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abstract

isomorphisms of `-köthe spaces

KARAPINAR, Erdal

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Murat YURDAKUL

Co-Supervisor: Prof. Dr. Vyacheslav ZAHARIUTA

October 2004, 76 pages

In this thesis, we study on `-Köthe spaces. By the help of interpolation

theory, we use linear topological invariants to get isomorphisms of Carte-

sian products of `-power series spaces. We also see that multirectangular

n-equivalent characteristics is linear toplogical invariant for power `-Köthe

spaces of first type.

Keywords: `-Köthe Spaces, `-Power Series Spaces.
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öz

`-Köthe uzaylarının eş
yapıları

KARAPINAR, Erdal

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Murat YURDAKUL

Ortak Tez Yöneticisi: Prof. Dr. Vyacheslav ZAHARIUTA

Ekim 2004, 76 sayfa

Bu tezde, `-Köthe uzayları üstünde çalıştık. Enterpolasyon teori

yardımıyla, topolojik değişmezler kullanıp `-Köthe uzaylarının çarpımlarının

eş yapılarını gözlemledik. Ayrıca, n-denkli çoklu dikdörtgenseller karak-

terlerin, birinci tipte karışmış uzayların topolojik değişmezi olduğunu

gözlemledik.

Anahtar Kelimeler: `-Köthe Uzayları, `-Kuvvetli Seri Uzayları
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chapter 1

introduction

In chapter 2, we not only collect the necessary background for the se-

quence spaces with unconditional bases and monotone norm, but also obtain

some of their simple but important properties. By using the method of an-

alytic scale we observe that they have a very nice interpolation property

(see Lemma 2.2.9) which enables us to study the isomorphic classification of

Cartesian products of `-power series spaces.

In chapter 3, we recall definition of `-Köthe spaces and give the modifi-

cations of necessary background to be able to use topological invariants as

well as modifications of some their basics. As one application we obtain a

criteria for quasidiagonal isomorphism of `-power series spaces. Besides that

we observe the usual Köthe space K lp(A) is nuclear when it is complenment-

edly embedded in K lq(B) for 1 ≤ p < q < ∞ with p < 2 or 1 < q < p ≤ ∞
with p > 2. Finally, we use both results J. Prada and V.P. Zahariuta and

get that any stable complemented subspace of El2
0 (a)× El2∞(b), with ai or bi

tends to infinity, is basic.

In chapter 4, we consider properties d1− d2 on `-Köthe spaces. We study

on isomorphisms of Cartesian products of `-power series spaces of finite and

infinite type.

In chapter 5, we recall the first type power `-Köthe spaces and give some

basic properties. After that, using n-equivalent multirectangular character-

istic invariants we consider the problem of quasidiagonal isomorphisim of the

first type power `-Köthe spaces. We see that the system of all m-rectangle

charactersitics µm is a complete quasidiagonal invariant on the class of all

first type `-Köthe spaces.
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chapter 2

preliminaries

2.1 Banach Sequence Spaces

A basis for a Banach space X is a sequence (xn)∞n=1 of vectors in X such

that every vector in X has a unique representation of the form
∞∑

n=1

αnxn

with each αn a scalar and where the sum converges in the norm topology.

The mapping x 7→ αn then defines for each n a linear functional x′n on

X. It is easy to check that the expression ‖x‖ := sup
n
|

n∑

k=1

x′k(x)xk| defines

a stronger complete norm on X, so that | · | and ‖ · ‖ are equivalent by

the open mapping theorem. We deduce from this that the biorthogonal

functionals for a basis are necessarily continuous. Infact, all bases in Banach

spaces are Schauder bases, that is, all biorthogonal functionals for a basis are

continuous. Moreover, the biorthogonal functionals are a basic sequence in

X∗; that is, they form a basis for their closed linear span. When it is useful

to specify the biorthogonal functionals, we refer to the ”basis” (xn, x′n)∞n=1.

A series
∞∑

n=1

xn in a Banach space is said to converge unconditionally

provided every rearrangement of the series converges. This is equivalent to

(a)
∞∑

n=1

xkn converges for each subsequence (kn), and also to

(b)
∞∑

n=1

θnxn converges for any sequence (θn)∞n=1 with θn = ±1, n = 1, 2, ...

2



A basis (xn)∞n=1 in a Banach space X is said to be an unconditional basis

provided that
∞∑

n=1

αnxn converges unconditionally whenever it converges.

This is equivalent to saying that every permutation of (xn)∞n=1 is also a basis.

For any two sequences, x = (ξi), y = (ηi), we use the notation xy := (ξiηi).

Similarly, for any three sequences, x = (ξi), y = (ηi), z = (ζi), we notate

xyz := (ξiηiζi). Let X be Banach sequence space. The norm ‖.‖X is called

monotone (see [14]) (unconditionally monotone (see [18])), if the following

implication holds: for any x = (ξn), y = (ηn) ∈ X, |ξn| ≤ |ηn|, n ∈ N implies

‖x‖X ≤ ‖y‖X .

It is known that every Banach space X with an unconditional basis (xn)

has a monotone norm ‖ · ‖X which is equivalent to its original norm | · |.
Indeed, it is enough to put

‖x‖X = sup
|βn|≤1

∣∣∣∣
∑

n

βnx′n(x)xn

∣∣∣∣

Throughout this work we denote by ` a Banach sequence space in which

the canonical system (en) is an unconditional basis, with a monotone norm

‖ · ‖ satisfying ‖en‖ = 1 for each n. Let Λ be the class of all such spaces; in

particular, lp, c0 are in this class.

Proposition 2.1.1. Let (X, ‖.‖0) be a Banach space with an unconditional

basis (xn, x′n)∞n=1. Then there exists a space ` ∈ Λ such that the map

T : X → `

x :=
∞∑

n=1

x′n(x)xn → ξ = (x′n(x))∞n=1, x ∈ X

is an isomorphism.

Proof. Let ` be the space of all sequences (x′n(x))∞n=1, x ∈ X, endowed with

the norm

‖(x′n(x))‖` := sup

{ ∥∥∥∥∥
∞∑

n=1

x′n(x)αnxn

∥∥∥∥∥
0

, |αn| ≤ 1

}

3



In X, we have a norm ‖ · ‖1 which is equivalent to the original norm ‖ · ‖0

(see [14], [18]) and defined as

‖x‖1 := sup

{ ∥∥∥∥∥
∞∑

n=1

x′n(x)αnxn

∥∥∥∥∥
0

, |αn| ≤ 1

}
, x ∈ X.

We want to show that the map

T : X → `

x =
∞∑

n=1

x′n(x)xn 7→ ξ = (x′n(x))∞n=1, x ∈ X

is an isomorphism.

Since ` is defined as the image of T , then the map T is onto. It is also

clear that T is one-to-one. Now, it is sufficient to show that T and its inverse

are continuous. Since

‖Tx‖` =

∥∥∥∥∥T

( ∞∑
n=1

x′n(x)xn

)∥∥∥∥∥
`

= ‖(x′n(x))‖` = sup
|αn|≤1

∥∥∥∥∥
∞∑

n=1

x′n(x)αnxn

∥∥∥∥∥
0

= ‖x‖1,

T is isometry.

The norms ‖.‖0 and ‖.‖1 are equivalent in X, so there exists C > 0 such

that
1

C
‖x‖0 ≤ ‖x‖1 ≤ C‖x‖0, (2.1)

that is,
1

C
‖x‖0 ≤ ‖Tx‖` ≤ C‖x‖0. (2.2)

Hence T is an isomorphism. Since ` is isomorphic to X, then ` is a Banach

space.

To see that the norm ‖.‖` is monotone; we take ξ = (ξn), η = (ηn) ∈
`. Since T is onto, there exist x, y ∈ X such that (ξn) = (x′n(x)) and

4



(ηn) = (x′n(y)). If |ξn| ≤ |ηn| holds for each n, then there there exists

θ = (θn), θn = ±1 such that x′n(x) ≤ θnx
′
n(y) which satisfies

‖ξ‖` = ‖(x′n(x))‖` = sup
|αn|≤1

{ ∥∥∥∥∥
∞∑

n=1

x′n(x)αnxn

∥∥∥∥∥
0

}

= sup
|αn|≤1

{ ∥∥∥∥∥
∞∑

n=1

x′n(x)
x′n(y)

x′n(y)
αnxn

∥∥∥∥∥
0

}
≤ sup

|αn|≤1

{ ∥∥∥∥∥
∞∑

n=1

x′n(y)αnθnxn

∥∥∥∥∥
0

}

= sup
|βn|≤1

{ ∥∥∥∥∥
∞∑

n=1

x′n(y)βnxn

∥∥∥∥∥
0

}
= ‖(x′n(y))‖` = ‖η‖`.

Canonical system (en)∞n=1 is a basis in ` . Indeed, since T is an isomor-

phism, the image of the basis (xn)∞n=1 in X, which is (en)∞n=1, is a base for

`.

Hereafter, we prefer to use ‖ · ‖ instead of ‖ · ‖`.

Lemma 2.1.2. Let ` ∈ Λ. If x =
∞∑

n=1

e′n(x)en ∈ ` and α = (αn) is such that

|αn| ≤ 1∀n, then αx :=
∞∑

n=1

e′n(x)αnen is also in `.

Proof. Let Sm(x) :=
m∑

n=1

e′n(x)en and S̃m(x) :=
m∑

n=1

e′n(x)αnen.

From Proposition 2.1.1 we have ‖x‖ = sup
|αn|≤1

∥∥∥∥∥
∞∑

n=1

e′n(x)αnen

∥∥∥∥∥
0

. For k < m

‖S̃m(x)− S̃k(x)‖ =

∥∥∥∥∥
m∑

n=k+1

e′n(x)αnen

∥∥∥∥∥

= sup
|βn|≤1

∥∥∥∥∥
m∑

n=k+1

e′n(x)βnαnen

∥∥∥∥∥
0

≤ sup
|γn|≤1

∥∥∥∥∥
m∑

n=k+1

e′n(x)γnen

∥∥∥∥∥
0

=

∥∥∥∥∥
m∑

n=k+1

e′n(x)en

∥∥∥∥∥ = ‖Sm(x)− Sk(x)‖

5



where γn := βnαn for each n.

Since the series
∞∑

n=1

e′n(x)en converges ( i.e. ‖Sm(x) − Sk(x)‖ → 0, as

m, k → ∞), the sequence (S̃m(x))∞n=1 is a Cauchy sequence. Since ` is com-

plete, (S̃m(x))∞n=1 converges in `, say to αx.

Lemma 2.1.3. Let ϕ : [0,∞) → R be a convex and non-decreasing function.

If ϕ(t1) = ϕ(t2) for t1 < t2, then ϕ(0) = ϕ(t) for 0 ≤ t ≤ t2.

Proof. Assume the contrary, that is, for t1 < t2, ϕ(t1) = ϕ(t2) but ϕ(0) 6=
ϕ(t0) for some t0 ∈ [0, t2]. Since ϕ is non-decreasing this means that ϕ(0) <

ϕ(t0) ≤ ϕ(t2). Thus ϕ(0) < ϕ(t2).

By convexity of ϕ, we have ϕ(t) ≤ (1− λ)ϕ(0) + λϕ(t2) where 0 < λ < 1

and 0 < t < t2. If we take λ = t1
t2

and t = t1, we obtain that

ϕ(t1) ≤ (1− t1
t2

)ϕ(0) + (
t1
t2

)ϕ(t2).

Since ϕ(0) < ϕ(t2) we obtain that ϕ(t1) < (1− t1
t2

)ϕ(t2)+( t1
t2

)ϕ(t2) = ϕ(t2)

which contradicts our assumption that ϕ(t1) = ϕ(t2). Hence ϕ(0) = ϕ(t) for

all t ∈ [0, t2].

Let (en)∞n=1 be an unconditional basis of ` in Λ. For x ∈ ` define

xt := te1 +
∞∑

n=2

e′n(x)en

for all t in R. Since the series
∞∑

n=1

e′n(x)en converges to x in `, then e′1(x)te1 +

∞∑
n=2

e′n(x)en converges to in `.

Lemma 2.1.4. Let ` ∈ Λ. If x 6= 0 is in ` and α = (αn), |αn| < 1, ∀n, then

‖αx‖ < ‖x‖.

6



Proof. By monotonicity of the norm, it is sufficient to prove that ‖αx‖ 6= ‖x‖.
Assume the contrary that

‖αx‖ = ‖x‖. (2.3)

Let rm(x) :=
∞∑

i=m+1

e′i(x)ei and

ϕm(t) := ‖et‖ = ‖te′m(x)em + rm+1(x)‖
for m = 1, 2, ...

First, we show that ϕm(t) is convex. For λ ∈ (0, 1) it follows from the

triangular inequality that

ϕm

(
λt + (1− λ)t̃

)
:= ‖ (

λt + (1− λ)t̃
)
e′m(x)em + rm+1(x)‖

= ‖λte′m(x)em + λrm+1(x) + (1− λ)t̃e′m(x)em + (1− λ)rm+1(x)‖
≤ λ‖te′m(x)em + rm+1(x)‖+ (1− λ)‖t̃e′m(x)em + rm+1(x)‖

≤ λϕm(t) + (1− λ)ϕm(t̃).

It is clear that ϕm(t) is non-decreasing. Indeed, if t ≤ t̃ then

|te′m(x)em| ≤ |t̃e′m(x)em|

By monotonicity of the norm it follows that ϕ1(t) ≤ ϕ1(t̃).

We want to prove by induction that for every positive integer n,

‖rn(x)‖ = ‖x‖.

In the first step, we need to show that this assumption holds for n = 1.

From the definition,

ϕ1(1) = ‖x‖. (2.4)

By monotonicity of the norm and by the assumption |αn| < 1 for each n,

we get that

ϕ1(α1) = ‖α1e
′
1(x)e1 + r2(x)‖ ≥ ‖

∞∑
n=1

e′n(x)αnenαn‖ = ‖αx‖ (2.5)

7



If we combine (2.3), (2.4 ), (2.5) we obtain that

ϕ1(1) = ‖x‖ = ‖αx‖ ≤ ϕ1(α1) ≤ ‖x‖

which implies that ϕ1(1) = ϕ1(α1). Since ϕ1(t) is non-decreasing and convex,

then by Lemma 2.1.3 we have

ϕ1(0) = ϕ1(1) (2.6)

From (2.6) we conclude that ‖r1(x)‖ = ‖x‖.
Now, assume that the property is true for some integer n, i.e.

‖rn(x)‖ = ‖x‖ (2.7)

We must prove that it is also true for n + 1 i.e. ‖rn+1(x)‖ = ‖x‖
Let y = rn(x). By (2.7), since x 6= 0, y 6= 0. It is obvious that

ϕn+1(1) = ‖y‖ (2.8)

By monotonicity

‖ϕn+1(αn+1)‖ = ‖e′n+1(x)αn+1e1 + rn+2(x)‖

≥ ‖
∞∑

k=n+1

e′k(x)αkekαk‖ = ‖αy‖ (2.9)

If we combine (2.7), (2.8) and (2.9) we obtain that

ϕn+1(1) = ‖y‖ = ‖αy‖ ≤ ϕn+1(αn+1) ≤ ‖y‖

which implies that ϕn+1(1) = ϕn+1(αn+1). Since ϕn+1(t) is convex and

non-decreasing, then by Lemma 2.1.3 we have ϕn+1(1) = ϕn+1(0). Hence

‖rn+1(x)‖ = ‖x‖. Thus by induction ‖rn(x)‖ = ‖x‖ for all positive integer

n. Since (en) is a basis, ‖rn(x)‖ → 0. But this contradicts the assumption

that x 6= 0. Hence we have proved that ‖x‖ > ‖αx‖.

8



With Lemma 2.1.4, we can conclude that the monotone norm is also

strictly monotone, that is, ‖αx‖ < ‖x‖ for all x ∈ ` and α = (αn), such that

|αn| < 1, n ∈ N.

Proposition 2.1.5. If `1, `2 ∈ Λ then there exists a Banach sequence space

`, satisfying 2.1.2 such that ` ' `1 × `2, where the norm in the Cartesian

product of `1 and `2 is defined as follows:

‖(x, y)‖`1×`2
:= max {‖(x)‖`1

, ‖(y)‖`2
}, (2.10)

x ∈ `1 and y ∈ `2.

Proof. Let x = (ξk) ∈ `1 and y = (ηk) ∈ `2. Then we define z = (ζn) such

that

ζn =

{
ξk if n = 2k − 1,

ηk if n = 2k.
(2.11)

Let ` be the space of all such sequences (ζn). Define I : `1× `2 → ` such that

(x, y) 7→ z. Define a norm in ` as:

‖(ζn)‖` := ‖I((ξk, ηk))‖` = max {‖(ξk)‖`1
, ‖(ηk)‖`2

}

By definition, I is one-to-one and onto. Since

‖I((ξk, ηk))‖` = max{‖(ξk)‖`1
, ‖(ηk)‖`2

} = ‖(x, y)‖`1×`2
,

I is isometry. Hence we get a canonical isomorphism `1×`2 ' `. Let (ei) ∈ `1

and (ẽj) ∈ `2 be the bases of the related spaces. Then the sequence, we want

to denote it again by (en), which is just the image of the (e2k−1, ẽ2k) under

I, becomes a basis in `.

Let α = (αn), and β = (βn), be sequences of constants such that |αn| ≤ 1

and |βn| ≤ 1 for all n. Then by monotonicity of the norms ‖.‖`1
and ‖.‖`2

we

get

‖(αx, βy)‖`1×`2
:= max {‖(αx)‖`1

, ‖(βy)‖`2
}

≤ max {‖(x)‖`1
, ‖(y)‖`2

} = ‖(x, y)‖`1×l2

Thus ‖.‖` satisfies Lemma 2.1.2.

9



2.2 Methods of Interpolation

In this section, we want to collect the necessary background from the In-

terpolation Theory which is necessary to obtain some interpolative property

of linear maps between `-Köthe spaces. Our main reference is [16].

2.2.1 Interpolation Spaces

A Banach couple (A,B) is two Banach spaces A and B algebraically and

topologically imbedded in a separated topological linear space S. With any

Banach pair we may associate a couple of imbedded Banach spaces:

1. The space A ∩ B consists of the elements common to A and B; the

norm is ‖x‖A∩B = max {‖x‖A, ‖x‖B}, where x ∈ A ∩B.

2. The space A + B consists of the elements of the form x = u + v, where

u ∈ A and v ∈ B and norm is ‖x‖A+B = inf{‖u‖A + ‖v‖B} where the

infimum is taken over all elements u ∈ A and v ∈ B whose sum is equal

to x.

The first of these spaces is called the intersection of the spaces of the Banach

couple, and the second is called the sum of the spaces of the Banach couple.

The Banach space E is said to be intermediate for the spaces of Banach

couple (A,B) if the imbeddings A ∩ B ⊂ E ⊂ A + B hold. It is easy to see

that any space Lp(0, 1) of p-integrable real (complex) valued functions on the

interval (0, 1), is an intermediate space between Lp0(0, 1) and Lp1(0, 1) (p0 <

p1) if (p0 ≤ p ≤ p1).

Let (A,B) and (C,D) be two Banach couples. A linear map-

ping T acting from the space A + B to C + D is called a

bounded operator from the couple (A,B) to (C,D) if the restrictions of

T to the spaces A and B are bounded operators from A to C and B to D,

respectively.

10



We denote by L(AB,CD) the linear space of all bounded operators from

the couple (A,B) to the couple (C, D). This is a Banach space equipped

with the norm

‖T‖L(AB,CD) = max {‖T‖A→C , ‖T‖B→D}.

Indeed, if the operators Tn form a Cauchy sequence in L(AB,CD), then

their restrictions to A and B converge in L(A,C) and L(B, D) to operators T ′

and T ′′, respectively, which obviously coincide on A∩B. Then the sequence

Tn converges in L(AB, CD) to a uniquely defined operator T acting from

A + B to C + D according to the formula Tx = T ′u + T ′′v (x = u + v, u ∈
A, v ∈ B).

Definition 2.2.1. Let (A,B) and (C, D) be two Banach couples, and E (re-

spectively F ) be intermediate for the spaces of Banach couple (A, B) (respec-

tively (C, D)). The triple (A,B, E) is called an interpolation triple relative

to (C,D, F ) if every bounded operator from (A,B) to (C,D) maps E to F .

Lemma 2.2.2. If a triple (A,B,E) is an interpolation triple relative to

(C, D, F ), then there exists a constant c = c(E, F ) > 0 (interpolation con-

stant) such that

‖T‖E→F ≤ c‖T‖L(AB,CD)

for any T ∈ L(AB, CD).

Definition 2.2.3. The triple (A, B, E) is said to be interpolation triple of

type α (0 ≤ α ≤ 1) relative to (C,D, F ) if it is an interpolation triple and

the following inequality holds:

‖T‖E→F ≤ c‖T‖1−α
A→B · ‖T‖α

C→D,

for some interpolation constant c.

If the spaces A, B, E coincide with C, D, F, respectively, then E is said

to be an interpolation space of type α between A and B. If the constant

11



c is equal to one, then (A,B, E) is said to be a normalized interpolation

triple relative to (C,D, F ).

Theorems which establish that one triple of Banach spaces is an inter-

polation triple relative to the another are called interpolation theorems.

Historically, the first interpolation theorem was obtained by M.Riesz and G.

O. Thorin, and the whole theory of interpolation for linear operators began

to develop in the direction of generalizations of this theorem. Here we give a

general formulation of this first interpolation theorem. (See [16], Chapter I.)

Theorem 2.2.4 (Riesz-Thorin). Let (Ω1,
∑

1, µ1), and (Ω2,
∑

2, µ2) be

two measure spaces, and let Lp(Ωi)(i = 1, 2; p ≥ 1) be Banach spaces of

complex-valued functions, p-th power summable with respect to µi. Then

(Lp0(Ω1), Lp1(Ω1), Lp(Ω1)) is a normalized interpolation triple of Banach

spaces of type α relative to the triple (Lq0(Ω2), Lq1(Ω2), Lq(Ω2)), if 1
p

=
(1−α)

p0
+ (α)

p1
, 1

q
= (1−α)

q0
+ (α)

q1
, (0 ≤ α ≤ 1.)

Definition 2.2.5. An interpolation functor is a functor = acting from the

category of Banach couples into the category of Banach spaces and assigning

to every Banach couple (A,B) a Banach space =(A,B) which is intermediate

for the spaces of Banach couple (A,B): A ∩ B ⊂ =(A,B) ⊂ A + B and to

every operator T ∈ L(AB, CD) assigning its restriction =(T ) to =(A,B).

If the above correspondence is a functor, then the operator =(T ) belongs

to the set of morphisms Mor(=(A,B),=(C,D)), i.e. is a bound linear opera-

tor from =(A,B) to =(C, D). In other words, the triples (A,B,=(A,B)) and

(C, D,=(C,D) must be interpolation triples for any Banach couples (A,B)

and (C, D).

An interpolation functor = is said to be normalized if the interpolation

constant for any triples (A,B,=(A,B)) and (C, D,=(C,D)) is not greater

than one. Simple examples of normalized interpolation functors from the cat-

egory of Banach couples into the category of Banach spaces are the functors

of the sum and intersection of spaces in a Banach couple.
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2.2.2 Calderon’s Complex Method

The modern approach to the Riesz-Thorin theorem proceeds via a con-

struction called the complex method. (See [16], Chapter IV.)

Let A be a complex Banach space. We denote with F(A), the collection

of all analytic functions inside Π : 0 ≤ Rez ≤ 1, with values in A, and

continuous and bounded in the closed strip.

Let (A0, A1) be a Banach couple of complex spaces. By F(A0, A1) we

denote the linear space consisting of all functions f(z) defined in the strip Π

with values in the space A0 + A1 and having the following properties:

1. f(z) is continuous and bounded in the norm of A0 + A1 in the closed

strip Π.

2. f(z) is analytic relative to the norm of A0 + A1 inside the strip.

3. f(iτ) assumes values in the space A0 and is continuous and bounded

in the norm of this space, while f(1 + iτ) assumes values in A1 and is

continuous and bounded in the norm of A1.

The norm of F(A0, A1) is defined by

‖f‖F(A0,A1) := max {sup
τ

‖f(iτ)‖A0
, sup

τ
‖f(1 + iτ)‖A1

}.

We note that, by maximum principle for an analytic function, we have

‖f‖A0+A1
≤ max{sup

τ
‖f(iτ)‖A0+A1

, sup
τ

‖f(1 + iτ)‖A0+A1
}

≤ max{sup
τ

‖f(iτ)‖A0
, sup

τ
‖f(1 + iτ)‖A1

} = ‖f‖F(A0,A1) (2.12)

for f ∈ F(A0, A1). From this it follows in particular that ‖f‖F(A0,A1) = 0

implies f(z) = 0, and that F(A0, A1) is complete.

We denote by [A0, A1]α (0 ≤ α ≤ 1) the collection of all elements x ∈ A0+

A1 representable in the form x = f(α) for some function f ∈ F(A0, A1).This

collection is linear. The space [A0, A1]α is endowed with the norm:

‖x‖[A0,A1]α
= ‖x‖α := inf

x=f(α)
‖f‖F(A0,A1)

13



It follows from (2.12) that the linear manifold Nα of all functions from

F(A0, A1) vanishing at z = α, is a closed subspace of F(A0, A1). The above

definition of the norm shows that [A0, A1]α is isometric to the quotient space

of F(A0, A1) modulo Nα, and consequently it is a Banach spaces. Also with

the help of (2.12), we have:

Theorem 2.2.6 (Interpolation Theorem). Let (A0, A1) and (B0, B1) be

two Banach couples. The triple (A0, A1, [A0, A1]α) of Banach spaces is a nor-

malized interpolation triple of type α relative to the triple (B0, B1, [B0, B1]α)

i.e. for T ∈ L(A0A1, B0B1)

‖Tx‖[B0,B1]α
≤ ‖T‖1−α

A0→B0
‖T‖α

A1→B1
‖x‖[A0,A1]α

.

Theorem 2.2.7. The space A0 ∩ A1 is densely imbedded in any space

[A0, A1]α for 0 ≤ α ≤ 1.

2.2.3 Method of Analytic Scales

We need to introduce the notion of the analytic scale of spaces. Let M

be a normed linear space in which a family of linear operators T (z) acts in

such a way that the following conditions are satisfied:

(i) For every x ∈ M the function T (z)x is an entire function of the complex

variable z.

(ii) The function ‖T (z)x‖M is bounded on every straight line parallel to

the imaginary axis.

(iii) T (0)x = x.

(iv) sup
µ,ν

‖T (α + iµ)T (β + iν)x‖M ≤ sup
τ
‖T (α + β + iτ)x‖M

(v)

T (iµ)
T (z + ∆z)x− T (z)x

∆z
→ T (iµ)(T (z)x)′

uniformly in µ as ∆z → 0.
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We define the family of norms

‖x‖α := sup
−∞<τ<∞

‖T (α + iτ)x‖M

in the space M and complete M to a Banach space Eα in each of these

norms. The family Eα, (−∞ < α < ∞), of Banach spaces will be called an

analytic scale of spaces.

Property (iv) can be written as

‖T (β + iν)x‖Eα
≤ ‖x‖α+β (2.13)

Also, from property (iii), it follows that

‖x‖M = ‖T (0)x‖M ≤ ‖x‖E0
(2.14)

As an example of an analytic scale; we consider the set of all continuous

functions on [0,1], equal to zero in some neighborhood of zero which may vary

with the function. On this set we define the family of operators T (z)x(t) =

t−zx(t). The operators T (z) will be considered as linear operators in the

space M equipped with the norm of Lp(0, 1) (1 ≤ p < ∞). We denote by Lα
p

(−∞ < α < ∞) the scale of spaces constructed from these operators. The

space Lα
p consists of measurable functions for which

‖x‖Lα
p

=

( ∫ 1

0

|t−αx(t)|pdt

) 1
p

< ∞.

Theorem 2.2.8. Let Eα, (0 ≤ α ≤ 1), be an analytic scale of spaces, and let

E1 be normally imbedded in E0. The space Eα coincides isometrically with

[E0, E1]α.

Proof. Let x belong to the set M from which the scale Eα is constructed.

The function f(z) := T (α−z)x is analytic in the norm of E0, by the property

(v). Also by using the property (iv) we get

‖f(z)‖E0
= ‖T (α− z)x‖E0

= sup
τ
‖T (iτ)T (α− z)x‖M
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≤ sup
µ
‖T (α−Rez + iµ)x‖M ≤ max{‖x‖Eα

, ‖x‖Eα−1
},

for 0 ≤ Rez ≤ 1, and so ‖f(z)‖E0
is bounded in the strip Π. So by (2.13),

on the boundary Π we have

‖f(iτ)‖E0
= ‖T (α− iτ)x‖E0

≤ ‖x‖Eα

‖f(1 + iτ)‖E0
= ‖T (α− 1− iτ)x‖E1

≤ ‖x‖Eα

Finally, by property (iii), we have f(α) = T (0)x = x. Consequently, x ∈
[E0, E1]α and ‖x‖[E0,E1]α

≤ ‖x‖Eα
.

For the reverse inequality: For x ∈ M we may construct a function f(z) =∑N
k=1 ak(z)xk such that ak is complex-valued function which is analytic inside

Π, continuous and bounded in the closed strip; xk ∈ M, f(α) = x and

‖f‖F(E0,E1) ≤ ‖x‖[E0,E1]α
+ ε. (2.15)

Set Ψ(z) := T (z + iµ)f(z), where µ is a fixed real number. This function

is analytic in E0 inside Π and continuous and bounded in the closed strip.

We further have

‖Ψ(iτ)‖E0
≤ sup

t,τ
‖T (it)f(iτ)‖E0

≤ sup
τ
‖f(iτ)‖E0

≤ ‖f‖F(E0,E1)

‖Ψ(1 + iτ)‖E0
≤ sup

t,τ
‖T (1 + it)f(1 + iτ)‖E0

≤ sup
τ
‖f(1 + iτ)‖E1

≤ ‖f‖F(E0,E1).

By the maximum principle, taking account of (2.15), we obtain

‖Ψ(α)‖E0
= ‖T (α + iµ)f(α)‖E0

= ‖T (α + iµ)x‖E0
≤ ‖x‖[E0,E1]α

+ ε.

Finally, from (2.14) it follows that

‖x‖Eα
= sup

µ
‖T (α + iµ)x‖M ≤ sup

µ
‖T (α + iµ)x‖E0

≤ ‖x‖[E0,E1]α
+ ε.

Thus ‖x‖[E0,E1]α
= ‖x‖Eα

on M . On the other hand, since M is dense in all

spaces Eα and also in [E0, E1]α by Theorem 2.2.7, the theorem is proved.
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For a sequence a = (ai), we use notation aα := (aα
i ).

Lemma 2.2.9. Let ` ∈ Λ and a(0), a(1) be positive sequences of numbers.

Then `(aα) = [`(a(0)), `(a(1))]α where aα := (a(0))1−α(a(1))α, 0 ≤ α ≤ 1.

This result is obtained from the interpolation theory by using the method

of the analytic scale. In that case, it is enough to take the normed linear

space M as a dense subspace of `(a(0)), that is,

M := {x = (ξk) ∈ `(a(0)) : ∃k0 = k0(x), ξk = 0, k ≥ k0}.

We define an operator T (z) : M −→ M such that T (z)x :=

(
ξk

(
a
(1)
k

a
(0)
k

)z)

where x = (ξk). Clearly the conditions (i) − (v) in the definition of the

analytic scale are satisfied.

‖x‖α := sup
−∞<τ<∞

‖T (α + iτ)x‖`(a(0)) = sup
−∞<τ<∞

‖
(

ξk

(
a

(1)
k

a
(0)
k

)α+iτ

a
(0)
k

)
‖

= sup
−∞<τ<∞

‖(ξk(a
(0)
k )1−α−iτ (a

(1)
k )α+iτ )‖ = sup

−∞<τ<∞
‖T (iτ)x‖

`( (a(0))
1−α

(a(1))
α
)

= sup
−∞<τ<∞

‖x‖
`( (a(0))

1−α
(a(1))

α
)
.

With this observation, we obtained that Eα := `(aα) = `( (a(0))
1−α

(a(1))
α
).

In the same way, we get that E0 := `(a(0)), E1 := `(a(1)). After getting the

analytic scale Eα in this way, we conclude the result just by Theorem 2.2.8.
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chapter 3

`-köthe spaces

3.1 `−Köthe Spaces

A matrix A := (ai,n)i,n∈N of real numbers is called a Köthe matrix if

0 ≤ ai,n ≤ ai,n+1 for each i, n ∈ N; and for each i ∈ N, there is n ∈ N such

that ai,n > 0.

Definition 3.1.1. Let ` ∈ Λ. The `-Köthe space K`(A) , defined by the

Köthe matrix A = (ai,n)i,n∈N, is a Fréchet space of number sequences ξ = (ξi)

such that (ξiai,n) ∈ `, for each n, with the topology generated by the system

of seminorms {|(ξi)|n := ‖(ξiai,n)‖ : n ∈ N}.

Note that |(ei)|n = ‖(eiai,n)‖ = ai,n. Hereafter the notation e =

(ei)i∈N, ei := (δi,k)k∈N, will be always used for the canonical basis of K`(A)

regardless of a matrix A.

When ` is an lp, we obtain the usual Köthe space

K lp(A) = {(ξ) = (ξi) : |(ξi)|n =

( ∞∑
i=1

|ξi|p(ai,n)p

) 1
p

< +∞,∀n ∈ N}.

In some sources, usual Köthe spaces are also denoted by λp(A).

Due to [19], it is known that every Fréchet space with an absolute basis

is isomorphic to some `1-Köthe space.

Let A := (ai,n)i,n∈N and B := (bj,n)j,n∈N be Köthe matrices. Then the

Cartesian product of `-Köthe spaces K`1(A) and K`2(B) is naturally isomor-

phic to the space K`(C) where ` ' `1× `2, `1, `2 ∈ Λ (see Proposition 2.1.5)
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and C = (ck,n)k,n∈N such that ckn is equal to ai,n if k = 2i − 1 and bi,n if

k = 2i.

For a given sequence of positive real numbers a = (ai)i∈N and λn → α,

−∞ < α ≤ ∞, we call the `-Köthe space

E`
α(a) := K`(exp(λnai)),

`-power series space of finite (respectively, infinite) type if α < ∞ (re-

spectively, α = ∞).

The sequences a = (an) and ã = (ãn) of positive numbers are weakly

equivalent (a ³ ã) if there is a C > 0 such that
1

C
an ≤ ãn ≤ Can for each n.

For any set S, we denote by |S| the number of elements in S if it is finite

and the symbol ∞ if S is infinite.

Let X = K`(A) and X̃ = K`(Ã) be `-Köthe spaces with the canonical

bases (ei). We say that X is quasidiagonally isomorphic to X̃ and write

X
qd' X̃ if there exists T : X → X̃ such that

Tei := tieϕ(i), i ∈ N, (3.1)

is an isomorphism, where ti is a sequence of numbers and ϕ : N→ N is a bi-

jection. Also, we denote by X
qd
↪→ X̃, a quasidiagonal isomorphic imbedding,

for which ϕ in (3.1) is an injection.

The following statement is proved in [37] (see also [21]), for Köthe spaces.

Lemma 3.1.2. Let X and X̃ be `-Köthe spaces with X
qd
↪→ X̃ and X̃

qd
↪→ X

then X
qd' X̃ .

Proof. Let (ei)i∈N and (ej)j∈N be bases of X and X̃, respectively. Let the

quasidiagonal embeddings X
qd
↪→ X̃ and X̃

qd
↪→ X be defined respectively by

(ri), ϕ : N → N, and (tj), ψ : N → N. By Cantor-Bernstein theorem, there

exist complementary subsets I1, I2 ⊂ N and J1, J2 ⊂ N such that ϕ(I1) = J1

and ψ(J2) = I2. Since, any part of an unconditional basis is a basis in

its closed linear span, and any permutation of an unconditional basis is also
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basis, then (eϕ(i))i∈I1∪(eψ−1(i))i∈I2 is a basis in X̃. We define the quasidiagonal

isomorphism T between X and X̃ as

Tei =

{
rieϕ(i) if i ∈ I1,

t−1
ψ−1(i)eψ−1(i) if i ∈ I2.

Let a = (an) where an ≥ 1. In [20], [21] Mitiagin investigated isomorphism

of some non-Montel power series spaces by using the following counting func-

tion:

µa(t, τ) := |{n ∈ N : τ < an ≤ t}|, 0 < τ < t < ∞.

We use the notation µa ≈ µã if both µa(t, τ) ≤ µã(∆t, τ
∆

) and µã(t, τ) ≤
µa(∆t, τ

∆
) hold for some constant ∆ > 0.

The following two propositions are proved in the survey [37].

Proposition 3.1.3. Let the number sequences a = (ai), b = (bj) be such that

ai ≥ 1, bj ≥ 1, limi→∞ ai = ∞, limj→∞ bj = ∞, and satisfy the following

condition:

µa(t, τ) ≤ µb(∆t,
τ

∆
) 1 ≤ τ ≤ t < ∞ (3.2)

with some constant ∆ > 1 . Then there exists an injection σ : N → N such

that the inequalities
1

∆
ai ≤ bσ(i) ≤ ∆ai ,∀i ∈ N. (3.3)

hold.

Lemma 3.1.4. Let for arbitrary sequences a = (ai),b = (bj), ai ≥ 1, bj ≥ 1,

the condition (3.2) hold. Then there exists an injection ϕ : N→ N such that

the inequalities
1

∆2
ai ≤ bϕ(i) ≤ ∆2ai , i ∈ N, (3.4)

hold.

Proof. Let us define following sets ( s ∈ Z+) :

Ns = {i : ∆s−1 < ai ≤ ∆s}
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Ñs = {i : ∆s−2 < ai ≤ ∆s+1}
Ms = {j : ∆s−1 < bj ≤ ∆s}

M̃s = {j : ∆s−2 < bj ≤ ∆s+1}
Let S := {s ∈ Z+ : |Ms| = ∞} and I :=

⋃
s∈S Ñs , J :=

⋃
s∈S Ms

Then both the sequences ã := (ai)i∈N\I and b̃ := (bj)j∈N\J have no limit

points and satisfy the condition

µã(t, τ) ≤ µb̃(∆t,
τ

∆
) (3.5)

So by the Proposition 3.1.3, there exists an injection λ : N \ I → N \ J

such that
1

∆
ai < bλ(i) ≤ ∆ai, i ∈ N \ I.

On the other hand, we construct an injection γs : Ñs → Ms for any s ∈ S.

By the same taken we have got the many-valued mapping:

γ(i) := {j ∈ N : ∃s, j = γs(i)}, i ∈ I

such that γ(i) 6= ∅, i ∈ I and γ(i) ∩ γ(i′) = ∅, i 6= i′. Therefore, we can

obtain an injection µ : I → J simply by choosing of one element in each set

γ(i), i ∈ I. So it satisfies the condition µ(Ñs) ⊂ Ms which implies that

1

∆2
ai < bµ(i) ≤ ∆2ai.

Thus the injection σ : N → N, defined as µ on I and λ on N \ I is that

what required.

Lemma 3.1.5. If a = (ak) and b = (bk) are sequences of positive num-

bers satisfying (3.2), then E`
ν(a) can be quasidiagonally imbedded into E`

ν(b),

where ν = 0 or ∞.

Proof. Because of the similarity, we restrict ourselves to the case ν = ∞. By

Lemma 3.1.4, there exists an injection σ : N→ N satisfying

1

∆2
ai < bσ(i) ≤ ∆2ai, ∀i. (3.6)
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Define an operator T : E`
∞(a) → E`

∞(b) by ei 7→ eσ(i).

By (3.6), we obtain that exp
(
p

1

∆2
ai

) ≤ exp (pbσ(i)) ≤ exp (λ∆2ai). By

monotonicity of the norm , we get that

‖( exp (p
1

∆2
ai)

)
ξi‖ ≤ ‖( exp (pbσ(i))

)
xσ(i)‖ ≤ ‖( exp (λ∆2ai)

)
ξi‖

From which continuity of T and T−1|R(T ) follow.

Proposition 3.1.6. If a sequence a = (an) of positive numbers is bounded,

then E`
ν(a)

qd∼= `, where ν = 0 or ∞ .

Proof. It is sufficient to show that identity operator from ` to E`
0(a) is qua-

sidiagonal isomorphism. Let I be identity operator from

` = {x = (ξn) : ‖(ξn)‖` < ∞}

to

E`
0(a) = {x = (ξn) : ‖(ξn exp(

−an

p
))‖

`

< ∞}

Let x = (ξn) ∈ E`
0(a). Since a = (an) is bounded, then there exists

C1, C2 > 0 such that C1 ≤ (exp(−an

p
)) ≤ C2. By monotonicity of the norm,

we get C1‖(ξn)‖` ≤ ‖(ξn exp(−an

p
))‖

`
≤ C2‖(ξn)‖` from which continuity of I

and I−1 follow. I is quasidiagonal, because σ(i) = i and ti = 1 for each i ∈ I

in (3.1).

3.2 Some Geometric Invariant Characteris-

tics

Let X be a class of locally convex spaces and Γ a set with an equivalence

relation ∼ . We say that γ : X → Γ is a linear topological invariants if

X ' X̃ ⇒ γ(X) ∼ γ(X̃), X, X̃ ∈ X .
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In the isomorphic classification of Fréchet spaces, A.N.Kolmogorov and

A. Pelczynski gave the first examples of linear topological invariants. They

introduced the approximative dimensions and used them to show that the

spaces of analytic functions A(H), A(G) where H ⊂ Cn, G ⊂ Cm are not

isomorphic if n 6= m [15] and A(Dn) 6' A(Cn) where Dn is the unit poly-

disc in Cn [23]. Later C. Bessaga, A. Pelczynski, S. Rolewicz [3] and B.S.

Mitiagin [19] considered the diametral dimensions which are more conve-

nient for investigation of Köthe spaces (see also M.M. Dragilev [12], [13],

T.Terzioğlu [26]). But both approximative and diametral dimensions are

not enough powerful to distinguish non-regular Köthe spaces. In ([20],[21])

B.S. Mitiagin used counting function µa to investigate the quasiequiva-

lence property of bases in non-Montel power series spaces Eα(a). µa(t, τ)

is the strongest invariant in the category of power series spaces (see [35],

[22]). In [29] V.P. Zahariuta introduced some general invariant characteris-

tics as generalizations of Mitiagin’s invariants ([20],[21]). These character-

istics are convenient especially in the isomorphic classification of Cartesian

or tensor products of Köthe spaces. In ([33], [35]) new geometric invari-

ants are considered. Those are based on the asymptotic behaviour of n-

diameters of pairs of synthetic neighborhoods of zero, built, in an invariant

way, by neighborhoods taken from a given fundamental system of neighbor-

hoods of zero; for example dn(λ1U1∩λ3U3, λ2U2), dn(λ2U2, conv(λ1U1∪λ3U3))

dn(λ1U1 ∩ λ3U3, conv(λ2U2 ∪ λ4U4)), ... where convL denotes the closed con-

vex hull of the set L. In some sense, these geometric invariants are equivalent

to the previous characteristics for Köthe spaces and this equivalence gives the

desired invariance. For more details concerning the general theory of linear

topological invariants we refer the reader to [37].

Suppose E is a linear space, U and V are absolutely convex sets in E and

EV is the set of all finite dimensional subspaces of E that are spanned on

elements of V. Then the characteristic β(V, U) is

β(V, U) := sup {dim L : L ∈ EV , L ∩ U ⊂ V }.
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It is obvious that Ṽ ⊂ V and U ⊂ Ũ implies

β(Ṽ , Ũ) ≤ β(V, U). (3.7)

and that

β(CV, U) = β(V,
1

C
U). (3.8)

holds for any positive constant C.

Lemma 3.2.1. If T is an injective linear operator on E then

β(T (V ), T (U)) = β(V, U). (3.9)

Proof. Let

β(V, U) = sup{dim L : L ∈ EV , L ∩ U ⊂ V }
β(T (V ), T (U)) = sup{dim M : M ∈ ET (V ), M ∩ T (U) ⊂ T (V )}

EV = {
n∑

i=1

ciξi : ci ∈ K, ξi ∈ V }

ET (V ) = {
n∑

i=1

ciyi : ci ∈ K, yi ∈ T (V )}

= {
n∑

i=1

ciyi : ci ∈ K, yi = T (ξi), ξi ∈ V }

Since the operator T is injective, it sends finite sets to finite sets and

hence dim M = dim T (L) = dim L.

Lemma 3.2.2. Let F be a subspace of a linear space E. Then

βF (V ∩ F, U ∩ F ) ≤ βE(V, U).

Proof. Let U, V be absolutely convex sets in E. Set Ũ := U ∩ F and Ṽ :=

V ∩ F . Since L̃ ∈ EṼ implies L̃ ∈ EV , then

{dim L̃ : L̃ ∈ EṼ , L̃ ∩ Ũ ⊂ Ṽ } ⊂ {dim L : L ∈ EV , L ∩ U ⊂ V }.
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Hence,

βF (Ṽ , Ũ) := sup {dim L̃ : L̃ ∈ EṼ , L̃ ∩ Ũ ⊂ Ṽ }
≤ sup {dim L : L ∈ EV , L ∩ U ⊂ V } =: βE(V, U).

Let E be `-Köthe space and ω+ be the set of all sequences with positive

terms. For any a, b ∈ ω+ and α ∈ (0, 1) we set

a · b := (aibi), aα := (aα
i ), a ∧ b := (min {ai, bi}),

a ∨ b := (max {ai, bi}).

For any x = (ξi) ∈ E and a ∈ ω+ we put ‖x‖a = ‖(xiai)‖ where ‖ · ‖ is the

monotone norm on E and B`
a = {x ∈ E : ‖(xiai)‖ ≤ 1}.

Lemma 3.2.3. Let a, b ∈ ω+, then

B`
a∨b ⊂ B`

a ∩B`
b ⊂ 2B`

a∨b. (3.10)

Proof. Let x ∈ B`
a∨b = {x ∈ E : ‖x‖a∨b < 1}. By definition

‖x‖a∨b = ‖(ξi max {ai, bi})‖. Since ‖.‖ is monotone and max {ai, bi} ≥ ai ,

max {ai, bi} ≥ bi, then, ‖x‖a∨b ≥ ‖x‖a and ‖x‖a∨b ≥ ‖x‖b. Hence x ∈ B`
a

and x ∈ B`
b i.e. x ∈ B`

a ∩B`
b.

To show the second inclusion, assume x ∈ B`
a ∩ B`

b, i.e. ‖x‖a < 1 and

‖x‖b < 1. Since ‖.‖ is monotone and

max {ai, bi} ≤ ai + bi

for each i ∈ N, we obtain

‖(ξi max {ai, bi})‖ ≤ ‖(ξiai + ξibi)‖ ≤ ‖x‖a + ‖x‖b.

So we get, ‖x‖a∨b < 2 which implies x ∈ 2B`
a∨b. Hence, B`

a∩B`
b ⊂ 2B`

a∨b.
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Lemma 3.2.4. Let a, b ∈ ω+, then

1

2
B`

a∧b ⊂ conv(B`
a ∪B`

b) ⊂ B`
a∧b (3.11)

Proof. Let us show the first inclusion. Let I := {i ∈ N : ai ≤ bi} and

J := N \ I. Let x = (ξi)i∈N ∈ B`
a∧b. We define u = (ui) and v = (vi) as

folows: ui =

{
ξi if i ∈ I

0 if otherwise
, vi =

{
ξi if i ∈ J

0 if otherwise
.

From the construction of u, v and from the monotonicity of the norm,

we obtain that ‖u‖a = ‖u‖a∧b ≤ ‖u + v‖a∧b = ‖x‖a∧b and ‖v‖b = ‖v‖a∧b ≤
‖u + v‖a∧b = ‖x‖a∧b. Hence u, v ∈ B`

a∪B`
b and 1

2
x = 1

2
u+ 1

2
v ∈ conv(B`

a∪B`
b).

Let us show the second inclusion. Let x ∈ conv(B`
a ∪ B`

b), i.e. x =

αu+(1−α)v where u, v ∈ B`
a∪B`

b and α ∈ (0, 1). From monotonicity of the

norm, we have, ‖u‖a∧b ≤ ‖u‖a and ‖u‖a∧b ≤ ‖u‖b. Similarly, ‖v‖a∧b ≤ ‖v‖a

and ‖v‖a∧b ≤ ‖v‖b. Hence

‖x‖a∧b = ‖αu + (1− α)v‖a∧b ≤ α‖u‖a∧b + (1− α)‖v‖a∧b ≤ α + (1− α) = 1,

that is, x ∈ B`
a∧b.

Lemma 3.2.5. Let ` be a Banach sequence space with the monotone norm

‖.‖. If a, b ∈ ω+ then

β(B`
a, B

`
b) = |{i :

ai

bi

≤ 1}|.

Proof. Let I = {i : ai ≤ bi} and Px :=
∑
i∈I

ξiei. Let M be the linear span of

the set {ei : i ∈ I}. For x ∈ M , by the monotonicity of the norm, we have

‖x‖a = ‖(xiai)‖ ≤ ‖(xibi)‖ = ‖x‖b

which implies that M ∩B`
b ⊂ B`

a and β(B`
a, B

`
b) ≥ dim M = |I|.

Conversely, suppose L is a finite dimensional subspace in E, satisfying

L ∩ B`
b ⊂ B`

a, that is, ‖x‖a ≤ ‖x‖b for all x ∈ L. If dim L > |I|, then there

exists x =
∑∞

i=1 ξiei ∈ L, x 6= 0 such that Px = 0. But then ξi = 0 for
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i ∈ I and ξi 6= 0 for some i /∈ I. Since ai > bi for i /∈ I, and the norm

is strictly monotone (by 2.1.4) , we get ‖(ξiai)‖ > ‖(ξibi)‖ ⇒ ‖x‖a > ‖x‖b

which is a contradiction. Hence β(B`
a, B

`
b) = |I|.

Lemma 3.2.6. Suppose E and Ẽ are `-Köthe spaces, (ei) and (ẽi) are their

canonical bases, and T : E → Ẽ is a linear operator. If a(ν), ã(ν) ∈ ω+ where

ν = 0, 1 and

T (B`
a(0)) ⊂ B`

ã(0) , T (B`
a(1)) ⊂ B`

ã(1)

then for any α ∈ (0, 1) we have

T ((B`
a(0))

1−α(B`
a(1))

α) ⊂ (B`
ã(0))1−α(B`

ã(1))α.

This result follows from the Interpolation Theorem 2.2.6 and Lemma

2.2.9.

3.3 Isomorphisms of `-Power Series Spaces

Proposition 3.3.1. Let a = (ai) and ã = (ãi) be sequences of positive

numbers such that ai ≥ 1 and ãi ≥ 1, for all i. Then the following statements

are equivalent:

(i) E`
ν(a) ↪→ E`

ν(ã);

(ii) there exists ∆ > 0 such that for t > τ > 1 we have

µa(τ, t) ≤ µã(
τ

∆
, ∆t);

(iii) there exists an injection σ : N→ N such that

∃∆ :
1

∆2
≤ ãσ(i) ≤ ∆2ai;

(iv) E`
ν(a)

qd
↪→ E`

ν(ã),
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where ν = 0,∞.

Proof. The implications (iii) ⇒ (iv) and (iv) ⇒ (i) are obvious. By Lemma

3.1.4 we have (ii) ⇒ (iii). To complete the proof, it is sufficient to show

(i) ⇒ (ii).

Because of the similarity, we restrict ourselves to the case ν = ∞. Suppose

that T : E`
ν(a) → E`

ν(ã) is an embedding. Let (Up) and (Vp) be the systems

of unit balls in E`
ν(a) and E`

ν(ã), respectively.

Let Wp := Vp∩R(T ), where R(T ) denotes the range of T . Choose indices

p2 ≤ p ≤ p1 ≤ q2 ≤ q ≤ q1 ≤ r2 ≤ r ≤ r1

so that

Cp2Wp2 ⊃ CpT (Up) ⊃ Cp1Wp1 ⊃ Cq2Wq2

⊃ CqT (Uq) ⊃ Cq1Wq1 ⊃ Cr2Wr2 ⊃ CrT (Ur) ⊃ Cr1Wr1

Then, from the elementary properties of the characteristic β and Lemma

3.2.1, Lemma 3.2.2 it follows that

β(e−τUp ∩ etUr, Uq) = β(e−τT (Up) ∩ etT (Ur), T (Uq))

≤ β(Cp2e
−τWp2 ∩ Cr2e

tWr2 , Cq1Wq1)

= β(Cp2e
−τ [Vp2 ∩R(T )] ∩ Cr2e

t[Vr2 ∩R(T )], Cq1 [Vq1 ∩R(T )])

≤ β(Cp2e
−τVp2 ∩ Cr2e

tVr2 , Cq1Vq1)

= β(
Cp2

Cq1

e−τVp2 ∩
Cr2

Cq1

etVr2 , Vq1)

Choose C := max {Cp2

Cq1
,

Cr2

Cq1
} then we observe that

β(e−τUp ∩ etUr, Uq) ≤ β(C(e−τVp2 ∩ etVr2), Vq1) (3.12)

Using Lemma 3.2.5, Lemma 3.2.3 and Lemma 3.2.4 we estimate both

sides of the inequality (3.12) from below and above respectively, and obtain
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|{i :
max {exp (τ + pai), exp (−t + rai)}

exp (qai)
≤ 1}|

≤ |{i :
max {exp (τ + p2ãi), exp (−t + r2ãi)}

exp (q1ãi)
≤ 2C}| (3.13)

This inequality is equivalent to

|{i : exp (τ + (p− q)ai) ≤ 1, exp (−t + (r − q)ai) ≤ 1}|
≤ |{i : exp (τ + (p2 − q1)ãi) ≤ 2C, exp (−t + (r2 − q1)ãi) ≤ 2C}| (3.14)

Taking logarithms we obtain that

|{i :
τ

q − p
≤ ai ≤ t

r − q
}| ≤ |{i :

τ − log 2C

q1 − p2

≤ ãi ≤ t + log 2C

r2 − q1

}|. (3.15)

Set τ ′ := τ
q−p

and t′ := t
r−q

. Then, from the equation ( 3.15) we get that

|{i : τ ′ ≤ ai ≤ t′}| ≤ |{i :
τ(q − p)− log 2C

q1 − p2

≤ ãi ≤ t(r − q) + log 2C

r2 − q1

}|
(3.16)

From the upper bound of the right hand side of the inequality (3.16 ) we

get the following estimation:

t(r − q) + log 2C

r2 − q1

≤ t′[(r − q)2 + log 2C]

r2 − q1

≤ ∆t′

From that we conclude that our ∆ must satisfy

∆ ≥ (r − q)2 + log 2C

r2 − q1

. (3.17)

From the lower bound of the right hand side of the inequality (3.16) we get

the following estimation: If τ ′(q−p)2

2
≥ log 2C then we have

τ(q − p)− log 2C

q1 − p2

=
τ ′(q − p)2 − log 2C

q1 − p2

≥ τ ′(q − p)2

2(q1 − p2)
≥ τ ′

∆
.

Thus, we get

∆ ≥ 2(q1 − p2)

(q − p)2
. (3.18)
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If not, i.e. τ ′(q−p)2

2
< log 2C then lower bound is less than 0. So only we need

∆ must satisfy τ ′
∆

< 1. This is possible when 2 log 2C
∆(q−p)2

< 1 or

∆ ≥ 2 log 2C

(q − p)2
. (3.19)

If we combine the estimations (3.17), (3.18), and (3.19), we choose

∆ := max {(r − q)2 + log 2C

r2 − q1

,
2(q1 − p2)

(q − p)2
,
2 log 2C

(q − p)2
}. (3.20)

Thus, by (3.20) the inequality (3.16 ) terminates the proof :

µa(τ
′, t′) ≤ µã(

τ ′

∆
, ∆t′)

Corollary 3.3.2. Let a = (ai) and ã = (ãi) be sequences of positive numbers

such that ai ≥ 1 and ãi ≥ 1, for all i. Then the following statements are

equivalent:

(i) E`
ν(a) ' E`

ν(ã) ;

(ii) there exists ∆ > 0 such that for t > τ > 1 we have

µa(τ, t) ≤ µã(
τ

∆
, ∆t), µã(τ, t) ≤ µa(

τ

∆
, ∆t);

(iii) there exists an bijection σ : N→ N such that

∃∆ :
1

∆2
≤ ãσ(i) ≤ ∆2ai;

(iv) E`
ν(a)

qd' E`
ν(ã),

where ν = 0,∞.
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3.4 Complemented Imbeddings

Lemma 3.4.1. Let a, b ∈ ω+ and one of the cases

(i) 1 ≤ p < q < ∞ with p < 2

(ii) 1 < q < p ≤ ∞ with p > 2

be held. If the diagram

`p(a)

T
²²

Id

##FFFFFFFF

`q
S

// `p(b)

commutes and all operators are linear and continuous, then(
bn

an

)
≤

(
1

n

) 1
p
− 1

q1

where q1 := min(2, q).

Proof. Let us consider the case (i). From the diagram, we have

|Sy|lp(b) ≤ C1‖y‖lq ∀y ∈ lq. (3.21)

‖Tx‖lq ≤ C2|x|lp(a) ∀x ∈ lp(a). (3.22)

That is, |STx|lp(b) ≤ C1‖Tx‖lq ≤ C1C2|x|lp(a)

Without loss of generality we assume that ( bn

an
) is decreasing. (If not,

one can reorder it.) Using (3.21) , (3.22) and the fact that the space lq is

of the type q1 = min(2, q) [see [18], Vol.2, p.72] we obtain for any n and

(θi)
n
i=1, θi = ±1 such that

(
bn

an

n
1
p

)
≤

( n∑
i=1

(
bi

ai

)p) 1
p

≤ average

{∣∣∣∣
n∑

i=1

θi
STei

ai

∣∣∣∣
lp(b)

: θi = ±1

}

≤ average

{∣∣∣∣
n∑

i=1

θi
Tei

ai

∣∣∣∣
lq

: θi = ±1

}
≤ MC1

( n∑
i=1

(‖Tei‖lq

ai

)q1
) 1

q1

≤ MC1C2

( n∑
i=1

( |ei|lp(a)

ai

)q1
) 1

q1 ≤ MC1C2n
1
q1 (3.23)
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Thus

(
bn

an

)
≤

(
1

n

) 1
p
− 1

q1

.

For the case(ii), we use duality argument. It is easy to get

(lp(a))′ = lp′(
1
a
), (lq)

′ = lq′ , (lp(b))
′ = lp′(

1
b
) where 1

p
+ 1

p′ = 1 and 1
q

+ 1
q′ = 1.

From the above diagram one can obtain the following diagram which

commutes:

`p′(
1
b
)

S′

²²

Id

##GGGGGGGG

`q′
T ′

// `p′(
1
a
)

Then
1

an
1

bn

= bn

an
is estimated as in (3.23).

From the above lemma, we conclude also that 1
an
∈ lr for any r > 1

p
− 1

q1

and n ∈ N.

Lemma 3.4.2. K lp(ank) is nuclear if and only if

∃r∀k∃σ(k) :
∞∑
i=1

(
ank

anσ(k)

)r

< ∞ (3.24)

where σ : N :→ N is an injection map.

Proof. It is well known fact that (see [25]) K lp(ank) is nuclear if and only if

∞∑
i=1

ank

anφ(k)

< ∞. (3.25)

So it is sufficient to show that (3.24) implies (3.25). Assume that (3.24)

holds. Fix r ∈ N, for any k ∈ N there exists an injective map φ : N→ N such

that
∞∑
i=1

(
ank

anφ(k)

)r

< ∞, that is,

(
ank

anφ(k)

)
∈ lr. In the same way, for φ(k),

there exist φ2(k) such that
∞∑
i=1

(
anφ(k)

anφ2(k)

)r

< ∞, that is,

(
anφ(k)

anφ2(k)

)
∈ lr.

If we determine recursively φs(k), for s = 1, ..., r so that
∞∑
i=1

(
anφs−1(k)

anφs(k)

)r

< ∞, that is,

(
anφs−1(k)

anφs(k)

)
∈ lr.
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So we have,

(
ank

anφr(k)

)
=

(
ank

anφ(k)

)
.

(
anφ(k)

anφ2(k)

)
...

(
anφr−1(k)

anφr(k)

)

By generalized Hölder’s inequality

∞∑
n=1

∣∣∣∣
(

ank

anφr(k)

)∣∣∣∣ =
∞∑

n=1

∣∣∣∣
(

ank

anφ(k)

)
.

(
anφ(k)

anφ2(k)

)
...

(
anφr−1(k)

anφr(k)

)∣∣∣∣

≤ C

∥∥∥∥
(

ank

anφ(k)

)∥∥∥∥
lr

.

∥∥∥∥
(

anφ(k)

anφ2(k)

)∥∥∥∥
lr

...

∥∥∥∥
(

anφr−1(k)

anφr(k)

)∥∥∥∥
lr

Since all factors are finite, product is finite.

Theorem 3.4.3. Let A = (ain), B = (bin) be Köthe matrices and one of the

cases

(i) 1 ≤ p < q < ∞ with p < 2

(ii) 1 < q < p ≤ ∞ with p > 2

be held. If K lp(A) complementedly imbedded in Kq(B) then K lp(A) is nu-

clear.

Proof. It is sufficient to check whether the criteria of the Lemma 3.4.2 is

satisfied.

Let E := K lp(ain) and F := K lq(bin) with the systems of seminorms

(|.|n)n∈N and (‖.‖m)m∈N, respectively. Let T : E → F be a complemented

isomorphic embedding, that is, F = T (E) ⊕ M . Let P : F → T (E) be a

continuous projection and S = T−1P : F → E be the left inverse of T i.e.

ST = T−1PT = IdE, that is, kerS = M and F/kerS ' E.

F

P
²²

S

""DD
DD

DD
DD

D

T (E)
T−1

// E

By continuity of T and S we get for each k, there exists m, k1, C1, C2 such

that |Sy|k ≤ C1‖y‖m , y = Tx and ‖Tx‖m ≤ C2|x|k1 .

Hence, for the weights ak := (aik), ak1 := (aik1) and bm := (aim) the

following diagram commutes:
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`p(a
k1)

T
²²

Id

$$IIIIIIIII

`q(b
m)

S
// `p(a

k)

Hence, if we apply the Lemma 3.4.1, we get that

(
ank

ank1

)
≤

(
1
n

) 1
p
− 1

q1

where q1 = min(2, p)

3.5 Complemented Subspaces of El2
0 (a)×El2∞(b)

In this section, we use the result [24] (or see e.g. [28]) of J.Prada about

complemented subspaces of Cartesian products of Fréchet spaces and the

result [30] of V.P. Zahariuta about isomorphisms of Cartesian products of

locally convex spaces to observe that any stable complemented subspace of

El2
0 (a) × El2∞(b) with ai → ∞ (or bi → ∞) is isomorphic to the product of

basic supspaces of El2
0 (a) and El2∞(b), respectively.

Definition 3.5.1. Let X and Y be topological vector spaces. A linear oper-

ator T : X → Y is called a compact (respectively, bounded) if there exists a

neighborhood U in X such that its image T (U) is precompact (respectively,

bounded) in Y .

We say that an ordered pair of locally convex spaces (X,Y ) satisfies

condition K(respectively,B), (X, Y ) ∈ K(respectively, (X, Y ) ∈ B), if every

linear continuous operator T : X → Y is compact (respectively, bounded).

We also say that (X, Y ) has the compact (respectively, bounded) factorization

property and write (X, Y ) ∈ KF (respectively, (X, Y ) ∈ BF) if each linear

continuous operator T : X → X that factors over Y (That is, T = S1S2 such

that S2 : X → Y and S1 : Y → X) is compact (respectively, bounded).

Definition 3.5.2. Let X and Y be locally convex spaces. A linear operator

T : X → Y is called a near-isomorphism if T is an open map with finite
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dimensional kernel and finite codimensional closed range. X and Y are said

to be nearly isomorphic (X ≈ Y ) if there exists a near-isomorphism T from

X onto Y .

Proposition 3.5.3. Let X, Y be locally convex spaces and (X,Y ) ∈ K. Then

(X0, Y0) ∈ K for every subspace X0 which is topologically complemented in

X, and any subspace Y0 of Y .

Proof. Let T : X0 → Y0 be an arbitrary linear, continuous operator. By the

assumption, there exists a subspace X1 in X such that X = X0 ⊕ X1. Let

T : X → Y be the linear, continuous operator T (x) =

{
T0x if x ∈ X0,

0 if x ∈ X1.

Since (X, Y ) ∈ K, this operator is compact and therefore T0 is compact

too. Hence (X0, Y0) ∈ K.

Proposition 3.5.4. ([24]) A complemented subspace of X1 × X2, where

X1, X2 are Fréchet spaces such that (X1, X2) ∈ K is isomorphic to a subspace

of X1 ×X2 of the form L1 × L2, where L1, respectively L2, is complemented

subspace of X1, respectively X2 .

Proposition 3.5.5. ([30]) Let X = X1 ×X2, Y = Y1 × Y2 be locally convex

spaces and (X1, Y2) ∈ K, (Y1, X2) ∈ K. Then X ≈ Y if and only if X1 ≈ Y1

and X2 ≈ Y2.

Theorem 3.5.6. Let L be a complemented subspace of El2
0 (a)×El2∞(b), where

a, b ∈ ω+. If L = L2 and ai → ∞ (or bi → ∞), then L is isomorphic to

basic subspace of El2
0 (a)× El2∞(b).

Proof. Let X1 = El2
0 (a) and X2 = El2∞(b). By Proposition 3.5.4 we have that

if L is complemented subspaces of X1 × X2, then there exists L1, L2 such

that Lν are complemented subspace of Xν , where ν = 1, 2.

Due to Mitiagin [21], we know that any complemented subspace of a finite

type power series space is basic, that is, L1 ' El2
0 (ã) where ã := (ain).
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Since ai →∞, we have (X1, X2) ∈ K (Theorem 3 [30]) and by Proposition

3.5.3, we get (L1, L
2
2) ∈ K, (L2

1, L2) ∈ K .

Taking into account Proposition 3.5.5, we obtain that L ≈ L2 iff L1 ≈ L2
1

and L2 ≈ L2
2.

By Wagner [27] (see also [2]), if L2 ≈ L2
2 then L2 has a basis. Hence

L2 = El2∞(b̃), where b̃ := (bjk
).
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chapter 4

Cartesian products of

`-power spaces

4.1 d1 − d2 properties

Invariant of the type D1,D2 were used in various forms by Dragilev, Za-

hariuta, Dubinsky, Robinson, Vogt, Wagner. Definition of the Dragilev’s

invariants were for Fréchet spaces with regular basis. In 1973, Zahariuta de-

fined the classes d1, d2 for Fréchet spaces with an absolute basis. Later, Za-

hariuta (1974, 1978, 1980) improved the definion of d1, d2 for Fréchet spaces

without adding an extra condition to the bases. Here, we will use the no-

tation of Zahariuta (1980). Vogt (1982), Vogt and Wagner (1980), Wagner

(1980) used DN for D1, DN for Ω2 , Ω for Ω1, and Ω for D2.

Definition 4.1.1. (cf [30],[36]) Let X be a Fréchet space, {|x|p : p ∈ N} a

system of norms defining the topology of X, and

|x|∗p := sup{|x′(x)| : x ∈ X, |x|p ≤ 1} (4.1)

a polar system of norms in the strong dual X∗. We define four classes of

spaces by means of relations:

X ∈ D1 := ∃p ∀q ∃r∃C : |x|q2 ≤ C|x|p|x|r , x ∈ X, (4.2)

X ∈ D2 := ∀p ∃q ∀r∃C : (|x′|∗q)2 ≤ C|x′|∗p|x′|∗r , x′ ∈ X∗ (4.3)

X ∈ Ω1 := ∀p ∃q ∀r∃C∃α > 0 : |x′|∗q ≤ C(|x′|∗p)1−α(|x′|∗r)α , x′ ∈ X∗ (4.4)

X ∈ Ω2 := ∃p ∀q ∃α < 1∃r∃C : |x|q ≤ C(|x|p)1−α(|x|r)α , x ∈ X, (4.5)
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Theorem 4.1.2. Let A = (akn)k,n∈N be an Köthe matrix and ` ∈ Λ.

K`(akp) ∈ D1 if and only if one of the following conditions is satisfied

(i) ∃p ∀q ∃r ∃C : akq
2 ≤ Cakpakr

(ii) ∃p ∀q ∃r ∃C : akq ≤ Ca
1/2
kp a

1/2
kr

(iii) ∃p ∀q ∀α > 0 ∃ ∃r ∃C : akq ≤ Ca1−α
kp aα

kr

Proof. It is clear that (i), (ii) and (iii) are equivalent.

Necessity. Take x = (ek)k∈N. Since |ek| = akp the definition 4.2 gives (i).

Sufficiency. Without loss of generality, akn 6= 0(∀k, n). Assume (iii)

holds. By monotonicity of the norm in `, we get that

‖x‖`(akq) ≤ C‖x‖
`(a

1/2
kp a

1/2
kr )

. (4.6)

Now we consider an analytic scale of spaces Gα := `(a1−α
kp aα

kr) (see section

1.2 and section 1.3) with the norm

‖x‖α = ‖x‖Gα = sup
−∞<τ<∞

‖(ξk)(
akr

akr

)α+iτ (akp)‖.

By Theorem 2.2.6 and Theorem 2.2.8 we have

‖x‖α ≤ C(‖x‖0)
1−α(‖x‖1)

α. (4.7)

Combinin the equation (4.7) and the equation (4.6) we obtain that

‖x‖`(akq) ≤ C‖x‖`(a1−α
kp aα

kr) ≤ C(‖x‖`(akp
)1−α(‖x‖`(akr

)α.

Taking α = 1/2 and usuing the definition of the seminorm, |x|n = ‖x‖`(akn) ,

we get that |x|q ≤ C(|x|p)1/2(|x|r)1/2. Hence, K`(akp) ∈ D1.

Let ` ∈ Λ. Define

`∗ := {x′ = (ξ′i) : ‖x′‖`∗ < ∞}
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with the norm

‖x′‖`∗ := sup

{∣∣∣∣∣
∞∑
i=1

ξ′iξi

∣∣∣∣∣ < C(x)‖x‖`, , ∀x = (ξi) ∈ `

}

The class of such `∗ spaces denoted by Λ∗.

Proposition 4.1.3. Let `∗ ∈ Λ∗. Then the norm ‖.‖`∗ is monotone.

Proof. Let x′ = (ξ′i) and y′ = (η′i) ∈ `∗ with η′i := αiξ
′
i, |αi| ≤ 1. It is

sufficient to show that ‖y′‖`∗ ≤ ‖x′‖`∗ .

‖y′‖`∗ :=

{∣∣∣∣∣
∞∑
i=1

η′iηi

∣∣∣∣∣ : ‖(ηi)‖` ≤ 1

}
=

{∣∣∣∣∣
∞∑
i=1

αiξ
′
iηi

∣∣∣∣∣ : ‖(ηi)‖` ≤ 1

}

=

{∣∣∣∣∣
∞∑
i=1

ξ′iζi

∣∣∣∣∣ : ζi = αiηi, ‖(ηi)‖` ≤ 1

}

By Lemma 2.1.2

≤
{∣∣∣∣∣

∞∑
i=1

ξ′iζi

∣∣∣∣∣ : ‖(ζi)‖` ≤ 1

}
= ‖x′‖`∗ .

Theorem 4.1.4. Let A = (akn)k,n∈N be an Köthe matrix and ` ∈ Λ.

K`(akp) ∈ D2 if and only if one of the following conditions is satisfied

(i) ∀p ∃q ∀r ∃C : akpakr ≤ Cakq
2

(ii) ∀p ∃q ∀r ∃C : 1
akq

≤ C
(

1
akp

)1/2 (
1

akr

)1/2

(iii) ∃p ∀q ∀α > 0 ∃ ∃r ∃C : 1
akq

≤ C
(

1
akp

)1−α (
1

akr

)α

The theorem is proved by using a simple duality argument and Proposi-

tion 4.1.3.
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4.2 Cartesian Products of `-Power Series

Spaces

In this section we obtain a complete isomorphic classification of the Carte-

sian products of the kind E`
0(a) × E`

∞(b), where E`
0(a) is a finite `-power

series space and E`
∞(b) is an infinite `-power series space. In the case where

at least one of the Cartesian factors is a Schwartz space, such a classification

is known by the result of Zahariuta obtained in [30] by using the theory of

Fredholm operators. If both Cartesian factors are non-Schwartz spaces we

use the method of generalized linear topological invariants developed in [29],

[32], [37] as a generalization of the classical invariants [3], [15],[19], [23].

Theorem 4.2.1. Let ` ∈ Λ. If E`
0(a

(0)) × E`
∞(a(1)) ' E`

0(ã
(0)) × E`

∞(ã(1)),

then the following relations hold:

∃M, τ0 > 0 : |{k : τ ≤ a
(0)
k ≤ t}| ≤ |{k :

τ

M
≤ ã

(0)
k ≤ Mt}|, τ ≥ τ0; (4.8)

∃M, τ0 > 0 : |{k : τ ≤ a
(1)
k ≤ t}| ≤ |{k :

τ

M
≤ ã

(1)
k ≤ Mt}|, τ ≥ τ0. (4.9)

where a(ν), ã(ν) ∈ ω+, ν = 0, 1

Proof. The Cartesian product E`
0(a

(0)) × E`
∞(a(1)) and E`

0(ã
(0)) × E`

∞(ã(1))

are naturally isomorphic to `-Köthe spaces X = K`(cip) and X̃ = K`(dip)

where

cip =

{
exp(−a

(0)
k

p
) if i = 2k − 1

exp(pa
(1)
k ) if i = 2k

dip =

{
exp(− ã

(0)
k

p
) if i = 2k − 1

exp(pã
(1)
k ) if i = 2k

Assume that X and X̃ are isomorphic and that T : X → X̃ is an iso-

morphism. Let (Up) and (Vp) be the systems of unit balls in X and X̃,

respectively. We choose indices

p2 < p < p1 < q2 < q < q1 < r2 < r < r1 < s2 < s < s1,
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for which we have the following properties 2p1 < q2, 2q1 < r2 and also

Cp2Vp2 ⊃ T (Up), CpT (Up) ⊃ Vp1 , Cp1Vp1 ⊃ Vq2 , Cq2Vq2 ⊃ T (Uq),

CqT (Uq) ⊃ Vq1 , Cq1Vq1 ⊃ Vr2 , Cr2Vr2 ⊃ T (Ur), CrT (Ur) ⊃ Vr1 ,

Cr1Vr1 ⊃ Vs2 , Cs2Vs2 ⊃ T (Us), CsT (Us) ⊃ Vs1 ,

for some constants Cp, Cp1 , Cp2 , Cq, Cq1 , Cq2 , Cr, Cr1 , Cr2 , Cs, Cs1 , Cs2 .

Since T is an isomorphism, we use (3.9) and we consider the system of unit

balls (Up) instead of T (Up) in the following estimations:

Uq ∩ etUs := B`
(ciq) ∩ etB`

(cis)
= B`

(ciq) ∩B`
(e−tcis)

.

If we apply the Lemma 3.2.3 we obtain that

B`
(ciq∨e−tcis)

⊂ B`
(ciq) ∩ etB`

(cis)
⊂ 2B`

(ciq∨e−tcis)
.

In the same way, from

conv(Uq ∪ U
1
2
p U

1
2
r ∪ eτUr) := conv(B`

(ciq) ∪B`

(c
1
2
ipc

1
2
ir)
∪ eτB`

(cir))

= conv(B`
(ciq) ∪B`

(c
1
2
ipc

1
2
ir)
∪B`

(e−τ cir)),

by Lemma 3.2.4 we get that

1

2
B`

(ciq∧c
1
2
ipc

1
2
ir∧e−τ cir)

⊂ conv(B`
(ciq) ∪B`

(c
1
2
ipc

1
2
ir)
∪ eτB`

(cir)) ⊂ B`

(ciq∧c
1
2
ipc

1
2
ir∧e−τ cir)

.

From our choice, we observe the following:

B`
(ciq) ∩ etB`

(cis)
⊂ Ciq2B

`
(diq2

) ∩ Cis2e
tB`

(dis2
), (4.10)

conv(B`
(ciq) ∪B`

(c
1
2
ipc

1
2
ir)
∪ eτB`

(cir))
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⊃ conv(
1

Cq1

B`
(diq1

) ∪
1√

Cp1Cr1

B`

(d
1
2
ip1

d
1
2
ir1

)
∪ 1

Cr1

eτB`
(dir1

)). (4.11)

If we combine (3.7) with the above observations (4.10) and (4.11)

β(B`
(ciq) ∩ etB`

(cis)
, conv(B`

(ciq) ∪B`

(c
1
2
ipc

1
2
ir)
∪ eτB`

(cir)))

≤ β(Ciq2B
`
(diq2

)∩Cis2e
tB`

(dis2
), conv(

1

Cq1

B`
(diq1

)∪
1√

Cp1Cr1

B`

(d
1
2
ip1

d
1
2
ir1

)
∪ 1

Cr1

eτB`
(dir1

))).

(4.12)

Set Cmin := min (Cq1 , Cp1 , Cr1) and Cmax := max (Ciq2 , Cis2) then

β(B`
(ciq) ∩ etB`

(cis)
, conv(B`

(ciq) ∪B`

(c
1
2
ipc

1
2
ir)
∪ eτB`

(cir)))

≤ β(CmaxB
`
(diq2

) ∩ etB`
(dis2

), conv(
1

Cmin

B`
(diq1

) ∪B`

(d
1
2
ip1

d
1
2
ir1

)
∪ eτB`

(dir1
))) (4.13)

If we set C := Cmax. Cmin and use (3.8 ) then we get more simple form,

as follows

β(B`
(ciq) ∩ etB`

(cis)
, conv(B`

(ciq) ∪B`

(c
1
2
ipc

1
2
ir)
∪ eτB`

(cir))) ≤

β(CB`
(diq2

) ∩ etB`
(dis2

), conv(B`
(diq1

) ∪B`

(d
1
2
ip1

d
1
2
ir1

)
∪ eτB`

(dir1
))) (4.14)

β(B`
(ciq∨e−tcis)

, B`

(ciq∧c
1
2
ipc

1
2
ir∧e−τ (cir)

) ≤ β(2B`
(diq2

∨e−tdis2
),

1

2
B`

(diq1
∧d

1
2
ip1

d
1
2
ir1
∧e−τ (dir1

)
)

(4.15)

In that step, if we use the Lemma 3.2.5, then we observe

|{i :
max (ciq, e

−tcis)

min (ciq, c
1
2
ipc

1
2
ir, e

−τcir)
≤ 1}| ≤ |{i :

max (diq2 , e
−tdis2)

min (diq1 , d
1
2
ip1

d
1
2
ir1

, e−τdir1)
≤ 4C}|

(4.16)
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If we proceed the estimation as omitting the trivial inequalities, we get

|{i :
ciq

c
1
2
ipc

1
2
ir

≤ 1,
ciq

e−τcir

≤ 1,
e−tcis

ciq

≤ 1}|

≤ |{i :
diq2

d
1
2
ip1

d
1
2
ir1

≤ 4C,
diq2

e−τdir1

≤ 4C,
e−tdis2

diq1

≤ 4C}| (4.17)

If we repeat all steps for the following

β (Uq ∩ U
1
2
p U

1
2
r ∩ etUr, conv (Uq ∪ eτUs))

≤ β (cVq2 ∩ V
1
2

p2V
1
2

r2 ∩ etVr2 , conv (Vq1 ∪ etVs1), (4.18)

we similarly obtain the following;

|{i :
max (ciq, c

1
2
ipc

1
2
ir, e

−τcir)

min (ciq, e−τcis)
≤ 1}|

≤ |{i :
max (diq2 , d

1
2
ip2

d
1
2
ir2

, e−τdir2)

min (diq1 , e
−τdis1)

≤ 4c}|, (4.19)

and

|{i :
c

1
2
ipc

1
2
ir

ciq

≤ 1,
ciq

e−τcis

≤ 1,
e−tcir

ciq

≤ 1}|

≤ |{i :
d

1
2
ip2

d
1
2
ir2

diq1

≤ 4C,
diq2

e−tdis1

≤ 4C,
e−τdir2

diq1

≤ 4C}|. (4.20)

Let us analyze these. The left-hand side of (4.17) (respectively (4.20) )

is equal to the left-hand side of (4.16) (respectively (4.19)). The right-hand

side of (4.17) (respectively (4.20) ) is greater than or equal to the right-hand

side of (4.16) (respectively (4.19) ). Also (4.17) implies the relation (4.16) .

The first inequality in the left-hand side of (4.17) is ciq ≤ c
1
2
ipc

1
2
ir. For the odd

indices i = 2k− 1 this is equivalent to the inequality (−1
q
+ 1

2p
+ 1

2r
)a

(0)
k ≤ 0,

which is impossible because q > 2p. For the even indices i = 2k this is
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equivalent to (2q−p−r)a
(1)
k ≤ 0, which is always true since r > 2q. Therefore

the left-hand side of (4.17) equals

|{k :
τ

r − q
≤ a

(1)
k ≤ t

s− q
}| (4.21)

Consider the right-hand side of (4.17) .

The first inequality there is diq2 ≤ 4Cd
1
2
ip1

d
1
2
ir1

. For odd indices i = 2k − 1

this is equivalent to the inequality

ã
(0)
k ≤ τ1 :=

log 4C

− 1
q2

+ 1
2p1

+ 1
2r1

In this case the other two inequalities imply

τ − log 4C
1
q2
− 1

r1

≤ ã
(0)
k ≤ t + log 4C

1
q1
− 1

s2

.

Therefore, for τ > τ2 := τ( 1
q2
− 1

r1
+ log 4C), the triple of inequalities in the

right-hand side of (4.17) does not hold for odd indices.

For the even indices i = 2k, the first inequality in the right-hand side of

(4.17) is equivalent to the inequality (2q2 − p1 − r1)ã
(1)
k ≤ log 4C, which is

always true because r1 > 2q2 ( we can assume without loss of generality that

C is bigger than 1). Thus for τ > τ2 the right-hand side of (4.17) equals

|{k :
τ − log 4C

r1 − q2

≤ ã
(1)
k ≤ t + log 4C

s2 − q1

}| (4.22)

Since for τ > τ2 the expression (4.21) is less than the expression (4.22), there

exist a constant M > 0 and a τ0 > τ2 such that the relation (4.9) holds. In

the same way, (4.20) implies (4.8).

Due to Proposition 3.3.1, Theorem 4.2.1 implies that span{ek : a
(ν)
k ≥

τ0} qd
↪→ span{ek : ã

(ν)
k ≥ τ0

M
} where ν = 0, 1. That is Xν is quasidiagonally

imbedded in X̃ν (ν = 0, 1) up to Banach subspaces.
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4.3 Infinite Dimensional Complemented Ba-

nach Subspaces Of `-Köthe Spaces

In this section we follow [10] and [1] and try to get the `-Köthe space

analogue of Proposition 13 in [1].

Definition 4.3.1. Let U(X) denote a basis of absolutely convex neighbor-

hoods of the origin in a locally convex space X. X has the property of small-

ness up to a complemented Banach subspace (the SCBS property) if for each

bounded subset M of X, for each U ∈ U(X) and for each ε > 0, there are

complementary subspaces B and E of X such that B is a Banach space and

M ⊂ B + εU ∩ E.

`-Köthe spaces satisfy SCBS property [1]. For the sake of completeness

we present a proof of:

Lemma 4.3.2. If X = K`(ai,n) is an `-Köthe space and M ⊂ X is a bounded

set, then for any n0 and any ε > 0, there exists a Banach basic subspace B

such that M ⊂ B + εUn0 where Un0 := {x ∈ X : ‖x‖n0 ≤ 1}.

Proof. Let X = K`(ai,n) be an `-Köthe space. Since M ⊂ X is a bounded

subset of X, then there exists a sequence of positive numbers (cn) such that

M ⊂ {x ∈ X : ‖x‖n := ‖(ξiai,n)i‖ ≤ cn, n = 1, 2, ...}

We can chose (cn) big enough to satisfy that (
ai,n

cn
) tends to zero, for

each i. We set γi := sup
n
{ 1

2n

ai,n

cn

} and γ := (γi). Since sup
n

{ 1

2n

ai,n

cn

} ≤
∑

n

(
1

2n

ai,n

cn

)
, then by monotonicity of the norm in `, for any x ∈ M we

obtain

‖γx‖ =

∥∥∥∥
(

sup
n
{ 1

2n

ai,n

cn

}
)

x

∥∥∥∥ ≤
∥∥∥∥∥

(∑
n

1

2n

ai,n

cn

)
x

∥∥∥∥∥ ≤
∑

n

1

2n

∥∥∥∥
(

ai,n

cn

)
x

∥∥∥∥ ≤ 1
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Hence M ⊂
⋂
n

B`(
ai,n

cn

) ⊂ B`(γ).

Take any ε > 0, n0 ∈ N and set B := [ei : εγi ≤ ai,n0 ] and

E := [ei : εγi > ai,n0 ] where the square brackets denote the closed linear

span of the corresponding vectors. For x ∈ B and n ∈ N, since

|ξiai,n0| ≥ |ξiγiε| ≥ |ξi
1

2n

ai,n

cn

ε|

for each n, then by monotonicity of the norm we get

‖(ξiai,n0)‖ ≥ ‖(ξiγiε)‖ ≥
∥∥∥∥(ξi

1

2n

ai,n

cn

ε)

∥∥∥∥

Hence ‖(ξiai,n0)‖ε2ncn ≥ ‖(ξiai,n)‖ = ‖x‖n.

Let x ∈ M ∩E. Since |ξiai,n0| ≤ |ξiγiε| then by monotonicity of the norm

we obtain that ‖x‖n0 = ‖(ξiai,n0)i‖ ≤ ‖(ξiγiε)i‖ < ε

Thus, all norms are equivalent and so B is Banach basic subspace. This

completes the proof.

Proposition 4.3.3. Let X be a `-Köthe space. If T : X → X is a bounded

operator (respectively, compact) operator, then there exists complementary

basic subspaces B and E such that :

(i) B is a Banach (repectively, finite dimensional) space; and

(ii) if πE and ιE are the canonical projection onto E and embedding into

X, respectively, then the operator 1E − πETιE is an automorphism on

E.

Proof. Let {‖.‖p : p ∈ N} be a fundamental system of norms in X. Since T

is a bounded operator there exists a k0 such that T (Uk0) is a bounded set in

X, i.e.

∀k∃Ck : ‖Tx‖k ≤ Ck‖x‖k0

By Lemma 4.3.2, there exists a Banach (respectively, finite dimensional)

basic subspace B such that T (Uk0) ⊂ B+ 1
2
Uk0 . Let E be the basic subspace
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that is complementary to B. Then, setting T1 := πETιE : E → E, we obtain

that

‖Tx‖k ≤ 1

2
‖x‖k0 , ∀x ∈ E.

It is clear that the operator 1E −T1 is an automorphism. Indeed, for any

x ∈ E consider the series

Sx = x + T1x + T 2
1 x + T 3

1 x + ... + Tm
1 x + ... (4.23)

This series convergent in E because, for any k, we have

‖Tm
1 x‖k ≤ Ck‖Tm−1

1 x‖k0 ≤ Ck

(
1

2

)m−1

‖x‖k0 , m = 1, 2, ...

and so, by Banach-Stheinhaus theorem, (4.23) defines a linear continuous

operator S : E → E. Since (1E − T1)Sx = S(1E − T1)x = x, the linear

operator S is inverse to the operator 1E − T1.

Lemma 4.3.4. ( [10]) Let X1, X2, Y1 and Y2 be topological vector spaces. If

T := (Tij) : X1 × X2 → Y1 × Y2 (where Tij : Xj → Yi) is an isomorphism

such that T11 : X1 → Y1 is also an isomorphism, then X2 ' Y2.

Proof. Let T−1 := (Sij) : Y1 × Y2 → X1 × X2 and R : X2 → Y2 such that

R = T22 − T21T
−1
11 T12.

Consider T11S12 + T12S22 = 0 which implies that RS22 = T22S22 −
T21T

−1
11 T12S22 = T22S22 + T21S12 = IY2 . We can also esaily see that

S21T11 + S22T21 = 0 implies that S22R = S22T22 − S22T21T
−1
11 T12 = S22T22 +

S21T12 = IX2 . Thus, the spaces X2 and Y2 are isomorphic.

Now, we state a theorem which is a modification of generalized Douady

Lemma in [30] (section 6).

Theorem 4.3.5. Let X1 be a `-Köthe space and X2, Y1, Y2 be topological

vector sapces If X1 × X2 ' Y1 × Y2 and (X1, Y2) ∈ BF , then there exists
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complementary basic subspaces E and B in X1 and complementary subspaces

F and G of Y1 such that B is Banach space and

F ' E, B ×X2 ' G× Y2.

In addition, if (X2, Y1) ∈ BF , then G is Banach space.

Proof. Let T : (Tij) : X1 × X2 → Y1 × Y2 such that Tij : Xj ' Yi be an

isomorphism, and let T−1 = (Sij). It is easy to get S11T11 + S12T21 = IX1 .

Observe that (X1, Y2) ∈ BF implies that the operator S12T21 is bounded. Due

to Proposition 4.3.3 and boundedness of S12T21, there exist complementary

basic subspaces E and B of X1 such that B is a Banach space and the

operator A = πES11T11ιE is an automorphism of E. It is clear that the

operator P = T11A
−1πES11 is a projection on Y1. Define now,

F = P (Y1), G = P−1(0).

Easily we observe that F = T11(E) and the restriction of T11 on E is an

isomorphism between E and F . Due to Lemma 4.3.4, we get that

B ×X2 ' G× Y2.

If, in addition, each operator acting in Y1 that factors through X2 is

bounded, then each operator acting in G that factors through X2 is also

bounded. Let H = (Hij) : G × Y2 → B × X2 be an isomorphism and

H−1 = (Rij). Then, easily we get that R11H11 + R12H21 = IG. Observe that

R12H21 is bounded because it factors through X2 and the operator R11H11

since it factors through the Banach space B. Thus the identity operator IG

is bounded. Therefore G is a Banach space.

For ` = lp, we have some useful facts:

(i) Each infinite-dimensional complemented subspace of lp (1 ≤ p < ∞) is

isomorphic to lp,
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(ii) Each infinite-dimensional basic Banach subspace of an `-Köthe space

is isomorphic to lp.

Due to the facts (i) and (ii), in [10] Djakov, Terzioğlu, Yurdakul, Zahariuta

showed that infinite-dimensional Banach complemented subspace of an lp-

Köthe space is isomorphic to lp. Since the facts (i) and (ii) are not true for

an arbitary ` ∈ Λ, we can not generalize the above result to the `-Köthe

spaces. We state the following result, instead:

Let C(`) be the set of all complemented subspaces of `.

Proposition 4.3.6. Let X be an `-Köthe space, and let F and G be comple-

mentary subspaces in X. If G is an infinite-dimensional Banach space then

G ' L where L ∈ C(`).

Proof. Let X = K`(A) = F ⊕ G and G be a Banach space. So we have

X × {0} ' F × G. By Theorem 4.3.5 there exists complementary basic

subspaces E and B in X and complementary subspaces F1 and G1 in F such

that B is a Banach space and

F1 ' E, B ' B × {0} ' G1 ×G.

Hence G is complemented subspace of B. Since B is the basic Banach sub-

space of X, and so `, then there exists L ∈ C(`) such that G ' L.
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chapter 5

power `-köthe spaces of first

type

In this chapter, we consider the first type power `-Köthe spaces and give

some basic properties. After that, using n-equivalent multirectangular char-

acteristic invariants we investigate quasidagonal isomorphisms of the first

type power `-Köthe spaces.

5.1 Power `-Köthe Spaces of First Type

Let E be the class of the `-Köthe Spaces of the kind

E`(λ, a) := K`

(
exp

[(
−1

p
+ λip

)
ai

])
(5.1)

where a = (ai)i∈N, ai > 0, λ = (λi), 0 < λi ≤ 1. Spaces of that kind will be

called power `- Köthe spaces of first type.

We easily observe that if ãi = 1 + ai λ̃i = max{λi,
1
ãi
} where ã = (ãi)

and λ̃ = (λ̃i) then X := E`(λ, a) ' E`(λ̃, ã) =: X̃.

Indeed, if λ̃i = 1
ãi

then λ̃iãi = 1 then we can get the following inequalities

(
−1

p
+ λip

)
ai ≤

(
−1

p
+ λ̃ip

)
ãi

=

(
− ãi

p
+ λ̃iãip

)
=

(
−1

p
− ai

p
+ p

)
≤

(
−1

p
+ λip

)
ai + p
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for any i, p ∈ N. By monotonocity of the norm, for any p we obtain that

‖x‖X =

∥∥∥∥
(

ξi exp

[(
−1

p
+ λip

)
ai

]) ∥∥∥∥
`

≤
∥∥∥∥

(
ξi exp

[
− ãi

p
+ λ̃iãip

]) ∥∥∥∥
`

=

∥∥∥∥Ix

∥∥∥∥
X̃

≤
∥∥∥∥

(
ξi exp

[(
−1

p
+ λip

)
ai + p

]) ∥∥∥∥
`

≤ C

∥∥∥∥
(

ξi exp

[(
−1

p
+ λip

)
ai

]) ∥∥∥∥
`

= C‖x‖X

i.e.

‖x‖X ≤ ‖Ix‖X̃ ≤ C‖x‖X

where C = exp(p). By inverse mapping theorem I−1 is continuous. Thus I

and I−1 are continuous, hence I is an isomorphism. So, we obtain E`(λ, a) '
E`(λ̃, ã).

The space E`(λ, a) is said to be finite, infinite or mixed respectively,

if it satisfies the following cases:

(i) λi → 0;

(ii) limλi > 0;

(iii) limλi = 0, limλi > 0.

The corresponding classes of the spaces to the cases (i), (ii), (iii) denoted by

E1, E2, E3.

Proposition 5.1.1. (a) The case (i) is equivalent to E`(λ, a) ' E`
0(a),

(b) The case (ii) is equivalent to E`(λ, a) ' E`
∞(a).

Proof. Since (a) and (b) are proved in a similar way, we restrict ourselves

to prove only (a). It is sufficent to show that identity operator I is an

isomorphism between E`(λ, a) and E`
0(a). Assume that λi → 0, i ∈ N, then

there exists i0 such that for all i > i0, 0 < λi < 1
2p2

−1

p
ai ≤ (−1

p
+ λip)ai ≤ (−1

p
+

1

2p2
p)ai = (− 1

2p
)ai.
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By monotonicity of the norm, for any p we obtain that

‖(ξi exp[−1

p
ai])‖` ≤ ‖(ξi exp[(−1

p
+ λip)ai])‖`

≤ ‖(ξi exp[(−1

p
+

2

p2
p)ai])‖` = ‖(ξi exp[− 1

2p
ai])‖`

For any given infinite set L = {ik} ⊂ N we shall consider the correspond-

ing basic subspace as follows:

E`
L(λ, a) := span{ej : j ∈ L} ' E`(λL, aL),

where λL = (λik), aL = (aik). From this definition, we get the following:

(i) λik → 0 ⇔ E`
L(λ, a) ' E`

0(aL);

(ii) limλi > 0 ⇔ E`
L(λ, a) ' E`

∞(aL)

(iii) aik ≤ C < ∞(∀i, k) ⇒ E`
L(λ, a) ' E`

0(aL) ' E`
∞(aL) ' `.

Proposition 5.1.2. Let a = (ai), ai ↗ ∞ and b = (bi), bi ↗ ∞, are given

τ = 0,∞. Then E`
0(a) 6' E`

∞(b) always and

E`
τ
(a) ' E`

τ (b) ⇔ E`
τ (a)

e' E`
τ (b) ⇔ ai ³ bi.

Lemma 5.1.3. The space E`(λ, a) is isomorphic to E`1
0 (c)×E`2∞(d) for some

c, d and ` ' `1 × `2 if an only if there exist N1, N2 ⊂ N such that N =

N1 ∪N2, N1 ∩N2 = ∅ and λi ≥ δ > 0 for i ∈ N1; λi → 0 if i →∞, i ∈ N2.

Let E be the class of all locally convex spaces, which are isomor-

phic to some spaces in the class E . The spaces in E are called

first type power spaces. In the same way, the classes E1, E2, E3 corresponds

to E1, E2, E3. It is clear that E`
0(a)×E`

∞(b) ∈ E3, for arbitrary a, b tending to

infinity.
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Lemma 5.1.4. The following conditions are equivalent:

(i) E`(λ, a)
p' E`(µ, b);

(ii) E`(λ, a)
qd' E`(µ, b)

(iii) there exists a bijection σ : N→ N and a constant α > 1 such that

ai

α
≤ bσ(i) ≤ aiα (5.2)

and for any subsequence ik

λik → 0 ⇔ µσ(ik) → 0. (5.3)

Proof. (i) ⇒ (ii) is obvious. Let us show (iii) ⇒ (i). We observe that

E`(λ, a) = E`(λ, b), since ai ³ bi. We need to prove that under conditions

a = b and σ(i) ≡ i the corresponding operator I : E`(λ, a) → E`(µ, b) is an

isomorphism. Let us see that I is continuous, i.e.

∀p∃q∃C : exp

(
−1

p
+ µip

)
bi ≤ C exp

(
−1

q
+ λiq

)
ai. (5.4)

From (5.3) there exists a function ϕ : (0, 1] → (0, 1] such that ϕ(t) ↓ 0 as

t ↓ 0 and for any δ ∈ (0, 1] µi ≥ δ ⇒ λi ≥ ϕ(δ). Fix an p and set

N1 = N1(p) := {i : µi ≥ 1

2p2
}, N2 := N \ N1.

For q = q(p) = max{p/ε, 2p}, where ε = ϕ(1/2p2), we obtain the following

inequalities

−1
p

+ µip ≤ −1
p

+ p ≤ −1
q

+ qε ≤ −1
q

+ qλi for i ∈ N1;

−1
p

+ µip ≤ − 1
2p
≤ −1

q
≤ −1

q
+ qλi for i ∈ N2.

which imply (5.4) even with C = 1, hence I is continuous. Since the condition

(iii) is symmetric with respect to (ai) and (bi), the same arguments give us

that the operator I−1 is continuous, . This conclude that (iii) ⇒ (i).
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Let us see that (ii) ⇒ (iii). Suppose that there exist a bijection σ :

N → N and sequence of numbers γi 6= 0 such that the linear operator T :

E`(λ, a) → E`(µ, b) defined by Tei = γieσ(i) is an isomorphism. We will show

that (iii) holds with the same σ. If we assume that (5.3) does not hold for

some subsequence ik, then we obtain the existence of a subsequence js = iks

such that ajs → ∞ and either λjs → 0 but µσ(js) ≥ δ > 0 or µσ(js) → 0 but

λjs ≥ δ > 0.

It is enough to consider the first case. Let us put L = {js},M = σ(L); then

E`
0(aL) ' E`

L(λ, a) ' E`
M(µ, b) ' E`

∞(bM)

where aL = (ajs), bM = (bσ(js)).

This is a contradiction, since by Proposition 5.1.2 in the Montel case finite

and infinite power series spaces are not isomorphic. Hence (5.3) is proved for

any subsequence (ik).

To conclude the proof, we need to show ai ³ bσ(i). Assume that ai ³ bσ(i)

is not true. Then there exists a subsequence (ik) such that

(1) either aik/bσ(ik) →∞ , or bσ(ik)/aik →∞

(2) either λik → 0, or λik ≥ δ > 0.

We consider one of the four possible cases we get since the rest can be

treated analogously. Let aik/bσ(ik) → ∞ and λik → 0. Then it follows

µσ(ik) → 0 and we have for L = {ik}, µ = σ(L)

E`
0(aL) ' E`

L(λ, a) ' E`
M(µ, b) ' E`

0(bM)

where aL = (aik), bM = (bσ(ik). But by Proposition 5.1.2 the isomorphism

E`
0(aL) ' E`

0(bM) implies ai ³ bσ(i) contrary the assumption.
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5.2 Multirectangular Characteristics and

Compound Invariants

In this section we consider the problem of quasidiagonal isomorphism of

first type `-power Köthe spaces [31], [37]: E`(λ, a) where a = (ai)i∈N and

λ = (λi)i∈N are sequences of positive numbers. From [7],[5],[6] it is known

that the system of all m-rectangular charactersitics µm (see 5.6 below) is a

complete quasidiagonal invariant on the class of all first type power Köthe

spaces, if the relation of equivalency of systems (µX
m) and (µX̃

m) be defined

by some natural estimates with constants independent of m. Here we prove

that the system of all m-rectangular charactersitics µm is also a complete

quasidiagonal invariant on the class of all first type `-Köthe spaces under the

same conditions as above.

Dealing with spaces (5.1) we always assume without loss of generality

that

ai > 1,
1

ai

≤ λi ≤ 1, i ∈ N. (5.5)

For given a = (ai)i∈N, λ = (λi)i∈N with (5.5) and m ∈ N we introduce

m-rectangular characteristic of pair (λ, a) as the function

µ(λ,a)
m (δ, ε; τ, t) :=

∣∣∣∣
m⋃

k=1

{
i : δ < λi ≤ εk, τ < ai ≤ tk

}∣∣∣∣, (5.6)

defined for

δ = (δk), ε = (εk), τ = (τk), t = (tk),

0 ≤ δk < εk, 0 ≤ τk < tk < ∞, k = 1, 2, ..., m. (5.7)

The function (5.6) calculates how many points (λi, ai) are contained in the

union of m-rectangles:

µ(λ,a)
m (δ, ε; τ, t) =

∣∣∣∣
m⋃

k=1

{
i : (λi, ai) ∈ Pk

}∣∣∣∣ =

∣∣∣∣
{

i : (λi, ai) ∈
m⋃

k=1

Pk

}∣∣∣∣, (5.8)

where Pk := (δk, εk]× (τk, tk], k = 1, 2, ..., m.
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Let ã = (ãi)i∈N, λ̃ = (λ̃i)i∈N be another couple of positive sequences

and m a fixed natural number. Then the functions µ
(λ,a)
m and µ

(λ̃,ã)
m are

equivalent (or µ
(λ,a)
m ≈ µ

(λ̃,ã)
m ) if there exists a strictly increasing function

ϕ : [0, 2] → [0, 1], ϕ(0) = 0, ϕ(2) = 1, and positive constant α such that the

following inequalities

µ(λ,a)
m (δ, ε; τ, t) ≤ µ(λ̃,ã)

m (ϕ(δ), ϕ−1(ε);
τ

α
, αt), (5.9)

µ(λ̃,ã)
m (δ, ε; τ, t) ≤ µ(λ,a)

m (ϕ(δ), ϕ−1(ε);
τ

α
, αt), (5.10)

hold with ϕ(δ) = (ϕ(δk)), ϕ−1(ε) = (ϕ−1(εk)),
τ
α

= ( τk

α
), αt = (αtk) for all

collections of parameters (5.7) with εk ≤ 1, τk ≥ 1, k = 1, 2, ..., m (in line

with our agreement (5.5) we shall suppose always that the parameters (5.7)

satisfy this conditions.) If X = E`(λ, a), we write also µX
m in place of µ

(λ,a)
m .

Recall that γ : X → Γ is called linear topological invariants if X '
X̃ ⇒ γ(X) ∼ γ(X̃), X, X̃ ∈ X , where X is a class of locally convex spaces

and Γ is a set with an equivalence relation ∼ .

Lemma 5.2.1. Let X = E`(λ, a) , X̃ = E`(λ̃, ã), ` ∈ Λ n ∈ N. If X ' X̃,

then there exists an increasing function ϕ : [0, 2] → [0, 1], ϕ(0) = 0, ϕ(2) = 1,

a decreasing function M : (0, 1] → (0,∞) and a constant α > 1 such that the

inequality

µX
m(δ, ε; τ, t) ≤ µX̃

m(ϕ(δ)− M(δ)

τ
, ϕ−1(ε) +

M(ε)

τ
;
τ

α
, αt) (5.11)

holds for each m ∈ N and the inequalities (5.9) and (5.10) hold for all collec-

tion of parameters (5.7) satisfying the following additional condition: among

all the numbers δ1, δ2, ..., δm there are no more than n different.

Proof. Let T : X̃ → X be an isomorphism. Consider two unconditional

bases of the space X:

(i) the canonical basis e = (ei)i∈N, and

(ii) T-image of the basis of X̃: ẽ = (ẽi)i∈N, ẽi = Tei, for each i.
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Hence, for each x ∈ X, we have two representation:

x =
∞∑
i=1

ξiei =
∞∑
i=1

ηiẽi.

For each x ∈ X, the system of norms

‖x‖p = ‖(ηiãip)‖ (p ∈ N),

is equivalent to the original system of norms in X :

|x|p = ‖(ξiaip)‖ (p ∈ N),

where

aip := exp

([− 1

p
+ λip

]
ai

)
,

ãip := exp

([− 1

p
+ λ̃ip

]
ãi

)
.

We define the weights

αp := (aip) , α̃p := (ãip),

to get the balls

Be(αp) , B ẽ(α̃p). (5.12)

We will use these weighted balls to build two pairs of synthetic neigh-

borhoods U, V and Ũ , Ṽ in the form of certain compound geometrical and

interpolational constructions to provide the inclusions

U ⊃ Ũ , V ⊂ Ṽ (5.13)

and also, to make sure that the following estimations will be satisfied:

µX
m(δ, ε; τ, t) ≤ β(V,

1

n
U, ), (5.14)

β(Ṽ ,
1

n
Ũ, ) ≤ µX̃

m(ϕ(δ)− M(δ)

τ
, ϕ−1(ε) +

M(δ)

τ
;
τ

α
, αt). (5.15)
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Due to (3.7), the inclusion (5.13) implies the assertion (5.11) of the Lemma

5.2.1.

Construction of synthetic neighborhoods. Let n,m ∈ N such that

n ≤ m. Now, regarding the equivalence of the systems of norms, we can

choose an infine chain of positive integers

ri < pi < si < ri+1, i = 0, 1, ..., m + 1;

sm+1 < qj < qj+1, j = 1, 2, ... (5.16)

in a way that each consequent number of the chain is four times larger than

the preceding one and 4s0qj < qj+1, and that the following inclusions

B ẽ(α̃sk
) ⊂ C(k)Be(αpk

); Be(αpk
) ⊂ C(k)B ẽ(α̃rk

)k = 0, 1, ..., m + 1; (5.17)

B ẽ(α̃qj+1
) ⊂ Cqj

Be(αqj
); Be(αqj+1

) ⊂ Cqj
B ẽ(α̃qj

), j = 1, 2, ... (5.18)

are satisfied with some constants (C(k))m+1
k=0 , (Cqj

)∞j=1.

Let all different values of (δk)
m
k=1 be represented as a non-decreasing finite

sequence σ1 < σ2 < ... < σl < ... Due to that, let us redefine the numbers

pk := plk , rk := rlk , sk := slk

where lk is such that δk = σlk , k = 1, ..., m. Obviously, the inclusions (5.17)

are still valid. Beside these, we consider also the sequence

ζ0 := 1, ζj :=
1

qj

, j = 1, 2, ... (5.19)

and choose indices ιk and jk so that

ζιk ≤ δk < ζιk−1
, ζjk+1

≤ εk < ζjk
, k = 1, 2, ...,m. (5.20)

Due to the construction above, we define the sets supplying as elementary

blocks in order to build the sets U, V, Ũ , Ṽ . The first couple of the sets U, V

is built with the blocks (k = 1, 2, ..., m)

W
(k)
l = Be(w

(k)
l ), l = 1, 2 ; W̄

(k)
l = B ẽ(w̄

(k)
l ) l = 1, 2, 3, 4 (5.21)
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where each weighted-sequence will be responsible for certain inequality for

(λi) or (ai) in (5.6). We begin with the following blocks:

w
(k)
1 = w̄

(k)
1 = αpk

, k = 1, 2, ..., m.

The estimations of λi from below and above in (5.11), (5.6) are linked with

the following two series of ”interpolational” weights (k = 1, 2, ..., m):

w
(k)
2 = α

1
2
p0α

1
2
qιk

, w̄
(k)
2 =

{
α

1
2
p0α

1
2
qjk−1

if jk > 3,

αp0 if jk ≤ 3.

On the other hand, the estimations of ai by the parameters τk and tk in

(5.11), we require the following series:

w̄
(k)
3 = exp

(
τk

2p0

)
αp0 , w̄

(k)
4 = exp

(− 2pm+1tk
)
αpm+1 , k = 1, 2, ..., m.

Finally, construct second couple of the sets Ũ , Ṽ . For this goal, we use the

corresponding series of blocks which are balls with respect to the T -image

basis ẽ: (k = 1, 2, ..., m)

W̃
(k)
l = Be(w̃

(k)
l ), l = 1, 2 ; ˜̄W

(k)
l = B ẽ( ˜̄w

(k)
l ) l = 1, 2, 3, 4.

We define their weights by the same formulae as for the balls (5.21) but

with the following rules of substitution: to obtain weight w̃
(k)
l and ˜̄w

(k)
l we

replace αpk
with 1

C(k)
α̃sk

(or, respectively C(k)α̃rk
) and replace αqιk

(or, re-

spectively αqjk−1
) with 1

Cqιk

α̃qιk
(or, respectively Cqjk−2

α̃qjk−2
).

For k = 1, 2, ..., m we put

U (k) = conv
( 2⋃

l=1

W
(k)
l

)
, V (k) =

4⋂

l=1

W̄
(k)
l ,

Ũ (k) = conv
( 2⋃

l=1

W̃
(k)
l

)
, Ṽ (k) =

4⋂

l=1

˜̄W
(k)
l ,
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to define the sets

U =
m⋂

k=1

U (k) , Ũ =
m⋂

k=1

Ũ (k) , V = conv
( m⋃

k=1

V (k)
)

, Ṽ = conv
( m⋃

k=1

Ṽ (k)
)
.

On account of 5.17 we observe the inclusions (k = 1, 2, ..., m)

W
(k)
l ⊃ W̄

(k)
l , l = 1, 2;

W̄
(k)
l ⊂ ˜̄W

(k)
l , l = 1, 2, 3, 4.

which imply the inclusion (5.13).

Approximation of sets U, V, Ũ , Ṽ with the weighted `-balls. Since

the sets U, V, Ũ and Ṽ are not weighted balls, we cannot use Lemma 3.2.5

directly to calculate β(U, V ) and β(Ũ , Ṽ ). Nevertheless, using the Lemma

3.2.4 and Lemma 3.2.3, we derived some suitable weighted balls from these

sets. In the direction of this thought, we consider the sequences: (k =

1, 2, ..., m)

c(k) = (c
(k)
i ) , c̃(k) = (c̃

(k)
i ) , d(k) = (d

(k)
i ) , d̃(k) = (d̃

(k)
i );

and the sequences

c = (ci) , c̃ = (c̃i) , d = (di) , d̃ = (d̃i),

defined in the following way:

c
(k)
i := min{w(k)

i,l : l = 1, 2} c̃
(k)
i := min{w̃(k)

i,l : l = 1, 2},

d
(k)
i := max{w̄(k)

i,l : l = 1, 2} d̃
(k)
i := max{ ˜̄w

(k)
i,l : l = 1, 2},

ci := min{d(k)
i : k = 1, 2, ..., m} c̃i := min{d̃(k)

i : k = 1, 2, ..., m},
di := max{c(k)

i : k = 1, 2, ..., m} d̃i := max{c̃(k)
i : k = 1, 2, ..., m}.

Taking into account of Lemma 3.2.4 and Lemma 3.2.3, and the above con-

strcution, we obtain the following relation:

Be(c(k)) = U (k) , B ẽ(c̃(k)) = Ũ (k) , Be(d(k)) ⊂ V (k) , Ṽ (k) ⊂ 4B ẽ(d̃(k)).
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From the construction of (δk)
m
k=1, δk = δι implies that jk = jι , pk =

pι , w
(k)
i,l = w

(ι)
i,l , l = 1, 2 , c

(k)
i = c

(ι)
i , i ∈ N. By Lemma 3.2.4, Lemma

3.2.3 and the fact that there are no more than n different among the sets

U (k), k = 1, 2, ..., m, we conclude that

Be(c) ⊂ V , U ⊂ nBe(d) , Ṽ ⊂ 4B ẽ(c̃) , B ẽ(d̃) ⊂ Ũ .

Hence, owing to 3.7 and 3.8, we obtain

β(Be(c), Be(d)) ≤ β(V,
1

n
U), (5.22)

β(Ṽ ,
1

n
Ũ) ≤ β(4nB ẽ(c̃), B ẽ(d̃)). (5.23)

Estimation of (5.14). After the above construction of synthetic neigh-

borhoods U, V to prove the estimation (5.14) we shall prove the following

inequality:

µX
m(δ, ε; τ, t) ≤ β(Be(c), Be(d)). (5.24)

By aid of 5.22, this gives the desired result.

Lemma 3.2.5 and the definitions of the sequences c and d implies that

β(Be(c), Be(d)) =

∣∣∣∣
m⋃

k=1

m⋃
ν=1

{i : d
(k)
i ≤ c

(ν)
i }

∣∣∣∣.

In the sequel,

β(Be(c), Be(d)) ≥
∣∣∣∣

m⋃

k=1

{i : d
(k)
i ≤ c

(k)
i }

∣∣∣∣. (5.25)

Taking into account of the definitions d(k) and c(k), (k = 1, 2, ..., m), we

obtain

{i : d
(k)
i ≤ c

(k)
i } = {i : max

1≤l≤4
w̄

(k)
i,l ≤ min

1≤l≤2
w

(k)
i,l }. (5.26)

Due to the fact that w̄
(k)
i,1 = w

(k)
i,1 , we can write the right-hand side of 5.26

as follows:

{i : d
(k)
i ≤ c

(k)
i } =

4⋂

l=2

({i : w̄
(k)
i,l ≤ w

(k)
i,1 } ∩ {i : w̄

(k)
i,1 ≤ w

(k)
i,2 }

)
. (5.27)
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We shall prove the following four inclusions to get (5.24) : (k = 1, 2, ..., m)

{i : λi ≤ εk} ⊂ {i : w̄
(k)
i,2 ≤ w

(k)
i,1 }, (5.28)

{i : λi > εk} ⊂ {i : w̄
(k)
i,1 ≤ w

(k)
i,2 }, (5.29)

{i : ai > τk} ⊂ {i : w̄
(k)
i,3 ≤ w

(k)
i,1 }, (5.30)

{i : ai ≤ tk} ⊂ {i : w̄
(k)
i,4 ≤ w

(k)
i,1 }, (5.31)

Let us show first (5.28). Due to the definition w̄
(k)
2 , we need to check two

cases: jk ≤ 3 and jk > 3. Since the case jk ≤ 3 is trivial, let us consider

the case jk > 3: By definitions of the weights and (5.12) we observe that the

left-hand side of (5.28) is equivalent to

λi(
1

2
qjk−1

+
1

2
p0 − pk) ≤ 1

2p0

+
1

2qjk−1

− 1

pk

. (5.32)

The construction of the chains (5.16), (5.19) and (5.20) imply that the

left-hand side of (5.32) is larger than 1
4p0

. In the same way, we observe that

rihgt-hand side is less than

λi
qjk

4p0

= λi
1

4p0ζjk

≤ λi
1

4p0εk

.

Thus we obtain the desired result (5.28). Analogously we can observe (5.29).

Now, let us consider the inclusion (5.30). By definitions of the weights

and (5.12) we observe that the left-hand side of (5.30) is equivalent to

τk

2p0

≤ (pk − p0)(1 + λip0pk)

p0pk

ai.

It is easy to see that

1

2p0

≤ (pk − p0)(1 + λip0pk)

p0pk

which implies the (5.30). Analogously we can observe (5.31).
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After this estimation, we can conclude that (5.27)-(5.31) implies that

{i : d
(k)
i ≤ c

(k)
i } ⊃ {i : δk < λi ≤ εk, τk < ai ≤ tk}.

Regarding (5.25), we observe (5.24) which implies (5.14).

Estimation of (5.15). Taking account of (5.23), to estimate (5.15) we

check the following inequality:

β(4nB ẽ(c̃), B ẽ(d̃)) ≤ µX̃
m(ϕ(δ)− M(δ)

τ
, ϕ−1(ε) +

M(δ)

τ
;
τ

α
, αt). (5.33)

Lemma 3.2.5 and the definitions of the sequences c̃ and d̃ implies that

β(4nB ẽ(c̃), B ẽ(d̃)) =

∣∣∣∣
m⋃

k=1

m⋃
ν=1

{i : d̃
(k)
i ≤ 4nc̃

(ν)
i }

∣∣∣∣. (5.34)

Taking into account of the definitions d̃(k) and c̃(k), (k, ν = 1, 2, ..., m),

we obtain

{i : d̃
(k)
i ≤ 4nc̃

(ν)
i } ⊂

4⋂

l=1

{i : ˜̄w
(k)
i,l ≤ 4nw̃

(ν)
i,1 } ∩ {i : ˜̄w

(k)
i,1 ≤ 4nw̃

(ν)
i,2 }. (5.35)

Due to the definition ˜̄w
(k)
2 , we need to check two cases: jk ≤ 3 and jk > 3.

Let us consider first case, jk > 3: By definitions of the weights and (5.12) we

observe that the inequality

˜̄w
(k)
i,2 ≤ 4nw̃

(ν)
i,1 (5.36)

is equivalent to following

[(1

2
r0 − 1

2
qjk−2

− sν

)
λ̃i −

( 1

2r0

+
1

2qjk−2

− 1

sν

)]
ãi ≤ R(C

√
CCjk−2

) (5.37)

where R(C) := ln(4n(C)). The construction of the chains (5.16), (5.19) and

(5.20) imply that
qjk−2

4
<

1

2
r0 − 1

2
qjk−2

− sν ,
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1

2r0

+
1

2qjk−2

− 1

sν

<
1

r0

.

By the definition ζjk−3
=

1

qjk−3

>
4

r0qjk−2

, we obtain that

{i : ˜̄w
(k)
i,2 ≤ 4nw̃

(ν)
i,1 } ⊂

{
i : λ̃i ≤ ζjk−3

+
4ζjk−2

R(C2
jk−2

)

ãi

}
. (5.38)

Now, tet us consider second case, jk ≤ 3: In that case, by definitions of the

weights and (5.12) we get that the inequality (5.36) is equivalent to

[(
r0 − sν

)
λ̃i −

( 1

r0

− 1

sν

)]
ãi ≤ R(C2). (5.39)

The construction of the chains (5.16), (5.19) and (5.20) imply that

{i : ˜̄w
(k)
i,2 ≤ 4nw̃

(ν)
i,1 } ⊂ {i : λ̃i ≤ ζ0}. (5.40)

Analogously we can observe

{i : ˜̄w
(k)
i,1 ≤ 4nw̃

(ν)
i,2 } ⊂

{
i : λ̃i ≤ ζιν+2 +

4ζιν+1R(C2
ιν )

ãi

}
. (5.41)

At this step, we will prove that (5.11) is guaranteed if we take a constant

α, an increaing function ϕ : [0, 2] → [0, 1] and a decreasing function M :

(0, 1] → (0,∞), satisfying the following conditions:

α > max{4pm+1R(C2), 8pm+1sm+1}; (5.42)

ϕ(0) = 0, ϕ(2) = 1, ϕ(ζj) = ζj+4, j = 0, 1, ...; (5.43)

M(ζj) ≥ αζj+2R(C2
j+1), j = 0, 1, 2, 3; (5.44)

M(ζj) ≥ α max{ζj+2R(C2
j+1), 4ζj−2R(C2

j−2)}, j = 4, 5, .... (5.45)

When we combine (5.38) - (5.41), we obtain

{i : ˜̄w
(k)
i,2 ≤ 4nw̃

(ν)
i,1 } ⊂ {i : λ̃i ≤ ϕ−1(jk+1) +

M(ζjk
)

αãi

}
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{i : ˜̄w
(k)
i,1 ≤ 4nw̃

(ν)
i,2 } ⊂ {i : λ̃i ≥ ϕ(ιν−2)− M(ζιk)

αãi

}

Due to the definitions in (5.20), the above two inclusions becomes

{i : ˜̄w
(k)
i,2 ≤ 4nw̃

(ν)
i,1 } ⊂ {i : λ̃i ≤ ϕ−1(εk) +

M(εk)

αãi

}, (5.46)

{i : ˜̄w
(k)
i,1 ≤ 4nw̃

(ν)
i,2 } ⊂ {i : λ̃i ≥ ϕ(δν)− M(δν)

αãi

}. (5.47)

To complete the estimation (5.35), we have to check also the following

inclusions:

{i : ˜̄w
(k)
i,3 ≤ 4nw̃

(ν)
i,1 } ⊂ {i : ãi >

τk

α
}, (5.48)

{i : ˜̄w
(k)
i,4 ≤ 4nw̃

(ν)
i,1 } ⊂ {i : ãi > αtk}. (5.49)

It is sufficient to prove only the inclusion (5.48), because the inclusion (5.48)

will be proved in the same way. Due to definitions of the weights, the left

hand side of (5.48) is equivalent to the following inequality:

τ

2p0

≤ R(C2) + [
1

r0

− 1

sν

+ λ̃i(sν − r0)]ãi. (5.50)

If we consider (5.5), (5.20) and (5.42), we see that
τ

2p0

≤ αãi. Hence, this

ensure (5.48).

By the aid of (5.46), (5.47), (5.48) and (5.49) the right-hand side of (5.35)

becomes
4⋂

l=2

{i : ˜̄w
(k)
i,l ≤ 4nw̃

(ν)
i,1 } ∩ {i : ˜̄w

(k)
i,1 ≤ 4nw̃

(ν)
i,2 } ⊂ Sk,ν , (5.51)

where

Sk,ν = {i : ϕ(δν)− M(δν)

τk

< λ̃i ≤ ϕ−1(εk) +
M(εk)

τk

;
τk

α
< ãi ≤ αtk}. (5.52)

Regarding the definitions of the sequences ˜̄w
(k)
i,1 , w̃

(ν)
i,1 and (5.12) we obtain

that

{i : ˜̄w
(k)
i,1 ≤ 4nw̃

(ν)
i,1 } ⊂ Tk,ν , (5.53)
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where

Tk,ν =
{
i : [(

1

sν

− 1

rk

) + λ̃i(rk − sν)]ãi ≤ R(C2)
}
. (5.54)

If we bring to mind (5.34), (5.35), (5.51) and (5.53) we get

β(4nB ẽ(c̃), B ẽ(d̃)) ≤
∣∣∣∣

m⋃

k=1

m⋃
ν=1

(Sk,ν ∩ Tk,ν)

∣∣∣∣ (5.55)

Due to (5.16), for ν < k we have

(
1

sν

− 1

rk

) + λ̃i(rk − sν) >
1

2sν

>
1

4pm+1

.

Hence,

Tk,ν =
{
i : ãi4pm+1 ≤ R(C2)

}
if ν < k.

By (5.42), this is equivalent to ( ν < k)

Tk,ν ⊂ {i : ãi ≤ α}. (5.56)

To complete the proof of the lemma, it is sufficient to show that for k, ν =

1, 2, ..., m, the following inclusions are true:

Sk,ν ∩ Tk,ν ⊂ Sk,k. (5.57)

For the case k = ν,(k, ν = 1, 2, ...,m) the inclusions are trival. Thus, we

need to check the cases k < ν, k > ν. Let us consider first, k < ν. So we

have δk < δν . Due to the definitions of the functions M and ϕ we observe

that M(δk) ≥ M(δν) and ϕ(δk) ≤ ϕ(δν). Under this observation, for k < ν

definition of Sk,ν implies (5.57). Now, let us check the last case, k > ν. By

(5.5), we have λ̃i ≥ 1

ãi

for all i ∈ N. With the aid of this, we oberve from

(5.56) that λ̃i ≥ 1

α
. So, we obtain

Sk,ν ∩ Tk,ν ⊂ {i :
1

α
≤ λ̃i ≤ ϕ−1(εk) +

M(εk)

τk

;
τk

α
< ãi ≤ αtk}. (5.58)
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If we take into account the definitions of δ, ϕ, and (5.43) we observe that

ϕ(δk)− M(δk)

τk

< ϕ(δk) < ϕ(ζ0) = ζ4 =
1

q4

. (5.59)

The constant depends on n, for this reason we may assume that the number

q4 chosen in the following way

1

q4

≤ 1

α
. (5.60)

Combining (5.58),(5.59) and (5.59), we see the that (5.57) is valid. Due to

(5.55) it implies the inequality

β(4nB ẽ(c̃), B ẽ(d̃)) ≤
∣∣∣∣

m⋃

k=1

Sk,k

∣∣∣∣.

Thus, the estimation (5.15) is obtained, due to the (5.11) which completes

the proof.

Proposition 5.2.2. Let X = E`(λ, a), X̃ = E`(λ̃, ã), m ∈ N. If X ' X̃,

then µX
m ≈ µX̃

m.

Systems of characteristics
(
µX

m

)
m∈N and

(
µX̃

m

)
m∈N are equivalent if the

function ϕ and the constant α can be chosen so that the inequalities (5.9),

(5.10) hold for all m ∈ N. We denote this equivalence by
(
µX

m

) ≈ (
µX̃

m

)
.

Proposition 5.2.3. For spaces X = E`(λ, a) and X̃ = E`(λ̃, ã), the follow-

ing statment are equivalent:

(i) X
qd' X̃;

(ii)
(
µX

m

) ≈ (
µX̃

m

)
.

Proof. Let us show first (i) implies (ii). Let the spaces X and X̃ be qua-

sidiagonally isomorphic. Then the condition the condition (c) of Lemma
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5.1.4 holds. It follows from (5.3) that there is a strictly increasing function

ϕ : (0, 1] → (0, 1], ϕ(t) ↓ 0 as t ↓ 0, such that the following inclusions

{i : λi ≥ δ} ⊂ {i : λ̃σ(i) ≥ ϕ(δ)},

{i : λ̃σ(i) ≥ δ} ⊂ {i : λi ≥ ϕ(δ)} (5.61)

hold for any δ ∈ (0, 1]. Without loss of generality we can assume that

ϕ(1) < 1. Let us extend the function ϕ on the segment [0, 2] so that it will be

a strictly increasing function and ϕ(0) = 0, ϕ(2) = 1. Then the function ϕ

has the inverse function ϕ−1 on the segment [0, 1] and ϕ−1(0) = 0, ϕ−1(1) = 2.

It follows from (5.4) (5.61) that the inclusions

{i : δ < λi ≤ ε, τ < ai ≤ t} ⊂ {i : ϕ(δ) < λ̃σ(i) ≤ ϕ−1(ε),
τ

α
< ãσ(i) ≤ αt},

{i : δ < λ̃σ(i) ≤ ε, τ < ãσ(i) ≤ t} ⊂ {i : ϕ(δ) < λi ≤ ϕ−1(ε),
τ

α
< ai ≤ αt},

holds for any parameters δ, ε, τ, t(0 < δ < ε ≤ 1). Hence, taking into account

that σ is the bijection, we obtain the (ii).

To complete proof, let us show that (ii) implies (i). The condition (ii)

means that the inequalities (5.9) and (5.10) hold for all collections of param-

eters δ, ε, τ and t.

Let us define a multiple-valued function S : N→ N by the rule:

S(i) := {j : ϕ(λi) < λ̃j ≤ ϕ−1(λi),
ai

α
≤ ãj ≤ aiα}, i ∈ N

It follows from (5.9) that the map S satisfies all conditions of the Hall-König

Theorem. By this theorem there exists an injection σ : N → N such that

σ(i) ∈ S(i), i ∈ N. Therefore the operator T : X → X̃ defined by Tei = eσ(i)

is a quasidiagonal embedding. By repeating this argument with (5.10), we

obtain that X̃
qd
↪→ X.Then by the Lemma 3.1.2 we have X

qd' X̃.

We dont know whether the statment of the Proposition 5.2.3 remain

true if
qd' is replaced by ' , in other words, is the quasidiagonal invariant
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γ(X) := (µX
m)m∈N also a linear topological invariant on the class E with

the above notion of equivalence? Nevertheless it is shown in [6] that it is

possible to get new linear topological invariants, essentially stronger than

any invariant (5.6), simply by taking the same map γ(X) but introducing

new equivalence relations on the set Γ := {(µX
m)m∈N : X ∈ E}.

Definition 5.2.4. Let n ∈ N. We say that systems of characteristics (µX
m)m∈N

and (µX̃
m)m∈N are n-equivalent, and we write (µX

m)
n≈ (µX̃

m), if there is a strictly

increasing function ϕ : [0, 2] → [0, 1], ϕ(0) = 0, ϕ(2) = 1 and a positive

constant α such that for arbitrary m ∈ N, the inequalities (5.9) and (5.10)

holds for all collection of parameters (5.7) satisfying the following additional

condition: among all the numbers δ1, δ2, ..., δm there are no more than n

different.

We consider the maps γn from X onto the set with equivalence (Γ,
n≈)

which all coincide with the map γ if considered as set maps, n ∈ N. The

following theorem shows that the map γn is a linear topological invariant.

Theorem 5.2.5. Let the spaces X = E`(λ, a) and X̃ = E`(λ̃, ã) be isomor-

phic. Then (µX
m)

n≈ (µX̃
m) for each n ∈ N.

Proof. We apply Lemma 5.2.1 to establish the estimates (5.9), (5.10) for each

m ∈ N and arbitrary collections of parameters (5.7) satisfying the condition:

among the numbers δ1, δ2, ..., δm, there are no more than n different. There-

with the function ϕ will be chosen in the end of our proof, while the constant

α will be the same as in (5.11).

Because of symmetric we need to prove only the inequality (5.9). Let us

rewrite this estimate, using (5.8) in the form:

∣∣∣∣
{

i : (λi, ai) ∈
m⋃

k=1

Pk

}∣∣∣∣ ≤
∣∣∣∣
{

i : (λ̃i, ãi) ∈
m⋃

k=1

Qk

}∣∣∣∣,

where

Qk :=

(
ϕ(δk), ϕ

−1(εk)

]
×

(
τk

α
, αtk

]
, k = 1, 2, ..., m.
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We cover each rectangle Pk by an appropriate couple of nonintersecting

rectangles P ′
k and P ′′

k (some of them may be empty) and the apply Lemma

5.2.1. For construction of above-mentioned rectangles we need to define the

decreasing function Ψ : (0, 1] → R+, so that

Ψ(ξ) >
M(ξ)

γ(ξ)
, 0 < ξ ≤ 1, (5.62)

where M and γ are as in Lemma 5.2.1. We are acting in a different way for

each of three cases:

(a)τk ≤ Ψ(δk), (b)τk < Ψ(δk) < tk, (c)tk ≤ Ψ(δk).

Setting the notation

τ ′k := max{Ψ(δk), τk}, t′k := min{Ψ(δk), tk}, ε′k :=

{
Ψ−1(τk) if τk ≥ Ψ(1),

1 otherwise,

we put

P ′
k =

{
(δk, εk]× (τ ′k, tk] in the cases (a) and (b),

∅ otherwise,

and

P ′′
k =

{
∅ in the case (a),

(δk, ε
′
k]× (τk, t

′
k] otherwise.

Applying Lemma 5.2.1, we get

∣∣∣∣
{

i : (λi, ai) ∈
m⋃

k=1

(P ′
k ∪ P ′′

k )

}∣∣∣∣ ≤
∣∣∣∣
{

i : (λ̃i, ãi) ∈
m⋃

k=1

(P̃ ′
k ∪ P̃ ′′

k )

}∣∣∣∣,

with

P̃ ′
k =

{
(∆′

k, E
′
k]× (

τ ′k
α

, αtk] in the cases (a) and (b),

∅ otherwise,
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and

P̃ ′′
k =

{
∅ in the case (a),

(∆k, E
′′
k ]× ( τk

α
, αt′k] otherwise,

where

∆′
k = γ(δk)− M(δk)

τ ′k
, E ′

k = γ−1(εk) +
M(εk)

τ ′k
,

∆k = γ(δk)− M(δk)

τk

, E ′′
k = γ−1(ε′k) +

M(ε′k)
τk

.

It follows from (5.62) and the definition of the numbers τ ′k that

∆′
k ≥

1

2
γ(δk).

Since γ(ξ) ≤ γ−1(ξ) when ξ ∈ [0, 1], we obtain also the estimate

E ′
k ≤

3

2
γ−1(εk).

From λ̃i ≥ 1
ãi

and (5.62) it follows that

{i : (λ̃i, ãi) ∈ P̃ ′′
k } ⊂

{
i : (λ̃i, ãi) ∈

(
1

2αΨ(δk)
, E ′′

k

]
×

(
τk

α
, αtk

]}
.

We can always assume that τk ≥ 1
2εk

, k = 1, 2, ..., m. So, taking into account

(5.62), the definition of the numbers εk and the estimate γ(ξ) ≤ γ−1(ξ),

ξ ∈ [0, 1], we obtain that

E ′′
k ≤

3

2
γ−1(ε′k) ≤

3

2
γ−1

(
Ψ−1

( 1

2εk

))
.

Now we choose an increasing function ϕ : [0, 2] → [0, 1], ϕ(2) = 1, ϕ(0) = 0,

so that

ϕ(ξ) ≤ min

{
1

2
γ(ξ), γ

(2

3
ξ
)
,

1

2αΨ(ξ)
,

1

2Ψ(γ(2
3
ξ))

}
, ξ ∈ [0, 1].

Then the estimate (5.9) holds for each m ∈ N and any collection of param-

eters (5.7) satisfying condition: among the numbers δ1, δ2, ..., δm, there are

more than n different. This completes the proof.
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(in Russian), Aktualnye voprosy matem. analiza, 46, Rostov-on-Don,

62-71 (1978).

[33] Zahariuta, V.P.: Synthetic diameters and linear topological invariants,

(in Russian), School on the theory of operators in function spaces (ab-

stracts of reports), Minsk, 51-52 (1978).

[34] Zahariuta, V.P.: Linear topological invariants and their application to

generalized power spaces, (in Russian), Rostov State University (1979).

[35] Zahariuta, V.P.: Isomorphsim of Spaces of Analytic Functions, Soviet

Math. Dokl., 22, 631-634 (1980).

[36] Zahariuta, V.P.: Linear topologic invariants and their applications to

isomorphic classification of generalized power spaces, Turkish J. Math.,

20, 237-289 (1996).

75



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: KARAPINAR, Erdal

Nationality: Turkish (TC)

Date and Place of Birth: 21 February 1973, Sivas

Marital Status: Single

Phone: +90 533 358 85 89

email: erdalkarapinar@yahoo.com

EDUCATION

Degree Institution Year of Graduation

MS METU Mathematics 1998

BS METU Mathematics 1995

High School Sivas Atatürk Lisesi 1990

WORK EXPERIENCE

Year Place Enrollment

2003- Present Sabancı University MDBF Professional Assistant, Instructor

1996-2003 METU Mathematics Research Assistant

FOREIGN LANGUAGE

Advanced English

FIELD OF STUDY

Major Field: Functional Analysis

76


