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ABSTRACT 

INTELLIGENT METHODS FOR DYNAMIC ANALYSIS AND 

NAVIGATION OF AUTONOMOUS LAND VEHICLES 

 

Kaygısız, Hüseyin Burak 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Aydan ERKMEN 

Co-Supervisor: Prof. Dr. İsmet ERKMEN 

 

July 2004, 182 pages 

 

Autonomous land vehicles (ALVs) have received considerable attention after their 

introduction into military and commercial applications. ALVs still stand as a 

challenging research topic. One of the main problems arising in ALV operations 

is the navigation accuracy while the other is the dynamic effects of road 

irregularities which may prevent the vehicle and its cargo to function properly. In 

this thesis, we propose intelligent solutions to these two basic problems of ALV. 

First, an intelligent method is proposed to enhance the performance of a coupled 

global positioning/inertial navigation system (GPS/INS) for land navigation 

applications during the GPS signal loss. Our method is based on using an artificial 

neural network (ANN) to intelligently aid the GPS/INS coupled navigation system 

in the absence of GPS signals. The proposed enhanced GPS/INS is used in the 
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dynamic environment of a tour of an autonomous van and we provide the results 

here. GPS/INS+ANN system performance is thus demonstrated with the land 

trials. Secondly, our work focuses on the identification and enlargement of the 

stability region of the ALV. In this thesis, the domain of attraction of the ALV is 

found to be patched by chaotic and regular regions with chaotic boundaries which 

are extracted using novel technique of cell mapping equipped with measures of 

fractal dimension and rough sets. All image cells in the cellular state space, with 

their individual fractal dimension are classified as being members of lower 

approximation (surely stable), upper approximation (possibly stable) or boundary 

region using rough set theory. The obtained rough set with fractal dimension as its 

attribute is used to model the uncertainty of the regular regions. This uncertainty 

is then smoothed by a reinforcement learning algorithm in order to enlarge regular 

regions that are used for chassis control, critical in ALV in preventing vibration 

damages that can harm the payload. Hence, we will make ALV work in the largest 

safe area in dynamical sense and prevent the vehicle and its cargo.  

 

Keywords: Inertial Navigation System (INS), Global Positioning System (GPS), 

Artificial Neural Network (ANN), Autonomous Vehicles, Aided Navigation, 

Chaos, Nonlinear Analysis. 
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ÖZ 

OTONOM KARA ARAÇLARININ DİNAMİK ANALİZİ VE 

SEYRÜSEFERİ İÇİN AKILLI METODLAR 

 

Kaygısız, Hüseyin Burak 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Aydan ERKMEN 

Ortak Tez Yöneticisi: Prof. Dr. İsmet ERKMEN 

 

Temmuz 2004, 182 sayfa 

 

Otonom kara araçları (OKA) askeri ve ticari kullanımlara girmesinden sonra çok 

fazla ilgi çekmeye başlamışlardır. OKA’lar hala önemli bir araştırma konusu 

olmaya devam etmektedirler. OKA uygulamalarında karşılaşılan ana sorunlardan 

biri sistemin operasyonu sırasında karşılaşılan seyrüsefer hassasiyeti iken bir 

diğeri yoldan gelen ve araç ile yükünün çalışmasını engelleyebilecek dinamik 

etkilerdir. Bu tezde, OKA’nın bu iki sorunu için akıllı çözümler önerilmiştir. 

Öncelikle, küresel konumlama sisteminden (KKS’den) sinyal alınamadığı 

durumlarda tümleştirilmiş küresel konumlama/ataletsel seyrüsefer sisteminin 

(KKS/ASS) kara sistemlerindeki başarımını yükseltmek için bir akıllı yöntem 

önerilmiştir. Yöntemimiz KKS sinyalinin olmadığı zamanlarda KKS/ASS 

sistemine yardım etmek için kullanılan bir yapay sinir ağına (YSA) 
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dayanmaktadır. Önerilen YSA yardımlı KKS/ASS sistemi dimaik bir testle 

denemiş ve sonuçlar burada verilmiştir. Böylece, KKS/ASS+YSA sisteminin 

başarımı yer denemeleri ile gösterilmiştir. Bundan sonra, çalışmamız OKA’nın 

kararlılık bölgesinin belirlenmesi ve genişletilmesi üzerine yoğunlaşmıştır. Bu 

tezde, OKA’nın çekim bölgesinin kaotik ve kesirli boyut ile pürüzlü kümeler 

kullanılan hücreden hücreye dönüşüm ile ortaya çıkarılan kaotik sınırlara sahip 

düzenli alanlardan oluştuğu bulunmuştur. Pürüzlü küme teorisi kullanılarak, 

hücresel durum uzayındaki bütün hücreler, kesirli boyutlarına göre alt yaklaşımın 

(kesinlikle kararlı), üst yaklaşımın (olasılıkla kararlı) veya sınır bölgesinin üyeleri 

olarak asınıflandırılmıştır. Elde edilen pürüzlü küme düzenli bölgedeki belirsizliği 

modellemek için kullanılmıştır. Bu belirsizlik, araç şasisi denetimi için 

kullanılacak ve titreşimden oluşacak yük bozulmalarını önleyecek düzenli bölgeyi 

genişletmek amacı ile bir zorlamalı öğrenme yöntemi kullanılarak 

düzgünleştirilmiştir. Bu sayede, OKA’nın dinamik anlamda olabilecek en geniş 

güvenli alanda çalışması ve araç ile yükün korunması sağlanmıştır.  

 

Anahtar Kelimeler: Ataletsel Seyrüsefer Sistemi (ASS), Küresel Konumlama 

Sistemi (KKS), Yapay Sinir Ağı (YSA), Otonom Araçlar, Yardımlı Seyrüsefer, 

Kaos, Doğrusal Olmayan Analiz. 
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CHAPTER 1 

1.INTRODUCTION.1 

1.1 Motivation 

Autonomous vehicles (AVs) have received considerable attention after their 

introduction into the military and commercial applications such as all terrain 

tracking, agriculture, exploration and surveillance. AVs still stand as a 

challenging research topic due to their high versatility and dynamical complexity, 

where one of the major problems arising in AV operations is the navigation 

coupled to the dynamic effects of road irregularities which may prevent the 

vehicle and its cargo such to function properly. Nowadays, sophisticated 

navigation systems have been developed and applied to military and commercial 

vehicles based on the integration of global positioning system (GPS) and inertial 

navigation system (INS). For the last 20 years, inertial navigation system has been 

coupled with global positioning system in different levels of integration and has 

been the research focus in space missions and military arena towards enhancing 

their accuracy providing high frequency and reliable navigation data. On the other 

hand, the increase of mass production capabilities and the emergence of new 

technologies for the inertial sensors triggered the use of low cost GPS/INS 

systems in wide spread civil application areas such as automotive, robotics and 

more specifically unmanned autonomous vehicles. In the future, the applications 

are expected to spread further over the commercial area for autonomous land 

vehicles for environment monitoring/agriculture/mineral exploration. However, 
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low cost GPS/INS systems applied to autonomous vehicles exhibit a major 

problem stemming from their nature. It has been shown that the integrated 

navigation system yields very accurate navigation solutions when GPS signals are 

available, but not when the GPS signal is lost: INS, consisting of low cost sensors, 

drifts very fast during the GPS signal loss and thus prevents the host vehicle to 

function properly.  

Another problem in AV operation is the dynamic effects of road irregularities 

which may produce chaotic vibrations within the vehicle cabin and cause 

hardware damage. Thus, autonomous military and civil vehicles should be 

coupled to a control in nonchaotic regions of the state space. It is well known that 

highly nonlinear systems state spaces are contaminated by uncertainty and 

unpredictability. The state space reveals itself having very confined regions good 

for control among patches of chaotic regions, all separated by the “predictability 

plasma”. The “plasma” as connoted in this thesis is vast broken area in state space 

where possibly chaotic and possibly controllable states are mixed leading to high 

unpredictability. Confining the operational state space of the vehicle to only the 

deterministically controllable region is a weak solution since it means loss of 

richness of information in control. Human beings acting as a controller can often 

take risks and also use possibly controllable stable states together with the 

deterministically controllable stable ones. This is a major ability of experience-

based risk taking that learning human systems have. In this study, we aim at 

developing a similar human inspired risk-taking learning system which optimally 

increases the operational state space of an AV by mending regions in its state 

space that are contaminated by uncertainty during its navigation on a highly 

irregular terrain and at developing a more reliable GPS/INS system with the aid of 

intelligent techniques for AV navigation. 

1.2 Problem Characteristics  

Modern autonomous land vehicles designed to function in missions such as 

environment monitoring, automotive navigation, field surveillance, agriculture, 
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utilize GPS integrated low cost INS for navigation purposes due to its cost 

effectiveness and relatively constrained accuracy: The integrated navigation 

system yields very accurate navigation solutions for a low maneuvering vehicle 

only when operating in an environment where there is a continuous access to GPS 

signals.  

In real applications, an autonomous vehicle entering into a tunnel, a downtown 

area with high buildings, a canyon or a forest is incapable of receiving the GPS 

signal that is so critical for navigation accuracy. Moreover, GPS jamming can 

prevent the system to function properly. Consequently, under such events vehicle 

navigation depends only on INS that consists of low cost sensors and drifts very 

fast during the GPS signal loss. Thus autonomous vehicles can be lost in the most 

critical part of a mission such as a rescue operation in a canyon or a disaster area.  

In order to circumvent the problem, higher grade inertial sensors or additional 

aiding sensors other than GPS can be used. The first approach clearly leads to a 

very expensive solution, which may not be always possible or desirable. The 

second means additional sensors, not only increasing again the cost, but laso 

bringing their own sensitivity to noise and adding complexity to the system.  

In order to handle such a problem in a cost effective manner, GPS/INS behavior 

patterns should be generated in order to provide position estimation for an 

effective adaptive and intelligent support to the INS in cases of GPS signal loss. 

Since navigation accuracy is high during GPS signals, it is a period where the 

GPS/INS behavior patterns can be learned generating an experience memory of 

the integrated navigation system. When GPS is silent, this memory can then act as 

a model reference such that the previously learned pattern can be used to estimate 

position data for the INS in order to prevent the system from drifting.  

Another problem for ALV stems from the dynamical environment that the 

vehicles are exposed to. During the operation of the ALV, its chassis frequently 

undergoes oscillations bearing uncertainty; possibly leading to chaotic behaviors 
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which may damage its cargo so may prevent it from functioning properly during 

the mission. An intelligent control that handles uncertainty and suppresses the 

vibration is then critical for the health of mission. However, such a control 

mechanism requires the precise investigation of the chaos map of the states related 

to the oscillatory motion, in order to decrease the uncertainty originating from 

these oscillations. Decreasing uncertainty will thus tend to the enlargement of 

regular regions used for control. Regular regions of the vehicle/road system need 

then to be generated. Uncertainty contamination of other regions should be 

detected and measured. A smoothing technique is needed to be developed in order 

to extract useful data in the contaminated area. The precise map of ALV on the 

irregular road state space to be used by the controller should then be the regular 

regions enlarged by decontaminated data that would prevent the ALV cargo from 

damage during its travel. 

Inspiration from nature has shown in recent studies that control under uncertainty 

benefits from information richness, which can be achieved in our problem by 

enlarging controllable uncertainty secured regions using the decontaminated data.  

1.3 Objective, Methodology and Contributions 

The objective of this thesis is to develop an intelligently aided Inertial Navigation 

System (INS)/Global Positioning System (GPS) for use in tactical and civil 

applications and detecting and avoiding possible onset of chaos in the system. 

The demand for high performance integrated navigation systems which can be 

used on tactical missiles, robots, automobiles and unmanned vehicles and 

maintain the high reliability and accuracy even in the absence of GPS signal, has 

been the main focus of research works. This thesis work aim at providing 

continuously accurate Artificial Neural Network (ANN) aided GPS/INS 

integrated navigation system for tactical and commercial applications. The ANN 

is trained online when GPS signal is on to learn GPS/INS integration patterns and 

apply them in the case of GPS signal loss. The trained ANN then uses to complete 
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the observations with estimated ones, when there is no real observation (GPS 

loss), acting therefore as an intelligent estimator.  

The methodology developed in this thesis is further implemented on an ALV with 

a low cost integrated navigation system. The real-time architecture is provided 

and verified by experiments using real data. 

The intelligent structure aid to the GPS/INS for increased performance even under 

GPS signal loss using an ANN is investigated for different scenarios around the 

METU campus in real time tests.  

After developing the intelligent navigation structure, we have focused on the 

detection and avoidance of the onset of chaos. This is achieved using a new 

approach combining fractal theory and rough set theory in order to define the 

regular regions of nonlinear systems in a more precise manner. This approach 

conducts global stability analyses by cell to cell mapping, determines the 

boundary region of the attraction domain using rough set and fractal dimension 

concepts and smooths uncertainty in the boundary region via an environment 

guided learning algorithm. In order to avoid the problem of chaos and supply 

regular navigation to the vehicle cargo cabin, a global stability analysis is run on 

the system employing cell to cell mapping and the response of the vehicle to 

different road conditions is investigated. Moreover, the uncertainty stemming 

from the nature of chaotic region is smoothed as the roughness in the regular 

stability domain, modelled by rough set using reinforcement learning. 

The main contributions of this thesis to the general field of navigation and ALV 

dynamic can be summarized as follows: 

• Development and implementation of a GPS integrated tactical grade 

inertial navigation system. Such a real-time implementation is important in 

understanding the practical issues and characteristics of the system. 

System characterization is achieved by real-time field tests. 
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• Development of an inertial navigation system aided by artificial neural 

network structure providing position/position difference estimates. This 

system requires no external measurement and yields a low cost accurate 

navigation solution in the absence of GPS signal. The performance of the 

intelligent navigation system is demonstrated by real-time tests and all 

pros and cons of the system are analyzed. 

• Analysis of vehicle/road interaction for irregular roads. 

• Development of a new approach to the identification of the chaotic 

boundaries of regular (periodic and quasiperiodic) regions in nonlinear 

systems, using cell mapping equipped with measures of fractal dimension 

and rough sets. The fractal/rough set model developed is a new approach 

brought to the area of the uncertainty modelling in chaotic systems. 

1.4 Content of the Thesis 

Chapter 2 introduces the well known implementation of inertial systems using 

global positioning system. This integration is achieved by the implementation of 

an extended Kalman filter in a loosely coupled GPS/INS structure. The existing 

GPS/INS system performance is also illustrated through experimental results. 

Chapter 3 develops our proposed approach, an intelligent ANN enhancement to a 

GPS/INS system with an analysis for an optimum neural network architecture 

equipped with an efficient learning algorithm. This chapter dwells with the 

generation of an optimum multilayer perceptron (MLP) structure with relevant 

number of layers and perceptrons, and an appropriate learning algorithm and 

discusses the most suitable performance based parameter of the neural network. 

This chapter thus includes performance analysis based on system parameter 

changes and presents the sensitivity analysis of the neural network.  
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Chapter 4 gives the experimental results for the intelligent navigation system 

proposed.  

Chapter 5 presents a model for the ALV on irregular road and analyses global 

stability according to changing road conditions. 

Chapter 6 conducts a state space analysis of chaotic and uncertain vehicle 

dynamics. Attraction domains of stable behaviors are generated and their 

boundary domains are determined. This chapter also introduces our model of the 

roughness in stability of this domain using rough set and the fractal dimension 

concepts. Moreover, we smooth uncertainty roughness in this boundary region via 

a reinforcement learning algorithm so as to reach the largest regular region 

possible for efficient control. 

Chapter 7 concludes the thesis. 
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CHAPTER 2 

2.THE EXISTING WORKS: GPS/INS INTEGRATION.2 

2.1 Introduction  

An inertial navigation system (INS) is basically formed of a cluster of 

accelerometers used to sense acceleration components in three dimensions and a 

computer. The orientation of the accelerometers with respect the reference frame 

is determined using rotation sensors (e.g., gyroscopes). Accelerometers measure 

the specific force component of acceleration instead of total acceleration due to 

basic physical limitations. In order to determine the total acceleration gravitational 

acceleration is added to the accelerometer outputs where gravity is calculated in 

the navigation computer as a function of INS position. Two basic INS approaches 

exist to generate the specific force, thus acceleration, from the accelerometers and 

determine the position with respect to a reference frame; these are the gimbaled 

and the strapdown approaches. 

In the gimbaled approach, accelerometers are mounted on a gimbaled platform 

that remains aligned with the reference frame. This alignment is achieved by 

constantly actuating the gimbals with respect to the transition of the reference 

frame. Thus the accelerometers are directly integrated to provide velocity and 

position in the reference frame. 

In the strapdown approach, accelerometers and gyroscopes are mounted directly 

to the body of vehicle. Rotation rates measured by the gyroscopes are constantly 
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used to update the transformation between body and reference frames.  

Accelerometer measurements are then passed through this transformation to 

obtain the acceleration in the reference frame. Thus the transformed acceleration 

is integrated to provide velocity and position. 

In general, the difference between a strapdown and gimbaled system can be seen 

as a tradeoff between mechanical and computational complexity. A gimbaled 

configuration requires less computational process since the accelerometers are 

maintained in the reference frame. However, this requires a high mechanical 

complexity. From a performance point of view, gimbaled systems are better since 

the strapdown systems are exposed to full vehicle rotation rate, thus higher 

dynamic range. As a result, higher dynamic ranges introduce larger scale factor 

and nonlinearity errors and increase noise on the sensor data. However, the 

advantages of strapdown systems in weight, size, power and more importantly 

cost forced navigation systems to turn from gimbaled to strapdown mechanization 

in modern applications. Thus, modern aircrafts, marine vessels, missiles and 

autonomous vehicles are equipped with strapdown inertial navigation systems. In 

this thesis work, we have also implemented strapdown mechanization on an 

autonomous vehicle. 

Strapdown system development commenced in late 1950’s. The first flight-

operational hardware was flown in 1966 (Garg (1978)). Thus, the concept of 

strapdown inertial navigation has emerged with the increasing computational 

capacity more than thirty years ago. The development and deployment of the first 

strapdown systems are discussed in (Powell (1963), Quasius (1963), Bessen 

(1964)).  

The main effort in the strapdown systems have been the design of computation 

process in a limited computational environment. Dealing with rapid maneuvers 

and high vibrational environment has required sensors with high bandwidth and 

new computational techniques in order to compensate the resulting errors. As a 

result, the computational process is splitted into high and low speed sections as 
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seen in (Savage (1984)). High speed, low amplitude motions and the need for 

compensation of their effects have started the research on coning (attitude) and 

sculling (velocity) techniques. Various coning compensation algorithms are 

derived in order to decrease the attitude errors stemming from vibration. Some of 

these techniques can be found in (Miller (1983), Jiang (1992), Tazartes (1997), 

Ignagni (1990), (1996), Salychev (1998)). Sculling compensation has been 

another critical algortihm for accuracy and Ignagni (1998) has shown the duality 

between the optimal coning and sculling techniques. As a result, the strapdown 

system and related computational techniques have matured over last forty years. 

During this period, another challenging subject has been the integrating of inertial 

systems with external aid sensors. As the applications required, low cost and more 

accurate systems, an intensive research have been carried out resulting new types 

of integration techniques. The dominant method used in integrated navigation 

involves the application of Kalman Filter theory to the navigation (Brown (1992), 

Lewantowicz (1995), Philips (1996), Titterton (1997)). However, other techniques 

such as nonlinear filters (Vik (2001)) and neural networks are also applied. While 

Tekinalp and Özemre (2001) has employed artificial neural networks for 

calibrating inertial sensors and initializing inertial navigation system. Chiang et. 

al. have achieved to integrate DGPS with INS using neural networks.  

The main system used in order to provide external aid to the inertial systems has 

been the Global Positioning System (GPS) because of its low cost and 

complementary features. The GPS/INS integration is implemented using different 

architectures which are given in (Greenspan (1995)) with their own advantages 

and disadvantages. 

Having reviewed the relevant literature on GPS and INS systems, focus will be 

directed to implementing a strapdown inertial navigation system and integrating it 

to global positioning system in this chapter. 
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2.2 Strapdown Inertial Navigation System 

As stated previously, a strapdown inertial navigation system consists of body 

mounted accelerometers, gyroscopes, a computer (navigation/attitude computer) 

and instrument electronics such as power conditioning, input/output interface. The 

data flow between the components and overall system are given in Figure 2-1.   

 

Figure 2-1 Strapdown Inertial Navigation System 

As seen in the figure, accelerometers and gyroscopes which are composed with an 

electronic processor to form an inertial measurement unit (IMU), measure the 

specific force and the rotation rates of the body frame with respect to the inertial 

frame (non-rotating fixed frame). Rotation rates measured by the gyroscopes are 

used in attitude computation which yields a direction cosine matrix used to 

transform acceleration vectors between the body and navigation frames. The 

transformed acceleration vector is used to calculate position and velocity. 

Navigation frame rotation rates required for attitude computations are also 

calculated in navigation computer.  
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As a result, inertial navigation system is composed of an inertial measurement 

unit providing acceleration and rotation measurements, and a computer 

implementing coordinate frame transformations and navigation calculations. The 

detailed description of inertial measurement unit, coordinate frames and 

navigation equations of the inertial navigation system developed in the balance of 

this thesis work, is given in the subsequent sections.  

2.2.1 Inertial Measurement Unit 

As described above, inertial navigation system depends on the measurement of 

acceleration which can be integrated sequentially to provide position and velocity. 

Furthermore, strapdown inertial systems require rotation information to determine 

the orientation of body acceleration with respect to a navigation frame.  

The required acceleration and rotation information is provided by an inertial 

measurement unit. The inertial measurement unit constructed for the thesis work 

incorporating a tri-axial accelerometer and 3 single axis gyroscopes (Figure 2-2), 

supplies velocity and angle increments of the body at 400 Hz to the processing 

card with a Motorola MC68340 (24.1 MHz) where sensor error compensation 

algorithms run and resulting compensated data output at 100 Hz rate fed into the 

navigation computer using a dual port RAM.  

The inertial sensor which measures acceleration is known as accelerometer. 

Accelerometers are classified as either mechanical or solid-state with respect to 

their form of construction. These devices use gyroscopic mass unbalance 

technology or vibratory technology to measure specific force. Accelerometer that 

we make use throughout the thesis is a solid-state vibratory technology tri-axial 

accelerometer of LITEF known as B-290 (Figure 2-2).  

Every axis of the tri-axial accelerometer also known as pendulous accelerometers 

has a pendulum, translational proof mass. When a specific force is applied, the 

pendulum is loaded and a torquer acting on the pendulum minimizes the 
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deflection of the pendulum. The force applied by the torquer is a measure of the 

acceleration sensed.  

 

Figure 2-2 Inertial Measurement Unit 

Table 2.1 B-290 Triad Specifications (Litef 2002a). 

LITEF B-290 Accelerometer 

Bias repeatability 3 mg (1σ) 

Bias stability 0.2 mg (1σ) 

SF repeatability 3000 ppm (1σ) 

SF stability 200 ppm (1σ) 

Resolution 50 µg 

Axis misalignment 20 mrad 
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B-290 accelerometer is classified as a low-grade, low-cost sensor compatible with 

tactical applications and has performance specifications given in Table 2.1 (Litef 

2002a).  

Rotation information required for strapdown navigation applications are provided 

by sensors called gyroscopes. Gyroscopes are used in various applications such as 

platform/sensor stabilization, autopilot feedback and navigation to sense angular 

rate about some predefined axis. Gyroscopes are manufactured based on either 

mechanical or optical technology for providing this rate information: Classical 

mechanical gyroscopes use the inertial properties of a rotor spinning at high rates 

to determine the angular changes whereas optical gyroscopes exploit 

interferometric methods to sense angular motion. In this thesis work we use 

optical gyroscopes known as fiber optic gyroscope (FOG).  

Fiber optic gyroscopes (FOG) work based on the “Sagnac Effect” concept. FOG 

consists of fiber-optic coils, lithium niobate optics chip, broadband light source 

and photodetector (Lefevre (1993)). In FOG, the light source sends two light 

beams to a fiber coil, each traveling in opposite directions (clockwise and 

counterclockwise) with respect to a measuring point. Unless the coil rotates, the 

beams fly over the same path and land on the measuring point at the same time. 

Otherwise a time difference occurs between their arrivals and two regions occur, 

one dark and the other semi-dark on the readout device, due to the phase 

difference between two light beams. The light intensity of these regions is directly 

related to the applied rotation rate and is output as an electrical quantity (current 

or voltage) proportional to the rotation after a modulation phase. 

In the applications of this thesis we make use more specifically of LITEF 

µFORS6 gyroscope for which performance specifications is given in Table 2.2 

(Litef 2002b). 

Solid state accelerometers and fiber optic gyroscopes of our application is chosen 

for their wide usage for navigation purposes in tactical missiles, tactical guidance 
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of unmanned land/air/undersea vehicles and robotics, because of their relatively 

high accuracy and low cost (Gamble (2001), Kaygısız (2003)).  

 

Table 2.2 µFORS-6 Specifications (Litef 2002b). 

LITEF µFORS-6 Gyroscope 

Bias repeatability 6º/h (1σ) 

Bias stability 3º/h (1σ) 

SF repeatability 2000 ppm (1σ) 

SF stability 500 ppm 

Axis misalignment ±10 mrad (max.) 

 

2.2.2 Coordinate Frames 

Precise definition of Cartesian coordinate systems is crucial to the inertial 

navigation since sensors provide measurements and the system calculates position 

with respect to some defined coordinate which are generally in navigation system 

calculations, taken as orthogonal and right handed. These coordinate frames in 

strapdown navigation systems are: 

Body Frame: This coordinate frame has its origin at the center of the navigation 

system. Xb-axis points towards the roll, Yb-axis is towards the pitch axis according 

to right handed system and Zb-axis is pointing down (yaw axis). 

Inertial Frame: Newton has defined the inertial frame as a frame which does not 

accelerate or rotate. The Newtonian equations of motion are defined based on this 



 16

frame. Inertial frame is impossible to realize in practice and the best 

approximation to such a frame is according to the distant stars which can be 

assumed motionless.  

In the navigation systems, the inertial frame is described with respect to the earth. 

Such a frame is called Earth Centered Inertial (ECI) frame.  In the ECI frame, the 

origin is at the center of the earth, XI-axis is positive towards the intersection point 

of Greenwich meridian and equator at t0, ZI-axis lies along the North Pole at t0, YI-

axis is defined to complete a right-handed orthogonal coordinate system. Inertial 

sensors provide measurements of body motion with respect to inertial frame. 

Earth Centered Earth Fixed Frame (ECEF): The coordinate system is a right-

handed earth fixed system (Figure 2-3). As seen in the figure, the origin is the 

earth center of mass, Ze-axis has a direction toward North Pole and Xe-axis is 

directed through the intersection of Greenwich and the plane passing through the 

origin and normal to the Ze-axis. Ye-axis completes a right-handed earth fixed 

coordinate system. This frame rotates with the earth and coincides with ECI frame 

every 24 hours. This coordinate system approximates the earth as an ellipsoid 

which is known as WGS 84 ellipsoid. Any position in this coordinate system can 

also be defined by the geodetic parameters of latitude, longitude and height. The 

parameters of the corresponding ellipsoid can be found in literature (DoD (2000)).  

                      

Figure 2-3 Coordinate Frames 
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Local Level (North-East-Down) Frame: The local-level frame has its origin at 

the location of navigation system and the axes lie along north, east and local 

normal to the ellipsoid, down (N, E, D axes in Figure 2-3). The angular rate of the 

local-level frame with respect to earth, known as the transport rate, is determined 

by the motion of the navigation system with respect to the earth. In this thesis 

work, this frame for our navigation computations and the local-level 

mechanization described in the coming subsection is applied in the 

implementation of the strapdown system in our ALV application. 

2.2.3 Local-Level Frame Mechanization  

In local-level frame mechanization, the velocity is expressed in the local 

geographic coordinate system as north-east-down in order to maintain the 

navigation accuracy over large distances on earth. This type of mechanization 

computes the position of the vehicle in terms of latitude, longitude and height and 

provides the velocity information in north, east and down coordinates. Here, the 

rate of change of the vehicle speed with respect to earth is expressed as: 

 | | ( )e n e i ie en e
d d x
dt dt

= − +v v ω ω v  (2.1) 

where ieω  is the rate of earth with respect to inertial frame and enω  is the rate of 

navigation frame with respect to earth. 

Substuting the following relation 

 i
e ie ex= − +v f ω v g  (2.2) 

into (2.1), one obtains 

 | (2 )e n ie en e
d x
dt

= − + +v f ω ω v g  (2.3) 
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Expressing (2.3) in navigation axes, navigation equation becomes 

 (2 )n n b n n n n
e b ie en ex= − + +v C f ω ω v g  (2.4) 

where bf is the specific force measured by the accelerometers, ng is the gravity 

vector represented in navigation frame and n
bC  is a direction cosine matrix used to 

transform body acceleration vector into navigation axes. This matrix is updated 

with the following equation:  

 n n b
b b nb=C C Ω  (2.5) 

where b
nbΩ is the skew symmetric matrix of b

nbω , rate of body frame with respect 

to navigation frame expressed in body frame, and  

 ( )b b b n n
nb ib n ie en= − +ω ω C ω ω  (2.6) 

b
ibω  is the rotation of body with respect to inertial frame which is the output of 

gyroscopes. The other terms are the earth’s and navigation frame’s rotation. 

Earth’s rotation with respect to inertial frame is found in navigation frame as: 

 [ ]cos 0 sin Tn
ıe L L= Ω −Ωω  (2.7) 

and craft rate, which is navigation frame’s rotation with respect to earth is 

calculated as: 

 tan
T

n e n e
en

E N E

v v v L
R h R h R h
⎡ ⎤− −

= ⎢ ⎥+ + +⎣ ⎦
ω  (2.8) 

where the velocities are north and east velocities, R’s stand for north and east 

radius of the earth at the vehicle location, h is height, L is lattitude and Ω is earth’s 

sidereal rotation rate. 
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The update algorithms we make use to implement the equations described in this 

section are given in Appendix in detail.  

2.2.4 Vibration Effects and Compensation 

Vehicle vibration has a harmful effect on the performance of inertial navigation 

systems and on control since inertial sensors have a limited bandwidth and reject 

the motion vibration at high frequencies. Vibrations at high frequencies cannot be 

detected with the accelerometers and gyroscopes and cause small changes in 

attitude and acceleration from the actual ones. This contributes to the navigation 

system errors and degrades the system performance (Bortz (1971), Savage 

(1984)). 

This problem can be circumvented by introducing a low pass filter to the sensor 

outputs. However, low pass filters introduces time lag to the system and prevents 

the sensors to sense actual motion. In order to prevent information loss, a 

mechanical filter should be introduced to the physical environment. This is 

achieved by using vibration absorbers. It is important to ensure that the resonance 

frequency of the vibration absorber does not coincide with a region where the 

vibration is effective. Attenuating the high frequency vibrations, we should still 

deal with leftover vibration. If not dealt properly, remaining vibration causes error 

on attitude and velocity algorithms. The effect of vibration on attitude is termed as 

coning. Coning is defined as the cyclic motion of one axis due to rotational 

motion of the other two axes. The error on attitude due to coning is compensated 

with the algorithms known as “coning compensation”. Coning compensation is 

applied on the inertial sensor outputs and in the inertial measurement unit in this 

work. Inertial sensors provide measurements at 400 Hz and these measurements 

are coning compensated to supply 100 Hz angle increment data to the strapdown 

system. Degradation due to vibration also occurs in velocity algorithms. This 

effect of vibration is known as “sculling”. Sculling is the degradation on 

acceleration readings due to translational motion of an axis during a rotational 
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motion of the other axes. This error is compensated in inertial measurement as in 

coning case and this compensation is known as “sculling compensation”. 

The problem in coning and sculling compensation means to determine algorithms 

that well maintain high performance under vibrational dynamical conditions. The 

algorithms selected in our strapdown system are 4th order algorithms since inertial 

measurements are at 400 Hz and strapdown system works at 100 Hz and are 

described in the Appendix. 

The harmful effect of vibration on the performance of inertial navigation systems 

is compensated using vibration absorbers and compensation techniques described. 

However, the problem of chaotic vibrations on ALV control can only be 

circumvented by decontaminating state space regions into mostly stable ones (this 

will be the novel approach that we develop in Chapter 6). 

 

2.3 GPS/INS Integration 

As stated before, strapdown navigation systems rely on rate and acceleration 

measurements and initial position and velocity information to provide position 

and velocity. However, errors on sensor readings caused by bias, scale factors, 

thermal/magnetic effects, other nonlinearities and initialization offsets cause an 

accumulation in navigation errors. Since an inertial navigation system is a dead 

reckoning system, any lack of precision is passed from one evaluation to the next 

and navigation solution drifts with time. Thus, the accuracy of strapdown systems 

are predominantly governed by the accuracy of the sensors and improved 

accuracy can be achieved through the use of more accurate sensors. However, 

employing more accurate sensors clearly lead to very expensive solutions which 

are not affordable for many applications.  

An alternative approach is to use an additional information source in order to 

improve the accuracy of the inertial navigation system. This is the principle of an 
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aided inertial system where one or more navigation system outputs are compared 

to the corresponding outputs of an external system and fed into an optimum filter 

to generate corrections to the navigation system as seen in Figure 2-4. There exist 

different types of sensors used as external system to improve the accuracy of the 

inertial navigation such as Doppler radar, baro-altimeter, radar altimeter, terrain 

map, airspeed indicator and miscellaneous radio navigation aids. In most modern 

integrated navigation applications, external aid sensor utilized is a type of satellite 

radio navigation with low cost, high accuracy and global coverage known as 

global positioning system (GPS). GPS integrated INS systems have become the 

major navigation tool in recent years for applications such as automotive, robotics 

and unmanned autonomous vehicles. Current technological trend makes these 

integrated navigation systems a part of our daily life. 

 

Figure 2-4 Aided Navigation System Concept 

In this thesis work, GPS is also used as an external aid sensor due to its high 

accuracy and low cost as well as its high frequency of usage in commercial 

products. GPS integrated INS navigation systems as it is also considered in this 

thesis work, consist of three main components, namely the inertial measurement 

unit (IMU), a GPS receiver and a navigation computer. The data flow between the 

components and overall system are given in Figure 2-5. 
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Figure 2-5 GPS/INS system components 

The details of IMU, INS and the navigation computations are given in the 

previous sections and GPS is described in the following section.  

2.3.1 Global Positioning System 

Our work is based upon an INS that utilizes a global positioning system (GPS) as 

the additional source of navigation information in order to improve its 

performance.  

Global Positioning System (GPS) is a satellite based radio navigation system 

providing 3 dimensional position and velocity information to the user. The system 

consists of earth located receivers that communicate with 24 satellites in six orbits 

such that at least 4 satellites are visible from any point on the earth. Each GPS 

satellite transmits navigation and range data on L1 (1575.42 MHz) and L2 

(1127.60 MHz) frequencies. Military receivers exploit both frequencies while 

civil receivers can only access to L1 codes (Parkinson (1995), Kaplan (1996)). 

A receiver located on the earth needs to monitor at least four satellites in order to 

find out its 3 dimensional position and receiver clock bias. A user receiver 

entering into a tunnel, a downtown area with high buildings, a canyon or 

maneuvering with high dynamics can be incapable of receiving the GPS signals 

and would fail to supply location data (Brown (1992)). 
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The GPS receiver has a one-way communication with each satellite which send 

navigation messages together with the transmit time. The difference between the 

receiving time and the transmit time multiplied by the speed of light gives the 

distance between the receiver and the satellite, pseudorange. Using four or more 

pseudorange measurements, a receiver can solve its 3 dimensional position and 

clock bias. GPS receivers also acquire Doppler measurements which are related to 

the receiver velocity. Doppler measurements can be approximated as pseudorange 

rate in low dynamics environment. GPS receiver employs the external 

measurements of GPS pseudorange ( ρ ) and GPS pseudorange rate ( ρ ) in order 

to solve its position and velocity. 

 

 

 

 

 

 

Figure 2-6 Receiver-satellite orientation 

Figure 2-6 shows a receiver and its 4 satellite positioning and orientation. There, 

tb is the receiver clock bias, c is the speed of light, ρ∈  is the all errors (multipath, 

troposphere…) other than clock bias. As seen in the figure, the difference between 

the time at which the signal is sent and that when the signal is received, is 

multiplied by the speed of the signal, which is the speed of light, to yield the 

pseudorange value, iρ . The pseudorange value would then be 
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 2 2 2( ) ( ) ( )e i e i e i bx x y y z z ct ρρ = − + − + − + +∈  (2.9) 

where subscript e denotes the receiver and i is for the satellite i. The coordinate 

system in the given formula is Earth Centered Earth Fixed system. Pseudorange 

rate without any error terms can be defined as 

 
t
ρρ ∂

=
∂

 (2.10) 

Acquiring the external measurements of pseudorange and pseudorange rate, GPS 

receiver incorporates an Extended Kalman Filter algorithm to process these 

external measurements for the estimation of position and velocity.  

Most GPS receivers employ one of the two common dynamic models in their 

extended Kalman filter structures. These are Position-Velocity (PV) and Position-

Velocity-Acceleration (PVA) models (Kaygısız (2000)).  

PV dynamic model is generally realized in low dynamical environments where 

receiver velocity remains nearly constant. The velocity is modelled as random 

walk with position being naturally the integral of velocity. PVA dynamic model is 

generally realized in high dynamical environments where the receiver experiences 

sudden velocity changes. Here acceleration is modelled as Markov processes 

while clock bias and frequency are again modelled as random walk, as in the PV 

model. 

2.3.2 Integration Architectures 

GPS/INS systems have been the subject of extensive research and application in 

the recent years. Studies have generally focused on techniques and architectures in 

order to unify the GPS and INS systems into one more accurate navigation 

system.  
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There exist two basic GPS/INS integration techniques in the literature. These are 

nonlinear filtering (Vik (2001)) and extended Kalman filtering (Lewantowicz 

(1995), Philips (1996)). Generally, in the real time applications, the extended 

Kalman filtering is used in GPS/INS systems. This is also what we considered in 

the balance of this thesis work. 

Another important issue in the integration process is the architecture employed. 

There are three main architectures that we will give a quick overview (Figure 2-7-

Figure 2-9) with their own advantages and disadvantages (Greenspan (1995)). 

Separate architecture: GPS updates the INS position and velocity states with 

resets. It is the cheapest and easiest architecture that can be applied. It binds the 

velocity and position errors of the INS but cannot correct the IMU errors. 

 

Figure 2-7 Separate integration 

Loosely-coupled architecture: It estimates INS error states and feedback these 

errors in order to update the INS and IMU errors. This architecture gives the 

advantage of having a higher grade INS even if the GPS signal is lost. 
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Figure 2-8 Loosely coupled integration 

Tightly-coupled architecture: Integrated system continues the work when the 

visible satellite number is less than four (loosely coupled systems need at least 

four satellites). It corrects the GPS errors and provides a better sensor calibration. 

This architecture employs a single Kalman filter unlike the loosely coupled one 

which uses cascaded Kalman filter approach. The main disadvantage is the 

complexity of the system. 

 

Figure 2-9 Tightly coupled integration 

This chapter will provide the mathematical structure of a loosely coupled one 

among the three architectures defined, since this is the architecture utilized in our 

navigation system.  

Correction 
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2.3.3 Loosely Coupled GPS/INS 

The Kalman filter technique given in Appendix D, is assigned as the integration 

filter of Figure 2-8 and performs two basic actions in the GPS/INS system: 1) 

When the GPS measurement is not available, system uses INS/IMU error model 

and the current navigation parameters in order to update the state covariance 

matrix, P , giving the uncertainty levels on the current state vector. This matrix is 

propagated through time according to the current state vector. 2) When the GPS 

measurement is available, the Kalman filter performs its second action known as 

update, in which it combines the GPS measurement with current error estimate 

and updates the Kalman filter states and the corresponding covariance matrix, P . 

The updated error states are then fedback to the INS and IMU where the system 

errors are corrected. 

Referring to Appendix D, the Kalman filter that we use in our application can be 

split into two main parts: propagation and update. These steps are given as:  

Propagation 

 1 1ˆ ˆ( ) ( )k k k− −− = +x Φ x  (2.11) 

 1 1 1 1( ) ( ) T
k k k k k− − − −− = + +P Φ P Φ Q  (2.12) 

Update 

 1( ) [ ( ) ]T T
k k k k k k k

−= − − +K P H H P H R  (2.13) 

 ˆ ˆ ˆ( ) ( ) [ ( )]k k k k k k+ = − + − −x x K z H x  (2.14) 

 ( ) [ ] ( )k k k k+ = − −P I K H P  (2.15) 

where x is the Kalman filter state vector, z is the measurement vector, Φ is the 

state transition matrix, H is the measurement matrix, K is the Kalman gain matrix, 
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P is the state covariance matrix, R is the measurement covariance matrix, Q is the 

process noise covariance matrix. Within propagation part, there is no state 

propagation since the error states are fedback into the integrated system at every 

update time. 

Since a slow propagation can yield degradation in high dynamical environments, 

in the system we realize, the Kalman propagation of the covariance matrix is done 

at 10 Hz. In addition, Kalman update is done for every GPS measurement (1 Hz, 

in our application) when the GPS signal is available. 

2.3.4 Error State Model 

The propagation step of the Kalman filter based upon the uncertainty levels 

stemming from the navigation system, depends on the error state dynamics of the 

INS. Error state vector of the inertial system includes position, velocity, attitude 

errors in addition to the accelerometer and gyroscope errors. The inertial sensors 

own numerous error sources, all of which cannot be defined as error states in the 

Kalman filter because of computational load and observability problems. Thus 

error states for inertial sensors are determined according to the mission needs, 

hardware constraints, sensor performance and observability analysis. We 

employed accelerometer bias and gyro drifts as inertial sensor error states of the 

Kalman filter. Consequently, a 15-state Kalman filter is designed in order to 

integrate INS and GPS systems. In order to construct such a structure, a set of 

differential equations known as error state model of the navigation system should 

be derived. The derivation is given below. 

2.3.4.1 Attitude Error 

Direction cosine matrix, n
bC , holds the attitude information in between the body 

and navigation frames. True direction cosine matrix, n
bC , is related to the 

computed direction cosine matrix, n
bC , as follows: 
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 ( )n n
b b= − ×C I ε C  (2.16) 

In the above relation I is a 3x3 identity matrix and 

 
0

0
0

z y

z x

y x

ε ε
ε ε
ε ε

⎡ ⎤−
⎢ ⎥× = −⎢ ⎥
⎢ ⎥−⎣ ⎦

ε  (2.17) 

( )− ×I ε  represents the transformation matrix between the true and computed 

coordinate frames. zyx εεε ,,  are the attitude errors of the navigation system in 

roll, pitch and yaw channels, respectively. Rearranging (2.16) one obtains, 

 ( ) n nT
b b× − = −ε I C C  (2.18) 

Differentiating the above equation, one obtains how the attitude errors propagate 

in time. 

 ( ) n nT n nT
b b b b× = − −ε C C C C  (2.19) 

Inserting direction cosine update equation given into (2.19) we obtain 

 ( ) n b nT n n nT n b T nT n nT n T
b ib b in b b b ib b b b in× = − + − +ε C Ω C Ω C C C Ω C C C Ω  (2.20) 

By rearranging this equation, we get 

 
[ ] [ ] [ ]( ) n b b n n n nT n nT n

b ib ib b in b b b b in

n b nT n n n
b ib b in in inδ δ

⎡ ⎤× = − − × − + − × − − ×⎣ ⎦
≅ − + × − ×+

ε I ε C Ω Ω C Ω I ε C C I ε C C Ω

C Ω C ε Ω Ω ε Ω
(2.21) 

Converting the above relation into vectoral form, differential equation for the 

attitude error, 
T

x y zε ε ε⎡ ⎤= ⎣ ⎦ε , is 
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 n n n b
in in b ibδ δ= − × + −ε ω ε ω C ω  (2.22) 

In this relation b b b
ib ib ibδ = −ω ω ω  represents the gyroscope errors. n n n

in in inδ = −ω ω ω  

is composed of two parts and can be given as n n n
in ie enδ δ δ= +ω ω ω . 

 ( )

( )

( ) ( )

2

2

2 2 2

sin
0

cos

tan tan
cos

n
ie

e e

E E

n n n
en

N E

e e e

E E E

L L

L L

v v h
R h R h

v v h
R h R h

v L v L vh L
R h R h R h L

δ
δ

δ

δ δ

δδ δ

δ δ δ

−Ω⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−Ω⎣ ⎦
⎡ ⎤

−⎢ ⎥
+ +⎢ ⎥

⎢ ⎥
⎢ ⎥= − +
⎢ ⎥+ +
⎢ ⎥
⎢ ⎥
− + −⎢ ⎥+ + +⎢ ⎥⎣ ⎦

ω

ω

 (2.23) 

2.3.4.2 Velocity Error 

Velocity error is the difference between true velocity and computed velocity. True 

velocity equation of a vehicle is given as: 

 (2 )n n b n n n n
e b ie en ex= − + +v C f ω ω v g  (2.24) 

Computed velocity of a vehicle in navigation frame can be given as: 

 (2 )n n b n n n n
e b ie en ex= − + +v C f ω ω v g  (2.25) 

By differencing true and computed velocity, we obtain the following differential 

equation. 

 
(2 ) (2 )

n n n
e

n b n b n n n n n n n n
b b ie en e ie en ex x

δ = −

= − − + + + + −

v v v

C f C f ω ω v ω ω v g g
 (2.26) 
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Inserting ( )n n
b b= − ×C I ε C  into the above equation and after some manipulations, 

velocity error equation becomes, 

 (2 ) (2 )n n b n b n n n n n n n
e b b ie en e ie en ex xδ δ δ δ δ δ= × + − + − + +v C f ε C f ω ω v ω ω v g  (2.27) 

where n n n
ie ie ieδ = −ω ω ω , n n n

en en enδ = −ω ω ω , b b bδ = −f f f , n n nδ = −v v v  and 

n n nδ = −g g g . 

2.3.4.3 Position Error 

The following differential equation is employed to update position in a local-level 

strapdown mechanization using  

 
( ) cos

n

N

e

E

d

v
R h

L
v

R h L
h

v

λ

⎡ ⎤
⎢ ⎥+⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (2.28) 

By differentiating this equation and neglecting the small terms, position error 

equation becomes 

 

( )

( )

2

2

tan
( )cos ( ) coscos

n n

N N

e e e

E EE

d

v v h
R h R h

L
v v v Lh L

R h L R h LR h Lh
v

δ δ

δ
δδλ δ δ

δ
δ

⎡ ⎤−⎢ ⎥+ +⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ = − +⎢ ⎥⎢ ⎥ + ++⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.29) 

where δL, δλ and δh the north position, east position and height errors, 

respectively.  
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2.3.4.4 Sensor Errors 

In addition to these 9 states standing for inertial navigation system errors, other 6 

states are used in order to model the accelerometer and gyro bias errors, as a first-

order Markov process: 

 1 1,
a g

δ δ δ δ
τ τ

= − + = − +f f w ω ω w  (2.30) 

where w is white noise. The time constants of the Markov process, τa and τg, , are 

set to 12,000 seconds based on experimental observations of the inertial sensors. 

Consequently, state vector x in the 15-state Kalman filter is 

[ ]Tzyxzyxzyxden fffvvvhL δωδωδωδδδεεεδδδδδλδ .

Using the given differential equations, one can create the continuous state 

transition matrix, F, for the error states, which is then discretized for the real time 

application using first order Taylor series approximation yielding t= + ∆Φ I F . 

t∆  is chosen as 0.1 seconds so the covariance 

 T− += +P ΦP Φ Q  (2.31) 

is propagated at 10 Hz. At this part, there is no state propagation since the states 

are fedback into the integrated navigation system at every update time in order to 

correct the system errors, as mentioned earlier.  

2.3.5 Measurement Model 

Loosely coupled approach employs the position and velocity difference between 

INS and GPS solutions as the measurement. The measurement model of the 

integrated system is given as  

 = +z Hx v  (2.32) 
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where 
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⎡

−
−
−
−
−
−
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dGdI

eGeI

nGnI

GI

GI

GI

vv
vv
vv
hh

LL
λλ

z  , [ ]9666 xx 0IH = , x15x1 is the state vector and v6x1 is the 

measurement noise vector representing GPS position and velocity measurement 

noise. In the above equations, the indices I stand for INS and G for GPS. The 

uncertainty effect of the measurement noise is modeled at measurement noise 

covariance matrix, 66xR , defined in the following section. 

2.3.6 Noise Statistics 

GPS/INS integration is performed via an Extended Kalman filter. The 

performance, convergence and sensitivity characteristics of the filter depend on 

the modelling accuracy. A dynamic model consists of two main components: state 

transition matrix given in Section 2.3.4, and covariance matrices. The state 

transition matrix holds the information of how a dynamical system behaves in 

time while covariance matrices represent the uncertainty on the states, 

measurements and inputs of the system. Having derived the transition matrix in 

Section 2.3.4, this section will focus upon the covariance matrices used in the 

Kalman filter, which are the initial state covariance matrix P0, measurement 

covariance matrix R and process noise covariance matrix Q. 

2.3.6.1 Initial State Covariance Matrix, P0 

The initial conditions on the state covariance matrix elements are assigned based 

on the uncertainty level of the initial alignment process which is achieved by a 

theodolite (a kind of azimuth angle measurement system), GPS position and 

velocity measurements, and accelerometer and gyroscope long term repeatability 
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characteristics. Consequently, initial state covariance matrix P0 is formed from the 

standart deviations given in the GPS, sensor and theodolite specifications used for 

initial alignment. The GPS provides position solution with a standard deviation of 

7 meters in horizontal channels and 10 meters in height channel, while it provides 

velocity with a standard deviation of 0.1 m/s. On the other hand, initial attitude is 

determined using a theodolite system with a maximum error of 1 mrad. 

As a result, the transformed standard deviations for position 

are 7 7, , 10 m
( )cosL h

N E

rad rad
R h R h Lλσ σ σ= = =

+ +
. Velocity and 

attitude uncertainty in all dimensions are mrad1,m/s1.0 == attV σσ , respectively. 

Accelerometer and gyroscope long term repeatability are given as 

3 mg , 6 / hracc gyroσ σ= = ° , respectively. Assigning the related variances to 

the corresponding diagonal elements, the initial state covariance matrix P0 is 

generated for the GPS/INS system.  

2.3.6.2 Measurement Covariance Matrix, R 

Measurement covariance matrix represents the GPS measurement noise. 

Therefore, it is based on the GPS position and velocity error characteristics. 

Exploiting the GPS specifications, the R matrix is 

 

2

2

2

2

2

2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

L

h

v

v

v

λ

σ
σ

σ
σ

σ
σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R  (2.33) 

where the transformed standard deviations for position 

are 7 7, , 10 m
( )cosL h

N E

rad rad
R h R h Lλσ σ σ= = =

+ +
 and velocity 
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uncertainty is 0.1 m/sVσ =  due to GPS position and velocity output uncertainty 

given before. 

2.3.6.3 Process Noise Covariance Matrix, Q 

The entries of the Q matrix are produced based on the sensor specifications given 

in Table 2.1 and  

Table 2.2. Q matrix elements denote the effects of sensor scale factor, 

misalignment, random walk and bias. The process noise covariance matrix can be 

constructed from 3x3 submatrices as  

 

p pv

pv v

att

a

g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q Q 0 0 0
Q Q 0 0 0

0 0 Q 0 0Q
0 0 0 Q 0
0 0 0 0 Q

 (2.34) 

The critical issue in generating the Q matrix is to consider the effects of the error 

sources, which are not included as the Kalman filter states. This is achieved by 

introducting the effects of these errors into the related states available in the 

Kalman filter, hence in the Q matrix. 

Attitude and velocity error dynamics of the system is 

 
.......

.......

n b
b ib

n n b
b

δ

δ δ

= −

= +

ε C ω

v C f
 (2.35) 

Process noise covariance on the velocity resulting from the neglected scale factor, 

misalignment and random walk is formulated as  
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{ } { }, , , ,

2

2 , 2 , 2

2

n b b T n T n b b T n T
v b b b b
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x x y x y x ra

n n T n n T
sa b y y b ma b x z x z b ra

z z x y x y ra

E t E t

f f f f f f
t f f t f f f f t

f f f f f f

δ δ δ δ

σ
σ σ σ

σ

= ∆ = ∆

⎡ ⎤⎡ ⎤ ⎡ ⎤+ +⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ∆ + ∆ + + + ∆ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Q C f f C C f f C

C C C C
(2.36) 

where f‘s are the components of the specific force, 222 ,, ramasa σσσ  denotes scale 

factor, misalignment and random walk variances of the accelerometer and t∆ is 

the propagation time interval of 0.1 seconds. Likewise noise covariance on the 

attitude stemming from scale factor, misalignment and random walk is 

 

{ } { }, , , ,

2

2 , 2 , 2

2

n b b T n T n b b T n T
att b b b b

TT
x x y x y x rg

n n T n n T
sg b y y b mg b x z x z b rg

z z x y x y rg

E t E t

t t t

δ δ δ δ

ω ω ω ω ω ω σ
σ ω ω σ ω ω ω ω σ

ω ω ω ω ω ω σ

= ∆ = ∆

⎡ ⎤⎡ ⎤ ⎡ ⎤+ +⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ∆ + ∆ + + + ∆ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Q C ω ω C C ω ω C

C C C C
(2.37) 

where ω‘s are the components of the rotation rate, 222 ,, rgmgsg σσσ  denotes scale 

factor, misalignment and random walk variances of the gyroscope and t∆ is the 

propagation time interval. 222 ,, ramasa σσσ and 222 ,, rgmgsg σσσ are calculated 

using the performance specifications in Table 2.1 and  

Table 2.2 and IMU test results performed. Accelerometer scale factor variance is 

found as 
2

2

000,000,1
3007

⎟
⎠

⎞
⎜
⎝

⎛
=saσ by combining the long term and short term 

components given at the specifications. Gyroscope scale factor variance is 

calculated in a similiar manner as 
2

2

000,000,1
2062

⎟
⎠

⎞
⎜
⎝

⎛=sgσ . During the IMU tests, 

sensor axis misalignments are compensated and decreased to 0.2 mrad (1-sigma) 

value. Accelerometer and gyroscope noise levels are 50 µg and 0.0076 º/s at 64 

Hz. These noise levels are represented by 22 and rgra σσ , respectively where 
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/s(m/s)97e.3σ 22 −=ra  and /srad102.7eσ 22 −=rg . The sensor measurement noise 

2
raσ also contributes to the position and position-velocity components of Q matrix 

as 

 
( )

2

2
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2

1 0 0
( )
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3 cos
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R h L
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Q  (2.38) 

and 
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As given in Section 2.3.4, accelerometer and gyroscope bias states are modeled by 

a Gauss-Markov process with a time constant of 12,000 seconds. Corresponding 

noise variances of these states, Qa and Qg, are calculated from IMU tests, as 

follows: 

 
2

3 3
2

3 3

a a x

g g x

σ

σ

=

=

Q I

Q I
 (2.40) 

where 222 )(m/s922e.2σ −=a  and 2 2σ 1.4e 16 (rad/s)g = − . 
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Having determined system error behavior, measurement models, noise statistics 

and related covariance matrices, we have the necessary tools to apply GPS/INS 

integration filter and to estimate the navigation system errors.  

2.3.7 Correction 

The estimated errors are fed back to the inertial sensors and inertial navigation 

system after every update step of Kalman filter at 1 Hz. Corrections to the sensor 

and navigation states at kth step are realized as: 
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=
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p p p
v v v

C I εx C

w w f

α α ω

 (2.41) 

where p, vn, n
bC , ∆w, α, denote respectively position and velocity, direction cosine 

matrix, velocity increment output of accelerometer and angle increment output of 

gyroscope. The terms with hat are computed (actual) parameters, while the others 

represent true parameters. ∆tm, the output interval of the inertial sensors, is 1/400 

seconds in this implementation. Kalman filter directly provides all the correction 

terms in (2.41). 

2.4 Sensitivity Analysis 

As stated in Appendix D, Kalman filter is an optimal estimator of system states 

under the assumption that system model is linear contaminated by white Gaussian 

system and measurement noises.  

However, the filter requires exact models of dynamics, measurements and the 

exact knowledge of process noise covariance (Q), measurement noise covariance 
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(R) and initial state covariance (P0) in order to provide optimal gains (K), thus 

optimal estimation. Otherwise, the filter estimations will either be suboptimal or 

diverge. As a result, filter sensitivity to covariance matrices and dynamic models 

becomes critical for performance. 

In our GPS/INS system, we make approximations to determine the covariance 

matrices and hence the Kalman gain, K. Thus, the sensitivity of the filter to 

process noise covariance (Q), and initial state covariance (P0) is critical for our 

system. Since the measurement noise covariance (R) is created based on the exact 

values given in (Novatel, (1995)), filter sensitivity to measurement covariance is 

not considered in this thesis work. 

In order to determine if our nominal covariance matrices Q, and P0 are adequate, a 

short test is conducted. The position errors of the INS are recorded for 200 

seconds during the test. These position errors are then compared to Kalman filter 

estimated position variances given by, 

 1 1 1 1
T

k k k k k− − − −= +P Φ P Φ Q  (2.42) 

The analysis is repeated with 0.1xQ, 10xQ, 0.1xP0 and 10xP0 (Figure 2-10 and 

Figure 2-11).  

Figure 2-10 gives the INS position error in north, east and down channels with the 

Kalman filter estimated error variances. The Kalman filter is initiated with 0.1xP0, 

P0 and 10xP0 in order to estimate the error variance and it is observed that the 

nominal values estimates the uncertainty better than 0.1xP0, and 10x P0 initiated 

estimators. 

Figure 2-11 give the INS position errors with the Kalman filter estimated error 

variances which possess process covariance values of 0.1xQ0, Q0 and 10xQ0. It is 

seen from the figure that the estimated error variance does not change for any 

choice of process covariance. Thus, the filter is insensitive to the modeling errors 

in process covariance matrix.  
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Figure 2-10 Position error standard deviations vs. position error 

 

Figure 2-11 Position error standard deviations vs. position error  
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We conclude that the filter is sensitive to the initial state covariance while it 

shows no sensitivity to process noise covariance errors. Moreover, it is seen in 

Figure 2-10 and Figure 2-11 that our nominal Q and P0 matrices given in Section 

2.3.6 are adequate for capturing the true error propagation. 

2.5  Some Practical Problems: Latency and Lever Arm Effect 

There exist two main issues that have to be considered in the implementation of 

an integrated navigation system. These are latency and lever arm. Latency can be 

described as the time lag between the GPS signal receive time and actual INS 

time. Lever arm is the positional difference between the IMU location and GPS 

antenna location relative to where the GPS position and velocity solutions are 

provided. 

GPS measurement is received with a time lag from the current INS navigation 

solutions. Depending on the GPS receiver employed, this lag can exceed hundreds 

of milliseconds and causes high drifts for a highly dynamical vehicle. In an 

airborne vehicle flying at 900 km/h, a 10 msec lag can cause 2.5 meters of error. 

The mentioned time offset is the first source of the latency in the GPS/INS 

system. The graphical description of the latency is given in Figure 2-12. In order 

to circumvent the problem stemming from the time offset, navigation data is 

stored in memory within a specified time window until the valid GPS data is 

received. INS position and velocity solutions corresponding to the GPS data 

validity time, tgps, are found by interpolating navigation solutions at time tk and 

tk+1 since the previous navigation solutions are buffered in memory. And a precise 

measurement at tgps is then obtained. 



 42

 

Figure 2-12 Graphical representation of the data latency 

Another source of the latency is the time passing after the GPS measurement is 

acquired until the Kalman correction is made. This time difference prevents the 

filter to relate the measurements with corresponding error states that propagate 

within this time difference.  

The measurement at tgps, which is the GPS measurement validity time, can be 

expressed as  

 ( ) ( )gps gpst t=z Hx  (2.43) 

In order to relate it to the error states at the correction time, tc, this measurement 

can be rearranged using the state transition matrix as 

 ( ) ( ) ( ),gps gps c ct t t t=z HΦ x  (2.44) 

Thus, the measurement acquired at GPS validity time, tgps, is connected to the 

error states at the correction time, tc. The new measurement matrix taking the lag 

between the measurement and the correction into account is defined as 

 ( ) ( )1 ,c c gps ct t t−=H HΦ x  (2.45) 

tc tr tgps 

GPS data 
valid 

GPS data 
received 

Kalman 
correction 

tk tk+1 
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Using the new measurement matrix, cH , the erroneous effect of the time offset 

between the measurement and the correction is compensated. 

The other problem in the practical implementation is the GPS antenna lever arm. 

GPS provides position and velocity of the antenna location; however IMU 

position and velocity is required to correct erroneous INS solutions. Otherwise, 

the integrated system solutions will shift from the true trajectory. Thus, GPS 

measurements at the antenna are translated into the IMU location (Figure 2-13). 

 

Figure 2-13 GPS antenna lever arm 

The lever arm vector between GPS antenna and IMU is expressed in body 

coordinates as follows: 
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and the effect on the velocity measurement is the velocity induced by the rotation 

of the vehicle and can be expressed as 

 ( )n b b
LA b x=v C ω LA  (2.48) 

(2.47) and (2.48) are added to the position and velocity measurements in order to 

prevent the shifts from true trajectory and provide the navigation solutions with 

respect to IMU location. 

2.6 GPS/INS Performance in Real Time Applications 

In this section, we will demonstrate the performance of GPS/INS integration 

highlighting its shortcomings that have built the motivation of this thesis work and 

have guided the development of our proposed method that will be introduced in 

Chapter 3. 

2.6.1 Experimental Setup 

Since real time tests are performed on the ALV that we use to demonstrate our 

proposed approach, we will introduce our ALV experimental setup in this portion 

of the thesis. This section provides the details of the real time system which is an 

autonomous land vehicle equipped with the hardware used in this thesis work. 

This system is used throughout the thesis for real time implementation, 

demonstrations and experimental tests, that we document it here in the thesis 

report. 
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The vehicle tests were carried out in the campus of Middle East Technical 

University populated with trees and buildings. A 600 second test is conducted on 

a closed path in the campus site incorporating as much as possible disturbances 

and diversity demonstrating properly the navigation performance. The campus site 

test trajectory is given in Figure 2-17. The campus path circles around a 

1500mx400m area and generates a closed path of nearly 5 kilometers long where 

the main portion remains in the north direction. 

The vehicle given in Figure 2-14 is the test vehicle used during the land tests 

conducted in the balance of this thesis work. The vehicle contains inertial 

navigation system, a power unit, GPS and two computers. A laptop computer is 

used to store GPS and IMU data and a desktop computer is employed in system 

performance monitoring.  

More specifically, the hardware contains a GPS/INS integrated navigation system 

employing a tactical grade IMU, navigation computer and a GPS receiver 

manufactured in TÜBİTAK-SAGE. The SAGE-IMU contains the three µfors-6 

gyroscopes and one B-290 three-axis accelerometer already introduced in Section 

2.2.1 in an orthogonal arrangement as shown in Figure 2-15. The GPS/INS system 

containing TMS320C31 microprocessor for navigation computation and a Novatel 

3151R receiver is mounted on the test vehicle for navigation purposes (Figure 

2-16). Raw IMU data were logged at 400 Hz, while GPS data were logged at 1 

Hz. Both GPS and IMU data were stored through a serial port on the laptop 

computer. 

The vehicle starts the test from stand still and experiences velocities around 70 

km/h in the campus test. The vehicle travels in a closed path on the campus site 

test trajectory (Figure 2-17) where half of the trajectory is populated with trees 

and buildings which is problematic for GPS signals and other half is an open 

space. During the test, GPS/INS navigation solutions were recorded in order to 

conduct follow up performance analyses of the integrated navigation system. The  
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Figure 2-14 The van is used as a test vehicle for GPS/INS system. It contains the 

GPS antenna and GPS/INS unit. It also houses laptop and desktop computers for 

monitoring and real time data collection. 

 

Figure 2-15 The SAGE IMU contains three gyroscopes and one three-axis 

accelerometer in an orthogonal arrangement. 

3 gyroscopes 

Tri-axial 
accelerometer 
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Figure 2-16 GPS/INS system mounted on the test vehicle for navigation purposes 

and real time data collection. 

 

Figure 2-17 The Middle East Technical University campus. The land test is 

conducted on a closed loop trajectory given in the figure. 

Populated with Trees

Populated with Buildings 

Open Space 
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desktop computer has been used to monitor real time navigation solutions and 

overall performance status of the whole system. 

2.6.2 Performance Test Results 

The experimental results of the tactical grade loosely coupled GPS/INS system 

are presented in this section. The test is conducted on the path in the Middle East 

Technical University campus, previously explained. Test results illustrate the 

performance of our navigation system over a variable landscape with changing 

inclination and height, with and without GPS signals. Figures describing the test 

results have been generated and discussed where dotted lines denote the inertial 

navigation system solutions and solid lines show the GPS/INS solutions. 

Figure 2-18 shows the GPS/INS and INS solutions solely for positional changes in 

the horizontal plane. As seen in the figure, “INS only” solution wanders out of the 

figure limit due to sensor errors at the first 100 seconds of the total 600 seconds 

test. Figure 2-19 presents the vertical positions provided by the inertial and the 

integrated systems. Inertial system solution again drifts away during the test. 

Figure 2-20 and Figure 2-21 present the GPS/INS velocity and attitude solutions. 

As seen in the figures, velocity and attitude solutions are not drifting because of 

GPS aid. The accelerometer bias estimates given in Figure 2-22, are seen to 

converge within the 300 seconds of the test. The z-axis bias converges to the real 

value as a result of high observability in this channel. From the gyroscope drift 

estimates given in Figure 2-23, it may be seen that only the z-axis drift converges 

throughout the test since z-axis is highly observable in the land tests due to the 

high rotations occurring in this axis. x-axis and y-axis are slightly observable as 

result of low rotation rates that these axes are exposed to. Figure 2-24 and Figure 

2-25 present the Kalman corrections throughout the test and demonstrate that the 

filter relies on INS position and GPS velocity rather than on GPS position solution 

and INS velocity solutions due their high uncertainty. 
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Figure 2-18 INS solution and integrated INS/GPS solution for horizontal channel. 

INS solution drifts very fast due to the bias and alignment errors of sensors. 

 

Figure 2-19 Test route profile by GPS/INS and INS only 
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Figure 2-20 GPS/INS integration prevents velocity from wandering. 

 

Figure 2-21 Roll and pitch angles stays under 10º in the land tests. Yaw angle 

sweeps ±180º area. 
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Figure 2-22 Accelerometer long-term bias values are estimated and converged at 

the end of first 300 seconds. 

 

Figure 2-23 z-axis gyroscope long-term drift is estimated as a result of 

observability. x and y-axis gyroscope drifts are poorly observable. 
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Figure 2-24 The position uncertainty of GPS/INS system is about 5 meters (1σ) in 

steady state. The innovations show that the filter relies on INS solutions due to 

high uncertainty of GPS position solution. 

 

Figure 2-25 The horizontal velocity components use GPS velocity solutions more 

than the vertical channel due to the high uncertainty of INS velocity solution at 

this channel and low observability of horizontal bias terms. 
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2.7 Summary 

The GPS/INS system proved to provide very accurate, reliable and robust 

navigation results. GPS aiding to correct position, velocity, attitude, accelerometer 

bias and gyroscope drift yields accurate navigation data. 

INS only system performance relying on the erroneous rate and acceleration 

measurements is shown to be far from being accurate enough during the test runs. 

“INS only” position solution wandered at the first 100 seconds and became 

unacceptable for any navigation purpose.  

Consequently, it is shown that the GPS/INS system begins to depend solely on 

INS, consisting of low cost sensors and drifts very fast out of its trajectory during 

the GPS signal loss. This is a significant problem for the autonomous vehicles 

depending on these low cost integrated navigation systems and can cause the loss 

of vehicles.  

An intelligent method is proposed and developed in this thesis work. The 

proposed method is described in Chapter 3 of our thesis report.  
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CHAPTER 3 

3.OUR PROPOSED SYSTEM: THE ANN AIDED GPS/INS 

INTEGRATED NAVIGATION.3 

3.1 Introduction 

Strapdown navigation systems rely on the erroneous rate and acceleration 

measurements to provide position and velocity. Thus, the inertial navigation 

system based upon such technology drifts with time without bound and the 

accuracy of strapdown systems are governed by the accuracy of the sensors. In 

order to improve the accuracy, a GPS receiver is successfully integrated to the 

navigation system as described in Chapter 2. The shortcomings of this integration 

that has motivated our work have been summarized at the end of the previous 

chapter. Although when the GPS signal is on the integrated system yields high 

performance navigation solution, it fails to receive GPS signals in a tunnel, a 

downtown area with high buildings, and a canyon or during a maneuver with high 

dynamics and would yield degraded navigation solutions. In order to circumvent 

the problem, possible approaches can be to employ higher grade inertial sensors 

or additional aiding sensors other than GPS. These approaches are not feasible in 

low cost applications since both leads to very expensive add-on solution that 

increase the complexity of the system. In order to handle the problem, we propose 

a system aiding the integrated GPS/INS system in a cost effective manner with an 

artificial neural network (ANN) architecture (Kaygısız (2003)).  
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This chapter provides the theoretical and practical aspects of the ANN aided 

GPS/INS system. The main contributions of this chapter are: 

• Development of the general system architecture that integrates the neural 

network with the GPS/INS system. 

• Determination of the optimum neural network architecture in a way 

compatible with the real-time hardware capability and performance 

requirements. 

• Identification of the sensitivity of neural network usage in the 

enhancement of the GPS/INS system performance. 

• Development of two different (position and position difference) aiding 

structures. 

This chapter will use the land vehicle test setup and data given in Section 2.6 of 

Chapter 2 in order to provide the necessary comparative grounds for the system 

performance analysis required in the development phase of our proposed system.  

3.2 System Architecture 

A detailed block diagram of proposed GPS/INS+ANN system is shown in Figure 

3-2. The inertial measurement unit (IMU) that we actually use is a triad of silicon 

accelerometers and fiber optic gyros mounted orthogonally inside a cubical case 

in order to measure specific force and rotation of body with respect to the inertial 

frame. This was fully introduced in Section 2.2.1 of Chapter 2. As we recall, 

gyros have bias values of 6 °/hr, while for accelerometers, biases are around 3 mg. 

IMU data are sampled at the rate of 100 Hz for autonomous land vehicle (ALV) 

test where the sampling rate is directly related to the highest dynamic frequency in 

the vehicle. The sampled data are then sent to the INS in order to generate the 

navigation output as described in Chapter 2. 
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GPS generates position and velocity outputs every second with bounded error that 

is less than 15 m for position and 0.05 m/s for velocity in actual ALV tests. The 

Kalman update is triggered at every GPS measurement (1 Hz) using the difference 

between GPS and INS solutions as input. Hence, the Kalman filter generates the 

corrections for diminishing the INS and IMU errors in order to keep the overall 

GPS/INS output within a bounded uncertainty.  

An Artificial Neural Network (ANN) is integrated to the GPS/INS system as the 

main part of our proposed system and operates in two different phases namely the 

training and the prediction phases.  

After every update triggered by GPS measurements, the ANN is trained using the 

GPS/INS states as input and position difference between the current and the 

previous update position as the output. 

Whenever the GPS signal is absent, ANN leaves its training phase and every 

second estimates the position difference. Vehicle position is then calculated as the 

added value of the cumulative of the position differences occurring every second 

and the last GPS/INS position found when the GPS signal was last available. 

Alternatively, the position difference of every second may also be provided to 

Kalman filter. This calculated position or position difference is then used in the 

place of the nonexistent GPS position as input to the Kalman filter. Our approach 

helps to slow down drastically the drifting of the system when compared to the 

classical GPS/INS structure. 
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Figure 3-1 System Block Diagram 

A detailed block diagram of GPS/INS+ANN in training phase is shown in Figure 

3-2. After every update triggered by GPS measurements, a database is created for 

the ANN training phase by the recording of the previous updated states of 

GPS/INS and the cumulative of IMU velocity increments and angle increments of 

the last second as input. The position difference between the current and the 

previous positions are the recordings for the outputs of the ANN during its 

training until the loss of GPS signal.  

The inputs to the ANN that are the previous velocity, attitude and summation of 

velocity and angle increment measurements are determined from the strapdown 

equations given in Chapter 2.  
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Figure 3-2 System block diagram (training phase) 

The position difference ∆pk is a three dimensional vector with north position, east 

position and height as components, function of velocity, attitude states of the 

navigation system and the integral of acceleration (a) and rotation rates (ω) which 

appears as summation of angle and velocity increments: 
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The variables of the given function are inputs to the ANN of the navigation 

system. As the GPS signal is lost, the training phase starts and the forward and 

backward computations are iteratively repeated by injecting recorded data 
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recursively into the network until the performance criterion of the minimum 

output mean square error is met.  

Two different architectures can be exploited for intelligent aiding mechanism as 

mentioned before. Aiding may be achieved either by feeding ANN-predicted 

positions or ANN-predicted position differences. These two aiding mechanisms 

have shown similar performance characteristics as will be found in Chapter 4 

since both mechanisms use the same information source: “Position aiding 

mechanism” uses the cumulative of ANN predicted position differences while 

“position difference aiding mechanism” directly uses predicted position 

differences to aid the navigation system. The main difference between these two 

mechanisms lies in the complexity. While “position aiding mechanism” requires a 

18-state Kalman filter and a position calculation process, “position difference 

aiding mechanism” directly feed ANN outputs, which are the position differences 

to the 15-state Kalman filter. These two mechanisms and corresponding Kalman 

filter structures are described in detail in Section 3.4 and Section 3.5. 

The block diagram of the prediction phase with position aiding is given in Figure 

3-3. Whenever the performance criterion of mean squared error, which is reaching 

the global minimum of mean square error, is met, ANN leaves its training phase 

and estimates every second the position difference. These estimates are added to 

the last GPS/INS (GPS is on) position and a position estimate is obtained as: 

 
k

k l i
i l=

= + ∆∑p p p  (3.2) 

where l is the last time when the GPS/INS together outputs a position solution for 

the vehicle. After l, GPS does not function and ANN starts to estimate the 

position. As a result, vehicle position is calculated as the cumulative sum of the 

position differences occurring every second, added to the GPS/INS position when 

the GPS signal was last available. This estimate is then used instead of the 

missing GPS position (Figure 3-3). 
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The block diagram of the prediction phase with position difference aiding is given 

in Figure 3-4. Whenever the performance criteria are met, ANN leaves its training 

phase and every second estimates ∆pi, the position difference. These estimates are 

fed to the navigation system instead of the missing GPS position information 

(Figure 3-4). 

Training, topology and the sensitivity analyses for these two architectures are 

common since they both employ the same neural network architecture in the 

training phase. As stated before, the main difference lies in the complexity of the 

Kalman filter structures employed for integration.  

 

 

Figure 3-3 System block diagram with p aiding (prediction phase) 
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Figure 3-4 System block diagram with ∆p aiding (prediction phase) 

3.3 Neural Network Structure 

The multilayer perceptron (MLP)-based intelligent structure shown as ANN in 

Figure 3-2, Figure 3-3 and Figure 3-4 is basically an artificial neural network 

composed of three layers which are the input (preprocessing),  hidden and output 

(post processing) layers. The hidden layers are composed of three parallel MLPs, 

each for learning navigation data of 3 different dimensions. The internal structure 

of the system is shown in Figure 3-5. 
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Figure 3-5 ANN based intelligent estimator 

The neural network is made more efficient, reliable and stable when preprocessing 

is applied on the network inputs. Inputs are scaled so as to normalize the mean 

and standard deviation of the training set to render them zero mean and unity 

standard deviation. Normalizing values are obtained by calculating the mean and 

standard deviation of every input in the training set and used to normalize the 

inputs that are applied to the network in the prediction phase. 

In the second layer of the structure, there exist three separate multilayer 

perceptron, each of which is employed to predict position difference in orthogonal 

directions. This architecture is exploited instead of three output single MLP 

architecture in order to avoid the degradation of one output while the others 

improve. This approach also increases the speed of convergence of the overall 

system by decreasing the number of neurons in each MLP so, in short, instead of 

one MLP with three outputs and high number of hidden layer neurons, the 

proposed ANN structure exploits three MLPs with very small number of neurons, 

each. 

MLP estimated outputs are then sent to the last layer of the architecture where 

they are postprocessed. In the last layer, network outputs are scaled in order to 
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normalize the mean and standard deviation of the training set such that the outputs 

will have zero mean and unity standard deviation during training phase. 

The scaled outputs are then rescaled in order to provide ∆pk in the postprocessing 

layer. Since, the postprocessing and preprocessing arrange the network inputs and 

outputs so as to have zero mean and unity standard deviation, vehicles with 

different velocity profiles and dynamics would supply similar inputs and outputs 

to MLPs and this would help the ANN to adapt to different types of vehicles 

successfully. 

3.3.1 Neural Network Topology 

Each multilayer perceptron in the ANN architecture of the proposed ANN-aided 

GPS/INS system is a feedforward network with one or more layers between its 

input and output layers which is known to be a universal approximator. The 

number of layers and the number of nodes existing in each layer mainly depends 

on the complexity of the target function. If insufficient number of neurons is 

assigned to each layer, the neural network may fail to express the input/output 

relationship accurately. On the other hand, neural network with excessive number 

of neurons may show instability and tends to memorize the training set instead of 

learning the input/output relation.  

We conduct a topology study that seeks for an optimum number of hidden layers 

and an optimum number of neurons in each layer. Candidate MLPs are chosen 

considering state space order of the system that aids to ANN. Candidate MLPs are 

each, trained with the data from the first 360 seconds of the land test and the 

convergence rate of each candidate is recorded. Moreover, each candidate MLP 

runs to estimate the vehicle altitude for the remaining 240 seconds of the test and 

the resulting altitude errors are compared in order to choose the optimum 

topology. Structure selected for height estimation is also accepted to be optimum 

for north and east position MLPs since the inputs and outputs are same in all 

dimensions. 
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Candidate MLPs run in training phase until their convergence rates fall below 

2.5x10-2. Their resulting performance characteristics in the training phase are 

given in Table 3.1. 

 

Table 3.1 Performance of candidate networks 

Topology Transfer functions Time (s) MSE (m) 

12x3x1 tansig-linear 1.220 0.00826 

12x6x1 tansig-linear 1.107 0.00536 

12x9x1 tansig-linear 1.300 0.00510 

12x6x3x1 logsig-tansig-linear 1.197 0.00544 

12x6x6x1 logsig-tansig-linear 1.729 0.00378 

12x6x9x1 logsig-tansig-linear 2.537 0.00291 

 

Based on the training performance information, the best candidate is the 

12x6x3x1 topology based on its mean square error and time of convergence. In 

order to reach a final decision, each MLP runs to estimate the vehicle altitude 

using a 240 seconds data set different from the training set. The error resulting 

from each MLP is compared in Figure 3-6. Each network runs five times in order 

to eliminate the random effects stemming from network initialization and the 

average of five runs is given in the figure. 

As seen in Figure 3-6, the architecture of 12x6x3x1 structure is also the best 

estimator among all candidates with the lowest error as time goes by. These 

results lead to the selection of this topology for the ANN architecture within the 

ANN-aided GPS/INS approach. This same architecture is also applied unchanged 

for the north and east position estimator MLPs given in Figure 3-5. 
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Figure 3-6 Altitude errors for different networks 

3.3.2 Training Algorithm 

The learning process applied to feedforward neural networks gives the network an 

ability of adapting to the changing environment and estimating the mathematical 

model of any dynamic process. 

A critical and effective issue in determining how efficient would the proposed 

network be is the learning algorithm employed in the training process. In order to 

find out the most effective algorithm for the current concept, we will compare the 

results of different algorithms and choose the most efficient one for integrating it 

into the learning phase of our proposed network operation.  

The comparison is done with the input data set constructed using the first 360 

seconds of the land test given in Chapter 2, and the desired output is assigned to 

be height difference given in Figure 3-7. The neural network used for comparison 

is a 2-hidden layer network with 12x6x3x1 structure. 
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Figure 3-7 Desired output used for comparison 

There are various learning algorithms with different efficiency and computational 

load. The difficulty in choosing a learning methodology for a defined problem 

stems from the fact that one algorithm is not universally optimum for every 

problem. In this study, speed of convergence of different learning algorithms is 

compared as a selection criterion. The algorithms compared are 

• ordinary gradient descent, 

• gradient descent with momentum parameter, 

• gradient descent with adaptive step size, 

• conjugate gradient, 

• Levenberg-Marquardt 

backpropagation algorithms. These algorithms run until the output mean 

squareerror reaches 0.01 meters. The run time for each algorithm is given in Table 

3.2. As seen in Table 3.2, Levenberg-Marquardt is the most efficient and reliable 

learning algorithm among all. The convergence rate of the three fastest algorithm 

is given in Figure 3-8. As a result, Levenberg-Marquardt learning algorithm is 

implemented in our intelligent navigation system. 
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Table 3.2 Comparison of learning algorithms 

Algorithm Time (s) MSE (m) 

ordinary gd 20.748 0.0163 

gd with momentum 17.319 0.0156 

gd with adaptive step 1.473 0.00996 

conjugate gradient 0.437 0.00999 

Levenberg-Marquardt 0.204 0.00987 

 

Figure 3-8 Convergence comparisons between 3 learning methods 

3.4 ANN Predicted Position Aiding to GPS/INS 

Intelligent navigation system shown in Figure 3-2 and Figure 3-3 aims to prevent 

the navigation system to drift when the GPS is off. As seen in Figure 3-3, ANN-
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predicted position measurements aid the navigation system by providing 

intelligent support to the INS in cases of GPS signal loss through a Kalman filter. 

Measurements feeding into the Kalman filter also require a-priori information on 

measurement characteristics in order to model the measurement and associated 

noise in the Kalman filter. Kalman filter cannot function properly without such 

information and suitable filter design. Therefore, ANN predicted position 

characteristics and its impact on the Kalman filter are examined in the following 

subsections. 

3.4.1 ANN Prediction Noise Characteristics 

ANN employed in the intelligent navigation system estimates every second the 

north east and height position differences. As a result, these estimates are added to 

the last GPS/INS position before the GPS was lost and a position prediction of the 

current time is obtained as a cumulative sum of these estimates as: 

 
k

k l i
i l=

= + ∆∑p p p  (3.3) 

where l is the last time when the GPS signals were received. After l, GPS is silent 

and ANN starts to predict the position. This prediction is then blended with the 

INS solutions using Kalman estimators. We will see in experimental analyses that 

the intelligent navigation system reaches then a more reliable and accurate 

solution. 

In order to blend ANN predictions with the INS solutions in a Kalman filter, the 

uncertainty of the predictions should be determined. As seen in (3.3), position 

estimates may be examined in two main parts. One is lp , last GPS/INS position 

solution before GPS is lost and the initial position estimate for ANN. The other is, 
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∑
=

∆
k

li
ip , the cumulative sum of the ANN predicted position differences. As a 

result, the true prediction takes the following form, 

 
k

k l i
i l=

= + ∆∑p p p  (3.4) 

However, the computed prediction kp , carries its own uncertainty and differs 

from true prediction. lp  and ∑
=

∆
k

li
ip  contributes their individual errors of the 

added terms to the prediction and causes an uncertainty on the position estimation 

given in (3.4). These errors are the bias error on initial lp  and random walk error 

on ∑
=

∆
k

li
ip . 

The uncertainty on lp  is stemming from the uncertainty on the last GPS/INS 

position. The level of the uncertainty on lp  is stored in the Kalman state 

covariance matrix P where matrix elements store and update the uncertainty of the 

GPS/INS solutions as the navigation continues. The first three diagonal elements 

of this 15x15 matrix are the position solution uncertainty that is, P11, P22 and P33 

which are the north, east and height position uncertainties of the GPS/INS system. 

Consequently, the values of these elements in the last time step where GPS is 

active determines the uncertainty on lp . This uncertainty on the ANN estimation 

generates random bias characteristics on the ANN estimation. 

The other source of uncertainty is the ANN prediction, ∑
=

∆
k

li
ip . In order to model 

this uncertainty, the noise characteristics of ip∆  should be examined. Noise on 

ip∆  will occur in different magnitudes in two different modes of the ANN 

system. It will take low values in the training phase, while it will be relatively 

high in the prediction phase. In order to model this uncertainty in the Kalman 
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filter, one should know the noise level of the prediction phase. However, the only 

information in hand about the noise level is in the training phase.  

In order to circumvent this problem, one should relate the levels of training and 

prediction phases and estimate the prediction phase uncertainty level. The land 

test data has been used to derive this relation. The neural network is trained with 

the data of the first 360 seconds of the land test and each network also runs to 

predict the three position differences for the remaining 240 seconds of the test. As 

a result, the noise levels shown in Figure 3-9, Figure 3-10 and Figure 3-11 are 

found. As seen in the figures, the training phase (first 360 seconds) noise power is 

less than the prediction phase (last 240 seconds) noise power in all directions. 

Comparing noise power at training and prediction phases, their interrelationship is 

determined. In training phase, the standard deviations of the noise on position 

differences in three dimensions are found to be m1975.0=nσ , 

m1002.0=eσ and m0782.0=hσ  for north, east and height, respectively. In 

prediction phase, standard deviations increased to m3318.0=nσ , 

m3582.0=eσ and m1406.0=hσ . From these values, standard deviations of 

prediction phase may be approximated as nearly three times of training standard 

deviations. 
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Figure 3-9 ANN north channel noise level in land test 

 

Figure 3-10 ANN east channel noise level in land test 
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Figure 3-11 ANN height channel noise level in land test 

Determining the uncertainty levels on lp  and ∑
=

∆
k

li
ip , computed ANN prediction 

kp , can be rewritten as 

 
k k

k l l i i
i l i l= =

= + + ∆ + ∆∑ ∑p p b p w  (3.5) 

where bl is the bias with an uncertainty given in P matrix and ∑
=

∆
k

li
iw is a random 

walk whose uncertainty can be estimated using the training phase standard 

deviations. 

3.4.2 Addition of Measurement States to Kalman Filter 

In the absence of GPS measurements, the inputs to the navigation Kalman filter 

are formed by taking the difference between the ANN predicted position given in 

(3.5) and the INS calculated position (Figure 3-3). To realize the Kalman filter, it 
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is required to relate these error inputs to the filter states. Employing (3.5), the 

measurements are 

 
k

k k I N I N i k k
i l

δ
=

= = − = − − ∆ + +∑z p p p p p p v w  (3.6) 

and 

 
k

k i l
i l=

= ∆ +∑v w b  (3.7) 

where I stands for INS, N stands for ANN, pN and vk are transformed from north, 

east, height into latitude, longitude, height and wk is the noise on ANN predictions 

stemming from ANN input uncertainty. As seen in (3.6), the position error 

includes uncertainties on the ANN predictions. The uncertainty given in (3.7) 

compares to three states modeled in Kalman filter for each position measurement 

error. Therefore, Kalman filter in ANN prediction phase has a 18-state structure, 

where 15 of these states are same as in the 15-state GPS/INS filter and 3 states are 

added to model measurement error given in (3.7). These new states can be 

modeled as random walk with an initial bias as: 
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, (0) ( )

L

h

x w l
x w l
x w l

λ
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= =

= =

P P
P P
P P

 (3.8) 

where standart deviations of input noises are three times of the training standart 

deviations as stated in Section 3.4.1 and initial uncertainty on each state is the 

uncertainty on the last GPS/INS position before the system enters the prediction 

phase. New 18-state Q matrix is formed by addition of corresponding input 

variances for each new state and P matrix is expanded to 18-state structure by 

adding initial uncertainties of these states. The ANN measurements may be 

related to the filter states by the following measurement matrix 
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 [ ]3 3 3 12 3 3x x x=H I 0 I  (3.9) 

since every measurement is composed of position and the corresponding error 

state given in (3.8). The uncertainty effect on the measurement that results from 

the uncertainty wk of the ANN inputs, is modeled in measurement noise 

covariance matrix, 33xR . In order to see the effect of noise on the position errors, 

two error sources are defined on velocity and attitude. It should be noted that 

noise on the other inputs has minor effects on ANN solutions. Effects of these 

error sources are investigated individually.  

For a tactical GPS/INS system, the velocity error has a standard deviation less 

than 0.5 m/s and attitude has a standard deviation less than 3 mrad in all 

directions. Therefore, velocity error is assigned standard deviation values of 0.25 

m/s, 0.5 m/s and 1 m/s while attitude error is adjusted to 1mrad, 1.5 mrad, 3 mrad 

and 5mrad. 

 

Figure 3-12 Effect of input errors on position error 
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As seen in Figure 3-12, ANN is less sensitive to noise added to attitude inputs. In 

fact, the main cause of the ANN uncertainty is the noise on the velocity inputs. 

The effect of the velocity error on the position error grows proportionally with 

time as seen in the figure. The relation between ANN input velocity noise and the 

measurement noise, which is the noise on the ANN position estimates is 

determined using data given in Figure 3-12 as  

 1
3K İ

k

k
i l

with t
=

≅ ∆∑W Vw σ σ  (3.10) 

Thus, measurement noise covariance matrix, 33xR  is determined using velocity 

uncertainties at the ANN input given in the Kalman state covariance matrix, P as 
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where 44 55 66, andP P P  uncertainties on the north, east and down velocity 

components, respectively. 

3.5 ANN Predicted Position Difference Aiding to GPS/INS 

Intelligent navigation system shown Figure 3-4 is an alternative architecture 

intending to aid the navigation system in cases of GPS signal loss. This 

architecture provides ANN predicted position differences to the Kalman filter for 

an intelligent support when the GPS is off.  

In this architecture, the inputs to the Kalman filter are formed by taking the 

difference between the position difference estimates of ANN and that of the INS 
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calculated ones. In order to realize the Kalman algorithm, these error inputs 

should be related to the filter states through an observation matrix.  

The measurement residual formed by differencing ANN and INS solutions are 

 , , , , 1 , , 1( )k k I k N k I k I k N k N k kδ − −= ∆ = ∆ −∆ = − − − +z p p p p p p p w  (3.12) 

where I stands for INS, N stands for ANN, and wk is the noise on ANN 

predictions. (3.12) may be rearranged as 

 , , , 1 , 1

1

( )k k I k N k I k N k k

k k k

δ

δ δ
− −

−

= ∆ = − − − +

= − +

z p p p p p w
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 (3.13) 

and 

 2
1

1
2

n n b
k k k b kt tδ δ δ δ− = −∆ + ∆p p v C f  (3.14) 

Substituting (3.14) into (3.13) and taking measurement interval 1=∆t second, 

Kalman measurement is expressed as 

 1
2

n n k
k k k b b kδ δ δ= ∆ = − +z p v C f w  (3.15) 

Using (3.15), the Kalman measurement matrix H takes the following form 

 3 3 3 3 3 3 3 3
1
2

n
x x x b x

⎡ ⎤= −⎢ ⎥⎣ ⎦
H 0 I 0 C 0  (3.16) 

where the 15 state Kalman filter state vector is 

[ ]Tzyxzyxzyxden fffvvvhL δωδωδωδδδεεεδδδδδλδ .

The noise analysis given in Section 3.4.1 shows that in prediction phase the 

standard deviations of the noise on position differences in three dimensions are 
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m3318.0=nσ , m3582.0=eσ and m1406.0=hσ  for north, east and height, 

respectively. We model the uncertainty in measurement noise covariance matrix 

as 5 times of the found values of m3.0,, ≅enhσ in order to decrease the 

dependency of the system on ANN and to stand in the safe side in case of wrong 

ANN predictions. This yields to an 33xR  which may be expressed as  

 3 3R 2.25 x= I  (3.17) 

3.6 Sensitivity Analysis 

3.6.1 Sensitivity to Neural Network Weights 

When backpropagation learning is applied for training a neural network, the 

connection weights may converge to different values depending on the learning 

algorithm, learning rate, initial weights and input pattern. Thus, in order to select 

weights generating lower sensitivity and to estimate of the output pertubations due 

to weight uncertainty, it is important to analyze the sensitivity of the neural 

network (Choi (1992), Lamy (1996)). 

Statistical sensitivity to weight perturbations for weights W and an input pattern is 

defined as: 

 3,

0

var( )
lim out

σ σ→

∆
=

x
S  (3.18) 

where out,3x∆ is the output error, var is the variance and σ is the standart deviation 

on the nominal values of each weight. 

In a multi-output network as it is the case in this study, each output has its own 

sensitivity. For sufficiently small perturbations on the weights, the error and also 

the sensitivity of the network can be approximated using first order Taylor series 
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expansion. However, for high amount of perturbations, sensitivity should be 

determined with numerical analyses. 

In order to find the sensitivity, the following equation, which gives the change in 

neural netwrok output due to the changes in previous layer weights, is employed. 

The notation can be found in (Saad (1998)). 

 1 1 1 2 2 2 2 2 2
,3 ,2( ) ( ) ( )out out⎡ ⎤∆ = ∆ + ∆ + ∆⎣ ⎦x D G v W D G v W D G v W x  (3.19) 

Using the given relation and also making use of numerical analyses, the 

sensitivity of the intelligent navigation system is found and plotted as in Figure 

3-13. In the figure, lines are the results of the analytical approach and symbols ◊, 

* and ○ stand for numerical results. The graphics display the standard deviation of 

the 3 outputs with respect to standard deviation of the weight uncertainty. 

 

Figure 3-13 Standard deviation of the output for test 

Numerical and analytical analyses match for small perturbations on the weights 

and differ for larger pertubations since the error and also the sensitivity of the 

network is approximated using first order Taylor series expansion for numerical 
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analyses. Moreover, all MLPs show similiar sensitivity to weight uncertainty 

since they own same architecture.  

After training the ANN with the data from the first 360 seconds of the land test for 

many times it is seen that the standard deviation of the weights is less than 0.005. 

Therefore, with a sensitivity less than 10 in all directions (Figure 3-13), the ANN 

position difference estimations would not deviate significantly.  So ANN system 

used in our intelligent navigation system is not sensitive to weight uncertainties.   

Having found that the system is not sensitive to weight changes, we concentrate 

on the ANN sensitivity to the training set in the next section.  

3.6.2 Sensitivity to Learning Set 

The neural network performance in the prediction phase is highly dependent on 

the training pattern. If training pattern does not include enough information on the 

vehicle dynamics and environment, the neural network predicted positions may be 

far from being precise and the accuracy of the overall intelligent system may 

degrade when the system is exposed to conditions different from the ones learned 

in the training phase. Thus, having insufficient training information about possible 

conditions that may occur, degrades the navigation solutions. 

Sensitivity of the proposed system to the learning phase is investigated employing 

a flight scenario for an airborne vehicle. The main impetus behind the use of an 

airborne vehicle instead of a land vehicle for the analysis is its capability to move 

at very different dynamics. Training the network in some dynamic environment 

and running it for prediction in a very different dynamic is only possible with a 

high dynamic vehicle such as a subsonic aircraft.  

In our study, we make use of a subsonic aircraft data taking off from an airport 

and climbing to 12000 meters in first 500 seconds with smooth heading changes. 

After reaching the 12000 meter altitude, the aircraft goes through an 180˚ head 
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change with a low-g maneuver in 200 seconds and then begins its high-g 

maneuvers for the rest of flight.    

The system runs in the learning phase for 500 seconds of flight (traced in blue) 

and runs in prediction phase for two consecutive 200 seconds of flight traced in 

red and green in Figure 3-14. Each phase is termed “training” for the trained 

portion of the trajectory, “prediction I” for the first sequence of prediction and 

“prediction II” trajectory for the last sequence of prediction.  

As seen from Figure 3-14, the “training trajectory” and the “prediction I 

trajectory” consist of low-g maneuvers and share low dynamics of flight. On the 

other hand, “prediction II trajectory” consists of high-g maneuvers different from 

the “training trajectory”. Thus, “prediction I” is expected to be more accurate than 

“prediction II” since the training set is composed of low-g maneuver data of 

“training trajectory”.  

Comparison of “INS only” and ANN aided GPS/INS errors in 3D are given in 

Figure 3-15 and Figure 3-16 for two different phases of the trajectory. These 

figures show that the ANN aided GPS/INS provides better navigation solutions in 

low dynamic environment of “prediction I trajectory” than high dynamic 

environment of “prediction II trajectory” and ANN aided GPS/INS system is 

sensitive to the training data.  

As a result, it is seen that richness of the information in the training set is critical 

for the accuracy of intelligent navigation system and the solution degrades when 

the system is exposed to dynamics very different than the ones included in the 

training phase. Thus, for an accurate prediction phase, the system should 

experience the dynamical environment, it may undergo during the GPS signal 

loss, during the training phase. 
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Figure 3-14 Trajectory employed for sensitivity analysis 

 

Figure 3-15 Comparison of 3D position errors for ‘prediction I’ trajectory 
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Figure 3-16 Comparison of 3D error for ‘prediction II’ trajectory 

3.7 Summary 

GPS/INS systems yield high performance navigation solutions provided that the 

GPS receiver operates. However, when it fails to receive satellite signals GPS/INS 

would yield degraded navigation solutions. In order to handle the problem in a 

cost effective manner, a mechanism aiding the integrated GPS/INS system with an 

artificial neural network is proposed in this chapter. 

In the proposed system, the ANN is trained with the position difference of the last 

second when GPS is on and ANN leaves its training phase and estimates every 

second the position difference when GPS signal is absent. Two different 

mechanisms, namely “position aiding” and “position difference aiding” are 

proposed in order to integrate position difference predicting ANN to the GPS/INS 

system. Both mechanisms use the ANN provided predicted position differences, 

to provide information to the integration filter and share the same ANN 

architecture. 
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This chapter also investigates the neural network structure composed of 

preprocessing, hidden (3 MLPs for each direction) and postprocessing 

performance analyses comparing different training algorithms and topologies 

concluded, 12x6x3x1 (logsig-tansig-linear) MLPs with Levenberg-Marquardt 

training algorithm are most suitable to be used due to lower time of convergence.  

Towards this decision, a detailed noise analysis of the ANN is conducted in order 

to integrate both aiding mechanisms to the Kalman filter. A 18-state Kalman filter 

is realized for “position aiding”, while the GPS/INS filter is used for “position 

difference aiding”. Measurement noise levels and characteristics are generated 

and analyzed.  

Having constructed the ANN aided GPS/INS system, sensitivity analysis is 

conducted on the neural network and change of the output pertubations due to the 

weight uncertainties are investigated. As a result, it is found that the system is not 

sensitive to weight changes. 

Another sensitivity analysis is run in order to investigate how the neural network 

performance in the prediction phase is dependent on the training pattern.  For the 

analysis, flight scenario for an airborne vehicle is utilized and it is seen that 

richness of the information in the learning set is critical for the accuracy of 

intelligent navigation system. Thus, the system should experience all possible 

dynamics during the training phase for an accurate ANN-aided GPS/INS system 

operation. 

In the next chapter, real time test results showing the performance of the proposed 

navigation systems are presented. 
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CHAPTER 4 

4.EXPERIMENTAL RESULTS.4 

4.1 Introduction 

This chapter demonstrates the performance of two intelligent navigation systems, 

namely ANN predicted position aided navigation and ANN predicted position 

difference aided navigation, with two land tests: a) cluttered field where the route 

has severe attitude changes and populated with buildings and trees, b) open field 

where the route is smooth. Both tests are conducted using the van introduced in 

Section 2.6.1 as the test vehicle. In this chapter, GPS/INS computed navigation 

solution is employed as reference and the intelligent navigation system and 

inertial system is compared to this reference in order to find the performances. 

The experimental setup employed in order to carry out land tests was described in 

Section 2.6.1. The cluttered and open field trajectory, test vehicle and test 

hardware used during the tests were also introduced in the same section. The 

reader is referred to that section for recalling the test equipment namely the ALV 

and the test path. 

This chapter presents the navigation results of a van traveling in the cluttered field 

and open field test routes, using intelligent aiding in order to correct the inertial 

errors occurring during the GPS signal loss. The following section also conduct a 

comparative analysis based on the test results. 
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More specifically, in sections 4.2 and 4.3, GPS/INS computed navigation solution 

is compared to the proposed intelligent navigation system in terms of performance 

evaluation. The proposed intelligent navigation system adopts the two different 

architectures presented in Chapter 3: namely the ANN predicted position aided: 

called the ANN-I/INS system and the ANN predicted position difference aided: 

called the ANN-II/INS system in the following sections. 

The results of cluttered field test are comparatively analyzed in Section 4.2 while 

the results of open field tests are presented in Section 4.3. 

4.2 Cluttered Field Campus Test 

This test is conducted in Middle East Technical University campus for 500 

seconds where raw IMU data, GPS data and GPS/INS data are collected 

throughout the test navigation. INS only and ANN aided navigation data is 

obtained by postprocessing the raw IMU data. ANN is trained using the test data 

collected within the first 230 seconds of the route; afterwards it begins to estimate 

the position difference and position for the remaining 270 seconds of the test 

navigation, based on its prior learning. 

Figure 4-1, Figure 4-2 and Figure 4-3 presents the north position, east position 

and height solutions of GPS/INS, INS only, ANN-I/INS and ANN-II/INS 

structures.  

The main portion of the test path is aligned with the north direction. Thus, the 

north channel of the inertial navigation system is observable during the test 

navigation. As a result, INS only north position error (800 m) given in Figure 4-1 

is less than the INS only east position error (3000 m) given in Figure 4-2. As the 

test vehicle navigates in north-south direction, it excites the errors in this direction 

and allows the Kalman filter to observe and correct these errors. This is not the 

case for east-west channel of the navigation system.  
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Vertical channel error is about 120 m after 270 seconds of INS only navigation. 

This is due to the fact that the z-axis accelerometer bias converges to the real 

value as a result of high observability in this channel. This channel is highly 

observable since it senses 1-g gravitational force during the test, which is not the 

case in other accelerometers sensing horizontal force components. As a result, 

INS only navigation gives the best results in vertical channel.  

Observability in GPS/INS system is directly related to the learning set of ANN 

system. All the error sources should be excited in a GPS/INS system to provide 

high observability over the system states. The system should experience all 

possible dynamics during “GPS on” navigation to achieve observability. This may 

be translated into ANN learning as the availability of a rich learning set covering 

all possible dynamics that the vehicle may face during navigation that would 

improve the ANN performance during prediction phase. From this discussion, one 

can conclude that ANN aided navigation results should provide better position 

performance in the channels where INS only position performances are better.  

If we compare the position performances in north, east and vertical channels for 

both ANN aided navigation architectures, we see that the vertical position error is 

around 20 m, while north position error is 100 m and east position error is 150 m. 

This is what we expect from the above discussion. 

Moreover, predicted position aided and predicted position difference aided 

intelligent navigation systems have similar performances such that both intelligent 

systems drifts only 200 meters during 270 seconds of GPS signal loss (Figure 

4-4). As they use the same neural network architecture and they share the same 

source of information, it is natural to have same errors for these two approaches. It 

should be noted that the only real difference between these two architectures is the 

aiding mechanism and this does not change the uncertainty characteristics of the 

information fed into the Kalman filter. Thus, both mechanisms reveal same 

performance characteristics. 
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As seen in Figure 4-1, Figure 4-2 and Figure 4-3, the ANN aided structure 

position solutions outperform INS only position solutions in all directions. While 

INS only navigation drifts nearly 3000 meters, intelligent aiding bind the errors at 

nearly 200 meters (Figure 4-4) during the 270 seconds of GPS signal loss. A 

similar trend may be observed in velocity solutions given in Figure 4-5. ANN 

aided system binds the velocity error under 7 m/s which exceeds the value 20 m/s 

in the case of INS only navigation. Thus, the intelligent navigation system 

suppresses successfully the navigation errors using the generated navigation data 

within the first 230 seconds of the test route. Our proposed system has been found 

to outperform the non-aided GPS/INS system in cluttered field land test.   

 

 

Figure 4-1 The north position solutions of GPS/INS, ANN-I/INS, ANN-II/INS 

and INS only structures.  

GPS lost
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Figure 4-2 The east position solution of different structures. Both of the ANN 

aided structures suppress INS only structure errors as proposed. 

 

Figure 4-3 INS only solution drifts very fast while ANN aided solutions 

outperform the INS only solution. 

GPS lost

GPS lost



 89

 

Figure 4-4  Total position error after 270 seconds of GPS loss 

 

Figure 4-5 Intelligent structures prevent the velocity to drift  
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4.3 Open Field Test 

The test is conducted in the open field for 250 seconds. Raw IMU data, GPS data 

and GPS/INS data are stored in the laptop computer throughout the test. INS only 

and ANN aided navigation data is obtained by postprocessing the raw IMU data 

as in the cluttered field campus test. ANN is trained using the test data collected 

within the first 200 seconds of the route; afterwards it begins to estimate the 

position difference and position for the remaining 50 seconds of the test run. 

Intelligent navigation system and INS only position solutions does not deviate 

from the true track as in cluttered field test since the test run is short. However, 

intelligent navigation systems still provide more accurate solutions than the INS 

only system.  

Figure 4-6 and Figure 4-7 present north and east position solutions provided by all 

navigation systems under test. As seen in Figure 4-6, INS only system shows a 

higher drift trend compared to the performances of the intelligent systems. 

However, the error does not grow because of the short test time. Yet, the 

intelligent systems have still less error and achieve to follow the reference 

solution provided by GPS/INS system. In east direction, all of the systems 

generate position errors comparable to each other (Figure 4-7).  

Examining both Figure 4-6 and Figure 4-7, it is seen that the errors in both 

directions are similar in magnitude. This is one of the main differences between 

open field and cluttered field tests. As mentioned earlier, the test vehicle navigates 

in north-south direction and excites the errors in this direction. Thus, it allows the 

Kalman filter to observe and correct these errors in cluttered field test. However, 

open field test route is aligned with the north-east direction, which makes both 

directions equally observable. Thus, unlike the cluttered field test open field test 

generates comparable errors of 7 m in north and 5 m in east direction. 
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Vertical channel error of intelligent systems is around 4 m, while it exceeds the 12 

m value in INS only system (Figure 4-8).  This is due to the learning capability of 

the intelligent system during “GPS on” period of the test. In vertical channel, it is 

also seen that the intelligent navigation systems follow the GPS/INS solution 

while the only-INS system deviates into the wrong direction. 

As a result, ANN aiding achieves to decrease the position error of the INS only 

system from 32 m to 11 m (Figure 4-9). In cluttered field test, this decrease was 

from 3000 m to 200 m. This difference between two tests is mainly due to the 

short test time of the open field run. As seen from the error growth trends and the 

velocity errors (Figure 4-10) of intelligent navigation and the INS only system, 

the error would probably explode if the run was longer.  

 

Figure 4-6 The north position solutions of GPS/INS, ANN-I/INS, ANN-II/INS 

and INS only structures for the short navigation test in which GPS signal is lost 

for last 1 minute. 

GPS lost
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Figure 4-7 The east position solutions for the test. 

 

Figure 4-8 ANN aided navigation achieves to follow GPS/INS solutions while 

INS drifts off. 

GPS lost

GPS lost
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Figure 4-9 ANN structures produce only the 1/3 of INS position error at the end 

of the test. 

 

Figure 4-10 ANN achieves to diminish the INS velocity error throughout the 

navigation. 
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4.4 Conclusion 

This chapter demonstrated the performance of the ANN predicted position aided 

navigation and the ANN predicted position difference aided navigation with a 

cluttered field and an open field land test.  

The proposed structure is found to perform extremely well in ALV tests. The 

main reason is that GPS/INS+ANN system learns navigation behavior patterns 

from past experience which aid substantially navigation accuracy.  

The proposed system shows that with enough training, it can decrease a 3 km 

error to 200 meters as in the cluttered field test (Figure 4-4). It achieves to provide 

accurate position solutions beyond a GPS signal loss of 270 seconds. Moreover, 

the proposed system can provide accuracy of nearly 10 meters during 1 minute of 

GPS loss as seen in Figure 4-9 of open field test.  

Especially “10 meters accuracy during 1 minute of GPS loss” performance 

achieved at open field test is very critical for vehicles that enter enclosed areas for 

short periods of time. 

As a result, the intelligent navigation system meets the demand for high 

performance integrated navigation systems with high reliability and accuracy even 

in the absence of GPS signal. It outperforms INS only navigation in all directions, 

in both tests. 
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CHAPTER 5 

5.VIBRATIONAL EFFECTS IN AUTONOMOUS LAND 

VEHICLE DYNAMICS.5 

5.1 Introduction 

Autonomous Land Vehicles have received considerable attention after their 

introduction into the military and commercial applications such as monitoring, 

agriculture, exploration and survillance. In the previous sections, we have 

developed an intelligent, reliable and accurate navigation system which is critical 

to provide the autonomy in ALVs. Although an accurate and reliable navigation 

system is one of the requirements for autonomy, another equally crucial 

requirement is to have a robust planner.  

Autonomy in the autonomous land vehicles (ALVs) depend heavily on a 

controller which is robust under unexpectedly changing environments, therefore 

has to be intelligent enough to know by experience what to expect from the 

dynamic behaviors in state space. ALV controllers still stand as a challenging 

research topic due to their high operational and dynamical complexity. One of the 

main problems arising in the robustness of ALV controllers, is the dynamic 

interaction of the vehicle with irregular roads which causes vibratory motion on 

the chassis and may prevent the vehicle and its cargo function properly (Mays 

(2000)). As stated in Chapter 2, vehicle vibration has a harmful effect on the 

performance of navigation systems since inertial sensors have a limited bandwidth 
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and reject the motion vibration at high frequencies. This vibration contributed 

navigation system errors are eliminated using mechanical filters known as 

vibration absorbers and “coning compensation” and “sculling compensation” 

algorithms in the navigation subsystem. Thus, the remaining vibration has no 

adverse effect on the computations.  

However, the vibration still affects the other electronic and mechanical 

components during the operation of the ALV. This vibration may damage ALV 

cargo (e.g. tracking camera) and may prevent it to function properly during the 

mission. An intelligent control that suppresses the vibration is then critical for the 

health of cargo and mission. However, such a control mechanism requires the 

precise investigation of the states related to the oscillatory motion, in order to 

decrease the unwanted effects originating from these oscillations.  

Due to complex problems within ALVs, their control still stands as a challenging 

research topic where the main problem lies in mathematical modeling and global 

analyses of the dynamics of ALVs in different environmental conditions. The 

global analysis of the state space is of great importance, especially in this control 

modality towards the stability of vehicle/road nonlinear system. One can adopt the 

widely used technique of generating domain of attractions using cell to cell 

mapping (Hsu (1980a, b)).  

This chapter mainly deals with 

 modelling of the vehicle/road nonlinear system, 

 the analysis of the global stability not only with cell to cell mapping but 

together with Lyapunov exponents, 

 and the analysis of vehicle response to different road conditions. 
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The first step of our approach is the problem of modelling the system. Detailed 

studies conducted in the literature are given in Section 5.2 and the model used in 

this thesis is introduced in Section 5.3.  

For the global analysis of system behavior the well-known method of cell to cell 

mapping, proposed by Hsu is used (Section 5.4). This method is based on 

partitioning an N-dimensional state space into a large number of cells and 

determining the stability characteristics of these cells. Domain of attraction is then 

formed as sets of cells in the cellular state space after a predefined number of 

integration performed by taking the center of every new cell as the initial point of 

the next iteration (Hsu (1980a, b)). More than just processing cells by this well 

known methodology of cell to cell mapping, we hereby expand the methodology 

by also examining the system behavior in control space through the Lyapunov 

exponents of the mapping in order to classify cells as regular and chaotic. This 

classification will enable control system designer to determine the regular space 

of the system through its chaotic boundaries and will provide the maximum 

operational state space to the controller. 

This will lead in Section 5.5 to the frequency response of the vehicle in terms of 

changes in its state space to different road conditions using cell to cell mapping. 

The results of the analyses conducted in this chapter will lead us to the novel 

approach on how to generate a control less sensitive to vibration for the ALV we 

use, which will be the topic of Chapter 6. 

5.2 The Existing Works: Vehicle/Road Interaction 

Analysis on vehicle/road/cargo and/or occupant systems have been done 

intensively since early 70’s, exploring linear or nonlinear models assuming 

random or nonrandom road irregularities (İleri (1990)). 
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Patil et al. (1978), investigated the multi-degree of freedom model of 

tractor/occupant over sinusoidal road irregularity. Numerical responses for two 

types of suspensions are found and analysis are carried out in order to obtain the 

suspension parameters minimizing occupant’s vibration. 

Dodds and Robson (1973) described road irregularities as a stationary random 

process and argued that the response of a vehicle on a given road is determined by 

the theory of random vibrations. Kamash and Robson (1978) stated that the 

precise road description is not a necessity but that the statistical description of a 

road can be admissible. 

Czerny and Popp (1987), formulate the vehicle as a linear time-invariant multi-

axle system over irregular road modelled as colored noise. LeBlanc et al. (1987), 

has studied the effects of vehicle suspension nonlinearities on the irregular 

guideways experimentally. They showed that the nonlinearities mainly depend on 

the tires, suspension spring and damping coefficients. 

Misoi and Carson (1989) indroduced the results showing that a vehicle’s 

suspension acts as a low-pass filter and by driving faster than the velocity at 

which the sinusoidal road irregularity matches the suspension resonant frequency, 

one can reduce the vibrations. 

While all the above analyses use classical techniques of nonlinear dynamics such 

as linearization, approximate methods to determine periodic, quasi-periodic 

constraints and assumption of well-behaved state regions, Ileri has introduced a 

novel numerical analysis of the nonlinear vehicle models (İleri (1990)) and has 

shown that the state space of a land vehicle over irregular road is composed of 

islands of regular and periodic motions among a multitude of chaotic trajectories.  

Recently, Mays and Faybishenko (2000), analysed the irregularity as a complex 

dynamic system resulting spatial chaos. Hence, they have shown that chaotic 

motion of the vehicle is typical where periodic motion of accumulation states is 
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slightly disturbed by any uncertainty inherent in the states of the system 

dynamics.  

This thesis work also uses modern analysis methods in the investigation of vehicle 

response on irregular roads to contribute to the existing literature by providing the 

operational state space to the controller for different road conditions (Chapter 5) 

and decontaminating it as much as possible from any uncertainty (Chapter 6). 

5.3 Description of the ALV Model 

Our GPS/INS guided autonomous land vehicle (ALV) equipped with tracking 

camera was introduced in Section 2.6 as a vehicle designed to function on 

irregular terrains as well as smooth ones (Figure 2-14). We model our vehicle as 

composed of a chassis body and lumped tires represented by nonlinear springs in 

parallel with velocity dependent dampers (Figure 5-1) where the ALV and terrain 

model parameters are given in Table 5.1. These model parameters are acquired 

from (İleri (1990)) where a detailed modelling work has been conducted using 

experimental data. Equations of motion are derived based on the following 

assumptions: 

-the road profile is approximated by a sinusoidal shape, 

-a phase shift is introduced between the sinusoidal shape of the road portions in 

order to realize irregularity, 

-the vehicle is considered in the longitudinal plane only, 

-forces and couplings due to wheel rotations are neglected, 

-translational and angular displacements are assumed to be small enough for tire 

and spring motions so that nonlinear springs remain within their elastic range, 

-the vehicle is kept in cruise control with constant velocity. 
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ALVs generally cruise with a predetermined constant velocity. Road irregularities 

are generally washboards in unpaved roads with a sinusoidal shape and amplitude 

of nearly 50 mm (Mays (2000)), and such a road profile introduces a phase shift 

between the forces on front and back tires. The forces on tires stemming from low 

amplitude road irregularities cause small translational and angular displacements 

enough for the nonlinear springs to remain within their elastic range. Hence, the 

assumptions given above for our ALV/road interaction are general and enough for 

our model to be as close as possible to the physical system. 

The chassis displacement follows a nonlinear behavior that we modeled as 
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based on the mentioned assumptions. 

The pitch vibration on the other hand obeys the following equation 
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 (5.2) 

Here, θ  is the body pitch angle, θ  the angular rate, y  the vertical displacement 

and y the vertical velocity. As seen from (5.1) and (5.2), the given spring-mass-

damper system consists of third order nonlinear damping and stiffness 

coefficients.  
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Figure 5-1. Schematic diagram of the model 

 

Table 5.1 System Parameter Values 

1ik  Spring constant of back tire  496.38 kgf/cmi 

2ik  Spring constant of front tire 553.28 kgf/cmi 

1ic  Damping constant of back tire 4.434 kgf/cmi/seci 

2ic  Damping constant of front tire 2.374 kgf/cmi/seci 

m  Vehicle mass 271.889 kgf/cm/sec2 

a  Distance of back tire from C.G. 84.7 cm 

b  Distance of front tire from C.G. 118.5 cm 

a b
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ρ  Radius of gyration 102.24 cm 

L  Length between tires 203.2 cm 

A  Amplitude of impressed vibration 5 cm 

α  Phase angle between front and 

back tires 

160º 

ω  Forcing frequency 1 rad/sec 

Under certain conditions, such a system with two degrees of freedom may exhibit 

chaotic fluctuations (Moon, (1987)). In Section 5.4, we will attempt to capture this 

behavior by the global stability analysis conducted on our ALV system.  

5.4 Global stability analysis of ALV using cell to cell mapping  

In order to determine the system characteristics and capture a global picture of 

stability, cell to cell mapping technique is applied to generate the state space of 

our ALV dynamics given in Table 5.1. over irregular roads. y1 and y2 of the states 

vector [y1, y2, y3, y4] =[ y , y , θ , θ ] are forced to take different initial conditions 

such that global analysis is conducted on a projection subspace where y3 and y4 are 

taken constant and the 2D space is directly affected by the vertical translational 

motion of the vehicle. The space is divided into 2D cells of dimension hxh such 

that a point yi belongs to cell Zi if 

 1 1( ) ( )2 2i i iZ h y Z h− ≤ < +  (5.3) 

where interval size for both dimension is taken as h=0.096, in our case. 
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As stated before, vibration absorbers with resonance frequency of 35 Hz are 

introduced to the physical environment and the effective vibrational amplitudes is 

guaranteed to be less than 35 Hz.  Thus, a sampling frequency greater than 70 Hz 

is enough to capture the dynamical behavior from Nyquist theorem. So the system 

of differential equations is discretized using the Euler integration rule with a time 

step of 1x10-2 seconds (100 Hz). At each step, starting from cell Z(n), the centre 

point y(n) of Z(n) is first taken in the discrete process as the initial state and the 

point y(n+1) is generated as output of the Euler integration such that Z(n+1), the 

image cell of Z(n), is obtained as the cell within which the calculated point y(n+1) 

lies. The next iteration is performed by taking the centre point of Z(n+1) as the 

initial point and this discrete cell to cell mapping is continued for 1000 steps.  

At every step, we also find the Jacobian matrix in order to calculate cell Lyapunov 

exponents what we incorporate into cell to cell computations. Lyapunov 

exponents are used to quantify the expansion and contraction occurring in a 

dynamical system. They are used to determine the stability of any type of steady 

state behaviour. What distinguishes a strange attractor from the other types of 

attractor is the existence of at least one positive Lyapunov exponent. 

Incorporating Lyapunov exponents into cell to cell mapping, one can analyze the 

global phase plane and determine the chaotic (if there exists) and stable (regular) 

regions of the dynamical systems which is in our case the ALV dynamics on 

irregular roads.  

Vibration sensitive and insensitive stability regions of our ALV system are 

obtained in Figure 5-2 for a sinusoidal terrain roughness with amplitude of 5 cm. 

over a state space partitioned into 101x101 cells and using vehicle parameters 

given in Table 5.1. The interval lengths h1 and h2 defining the sizes of each side of 

a cell are selected as 0.096 and 0.096 for y1 and y2, respectively. The analysis in 

state space is conducted over a ±5 cm displacement by 101x101 cells with each 

having 0.096 cm cell size since irregularities on unpaved roads impress vibration 

of peak amplitude up to 5 cm as mentioned in (Mays (2000)). 
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The regular part of the domain of attraction is depicted with dark cells while the 

other cells are chaotic according to the Lyapunov exponents. For every regular 

(dark) cell given in the figure, the maximum Lyapunov exponent is found to be 

negative. Other cells have positive maximum Lyapunov exponents. The regular 

region is the domain where chassis controller design can be achieved in order to 

totally suppress the road induced vibrations. 

Consequently, the analysis using cell to cell mapping equipped with Lyapunov 

exponents shows us that the chassis of the vehicle travelling on an irregular road 

can produce a chaotic response depending on the initial condition. 

 

Figure 5-2 y1-y2 phase plane for road vibration of 5 cm 

The dimension of the attractor shown in Figure 5-2 is indicative of chaos and 

should have a fractal value. The dimension of the system can be found using the 

Lyapunov dimension definition.  
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The Lyapunov exponents of the chaotic attractor seen in Figure 5-2 are found to 

be  
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Then the Lyapunov dimension of the attractor is found as follows:  

 80.1 73.92 4.28
67.2lypd +

= + =
−

 (5.5) 

which is fractal. 

As a result, capturing chaotic fluctuations and determining the regular regions for 

chassis controller design is achieved through the phase plane for road 

irregularities as in Figure 5-2.  

Another important issue arising at this step of analyses is the effect of different 

road conditions on the stability conditions of our ALV system. We analyze this 

issue in Section 5.5. 

5.5 Change in stability due to road condition changes 

As given before, irregularities on the unpaved roads impress vibrations which can 

be approximated by a sinusoidal shape. Different road conditions induce 

sinusoidal vibrations of different frequencies and peak amplitudes. As a result, 

one should investigate the changing road conditions and its effect on the vehicle 

dynamics in order to capture the overall picture of the stability/chaos and control 

of the chassis. 

The effect of road-induced frequency changes can be directly investigated by 

frequency analysis of the vehicle/road model given in (5.1) and (5.2). We use the 
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time-integration method for analyzing the frequency response of the system from 

the initial state [0, 0, 0, 0] by applying sinusoidal inputs with different frequencies 

until the system reaches its steady state for each frequency. The analysis is 

conducted below 5 Hz since this is the peak frequency where the vibrational 

amplitudes have severe effects on the system (Patil (1988)). The resulting 

frequency response is given in Figure 5-3-Figure 5-6. As seen in the figures, the 

vehicle suspension acts as a low-pass filter and road induced vibrations over 1 Hz 

are damped. Consequently, vibrations below 1 Hz are investigated to find out the 

effect of changing frequency on the overall picture of the stability/chaos of the 

chassis. The phase plane at 0.5 Hz is given in Figure 5-7 while the one for 0.16 Hz 

is given in Figure 5-2. As seen in the figures, the chaotic area decreases with the 

increase in frequency. 

 Consequently, it is seen in the analysis that as the vibration frequency increases 

the chaotic field would vanish. Chaotic vibrations with strong high frequency 

components cannot exist in the ALV system due to the fact that the system 

behaves like a low pass filter (Figure 5-3-Figure 5-6). If road induced vibrations 

are over 1 Hz, they are filtered by the system and cannot lead to chaotic 

oscillations. However, vibrations below 1 Hz pass through the system and excite 

the chassis in a manner that strong chaotic vibrations occur.   
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Figure 5-3 Frequency response of vertical displacement 

 

Figure 5-4 Frequency response of vertical velocity 
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Figure 5-5 Frequency response of pitch angle 

 

Figure 5-6 Frequency response of pitch rate 
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Figure 5-7 y1-y2 phase plane for road vibration of 5 cm 

Different road conditions may also induce different peak amplitudes. As 

mentioned in (Mays (2000)), irregularities on unpaved roads impress vibration of 

peak amplitude up to 5 cm. In order to investigate the changes of road conditions 

affecting the domain of attraction for the current system, the impressed vibration 

amplitude, A  is varied with different values such as 5, 3 and 1 cm with the forcing 

frequency of 1 rad/sec given in Table 5.1. The domain of attractions for changing 

vibration amplitudes is given in Figure 5-2, Figure 5-8 and Figure 5-9. As seen 

from the figures, as the vibration amplitude increases, the chaotic region in the 

attraction domain decays in its area coverage. It is found that chaotic region 

decreases 15% and 24%, respectively when vibration amplitude changes from 1 

cm to 3 cm and to 5 cm. 

Change in road conditions and thus vibration has a serious effect on regular 

regions in state space, in particular, the controllable regular region increases with 

the increasing vibration amplitude. Therefore closely repeated irregularities on  
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Figure 5-8 y1-y2 phase plane for road vibration of 3 cm 

 

Figure 5-9 y1-y2 phase plane for road vibration of 1 cm 
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roads (vibration of sharp small magnitudes-1 Hz), which is the frequent nature of 

country roads, will decrease the controllable regular regions in state space.  

After determining the regular region of the system, the challenge remains in 

determining the boundary region, since regions are sensitive to changes on their 

boundaries. So if we want to increase robustness of the vehicle to uncertainty and 

vibrations created by irregularity of roads, we have to not only determine the 

boundary of the regular regions but also smooth its roughness enlarging the 

regular region thus the regular controllable region. 

Analyses are focused on the 5 cm vibration case from now on without loss of 

generality. Chapter 6 deals basically with the identification of the regular/chaotic 

states that make up the boundary region of the domain. This chapter employs the 

fractal dimensions and the rough set theory to construct a more detailed picture of 

the regular region and its boundary by modelling the inherent uncertainty. 
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CHAPTER 6 

6.DETECTING ONSET OF CHAOS AND INTELLIGENT 

OPERATIONAL REGION ENLARGEMENT.6 

6.1 Introduction 

In analyzing nonlinear dynamical systems, one is often interested in the local 

behavior of the system around its equilibrium states. The local system behavior 

information around equilibrium point and the determination of the global regular 

domain are critical in order to conclude on the control strategies and to assign the 

relevant parameters for the system controller.  

In some cases such as vehicle/road interaction, the regularity of the boundary 

region of a domain of operation in the state space of a dynamical system is 

frequently fractal and the precise identification of the regular region imbedded in 

that domain is nearly impossible. This identification uncertainty renders the use of 

classical approaches very inefficient. 

In order to overcome the problem of fractal boundaries a probabilistic approach 

instead of a precise prediction is suggested in (Hsu (1980a, b)) where domains of 

attractions are generated using cell to cell mapping in examining the regularity of 

nonlinear systems. However, such domains of attraction based on cell to cell 

mapping technique are far from being precise on the boundary of the region: 

having possible chaotic elements, the boundary region of the domain of attraction 

introduces an uncertainty into the regularity region. Comparing Figure 5-2 and 
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Figure 6-1, one can easily see the precision problem of cell to cell mapping 

technique. Some of the regions, which are classified as regular in Figure 5-2 are in 

fact chaotic in Figure 6-1 and vice versa. As a result, the boundary region contains 

an uncertainty in the identification.  

The extraction of regular regions in state space using cell to cell mapping 

technique renders the precision of the region mainly dependent on the cell size. 

Figure 5-2 is generated for cell size 0.096, while Figure 6-1 is generated for the 

same system for cell size 0.024. To have a true picture of stability for a dynamical 

system, the cells should be infinitely small and the state space should be divided 

into infinitely many cells. This means every point in state space will then be 

treated as a cell and cell to cell mapping technique becomes a point to point 

mapping process, which takes an infinite, infeasible, amount of time.  

At this point, the only approach is seen as adjusting the cell size according to 

design purposes and taking this discretized but uncertain stability region as the 

global stability information (Thompson (1990)). However, until now, no study has 

been conducted to model the uncertainty in this discrete possibly stable region and 

to form a control strategy suitable for that model. 
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Figure 6-1 y1-y2 phase plane for road vibration of 5 cm (400x400 cells) 

We propose a novel approach to provide a solution in this virgin field by 

modelling and smoothing the imprecision stemming from cell to cell mapping 

using an intelligent technique that integrates several phases:  

 modelling the dynamic system and determining the states which cause 

uncertainty in the regular region, 

 analyzing global stability not only with cell to cell mapping but together with 

Lyapunov exponents, 

 determining the boundary region of the attraction domain and modelling the 

uncertainty in stability of this domain using rough set theory and the fractal 

dimension concept, 

 smoothing uncertainty in this boundary region via a reinforcement learning 

algorithm. 
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In the previous chapter, we have completed the first two phases of our approach 

and reached an uncertain global stability picture of the ALV system on irregular 

roads. The last two steps of the approach directly attack the problem of 

uncertainty stemming from cell to cell mapping in an intelligent manner. 

In our new approach (Kaygisiz and Erkmen (2001, 2002)), the fractal dimension 

of each cell in the regular region is analyzed and used as an attribute in a Rough 

Set model in order to represent metrically the uncertainty, inherent in the regular 

region, as a roughness texture especially of its boundary region (step 3). This 

boundary region is the main source of uncertainty of the regular domain generated 

using cell to cell mapping. Rough set theory, we use in our approach to model the 

roughness of the uncertain region in the domain of regular attractors/repellers, is a 

concept proposed by Zdzislaw Pawlak for modelling uncertainty and vagueness 

that we overviewed in Appendix G. We extend this theory by assigning a fractal 

dimension as an attribute of roughness to rough sets. The novelty of our work is 

this extension of rough sets with fractal dimension for their use in nonlinear 

system control. Smoothing of such a roughness in the regular region of the control 

space is achieved by reinforcement learning based on the chaos history of the 

system dynamics of the ALV on irregular roads so that its control becomes more 

efficient (step 4). 

Section 6.2 deals basically with the third step of our approach, which is to identify 

the regular/chaotic states that make up the boundary region of the domain.  This 

section focuses on the fractal dimensions and the rough set theory to construct a 

more detailed picture of the regular region by modelling the inherent uncertainty. 

The modelling technique is applied to our system, which is the ALV on irregular 

roads. 

In Section 6.3, a reinforcement learning algorithm is employed which smoothes 

the roughness in the boundary region. This smoothing yields a recovery of cells 

by their decontamination from uncertainty that expands the lower approximation 

of the rough set. This expansion is generated by including the recovered cells of 



 116

the boundary region into set of regular cells. Recovery is achieved through 

reinforcement learning according to the stability history of the cells on a cell 

trajectory of the dynamical system (ALV on irregular roads in our example) 

generated by cell to cell mapping. 

6.2 Modelling Uncertainty in Stability: Boundary Region Roughness  

In uncertainty modelling, we exploit rough set theory for categorizing state space 

regions with different stability features according to their degrees of uncertainty. 

Rough set as proposed by Zdzislaw Pawlak is a mathematical approach for 

modelling vagueness in uncertainty and was overwieved in Appendix G. Rough 

set theory associates a degree of uncertainty to any object of the universe so that 

any object without uncertainty (roughness) becomes indiscernible within a class. 

A set containing indiscernible objects forms the elementary set, any union of 

which determines a crisp set. All other set includes uncertainty and forms the 

rough set.  Each rough set has 1) a boundary region where vagueness resides, with 

set elements that cannot be classified either as members of that set or of the 

complementary set; 2) a lower approximation consisting of the elements that are 

surely the members of the set and 3) an upper approximation consisting of the 

possible members of the set. 

We found that rough set theory would readily apply to the problem of modelling 

chaos uncertainty among the regularity regions of a system where cells have to be 

taken as objects of our rough set. The lower approximation and the boundary 

region of the set consist respectively of surely regular cells and possibly regular 

cells, while the other cells are chaotic and not members of the regularity region. 

Regular cells are the ones where all points in them are regular, while chaotic cells 

contain only chaotic points. Possibly regular cells, which form the boundary 

region of the regular domain, are classified either as regular or chaotic at the end 

of the cell-to-cell mapping but these are cells that contain both regular and chaotic 

points coexisting within the same cell. 
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To differentiate the cells into lower, upper and boundary regions, we extract and 

use homogeneity or nonhomogeneity information contained in the cells generated 

by the cell to cell mapping. The fractal dimension of each cell is this measure-

based information that can be extracted and is suitable for the needed rough set 

classification. Therefore, we choose to assign the fractal dimension as an attribute 

of the rough set as a novel expansion of the theory. We use the definition of 

capacity (Hausdorf dimension) introduced in Appendix F, to compute the fractal 

dimension. Calculation of capacity dimension requires division of region of 

interest into a grid of cubes of size ε, which is done during the cell to cell mapping 

process. Thus, the capacity dimension naturally applies to the computation of the 

irregularity of a cell as follows: 
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To compute the fractal dimension dc of a cell using capacity definition, the cell is 

divided into square subcells of size ε as in Figure 6-2 . 

 
    
    
    
    

 

Figure 6-2 A cell divided up into 16 subcells 

N (ε) is the number of subcells found to be nonchaotic by cell to cell mapping 

technique. The process is repeated by decreasing the value of subcell size, and N 

(ε) is recorded for each case. When log N (ε) is plotted versus log (1/ε) for every 

cell, the slope of the linear plot is the fractal dimension as ε goes to zero in the 

limit. An example plot for a two legged robot system investigated in (Kaygisiz 

and Erkmen, (2004)) is given in Figure 6-3. The phase plane of a two legged robot 

is composed of islands of regular and periodic motions among a multitude of 

chaotic, unpredictable trajectories Figure 6-4. Hence, chaotic motion of the robot 
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is typical where periodic motion of accumulation states is slightly disturbed by 

any uncertainty or noise inherent in the states of the system dynamics. 

Consequently, fractal dimension of every cell is determined dividing each into 

subcells to differentiate chaotic and periodic motions of the walking robot. Figure 

6-3 shows the log N (ε) versus log (1/ε) plot generated for two of such cells. 

 

Figure 6-3 Log-log plot to estimate the dimension of a cell 

At this point, one can realize that another attribute can be assigned to cells for 

their classification into rough sets, which is a fuzzy measure of possibility for the 

regularity of cells in a set. We form this attribute as the ratio of number of regular 

subcells to total number of subcells within a cell where regular subcells are the 

ones that are found to be regular using the cell to cell mapping technique and 

Lyapunov exponents. Thus, 

 #
#n

of regular subcellsR
of subcells

=  (6.2) 
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Figure 6-4 Domain of attraction for two legged walking robot 

When the subcell size ε tends to zero, this ratio Rn becomes equal to the 

probability of a point belonging to nonchaotic, regular region.  We call this 

attribute the regularity number (Rn).  It follows naturally from our definition that a 

regular cell has an Rn of one and the Rn of a chaotic cell is zero. The regularity 

number complements the fractal dimension by providing a coarse overall measure 

of uncertainty while fractal dimension gives a measure of the roughness 

characteristics of uncertainty, of its texture. At the limit, dc and Rn become 

equivalent by tending towards equivalent information: if the fractal dimension dc 

of a cell is an integer number (smooth texture), then the coarse overall measure of 

the cell Rn does not change with the change of number of subcells in a cell. In our 

previous studies (Kaygisiz and Erkmen (2001, 2002)), it is observed that Rn is 

either 0 or 1 when the fractal dimension is an integer number. Thus, in our 

approach, a rough set contains regular cells of Rn=1 and integer fractal dimension, 

while uncertain cells are those identified as possibly regular, having a fractional 

value as fractal dimension and an Rn number ≠0 and ≠1. If a cell is chaotic it does 

not contain any regular subcells and consequently its fractal dimension is 

undefined and Rn=0. However in the general case of fractal dc, the overall measure 
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Rn shows a different variability and they begin to complement each other for 

uncertainty measurements. This concept is given in detail in Section 6.2.1. 

6.2.1 Correlation of Regularity Number and Fractal Dimension 

Examining the rough set approach, it is seen that the lower approximation for the 

regular cells consists of all the cells that have integer dimension. That is an 

important clue bringing us to a point that we can say all the integer dimensional 

cells or set of subcells are stable. The relation between the number of regular cells 

and the cell size can be stated as follows: 
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where ε’s are the subcell sizes and N(ε) is the number of the subcells that are 

regular in a cell. Rearranging the above equation gives 
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Substituting the capacity dimension dc given in (6.1) into the above equation, we 

obtain the following relation between the cell dimension and regularity number 

after rearranging 
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into an expression using regularity number (Rn): 
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where c is the size of a region of interest, n is the number of states of the nonlinear 

system, ε’s are the cell sizes. Change in the regularity number with the change of 

cell size can be defined as: 
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ε ε
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From the above relation, it is seen that if the fractal dimension of a cell (or region) 

is integer then the regularity number does not change when the subcell (or cell) 

size is changed, hence there exist no uncertainty in regularity. Thus it can be 

stated that if the dimension is integer in a cell, finer and finer resolutions in the 

state trajectory will not change the regularity region in this cell and this region can 

be included in the lower approximation of the rough set. Using this fact, the lower 

approximation of the rough set can be expanded. The expansion of the lower 

approximation, which is achieved by smoothing the boundary region using 

reinforcement learning, is based on the relation given in (6.7). The method for 

smoothing and its results are given in the following sections. 

(6.7) thus gives the correlation between the regularity number and fractal 

dimension, which are the attributes of the rough set defined for state space 

classification. Calculating the fractal dimension of the regular region given in 

Figure 5-2, using the capacity dimension definition it is found that 

 log(118856)-log(7555) 1.9878
log(0.096) log(0.024)cd = =

−
 (6.8) 

Employing (6.7), it is found that regularity in the region increases by 1.7% 

decreasing the cell size four times as in the case of Figure 6-1. This is theoretical 

maximum expansion of the regular region given in Figure 5-2.  



 122

6.2.2 Uncertainty Modelling of ALV/Road Dynamical System  

For the ALV system under investigation, the control state space regular region 

contains 10201 cells generated by cell to cell mapping. The state space has been 

transformed into rough sets using fractal dimension and the regularity number Rn. 

In this rough set representation of the vehicle on the irregular terrain of our 

campus, 7364 cells with Rn=1 and dc=2 are found to define the fully regular cells 

for the vehicle (map of Figure 5-2 with cells of Figure 6-5 removed). 2411 cells 

with Rn=0 and dc undefined, form the set of fully chaotic cells where vehicle 

chassis vibration control is not feasible. 426 partially or possibly regular cells with 

0<Rn<1 and dc≠2 but fractional valued (Figure 6-5) are also found. These cells are 

not usable as is for control due to their uncertainty and vibration sensitivity. 

Therefore they represent lost regions for control. If we can recover them by 

reducing the uncertainty, they would lead to the enrichment of the region usable 

for control. 

In the following section, a reinforcement learning algorithm is employed which 

smoothes the roughness in the boundary region. This smoothing yields a recovery 

of cells that expands the lower approximation of the rough set. This expansion 

includes the recovered cells of the boundary region and is achieved through 

reinforcement learning according to the stability history in the state cell trajectory 

of the ALV chassis vibration control on the irregular roads. 
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Figure 6-5 Boundary region of the rough set (partially regular areas) 

6.3 Smoothing the Chaos Roughness in Regularity 

This section aims at decreasing the uncertainty in the boundary region of the 

rough set and thus smoothing the chaos roughness in that region. The applied 

method is the linear-reward inaction type of reinforcement learning which is 

based on finite-state automata that adjust the probability of taking different 

actions according to the previous successes and failures where we consider 

regularity as success and chaoticity as failure. In our implementations, the cells in 

the boundary region are rewarded by a history of nonchaotic behavior (regularity) 

and the instant probability of being regular, (Rn). Reward is decremented when an 

event other than regularity occurs for the point in cell “i”. Taking numerous 

random points from each cell and finding out if they are regular or not, Rn of each 

subcell is iterated by the following reward formulas: 

When the point in the cell “i” is regular, the regularity measure is reinforced 
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 ( ) ( ) ( )( )1 1i i i
n n nR k R k R kα+ = + −  (6.9) 

When the point in the cell “i” is chaotic, the regularity is penalized by this chaotic 

behaviour and decreased. 

 ( ) ( ) ( )1i i i
n n nR k R k R kα+ = −  (6.10) 

We will illustrate our cell recovery procedure that performs smoothing of the 

chaos roughness in the boundary region of the rough set, on the vehicle chassis 

control implementation. In the application example, every cell is divided into 4 

and 16 subcells in order to find the fractal dimension and 16-subcell structure is 

used to compute the regularity number. In this example, the reinforced or 

penalized regularity measure Rn of each subcell is found using the above 

formulas, iterated with 100 points chosen randomly within the subcell considered 

and this process is repeated for every subcell of the boundary region. To provide a 

slow convergence rate and make the algorithm fully convergent α is taken as a 

small value: 0.05. 

As a result, the Rn values of the subcells considered, either converged to 1 

(meaning that uncetainty is fully eliminated and their fractal dimension has 

become integer making these cells fully regular) or to 0. The subcells with Rn 

values approximately 1 at the end of the reinforcement learning process are added 

to the lower approximation. This helps to increase the level of knowledge about 

the characteristics of the regular and chaotic region. Using this method, the 

regular region is enlarged by highly probable regular cells according to their past 

history of nonchaotic behavior. Thus the boundary region of the rough set in the 

state space is diminished enriching the region of cells to be used for control. 
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Figure 6-6 Possibly regular part of the boundary region 

Including subcells with Rn>0.95, 15.96% of the boundary region (68 cells) has 

been added through the algorithm to the regular region and the region is expanded 

by 1% while the rest of the region is converged to the chaotic area for our ALV 

implementation. The boundary region added to the lower approximation is given 

in Figure 6-6 and represents the usable portion of the boundary region for control 

in the motion of the robot on irregular roads. When Figure 6-6 is compared to that 

of Figure 6-5 we can measure the degree of smoothness achieved after 

reinforcement learning. 

It is easy to see that the smoothing algorithm using a 16-subcell structure has 

achieved a 1% expansion which is less than the theoretical maximum 1.7% as 

expected. 
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6.4 Performance Analysis 

In order to check the performance of our approach in expanding the regular region 

and its indirect effect to control, two analyses are conducted on the system.  

First, the system is initiated at a regular point and observed if it enters to one of 

the 68 cells of the boundary region that has been added through the algorithm to 

the regular region. After entering one of these added cells, the system is observed 

in order to find out if it is still regular or jumps to the chaotic region. This analysis 

helps us to see if we have added the correct cells to the regular region.  

 

Figure 6-7 Vehicle/road system initiated at regular region 

As seen in the figure, the system is started from the regular initial state [0.3994, -

1.9233, 0.0128, -0.0148] and flied through boundary cell [-1.248, 0.144, 0, 0] 

boundary cell (Figure 6-7). It should be noted that Figure 6-7 shows the 2D 

projection of the system state space where y3 and y4 are kept zero. Thus, in order  
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Figure 6-8 3D phase plane of the system (pitch angle is added) 

 

Figure 6-9 3D phase plane of the system (pitch rate added) 
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to gain more insight to the system and understand how it passes through the 

boundary cell, 3D phase planes are generated. These phase plane plots are given 

in Figure 6-8 and Figure 6-9. As seen from the figures, the system enters to the 

y3=0 and y4=0 plane, hence enters to our boundary cell which is included to the 

regular region by smoothing process, and immediately leaves this y3=0 and y4=0 

plane where the smoothing process was conducted.  

The critical issue in this analysis is if the system stayed in regular region after 

leaving the smoothed cell or not. In order to see this time plot of the system is 

generated (Figure 6-10). As seen from the figure, the system left the boundary cell 

at t=0.65 seconds and continued to travel in through the state space. We applied 

small disturbances to system states during its in order to deviate it from its given 

trajectory and see if it is chaotic. However, the trajectory has not changed for 

these small disturbances and it is concluded that the system has stayed in the 

regular region. Thus, the boundary cell included to the regular region is also 

regular. 

 

Figure 6-10 Time domain plot of the system 
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Another test is conducted by choosing cells from the upper approximation of the 

rough set, hence the chaotic region to see if we have excluded the right cells 

during the smoothing process. Trajectories of such a cell [0, 2, 0, 0] and its ε 

neighborhood [-0.001, 2.001, -0.01, 0.001] is given in Figure 6-11. 

 

Figure 6-11 Chaotic trajectory 

As seen a small uncertainty of ε makes the system behavior unpredictable as time 

goes by. This means our example cell is really chaotic and the decision of 

excluding it from the regular region was correct. 

Above analysis gives us an insight of what is achieved by fractal/rough set 

modelling and smoothing. A second analysis is applied to see directly the metric 

performance measures of the approach. We applied the following procedure in 

order to reach a metric measure. The procedure is 

a. Pick a random initial condition from regular region of the state space, 
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b. Run the system for 1000 iterations with a time step of 1x10-2 seconds, 

c. Observe the entire trajectory. If it lies within the regular region, record the 

trial as regular, otherwise as chaotic, 

d. Repeat a, b and c steps for 10000 randomly chosen initial points, 

Given procedure is repeated before and after smoothing in order to determine the 

effect of smoothing algorithm to the total uncertainty of the region. As a result of 

the procedure 9961 points are found to be regular before smoothing and 9959 

points are found to be stable after smoothing. 

The percentage of regular points in the region defined as regular region has 

decreased from 99.61 % to 99.59 % after smoothing. Besides this small increase 

in the uncertainty the regular region is expanded nearly 1 % due to the smoothing 

process. The applied test procedure shows that the proposed approach is 

promising. 

6.5 Discussion 

In the novel approach introduced in this chapter, we increase the richness of the 

information in the regular region of a nonlinear system using fractal/rough set 

representation of that region. The fractal/rough set model developed is a new 

approach brought to the area of the uncertainty modelling in chaotic systems. The 

approach introduces the fractal dimension of the elements in the rough set as a 

measure of stability roughness. The uncertainty represented as roughness is then 

minimized using reinforcement learning. Minimization of uncertainty in the 

regular region is done as smoothing of the irregularity of system stability in the 

boundary region.   

In this chapter without loss of generality, the regular region for 5 cm road 

vibration case is investigated in order to decrease the uncertainty in cells which 

are in the boundary region and are not usable for control due to their uncertainty. 
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Besides the high nonlinearity of the system that easily can lose its regularity in 

dynamics, the smoothing performance in this loss of regularity recovers about 

15.96 % of boundary. This performance can vary due to the dynamical complexity 

of the system. The smoothing performance for a two legged walking robot system 

has been found to be 6.19 % of boundary in (Kaygisiz and Erkmen, (2004)). 

Smoothing performance in the current system is investigated by tests and the 

approach has provided promising results of 1% expansion in the regular space 

with only 0.02% increase in uncertainty.  
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CHAPTER 7 

7.CONCLUSION.7 

7.1 Concluding Remarks 

Autonomous land vehicles (ALVs) have been employed in miscellaneous 

operations succesfully in recent years. The main feature of these vehicles is the 

‘autonomy’ that relies on robust planners and high performance navigation 

systems. Most outdoor applications utilizes GPS/INS integrated systems in order 

to yield high performance navigation solutions. However, there arises two critical 

problems at the navigation of ALVs during the operations, which are GPS signal 

loss and dynamic effects of the irregular roads preventing the navigation system to 

function properly. In real time applications, an autonomous vehicle entering into 

an environment shadowing the GPS signal becomes incapable of receiving the 

GPS signal and depends on low cost inertial sensors for navigation solutions. INS 

providing accurate navigation solutions with the aid of external measurements 

drifts very fast when GPS signal is lost and the system relies only on the low cost 

inertial sensors. On the other hand, road irregularities causing random oscillations 

may be a source of navigation system failure. In this thesis study, these two 

problems are investigated and intelligent solutions are presented. 

INS providing accurate navigation solutions with the aid of GPS measurements 

drifts very fast when GPS signal is lost and the system relies only on the low cost 

inertial sensors. Consequently, we have focused on the development and 

implementation of a GPS/INS system for land navigation possessing the 
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capability of circumventing the GPS signal loss problem without causing the 

system to drift.  

In order to handle such a problem in a cost effective manner, predictions are 

performed to estimate the position from learned GPS/INS behavior patterns and 

provide an effective intelligent support to the INS in cases of GPS signal loss. 

Multilayer perceptrons are integrated to the navigation system for providing the 

intelligent support to INS.  

Two different system architectures and related algorithms, in order to integrate the 

neural network to the GPS/INS system, are developed and the optimum neural 

network structure in terms of memory, time and estimation performance is 

realized. A detailed noise analysis of the ANN system is conducted and ANN 

outputs are integrated to the Kalman filter for proposed architectures. 

Consequently, two different intelligent systems aiding to GPS/INS with position 

or position difference predictions and their algorithms are developed and 

implemented. 

The intelligent structures employing the artificial neural network predictions 

achieved to diminish the navigation errors and allow the inertial system to 

navigate more accurately without any external aid. Comparisons between ANN-

aided GPS/INS and GPS/INS systems have shown that the intelligent aid is 

capable of decreasing the system position error to less than 1/10th of GPS/INS 

error in the case of GPS signals loss. 

Another problem in ALV operations is road irregularities causing random 

oscillations which may be a source of electronic and mechanical system failure. 

We have focused on the modelling and global stability analysis of the vehicle 

chassis on irregular roads in order to give a rough picture of the random 

oscillation problem. The vehicle is analysed for changing road conditions and 

frequency response of the system is determined. 
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Making the rough picture of the stability domain more precise and smoothing the 

uncertainty is critical for control purposes. We increase the richness of the 

information in the regular region of a nonlinear system using fractal/rough set 

representation of that region. The fractal/rough set model developed is a new 

approach brought to the area of the uncertainty modelling in chaotic systems. The 

approach introduces the fractal dimension of the elements in the rough set as a 

measure of stability roughness. The uncertainty represented as roughness is then 

minimized using reinforcement learning. Minimization of uncertainty in the 

regular region is done as smoothing of the irregularity of system stability in the 

boundary region. 

We apply, in this thesis work, our novel technique to a vehicle on irregular roads 

system. Besides the high nonlinearity of the system that easily can lose its 

regularity in dynamics, the smoothing performance in this loss of regularity 

recovers about 15.96 % of boundary. This performance can vary due to the 

dynamical complexity of the system. 

The main contributions of this thesis are: 

• Development of the inertial navigation system aided by GPS and the 

understanding of the associated practical issues. 

• Implementation of a real time inertial navigation system aided by GPS. 

This system can provide accurate navigation solutions for autonomous 

vehicles. 

• Development of an inertial navigation system aided by artificial neural 

network structure providing position/position difference estimates. The 

structure requires no external measurement and yields a low cost accurate 

navigation solution in the absence of GPS signal. 

• Analysis of vehicle/road interaction for irregular roads. 
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• A new method for increasing the richness of the information in the regular 

region of a nonlinear system using fractal/rough set representation of that 

region. The fractal/rough set model developed is a new approach brought 

to the area of the uncertainty modelling in chaotic systems. 

7.2 Suggestions for Future Work 

Based on this thesis work, several extensions, related to inertial navigation system 

aiding and nonlinear system stability uncertainty smoothing might be done. 

In this thesis work, a loosely coupled tactical grade system comprises of a 15-state 

Kalman filter using the external measurements provided from GPS is used in 

order to demonstrate our intelligent aiding process for the ALV navigation where 

the GPS receiver can only receive less than 4 satellite signals and cannot provide 

position/velocity solutions.  

However, a tightly coupled GPS/INS system will allow GPS pseudorange aiding 

to the navigation system even if one satellite is visible to the GPS antenna. 

Implementing the intelligent structure based on ANN to a tightly coupled system, 

the performance of the overall navigation system might be improved in 3 or less 

visible satellites case.  Receiving pseudorange aid from 3 or less visible satellites, 

a tightly coupled approach slows down the drift of navigation system. Thus, 

applying our intelligent approach to a tightly coupled approach, which means 3 

more position observations in addition to visible satellite observations, this 

degradation may be even stopped in most of the navigation applications. 

Furthermore, the intelligent navigation system, which is used in a land vehicle in 

the thesis, may be applied to the highly dynamical airborne vehicle. 

Another possible extension is related to nonlinear system stability uncertainty 

smoothing. In this thesis work, the smoothing algorithm is dealt with the 

extension of the regular region. It detects and adds highly probable regular cells to 

the lower approximation. This smoothing approach may be extended by also 
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detecting highly probable chaotic cells to add them to the upper approximation. 

Such an approach will enable 2-way smoothing of the boundary region.  

Moreover, our uncertainty modeling and roughness smoothing method may be 

implemented with an intelligent control algorithm that detects transition to chaos 

to obtain a human like controller that may be applied to highly nonlinear systems.  
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APPENDIX A 

ATTITUDE UPDATE ALGORITHMS 

Strapdown inertial navigation systems pass accelerometer measurements given in 

body frame through the transformation matrix γ and integrate transformed 

acceleration into position and velocity. This transformation matrix has to be 

accurate since misalignment causes the acceleration vector to drift from true 

vehicle acceleration. Even small misalignments cause large navigation errors with 

accumulation in time. 

The transformation matrix has to be updated continuously to reflect body rotation 

with respect to navigation frame. The update process is based on the 

measurements obtained from gyroscopes and subject to any error stemming from 

these sensors.  

There exist a number of attitude update algorithms available. All algorithms 

provide identical results regardless of their implementation differences. The 

choice of algorithm is related to pros and cons of each approach in different 

tradeoff areas.  The basic three algorithms and their properties can be assessed as 

follows: 

The Euler angle algorithm directly updates Euler angles (roll-φ, pitch-θ and yaw-

ψ). In strapdown applications, it is not generally utilized due to roll/yaw 

singularity of corresponding update algorithm existing when pitch angle,θ  is 90°. 

Although this does not pose a problem for land and marine applications, this type 
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of representation is generally not preferred even for ground applications. In the 

updating process, only Euler angles are updated, thus the algorithm does not 

employ orthonormalization, unlike the Direction Cosine Matrix and quaternion 

representations. However, the update algorithm contains trigonometric functions 

and has the greatest computational expense. 

The transformation matrix is constructed using Euler angles as: 

 
cos cos cos sin sin

cos sin sin sin cos cos cos sin sin sin cos sin
cos sin cos sin sin sin sin cos cos sin cos cos

b
n

θ ψ θ ψ θ
ψ θ φ ψ φ ψ φ ψ θ φ θ φ
ψ θ φ ψ φ ψ θ φ ψ φ θ φ

−⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

C (A.1) 

The update of the Euler angles between the body and navigation frame can be 

achieved by 

 

(1/ cos )( sin cos )

cos sin

tan ( sin cos )

y z

y z

x y z

ψ θ ω φ ω φ

θ ω φ ω φ

φ ω θ ω φ ω φ

= +

= −

= + +

 (A.2) 

where , ,x y zω ω ω are the body rotations with respect to navigation frame expressed 

in body frame.  

The Direction Cosine Matrix (DCM) algorithm updates the transformation 

matrix γ and does not possess roll/yaw singularity. It is widely used in aerospace 

and military applications. Although, nine direction cosines of 3x3 transformation 

matrix are updated at every step, updating two rows (six elements) of the matrix is 

enough, since third row of the matrix can be determined from other two rows by a 

cross product operation. The update algorithm does employ orthogonalization and 

normalization. 

The direction cosine matrix update is a method to generate transformation matrix 

between each axis of one frame and every axis of another one. The matrix is 
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created using the vector dot products which leads to the cosine of the angle 

between the two vectors involved that is 

 

 1 1 1 1 cos cosi j i j ij ijα α• = =  (A.3) 

Thus, dot producting each axis of navigation coordinate system with every axis of 

body coordinate system as in (A.3), a transformation matrix between two frames 

results as an array of nine direction cosines as follows: 

 
11 12 13

21 22 23

31 32 33

n
b

C C C
C C C
C C C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C  (A.4) 

As seen above, the method is trivial and has low computational load. Another 

issue in applying the method is how to update the transformation matrix. In order 

to update the matrix, the following relation is used. 

 n n b n b
b b nb b bn= = −C C Ω C Ω  (A.5) 

where b
nbΩ is the skew-symmetric matrix of the angular velocity of the body frame 

relative to navigation frame represented in body frame. 

The Quaternion algorithm updates a 4x1 vector q (q0, q1, q2, q3) known as 

quaternion vector. In the approach, the rotation from one frame to another is 

achieved by a single rotation about quaternion vector q. In the updating process, 

four quaternions are updated at every step, and a normalization done. Update is 

achieved as: 
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( )

( )

( )

( )

0 2 3 1

1 0 3 2

2 3 0 1

3 2 1 0

1
2
1
2
1
2
1
2

y z x

x y z

x y z

x y z

q q q q

q q q q

q q q q

q q q q

ω ω ω

ω ω ω

ω ω ω

ω ω ω

= − − −

= − +

= + −

= − + +

 (A.6) 

and the transformation matrix is represented in terms of quaternions as follows: 

 

2 2 2 2
0 1 2 3 1 2 0 3 0 2 1 3

2 2 2 2
0 3 1 2 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 0 1 2 3 0 1 2 3

2( ) 2( )
2( ) 2( )
2( ) 2( )

n
b

q q q q q q q q q q q q
q q q q q q q q q q q q
q q q q q q q q q q q q

⎡ ⎤+ − − − +
⎢ ⎥= + − + − −⎢ ⎥
⎢ ⎥− + − − +⎣ ⎦

C  (A.7) 

As seen from the above discussion, Euler angle approach is not feasible because 

of the singularity problem within the update algorithm and its computational 

complexity.  It is difficult to draw conclusion in the favor of DCM versus 

quaternion approach.  Quantitative comparisons based on computer sizing and 

computer loading have led to inconclusive results (Savage, (1984)). However, 

DCM representation has advantage over quaternion in terms of physical 

interpretation.  Hence, this thesis makes use of direction cosine matrix for attitude 

representation and attitude update is achieved at 100 Hz.  

In order to update direction cosine matrix in a digital computer environment, the 

update procedure is discretized.  

Inertial measurement unit provides rotation rate information b
ibω  at 100 Hz and 

this rotation is compensated with navigation frame’s rotation with respect to 

inertial frame in order to obtain body to navigation rotation rate as: 

 ( )b b b n n
nb ib n ie en= − +ω ω C ω ω  (A.8) 
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Integrating the resulting body to navigation rotation rate, angle increments are 

determined as , ,x y zφ φ φ . Using these angle increments, Taylor series coefficients 

required for discretization are found as 

 

2

sin

1 cos

φα
φ

φβ
φ

=

−
=

 (A.9) 

where 

 2 2 2
x y zφ φ φ φ= + +  (A.10) 

Using (A.9) and (A.10) direction cosine matrix update, n n b
b b nb=C C Ω  takes the 

following discrete form: 

 ( ) 2
3 31 ( )n n

b b xk k α β⎡ ⎤+ = + +⎣ ⎦C C I φ φ  (A.11) 

where the angular skew symmetric matrix is 

 
0

0
0

z y

z x

y x

φ φ
φ φ
φ φ

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

φ  (A.12) 

Applying (A.11) at 100 Hz attitude is updated in the strapdown system in this 

work. The obtained transformation matrix is then used to evaluate the acceleration 

in the navigation frame which is provided to navigation computer for determining 

position and velocity.  
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APPENDIX B 

VELOCITY AND POSITION ALGORITHMS 

Achieving the attitude algorithm and its update, the strapdown computer attempts 

to construct the velocity and position solutions. The velocity propagation in the 

navigation frame is given by:  

 (2 )n n b n n n n
e b ie en ex= − + +v C f ω ω v g  (B.1) 

In order to accomplish the update process in a digital environment, this relation is 

discretized. Converting (B.1) into discrete form, velocity vector (velocity of body 

with respect to earth expressed in navigation, north-east-down, frame) is updated 

as:  

 ( ) ( ) ( ) ( )1 (2 )n n n n
b ie enk k k t t k t+ = + − ∆ + ∆ + ∆v v C w Ω Ω v g  (B.2) 

In (B.2), kw  is the compensated velocity increment vector resolved in the body 

frame and available from accelerometers at 100 Hz.  ng  is the gravity in the 

vehicle location expressed in navigation frame and 0.01t∆ =  seconds. n
ıeΩ  and 

n
enΩ  are the skew-symmetric matrices of earth rate and craft rate vectors.  

Accuracy of velocity is dependent on sensor errors, initial errors and gravity 

errors as seen in (B.2). In order to achieve good navigation performance, we 

should employ a good approximation for the true gravity vector in navigation 

frame. For the navigation system we use, the following approximation is exploited 
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 2 2
2

2 31 (1 2 sin )h f m f h h
a a

γ γ φ⎡ ⎤= − + + − +⎢ ⎥⎣ ⎦
 (B.3) 

where γ  is the normal gravity on the surface of the ellipsoid given by the closed 

formula of Somigliana (DoD (2000)). The resultant gravity vector is 

 [ ]0 0n
hγ=g  (B.4) 

Using the updated velocity vector, position on the earth in terms of latitude, 

longitude and height are updated as: 

 
( )
( )
( )

( )
( )
( )

( )

1
( )1

( ) cos
1

( )

n

N

e

E

d

v k
R h

L k L k
v kk k t

R h L
h k h k

v k

λ λ

⎡ ⎤
⎢ ⎥+⎢ ⎥⎡ ⎤ ⎡ ⎤+
⎢ ⎥⎢ ⎥ ⎢ ⎥+ = + ∆⎢ ⎥⎢ ⎥ ⎢ ⎥ +⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (B.5) 

where the velocities are north, east and down velocities, R’s stand for north and 

east radius of the earth at the vehicle location. 
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APPENDIX C 

CONING AND SCULLING COMPENSATION 

The rotation vector behavior can be described as 

 ( )1 1 ( )
2 12

x x x= + +φ ω φ ω φ φ ω  (C.1) 

and for the small angle, φ is approximated as 

 1
2

x= +φ ω φ ω  (C.2) 

To find the incremental rotation vector, (C.2) is integrated within the sampling 

interval 

 1

1

( )

1( ) 2

k

k

k

k

t

k c
t

t

c
t

dt k

k x dt

−

−

∆ = + ∆

∆ = ∆

∫

∫

φ ω φ

φ φ ω

 (C.3) 

The second term in (C.3) is the coning term and has to be calculated. The first part 

is the gyroscope provided angle increment vector which is   

 
1

( )
m

m

t

k
t

m dt
−

= ∫α ω  (C.4) 
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In the above equations m is the gyro output rate of 400 Hz and k is the moderate 

update rate of 100 Hz.  The order of coning compensation algorithm is m/k and 

there exist various algorithms for different m/k values of 2, 3, 4 and so forth.  The 

derivations of the algorithms can be found in (Miller (1983), Jiang (1992), 

Tazartes (1997), Ignagni (1990,1998), (1996), Salychev (1998)).  

In our system, a 4th order algorithm of the following form 

 

2 2 8( ) (1) (2) (3) (4) (1) (3)
3 3 15
8 7 7(2) (4) (1) (4) (2) (3)

15 15 15

c k k k k k k

k k k k k k

k x x x

x x x

∆ = + +

+ + +

φ α α α α α α

α α α α α α
 (C.5) 

is employed. The derivation of the algorithm is in (Salychev (1998)).  

Compensating the coning effect, the angle increment data is ready for attitude 

computations. Coning compensated angle increment data is given as 

 
4

1
( ) ( )k k c

m
m k

=

∆ = + ∆∑φ α φ  (C.6) 

where 4 is the number of gyro samples in the interval of one attitude update.  

The absolute acceleration behavior can be described as  

 | |b i ib
d d x
dt dt

= −v v ω v  (C.7) 

where v  is the absolute velocity vector of the vehicle with respect to inertial 

frame.  Integrating the above equation over one update period, the velocity change 

of the vehicle with respect to inertial frame which is provided to the navigation 

computer, is calculated. 

As stated before, gyroscopes provide angle increments at 400Hz as 
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 , , , ,

mt t

x y z x y z
t

dt
+∆

= ∫α ω  (C.8) 

Likewise, accelerometers provide velocity increments as 

 , , , ,( | )
mt t

x y z i x y z
t

d dt
dt

+∆

∆ = ∫w v  (C.9) 

If integration of (C.7) is proceed as a 4 step recurrent discrete process using 

sensor outputs given in (C.8) and (C.9), the sculling compensated velocity 

increments at 100 Hz are calculated as 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , ,

1 1 ( ) 1 ( ) ( )

1 1 ( ) 1 ( ) ( )

1 1 ( ) 1 ( ) ( )

1 ( ) ( )

x k x k y k z k z k y k x k

y k y k z k x k x k z k y k

z k z k x k y k y k x k z k

x k x k y k z k z k y k x

w m w m w m m w m m w m

w m w m w m m w m m w m

w m w m w m m w m m w m

w m w m w m m w m m w

α α

α α

α α

α α

= − + − − − + ∆

= − + − − − + ∆

= − + − − − + ∆

= − + − + ∆

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , , , , ,

, , , , , , ,

( )

1 ( ) ( ) ( )

1 ( ) ( ) ( )

k

y k y k z k x k x k z k y k

z k z k x k y k y k x k z k

m

w m w m w m m w m m w m

w m w m w m m w m m w m

α α

α α

= − + − + ∆

= − + − + ∆

(C.10) 

with initial conditions 0www zyx === . Repeating this process for every new 

sensor measurement, the resulting body velocity increments with respect to 

inertial frame are used in the velocity update. The derivation of the algorithm is in 

(Salychev (1998)).  
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APPENDIX D 

THE KALMAN FILTER  

Kalman filtering is a method used for optimal recursive estimation of current 

system states under the assumption that system model is linear contaminated by 

white Gaussian system and measurement noises. Discrete time theory of the filter 

is introduced by R.E. Kalman in (Kalman (1960)), while continuous time theory 

appears a year later in (Kalman (1961)).  

In a Kalman filter, state estimates are based on an optimal combination of 

predicted states and actual measurements. Kalman filter is optimal such that it 

generates the best estimate of the quantities from data provided in a noisy 

environment. Kalman filter estimates are unbiased in a minimum variance sense 

provided that the required assumptions on the system and measurement noises are 

met. Detailed analysis on the derivations and theory of the filter can be found in 

(Papoulis (1987), Gelb (1974), Maybeck (1982)). 

D.1 Linear Kalman Filter 

A system can be represented as a set of linear differential equations as follows, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t= + +x F x B u G w  (D.1) 

where 

 x = state vector (n dimensional) 

 F = state dynamics matrix (nxn) 
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 B = control gain matrix (nxr) 

 u = control input vector (r dimensional) 

 G = noise gain marix (nxs) 

 w = white Gaussian driving noise vector (s dimensional) 

Whenever the deterministic control term 0)()( =tt uB  as in navigation 

applications where there is no control input to the system, the system 

representation becomes 

 ( ) ( ) ( ) ( ) ( )t t t t t= +x F x G w  (D.2) 

In the above representation, the expected value of the driving noise w(t) is 

 { }( )E t =w 0  (D.3) 

and the covariance of the noise can be given as 

 { } ( ) ( )( ) ( )E t t tτ δ τ+ =w w Q  (D.4) 

where ( )δ  is the Dirac delta function. 

The Kalman filter integrates the discrete measurements of external devices in a 

way that can be described by the following linear measurement equation: 

 ( ) ( ) ( ) ( )k k k kt t t t= +z H x v  (D.5) 

where H is the observation matrix, v is the zero mean white Gaussian 

measurement noise vector with the following covariance: 
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 { } ( )
( ) ( ) k j

k j
k j

t t t
E t t

t t
⎧ =⎪= ⎨ ≠⎪⎩

R
v v

0
 (D.6) 

In real time applications, discrete time system representation is required and is 

given as 

 1k k k k+ = +x Φ x w  (D.7) 

where discrete time driving noise of the system becomes zero mean, uncorrelated 

random sequence with covariance Qk, which can be approximated using the 

continuous time covariance as: 

 ( ) ( )T
k k kt t t= ∆Q G QG  (D.8) 

provided that ∆t is small. xk is the discrete time representation of the state at time 

tk and Φk is the state transition matrix given as: 

  

 

( )
( ) ( )( )1

2

...
2!

tk

tk
d k

k k

t t
e t t

τ τ
−

∆∫= = + ∆ + +
F F

Φ I F
 (D.9) 

Discrete time measurement equation of the system is 

 k k k k= +z H x v  (D.10) 

where noise covariance becomes 

 ( ) /k kt t= ∆R R  (D.11) 

Kalman Filter propagates the current state estimation )(ˆ 1 +−kx  and covariance 

)(1 +−kP  to the next measurement cycle in the propagation state. The state vector 
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is predicted by extrapolating the current state vector using the state transition 

matrix.  

 1 1ˆ ˆ( ) ( )k k k− −− = +x Φ x  (D.12) 

Uncertainty of the propagated state given by )(−kP  is computed using the state 

transition matrix, previous uncertainty level )(1 +−kP  and the driving noise 

covariance as follows: 

 1 1 1 1( ) ( ) T
k k k k k− − − −− = + +P Φ P Φ Q  (D.13) 

After propagation, the predicted state vector and covariance matrix are updated 

employing external measurements. Combining the predicted covariance matrix 

)(−kP , measurement matrix kH  and measurement noise covariance matrix kR , 

Kalman gain kK  is calculated as  

 1( ) [ ( ) ]T T
k k k k k k k

−= − − +K P H H P H R  (D.14) 

Kalman gain matrix assigns weights to the measurements, which are the 

difference between the actual external measurements and the Kalman prediction 

of the measurements, based on the measurement noise statistics, kR  and the 

prediction uncertainty, )(−kP . When a measurement is obtained, an estimate of 

the current state is given by, 

 ˆ ˆ ˆ( ) ( ) [ ( )]k k k k k k+ = − + − −x x K z H x  (D.15) 

and the error covariance matrix of the estimation is 

 ( ) [ ] ( )k k k k+ = − −P I K H P  (D.16) 
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D.2 Extended Kalman Filter 

In real systems with nonlinear dynamics and/or nonlinear measurements, linear 

Kalman filter approach described above cannot be implemented. An approximate 

solution is seeked by linearizing the system around its nominal trajectory and 

apply Kalman filter to this linear system (Kay (1993)). 

A nonlinear system with deterministic control term 0)( =tu  can be described by 

the following differential equation: 

 ( )( ) ( ), ( ) ( )t t t t t= +x f x G w  (D.17) 

where f is nonlinear time dependent function of x and )(tw  is the white Gaussian 

noise driving the system linearly. Moreover, the measurement equation may also 

be a nonlinear function such as: 

 ( ) ( )( ) ( ),k k k kt t t t= +z h x v  (D.18) 

where white Gaussian noise is additive. 

In order to apply the linear Kalman filter, the given nonlinear system and 

measurement equations should be linearized around a nominal state trajectory. 

Perturbing the system equations around a nominal trajectory of the state )(tnx , 

error state equations are obtained as: 

 ( ) ( )( ) ( ) ( ), ( ), ( ) ( )n nt t t t t t t t− = − +x x f x f x G w  (D.19) 

The above equation may be approximated by Taylor series expansion as: 

 ( )( ) ( ); ( ) ( ) ( )nt t t t t tδ δ= +x F x x G w  (D.20) 



 161

where )()()( ttt nxxx −=δ represents the first order approximation of the state 

errors, ( )ttn );(xF  is a matrix of partial derivatives of f along the nominal 

trajectory: 

 ( )
( )

( , )( );
n

n
t

x tt t
x =

∂
=

∂ x x

fF x  (D.21) 

Likewise, the perturbation measurement equation is 

 ( )( ) ( ); ( ) ( )k n k k kt t t t tδ δ= +z H x x v  (D.22) 

and  

 ( )
( )

( , )( );
n k

k
n k k

t

x tt t
x =

∂
=

∂ x x

hH x  (D.23) 

These linear error equations are used in order to implement linear Kalman filter 

theory. Estimate of the system states are obtained using the error states as 

 ˆ ˆ( ) ( ) ( )nt t tδ= +x x x  (D.24) 

If nominal and true trajectories differ by a large amount, the system may produce 

unacceptable levels of error. Extended Kalman filtering circumvents this problem 

by allowing the linearization around the current state estimate at each time step. 

The extended filter can be realized using the given linearized equations in the 

linear Kalman filter equations, while maintaining the linearization at the nominal 

states updated by )(ˆ)()(ˆ ttt n xxx δ+= . 



 162

APPENDIX E 

ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) are processing structures, composed of simple 

computing elements interconnected to each other, which are used to perform 

complex computational tasks in fields such as control, optimization, signal 

processing, modelling, system identification and pattern recognition (Cichocki 

(1992), Simpson (1990), Narendra (1990), Antsaklis (1990), Haykin (1997), 

Widrow (1990)). 

ANN can be considered as a simple replica of the neural system of living 

creatures. As in the biological nerve systems, ANN consists of simple processing 

elements called neurons, each of which is a nonlinear multi-input/single-output 

device. Having an interconnected neuron structure, an ANN has the ability of 

adapting itself to the changing environment, simulating complex tasks, 

recognition of the objects with different features.  

A basic artificial neuron model is given in Figure E-. As seen in the figure, the 

neuron has N input lines and a single output. Each input multiplied by a weight is 

summed up with a threshold value to generate a linear combination of all 

weighted information. The output of the adder is then processed through a 

nonlinearity called activation function. Thus, a neuron may be described as: 

 
1

N

i i
i

u w x θ
=

= −∑  (E.1) 
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and 

 ( )y f u=  (E.2) 

where x’s are the input signals, w’s are the synaptic weight, u is the activation of 

the neuron, θ is the threshold, y is the output of the neuron and f() is the activation 

function. Taking w0= θ and threshold input as x0= -1, may be rewritten as 

 
0

N

i i
i

y f w x
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (E.3) 

Different activation functions are employed according to applications. Three most 

commonly used functions are hard-limit, linear and log-sigmoid activation 

functions (Figure E-1).  

 

Figure E-1 Neuron Model 

The hard-limit function quantizes the output of the neuron to either 0 or 1 values. 

This function is usually used in neurons acting as classifiers. The linear neurons 

are used as linear approximators mostly in linear filter design. The sigmoid 

function may take any input value between plus and minus infinity, and outputs 

within a range of 0 to 1.  It is the most common function in backpropagation 

neural network applications since it is differentiable, where differentiability is 

fundamental in the learning process. The logarithmic sigmoid function is 

Output  

W1  

W2  

WN  Input N

Input 2

Input 1

Σ f()

Threshold θ 
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 ( ) 1
1 uf u

e−=
+

 (E.4) 

 

Figure E-1 Common Activation Functions 

As stated earlier, ANN uses a fully interconnected neuron structure to be able to 

achieve complex tasks such as classification, system approximation, optimization 

and recognition. One large class of neural networks used in the application is the 

multilayer perceptron (MLP). Multilayer feedforward network is the most popular 

of all neural network structures and has been the subject of intensive research and 

diverse applications in recent years. Many well established learning laws are 

proposed for these systems for their use in modeling, identification and control. It 

has also been shown that an artificial neural network based on the multilayer 

feedforward structure with input/output and hidden layers is capable of operating 

as a universal approximator and approximate generic nonlinear functions 

(Scarselli (1998), Hornik (1989)). 

Multilayer perceptron (MLP) is constructed in order to estimate the given 

input/output map. Input neurons feed signals to the hidden layer neurons. There 

may be one or more adjacent hidden layers in an MLP. The last layer is the output 

layer where the response of the network is produced, by passing the weighted sum 

of these previous layer outputs through a nonlinear activation function, [ ]s
jf  
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[ ] [ ] [ ]

[ ] [ ] [ ]1 1

0
, 1, 2; 1, 2,...,

s

s s s
j j j

n
s s s

sj ji i
i

o f u

u w o s j n
− −

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= = =∑
 (E.5) 

where [ ]s
jiw  is the synaptic weights by which the jth neuron of the sth layer 

multiplies ith output from preceding layer [ ]1s
io −  and sn is the number of neurons 

in the sth layer. The synaptic weights [ ]s
jiw  are modified by training the network 

through a learning process.  

The learning process applied to feedforward neural networks is known as 

backpropagation learning. The backpropagation learning process applied to 

feedforward neural networks equips the network with an ability of capturing 

complex input-output relationship with a multilevel error minimization feedback. 

 

Figure E-2 Multilayer Feedforward Network Architecture  

In backpropagation learning cycle known as epoch, an input is propagated 

forward through the network and the resulting network output is compared to the 
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desired output for generating the output error. This error is backpropagated from 

the output layer through the input in order to update the connection weights and 

biases in the network according to a learning rule that minimizes the error. This 

cycle is repeated for every input-output pair in the training set until the weights 

and biases converge to their optimal value with minimal error. Training of the 

network can be performed offline with predetermined input-output pairs, or online 

with real time generated input-output pairs. Backpropagation algorithm used to 

train the MLP employs the gradient-descent approach to minimize the mean-

squared error function. The error function for the pth learning sample can be given 

as 

 ( )
2 22 2

1 1

1
2

n n

p jp jp jp
j j

E d y e
= =

= − =∑ ∑  (E.6) 

where jpd represents the desired network output and jpy  is the actual output of the 

network. Thus, the global error function over all learning samples is   

 ( )
2

2

0,..,

1
2p jp jp

p p j n
E E d y

=

= = −∑ ∑ ∑  (E.7) 

where 2n is the number of neurons in the output layer. 

In backpropagation learning, the synaptic weights [ ]s
jiw  are changed by an amount 

[ ]s
jiw∆  proportional to the negative gradient of the local error function pE  at every 

learning cycle. [ ]s
jiw∆  is  

 [ ]
[ ] , 0s p

ji s
ji

E
w

w
η η
∂

∆ = − >
∂

 (E.8) 

where η is a small learning parameter.  
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Change in the weights in the output layer becomes 

 [ ] [ ] [ ]2 2 1
ji j iw oηδ∆ =  (E.9) 

where  

 [ ] ( )
[ ]

[ ]

2
2

2
jp

j jp jp
j

f
d y

u
δ

∂
= −

∂
 (E.10) 

For the hidden layer, 

 [ ] [ ] [ ]1 1 0
ji j iw oηδ∆ =  (E.11) 

where  

 [ ]
[ ]

[ ]
[ ] [ ]

2
1

2 2 2
1

1

n
jp

j k kj
kj

f
w

u
δ δ

=

∂
=
∂

∑  (E.12) 

have been obtained. 

The weights are updated as 

 [ ] ( ) [ ] ( ) [ ] ( )1s s s
ji ji jiw p w p w p+ = + ∆  (E.13) 

using the gradient-descent approach. Although standard gradient-descent 

approach is simple and easy to understand, it has some significant drawbacks. 

Learning characteristics of the ordinary gradient descent algorithm is highly 

dependent on the value of the learning rate η . The algorithm is very slow with 

small values of the learning parameters, while it becomes oscillatory for large 

ones, which prevent the algorithm to converge to the desired solution. 

One simple approach to improve the algorithm is adding a momentum term to 

weight changes of the standard backpropagation as 
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 [ ] ( ) [ ] [ ] [ ] ( )1 1s s s s
ji j i jiw p o w pηδ α−∆ = + ∆ −  (E.14) 

where 0 1α≤ < . The second term, momentum term, acts like a low pass filter and 

prevents the network to get stuck in a shallow local minimum. The gradient 

descent with momentum often provides faster convergence.  

In order to prevent the algorithm from generating large weights, which slows 

down considerably the convergence to an optimal solution in a reasonable time, a 

term with the decay factorγ  is introduced to (E.8) as 

 [ ] ( ) [ ] [ ] [ ] ( )1s s s s
ji j i jiw p o w pηδ γ−∆ = − ∆  (E.15) 

The decay factor improves also the generalization ability of the network. The 

typical values for γ  are 10-3 to 10-5. Momentum updating and weight decay may 

also be used together in learning phase. Other than these simple variations, many 

new techniques based on gradient-descent approach are proposed such as the ones 

in (Salomon (1996), Yu (1997), Saad (1998), Hagan (1994), Yu (1995)).  

There also exist learning rules based on second order Taylor expansion as 

conjugate gradient, quasi-Newton and Levenberg-Marquardt optimization 

methods (Shepherd (1996)). These techniques circumvent the step size problem 

associated with gradient descent techniques. In this thesis work, variations of 

gradient descent, conjugate gradient and Levenberg-Marquardt learning 

algorithms are comparatively used in Chapter 3. 
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APPENDIX F 

NONLINEAR AND CHAOTIC DYNAMICS 

Most real world problems confronting the scientists and engineers are neither 

linear nor even slightly linear. This prevents the analyst to employ linear system 

tools such as reaching a closed form analytical solution with the knowledge of 

eigenvalues and eigenvectors. Consequently, with the lack of such analytical tools 

numerical analyses play a crucial role in analyzing nonlinear phenomena (Parker 

(1987)).  

In recent years, increase in the cost effective computing power let scientists to 

investigate nonlinear behaviors of dynamical systems. The increased interest in 

nonlinear systems is also due to the striking discovery of chaotic behavior with 

the work of Lorenz in 1963. Lorenz has shown that even a simple nonlinear 

deterministic system may have very complex behavior for certain values of 

parameters and exhibit chaos.  

Though, chaos is accepted to be a state with complete absence of order and loss of 

control, many scientists have achieved controlling and ordering chaos (Chen 

(1993)). As a result, a chaotic system can be defined as one in which long term 

prediction of the system is impossible because of the omnipresent uncertainty in 

determining its initial state that grows exponentially fast in time. 
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F.1 Dynamical Systems 

There exist two types of dynamical systems with respect to the variables they 

depend on. These are autonomous and nonautonomous. An autonomous 

dynamical system is defined with a time implicit following differential equation: 

 ( ) ( )0 0, t= =x f x x x  (F.1) 

where f is nonlinear time independent function of x and called vector field. The 

initial time of the system may always be taken as 00 =t . The solution of the 

system with initial condition 0x  is called a trajectory and shown by ( )0xφt . 

A nonautonomous dynamical system is defined by a time dependent differential 

equation: 

 ( ) ( )0 0, ,t t= =x f x x x  (F.2) 

f is a function of x and t, such that the system is time varying. Thus, the initial 

time of the system cannot be assigned arbitrarily to 0. Trajectory of the system is 

also time dependent and denoted by ( )00,tt xφ . 

Dynamical systems can be classified in terms of their steady state behaviour. 

Steady state refers to the system behavior as the transients die out. In steady state, 

four different types of attractors can be defined: point (equilibrium) attractor, 

periodic (cyclic) attractor, quasi-periodic attractor and chaotic (strange) attractor. 

Attractors are the regions or set of points generated from initial conditions to 

∞→t . 

An equilibrium point ex  of an autonomous system is a solution of ( ) eet xxφ = . 

At this point, the vector field ( )xf  vanishes. 
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In periodic attractors, trajectory of the system passes through the same points 

within a time period such that 

 ( ) ( )0 0, ,t t Tt t+′ ′=φ x φ x  (F.3) 

A periodic solution has a Fourier transform with a fundamental frequency 

component at 1/T and at its evenly spaced harmonics k/T, k=2,3….  

A quasi-periodic attractor has a solution that can be considered as the sum of 

periodic solutions having different frequencies such that their ratio is irrational. 

 

Figure F-1 Periodic Attractor  

Chaotic (strange) attractor can be defined as bounded steady state behavior that is 

not an equilibrium point, not periodic and not quasi-periodic (Figure F-2). 
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Figure F-2 Chaotic Attractor 

F.2 Chaos and Lyapunov Exponents 

Chaos can be defined as a bounded steady state behavior that is not an equilibrium 

point, not periodic and not quasi-periodic. A chaotic spectrum is not composed of 

discrete frequencies as in periodic and quasi-periodic behavior and has a noise 

like continuous nature. Dimension of the chaotic attraction domain is not integer, 

but fractional. The attraction domain always has fractal boundary, thus it 

possesses fractal dimension. 

The most important property of the chaotic systems is their sensitivity to initial 

conditions. Starting from two different initial conditions arbitrarily close to one 

another, the trajectories diverge at a rate characteristic of the instability of the 

system until they become uncorrelated. Thus, the long term behavior of the 

system cannot be predicted. 

On the other hand, instability in a chaotic trajectory is bounded which implies that 

a chaotic system must contract in some directions and expand in others with 

contraction outweighing expansion. Lyapunov exponents are used to quantify the 

expansion and contraction occurring in a dynamical system and are a 
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generalization of the eigenvalues at an equilibrium point and of eigenvectors. A 

positive exponent corresponds to an expansion in the related eigenvector direction 

and a negative exponent relates to contraction. They are used to determine the 

stability of any type of steady state behaviour. If the cumulative of Lyapunov 

exponents in a system is negative, contraction outweights expansion and the 

corresponding trajectory is said to be bounded as in chaotic attractors. What 

distinguishes a strange attractor from the other types of attractor is the existence 

of at least one positive Lyapunov exponent. Lyapunov exponents are related to the 

Jacobian of the local linearized model of any nonlinear system, which is a two 

dimensional error propagation equation: 

 1n n nδ δ+ =X A X  (F.4) 

where  

 n n
n

n n

df df
dx dy
dg dg
dx dy

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

A  (F.5) 

the Jacobi matrix nJ relates nXδ to the initial condition: 

 1 2 0 0 0......n n n nδ δ δ− −= =X A A A X J X  (F.6) 

and is evaluated for each iteration on the exact trajectory.  

δXn can be written in terms of eigenvalues )(niµ  and eigenvectors )(nie  of Jn as: 

 0 ( ) ( )n n i i i
i

c n nδ δ µ= =∑X J X e  (F.7) 

the Lyapunov exponents are then defined as 
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 1 ln ( ),i i n n
n

λ µ≈ →∞  (F.8) 

λi >0 corresponds to a local expansion of small areas along ei while λi <0 relates 

to a local contraction of small areas along the corresponding eigenvector. A 

strange attractor should have at least one positive eigenvalue (Lyapunov 

exponent) to be chaotic. 

Chaos which arises due to the changes in system parameters have found to have 4 

basic onsets defining characteristic transition phase triggering different routes to 

chaos as: intermittency (Pomeau, (1980)), period-doubling (Feigenbaum, (1978)), 

the quasiperiodic-chaotic route (Ruelle, (1971)), the crisis route (Gregobi, 

(1983)). The common property of all routes to chaos is the change in the 

maximum Lyapunov exponents due to the change in system control parameter, η.   

If η is the control parameter of a system and ηc is the critical value at the 

transition phase then λmax has a value of nearly ⎢η-ηc⎢α where η is in the vicinity 

of ηc and λmax <0 for prechaotic phase while λmax >0 at the onset of chaos. As 

seen, the maximum Lyapunov exponent is the unique measure to determine the 

“stable to chaotic” transition phase. As the largest exponent approaches zero, the 

system tends towards chaos. Thus, a strange attractor and transition to chaos is 

determined using the maximum Lyapunov exponent of a system.   

Another important feature of the strange attractor is its fractal dimension. The 

dimension of an attractor can be defined as a deterministic or probabilistic 

measure. There are several definitions used to find out the fractal dimension of a 

strange attractor such as capacity (Hausdorf), Lyapunov, information and 

correlation dimensions.  

The capacity is a deterministic dimension defined as 

 
0

log ( )lim
log(1/ )c

Nd
ε

ε
ε→

=  (F.9) 
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where N(ε) is the minimum number of cubes (volume elements) of size ε needed 

to cover the set. The region of state space is divided up into a grid of cubes of size 

ε, the equations are iterated and the number of cubes in the convergence region 

are counted. If for very small ε’s (as ε goes to 0) the process is repeated, slope of 

the plot of log N(ε) versus log ε gives the fractal dimension of the attractor. In the 

literature, there exist other dimensions and a detailed analysis of the capacity 

dimesion and other probabilistic dimensions is given in (Parker (1987)). 

Another dimension is the Lyapunov dimension. Let the Lyapunov exponents of a 

chaotic attractor be 1 ... nλ λ≥ ≥  and k be the largest integer such 

that 1 ... 0kλ λ+ + ≥ . Then the Lyapunov dimension is given as 

 1

1

... k
L

k
d k λ λ

λ +

+ +
= +  (F.10) 

Information dimension is one of the probabilistic dimensions and utilizes the time 

behavior of a system such that its calculation is based on the frequency of 

entrance of the trajectory into a specific volume in the state space. The 

information dimension is  

 ( )
( )

0 1

log ( )lim , ln
log(1/ )

N

i k k
k

Sd S P P
ε

ε

ε ε
ε→

=

= = −∑  (F.11) 

where kP is the frequency with which a trajectory visits kth volume of the state 

space. 

Lastly, the correlation dimension is defined as 

 

( )
2

1
0

ln
lim

ln

N

k
k

cor

P
d

ε

ε ε
=

→
=

∑
 (F.12) 
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and uses again the frequency of entrance to a specific volume of the state space. 

Every definition contains its own pros and cons. Although, the capacity definition 

is simple to understand, it takes the strange attractor as a static object and requires 

infinite time to estimate the true picture of the attractor, hence its dimension. The 

Lyapunov dimension is based on Lyapunov exponents and they are easily found 

using simulation technique. But there is no way to estimate negative exponents in 

a real time system from time series measurements. As a result, neither capacity 

nor Lyapunov dimensions are suitable for experimental studies. 

Among these four definitions, the correlation and the information dimensions are 

more suitable for experimental studies. They use the information on the frequency 

of a trajectory to be in some volume element. 

In this thesis study, the land vehicle system is analyzed using simulation tools so 

capacity and Lyapunov dimensions are utilized in the analysis of Chapter 5 and 6. 
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APPENDIX G 

ROUGH SETS 

In the dynamical analysis of the vehicle on irregular roads, we exploit rough set 

theory for categorizing state space regions with different stability features 

according to their degrees of uncertainty. Rough set proposed by Zdzislaw Pawlak 

(Pawlak (1982), (1995), (1997)) is a mathematical approach for modelling 

vagueness in uncertainty. Rough set theory associates a degree of uncertainty to 

any object of the universe so that any object without uncertainty (roughness) 

becomes indiscernible within a class. 

A set containing indiscernible objects forms or equivalence class, called the 

elementary set, any union of which determines a crisp set. All other sets include 

uncertainty. The rough set is composed of such sets and has 1) a boundary region 

where vagueness resides, with set elements that cannot be classified either as 

members of that set or of the complementary set; 2) a lower approximation 

consisting of the elements that are surely the members of the set and 3) an upper 

approximation consisting of the possible members of the set. 

Approximation Space 

Let U be a certain set called universum, and let R be an equivalence relation 

(indiscernibility relation) on U. The pair A=(U,R) is called an approximation 

space (Pawlak (1982)) which is formed by the classification of data points into 
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disjoint categories using attributes. The classification represents our knowledge 

about the data. 

Lower approximation of a set 

The lower approximation of a set X is described by the objects x of the domain 

(U), which are known “with certainty” to belong to the set of interest with respect 

to the attribute B: 

 { }( ) : ( )B X x U B x X= ∈ ⊆  (G.1) 

Upper approximation of a set 

The upper approximation of a set X containing objects x which “possibly” belong 

to the set of interest with respect to the attribute B: 

 { }( ) : ( )B X x U B x X φ= ∈ ∩ ≠  (G.2) 

Boundary of a rough set 

The boundary region of a rough set is a region of uncertainty where the set 

elements of that region are not known to be inside or outside the set “with 

certainty” with respect to the attribute B: 

 ( ) ( ) ( )BBN X B X B X= −  (G.3) 
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APPENDIX H 

REINFORCEMENT LEARNING 

Reinforcement learning is the technique of training an agent by reward and 

punishment through an environmental feedback process in order to learn the 

dynamical characteristics of a system navigating within this environment. 

Allowing systems to rearrange and improve themselves with their past space, it 

has been considerably popular in the field of robotics and autonomous systems 

(Mahadewan (1991), Schaal (1994)).  

A critical issue in improvement efficiency is the learning method employed in the 

training. There exist a number of methods in the literature that can be classified in 

two main groups as model free and model based learning. While model free 

learning forces the system to learn a controller without learning a model, model 

based learning makes the system learn a model in order to derive a controller. The 

most popular model free learning methods are adaptive heuristic critic introduced 

by Barto et.al. (1983), Q-learning of Watkins (1992) and learning with average 

reward examined first by Schwartz (1993). The fundamental model based 

methods are certainty equivalence (Kumar (1986)), Sutton’s Dyna architecture 

(1991) and prioritized sweeping technique proposed by Moore and Atkenson 

(1993). Many variants of given methods are also employed in different 

applications in the literature. 

Having a simple problem with two different states (chaoticity and regularity), we 

employed the linear reward-inaction algorithm of Hilgard and Bower (1975), 
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which is simpler and more suitable than the complex methods mentioned above, 

for reinforcement. This easy to apply learning algorithm based on finite-state 

automata adjusts the probability of taking different actions according to the 

previous successes and failures. When the success is rewarded, the measure is 

reinforced as 

 ( ) ( ) ( )( )1 1i i i
n n nR k R k R kα+ = + −  (H.1) 

When a failure occurs, the predetermined measure is penalized by 

 ( ) ( ) ( )1i i i
n n nR k R k R kα+ = −  (H.2) 

where Rn is the measure of success/failure and α determines the convergence rate. 
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