. If for at least three out of four of 

the features the correlation value exceeded the threshold of recall, the test image 

was recognized as the current subject. 

More recently Brunelli and Poggio [7] presented results based on a similar 

approach. They used a database of 47 subjects, where each subject was 

represented by a full frontal image and a set of four templates (eyes, nose, mouth 

and the whole face). Recognition of a test image was performed by computing a 

normalized cross correlation for each template and by finding the highest 

cumulative score.  

2.1.3 Vector quantised templates 

Sutherland [9] used a template-based approach, where each of the original 

eight feature templates they selected was substituted with an approximately 

similar template drawn from a code-book via vector quantisation. Various 

algorithms can be used to generate useful code-books and two such algorithms 

were presented by Ramsay [10]. Using a database of 30 subjects with 10 training 

images and 10 test images for each subject, a successful recognition rate of 89% 

was reported. 
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2.1.4 Neural network based template matching 

Templates have been used as input to neural network based systems. 

Allinson [11] used a 32x32 full image template and two 64x32 templates for the 

eye and mouth regions respectively. These templates were used as inputs to 

Kohonen's [12] self-organising feature maps. The maps produced a topology 

which preserved the structure of the input templates. The maps were used as 

input to a multi-layer perceptron which carried out the classification. Other work 

by Cottrell and Fleming [13] studied the performance of a network that 

automatically extracted features (the output of the hidden units) from a 64x64 full 

face template and input them to a one-layer network for identity and also gender 

classfication. Test images were perfectly identified with a database of 11 

subjects. A gender recognition success performance of 37% was reported. 

Stonham [14] detailed experiments on face recognition using a general purpose 

pattern recognition machine called WISARD. A database of 16 subjects was used 

and full image 153x214 templates were input to a self-adapting single layer 

network. Subjects were asked to appear before a camera, face on, for 

approximately 20 seconds. On average, 200-400 images were required to 

complete the training. Real time testing results were reported with error free 

recognition rates. 
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2.2 Feature Based Face Recognition 

It was mentioned before that, there were two basic approaches to the face 

recognition problem: Feature based face recognition and principal component 

analysis methods. Although feature based face recognition can be divided into 

two different categories, based on frontal views and profile silhouettes, they share 

some common properties and we will treat them as a whole. In this section, basic 

principals of feature based face recognition from frontal views are presented. 

The first step of human face identification is to extract the features from 

facial images. In the area of feature selection, the question has been addressed in 

studies of cue salience in which discrete features such as the eyes, mouth, chin 

and nose have been found important cues for discrimination and recognition of 

faces. 

After knowing what the effective features are for face recognition, some 

methods should be utilized to get contours of eyes, eyebrows, mouth, nose, and 

face. For different facial contours, different models should be used to extract 

them from the original portrait. Because the shapes of eyes and mouth are similar 

to some geometric figures, they can be extracted in terms of the deformable 

template model [15]. The other facial features such as eyebrows, nose and face 

are so variable that they have to be extracted by the active contour model [16, 

17]. These two models can be illustrated in the following: 
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• Deformable template model 

The deformable templates are specified by a set of parameters which uses 

a priori knowledge about the expected shape of the features to guide the contour 

deformation process. The templates are flexible enough to change their size and 

other parameter values, so as to match themselves to the data. The final values of 

these parameters can be used to describe the features. This method works well 

regardless of variations in scale, tilt, and rotations of the head. Variations of the 

parameters should allow the template to fit any normal instance of the feature. 

The deformable templates interact with the image in a dynamic manner. An 

energy function is defined which contains terms attracting the template to salient 

features such as peaks and valleys in the image intensity, edges and intensity 

itself. The minima of the energy function correspond to the best fit with the 

image. The parameters of the template are then updated by steepest descent. 

• Active contour model (Snake)  

The active contour or snake is an energy minimizing spline guided by 

external constraint forces and influenced by image forces that pull it toward 

features such as lines and edges. Snakes lock onto nearby edges, localizing them 

accurately. Because the snake is an energy minimizing spline, energy functions 

whose local minima comprise the set of alternative solutions to higher level 

processes should be designed. Selection of an answer from this set is 

accomplished by the addition of energy terms that push the model toward the 
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desired solution. The result is an active model that falls into the desired solution 

when placed near it. In the active contour model issues such as the connectivity 

of the contours and the presence of corners affect the energy function and hence 

the detailed structure of the locally optimal contour. These issues can be resolved 

by very high-level computations. 

2.2.1 Effective Feature Selection 

Before mentioning the facial feature extraction procedures, we have the 

following two considerations: 

• The picture-taking environment must be fixed in order to get a good 

snapshot. 

• Effective features that can be used to identify a face efficiently should be 

known. 

Despite the marked similarity of faces as spatial patterns we are able to 

differentiate and remember a potentially unlimited number of faces. With 

sufficient familiarity, the faces of any two persons can be discriminated. The skill 

depends on the ability to extract invariant structural information from the 

transient situation of a face, such as changing hairstyles, emotional expression, 

and facial motion effect. Features are the basic elements for object recognition. 

Therefore, to identify a face, we need to know what features are used effectively 

in the face recognition process. Because the variance of each feature associated 



11

 

with the face recognition process is relatively large, the features are classified 

into three major types: 

• First-order features values. Discrete features such as eyes, eyebrows, 

mouth, chin, and nose, which have been found to be important [11] in 

face identification and are specified without reference to other facial 

features, are called first-order features. Important first-order features are 

given in Table 2.1. 

Table 2.1 First-order features 
Measurement Facial Location 

Area, angle 

Left eyebrow 
Right eyebrow 

Left eye 
Right eye 

mouth 
face 

Distance 

Length of left eyebrow 
Length of right eyebrow 

Length of left eye 
Length of right eye 
Length of  mouth 

Length of face 
Height of face 

• Second-order features values. Another configural set of features which 

characterize the spatial relationships between the positions of the first-

order features and information about the shape of the face are called 

second-order features. Important second-order features are given in Table 

2.2. Second order features that are related to nose, if nose is noticeable are 

given in Table 2.3. 



12

 

Table 2.2 Second-order features 
Measurement Facial Location 

Distance 

Left eyebrow <-> right eyebrow 
Left eye <-> right eye 

Left eyebrow <-> left eye 
Right eyebrow <-> right eye 

Left eyebrow <-> mouth 
Right eyebrow <-> mouth 

Left eye <-> mouth 
Right eye <-> mouth 

Eyebrow <-> side of face 
Eye <-> side of face 

Mouth <-> side of face 
Mouth <-> lower part of face 

Angle 

Left eyebrow – left eye  – left eyebrow 
Right eyebrow – right eye  – right eyebrow 

Left eye – left eyebrow – left eye 
Right eye – right eyebrow – right eye 
Left eyebrow - mouth – right eyebrow 

Left eye - mouth – right eye 
Left eyebrow - mouth – right eye 
Left eyebrow – left eye  – mouth 

Right eyebrow - right eye - mouth 
 
 
 
Table 2.3 Features related to nose, if nose is noticeable 

Measurement Facial Location 

Distance 

Left nose <-> right nose 
Left eyebrow <-> left nose 

Right eyebrow <-> right nose 
Left eye <-> left nose 

Right eye <-> right nose 
Left nose <-> mouth 

Right nose <-> mouth 

Angle 

Left eyebrow – center of nose – right eyebrow 
Left eye – center of nose – right eye 

Left nose – mouth - right nose 
Left eyebrow - left eye - left nose 

Right eyebrow - right eye - right nose 
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• Higher-order feature values. There are also higher-order features whose 

values depend on a complex set of feature values. For instance, age might 

be a function of hair coverage, hair color, skin tension, presence of 

wrinkles and age spots, forehead height which changes because of 

receding hairline, and so on. 

Variability such as emotional expression or skin tension exists in the 

higher- order features and the complexity, which is the function of first-order and 

second-order features, is very difficult to predict. Permanent information 

belonging to the higher-order features can not be found simply by using first and 

second-order features. For a robust face recognition system, features that are 

invariant to the changes of the picture taking environment should be used. Thus, 

these features may contain merely first-order and second-order ones. These 

effective feature values cover almost all the obtainable information from the 

portrait. They are sufficient for the face recognition process. 

The feature values of the second-order are more important than those of 

the first-order and they are dominant in the feature vector. Before mentioning the 

facial feature extraction process, it is necessary to deal with two preprocessing 

steps: 

• Threshold assignment. Brightness threshold should be known in order to 

discriminate the feature and other areas of the face. Generally, different 
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thresholds are used for eyebrows, eyes, mouth, nose, and face according 

to the brightness of the picture. 

• Rough Contour Estimation Routine (RCER). The left eyebrow is the 

first feature that is to be extracted. The first step is to estimate the rough 

contour of the left eyebrow and find the contour points. Generally, the 

position of the left eyebrow is about one-fourth of the facial width. 

Having this a priori information, the coarse position of the left eyebrow 

can be found and its rough contour can be captured. Once the rough 

contour of the left eyebrow is established, the rough contours of other 

facial features such as left eye, right eyebrow, mouth or nose can be 

estimated by RCER [20]. After the rough contour is obtained, its precise 

contour will be extracted by the deformable template model or the active 

contour model. 

2.2.2 Feature Extraction Using the Deformable Templates 

After the rough contour is obtained, the next step of face recognition is to 

find the physical contour of each feature. Conventional edge detectors can not 

find facial features such as the contours of the eye or mouth accurately from local 

evidence of edges, because they can not organize local information into a sensible 

global perception. There is a method to detect the contour of the eye by the 

deformable template which was originally proposed by Yullie [4]. It is possible to 
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reduce the amount of computations at the cost of the precision of the extracted 

contour. 

2.2.2.1 Eye Template 

The deformable template acts on three representations of the image, as 

well as on the image itself. The first two representations are the peak and valleys 

in the image intensity and the third is the place where the image intensity changes 

quickly. The eye template developed by Yullie et al. consists of the following 

features: 

• A circle of radius r, centered on a point ),( cc yx , corresponding to the iris. 

The boundaries of the iris and the whites of the eyes are attracted to edges 

in the image intensity. The interior of the circle is attracted to valleys, or 

low values in the image intensity. 

• A bounding contour of the eye attracted to edges. This contour is modeled 

by two parabolic sections representing the upper and lower parts of the 

boundary. It has a center ),( ee yx , with 2w, maximum height h1 of the 

boundary above the center, maximum height h2 of the boundary below 

the center, and an angle of rotationΦ . 

• Two points, corresponding to the centers for the whites of the eyes, which 

are attracted to peaks in the image intensity.  

• Regions between the bounding contour and the iris which also correspond 

to the whites of the eyes. These will be attracted to large intensity values. 
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The original eye template can be modified for the sake of simplicity 

where the accuracy of the extracted contour is not critical. The lack of a 

circle does not affect the classified results because the feature values are 

obtained from other information. The upper and lower parabola will be 

satisfactory for the recognition process. Thus, the total energy function for 

the eye template can be defined as a combination of the energy functions 

of edge, white and black points.  

The total energy function is defined as 

blackwhiteedgetotal EEEE ++=         (2.1) 

where whiteedge EE ,  and blackE  are defined in the following: 

• The edge potentials are given by the integral over the curves of the upper 

and lower parabola divided by their length: 
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where upper-bound and lower-bound represent the upper and lower parts 

of the eye, and edgeΦ  represents the edge response of the point (x,y). 

• The potentials of white and black points are defined as the integral over 

the area bounded by the upper and lower parabola divided by the area: 
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where ),( and ),( yxNyxN whiteblack  represent the number of black and 

white points, and wb ww ,  are weights related with black and white points.   

In order to be not affected by an improper threshold, the black and white points in 

Eq. (2.3) are defined as: 

• P(x,y) is a black point if I(x,y) ≤  (threshold - tolerance),  

• P(x,y) is a white point if I(x,y) ≥  (threshold + tolerance), 

• P(x,y) is an unambiguous point if I(x,y) is in-between.     (2.4)  

where I(x,y) is the image intensity at point (x,y).  

By the energy functions defined above, we can calculate the energy in the 

range of little modulations of 2w, h1 , h2 and Φ . When the minimum energy 

value takes place, the precise contour is extracted. 

2.2.2.2 Mouth Template 

In the whole features of the front view of the face, the role of the mouth is 

relatively important. The properties of the mouth contour are heavily involved in 

the face recognition process. The deformable mouth template changes its own 

shape when it comes across the image areas of edge (which the intensity changes 

quickly), and white and black points. Generally, features related to middle lips, 

lower and upper lips are extracted. Because of the effect of brightness in the 

picture taking period, the middle of the lower lip may not be apparent. RCER can 

not find the approximate height of the lower lip. Fortunately, the length of the 
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mouth can still be found by RCER. Usually, the height of the lower lip is between 

one-fourth and one-sixth of the mouth's length. The mouth contour energy 

function consists of the edge term E edge and the black term E black . The edge 

term dominates at the edge area, where as the black term encloses as many black 

points belonging to the mouth as possible. 

blackedgetotal EEE +=                                                (2.5) 

The edge energy function consists of three parts: middle lip (gap between 

lips), lower lip and upper lip separated at philtrum. The equation of the middle lip 

part is 
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where lower represents the lower boundary of mouth, left represents the left part 

of upper lip, right represents the right part of upper lip, and ),( yxedgeΦ represents 

the edge response of point (x,y). 

The black energy function helps the edge energy to enclose black points 

belong to the mouth and are defined as: 
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where Lbound represents lower lip, Ubound represents upper lip, and mid represents 

number of black points. The black points are defined by Eq. (2.4). The weights 

wblack , wmid , wlower , wleft and wright are experimentally determined. 

2.3 Karhunen-Loeve Expansion-Based Methods 

2.3.1 The Eigenfaces Method 

One of the implemented methods in this study is the Eigenfaces method, 

which is briefly explained here. Detailed theoretical information is given in 

Section 3 and the test results for this method can be seen in Section 4. 

The Eigenfaces method proposed by Turk and Pentland is based on the 

Karhunen-Loeve Transform (KLT), and is motivated by the earlier work of 

Sirovitch and Kirby for efficiently representing face images. The eigenvectors of 

the covariance matrix C of the ensemble of training faces are called eigenfaces. 

The space spanned by the eigenvectors vk, k = 1.. K corresponding to the K 

largest eigenvalues of the covariance matrix, is called the face space. A new face 

image is transformed into its eigenface components by projection onto the face 

space. The projections form the feature vector which describes the contribution of 

each eigenface in representing the input image. A test image is recognized by 

computing the Euclidian distance in the feature space and selecting the closest 

match. The effect of lighting conditions over the KLT method has been detailed 

in [21]. The eigenface method has also been used for face detection by measuring 
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the distance from each local pattern in a test image to the face space defined by 

the eigenfaces. 

2.3.2 The “Parametric” Approach versus the “View-Based” Approach 

In [22] Murase and Nyar extended the capabilities of the eigenface 

method to general 3D object recognition under different illumination and viewing 

conditions. Given N object images taken under P views and L different 

illumination conditions, a set of eigenvectors was obtained by applying the 

eigenface method to all the available data. In this way a single “parametric space” 

describes the object identity as well as the viewing or illumination conditions. 

The eigenface decomposition of this space was used for feature extraction and 

classification. However, in order to ensure discrimination between different 

objects, the number of eigenvectors used in this method was increased compared 

to the classical Eigenface method. 

Pentland et. Al. [3] developed a “view-based” eigenface approach for 

human face recognition under general viewing conditions. The “view-based” 

approach is essentially an extension of the eigenface technique to multiple sets of 

Eigenvectors, one for each face orientation. First, the orientation of the test face is 

determined by calculating the residual description error(distance from feature 

space) for each view space, and selecting the space for which the distance is 

minimized. Once the proper view is determined, the face image is classified using 

the eigenface method in the corresponding space. As expected, the view based 
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representation has better recognition results than the parametric approach, at a 

cost of higher computational complexity. 

2.3.3 Recognition Using Eigenfeatures 

While the classical eigenface method uses the KLT coefficients of the 

template corresponding to the whole face image, in [3] Pentland et. Al. 

introduced a face detection and recognition system that uses the KLT coefficients  

of the templates corresponding to the significant facial features such as eyes, nose 

and mouth. For each of the facial features, a feature space is built by selecting the 

most significant “eigenfeatures”, which are the eigenvectors corresponding to the 

largest eigenvalues of the features correlation matrix. The significant facial 

features were detected using the distance from the feature space and selecting the 

closest match. The scores of similarity between the templates of the test image 

and the templates of the images in the training set were integrated in a cumulative 

score that measures the distance between the test image and the training images. 

The method was extended to the detection of features under different viewing 

geometries by using either a view-based eigenspace or a parametric eigenspace. 

2.4 Linear Discrimination-Based Methods 

Like Eigenface Method one of the implemented methods in this study is 

the Fisher Linear Discriminant Analysis method, which shall be briefly explained 

in this section. Detailed theoretical information shall be given in Section 3 and 

the test results for this method can be seen in Section 4. 
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In [29], the authors proposed a new method for face recognition using 

Fisher’s Linear Discriminant Transform (LDT). The “Fisherface” method 

uses the class membership information and develops a set of feature vectors in 

which variations of different faces are emphasized while different instances of 

faces due to illumination conditions, facial expressions, and orientations, are de-

emphesized. While the Karhunen_Loeve Transform performs a rotation on a set 

of axes along which the projection of sample vectors differ most in the 

autocorrelation sense, the LDT performs a rotation on a set of axes along which 

the projection of sample vectors show maximum discrimination. Each test image 

is projected onto the optimal LDT space and the resulting set of coefficients is 

used to compute the Euclidean distance from the images in the training set. More 

recently the Fisherface method has also been applied to face detection from color 

images [30]. 

In [27], Akamatsu et. al. applied LDT to the magnitude of the Fourier 

Spectrum of the intensity image. The database used in the experiments contained 

large variations in lighting conditions as well as variations in head orientation. 

The results reported by the authors showed that LDT in the Fourier domain is 

significantly more robust to variations in lighting than the LDT applied directly 

to the intensity images. However, the computational complexity of this method is 

significantly higher than the classical Fisherface method due to the computation 

of the Fourier spectrum. 
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2.5 Model-Based Methods 

2.5.1 Hidden-Markov Model Based Methods 

                                     

Figure 2.1: Hidden Markov Model Face Recognition 

Hidden Markov Models (HMM) are a set of statistical models used to 

characterize the statistical properties of a signal [23], [24]. HMM’s have been 

used extensively for speech recognition, where data is naturally one-dimensional 

(1D) along the time axis. However, the equivalent fully-connected two-

dimensional HMMwould lead to a very high computational problem [25]. 
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Attempts have been made to use multi-model represenatations that lead to 

pseudo-two-dimensional HMMs [26].  

In [28], Samaria et. al. Proposed using the 1D continuous HMM for face 

recognition. Assuming that each face is an upright, frontal position, featured will 

occur in a predictable order, i.e. forehead, eyes, nose etc. This ordering suggests 

the use of a top-to-bottom model, where only transitions between adjacent states 

in a top to bottom manner are allowed [31]. The states of the model correspond to 

the significant facial features such as forehead, eyes, nose, mouth, and chin [32]. 

The observation sequence O is genereated from an X  x Y image using an X x L 

sampling window with X x M pixels overlap. Each observation vector is a block 

of L lines. There is an M line overlap between successive observations [33]. 

Given c face images for each subject of the training set, the goal of the 

training stage is to optimze the parameters of the HMM to best describe the 

observations in the sense of maximizing the probability of the observations given 

the model. Recognition is carried out by matching the test image against each of 

the trained models. To do this, the image is converted to an observation sequence. 

In [34], Samaria increased the number of states used to characterize each 

of the significant facial features. The observation sequence used with this model 

is obtained by sliding a rectangular window from left to right and from top to 

bottom of the image and using the pixels intensities extracted from each window 

as observation vectors. To preserve the two- dimensional structure of the data, a 
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marker block was added at the end of each line in the image, and an additional 

end-of-line state was aded to the structure of each horizontal HMM (Figure 2.1-

a). The end-of-line states are allowed two transitions: one to the same row of 

states, and one to the next row of states. It was found [34] that by stating the 

initial standard deviation of the End-of-line states to be small, and the means 

close to the intensity of the-end-of-line marker block, the state topology was 

preserved and the parameters of the end-of-line states were unaltered after re-

estimation. In the same work, it was shown that similar recognition results were 

obtained for the unconstrained P2D-HMM structure (Figure 2.1-b). However, this 

topology allows transition to a state corresponding to another facial feature from 

a block that is not at the end of a row, and consequently does not preserve the two 

dimensional structure of the data. Preliminary results showed that for this 

structure, the face recognition results are as high as 95%. However, due to the 

large dimension of the observation vectors used, the system required about four 

minutes for a face to be recognized on Sparc 20 workstations.  

2.6 Summary of the Related Work 

Some of the most successful approaches to face recognition were 

analyzed. Due to the fact that these methods were tested on different databases, a 

quantitative comparison is not meaningful. The recognition results of the 

approaches discussed are summarized in Table 2.4. In general, template-based 

methods performed at high accuracy when the size of the images is fixed. In this 
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study, Eigenface approach, a modified version of Eigenfaces: Kernel Eigenfaces 

and Fisherface Methods are implemented.  

All selected methods in this thesis are investigated in different cases and 

their performances are compared against these conditions. Three face image 

databases are chosen for these tests. These are: Yale Database, AT&T (Formerly 

ORL Face Database) and METU Vision Lab Face Database. Each Database have 

different properties in order to measure the performances of the selected methods 

in different conditions.  

In the following sections, first, thoretical details of the implemented 

methods are explained and then test results of these algorithms and comments on 

these test results are presented.  
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Table 2.4 Comparison of some of the face recognition approaches 

Approach Training Set Training Set Recognition 
Rate Timing 

Correlation 
[2] 47 subjects 

47 subjects 
4 images per 

subject 
100% Not 

specified 

Correlation 
[18] 

62 subjects 
15 images per 

subject 

62 subjects 
10 images per 

subject 
98.7% 10-15 min 

on Sparc 2 

Eigenface 
[19] 

16 subjects 
one image per 

subject 

2500 images 
from 16 
subjects 

variations in: 
size 64% 

orientation 
85% 

lighting 96% 

350 msec 
Sparc 1 

Eigenface 
Parametric 

[3] 
21 subjects 

21 subjects 
9 images per 

subject 
78-88% 

higher than 
the view-

based 
approach 

Eigenface 
View based 

[3] 
21 subjects 

21 subjects 
9 images per 

subject 
83-90% 

lower than 
the 

parametric-
based 

approach 

Eigenfeatures 
[3] 

45 subjects 
one image per 

subject 

45 subjects 
one image per 

subject 
95-98% Not 

specified 

KL-FSAT 
[27] 

269 subjects 
one image per 

subject 

100 images 
5 images per 

subject 
91% 

higher than 
eigenface 
method 

Fisherfaces 
[29] 

16 subjects 
9 images per 

subject 

16 subjects 
one image per 

subject 
99.4% lower than 

eigenfaces 
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   Table 2.4 Comparison of some of the face recognition approaches (cont’d) 

Approach Training Set Training Set Recognition 
Rate Timing 

SVD [35], 
[37] 

8 subjects 
3 images per 

subject 

40 images 
5 images per 

subject 
100% 

high due to 
SVD 

calculation
Auto 

Association 
and 

Classification 
NN [42], [50] 

40 subjects 
5 images per 

subject 

40 subjects 
5 images per 

subject 
20% Not 

specified 

PDBNN [45] 
40 subjects 

5 images per 
subject 

40 subjects 
5 images per 

subject 
96% 

0.1 sec on 
SGI Indy 
100 MHz 

Convolutional 
NN [43] 

40 subjects 
5 images per 

subject 

40 subjects 
5 images per 

subject 
96.2% 

0.5 sec on 
SGI Indy 
100 MHz 

Dynamic 
Link 

Matching 
[48], [50] 

40 subjects 
5 images per 

subject 

40 subjects 
5 images per 

subject 
80% Not 

specified 

VFR [49] 
40 subjects 

5 images per 
subject 

40 subjects 
5 images per 

subject 
92.5% 

320 sec on 
Pentium 
200MHz 

HMM [36] 
40 subjects 

5 images per 
subject 

40 subjects 
5 images per 

subject 
85% 12 sec on 

Sparc 2 

HMM [34] 
40 subjects 

5 images per 
subject 

40 subjects 
5 images per 

subject 
90-95% 4 min on 

Sparc 2 
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CHAPTER 3 

IMPLEMENTED FACE RECOGNITION 

METHODS 

In this chapter, the theoretical background of the implemented methods 

are explained in detail. These methods are:  

• Eigenface Method (PCA), 

•  Kernel Eigenfaces, 

• Subspace LDA (PCA + LDA). 

3.1 Face Recognition by Eigenfaces 
 

The Eigenface method tries to find a lower dimensional space for the 

representation of the face images by eliminating the variance due to non-face 

images; that is, it tries to focus on the variation just coming out of the variation 

between the face images. 

Eigenface method is the implementation of Principal Component Analysis 

(PCA) over face images. In this method, the features of the studied images are 

obtained by looking for the maximum deviation of each image from the mean 

image. This variance is obtained by getting the eigenvectors of the covariance 

matrix of all the images. 

The eigenface space is obtained by applying the eigenface method to the 

training images. Then, the training images are projected into the eigenface space. 
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Next, the test image is projected into this new space and the distance of the 

projected test image to the training images is used to classify the test image. In 

the standard eigenface procedure proposed by Turk and Pentland [19], Nearest 

Mean Classifier is used for the classification of test images. 

In mathematical terms Image I is: 

 (Nx x Ny) pixels     (3.1.1) 

The image matrix I of size (Nx x Ny) pixels is converted to the image vector Γ  of 

size (P x 1) where P = (Nx x Ny); that is the image matrix is reconstructed by 

adding each column one after the other. Training set Γ  is set of image vectors 

and its size is (P x Mt) where Mt is the number of the training images: 

Γ= [ ]MtΓΓΓ ...21     (3.1.2) 

Mean face Ψ  is the arithmetic average of the training image vectors at 

each pixel point and its size is (P x 1): 

        Ψ = ∑
=

Γ
tM

i
i

tM 1

1     (3.1.3) 

Mean subtracted image Φ   is the difference of the training image from 

the mean image (size P x 1): 

     Φ  = Γ - Ψ      (3.1.4) 

Difference Matrix A is the matrix of all the mean subtracted training 

image vectors and its size is (P x Mt): 

    A = [ ]MtΦΦΦΦ ...321      (3.1.5) 
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Covariance Matrix X is the covariance matrix of the training image 

vectors of size (P x P): 

X = TAA ⋅  = T
i

M

i
i

t

t

M
ΦΦ∑

=1

1     (3.1.6) 

An important property of the Eigenface method is obtaining the 

eigenvectors of the covariance matrix. For a face image of size (Nx x Ny) pixels, the 

covariance matrix is of size (P x P), P being (Nx x Ny). This covariance   matrix is 

very hard to work with due to its huge dimension causing computational 

complexity. On the other hand, Eigenface method calculates the eigenvectors of the 

(Mt x Mt) matrix, Mt being the number of face images, and obtains (P x P) matrix 

using the eigenvectors of the (Mt x Mt) matrix. 

Initially, a matrix Y which is of size (Mt x Mt) is defined as:. 

    Y = AAT ⋅  = i

M

i

T
i

t

t

M
ΓΓ∑

=1

1    (3.1.7) 

Then, the eigenvectors vi and the eigenvalues iµ of Y are obtained, 

   ivY .  = ii v⋅µ      (3.1.8) 

The value of Y is put in this equation, 

   ⋅⋅ AAT
iv  = ii v⋅µ     (3.1.9) 

Both sides are left multiplied by A: 

   ⋅A ⋅⋅ AAT
iv  = ⋅A ii v⋅µ             (3.1.10) 

The necessary matrix arrangements are performed, 

⋅A ⋅⋅ AAT
iv  = ⋅iµ ⋅A iv             (3.1.11) 
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(as µi is a scalar, this arrangement can be done) 

⋅⋅ AX iv  = ⋅iµ ⋅A iv              (3.1.12) 

Now group ⋅A iµ  and call a variable iv  = ⋅A iµ . It is easy to see that 

iv  = ⋅A iµ               (3.1.13) 

is one of the eigenvectors of X = TAA ⋅  and its size is (P x 1). Thus, it is possible 

to obtain the eigenvectors of X by using the eigenvectors of Y. A matrix of size 

(Mt x Mt) is utilized instead of a matrix of size (P x P) (i.e. [{Nx x Ny} x {Nx x 

Ny}]). This formulation brings substantial computational efficiency. In Figure 

3.1, some example images and mean image of the images from the AT&T 

database are given. Some characteristic eigenfaces obtained from this database 

can be seen. The eigenfaces are in fact (P x 1) vectors for the computations; in 

order to see what they look like, they are rearranged as (Nx x Ny) matrices. 
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   (a) 

 

(b) 

Figure 3.1 (a) Example images from AT&T database 
(b) Mean face obtained from the AT&T database 
  

Instead of using Mt of the eigenfaces, tMM ≤'  of the eigenfaces can be 

used for the eigenface projection. This is achieved to eliminate some of the 

eigenvectors with small eigenvalues, which contribute less variance in the data.  
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Figure 3.2: Some example of eigenfaces sorted with respect to their 
eigenvalues 

Most of the generalization power is contained in the first few 

eigenvectors. For example, 40% of the total eigenvectors have 85 – 90% of the 

total generalization power. Thus, using 40% of the total number of eigenvectors 

may end up with reasonable classification results. 

Eigenvectors can be considered as the vectors pointing in the direction of 

the maximum variance and the value of the variance the eigenvector represents is 

directly proportional to the value of the eigenvalue (i.e. the larger the eigenvalue 

indicates the larger variance the eigenvector represents). Hence, the eigenvectors 

are sorted with respect to their corresponding eigenvalues. The eigenvector 

having the largest eigenvalue is marked as the first eigenvector, and so on. In this 

manner, the most generalizing eigenvector comes first in the eigenvector matrix. 
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In the next step, the training images are projected into the eigenface space and 

thus the weight of each eigenvector to represent the image in the eigenface space 

is calculated. This weight is simply the dot product of each image with each of 

the eigenvectors. Projection kw  is the representation of the training image in the 

eigenface space and its size is (M' x 1): 

     )( Ψ−Γ⋅=Φ⋅= T
k

T
kk vvw                                      (3.1.14) 

Weight Matrix (M' x 1)Ω  is:  

    [ 1w=Ω 2w ... ]'Mw T                                                 (3.1.15) 

At this point, the images are just composed of weights in the eigenface 

space, simply like they have pixel values in the image space. The important 

aspect of the eigenface transform lies in this property. Each image is represented 

by an image of size (Nx x Ny) in the image space, whereas the same image is 

represented by a vector of size (M' x 1) in the eigenface space. Moreover, having 

the dimension structure related to the variance of the data in hand makes the 

eigenface representation a generalized representation of the data. This makes the 

algorithm a solution to the “curse of dimensionality” problem seen in the 

standard pattern recognition task. When a new test image is to be classified, it is 

also mean subtracted and projected onto the eigenface space and Nearest Mean 

algorithm is used for the classification of the test image vector in the standard 

eigenface method; that is, the test image is assumed to belong to the nearest class 

by calculating the Euclidean distance of the test image vector to the mean of each 

class of the training image vectors. Test image vector:  
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                TΓ                                                      (3.1.16) 
 
is the test image vector of size (P x 1). 
 

Mean subtracted image TΦ  is the difference of the test image from the 

mean image (size P x 1): 

     TΦ  = )( Ψ−ΓT                            (3.1.17) 

Projection kw  is the projection of a training image on each of the 

eigenvectors where k = 1, 2… M': 

    )( Ψ−Γ⋅=Φ⋅= T
T
kT

T
kk vvw              (3.1.18) 

Weight Matrix TΩ  is the representation of the test image in the eigenface 

space and its size is (M' x 1): 

    [ 1wT =Ω 2w ... ]'Mw T                                 (3.1.15) 

The training and test image vectors can be reconstructed by a back 

transformation from the eigenface space to the image vector space. Reconstructed 

image vector fΓ  is:  

Ψ+Φ=Ψ+Ω⋅=Γ ff v                             (3.1.16) 

If possible, it is better to work on a database of more than one image per 

individual in order to increase the robustness to minor changes in expression, 

illumination and slight variations of view angles. A class of images for an 

individual can be formed and this class can be considered as the representative 

image vector of that class. For an individual having qi images in the database, the 
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average of the projections of each class is the mean of all the projected image 

vectors in that class.  

In mathematical terms Average Class Projection ΨΩ  is: 
 

    ∑
=

Ψ Ω=Ω
iq

i
i

iq 1

1                                      (3.1.17) 

 
 

This average class projection can be used as one of the vectors 

(representing an image class instead of an image vector) to compare with the test 

image vector. A similarity measure iδ  is defined as the distance between the test 

image vector and ith face class:  

iTi ΨΩ−Ω=δ = ∑
=

ΨΩ−Ω
TM

k
ikTk

1

2)(        (3.1.18) 

 
 
 

A distance threshold Θ  may be defined for the maximum allowable 

distance from any face class, which is half of the distance between the two most 

distant classes: 

 

)max(
2
1

ji ΨΨ Ω−Ω=Θ                            (3.1.19) 

 
Classification procedure of the Eigenface method ensures that face image 

vectors should fall close to their reconstructions, whereas non-face image vectors 

should fall far away. Hence, a distance measure is the distance between the mean 

subtracted image and the reconstructed image: 
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22
fΦ−Φ=ε                          (3.1.20) 

 
 
The recognition of an image knowing these two measures δi and ε can be done as 

follows:  

(a) If ⇒Θ>ε  the image is not a face(independent of the values of iδ ) 

(b) If Θ<ε  and for all i  iδ >Θ ⇒  the image is an unknown face, 

(c) If Θ<ε  and for one of i iδ <Θ ⇒  the image belongs to the training 

face class i. 

This is the standard Eigenface approach suggested by Turk and Pentland 

in 1991 and variations of this method is explained in the next sections. 

3.2 Face Recognition by Kernel Eigenface Method 
 

  Eigenface or Principal Component Analysis (PCA) methods have 

demonstrated their success in face recognition, detection, and tracking. The 

representation in PCA is based on the second order statistics of the image set, and 

does not address higher order statistical dependencies such as the relationships 

among three or more pixels. Recently Higher Order Statistics (HOS) have been 

used as a more informative low dimensional representation than PCA for face 

and vehicle detection. In this chapter a generalization of PCA, Kernel Principal 

Component Analysis (Kernel PCA), for learning low dimensional representations 

in the context of face recognition. In contrast to HOS, Kernel PCA computes the 

higher order statistics without the combinatorial explosion of time and memory 
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complexity. While PCA aims to find a second order correlation of patterns, 

Kernel PCA provides a replacement which takes into account higher order 

correlations. The recognition results using kernel methods with Eigenface 

methods on two benchmarks are compared. Empirical results show that Kernel 

PCA outperforms the Eigenface method in face recognition. 

Subspace methods have been applied succesfully in aplications such as face 

recognition using Eigenfaces (or PCA face) [38], object recognition [39], and 

tracking [40]. Represantations such as PCA encode the pattern information based 

on second order dependencies, i.e., pixelwise covariance among the pixels, and 

are insensitive to the dependencies of multiple (more than two) pixels in the 

patterns. Since the eigenvectors in PCA are the orthonormal bases, the principal 

components are uncorrelated. In other words, the coefficients for one of the axes 

cannot be linearly represented from the coefficients of the other axes. 

Higher order dependencies in an image include nonlinear relations among 

the pixel intensity values, such as the relationships among three or more pixels in 

an edge or a curve, which can capture important information for recognition. 

Several researchers have conjectured that higher order statistics may be crucial to 

better represent complex patterns. Recently, Higher Order Statistics (HOS) have 

been applied to visual learning problems. Use HOS of the images of a target 

object to get a better approximation of an unknown distribution. Experiments on 

face detection [41] and vehicle detection [44] show comparable, if no better, 

results than other PCA-based methods. 
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 Cum(x1, x2) = E[x1x2] 

 Cum(x1, x2, x3) = E[x1x2x3] 

 Cum(x1, x2, x3, x4) = E[x1x2x3x4] – E[x1x2]E[x3x4] – E[x1x3]E[x2x4] – 

E[x1x4]E[x2x3] 

The computation involved in HOS depends on the order of cumulants and is 

usually heavy because of computing expectations in a high dimensional space. 

 In contrast to computing cumulants in HOS, a formulation is sought 

which computes the higher order statistics using only dot products, Φ(xi) . Φ(xj), 

of the training patterns x where Φ is a nonlinear projection function. Since we 

can compute these dot products efficiently, we can solve the original problem 

without explicitly mapping to RF. This is achieved using Mercer kernels where a 

kernel k(xixj) computes the dot product in some feature space RF, i.e., k(xixj) = 

Φ(xi) . Φ(xj). 

 The idea of using kernel methods has also been adopted in the Support 

Vector Machines (SVMs) in which kernel functions replace the nonlinear 

projection functions such that an optimal separating hyperplane can be 

constructed efficiently [46]. Schölkopf et al. proposed the use of Kernel PCA for 

object recognition in which the principal components of an object image 

comprise a feature vector to train a SVM [47]. Empirical results on character 

recognition using MNIST data set and object recondition using MPI chair 

database show that Kernel PCA is able to extract nonlinear features. Since much 

of the important informaton may be contained in the high order relationships 
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among the pixels of a face image, the use of Kernel PCA for face recognition is 

investigated and its performance is compared  against the Eigenface method and 

Fisherface method. 

Kernel Principal Component Analysis 

Given a set of zero-mean observations xk, k = 1...M, NR∈kx , and 

0
1

=∑ =

M

k kx , the covariance matrix is  

 T
j

M

j
j xx

M
C ∑

=

=
1

1     (3.2.1) 

PCA aims to find the projection direction that maximizes the variance, which is 

equivalent to finding the eigenvalue from the covariance matrix 

Cww =λ      (3.2.2) 

for eigenvalues 0≥λ  and w NR∈ . Since j
M

j j xwx
M

Cw ∑ =
⋅=

1
)(1 , all solutions 

w with 0≠λ  must lie in the span of x1, …, xM. Therefore  

MkwCxwx kk ,...,1),()( =⋅=⋅λ    (3.2.3) 

In Kernel PCA, each vector x is projected from the input space, NR , to a higher 

dimensional feature space, FR , by a nonlinear map: 

NFRR FN >>→Φ ,:     (3.2.4) 

Dimensionality of the feature space can be arbitrarily large. In FR , the 

covariance matrix of )(xΦ  is  

    T
j

M

j
j xx

M
C )()(1

1

ΦΦ= ∑
=

Φ    (3.2.5) 

and the corresponding eigenvalue problem is 
ΦΦ = Cwwλ       (3.2.6) 

All solutions  Φw  with 0≠λ  lie in the span of ).(),...,( 1 Mxx ΦΦ  
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))(())(( ΦΦ ⋅Φ=⋅Φ Cwxwx kkλ  Mk ,...,1=     (3.2.7) 
 
and  Φw  lie in the span of ).(),...,( 1 Mxx ΦΦ  such that  
 

)(
1

xw
M

i
iΦ= ∑

=

Φ α      (3.2.8) 

 
Using Equations (3.2.7) and (3.2.8), we have, for k = 1,…,M, 
 

))()(()()((1))()((
111 ij

M

i jk
M

i iik
M

i i xxxx
M

xx Φ⋅ΦΦ⋅Φ=Φ⋅Φ ∑∑∑ −=−
ααλ  (3.2.9) 

 
Defining an M x M matrix K by  
 

)()(),( ijjiij xxxxkK Φ⋅Φ==             (3.2.10) 
 
 

Equation (3.2.9) can be rewritten  as 
 

ααλ 2KKM =                      (3.2.11) 
 
where α  denotes a column vector with entries .,...,1 Mαα  The solutions of 

Equation (3.2.11) is the same to the following eigenvalue problem, 

 
αλα KM =                (3.2.12) 

 
Boser, Guyon and Vapnik suggested the use of Gaussian Radial Basis 

Function kernel [46] 

 

)
2

exp(),( 2

2

σ
ji

ji

xx
xxk

−
−=              (3.2.13) 

 
In this thesis, since the size of the training images do not let the 

computation of Radial Basis Function kernel, mean square method is used for 

transformation into higher space, i.e. 
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2
),( jiji xxxxk −=               (3.2.14) 

 
This decreased the performance of the method; however recognition rate 

is still better than the Eigenface method.     

 Conventional PCA is a special case of Kernel PCA with polynomial 

kernel of first order. In other words, Kernel PCA is a generalization of 

conventional PCA since different kernels can be utilized for different nonlinear 

projections. 

The vectors can now be projected in FR  to a lower dimensional space 

spanned by the eigenvectors Φw , x is a test sample whose projection is )(xΦ  onto 

the eigenvectors Φw  are the nonlinear principal components corresponding to Φ  

),())()(()(
11

xxkxxxw i

M

i
ii

M

i
i ∑∑

==

Φ =Φ⋅Φ=Φ⋅ αα             (3.2.14) 

In other words, the first q )1( Mq ≤≤  nonlinear principal components 

can be extracted using the kernel function without the expensive operation to 

explicitly project the patterns to a high dimensional space FR . The first q 

components correspond to the first q non-increasing eigenvalues of Equation 

(3.2.12). 

Properties of Kernel PCA 

 Several properties of Kernel PCA is discussed in terms of feature 

extraction and reconstruction in this section. 
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Dimensionality and Feature Extraction 

 
 Kernel PCA method can extract more principal components than linear 

PCA. Consider a problem consisting of M observations x where the dimension of 

x is N and M >> N. Linear PCA can find at most N nonzero eigenvalues from the 

covariance matrix( T
i

M xxi
M

C 11
== ∑ ). In contrast, Kernel PCA can find up to 

M nonzero eigenvalues from the covariance matrix )()(1
1

T
i

M

i i xx
M

C ΦΦ= ∑ =
Φ  

where Φ is a nonlinear mapping function that can project xi to a possibly infinite-

dimensional feature space. 

Reconstruction 
 
 Since PCA is essentially a basis transformation, each pattern can be 

exactly reconstructed using all the principal components and the basis vectors 

(i.e., eigenvectors). 

 In contrast, there is no direct counterpart in Kernel PCA. Due to nonlinear 

mapping, a vector in high dimensional feature space does not necessarily have a 

pre-image in the input space. An approximate reconstruction of the image of a 

pattern in RF  can be best found from its nonlinear components. This can be 

achieved by a regression method for estimating the mapping from kernel-based 

principal components to the input space. 
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3.3 Face Recognition by Subspace LDA Method 
 

 
Subspace LDA method is simply the implementation of PCA by 

projecting the data onto the eigenface space and then implementing LDA to 

classify the eigenface space projected data. Projecting the data to the eigenface 

space generalizes the data, whereas implementing LDA by projecting the data to 

the classification space discriminates the data. Thus, Subspace LDA approach 

seems to be a complementary approach to the Eigenface method. 

PCA and LDA were described in the previous sections, hence here just 

the implementation is described. 

The image I is represented by (Nx x Ny) pixels. 

     (Nx x Ny) pixels     (3.3.1) 
 
The image matrix I of size (Nx x Ny) pixels is converted to the image vector of 

size (P x 1) where P = (Nx x Ny) . Training set Γ  is set of image vectors and its 

size is (P x Mt) where Mt is the number of the training images: 

Γ= [ ]MtΓΓΓ ...21     (3.3.1)  

Mean face Ψ  is the arithmetic average of the training image vectors at 

each pixel point and its size is (P x 1): 

        Ψ = ∑
=

Γ
tM

i
i

tM 1

1                (3.3.3) 

 
Mean subtracted image Φ   is the difference of the training image from 

the mean image (size P x 1): 

     Φ  = Γ - Ψ      (3.3.4) 
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Difference Matrix A is the matrix of all the mean subtracted training 

image vectors and its size is (P x Mt): 

    A = [ ]MtΦΦΦΦ ...321      (3.3.5) 

 
Covariance Matrix X is the covariance matrix of the training image 

vectors of size (P x P): 

X = TAA ⋅  = T
i

M

i
i

t

t

M
ΦΦ∑

=1

1     (3.3.6) 

The training image vectors can be projected to the eigenface space and 

thus the weight of each eigenvector to represent the image in the eigenface space 

is calculated; 

Projection kw  is the representation of the training image in the eigenface 

space and its size is (M' x 1): 

     )( Ψ−Γ⋅=Φ⋅= T
k

T
kk vvw                                         (3.3.7) 

Weight Matrix (M' x 1) Ω  is:  

    [ 1w=Ω 2w ... ]'Mw T                                                 (3.3.8) 

By performing all these calculations, the training images are projected 

onto the eigenface space; that is a transformation from P dimensional space to M' 

dimensional space. This PCA step is achieved to reduce the dimension of the 

data, also may be referred as a feature extraction step. From this step on, the each 

image is an (M' x 1) dimensional vector in the eigenface space. With the 

projected data, a new transformation is performed; the classification space 
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projection by LDA. Instead of using the pixel values of the images (as done in 

pure LDA), the eigenface projections are used in the Subspace LDA method. 

Again, as in the case of pure LDA, a discriminatory power )(TJ  is defined as; 

 

 
TST
TST

TJ
w

T
b

T

⋅⋅

⋅⋅
=)(                            (3.3.9) 

 
where bS  is the between-class and wS  is the within-class scatter matrix. For c 

individuals having qi training images in the database, the within-class scatter 

matrix wS  is computed as; 

∑∑
−

=
i

c

i
iw CPS

1
)(                  (3.10) 

which represents the average scatter ∑i
of the projectionΩ   in the eigenface 

space of different individuals Ci around their respective means mi. The size of wS   

depends on the size of the eigenface space; if M' of the eigenfaces were used, 

then the size of wS  is (M' x M'). 

Here, eigenface space class mean im  is defined as; 

∑
=

Ω=
iq

k
k

i
i q

m
1

1                                       (3.3.11) 

 
is the arithmetic average of the eigenface projected training image vectors 

corresponding to the same individual; i = 1, 2, …, c and its size is (M' x 1). 

Moreover, mean face 0m  is calculated from the arithmetic average of all the 

projected training image vectors: 
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∑
=
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1                       (3.3.12) 

The average scatter ∑i
is calculated as: 

 
 T

iii
mmE )()( −Ω⋅−Ω=∑            (3.3.13) 

 
Also between-class scatter matrix bS  is computed as; 
 

T
ii

c

i
ib mmmmCPS )()()( 00

1
−⋅−= ∑

=

           (3.3.14) 

 
which represents the scatter of each projection classes mean mi around the overall 

mean vector m0 and its size is (M' x M'). )( iCP is the prior class probability and 

may be written as 

 

c
CP i

1)( =                                             (3.3.15) 

 
with the assumption that each class has equal prior probabilities. The objective is 

to maximize J(T); that is, to find an optimal projection W which maximizes 

between-class scatter and minimizes within-class scatter. 

 

  ))(max())((maxarg WT
w

T
b

T

T TST

TST
TJTJW =

⋅⋅

⋅⋅
=⇒=          (3.3.16) 

 
Then, W can be obtained by solving the generalized eigenvalue problem; 
 

wwb WSWS λ=              (3.3.17) 
 
Next, the eigenface projections of the training image vectors are projected to the 

classification space by the dot product of optimum projection W and weight 
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vector. Classification space projection )( ig Ω  which is the projection of the 

training image vectors’ eigenface projections to the classification space of size 

((c-1) x 1) where i = 1, 2… Mt  is: 

 
i

T
i Wg Ω⋅=Ω )(              (3.3.18) 

 
The training stage is completed in this step.  

Test image vector:  

     TΓ               (3.3.19)  

is the test image vector of size (P x 1). 

Mean subtracted image TΦ  is the difference of the test image from the 

mean image (size P x 1): 

     TΦ  = )( Ψ−ΓT                            (3.3.20) 

Projection kw  is the projection of a training image on each of the 

eigenvectors where k = 1, 2… M': 

    )( Ψ−Γ⋅=Φ⋅= T
T
kT

T
kk vvw              (3.3.21) 

Weight Matrix TΩ  is the representation of the test image in the eigenface 

space and its size is (M' x 1): 

    [ 1wT =Ω 2w ... ]'Mw T                                 (3.3.22) 

Then, the eigenface projection of the test image vector (i.e. weight matrix) 

is projected to the classification space in the same manner. Classification space 

projection )( Tg Ω  which of size ((c-1) x 1) is: 
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T
T

T Wg Ω⋅=Ω )(             (3.3.23) 
 
Finally, the distance between the projections is determined by the Euclidean 

distance Tid  between the training and test classification space projections 

measure which is scalar and calculated for i = 1, 2, …, M: 

2))()(()()( ikTkiTTi ggggd Ω−Ω=Ω−Ω=       (3.3.24) 
 
Some other distance measures (strictly weighted and softly weighted) are also 

suggested, but that measures were not studied in this thesis. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

In this chapter, the implemented algorithms are tested individually. After 

testing, these methods’ performances are compared on three different face 

databases:  

• Yale  
• AT&T  
• Metu Vision face databases. 

The tests are conducted via writing programs in Matlab and Java 

Programming Language. Training part is implemented in Matlab, since most 

Mathematical functions are available and testing procedures are implemented in 

Java because of the implementation time consideration and usability through 

internet. 

4.1 Face Databases Used for Testing 

4.1.1 Yale Database 
 
 The Yale database contains 165 frontal face images of 15 individuals 

taken with variation both in facial expression and lighting. Yale face database can 

be seen in Appendix A. 
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4.1.1 AT&T Database (Formerly ORL Database) 
 

The AT&T (Formerly Olivetti and Oracle Research Laboratory) face 

database is used in order to test Eigenface, Kernel Eigenface and Subspace LDA 

methods in the presence of head pose variations. There are ten different images of 

each of 40 distinct subjects. For some subjects, the images were  taken at 

different  times, varying  lighting,  facial expressions  (open  /  closed eyes,  

smiling  /  not  smiling),  facial  details  (glasses  /  no  glasses)  and  head  pose 

(tilting and  rotation up  to 20 degrees). All the images were taken against a dark 

homogeneous background. In Appendix B the whole set of 40 individuals 10 

images per person from the AT&T database are displayed.  

In the following sections various tests are conducted with this database, 

such as changing the training and test images used for each individual and using 

less or more number of training and test images in order to test the systems 

reaction to these changes. 

4.1.1 Metu Vision Face Database 
 

The Metu Vision Lab Face Database is collected during this thesis study, 

in order to test the systems performances in different poses and expressions of 

faces. The images are taken from 3 meters distance with various poses and 

expressions of the individuals. In Appendix C whole set of 15 individuals 10 

images per person from the Metu Vision Lab Face Database can be seen. Naming 

convention is in the form xxx1 where x ranges from 001 to 150. 
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The files are in jpeg (Joint Photographics Experts Group) file format. The 

size of each image is 76 x 106 (width x height), 8-bit grey levels.  

Since there are 10 images per individual in the Metu Vision Lab database, 

a number of them are used to train the systems and the rest are used to test them. 

Performances of the methods in this thesis are tested against different angles of 

poses. Additionally, changing the training and test images used for each 

individual and using less number of training and test images in order to test the 

systems reaction to these changes are also tested in the following sections.   

4.2 Experimental Results 

4.1.1 Experiments Performed with the Yale Database 

4.2.1.1 Eigenface Method: 

In Figure 4.1 there is a chart of the variance captured by each principal 

component, where we assume that the variance for k components is equal to the 

cumulative sum of those components, divided by the total sum. For k=10, 

variance= 0.7586. For k=25, variance = 0.9352.  
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Figure 4.1: Captured Variance Chart 

In Figure 4.2 the Eigenvalue spectrum of Yale Database can be seen. It 

should be noticed that Eigenvalue spectrum of any database is independent of 

number of eigenvectors but when new images are inserted into the database the 

spectrum changes due to the change in covariance matrix. Figure 4.3 shows the 

mean face obtained from the AT&T database. 

In Figure 4.4, each new image from left to right corresponds to using 1 

additional principle component for reconstruction. As it can be seen, the figure 

becomes recognizable around the 7th or 8th image, but not perfect.  
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Figure 4.2: Eigenvalue spectrum of Yale database 

 

 
Figure 4.3: Mean Face-Yale Database 
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Figure 4.4: Reconstruction of an image with both lighting variations and 
glasses 

In Figure 4.5, the reconstruction results when excluding the images with 

glasses can be seen. It is a similar reconstruction to the one in Figure 4.4. The 

images converge to the correct face slightly faster, but not by much. 

In Figure 4.6 the images where the dataset excludes all those images with 

either glasses or different lighting conditions are displayed. The point to keep in 

mind is that each new image represents one new principle component. As it can 

be seen, the image converges extremely quickly.  
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Figure 4.5: Reconstruction of an image with lighting variations, no 
glasses 

 

          
Figure 4.6: Reconstruction of an image with no lighting variations, no 
glasses 
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In order to visualize the difference in recognition rate corresponding to 

changes in lighting and changes in expression, some recognition experiments on 

subsets of the database are tried by changing the images of each individual used 

in the training and testing stage. These test results can be observed in Table 4.1.  

In the first raw of Table 4.1, recognition without the glasses-wearing 

individuals can be seen. The results are slightly better, but overall, it seems that 

glasses do not make a major impact in recognition.  

Secondly, Table 4.1 shows recognition rate where only the normal 

lighting and no glasses images are used (except for the people that are always 

wearing glasses). The recognition is much better.  

It is expected that, the success rates would be closer to each other and the 

results would be more stable if there were much more images per individual. 

Table 4.1: Performances of Eigenface method using various training and 
test images per individual (Yale Database) 

 

Property of Training Images Training 
Images Test Images Performance 

No glasses images 1-3-4-5-6 2-7-8-9-10-11 80.0% 
Normal lighting &  no glasses 

images 1-3-5-6-8 2-4-7-9-10-11 82.0% 

Variation in lighting & 
expression  1-2-3-4-5- 6-7-8-9-10-11 81.0% 

According to the recognition experiments on subsets of the database 

corresponding to changes in lighting and changes in expression, it is much easier 
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to accommodate a change in expression. Presumably this is because the relative 

intensities of the pixels are very similar between images of different expressions, 

while those with different lightings display very different intensities. This means 

the eigenfaces technique is robust against local changes, but not to global 

changes.  

In Figure 4.7 and Figure 4.8 recognition samples can be seen. The lighting 

has been varied and in Figure 4.7, however in Figure 4.8, only the expressions are 

different. 

About %30 of all of the classifications are false recognitions in Figure 

4.8. All of the classifications are correct in Figure 4.8 where the expressions are 

different. 
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   Figure 4.7: Recognition Examples (Lighting Variation) 
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  Figure 4.8: Recognition Examples (Expression Variation) 

4.2.1.2 Kernel Eigenface Method: 

Simulation results for Kernel Eigenface Method using Yale database as a 

training set can be seen in Table 4.2. 
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Table 4.2: Performances of Kernel Eigenface method using various 
training and test images per individual (Yale Database) 

Property of Training Images Training 
Images Test Images Performance 

No glasses images in training 
set 1-3-4-5-6 2-7-8-9-10-11 %81.82 

Normal lighting &  no glasses 
images in training set 1-3-5-6-8 2-4-7-9-10-11 %85 

Variation in lighting & 
expression in training set 1-2-3-4-5- 6-7-8-9-10-11 %84.55 

4.2.1.3 Subspace LDA Method: 

Simulation results for Subspace LDA method using Yale database as a 

training set can be seen in Table 4.3. 

 

Table 4.3: Performances of Fisher LDA method using various training 
and test images per individual (Yale Database) 

Property of Training Images Training 
Images Test Images Performance 

No glasses images 1--3-4-5-6 2-7-8-9-10-11 85.5% 
Normal lighting &  no glasses 

images 1-3-5-6-8 2-4-7-9-10-11 89% 

Variation in lighting & 
expression 1-2-3-4-5- 6-7-8-9-10-11 90.3% 

 

4.2.2 Experiments Performed with the AT&T Database 

4.2.2.1 Eigenface Method: 

The AT&T (Formerly Olivetti and Oracle Research Laboratory) face 

database is used in order to test Eigenface method in the presence of head pose 

variations. There are ten different images of each of 40 distinct subjects. For 

some subjects, the images were  taken at different  times, varying  lighting,  facial 
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expressions  (open  /  closed eyes,  smiling / not  smiling),  facial  details  

(glasses/no  glasses)  and  head  pose (tilting and  rotation up  to 20 degrees). All 

the images were taken against a dark homogeneous background. When the first 

images for each 40 individuals  are taken as  reference  and  the  rest  is  used  for  

testing  purposes, Eigenface method achieved 70% correct classification with 

AT&T database. It  is  observed that  the  performance  of  the method  decreased  

slightly  due  to  the  orientation  in depth  of  the  head.  

In Figure 4.9 erroneously recognized faces of AT&T database are 

presented.  These results were expected, since locations of the facial features 

(eyes, nose, mouth….) are quite changing with rotation of the head. 
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   (a) 

  

    

                   (b) 

Figure 4.9: (a) Erroneously classified faces of AT&T database when 
number of eigenvectors is 20 
(b) Erroneously classified faces of AT&T database when number of 
eigenvectors is 10 
 
 

In Figure 4.10, first 20 eigenfaces are shown. It can be seen from the 

figure that the eigenvectors that have the most significant eigenvalues are much 

similar to a face. 
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Figure 4.10: Eigenfaces sorted with respect to their eigenvalues 

In Figure 4.11, it can be observed that most of the generalization power is 

contained in the first few eigenvectors. For example, 40% of the total 

eigenvectors have 85 – 90% of the total generalization power. Thus, using 40% 

of the total number of eigenvectors may end up with reasonable classification 

results. 
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Figure 4.11: Eigenvalue spectrum of AT&T database 

In Figure 4.12 mean face obtained from the AT&T database can be seen. 

Recognition performances using different number of training and test 

images can be observed in Table 4.4. Eigenface method achieves best correct 

recognition rate by using equal number of reference facial images and test images 

for each individual. 
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Figure 4.12: Mean Face of AT&T database (112x92) 

 

Table 4.4: Performance of Eigenface method using various numbers of 
training and test images. (AT&T Database) 

The next experiment is done with different number of eigenvectors, from 

5 to 50. The eigenvectors are chosen according to their significance, i.e. 

according to the corresponding eigenvalues (the larger the eigenvalue, the more 

Total Number of 
Images 

Number of 
Training Images 
(Per Individual) 

Number of Test 
Images  

(Per Individual) 
Success Rate 

400 1 9 %70 
400 5 5 %82 
400 9 1 %80 
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significant). For example, if the number of eigenvectors to be tested is 15, then, 

the 1st most significant to the 15th most significant eigenvectors are chosen. 

Figure 4.13 shows that the more eigenvectors are chosen, the higher the 

recognition rate becomes. With the same background and nearly the same 

illumination, the eigenvectors together characterize the variations mainly due to 

the features of the faces of different identity in the training set. With more 

eigenvectors, more features of faces can be achieved to reconstruct an image that 

is more similar to the original image. Therefore, the recognition rate is higher. 

From the test result, it shows that the performance is quite stable, around 80%, 

when the number of eigenvectors is around 25 to 30. The reason is that not all 

eigenvectors contribute equal amount to represent a testing image. Some 

eigenvectors contribute more and some contribute less. Therefore, in some 

situation, if the number of eigenvectors is increased by one or two, the additional 

eigenvectors may not have much contribution. In other words, sufficient 

information is got. With just a little bit more information, it may not be useful. It 

is because the little information is not enough to help more testing images to be 

identified successfully. For Eigenface, there is a trade off between the number of 

eigenvectors and speed. With more eigenvectors, the error rate is lower, but the 

speed is lower too. With less eigenvectors, the speed is higher, but the error rate 

is higher too. In the test, when the number of eigenvectors is from 25 to 30, the 

recognition performance is similar, around 80%. Therefore, if one accepts a 
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recognition performance of 80%, then, 25 eigenvectors should be chosen in order 

to have a higher speed. 
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Figure 4.13: Performance With Respect to Number of Eigenvectors 
(Eigenface Method-AT&T Database) 
 
 

Applying histogram equalization as a preprocessing step did not cause 

much change in the AT&T database. 

4.2.2.2 Kernel Eigenface Method: 

 Using 5 training images and 5 testing images with the same number of 

eigenvectors (30), Kernel PCA methods achieve lower error rates than the 

Eigenface approach on the AT&T dataset. Table 4.6 shows the recognition rates 

of both methods in the conditions specified above: 
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Table 4.6: Experimental results on AT&T database withKernel PCA 
Method Reduced space Performance (%) 

Eigenface 30 82 
Kernel PCA 30 85 
 
 

 In Figure 4.14 erroneously recognized faces of AT&T database are 

presented.  These results were expected, since locations of the facial features 

(eyes, nose, mouth….) are quite changing with rotation of the head. Also a 

similarity between individuals and lighting conditions play a role in these results. 

 

           

            
Figure 4.14: Erroneously classified faces of AT&T database with Kernel 
Eigenface Method 

4.2.2.3 Subspace LDA Method: 

Similar test procedures are used in Subpace LDA method  with the 

Eigenface method to have realistic comments for the comparison of both 
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methods. At first, different numbers of training and testing images are used to 

visualize performance in the various numbers of training images.  

As it can be observed from Table 4.7 that, recognition performance is 

slightly better than Eigenface method in Table 4.1  But in real-time applications 

Eigenface method is more advantageous than the Subpace LDA method, since 

training step in Subpace LDA also includes the scatter matrix calculations. 

 

Table 4.7: Performance due to variation in number of training& testing 
images 

 

For Eigenface, one photo for each person is enough for training. 

However, for Subspace LDA, it requires several images for training, which are 

not always available for some applications. So, Eigenface method is again more 

useful for real life like suspect recognition. One solution to this problem for 

Subspace LDA method may be to  derive multiple samples from a single face 

image, by which Subspace LDA can be trained. 

 In Figure 4.15, performance of Subspace LDA with respect to number of 

Eigenvectors can be observed. Since, Subspace LDA is implemented we have 

Total Number of 
Images 

Number of 
Training Images 
(Per Individual) 

Number of Test 
Images 

(Per Individual) 
Success Rate 

400 1 9 74.5% 
400 5 5 85% 
400 9 1 83% 
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also PCA technique in this method. As it can be observed from Figure 4.15 that 

performance is higher when Eigenvector number is over 40 and it is very low 

when Eigenvector number is between 20 and 30. When compared to Eigenface 

method, Subspace LDA has higher performance when we have sufficient 

Eigenvectors to separate the classes used in training. 

Using Histogram Equalization preprocessing technique slightly decreased 

the performance.  
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Figure 4.15: Performance in AT&T Face Database With Respect to 
Number of Eigenvectors in (Subspace LDA) 
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4.2.2 Experiments Performed with the METU Vision Face Database 

4.2.3.1 Eigenface Method: 

The effect of using different number of eigenvectors while projecting the 

images (i.e. using Eigenfaces with different dimensions) is studied. When the 

Eigenface space’s dimension is small (4-8) performance is low and when the 

Eigenface space’s dimension is large (15-20) performance becomes better. Since 

the dimension of METU Vision database is smaller than AT&T database 15 

eigenvectors are enough to separate the face classes used in training. Necessary 

eigenvector number was 25 in AT&T face database to catch the same 

performance with the METU Vision database. In Figure 4.16 erroneously 

recognized faces are shown. From Figure 4.18 the figure it can be seen that a 

small amount of rotation in head (15º-20º) or a small change in facial features 

(taking off glasses) may be a problem for face recognition. The images in METU 

Vision database are converted into grayscale before training and testing. 
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Figure 4.16 Erronously recognized faces in METU Vision Database with 
Eigenface method. 
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Figure 4.16 Erronously recognized faces in METU Vision Database with 
Eigenface method. (cont’d)   

Performance of Eigenface method can be observed in Figure 4.17 for 

various numbers of eigenvectors in METU Vision database.  
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Figure 4.17: Performance With Respect to Number of Eigenvectors 
(Eigenface Method-METU Vision Database) 

 
 
The training set consists of 10 face images of 15 different persons in Metu 

Vision. 5 images are used for training and 5 are used for testing so, there are 75 

testing images of different facial expression. No testing image is exactly the same 

as one of the images in the training set. All face images in the training set and the 

testing images are of the same size and have the same background. Performance 

of the Eigenface algorithm against change in illumination is measured with using 

different number of eigenvectors. Eigenvector numbers are selected to be 15, 20, 

25, 30 and 40. The eigenvectors are chosen according to their significance in each 

case, i.e. from the 1st most significant to the 15th most significant eigenvectors 

when the number of eigenvectos are chosen to be 15 and  from the 1st most 
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significant to the 20th most significant eigenvectors when the number of 

eigenvectos are chosen to be 20 etc. The experiment is done by changing the 

brightness of all 75 testing images by –20%, -10%, 0%, +10% and +20%. Test 

results for this experiment can be seen in Tables 4.8 (a), (b), (c), (d), and (e). 

Table 4.8: Performance due to different brightness on the testing images  
(a)  (Eigenface) - # of  Eigenvectors: 15                                                             

Brightness -20% -10% 0% +10% +20% 
Recognition 

rate 18.6667 61.33% 78.66% 61.33% 17.33% 

Histogram 
Equalized 65.33% 69.33% 77.33% 69.33% 69.33% 

 
(b) (Eigenface) - # of  Eigenvectors: 20                                                             

Brightness -20% -10% 0% +10% +20% 
Recognition 

rate 18.66% 65.33% 80.0% 62.66% 18.66% 

Histogram 
Equalized 65.33% 69.33% 78.66% 69.33% 69.33% 

 
(c) (Eigenface) - # of  Eigenvectors: 25                                                             

Brightness -20% -10% 0% +10% +20% 
Recognition 

rate 20% 66.66% 80.0% 65.33% 18.66% 

Histogram 
Equalized 69.33% 69.33% 81.33% 69.33% 69.33% 

 
(d) (Eigenface) - # of  Eigenvectors: 30                                                              

Brightness -20% -10% 0% +10% +20% 
Recognition 

rate 20% 66.66% 80.0% 66.66% 18.66% 

Histogram 
Equalized 69.33% 70.66% 78.66 70.66% 70.66% 
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(e) (Eigenface) - # of  Eigenvectors: 40                                                              
Brightness -20% -10% 0% +10% +20% 

Recognition 
rate 20% 66.66% 80.0% 65.33% 18.66% 

Histogram 
Equalized 69.33% 69.33% 78.66 69.33% 70.66% 

With no additional change in the brightness, the error rate is just 20%. 

When the brightness is increased or decreased by 10%, the error rate is nearly 

doubled. With 20% increasing or decreasing in brightness, the error rate is 

tripled, which is unacceptable. When histogram equalization is used algorithm 

becomes more robust against illumination change. This test shows that brightness 

variation on the testing images severely affects the error rate. Therefore, for 

Eigenface, in order to increase the performance, the images to be tested should 

have equal or nearly the same brightness with the images in the training set or 

histogram equalization should be used as a preprocessing step.  

4.2.3.2 Kernel Eigenface Method: 

Same strategy is used with Eigenface method while testing Kernel 

Eigenface method against different number of eigenvector with Metu Vision face 

database. 

Performance is slightly better than Eigenface method. As shown in Figure 

4.18, when the Eigenface space’s dimension is small (4-8), performance is low 

and when the Eigenface space’s dimension is large (15-20). But, in each case 

recognition rate is slightly better than Eigenface method.  
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Figure 4.18: Performance With Respect to Number of Eigenvectors in 
(Kernel Eigenface-METU Vision database) 

Performance decreases by changing brightness of the training images but 

it is not as low as in eigenface method. This is an expected result because Kernel 

PCA is a subspace method that uses nonlinear function for transformation. By 

this way, recognition task is not affected by facial expression variations, 

illumination changes image background differences and other complications 

Performance of the Kernel Eigenfaces due to brightness variation is 

shown in Tables 4.9 (a), (b), (c), and (d).  It can be seen from the results in Table 

4.9 that Kernel Eigenface method is more robust against illumination changes 
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with respect to Eigenface method. Applying histogram equalization as a 

preprocessing step in this method does not affect the performance so much. 

Table 4.9: Performance due to different brightness on the testing images     
(a) (Kernel Eigenface) - # of  Eigenvectors: 10 

Brightness -20% -10% 0% +10% +20% 

Recognition rate 18.66% 44% 69.33 26.66% 16% 
Histogram 
Equalized %58.66 64% 68.0% 66.66% 65.33% 

 
 
                        (b) (Kernel Eigenface) - # of  Eigenvectors: 15 

Brightness -20% -10% 0% +10% +20% 

Recognition rate 69.33% 69.33% 78.66% 30.66% 16% 
Histogram 
Equalized 64% 66.66% 81.33% 68% 69.33% 

          
 

(c) (Kernel Eigenface) - # of  Eigenvectors: 20 
Brightness -20% -10% 0% +10% +20% 

Recognition rate 65.3% 66.6% 84.0% 70.6% 66.6% 
Histogram 
Equalized 66.66% 69.33% 81.33% 70.6% 70.66% 

          
 

(d) (Kernel Eigenface) - # of  Eigenvectors: 25 
Brightness -20% -10% 0% +10% +20% 

Recognition rate 66.6% 68.0% 84.0% 66.6% 66.6% 
Histogram 
Equalized 69.33% 72.0% 81.33% 73.33% 73.33% 
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4.2.3.3 Subspace LDA Method: 

Performance of Subspace LDA method is slightly better than Eigenface 

method. As shown in Figure 4.19, when the Eigenface space’s dimension is small 

(7-10) performance is low because sufficient number of eigenvectors is necessary 

to separate the classes in training for Subpace LDA method. When the Eigenface 

space’s dimension becomes larger (>10) recognition rate increases.  
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Figure 4.19: Performance With Respect to Number of Eigenvectors in 
(Subspace LDA- METU Vision Face Database) 
 
 

The experiment due to change in lighting conditions is done by changing 

the brightness of all testing images by –20%, -10%, 0%, +10% and +20%. 

Performance of Subpace LDA is better to recognize images with 

brightness variation when compared to Eigenface methods. Brightness variation 
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does not  affect the Subpace LDA method as largely as the performance of 

Eigenface, so Subpace LDA is more stable than Eigenface when brightness varies 

greatly. Recognition performance of this method against illumination changes  

can be observed in Table 4.10 (a), (b), (c), (d),(e), and (f) below. It can be seen 

from results that histogram equalization decreases the performance when 

brightness variation is less. If there is much change in brightness, using histogram 

equalization as a preprocessing step increases the performance so it makes the 

algorithm more robust. 

 

    Table 4.10: Performance due to variation in brightness                 
    (a) (SubpaceLDA)- # of  Eigenvectors: 15 

Brightness -20% -10% 0% +10% +20% 
Recognition 

rate 44% 81.33% 85.33% 82.66% 50.66% 

Histogram 
Equalized 77.33% 78.66% 78.66% 78.66% 78.66% 

      
 

   (b) (SubpaceLDA)- # of  Eigenvectors: 20 
Brightness -20% -10% 0% +10% +20% 

Recognition 
rate 62.66% 78.66% 85.3% 84.00% 78.66% 

Histogram 
Equalized 78.66% 81.33% 81.33% 81.33% 81.33% 

         
 

   (c) (SubpaceLDA)- # of  Eigenvectors: 25 
Brightness -20% -10% 0% +10% +20% 

Recognition 
rate 70.6% 88% 89.3% 88% 74.66% 

Histogram 
Equalized 77.33% 78.66% 78.66% 78.66% 77.33% 
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   (d) (SubpaceLDA)- # of  Eigenvectors: 30 
Brightness -20% -10% 0% +10% +20% 

Recognition 
rate 65.3% 84.0% 93.3% 86.6% 74.66% 

Histogram 
Equalized 82.66% 82.66% 82.66% 81.33% 82.66% 

 
 

   (e) (SubpaceLDA)- # of  Eigenvectors: 35 
Brightness -20% -10% 0% +10% +20% 

Recognition 
rate 66.6% 82.6% 93.3% 80% 76.0% 

Histogram 
Equalized 80.0% 82.66% 84.0% 82.66% 84.0% 

 
 

    (f) (SubpaceLDA)- # of  Eigenvectors: 40 
Brightness -20% -10% 0% +10% +20% 

Recognition 
rate 56% 81.33% 93.3% 85.33% 64% 

Histogram 
Equalized 82.66% 82.66% 82.66% 82.66% 81.33% 

4.3 Performance Comparison 

Table 4.11 shows the test results of all the methods implemented in this 

thesis in different testing conditions. It should be noted that these are the best 

values for the test cases below. 
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Table 4.11: Performance Comparison Table 

Approach Face Database Test Input Property Recognition 
Rate 

Eigenface Yale No glasses images 80.0% 
Eigenface Yale Normal lighting &  no 

glasses images 82.0% 

Eigenface Yale Variation in lighting & 
expression 81.0% 

Eigenface AT&T 1 training input 
Variation in Expression

70.0% 

Eigenface AT&T 5 training Inputs 
Variation in Expression

82.0% 

Eigenface AT&T 9 training Inputs 
Variation In Expression

80.0% 

Eigenface METU Vision  Lighting Variation: 0% 80.0% 
Eigenface METU Vision  Lighting Variation:10% 66.66% 

Eigenface + 
Hist Eq. METU Vision  Lighting Variation:10% 69.33% 

Eigenface METU Vision  Lighting Variation:20% 20.0% 
Eigenface+ 

Hist Eq. METU Vision  Lighting Variation:20% 70.66% 

Kernel 
Eigenface Yale No glasses images in 

training set 81.82% 

Kernel 
Eigenface Yale Normal lighting &  no 

glasses images 85.0% 

Kernel 
Eigenface Yale Variation in lighting & 

expression 84.55% 

Kernel 
Eigenface AT&T 5 training Inputs 

Variation in Expression 85.0% 

Kernel 
Eigenface METU Vision  Lighting Variation: 0% 84.0% 

Kernel 
Eigenface METU Vision  Lighting Variation:10% 70.6% 

Kernel 
Eigenface + 

Hist Eq. 
METU Vision  Lighting Variation:10% 73.33% 

Kernel 
Eigenface METU Vision  Lighting Variation:20% 40.6% 

Kernel 
Eigenface + 

Hist Eq. 
METU Vision  Lighting Variation:20% 73.33% 

Subpace LDA Yale No glasses images in 
training set 91.3% 
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Table 4.11: Performance Comparison Table (cont’d) 
Subpace LDA Yale Normal lighting &  no 

glasses images 85.5% 

Subpace LDA Yale Variation in lighting & 
expression 90.3% 

Subpace LDA AT&T 1 training input 
Variation in Expression

74.5% 

Subpace LDA AT&T 5 training Inputs 
Variation in Expression

85.0% 

Subpace LDA AT&T 9 training Inputs 
Variation In Expression

83.0% 

Subpace LDA METU Vision  Lighting Variation: 0% 93.3% 
Subpace LDA METU Vision  Lighting Variation:10% 80.0% 

Subpace LDA+ 
Hist Eq. METU Vision  Lighting Variation:10% 88.0% 

Subpace LDA METU Vision  Lighting Variation:20% 74.6% 
Subpace LDA+ 

Hist Eq. METU Vision  Lighting Variation:20% 82.66% 
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CHAPTER 5 

CONCLUSIONS 

In order to find the best values for the parameters in the training stage, a 

number of experiments are performed for Principal Component Analysis (PCA), 

Kernel PCA and Subspace Linear Discriminant Analysis (Subspace LDA) and 

their performances are evaluated.  

The investigated techniques are previously proposed and studied in the 

literature. PCA was proposed in 1991, and based on PCA, Kernel PCA and 

Subspace LDA were proposed later. They were also tested under different sets of 

face databases. The main purpose is studying the performance of Subspace LDA 

and Kernel PCA methods in depth, which are two competeting methods reported 

to be among the best performing methods in the literature. 

The Eigenface approach to face recognition was motivated by information 

theory, leading to the idea of basing face recognition on a small set of image 

features that best approximate the set of known face images, without requiring 

that they correspond to our intuitive notions of facial parts and features. 

Eigenface uses principal components analysis (PCA) for dimensionality 

reduction. The main idea is to find the principal components of the distribution of 

faces considering the eigenvectors of the covariance matrix of the set of face 

images. Each image is represented as a linear combination of eigenvectors. With 

this simple transformation, it reduces a (image size M ) dimensional problem to a 
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(number of image ıM ) dimensional problem, where M  is the image size while 

ıM  is the number of face images. 

The Eigenface approach has advantages in its speed and simplicity, 

learning capacity, and relative insensitivity to small or gradual changes in facial 

expression of face images. However, brightness variation severely affects the 

performance. Eigenface only calculates the total scatter matrix. If the training set 

contains images of faces captured under varying illumination, the projection 

matrix will contain principal components due to variation in lighting. Then, the 

points in the projected space will not be well clustered, and worse, the classes 

may be smeared together. 

 Kernel Eigenface method is more robust and with respect to Eigenface 

method. Much of the important informaton may be contained in the high order 

relationships among the pixels of a face image, so non-linear features such as, 

brightness and facial expressions can be extracted by using Kernel PCA for face 

recognition. In this thesis, Gaussian Radial Basis Function kernel [46] is not used 

for higher-order transformation, so the performance is not as expected. 

 LDA tries to avoid clustering problem in Eigenface method by finding 

the projection matrix that maximizes the ratio of the determinant of the between-

class scatter matrix of the projected samples to the determinant of the within-

class scatter matrix of the projected samples. 

LDA is better than Eigenface to recognize images with modified facial 

features (i.e. mustaches, glasses, etc.) and varying illumination. However, the 
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speed of LDA is much slower than that of Eigenface as more scatter covariance 

matrices have to be computed. The other shortcoming of LDA is that it cannot be 

applied to face recognition problems where only one training image per person 

are available, such as suspect identification.  

Both Eigenface and LDA have merits and drawbacks. Before choosing 

one of these approaches for face recognition, various aspects have to be 

compared. Application using face recognition can be developed with Eigenface 

or LDA approach.  

To develop a real application, detailed design has to be done. More 

problems have to be solved. A colour image needs to be converted to a grayscale 

image. Masking is required to mask the background region of the image to reduce 

the error rate due to distractions from the background. 

Compared with Eigenface, which extracts Most Expressive Features, 

LDA is designed to extract features more suitable for classification purpose, so 

called Most Discriminating Features. 

Eigenface finds the projection matrix that maximizes the total scatter 

across all images, while LDA finds the projection matrix that maximizes the ratio 

of the determinant of the between-class scatter matrix of the projected samples to 

the determinant of the within-class scatter matrix of the projected samples. 

In idealized condition, with only different facial expression and no light 

illumination changes, both Eigenface and LDA perform well. On the other hand, 

Eigenface has difficulty in recognizing faces with modified facial features (i.e. 
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mustaches, glasses, etc.) and varying illumination. Although, removing the first 

three principal components does improve the performance of Eigenface in the 

presence of illumination variation. 

LDA, however, is much better on recognizing faces with modified facial 

features and varying illumination. It is because LDA tends to discount those 

portions of the image that are not significant for recognizing an individual. 

Compared with Eigenface, LDA is slower. For Eigenface, only the total 

scatter matrix has to be computed for finding the eigenvectors to form “face 

space”. In LDA, the within-class scatter matrix, between-class scatter matrix and 

the generalized eigenvectors have to be found. Also, to avoid the within-class 

matrix be singular, PCA has to be done to reduce the with-class scatter matrix. 

All these processes are time consuming and becomes problematic if the training 

set is large. 

One solution is to compute all the matrix operations in parallel, which 

speeds it up greatly. 

In Eigenface, the shape and location of the original data sets changes 

when transformed to a different space whereas LDA doesn’t change the location 

but only tries to provide more class separability and puts a decision region 

between the given classes. LDA provides better understanding on the distribution 

of the feature data more understandable. 

For both Eigenface and LDA, recognition is efficient only when the 

number of classes is larger than the dimensions of the “face space”; otherwise, 
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the projection of an unknown image requires pixel-by-pixel multiplication of the 

input image by all eigenfaces/fisherfaces. This multiplication is equivalent to or 

worse than template-matching with respect to computation time since an extra 

distance calculation is needed in the subspace. However, the occurrence of class 

overlapping increases when more face classes are represented by the same face 

space, thus lowering the recognition rate. 

For both Eigenface and LDA, when the training set is updated by adding 

or removing a person or a class in the training set, the “face space” has to be 

formed again. Therefore, it is not suitable for those applications which need to 

update the face database frequently. 

For Eigenface, it needs one photo for each person for training. But, for 

LDA, it requires several images for training, which are not always available for 

some applications like suspect recognition. One solution is to derive multiple 

samples from a single face image, by which LDA can be trained. 
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