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ABSTRACT 
 
 

BOUNDARY ELEMENT-FINITE ELEMENT 
ACOUSTIC ANALYSIS OF COUPLED DOMAINS 

 
 
 
 

Bülent İrfanoğlu 

Ph.D., Department of Mechanical Engineering 

Supervisor : Prof. Dr. Mehmet Çalışkan 

 
August 2004, 124 pages 

 
 
 

 This thesis studies interactions between coupled acoustic domain(s) and 

enclosing rigid or elastic boundary. Boundary element-finite element (BE-FE) 

sound-structure interaction models are developed by coupling frequency domain 

BE acoustic and FE structural models using linear inviscid acoustic and elasticity 

theories.  

 Flexibility in analyses is provided by discontinuous triangular and quadrilateral 

elements in the BE method (BEM), and a rectangular plate and a triangular shell 

element in the FE method (FEM). 

 An analytical formulation is developed for an extended fundamental sound-

structure interaction problem that involves locally reacting sound absorptive 

treatment on interior elastic boundary. This new formulation is built upon existing 

analytical solutions for a configuration known as the cavity-backed-plate problem. 

Results from developed analytical formulation are compared against those from 

independent BE-FE analyses. 

 Analytical and BE-FE analysis results for a selection of cavity-plate(s) 

interaction cases are given. 
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 Single- and multi-domain BE analyses of cavity-Helmholtz resonator 

interaction are provided as an alternative to modal method of acoustoelasticity. 

 A discrete-form of the existing BE acoustic particle velocity formulation is 

presented and demonstrated on a basic case study. Both the existing and the 

discretized BE acoustic particle velocity formulations could be utilized in acoustic 

studies. 

 A selection of case studies involving fundamental configurations are studied 

both analytically and computationally (by BE or BE-FE methods). These studies 

could provide a basis for benchmark case development in the field of acoustics. 

 

 

 

 

 

Keywords: Boundary Element Method, Finite Element Method, Structural-Acoustic 

Coupling, Fluid-Structure Interaction, Helmholtz Resonator 
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ÖZ 
 
 

BAĞLAŞIKLI ORTAMLARIN SINIR ELEMAN-SONLU ELEMAN 
AKUSTİK ANALİZİ 

 
 
 

Bülent İrfanoğlu 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mehmet Çalışkan 

 
Ağustos 2004, 124 sayfa 

 
 
 

 Bu tez bağlaşıklı ortam(lar) ile çevrelerindeki rijit veya esnek cidarlar arasındaki 

etkileşimi inceler. Sınır eleman-sonlu eleman (BE-FE) ses-yapı etkileşim modelleri 

frekans alanında BE akustik ve FE yapısal eleman modellerinin lineer, viskoz 

olmayan akustik ve elastisite teorileri kullanılarak geliştirilmişlerdir. 

 BE metodunda sürekli olmayan ücgen ve dörtgen elemanlar, FE metodunda da 

dörtgen plaka ve üçgen kabuk elemanların kullanımı yaklaşıma esneklik sağlamayı 

amaçlamaktadır. 

 Yerel tepki gösteren türde ses yutumu uygulanmış elastik cidarları içerecek 

şekilde genişletilmiş temel bir ses-yapı etkileşim problemine analitik bir çözüm 

geliştirilmiştir. Bu yeni çözüm plaka-destekli-oyuk (cavity-backed-plate) olarak 

bilinen problem için mevcut çözümler üzerine inşa edilmiştir. Geliştirilmiş analitik 

çözümün sonuçları bağımsız BE-FE analiz sonuçları ile karşılaştırılmıştır. 

 Seçilmiş oyuk-plaka(lar) etkileşimli durumlar için analitik ve BE-FE analiz 

sonuçları verilmiştir. 

 Oyuk-Helmholtz rezonatör etkileşimi için tek- ve çok-ortamlı BE analizleri, bir 

titreşim biçimi analiz yöntemi olan akustoelastisite yöntemine seçenek olarak 
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sunulmuşlardır. 

 Mevcut BE akustik parçacık hız formülasyonu ayrık formunda verilmiş ve basit 

bir durum çalışması örneğine uygulanmıştır. Mevcut bütünleşik ve ayrık 

formülasyonun akustik çalışmalarda kullanılabileceği gösterilmiştir. 

 Temel konfigürasyonlar içeren seçilmiş vaka çalışmaları analitik ve sayısal (BE 

ve BE-FE yöntemleri) olarak incelenmiştir. Bu vaka çalışmaları ile akustikte esas-

örnek geliştirme çalışmalarına temel oluşturmak amaçlanmıştır. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 
 
 Acoustic field analysis within enclosed spaces in audio frequency range is the 

subject of many engineering applications. Passenger cabins of transportation 

vehicles are typical examples to the type of structures considered in some of the 

acoustic studies. Elimination or at least reduction of any possible physical damage to 

humans and improvement of the quality of our lives might be considered as two 

particular reasons for the need of engineering acoustic studies.  

 The variety in possible shapes of an enclosed space (cavity, enclosure) and 

physical conditions require use of flexible engineering analysis tools. Along with the 

engineering approach, there exist limited closed form analytical solutions to some 

fundamental configurations and experimental studies that provide further insight to 

acoustic research studies.  

 In computational acoustic studies, boundary element (BE) and finite element 

(FE) analyses are now being widely used. The FE method (FEM) is at a more 

developed state compared to the BE method (BEM). However, each method has its 

own distinct advantageous characteristics, which makes them invaluable to 

engineering studies. The boundary element-finite element (BE-FE) method utilizes 

respective merits of the BEM and the FEM. In the BE-FE method, acoustic medium 

is modeled by the BEM and solid medium (structure) is modeled by the FEM. The 

BE-FE method is a robust engineering tool to investigate sound-structure interaction 

problems. 

 Acoustic field within the domain of analysis is always in interaction with its 

enclosing rigid or elastic solid boundary. Depending on the treatment of the 

interaction mechanism, coupled dynamic behavior for the two media will be referred 
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to as partially or fully coupled. In the partially coupled situation, dynamic behavior 

of only one of the two media is affected due to interaction. However, in the fully 

coupled case, dynamics of each medium is affected due to behavior of the other 

medium. In some cases, configuration for the domain of analysis explicitly permits 

only partial coupling. In other cases, both partial and full coupling treatment may be 

utilized for analysis. In this study, for these latter cases, fully coupled interaction 

analysis is considered without concerning whether it is necessary i.e., weak or strong 

interaction occurs. Full interaction analyses can be carried out by either BE or BE-

FE methods. In this study the BEM is used to model acoustic domain. Hence, if 

elastic boundary is fully coupled to acoustic domain, then BE full coupling analysis 

can be performed if a relation between acoustic field variables and boundary 

displacements are known. However, there may be only a few fundamental 

configurations for which such relations might be known. Considering the diversity 

of engineering applications BE-FE method provides a general treatment to fully 

coupled interaction studies. 

 

1.2 Review of Previous Studies 
 
 In the following, a brief summary of some previous research work relevant to this 

study is given. 

 Books on acoustics and sound-structure interaction edited by Blackstock [1], 

Fahy [2], Junger and Feit [3], Kinsler, et al. [4], Morse and Ingard [5], Morse and 

Feshbach [6], Ohayon and Soize [7], Pierce [8] and Skudrzyk [9] provided 

invaluable information on fluid-structure coupling. Several publications devoted to 

BEM and its various applications are available in literature; those edited by Wrobel 

[10], Aliabadi [11], Brebbia and Dominguez [12], Bonnet [13], Ciskowski and 

Brebbia[14], Gaul, et al. [15]  and lecture notes of Mengi [16] have been utilized 

throughout this study. The books on FEM edited by Bathe [17], Cook, et al. [18], 

Petyt [19], Weaver and Johnston [20], Zienkiewicz [21] are also utilized to conduct 

this research work. 

 In case of steady-state dynamic conditions, acoustic analysis involves solutions of 

Helmholtz equation. Analytical solutions to Helmholtz equation can be obtained by 
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separation of variables technique, which involves series expansions of the solution 

in terms of eigenfunctions of the system. However, solutions are available only for 

special coordinate systems and boundary conditions [4]. 

 Different dynamical responses in sound-structure problems lead to three 

frequency ranges of analysis: Low-, medium- and high-frequency ranges. These 

ranges are defined as: low-frequency range is the modal domain for which the 

associated system has a low modal density; medium-frequency range is the 

intermediate frequency band for which modal density exhibits large variations over 

the band; and high-frequency range is the frequency band for which there exists a 

uniform high modal density. From acoustical analysis point of view, method used to 

determine acoustic characteristics of a cavity depends upon the size of the cavity in 

relation to the wavelength of sound. If the wavelength is considerably less than 

cavity dimensions, then a statistical approach is used since there are many acoustic 

resonances. When the wavelength of sound is greater than about one third of the 

shortest dimension of the cavity the basic assumptions of the statistical approach are 

no longer valid, hence other non-statistical methods need to be employed in this case 

[7, 14]. 

 Dowell, et al. [22] introduced a modal method based on the general theory of 

acoustoelasticity. Their study provided a comprehensive theoretical model to the 

interaction between internal acoustic pressure field and elastic wall of an enclosure. 

In this modal method, acoustic pressure or velocity potential is expanded in terms of 

normal modes of the rigid wall cavity, and elastic wall motion is expressed in terms 

of uncoupled (in vacuo) structural normal modes, and full coupling between acoustic 

domain and elastic boundary is considered. Furthermore, based on the general 

theory, an approach to analyze multiply connected cavities is presented. 

Comparisons of their theory with some experiments were also provided, and the 

main remaining uncertainty was stated to be the structural and/or cavity damping 

mechanisms. In most coupled sound-structure problems that involve interaction of 

interior acoustic field to its flexible boundary, the governing equations of motion are 

coupled through velocity terms, which result in skew-symmetric coupling matrices 

[22, 23]. Extraction of coupled system modes requires complex eigenvalue 
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extraction routines. Bokil and Shirahatti [23] introduced a formulation to obtain 

coupled system modes using real eigenvalue extraction routines. They presented 

their study by using Dowell’s modal method with some comparisons to 

experimental data available in literature. They stated that structural damping and/or 

acoustic wall absorption were the limitations of their study. Jayachandran, et al. [24] 

pointed that modal expansion approaches for sound-structure interaction analysis, in 

which rigid wall acoustic modes are used in the formulations, yield accurate solution 

for the interior pressure but not for the velocity field. The inaccuracy in the velocity 

field was stated to be considerable in the vicinity of vibrating elastic boundaries. 

They presented quantitative studies illustrating this inaccuracy. 

 Development of energy formulations by Gladwell and Zimmermann [25], and 

Gladwell [26] were followed by finite element applications to sound-structure 

interaction problems. Some FE studies until early 1980’s are the works of Craggs 

[27], Shuku and Ishihara [28], Petyt, et al. [29], Craggs and Stead [30], Petyt and 

Lim [31], Richards and Jha [32], and Nefske, et al. [33] which provided various 

aspects of FE acoustic analysis. Until late 1970’s FEM was the dominant 

engineering tool in acoustic studies compared to BE or BE-FE methods. However, 

progress in BE and BE-FE methods changed this trend in computational acoustics. 

This observation is in agreement to a study published by Mackerle [34]. On the 

other hand, FE is still used widely and a recent review paper by Everstine [35] 

summarizes several FE formulations of structural acoustic problems. 

 Sound-structure interaction analysis is an active research area involving 

numerous engineering applications with multidisciplinary work. Mackerle [36] 

presented a comprehensive bibliography of recent studies on fluid-structure 

interaction problems that were investigated by FEM and BEM. His study included a 

list of references for general solution techniques and problem-specific applications. 

Ciskowski and Brebbia [14] presented various formulations of BE integral equation 

and BE methods together with applications to some acoustic problems. They also 

provided a comprehensive review of research studies in acoustics. 
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 An integral solution approach to predict the acoustics of arbitrarily shaped bodies 

was presented by Bell, et al. [37]. Their study is viewed as one of the earliest 

publications on which current BE acoustic analysis are based on. In their study, they 

provided formulation for acoustic analysis of only two-dimensional problems. 

Bernhard, et al. [38] presented two distinct BEM’s, namely, direct and indirect 

BEM’s. The formulations were based on the Helmholtz integral equation for direct 

BEM and Huygen’s principle for indirect BEM. They described the primary 

variables for the two formulations as acoustic pressure and particle velocity for 

direct method, and a fictitious distribution of acoustic sources at the boundary for 

indirect method. They provided interior acoustic field analysis of enclosures with 

spherical geometries, and described details related to computational analysis, which 

included polar coordinate transformation for the treatment of singular integrals, 

boundary discretization using compatible and incompatible elements, wall 

treatments and compact (point) acoustic source modeling. 

 Sestieri, et al. [39] investigated sound-structure interaction in complex shaped 

cavities. They stated that interior acoustic studies were proven not to possess any 

trouble or uniqueness problem. They illustrated case studies which were analyzed by 

BE and modal methods, along with some experimental results. Their study did not 

involve full coupling of the acoustic medium and vibrating elastic surfaces. Mariem 

and Hamdi [40] introduced a boundary FEM to study fluid-structure interaction 

problems. They used a mixed formulation which coupled the classical functional of 

the structure with a variational formulation by integral equations for the fluid. Their 

formulation avoided the discretization of the fluid domain, hence was advantegous 

compared to FEM. They illustrated some case studies involving interaction of 

structures to both limited and unlimited acoustic domains. Ciskowski and Royster 

[14, 41] presented BE formulation to analyze fluid-solid interaction problems. In 

their study acoustic field in the fluid medium was described by the scalar wave 

equation and displacement field of elastic structure was described by Navier’s vector 

wave equation. Laplace transformed BE equations were coupled to develop a model 

that could be used for both steady-state and transient response. They illustrated their 

method in a biomedical application, human ear canal with and without a protective-
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ear-plug. Tanaka and Masuda [42] presented BE and boundary-domain element 

analysis of some sound-structure interaction problems. In their study, interior 

acoustic field of enclosures were modeled by BEM and elastic enclosure surfaces 

were modeled by boundary-domain element method. They stated that boundary-

domain element method was similar to FEM, and did not present details of this 

method. Suzuki, et al. [43] dealt with the application of BEM to noise problems 

inside complex-shaped cavities having complicated boundary conditions. They 

considered formulations due to prescribed boundary conditions, fully interacting 

boundaries and apertures where sound leakage was allowed. They presented BE 

formulation to model sound-absorptive linings, a particular treatment of singular 

integrals, a brief description of BE-FE analysis using direct, modal and mobility 

methods, and some case studies by comparing to analytic and/or experimental data. 

Mathews [44] presented BE-FE analysis of vibrating elastic, arbitrary-shaped, three-

dimensional structures in an infinite media. He utilized isoparametric interpolation 

functions to model both boundary surface and acoustic variables. Coupled system 

equations were solved using fluid-variable and structural-variable approaches, while 

the former approach was found to be computationally more efficient and accurate. 

Non-unique solution of exterior acoustic field at internal cavity modes was assessed, 

and a method to handle this problem was presented. In his study, only a 

configuration with spherical geometry was investigated. Jeans and Mathews [45] 

developed BE-FE formulation to model elasto-acoustic interaction problems 

applicable to submerged, open, curved, elastic, thin shells. A variational BE 

formulation of acoustic medium was coupled to a FE formulation of elastic 

structure. Coupled system equations were solved using fluid-variable-approach, in 

which elimination of structural displacements yielded reduced matrix sizes. They 

listed the advantages of variational formulation as reduction of high singularity to 

weak singularity in integral formulation, which allowed accurate numerical 

approximation, applicability to non-closed thin shells, and resulting symmetrical 

fluid matrix. They presented two applications of their study, a cantilever plate 

problem and a fluid filled thin spherical shell problem. Rajakumar, et al. [46] 

formulated an acoustic 2-D interface element to couple the BE and FE 
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discretizations for fluid-structure interaction problems. They illustrated the 

applications of the interface element with some fundamental 2-D problems. 

Everstine and Henderson [47] described a computational capability for calculating 

sound-pressure field radiated or scattered by a harmonically excited, submerged, 

arbitrary, three-dimensional elastic structure. Their approach coupled FE models of 

structures with BE models of surrounding fluid. They stated that their study allowed 

analysis of large-scale interaction problems using available commercial FE software, 

hence existing FE structural models could be adapted for acoustic analysis with 

ease. Kopuz and Lalor [48] presented interior acoustic field analysis of a rectangular 

closed cavity and a modified configuration due to addition of a smaller coupled 

cavity. Their study revealed that collocation or variational BEM analysis, and the 

direct and modal superposition FEM analyses yielded almost identical results. Their 

study illustrated that modification of the initial configuration and the influence of 

interface properties between coupled cavities yielded considerable changes to 

interior acoustic field. Kopuz, et al. [49] presented an integrated FEM/BEM 

approach to predict interior acoustic radiation of open-ended box structures. 

Dynamic response of the structure due to excitation by a point force was obtained 

using FEM, then BE acoustic analysis was carried out using surface displacements 

that were obtained from FE analysis. Numerical analysis results were compared to 

experimental results, which revealed quite good agreement of theory and real data. 

Seybert, et al. [50] presented a coupled FEM/BEM for fluid-structure interaction 

using Ritz vectors and eigenvectors. They considered exterior radiation and 

scattering problems, for which they stated that for these problems Sommerfeld 

radiation condition was automatically incorporated in the boundary integral 

equation. Also, they briefly mentioned the nonuniqueness difficulty at critical 

frequencies which was an inherent characteristic of BE analysis for exterior acoustic 

problems. They treated this problem by a formulation that was called CHIEF. 

Structural displacements were approximated by a linear combination of either Ritz 

vectors or eigenvectors, which yielded a reduced size for the coupled system of 

equations. Their study revealed that Ritz vector synthesis was much more efficient 

than eigenvector synthesis. Cheng, et al. [51] presented a multi-domain boundary 
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element analysis technique and illustrated its application to muffler problems. In 

their formulation, acoustic domain was first considered to be composed of separate 

domains, then, BE formulation of each subdomain was obtained, later, using 

continuity of pressure and velocity interface conditions separate BE formulations of 

subdomains were coupled to each other. They briefly stated that multi-domain BE 

formulation has advantages in modeling acoustic domains involving thin obstacles 

or involving slender ducts (pipes), and in solution due to resulting banded BE 

system matrices. They illustrated transmission loss curves for different muffler 

configurations obtained by multi-domain BE analysis. Their comparisons with FE 

analysis indicated good agreement. Wu and Dandapani [52] presented a multi-

domain BE-FE method to model sound transmission through thin structures. Their 

formulation differed from conventional multi-domain BE formulation in the way 

that they used pressure jump across thin structure, which was the interface between 

two separate acoustic domains. Bai and Wu [53] investigated free vibration of thin 

spherical shells filled with compressible fluid using BE-FE method. Three 

approaches to model coupled system behavior, namely, mixed-variable, fluid-

variable and structural variable approaches were mentioned briefly. They illustrated 

their study using structural-variable approach. They calculated natural frequencies 

and mode shapes of coupled systems using singular value decomposition technique 

and pointed out that this method was computationally expensive. Lee, et al. [54] 

presented a direct coupling procedure of the FE and BE methods for structure-

acoustic cavity problems. The Laplace transformed matrix equations for acoustic 

medium and structure were coupled using interface conditions. They illustrated 

some case studies involving a box-type cavity and an earmuff-earcanal system, for 

which both steady-state and transient-state acoustic responses were given. Pates, et 

al. [55] presented BE-FE interior acoustic field analysis of some sound-structure 

interaction problems, which involved a cavity backed by a composite or isotropic 

thin elastic panel. They pointed out the acoustic research needs of automotive and 

aerospace industries. Their results revealed that the transmission loss values for 

composite panels were very sensitive to the lamination angle of fibers in different 

layers of composite panels. Niyogi, et al. [56] presented BE-FE acoustic field 
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analysis within a partly flexible laminated composite enclosure. Flexible wall was 

modeled as a folded composite plate with fixed boundary along its peripheral to 

enclosure. Several case studies involving different fold angles, thicknesses, fiber 

stacking angles and sequences and modal damping ratios for the laminated 

composite panels were considered. Enclosure dimensions were selected to enable a 

1-D acoustic analysis, and interior acoustic field was excited with a rigid piston 

representing one of the walls of the enclosure. They concluded that stacking 

sequence and thickness had the most significant effect on interior acoustic field, 

while fiber orientation and damping could also be utilized to attenuate interior sound 

pressure levels further. Gaul and Wenzel [57] presented a coupled symmetric BE-FE 

method to analyze acoustic fluid-structure interaction both in time and frequency 

domains. In their study, acoustic domain was modeled using a hybrid BE 

formulation, which was only outlined in their study, while transformation of domain 

integrals into boundary integrals were emphasized. Both hybrid BEM and FEM 

were derived from variational principles. One disadvantage in hybrid BE 

formulation was stated as the need in treatment of hypersingular integrals. They 

presented an application of their method by a fluid-structure interaction problem 

involving wave propagation in a fluid filled pipe. 

 Singular integrals and their treatments are currently one of the major concerns of 

BE related research studies. Huang and Cruise [58] reviewed several numerical 

techniques used to calculate singular and near-singular integrals in BE analysis, 

proposed another solution and provided some convergence studies. Guiggiani and 

Gigante [59] presented a general method for the direct evaluation of Cauchy 

principal value integrals in several dimensions. Later, Guiggiani, et al. [60] 

formulated a general technique for the numerical solution of hypersingular boundary 

integral equations. Telles [61] formulated a self-adaptive coordinate transformation 

technique for efficient numerical evaluation of general BE integrals. Later, this 

technique was implemented by Silva, et al. [62] for acoustic analysis involving 

continuous or discontinuous three dimensional boundary elements. 

 Interest in dynamic behavior of plates in relation to their aeroelastic stability and 

excitation by noise in aerospace applications led to studies involving model response 
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of the cavity-backed-plate problem. The first study on the subject is by Dowell and 

Voss [63], followed by the work of Lyon [64]. Research studies on the subject by 

Pretlove [65, 66], Ketter [67], Kihlman [68], Bhattacharya and Crocker [69], Guy 

and Bhattacharya [70], Guy [71-73] improved the theoretical and physical 

understanding of the structural-acoustical interaction problem. These researchers are 

the pioneers whose works provided significant contributions to the structural-

acoustic studies. Work conducted in their studies involved: steady state and transient 

closed form solutions to cavity-plate interaction problems involving enclosures 

backed by a single or two plates; effects of plate properties (i.e., geometric and 

material properties) and boundary conditions (i.e., simply-supported or clamped) on 

coupled system response; weak and strong coupling configurations (i.e., shallow or 

deep cavity effects); low-, medium- or high frequency considerations; normal, 

grazing or different angle of incidence conditions for external excitations; and, some 

experimental data and verifications. Theoretical and experimental studies by Pan 

and Bies [74-76], Pan [77-78], Ih and Lee [79],  Scarpa and Curti [80] are some 

recent studies on the coupled system available in literature. 

 Interaction of acoustic field within enclosures and Helmholtz resonators has some 

similarities to the coupled system behavior of mechanical structures involving 

vibration absorbers. However, in the former case, interaction mechanism is more 

complicated. The work of Fahy and Schofield [81] investigated this enclosure-

resonator interaction problem. Their work involved the analysis of a single resonator 

coupled to an enclosure and tuned to a natural frequency of one of its low order 

acoustic modes. They provided both free and forced vibration analysis of the 

coupled system. In their single-mode interaction formulation, a Helmholtz resonator 

was considered as a point source and coupled to the modal model of the rigid wall 

enclosure. They presented a design chart illustrating the acoustic response of the 

coupled system behavior and provided experimental verification of their 

formulations. Cummings [82] improved the work of Fahy and Schofield by 

formulating a multi-mode analysis to the interaction problem. Later, Gonenc-Sorguc 

[83] investigated the enclosure-resonator interaction problem using a multi-mode 

modal approach based on the theory of acoustoelasticity. 
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1.3 Scope, Objectives and Achievements 
 
 This thesis investigates sound-structure interaction within small enclosures in low 

audio frequency range. Study aims: to implement general means of analysis tools for 

practical acoustic applications; to present some case studies involving fundamental 

configurations, however with general complexity to some extent which may be 

found in many engineering applications; to provide comparative analyses for some 

interaction studies by means of analytical, numerical techniques developed and 

implemented in this study, and by means of some experimental and computational 

data available in literature. 

 In this study, BE and BE-FE techniques are the two computational tools, which 

are used in acoustic analyses. Scientific and technical material used in the 

formulations of BE and BE-FE approaches are either available in literature or can be 

obtained with minor modifications to the existing material. However, presented 

material is the product of research conducted throughout the thesis study and is a 

composition of various related research studies. Most of the acoustic studies to be 

presented in here are performed by computer implementation of BE, BE-FE 

approaches and a new analytical solution developed for a particular sound-structure 

interaction problem. 

 Contributions of this thesis study to engineering acoustic studies can be collected 

under two main headings. This grouping is based on analytical and numerical points 

of view of the work conducted and as given below. 

 Based on existing analytic solutions to a sound-structure interaction study known 

as cavity-backed-plate problem, sound absorptive treatment on the fully coupled 

interaction boundary is taken into consideration, which yielded an extended 

formulation to the cavity-backed-plate problem. This analytic solution is verified by 

comparing analysis results to published data in literature for acoustically perfect 

reflective wall conditions. Analytical results for the cases of sound absorptive 

treatment and structural damping are also presented. 

 Some details of acoustic analysis using BEM are provided. An application is used 

to illustrate the applicability of BE acoustic particle velocity computations within 

analysis domain, which might be utilized in sound intensity related studies. 
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 BE-FE method is utilized to investigate the cavity-backed-plate study with and 

without sound absorbing treatment on the interaction surface. Its agreement to the 

developed analytic solution is illustrated. Hence, BE-FE analysis of the cavity-

backed-plate study involving sound absorptive treatment on interior plate surface is 

provided as an alternative numerical solution to the developed analytical solution. 

This sound-structure interaction study is a new and unique study for which both 

analytical and numerical solutions are given in this study.  

 BE-FE sound-structure interaction analyses of two studies involving additional 

full interaction surfaces are given. One of these studies is a modified configuration 

of the cavity-backed-plate study and involved addition of another full interaction 

boundary. This sound-structure interaction study can be described briefly as a cavity 

backed by two plates study and analytical solutions are available in literature. BE-FE 

analysis results of the cavity backed by two plates study are in good agreement to 

the analytical solutions. Hence, an alternative solution to this interaction problem by 

by BE-FE method is provided. The other sound-structure interaction study involved 

a more general structural behavior. This study involves a fundamental cavity 

configuration, for which most of its boundary is rigid except an elastic region 

formed by a L-shaped folded plate. This configuration provides to some extent the 

complexity of a thin-walled shell-like structure behavior, both in-plane and out-of-

plane displacements, coupled to enclosed acoustic field. This study may provide a 

basis to research studies involving the above stated general structural behavior 

coupled to acoustic field. 

 Interaction between an enclosed acoustic field and a modally tuned Helmholtz 

resonator configuration is analyzed by BEM. Comparative results by the BEM and a 

modal method based on the theory of acoustoelasticity are presented. An application 

of multi-domain BE analysis to cavity-resonator interaction and a study involving 

positioning effects of resonators is presented. In this way, an alternative analysis 

approach to existing modal based analysis approaches is provided.  
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1.4 Outline of the Thesis 
 
 Contents of this study are presented in seven chapters. Chapter 2 introduces BEM 

to be used for steady-state dynamic acoustic analysis in three-dimensional finite 

closed domains. Both BE integral equations and their discrete forms are presented. 

Multi-domain BE formulation, two families of discontinuous BE patches and 

numerical treatment of regular and singular BE integrals are provided. Chapter 3 

introduces FEM to model thin plate or shell-like structure dynamics. Formulations 

for a rectangular plate element and a triangular shell element are given. In Chapter 4, 

BEM and FEM are combined to form BE-FE method to analyze sound-structure 

interaction problems. Three approaches to BE-FE coupling, namely mixed-, 

structural- and fluid-variable approaches are provided. An enhanced analytical 

solution to a fundamental sound-structure interaction problem is developed. Chapter 

5 assesses the developed analytical solution and presents sound-structure 

applications involving sound absorptive treatments and structural damping.  Chapter 

6 presents computational case studies analyzed by BE and BE-FE methods. Case 

studies cover a wide spectrum of sound-structure interaction configurations. 

Discussion and conclusions of the thesis and possible future research based on the 

current study are given in Chapter 7. 
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CHAPTER 2 

BOUNDARY ELEMENT ACOUSTIC ANALYSIS 

 This chapter introduces the BE method to be used for computational acoustic 

analysis in three-dimensional finite closed domains. BEM presented in this chapter 

is known as direct BEM. Content of this chapter is presented into two main sections. 

 First section of the chapter presents: assumptions for acoustic medium and 

behavior of state variables; governing equations for linear acoustic analysis which 

are state equation, conservation of mass equation, and Euler’s equation of motion; 

wave equation and its form reduced to Helmholtz equation due to harmonically 

varying dynamic state conditions in time; boundary conditions. 

 The second section of the chapter presents, in order: notation and fundamental 

solutions to be used in BE formulation; BE integral equations; discrete form of the 

BE integral equations and their matrix form representation; implementation of 

boundary conditions into the BE equations with emphasis on admittance and 

impedance type conditions; formulation of multi-domain BE analysis; two families 

of boundary elements, namely, discontinuous triangular and quadrilateral surface 

patch elements. The chapter concludes with a treatment of regular and singular 

integrations in the BE formulations and presentation for numerical evaluation of 

these integrals. 

 This chapter can be considered as the backbone for acoustic analysis by BEM. 

Illustrated BE formulations will be integrated later with FE formulations, given in 

Chapter 3, to form BE-FE method, presented in Chapter 4. In Chapter 6, BE 

computational acoustic analysis will be illustrated with some case studies.  

 



 

15 

 

2.1 Governing Equations of Acoustic Domain 
 
 Acoustic medium is assumed to have homogenous, inviscid, compressible and 

thermally non-conducting fluid characteristics, in which body forces are not 

significant. Deviations of fluid pressure, density and particle velocity from their 

respective initial values are assumed to be small. Acoustic state variables can be 

expressed as 

vvv
ρρρ
ppp

of

of

of

+=
+=
+=

              

where pf, ρf, vf are instantaneous values of acoustic pressure, fluid density and 

particle velocity, respectively, po, ρo, vo represent initial values and p, ρ, v represent 

small amplitude fluctuations of the variables. Instantaneous value and fluctuation of 

acoustic variables are functions of both position and time. 

 Propagation of sound waves with no mean flow condition (vo=0) is governed by 

the following set of linear acoustic equations [1-6, 8, 9]. 

 State equation: 

ρcp 2
o=             (2.1) 

 Conservation of mass: 

t
mvρ

t
ρ

o ∂
∂=•∇+

∂
∂           (2.2) 

 Euler’s equation of motion: 

0p
t
vρo =∇+
∂
∂           (2.3) 

where co is the speed of sound in the medium, m is the distributed mass source per 

unit volume, ∇ is the gradient operator, t is time and ∇•v represents the divergence 

of particle velocity. 

 Above governing equations can be reduced to a single differential equation in 

terms of acoustic pressure as follows: first, rewrite equation 2.2 by expressing 

density fluctuation in terms of pressure fluctuation using equation 2.1; then, take 

time derivative of the resulting expression and utilize equation 2.3. These 

mathematical manipulations yield the wave equation: 
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∂
∂−=

∂
∂−∇          (2.4) 

where ∇2 is the Laplacian operator. 

 Rate of acoustic mass source per unit volume can be expressed as 

Qρ
t
m

o=
∂
∂             (2.5) 

where Q represents volume velocity source strength per unit volume and called 

source strength density [1, 8, 9]. 

 If the dynamic state of acoustic medium varies harmonically in time, by 

separating the time and position dependencies, acoustic fluctuations can be 

considered to have the forms 

ti

ti

ti

e)x(ρ̂)t,x(ρρ
e)x(v̂)t,x(vv
e)x(p̂)t,x(pp

ω

ω

ω

=≡

=≡

=≡

          (2.6) 

where i is the imaginary constant and ω is angular frequency. 

 Therefore, for harmonic excitation and response conditions, wave equation 2.4 in 

view of expressions in equation 2.6 reduces to the Helmholtz equation: 

f̂p̂kp̂ 22 −=+∇            (2.7) 

where in view of the relation in equation 2.5, acoustic excitation is expressed as 

)x(Q̂ωρi)x(m̂ω)x(f̂f̂ o
2 =−=≡         (2.8) 

with k = ω/co being the wave number. 

 In this study, acoustic domain in consideration occupies a finite closed three-

dimensional region. Analyses will be carried out in frequency domain by assuming 

harmonic steady-state vibration conditions. 

 In order to have a well-posed problem, boundary conditions have to be specified. 

At a point on the boundary one can prescribe either acoustic pressure or normal 

component of acoustic particle velocity, or combination of these two acoustic field 

variables. It may be noted that at a boundary point, one can write 

non v̂ρi
n
p̂q̂ ω−=
∂
∂=           (2.9) 
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where n is normal axis at boundary point and nv̂  represents normal velocity 

component. This equation shows that as boundary condition one can also specify 

normal component of pressure gradient (
n
p̂q̂ n ∂
∂= ) instead of normal velocity ( nv̂ ). 

 

2.2 Boundary Element Formulation 
 
2.2.1 Boundary Integral Equations 
 
 An arbitrary three-dimensional acoustic domain with the interior region V and 

boundary S is illustrated in Figure 2.1. The domain is referred to an (x1, x2, x3) 

cartesian coordinate system. In BE formulation, there are two types of points, 

namely, field (observation) and source points, which are denoted respectively by x 

and xo in the figure. Let r be the distance between xo and x; r, unit vector directed 

from xo to x and n, outer unit normal at field point x when it is on S. 

 In BE formulation, a set of special functions called fundamental solutions (FS) is 

used. For acoustic problems in frequency domain, the first fundamental solution, 

also known as free-space Green’s function, is the solution of Helmholtz equation in 

unbounded domain when there is a concentrated unit excitation at source point, that 

is, the first FS p~  satisfies 

)x,x()x,x(p~k)x,x(p~ oo
2

o
2 ∆−=+∇          

where ∆(xo, x) is three-dimensional Dirac-delta function. On the other hand, the 

second FS nq~  is, associated with p~ , the normal pressure gradient at a field point on 

S, that is 

n
)x,x(p~)x,x(q~ o

on ∂
∂=             

These FS’s are already derived in literature [10,14-16]. They are 

rπ4
e)x,x(p~

ikr

o

−

=            (2.10) 

and 

n
r)1ikr(

rπ4
e)x,x(q~ 2

ikr

on ∂
∂+−=

−

        (2.11) 
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with r = | x - xo |.              

 Fundamental solutions are non-local functions due to their dependence on both 

source and observation point coordinates. They become singular as the distance 

between source and observation points diminishes. 
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Figure 2.1 Illustration of enclosed three-dimensional acoustic domain 

 BE integral equations for acoustic analyses are available in literature [14, 16]. It 

is  

∫∫∫ +=+
V

on
S

o
S

onoo d)x,x(p~)x(f̂d)x(q̂)x,x(p~d)x(p̂)x,x(q~)x(p̂)x(b vaa    (2.12) 

with coefficient b(xo) defined as 














=

V of outside is x if0
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           Son    is x if
π4
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   )x(b

o

o

o

o          

where θ is referred as the solid angle subtended by the acoustic fluid at the source 

point. For a smooth surface point, that is where a unique tangent plane can be 

defined, θ = 2π; hence, b(xo) = ½ [14-16]. Explicit expression for θ is available in 

literature [14, 50, 52]. 

 Acoustic particle velocity components at an interior point xo in V can be obtained 

by evaluating gradient of acoustic pressure at that point using equation 2.12, which 

yields [16] 
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where the two new kernels dj and tj are given by 
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with rj and nj representing components of unit vector r and outer unit normal vector 

n, respectively. It should be noted that gradient of pressure with respective to varied 

source point is negative of that with respect to varied field point. 

 BE integral equation 2.12 has a volume integral, whose integrand involves the 

distributed acoustic excitation and the first fundamental solution. Hence, it does not 

contain any unknown. It may be noted that there are methods, such as, particular 

integral method, by which the volume integral can be carried to the boundary, thus, 

the boundary-only nature of BEM can be preserved [10, 12, 15, 16]. 

 

2.2.2 Discrete Form of Boundary Integral Equations 
 
 BEM can be interpreted as a method for obtaining numerical solution of the BE 

integral equation, which requires writing this integral equation in discrete form. 

 In this study, it will be assumed that acoustic excitation is due to compact 

sources. This implies that for the source distribution one can write, in view of 

equation 2.8,  

lol
2

l

L

1l
ll Q̂ωρim̂ωf̂          ,)x,x(f̂)x(f̂ =−=∆= ∑

=

     (2.14) 

where L is the number of compact sources and lf̂ is the strength of compact source 
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located at xl. 

 In BEM, boundary surface is represented by sum of finite number of surface 

patches which are referred as boundary elements. If boundary surface is discretized 

into M boundary elements, integral equation 2.12 can be expressed as, in view of 

equation 2.14, 

∑∑ ∫∑ ∫
===

+=+
L

1l
lol
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1m
n

S
o

M

1m S
onoo )x,x(p~f̂d)x(q̂)x,x(p~d)x(p̂)x,x(q~)x(p)x(b

mm

aa  (2.15) 

where Sm represents the boundary associated with mth element. 

 Over each element, geometry and acoustic variables are described by 

interpolation functions and nodal values of related variables, which are of the form: 

31i     ,      x)ξ,(ξNx
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i21ki −== ∑
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∑
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n21kn v̂ )ξ,(ξM)x(v̂           (2.19) 

where K is the number of geometric or nodal points used for each BE, xi are global 

coordinates, ξ1 and ξ2 are local coordinates, k
ix are coordinates of geometric points, 

and kp̂ , k
nq̂ and k

nv̂  are nodal point values of field variables. 

 Substitution of the expressions in equations 2.16, 2.17 and 2.18 into equation 

2.15 yields 
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where the superscripts m and k denote respectively the element and nodal point, and 

∫=
'
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21oko
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'
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with ξ  ≡ ( ξ1 , ξ2). 
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 In equations 2.21 and 2.22, prime on Sm is used to indicate domain of integration 

on mth element expressed in terms of local coordinates, J represents the Jacobian of 

the global to local coordinate transformation. Hence, the differential area da in 

global coordinates can be expressed in local coordinate system as 

21dJdd ξξ=a                

where the Jacobian and its components are defined as [12] 

2

1

1

2

2

2

1

1
3

2

3

1

1

2

1

1

3
2

1

3

2

2

2

3

1

2
1

2
3

2
2

2
1

xxxx
J

xxxx
J

xxxx
J

JJJJ

ξ∂
∂

ξ∂
∂−

ξ∂
∂

ξ∂
∂=

ξ∂
∂

ξ∂
∂

−
ξ∂
∂

ξ∂
∂

=

ξ∂
∂

ξ∂
∂

−
ξ∂
∂

ξ∂
∂

=

++=

          (2.23) 

 Discrete BE integral equations obtained for each surface source point using 

equation 2.20 yield a system of equations which may be written in matrix form as 

fqGHp += '            (2.24) 

or using the relationship between normal components of  particle velocity and 

gradient of pressure given in equation 2.9, 

fGvHp +=            (2.25) 

where G and G’ are related by 

'ωρi oGG −=               

 In equations 2.24 and 2.25, H, G’ and G are called influence matrices; p, q, v and 

f are vectors of nodal acoustic pressure, normal pressure gradient, normal particle 

velocity and loading due to acoustic compact sources, respectively. It should be 

noted that influence matrices are complex valued, densely populated and non-

symmetric. 

 Substituting boundary conditions, above matrix equations 2.24 or 2.25 can be 

solved for the remaining unknown variables on the boundary surface. Then, acoustic 

pressure at interior points can be evaluated using, in view of equation 2.20, 
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and particle velocity can be evaluated from the discrete form of equation 2.13:  
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 Solution of BE equations 2.24 and 2.25 in the case of prescribed acoustic 

pressure or normal velocity boundary conditions is quite straightforward. 

Comparatively more involved situation exists when combination of acoustic 

pressure and normal velocity is specified as a boundary condition. In acoustic 

studies, this latter type of boundary condition is utilized to model sound absorptive 

treatments. 

 Admittance or impedance boundary conditions are combination type of boundary 

conditions stated above. Considering locally reacting surface conditions, admittance 

and impedance boundary conditions can be expressed in matrix form as [14, 43] 

Ypv =r             (2.26) 
1

r           , −== YZZvp         (2.27)  

where Y and Z  are diagonal admittance and impedance matrices, respectively; vr is 

the normal acoustic particle velocity v relative to prescribed boundary surface 

normal velocity vs:  

sr vvv −=            (2.28) 

 Admittance boundary conditions can be implemented in equation 2.25 as, in view 

of equations 2.26 and 2.28, 

fGvpGYH +=− s)(          (2.29) 

and similarly, when the impedance boundary conditions in equation 2.27 are used, 

the BE equation in equation 2.25 takes the form as 

fZvvGHZ +=− s)(          (2.30) 

 It should be emphasized that boundary conditions considered up to now should 
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be interpreted as partially interacting boundary conditions. In other words, acoustic 

domain dynamics is influenced by the prescribed surface boundary conditions; 

however, acoustic domain does not alter the prescribed behavior of surface 

boundary. Full interaction between acoustic domain and boundary surface will be 

considered in Chapter 4. 

 
2.2.3 Multi-Domain Boundary Element Formulation 
 
 The geometric considerations or changes in acoustic properties may dictate that 

an acoustic domain be subdivided into sub-domains. When this is the case, BE 

analyses can be performed by writing the BE equation for each sub-domain 

separately, then, combining BE equations in view of interface conditions between 

sub-domains [12, 15, 51]. 

 Decomposition of an arbitrary three-dimensional domain into two sub-domains is 

illustrated in Figure 2.2, where the outer unit normal of two sub-domains are 

designated by n1 and n2.  

 In view of equation 2.25, BE equations for the two sub-domains can be written as 
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where subscript i is used to identify the nodes at interface; and pressure, velocity 

vectors, and influence matrices are partitioned accordingly. Interface conditions 

between sub-domains due to force equilibrium and velocity continuity are, 

respectively,  

inti2i1 ppp ==            (2.33) 

and 

inti2i1 vvv =−=            (2.34) 

It may be noted that the velocity interface condition in equation 2.34 can also be 

written in terms of normal pressure gradient as 

inti2i1 qqq =−=            (2.34) 
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Figure 2.2 Illustration of a multi-domain configuration 

 

 Total acoustic behavior of the coupled system can be obtained by combining 

equations 2.31 and 2.32 in view of equations 2.33 and 2.34, which gives 
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  (2.36) 

 Solution of the coupled system in equation 2.36 yields the results for the 

unknowns both on the boundary of the combined system and on the interface. 

 Treating a single-domain problem as a multi-domain one introduces additional 

unknowns at interfaces between sub-domains. However, modeling advantages may 

be gained and computational efficiency may be improved because of the banded 

structure of influence matrices as seen from equation 2.36. These improvements 

may be important for large-scale problems. As mentioned previously, the multi-

domain BEM can also be used, in addition to the above stated purpose, to 

accommodate the heterogeneities that may exist in an acoustic medium [15, 51]. 

 

2.2.4 Discontinuous Boundary Elements 
 
 In numerical solution of BE equation, boundary surface is discretized by a finite 

number of boundary elements. As already mentioned, over each element, geometry 

and the distribution of acoustic variables are approximated in terms of interpolation 
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functions as shown in equations 2.16 through 2.19. 

 Discontinuous BE’s refer to those elements over which the distribution of an 

acoustic variable is described in terms of its values at some nodes, all of which lie 

inside the element; thus, the acoustic variable may suffer jumps across interfaces 

between elements. However, it may be noted that some of the geometric points k
ix  

in equation 2.16 are on the border line of the element and are chosen so that the 

geometric continuity is insured at interfaces between elements. 

 Families of three-dimensional triangular and quadrilateral elements implemented 

in this study are illustrated in Figure 2.3. Each element is abbreviated by a three-

letter code, in the order, indicating shape of the element (T: triangular, Q: 

quadrilateral), element geometry interpolation functions (L: linear, Q: quadratic) and 

acoustic variable interpolation functions (C: constant, L: linear, Q: quadratic). 

 Geometry interpolation functions used in TLC, TLL, TLQ elements are linear 

and in TQQ elements are quadratic. Geometry interpolation functions used in QLC, 

QLL, QLQ elements are bilinear and in QQQ elements are biquadratic. Variable 

interpolation functions can be obtained from related geometry interpolation 

functions by using a scale factor λ, which is a measure for the distance between 

geometric points and collocation nodes. Geometric and variable interpolation 

functions used in triangular and quadrilateral elements are listed in Table 2.1 [10-16, 

62]. 

 Geometric and nodal point information is given in Figure 2.4 for triangular 

elements. Local coordinates of geometric and nodal points for these elements are 

listed in Tables 2.2 and 2.3, respectively. Similar information for quadrilateral 

elements is illustrated in Figure 2.5, and in Tables 2.4 and 2.5. As can be seen in 

Figures 2.4 and 2.5, the scale factor λ used in the description of acoustic variable 

interpolation functions represents displaced location of collocation nodes relative to 

geometric points. The values of the scale factor λ used in this study are 0.25, 0.25 

and 0.15 for TLL, TLQ and TQQ elements, respectively, and 0.15 for QLL, QLQ 

and QQQ elements. These values are chosen in view of published data in literature 

[62]. 
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Figure 2.3 Triangular and quadrilateral boundary elements 
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Figure 2.4 Geometric points and collocation nodes for triangular parent elements 

Table 2.2 Local coordinates of geometric points for triangular elements 
 

 1* 2* 3* 4* 5* 6* 

TLC (0,0) (1,0) (0,1)    

TLL (0,0) (1,0) (0,1)    

TLQ (0,0) (1,0) (0,1)    

TQQ (0,0) (1,0) (0,1) (0.5,0) (0.5,0.5) (0,0.5) 

 

Table 2.3 Local coordinates of collocation nodes for triangular elements 
 

 1 2 3 4 5 6 

TLC ),( 3
1

3
1       

TLL (λ,λ) (1-2λ,λ) (λ,1-2λ)    

TLQ (λ,λ) (1-2λ,λ) (λ,1-2λ) )λ,( 2
λ21−  ),( 2

λ21
2
λ21 −−  ),λ( 2

λ21−  

TQQ (λ,λ) (1-2λ,λ) (λ,1-2λ) )λ,( 2
λ21−  ),( 2

λ21
2
λ21 −−  ),λ( 2

λ21−  
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Figure 2.5 Geometric points and collocation nodes for quadrilateral parent elements 

Table 2.4 Local coordinates of geometric points for quadrilateral elements 
 

 1* 2* 3* 4* 5* 6* 7* 8* 9* 

QLC (-1,-1) (1,-1) (1,1) (-1,1)      

QLL (-1,-1) (1,-1) (1,1) (-1,1)      

QLQ (-1,-1) (1,-1) (1,1) (-1,1)      

QQQ (-1,-1) (1,-1) (1,1) (-1,1) (0,-1) (1,0) (0,1) (-1,0) (0,0) 

 

Table 2.5 Local coordinates of collocation nodes for quadrilateral elements (α=1-λ) 
 

 1 2 3 4 5 6 7 8 9 

QLC (0,0)         

QLL (-α,-α) (α,-α) (α,α) (-α,α)      

QLQ (-α,-α) (α,-α) (α,α) (-α,α) (0,-α) (α,0) (0,α) (-α,0) (0,0) 

QQQ (-α,-α) (α,-α) (α,α) (-α,α) (0,-α) (α,0) (0,α) (-α,0) (0,0) 
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 Use of discontinuous elements provides ease of modeling in BEM. If a node at 

the boundary surface is at an edge or corner there would be no unique outer normal 

at that location, where, therefore, acoustic particle normal velocity or normal 

pressure gradient could not be defined uniquely. These difficulties can be eliminated 

easily by using discontinuous elements. In other words, one can place collocation 

nodes on smooth boundary surface and use the advantage of inter-element 

discontinuity for acoustic variables as a remedy to above described problem. On the 

other hand, the main disadvantage of using discontinuous elements compared to 

continuous elements is the increase in the number of unknowns due to additional 

collocation nodes used within elements. It should be noted that one of the most 

special properties of BEM is that the discontinuities of acoustic variables across 

interfaces between elements do not invalidate the convergence of the technique [14, 

62, 96, 97]. 

 

2.2.5 Numerical Evaluation of Boundary Element Integrals 
 
 From the study of equations 2.10 and 2.11, it is obvious that the fundamental 

solutions become singular as r → 0, that is, as observation (field) point approaches 

source point, which is the case when observation and source points are on the same 

element. 

 If no singularity is involved, that is, when source and observation points are on 

different elements, standard Gaussian quadrature for integrations over triangular or 

quadrilateral elements can be used. For triangular elements, BE integrals reduce to 

2
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which can be numerically evaluated from [16] 
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Here, wi and ξi represent weight and evaluation location, respectively, and N 
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indicates number of integration points. 

 In literature, the multiplicative coefficients used in numerical integrations over 

triangular regions are condensed into a single weighting factor, *
kw  with 

corresponding integration locations k*
iξ  [12, 18, 101], that is 

∑
=

ξξξ≅
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1
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For quadrilateral elements, BE integrals would be of the form 
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and their numerical evaluation is carried out by [18, 102], 
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 As mentioned previously, when source and observation points are both on the 

same element, BE integrals contain singularities. Diagonal elements of the influence 

matrices are obtained by evaluating these singular integrals. 

 In the present study, to evaluate singular integrals, each element is divided into 

triangular sub-regions (see Figure 2.6) and integrands are expressed in terms of polar 

coordinates centered at the singular source point. Then, integrations over each sub-

region are summed up. Boundary element integrals to be evaluated in this way are of 

the form 
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where T = 3 for triangular elements and T = 4 for quadrilateral elements, and θ1 and 

θ2 are integration limits in θ direction for the triangular sub-region under 

consideration. 

 Triangular sub-regions formed in quadrilateral and triangular elements, local 

coordinates (ξi) and polar coordinates (ρ, θ) centered at a typical singular source 
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point are illustrated in Figure 2.6, which is adopted from available literature [13]. It 

should be noted that, the location of singular source point ξoi in the figure represents 

collocation node of the element. 

 From the figure it is clear that transformation from local to polar coordinates is 

given by 

)sin(ρ
)cos(ρ

022

011

θ+ξ=ξ
θ+ξ=ξ

         (2.39) 

and the radial distance in each triangular sub-region has the limits 

)cos(
)(0

m

m

θ−θ
ρ=θρ≤ρ≤           

where ρm is perpendicular distance from singular (source) point to the element 

boundary, and θm represents angular orientation of the perpendicular line as 

illustrated in Figure 2.6 (c). 

 Applying the polar coordinate transformation to singular integrals in equations 

2.37 and 2.38, resulting integrals over each triangular sub-region can be expressed in 

the form 
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which can be evaluated using standard Gaussian quadrature rules, that is, by 
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 A treatment of how singular integrals could be eliminated using polar coordinate 

transformation and Taylor series approximation of the integrand terms in equations 

2.37 and 2.38 is given below [59, 60]. Substituting fundamental solutions in 

equations 2.10 and 2.11 into equations 2.37 and 2.38, explicit form of integrals to be 

evaluated can be obtained as 
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Figure 2.6 Division of parent elements into triangular sub-regions; (a) triangular 
elements, (b) quadrilateral elements, (c) typical triangular sub-region 

  

 Singularities in equations 2.40 and 2.41 are due to fundamental solutions and 

other terms of the integrands are regular. Furthermore, integrand of equation 2.40 

has a higher order of singularity than that of equation 2.41. However, this integrand 

has a multiplicand of normal derivative of the distance between the singular (source) 

and integration points, which has a smoothing effect on the singularity. 

 Taylor series expansion of the parametric equation xi = xi(ξk) of the element about 

the singular point or its image point on parent element yields [59, 60] 
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which leads to, in view of equation 2.39, 

)O(ρθ)(ρAxx 2
ioii +=−               

where O( ) indicates the order of approximation and  
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Hence, for radial distance between source and field points, one has 
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where A(θ) is defined by  
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 For the components of the unit vector r, one obtains  
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where di0 = Ai/A and di1 is a function of θ which may be determined when higher 

order terms are included in equation 2.42 [59, 60]. 

 Components of the outer unit normal vector may be evaluated from 

J
Jn i

i =             (2.46) 

where Jacobian J and its components Ji are as defined previously in equation 2.23. 

Taylor series expansion of Jacobian component Ji yields 
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 Using summation convention, where a repeated index implies summation over its 

range, one obtains, for Jn
r
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However, since di0Ji0 is equal to zero, the above expression simplifies to 
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 Similarly, expansion of the variable interpolation function Mk results in 

)ρ(OMρMM 2
1k0kk ++=         (2.50) 

 When in the BE integral hmk given in equation 2.40, which has a higher order of 

singularity, the expressions in equations 2.42 through 2.50 are used, one obtains 
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which is regular. Similarly, the other BE integral gmk in equation 2.41, and which 

has a lower order of singularity, may be reduced to a regular form. 

 As illustrated above, polar coordinate transformation together with the Taylor 

series approximation of integrands is an adequate means of removing singularities in 

the BE integrals considered. However, if orders of singularities are higher than the 

ones presented in equations 2.40 and 2.41, other techniques should be used for the 

removal of singularities [13, 58-60].  

 In the present study, the singularity problems are treated only when source and 

field points lie on the same element by using the polar coordinate transformation; 

and the near singularity problems arising from the closeness of the nodes in 

neighboring elements are disregarded. 
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CHAPTER 3 

FINITE ELEMENT STRUCTURAL ANALYSIS 

 This chapter introduces the FE formulation for structural vibration analysis. The 

content of the chapter is presented in two main sections. 

 In the first section, governing equations for structural analysis is introduced in 

view of the FE formulations available in literature. Stating assumptions for both 

elastic solid medium and element formulations to be considered, resulting equations 

of the FEM are given. Matrix form of the governing equations of motion is obtained 

by assembling element matrices and vectors. Only, brief information about FEM is 

presented. Both time-domain and frequency-domain governing structural FE 

equations are given. The latter one is due to structural vibration in the case of steady-

state harmonic excitation and response conditions. 

 In the second section of the chapter, first, available FE formulation for a 

rectangular plate element to model out-of-plane (bending) vibration of thin flat 

plates is presented [85, 86]. Then, the FE formulation is given for a flat facet 

triangular shell element to model both in-plane (membrane) and out-of-plane 

(bending) vibration of thin plates or shell-like structures [87-92]. 

 The FE structural equations to be presented in this chapter will be integrated later 

with the BE equations, presented in Chapter 2, to analyze sound-structure interaction 

problem, which will be discussed in Chapter 4. Then, in Chapter 6, coupled BE-FE 

formulation will be used to illustrate some computational acoustic studies. 
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3.1 Finite Element Formulation for Structural Analysis 
 
 FE formulation for structural dynamic analysis is documented in literature [17-

21]. In what follows, the FE formulation is reviewed in general terms with the 

assumptions: homogeneous and isotropic material properties; linear elastic behavior; 

small strain and deformations; negligible body forces and no initial residual strains.

 In FE modeling, the structure is subdivided into a finite number of elements and 

the displacement field within an element is approximated as 
eNuw =       (3.1) 

where w is the displacement vector whose components are the displacements in 

three orthogonal directions, N is the displacement interpolation matrix which is a 

function of spatial coordinates and ue is the nodal displacement vector which is a 

function of time. 

 Displacement field within an element is usually expressed in a local coordinate 

system. However, total structure behavior is expressed in terms of global 

coordinates. For each element, the transformation relation for the displacements 

expressed in local (ue) and global  (uê) coordinates is of the form [18, 21] 
êee uAu =       (3.2) 

where Ae is the orthogonal transformation matrix formed by direction cosines 

relating local to global axes. 

 Stress-strain and strain-displacement relations are  

Dεσ =         

wε ∆=         

where σσσσ and εεεε are the stress and strain tensors, respectively, D is the elasticity matrix 

and ∆∆∆∆ is a spatial differential operator matrix relating displacements to strains. 

 Governing FE equations for the structure may be obtained through the use of 

virtual work principle. They are of the form [17-21] 

sfKuuCuM =++ &&&      (3.3) 

with the dot indicating time derivative. The assembled mass M, damping C, and 

stiffness K matrices, and nodal load fs and displacement vector defined by u are 
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where Me, Ce, Ke and fe
s are the element mass, damping, stiffness matrices and 

element load vector, respectively. Ve is element volume, Se is element surface area, 

ρ is structural mass density, µ is viscous damping coefficient, ττττ is surface traction 

vector. Summation operation over the elements formally implies the FE 

assembling procedure. 

 The linear system of equations of motions in equation 3.3 can be solved in time 

or frequency domain. In the present study, analyses will be carried out in the 

frequency domain by assuming steady-state harmonic excitation and response 

conditions, such as, ti
ss e)x(ˆ)t,x( ω= ff and tie)x(ˆ)t,x( ω= uu  with )x(ˆ

sf and 

)x(û indicating amplitudes of excitation and response at nodal points x , 

respectively, and t denotes time and ω is angular frequency. Then, equation 3.3 

reduces to 

s
2 ˆˆ)ωiω( fuKCM =++−     (3.9) 

 Instead of using viscous dissipation, structural damping can be modeled by using   

KC
ω
η=       (3.10) 

where η is the structural loss factor [19]. Rayleigh (proportional) damping model is 

another possibility, in which damping matrix C has the form [18] 

MKC β+α=      (3.11) 

where α and β are stiffness and mass proportional damping constants, respectively. 

 At a point on the structure, boundary condition can be prescribed in the form of 

displacement or traction, or a combination of them. 

∑
e
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3.2 A Plate and a Shell Finite Element Formulation 
 
3.2.1 A Flat Rectangular Plate Element 
 
 A rectangular element is utilized to model flexural (bending) vibration of thin flat 

plates [85, 86]. Figure 3.1 illustrates the plate element in its local Cartesian 

coordinate system (x1, x2, x3). The element has lateral dimensions of a, b in x1 and 

x2-axis directions, respectively, and uniform thickness h in x3-axis direction. It has 

four corner nodes and nine degrees of freedom (dof) at each node.  

 The plate element is referred to as a conforming element due to its capability to 

satisfy displacement and slope continuity with the adjacent elements. Displacement 

component normal to the element plane (w), describing bending motion of the 

element, is expanded as  

[
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where nodal values are indicated by superscript (ij) index pair (see Figure 3.1). 

Subscripts on w indicate spatial derivatives. Hermite interpolation polynomials are 
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  (3.13) 

and similar expressions for h01(x2), h02(x2), h11(x2), h12(x2), h21(x2) and h22(x2) by 

replacing x1 by x2 and “a” by “b” in equation 3.13. 
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 Nodal displacement vector is of the form  
T
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where each sub-vector uk (k=1-4) at a node indicated by (ij) pair is 
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and the displacement interpolation matrix is, in view of equations 3.12 and 3.14,  

][ 4321 NNNNN =     (3.16) 
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with the notation )x(h)x(hH 2rs1pq
rs
pq = . 
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Figure 3.1 Rectangular plate element 

 

 From the classical thin-plate theory, the spatial differential operator ∆∆∆∆ and 

elasticity D matrices to be used in the element formulation are [19] 
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where E is elasticity modulus and v is Poisson’s ratio. 

 Element mass and stiffness matrices can be obtained by substituting displacement 

interpolation, elasticity and spatial differential operator matrices into element mass 

and stiffness matrix expressions in equations 3.4 and 3.6, which yields 

av dhρdρ T

SV

Te

ee

NNNNM ∫∫ ==     (3.20) 

XNBBDBDBBK === ∫∫ ~          ,d~~
12
hd

ee S

T
3

V

Te av   (3.21) 

 Similarly, FE damping matrix can be obtained using equation 3.5 or 3.10 or 3.11, 

and load vector using equation 3.7.  

 Evaluation of element matrices and vectors can be carried out by analytical or 

numerical (e.g., Gaussian quadrature) integrations. 

 Boundary conditions for the two common plate configurations, namely, simply 

supported and clamped plate configurations are attained by specifying nodal 

displacement dof’s as listed in Table 3.1 and 3.2 [86]. In these tables, restrained and 

free nodal dof are specified by 1 and by 0, respectively. 

 

Table 3.1 Nodal boundary conditions for a simply supported plate 
 

 w  
1xw  

2xw  
21xxw  

11xxw  
22xxw  

211 xxxw  
221 xxxw  

2211 xxxxw  

Corner 1 1 1 0 1 1 0 0 0 

x1-edge 1 0 0 0 0 1 0 0 0 

x2-edge 1 0 0 0 1 0 0 0 0 
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Table 3.2 Nodal boundary conditions for a clamped plate 
 

 w  
1xw  

2xw  
21xxw  

11xxw  
22xxw  

211 xxxw  
221 xxxw  

2211 xxxxw  

Corner 1 1 1 1 1 1 1 1 0 

x1-edge 1 0 1 0 0 0 0 0 0 

x2-edge 1 1 0 0 0 0 0 0 0 

 

 

3.2.2 A Flat Triangular Shell Element 
 
 A flat triangular element known as a facet triangular shell element is utilized to 

model bending and membrane vibrations of thin shells [87-92]. Facet shell element 

has six dof at each element node and the nodes are located at the three vertices of the 

element. This shell element is illustrated in Figure 3.2. In the figure, local Cartesian 

coordinate system (x1, x2, x3) is at the centroid of the element, x1-axis is in 31 

direction and x3-axis is perpendicular to the element surface.  

 The FE bending model is achieved through an implementation of a modified 

potential energy principle [87-92]. The FE formulation prevents the difficulties in 

achieving compatibility of bending rotations between contiguous elements and 

enables displacement interpolation functions to be assumed separately in the element 

interior and on the element boundary.  
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Figure 3.2 Triangular facet shell element 
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 Bending action of the element is modeled by a nine term cubic polynomial to 

approximate the displacement field normal to the element plane, i.e, 

)ξ-(ξξξα)ξ-(ξξξα)ξ-(ξξξα
ξξαξξαξξαξwξwξw)ξ,ξ,ξ(ŵ

311362332512214

133322211332211321

+++
+++++=

 (3.22) 

where w1, w2, w3 are the nodal values of bending displacement, αi (i=1-6) are the 

displacement coefficients that will be determined from known element bending 

dof’s and ξ1, ξ2, ξ3 are the triangular coordinates. These triangular coordinates are 

related to the local Cartesian coordinates by 
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where the element area Se is  
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 On a typical element boundary between nodes i and j, separate fields of 

displacement *ŵ  and normal rotation n/ŵ* ∂∂  are assumed to have respectively 

cubic and linear distributions as 

s
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where lij is the element edge length between nodes i and j and coordinate “s” runs 

from node i to node j, and “n” is the outer normal of the edge (in the plane of the 

element) as illustrated in Figure 3.2, and wk, ∂wk/∂s, ∂wk/∂n (k = i, j) are the nodal 

values of displacement and its partial derivatives. 

 The partial derivatives with respect to coordinates “s” and “n” in equations 3.23 

and 3.24 are related to the partial derivatives with respect to local Cartesian 
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coordinates x1 and x2 by  
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where γij is the angle measured from the x1-axis to the outer normal “n” of the edge 

between nodes i and j. The partial derivatives with respect to local Cartesian 

coordinates are related to those of triangular coordinates by 
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 Implementation of the modified potential energy principle by using displacement 

fields of equations 3.22-3.24 yields [87-92]: the bending strain energy Ub associated 

with the interior displacement field of equation 3.22 is given by 

αHα b
T

b 2
1U =        

The relation between generalized forces and displacement coefficients, and that 

between generalized displacements and nodal bending displacements are  

αBQ T=         

and  

bTuq =         

where αααα is the vector of displacement coefficients αi (i=1-6); Hb is a positive 

definite symmetric matrix; Q and q are generalized force and displacement vectors, 

respectively; B is the matrix that relates the twelve generalized force components to 

six displacement coefficients αi; and T is the matrix that relates the twelve 

generalized displacement components to nine nodal bending displacements (ub). 

 Generalized force vector Q is composed of the values of three concentrated 

forces (R1, R2, R3) at the element nodes, three constant Kirchoff shear forces 

( 31
n

23
n

12
n V,V,V ) along element edges and six components of normal bending 

moments ( 13
n

31
n

32
n

23
n

21
n

12
n M,M,M,M,M,M ) at the element nodes. The elements of the 

matrix B may be determined through relating the generalized forces Q to 
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displacement coefficients αi by using the expressions 
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where γ is the angle of inclination of an edge normal from the x1-axis, v is Poisson’s 

ratio and D is flexural rigidity. 

 The linear variation of normal bending moment and constant Kirchoff shear force 

in terms of the values of generalized forces on a typical side of the element between 

nodes i and j are 

ij
nn
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ji
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ij

ij
nn

VV

sM)s1(MM

=

+−=
ll       

where ji
n

ij
n M,M  are the values of normal bending moment at each end of the edge 

and ij
nV  is the constant value of the Kirchoff shear force along the side. 

 Nodal bending displacements are defined by 
T

3b2b1bb ][ uuuu =      (3.25) 

where ubi (i = 1-3) is 

]θθw[ ixixibi 21
=u      (3.26) 
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with θxi = ∂wi/∂x2, θyi = -∂ wi/∂x1.  

 Through the implementation of the modified potential energy principle, the 

matrix T relating generalized displacements (associated with the generalized forces) 

to the element bending displacements may be obtained as [87-92] 
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with notation cij = cos(γij) and sij = sin(γij). 

 The (9x9) element bending stiffness matrix e
bK is given as [87-92] 

)()( 1
b

Te
b BTHBTK −=      (3.27) 

 The relations between displacement coefficients αi (i=1-6) and element bending 

displacements are, in view of equation 3.22, 
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where Ω12 is the average rotation of the side between nodes 1 and 2 which is  

12
012

12 wwds
s
w1 12

−=
∂
∂=Ω ∫

l

l
     (3.29) 

The other pairs of coefficients (α2, α5) and (α3, α6) are obtained by cyclic 

permutation of the subscripts in equations 3.28 and 3.29. 

 The bending displacement field in equation 3.22 can be written as, in view of 

equation 3.25, 
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bww uN=         

where the bending displacement interpolation matrix Nw is, in view of equations 

3.22 and 3.28, 

αwαww BNNBN +=       (3.30) 

with 
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with the notation j
k

i
k

ij
k xxx −=  (i, j = 1-3; k = 1-2) and i

kx representing the local 

Cartesian coordinates of ith node. 

 The (9x9) element bending mass matrix e
bM  is, in view of equations 3.4 and 

3.30, 
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 Element load vector due to normal loading τn (acting on the element face) is, in 

view of equations 3.7 and 3.30, 
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 The model for the membrane action of the element employs a nine term cubic 

polynomial to approximate each of the two membrane displacement components 

( v̂ ,û ). The membrane displacement field component in x1-direction is  
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 (3.34) 

where u1, u2 and u3 are the nodal values of the membrane displacement component 

û , and the coefficients α1 and α4 are 
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with ix3
θ denoting the so-called drilling dof’s associated with x3-direction, and Ωo 

representing the average rotation of the element in its plane as 

ad)
x
û
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Similarly, other remaining pairs of coefficients (α2, α5) and (α3, α6) are obtained by 

cyclic permutation of the subscripts in equations 3.35 and 3.36. 

 The membrane displacement field component in x2- direction is defined as 
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where v1, v2 and v3 are the nodal values of the membrane displacement component 

v̂ and the coefficients α1 and α4 are 
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and remaining pairs of coefficients can be determined again by cyclic permutation of 

the subscripts of equation 3.38. 

 The nodal displacement vector is 
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T
3m2m1mm ][ uuuu =     (3.39) 

where umi (i = 1-3) is 

]θvu[ ixiimi 3
=u      (3.40) 

 The membrane displacement field components in equations 3.34 and 3.37 can be 

written as, in view of equation 3.39, 
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with the displacement interpolation matrices Nu, Nv defined as  
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where the matrices N, Nα are the same as those in equation 3.31 and the matrices Bu, 

Bv, Bαu and Bαv are, in view of equations 3.34-3.38, 
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with the notation j
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i
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k S4/)xx(X −−=  (i, j = 1-3; k = 1-2) and 

i
kx representing the local Cartesian coordinates of ith node. 

 The (9x9) element membrane stiffness matrix is, in view of equation 3.6,  
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and the spatial differential operator ∆∆∆∆ is 
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 The (9x9) element membrane mass matrix e
mM  is 

vu
e
m MMM +=       (3.43) 

where in view of equations 3.4 and 3.41, 
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 Element load vector due to in-plane loading τm with components τmu, τmv is, in 

view of equations 3.7 and 3.41, 

∫
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  (3.44) 

 Final forms of element mass and stiffness matrices are obtained by combining 

bending and membrane models of the element matrices in accordance with element 

total nodal displacement vector ue arranged as 
Te

3
e
2

e
1

e ][ uuuu =      (3.45) 

where, in view of equations 3.26 and 3.40, 

[ ] 3-1i     ,     θθθwvu ziyixiiii
e
i ==u     

Therefore, element (18x18) mass and stiffness matrices are 

e
m

e
b

e

e
m

e
b

e

KKK
MMM

⊕=

⊕=
        

and element (18x1) load vector is 
em
s

eb
s

e
s fff ⊕=         

where the symbol ⊕ denotes arrangement of element matrices in equations 3.27, 

3.32, 3.33, 3.42, 3.43 and 3.44 according to the order of dof’s indicated in equation 

3.45. 
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CHAPTER 4 

SOUND-STRUCTURE INTERACTION 

 Sound-structure interaction analysis studies the coupled dynamic motion of fluid-

solid media, and requires formulation of the dynamics of each medium separately 

and combining them by using interaction mechanism. 

 In this study, the interaction problem considered is due to coupling of interior 

acoustic domain to its bounding thin-walled elastic structure. Interaction of the 

elastic boundary to the rest of outer domain is not considered. 

 The chapter has two main sections that present a general numerical approach for 

the interaction analysis, and an analytical formulation for a specific interaction 

study, respectively. 

 First section introduces the BE-FE approach to analyze sound-structure 

interaction problem mentioned above, where BEM is used for acoustic domain and 

FEM for enclosing thin-walled elastic structure. Hence this section is based on the 

formulations of both BEM given in Chapter 2 and FEM introduced in Chapter 3. 

After presenting formulation for the interaction mechanism, three available 

approaches to obtain coupled system behavior are given. 

 In the second section, a fundamental interaction problem in acoustic studies is 

considered. Utilizing the works of other researchers on this interaction problem [63-

73], admittance boundary condition is included on interaction surface, resulting in a 

reformulation of the analytical solution and extension of the method to allow 

modeling of sound absorptive treatments. 

 Analytical solution derived in this chapter will be assessed in Chapter 5. Later, 

both of the BE-FE approach and the analytical solution will be used in the 

computational sound-structure interaction studies to be presented in Chapter 6. 
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4.1 Boundary Element-Finite Element Interaction Analysis 
 
 Dynamics of acoustic medium enclosed by an elastic thin-walled structure is an 

interaction problem of fluid and solid media. Response of each medium is coupled 

to each other. This interaction problem will be analyzed by the BE-FE approach in 

which BEM is used to model the acoustic medium and FEM is used to model 

structure. Therefore, the interface region between the acoustic medium and structure 

is modeled by both BEM and FEM. 

 It is assumed that the acoustic fluid is inviscid; hence, it can exert only normal 

loads to its bounding structure and only normal components of structure response at 

the interface between two media can excite the acoustic domain.  

 The governing matrix form BE equation of acoustic medium is given in equation 

2.25, i.e., 

fGvHp +=       (4.1) 

 The governing matrix form FE structural equation 3.9 can be rewritten in a more 

compact form as 

ss fuD =       (4.2) 

where the structural dynamic matrix Ds is 

KCMD ++−= ωiω2
s       

with displacement and loading notation simplified by omitting the sign (^) over the 

variables here and later in formulations. 

 Structural load fs in equation 4.2 is considered to be composed of two parts as  

eas fff +=       (4.3) 

where fa represents load on the structure due to the internal acoustic pressure and fe 

represents load due to external excitation. 

 Structural equation 4.2 becomes, in view of equation 4.3,  

eas ffuD +=      (4.4) 

 In this study, the positive direction of unit norma of interface will be taken from 

fluid to solid region. It is obvious that the traction τ acting on fluid region, at a point 

of interface, would be τ=-pn, where p denotes the fluid pressure. Thus, the traction 

acting on the solid region (at a point of interface) is 
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nτ p=        (4.5) 

It may be noted that, for an interface element, n would be the same in acoustic and 

structural regions if geometric description of the interface element is identical in BE 

and FE models. 

 Acoustic pressure can be expressed as, in view of equation 2.17, 
e

ap pN=       (4.6) 

where Na and pe represent acoustic pressure interpolation matrix and nodal acoustic 

pressure vector used in BE formulation, respectively. 

 Hence, acoustic load on structure can be written in local coordinates as, in view 

of equations 3.7, 4.5 and 4.6,  

a
e

de
a

S

T
s

e
a pnNNf ∫=      (4.7) 

where Ns represents the matrix formed by structural displacement interpolation 

functions used in FE formulation by considering displacements in three orthogonal 

directions. 

 Acoustic load to the whole structure is, in view of equation 3.7, 

TppTAfAf === ∑∑
e

eeTe

e

e
a

Te
a     (4.8) 

with element coupling matrix Te defined as, in view of equation 4.7, 

a
e

da
S

T
s

e nNNT ∫=      (4.9) 

 Continuity of displacement at the interface requires that normal velocity of 

acoustic fluid and structure are equal. At an interface point, one can write 

wnT
n ωiv =      (4.10) 

where vn is the normal component of acoustic particle velocity and w is the vector 

whose components are the displacements in the three-orthogonal directions. 

 Equation 4.10 can be rewritten for an interface element as, in view of equation 

3.2, 
êe

s
Te

s
T

n Aωiωiv uNnuNn ==     (4.11) 

 Due to the discrete nature of BE and FE methods, displacement continuity 

requirement can be imposed at nodes of interface elements. Continuity relation for 
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each BE can be expressed as, in view of equation 4.11, 
êee

n uLv =       (4.12) 

where vn
e is the nodal acoustic normal velocity vector and Le is the coupling matrix 

which has row vectors of the form, in view of equation 4.11,  

e
s

TTe Aωi Nnl =      (4.13) 

with each row of Le formed by evaluating expression for leT at an acoustic node used 

in BE formulation.  

 Velocity continuity for the whole interface surface can be expressed as 

LuuLv == ∑
e

êe      (4.14) 

 In summary, interface conditions to coupled BE and FE equations are imposed 

as: displacement continuity which is satisfied by matching of acoustic normal 

velocity to structure normal velocity at the nodes of BE; force equilibrium which is 

attained by means of acoustic pressure loading to FE equations. 

 Using interface conditions, coupled equations of acoustic medium and structure 

can be expressed in three distinct ways. These are called mixed variable, fluid 

variable and structural variable approaches [53]. 

 In the mixed variable approach, governing equations of each medium is directly 

coupled to each other, which can be described as: first, BE equation 4.1 is rewritten 

using interface conditions expressed in equation 4.14 as 

fGLuHp +=       (4.15) 

Then, FE equation 4.4 is rewritten as, in view of interface conditions expressed in 

equation 4.8,  

es fTpuD +=       (4.16) 

Finally, equations 4.15 and 4.16 are written together as 









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
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



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
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
−

−

es

 
f
f

u
p

DT
GLH

    (4.17) 

 Solution of coupled equation 4.17 yields both acoustic pressure and structural 

displacements at once. 

 In the fluid variable approach: first, structural displacement vector is obtained 
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from equation 4.16 as 

)( e
1

s fTpDu += −       (4.18) 

Then, substituting structural displacement using equation 4.18 into equation 4.15 

yields 

ffGLDpTGLDH +=− −−
e

1
s

1
s )(     (4.19) 

where solution of equation 4.19 yields the acoustic pressure only. The structural 

displacements may then be calculated using equation 4.18. 

 In the structural variable approach: first, acoustic pressure vector is obtained from 

equation 4.15 as 

)(1 fGLuHp += −      (4.20) 

Then, substituting acoustic pressure using equation 4.20 into equation 4.16 results 

e
11

s )( ffTHuGLTHD +=− −−     (4.21) 

where solution of equation 4.21 yields structural displacements only, after which 

acoustic pressure may be calculated using equation 4.20. 

 Sound-structure interaction formulation presented above can be extended to 

include more complicated boundary conditions. For example, only some part of the 

bounding structure may be elastic or acoustical absorptive treatment may be taken 

into consideration. These situations can be modeled by partitioning BE and FE 

matrices according to boundary conditions in consideration and proceeding 

thereafter as described in this section. Formulations for the stated complex boundary 

conditions and others including modal models are available in literature [14, 43]. 

 

4.2 Analytical Solution of a Cavity-Backed-Plate Problem 
 
 A fundamental case study in sound-structure interaction analyses is called the 

cavity-backed-plate problem. The formulation given below is prepared with view of 

previous work on the topic by other researchers [63-73]. Configuration for this 

fundamental study is illustrated in Figure 4.1. The cavity is a small rectangular 

parallelepiped room and all the walls except one are rigid. The elastic wall of the 

cavity is exposed to uniform external pressure and to cavity internal pressure. 

 Analytical formulation for the cavity-backed-plate problem is extended to include 
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admittance boundary condition to model absorptive acoustic treatment on the 

interface surface. The interface surface is modeled as a simply supported elastic 

plate interacting with the enclosed acoustic domain. Structural damping is also taken 

into consideration. Acoustic fluid and structure behave in accordance with the 

assumptions of linear acoustics and elasticity, respectively. 

 

x
1

x3

x
2

PE

Plate

a
b

c

Cavity

 
 

Figure 4.1 Cavity-backed-plate configuration 

 

 Acoustic velocity potential Ψ inside the cavity satisfies linearized homogenous 

wave equation, that is 

0)t,x(
tc

1)t,x( 2

2

2
o

2 =Ψ
∂
∂−Ψ∇     (4.22) 

where ∇2 is the Laplacian operator and co is the speed of sound.  

 Initial and boundary conditions are  

 0
t

          ,0
0t

0t
=

∂
Ψ∂=Ψ

=
=

     (4.23) 
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x

  
ax1

32a
0x1

11

=
∂
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 0
z

         ,0
x

  
cx0x3 33

=
∂
Ψ∂=

∂
Ψ∂

==

    (4.26) 

where a, b and c are the dimensions of the cavity in x1, x2 and x3-axis directions 

respectively, va is the component of acoustic particle velocity in the outer normal 

direction at the vibrating interface plate surface. 

 In the case of non-absorbing plate surface, normal component of acoustic particle 

velocity is equal to plate transverse velocity. On the other hand, when sound 

absorptive treatment is considered, normal component of acoustical and structural 

velocities differ [14, 43, 93]. Hence, relative acoustic particle normal velocity vr may 

be defined as the acoustic particle normal velocity va with respect to the structural 

normal velocity vs as  

sar vvv −=      (4.27) 

 On this sound-absorbing boundary, relative acoustic particle normal velocity and 

acoustic pressure p are related by 

Ypvr =       (4.28) 

where Y represents the boundary admittance and is equal to the reciprocal value of 

the boundary impedance. 

 Admittance boundary condition is illustrated in Figure 4.2, which is adapted from 

literature [43]. In this figure, components of acoustic particle and structural 

velocities in the direction of outer normal vector n are shown. Acoustic pressure 

within cavity, external uniform excitation to the plate and absorptive treatment on 

the interior plate surface as the admittance boundary are illustrated. In the 

formulations, locally reacting admittance boundary condition is considered to model 

sound absorptive treatment. Admittance value is restricted to a frequency dependent 

parameter and is uniform over the plate surface.  

 Using the relationship between relative acoustic particle velocity and acoustic 

pressure given in equation 4.28, acoustic particle normal velocity can be obtained 

from equation 4.27 as 

Ypvv sa +=       (4.29) 
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Figure 4.2 Admittance boundary condition on the plate surface 

 

 Using the separation of variables method, solution of equation 4.22 in Laplace 

domain may be written as 

∑
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=
+=Ψ

0n,m
321mn1mn )x

c
πn(osc  )x

b
πm(osc ])x)s(αsinh(B)x)s(αcosh(A[)s,x(  

(4.30) 

where Amn and Bmn are some constants and 
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 Acoustic pressure and velocity potential are related by  

s),x(Ψsρs),x(P o−=       (4.31) 

where ρo is the acoustic fluid equilibrium density. 

 Laplace transforming the boundary conditions in equation 4.24, one obtains 

)s,x,x(v
x 32a

0x1
1

−=
∂

Ψ∂

=

    (4.32) 

0
x ax1
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 Simply supported plate transverse deflection in Laplace domain, using Navier 

double sine series solution is 

)x
c
πrsin()x

b
πqsin(C)s,x,x(w 32

1r,q
qr32 ∑

∞

=

=    (4.34) 

where qrC are some constants and transformed plate deflection is defined as 

∫
∞

−=
0

st
3232 dte )t,x,x(w)s,x,x(w        

Hence, plate velocity can be expressed in terms of plate deflection as 

)s,x,x(ws)s,x,x(v 3232s =       (4.35) 

 Coefficients Amn and Bmn in equation 4.30 are obtained by using boundary 

conditions given in equations 4.32 and 4.33. Substituting acoustic particle velocity 

from equation 4.29 and velocity potential solution from equation 4.30, in view of 

equations 4.31, 4.34 and 4.35, into equation 4.32 and multiplying both sides of 

resulting expression by cos(mπx2/b)cos(nπx3/c) then integrating over the plate 

surface area and similarly substituting velocity potential given in equation 4.30 into 

equation 4.33 and multiplying by cos(mπx2/b)cos(nπ x3/c) and integrating over the 

plate surface area yield expressions from which the coefficients Amn and Bmn can be 

obtained as 

∑
∞

= +
=

1r,q oqr
mnqrmn sYρα(s))α(s)tanh(a

sBC'KKA    (4.36) 

∑
∞

= +
−=

1r,q oqr
mnqrmn sYρα(s))α(s)tanh(a

))s(αatanh(sBC'KKB    (4.37) 

where the modal coupling coefficient 
qr
mnB is given by 

∫ ∫=
b

0
32

c

0
3232

qr
mn dxdx)x

c
πncos()x

b
πmcos()x

c
πrsin()x

b
πqsin(

bc
4B   (4.38) 

and K and K′ equal to 0.5 for m and n equal to zero, respectively, and equal to 1 for 

m and n greater than zero, respectively. 

 Substituting explicit expressions for the coefficients Amn and Bmn given in 

equations 4.36 and 4.37 into equation 4.30, velocity potential can be found as 
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∑ ∑
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 Pressure within cavity can be written using equations 4.31 and 4.39 as 
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 Laplace transformed governing equation for the simply supported plate is 

)s,x,x(P)s,x,x(PwhswD 32
E

32
C24 −=ρ+∇    (4.41) 

where ∇4 is the biharmonic Laplacian operator and ρ is the plate mass density, h is 

the plate thickness, PE and PC are loading on the plate surface due to externally 

applied excitation and interior cavity acoustic pressure, respectively, and plate 

flexural rigidity D is, by denoting elastic modulus by E, structural loss factor by η 

and Poisson’s ratio by v,  

)1(12
h)ηi1(ED 2

3

v−
+=         

 Subtituting plate deflection given in equation 4.34 into equation 4.41 yields 
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 Cavity acoustic pressure load on plate can be found by evaluating equation 4.40 

at x1 = 0. Hence, using cavity pressure loading on plate as described and multiplying 

both sides of equation 4.42 by sin(qπx2/b)sin(rπx3/c) and integrating over the plate 

surface yields 
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where 

)1)πrcos()(1)πqcos((P
πqr
4P E

2
E

qr −−−=    (4.44) 

 Matrix form of equation 4.43 may be written as 

fDc =       (4.45) 

 Truncating q at Q, r at R and letting NQR = Q x R, the vectors c and f, and the 

matrix D in equation 4.45 are defined as 
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where row vector bT is formed using modal coupling coefficients 
qr
mnB as 
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 Solution for the unknown coefficients Cqr may be obtained from equation 4.45 as 

fDc 1−=       (4.46) 

Therefore, equation 4.40 may be rewritten using vector products as 

∑
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 Substituting equation 4.46 into equation 4.47 yields Laplace transformed pressure 

within cavity as 
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c
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b
πm(oscZKKsρ)s,x(P fDb   (4.48) 

 Steady-state harmonic response due to harmonic excitation PEeiωt can be obtained 

by evaluating equation 4.48 at s = iω. 

 When both of two opposing walls of the cavity are flexible and simply supported 

plates then analytical formulation for this case can be derived similarly as presented 

in this section by including related boundary conditions for the second plate.  In the 

case of acoustically perfect reflective surface conditions, in other words, for zero 

acoustic admittance value, analytical solutions for the mentioned case of two-

flexible wall problem is available in literature [73, 79]. 
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CHAPTER 5 

ASSESMENT OF THE ANALYTICAL SOLUTION TO  

THE CAVITY-BACKED-PLATE PROBLEM 

 This chapter assesses the analytical solution of a sound-structure interaction 

problem known as the cavity-backed-plate problem. This analytical solution, which 

enhances the formulations available in literature, is derived in Chapter 4. 

 Interest in dynamic behavior of plates in relation to their aeroelastic stability and 

excitation by noise in aerospace applications led to studies involving model response 

of a cavity-backed-plate problem [63]. This problem is a particular example that was 

studied in several research studies [63-73]. Most of the major studies cited in 

literature either investigate this problem for different configurations or use published 

data for verification [23, 40, 43, 54, 55, 80]. Hence, it is practically a benchmark 

problem in sound-structure interaction studies. 

 Since its first introduction into literature in early 1960’s [63], analytical solutions 

to the cavity-backed-plate problem have been improved, and in late 1970’s, a research 

study provided a set of experimental results [70]. A rather recent analytical solution 

was published in late 1970’s by one of the pioneers on the subject [72]. After 1980’s, 

cavity-backed-plate problem became one of the subjects in computational acoustic 

studies [23, 40, 43, 54, 55, 80]. 

 In this chapter, the analytical solution to the cavity-backed-plate problem as 

developed in Chapter 4 is investigated. First, some convergence studies of the 

solution are presented when acoustically perfect reflective boundary conditions are 

considered. Then, case studies illustrating the effects of sound absorptive conditions 

on cavity acoustic field are given. Absorptive treatment is considered on full 

interaction boundary. Next, structural damping is taken into consideration to 

investigate its effects on the problem. 
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5.1 Cavity-Backed-Plate Convergence Study 
 
 In the following, inquiry and verification of the analytical solution to the cavity-

backed-plate study are presented. Configuration for this study is shown in Figure 

5.1. This figure illustrates that uniform external pressure (PE) excites the elastic wall 

of the cavity. The elastic wall is a simply-supported plate where full interaction is 

considered while the other walls of the cavity are rigid. Cavity is referred to in a 

Cartesian coordinate system x = (x1, x2, x3) located at the corner shown in the figure. 

Cavity dimensions, acoustic field and plate properties are given in Table 5.1. 

 

 
 

Figure 5.1 Cavity-backed-plate configuration 

 
 

Table 5.1 Properties of cavity-backed-plate configuration 
 

Cavity  Acoustic field Plate 

a = 0.2 m 

b = 0.2 m 

c = 0.2 m 

fluid: air 

equilibrium density: 

   ρo = 1.21 kg/m3 

speed of sound: co = 340 m/s 

material: brass 

density: ρ = 8500 kg/m3 

elasticity modulus: E = 104 GPa 

Poisson’s ratio: v = 0.37 

loss factor: η = 0 

thickness: h = 0.9144 mm 

lateral dimensions: 0.2 m by 0.2 m 
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 For this study, frequency range of interest is between 0 Hz and 1000 Hz [70]. 

Uncoupled plate (fqr) and cavity (flmn) modes are [2, 3] 
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       (5.1) 

where  D is the plate flexural rigidity, and q, r, l, m and n represent modal indices. 

Table 5.2 lists uncoupled plate and cavity modes found from equation 5.1. 

 

Table 5.2 Uncoupled plate and cavity modes 
 

Uncoupled plate mode Uncoupled cavity mode 

(q, r) fqr (Hz) (l, m, n) flmn (Hz) 

(1,1) 78.06   

(1,2), (2,1) 195.14   

(2,2) 312.23   

(1,3), (3,1) 390.29   

(2,3), (3,2) 507.37   

(1,4), (4,1) 663.48   

(3,3) 702.51   

(2,4), (4,2) 780.57   

  (0,1,0), (0,0,1) 850.00 

(3,4), (4,3) 975.71   

 

 Acoustic pressure at interior surface point x = (a, b/2, c/2) is obtained using 

equation 4.48. Figure 5.2 illustrates the results for the sound pressure level (SPL) 

(SPL = 20 log (PE/P)) and phase at the response location for acoustically perfect 

reflective surface conditions. The SPL results are illustrated in the same way as 

available in literature [70, 72].  
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(a) 

 
(b) 

 
Figure 5.2 Response of cavity-backed-plate: (a) SPL, (b) Phase 
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 In Figure 5.2, a dip in SPL response indicates a coupled system resonance. In this 

figure, SPL at a coupled system mode is truncated due to frequency resolution used 

in the calculations. Furthermore, although there exists a high modal density of 

uncoupled plate and acoustic modes (see Table 5.2), interaction of the acoustic field 

with its bounding structure yields only four coupled system modes due to selective 

coupling [63-73]. 

 Convergence study for the derived equation 4.48 is carried out as follows. 

Maximum number of plate and acoustic modes retained in the formulation is 

gradually increased and their effects on coupled system modes are observed. Both 

SPL and phase information, using a frequency resolution of 0.01 Hz in calculations, 

are used to estimate a resonance frequency. At a coupled mode, corresponding 

resonance frequency is obtained by arithmetically evaluating the mid-point between 

two frequencies where a 180 degree phase change occurrs (see Figure 5.2).  

 There exist four coupled system modes; convergence for each of these modes is 

analyzed as described above and results of these analyses are illustrated in Tables 

5.3-5.6. In these tables, M, N and Q, R represent maximum number of acoustic and 

plate modes retained in formulation (see Chapter 4, section 4.2) 

 

Table 5.3 First coupled system mode convergence (Hz) 
 

     M, N 

Q, R 

0 1 2 3 4 5 6 

1 86.82 86.82 86.76 86.76 86.76 86.76 86.76 

2 86.82 86.82 86.76 86.76 86.76 86.76 86.76 

3 86.80 86.80 86.74 86.74 86.74 86.74 86.74 

4 86.80 86.80 86.74 86.74 86.74 86.74 86.74 

5 86.80 86.80 86.74 86.74 86.74 86.74 86.74 

6 86.80 86.80 86.74 86.74 86.74 86.74 86.74 

7 86.80 86.80 86.74 86.74 86.74 86.74 86.74 

8 86.80 86.80 86.74 86.74 86.74 86.74 86.74 
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Table 5.4 Second coupled system mode convergence (Hz) 
 

     M, N 

Q, R 

0 1 2 3 4 5 6 

1 - - - - - - - 

2 - - - - - - - 

3 390.37 390.37 389.91 389.91 389.76 389.76 389.76 

4 390.37 390.37 389.91 389.91 389.76 389.76 389.76 

5 390.37 390.37 389.91 389.91 389.76 389.76 389.76 

6 390.37 390.37 389.91 389.91 389.76 389.76 389.76 

7 390.37 390.37 389.91 389.91 389.76 389.76 389.76 

8 390.37 390.37 389.90 389.90 389.76 389.76 389.76 

 

Table 5.5 Third coupled system mode convergence (Hz) 
 

     M, N 

Q, R 

0 1 2 3 4 5 6 

1 - - - - - - - 

2 - - - - - - - 

3 702.46 702.46 701.82 701.82 701.45 701.45 701.42 

4 702.46 702.46 701.82 701.82 701.45 701.45 701.42 

5 702.46 702.46 701.82 701.82 701.45 701.45 701.42 

6 702.46 702.46 701.82 701.82 701.45 701.45 701.42 

7 702.46 702.46 701.82 701.82 701.45 701.45 701.42 

8 702.46 702.46 701.82 701.82 701.45 701.45 701.42 
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Table 5.6 Fourth coupled system mode convergence (Hz) 
 

     M, N 

Q, R 

0 1 2 3 4 5 6 

1 851.77 851.77 851.76 851.76 851.76 851.76 851.76 

2 851.77 851.77 851.76 851.76 851.76 851.76 851.76 

3 852.34 852.34 852.34 852.34 852.34 852.34 852.34 

4 852.34 852.34 852.34 852.34 852.34 852.34 852.34 

5 851.99 851.99 851.99 851.99 851.99 851.99 851.99 

6 851.99 851.99 851.99 851.99 851.99 851.99 851.99 

7 851.97 851.97 851.97 851.97 851.97 851.97 851.97 

8 851.97 851.97 851.97 851.97 851.97 851.97 851.97 

 

 

 

 In Tables 5.4 and 5.5 a result listed as “-“ indicates that a coupled system mode 

could not be determined. This situation occurs when maximum number of modes 

used in the calculations is not enough to model system behavior adequately. In order 

to properly model coupled system behavior, the maximum number of modes 

retained in calculations should not be less than those necessary to model uncoupled 

modes in the frequency range of analysis. Besides, analytical solution is an 

approximate modal solution involving summation of trigonometric series. Hence, a 

further increase for the number of modes to be retained in formulations should be 

preferred. Furthermore, nearby modes that lie outside the analysis region may affect 

coupled system behavior. Therefore, possible effects of these modes may need to be 

considered in determining the number modes to be retained in formulations. 

 As already stated, this case study is the subject of previous research studies. Two 

sets of comparative results obtained using equation 4.48 and published data in 

literature are illustrated in Tables 5.7 and 5.8. In the first set (Table 5.7) the value 
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used for speed of sound is co = 340 m/s, and in the second set (Table 5.8), all listed 

results indicated as “calculated “ are for the case of co = 343 m/s. 

 

Table 5.7 First set of comparative results for cavity-backed-plate study 
 

Uncoupled 

modes (Hz) 

Coupled system 

modes (Hz) 

Coupled system 

modes (Hz) [72] 

78.06 86.74 86.88 

390.29 389.76 389.76 

702.51 701.42 701.36 

850.00 851.97 851.91 

 

Table 5.8 Second set of comparative results for cavity-backed-plate study 
 

Plate, cavity modes (Hz) 

Calculated  

Plate, cavity modes (Hz) 

Calculated [23] 

Plate, cavity modes (Hz) 

Measured [70] 

Uncoupled Coupled Uncoupled Coupled Uncoupled Coupled 

78.06 86.88 78 87 78 91 

390.29 389.76 390 390.4 392 397 

702.51 701.42 702 702.5 706 730 

857.50 859.46 857 860 Not reported 864 

 

 Table 5.7 reveals that computations using equation 4.48 are in good agreement to 

the data available obtained from literature. In this table, compared results for 

coupled system modes are calculated using similar analytical solutions. However, 

Table 5.8 illustrates the coupled system modes that are determined using three 

different approaches. Tables 5.7 and 5.8 indicate that the most noticeable effect of 

interaction is on the first uncoupled plate mode. Also, an increase of 3 m/s in the 

speed of sound yielded a noticeable shift of uncoupled and coupled cavity-originated 
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modes towards higher frequencies, while only minor effects are observed for the 

uncoupled and coupled plate-originated modes. 

 

5.2 Effects of Sound Absorptive Treatment 
 
 In this section, sound absorptive treatment on the full interaction surface of the 

cavity-backed-plate problem is considered. Sound absorptive treatment is applied 

only on the interior plate surface. Effect of this treatment on the coupled system 

modes and acoustic field response of the cavity are presented.  

 Configuration properties are given in Table 5.1. In addition to these data, sound 

absorptive treatment is introduced using a locally reacting admittance Y, which is 

modeled by, in view of published data in literature [94, 95], 

    eY     ,     Y
cρ
fY i

oo

θα==  

where α and θ are sound absorbing material dependent constant and phase angle, 

respectively, f is cyclic frequency, and admittance is uniform on the plate surface. 

 Table 5.9 illustrates the effect of this treatment on the coupled system modes for 

admittance parameters (α, θ) selected from available data in literature [94]. Each 

coupled mode is calculated using 0.01 Hz frequency of resolution, and maximum 

number of acoustic (M, N) and plate (Q, R) modes that are used in the calculations 

are indicated in this table. For a non-zero admittance value, a coupled mode is 

indicated by the frequency where a peak in acoustic pressure response is observed. 

 

Table 5.9 Coupled modes due to sound absorptive treatment 
 

Admittance parameters  

(α, θ) 

Coupled system modes  (Hz) 

(M, N  = 6; Q, R = 8) 

(0, 0°) 86.74, 389.76, 701.42, 851.97 

(2/10000, 80°) 86.33, 389.75, 701.36, 809.16 

(4/10000, 80°) 85.96, 389.74, 701.29, 771.56 
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 When sound absorptive treatment is considered, SPL (SPL = 20 log (PE/P)) at an 

interior surface point x = (a, b/2, c/2) is obtained using the developed analytical 

solution. Results are illustrated in Figure 5.3 for different levels of treatment. This 

figure illustrates the effect of absorptive treatment on the coupled modes. In the 

figure, an expected amount of acoustic pressure attenuation is indicated with an 

increase of SPL (a resonance is shown by a dip). It is observed that, increasing 

values of admittance is effective in attenuating acoustic pressure in the 

neighborhood of coupled cavity-originated modes, while only small level of changes 

are observed in the vicinity of coupled plate-originated modes. 

 No published data in literature is available to make comparison with for the 

studied sound absorptive treatment on the plate interior surface. However, results of 

the analytical solution with and without considering sound absorptive treatment will 

be compared to BE-FE analysis results in Chapter 6. 

 

 
 

Figure 5.3 Effect of sound absorptive treatment to cavity-backed-plate study 
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5.3 Effects of Structural Damping 
 
 In the following, effect of structural damping on acoustic response of the cavity-

backed-plate problem is illustrated. Structural damping is considered as an 

alternative mean in attenuating coupled system response.  

 Configuration properties are kept same as in Table 5.1 except with the addition of 

structural damping for the plate. Since structural loss factor for the plate material 

(brass) is very small (η < 0.001) [8], SPL acoustic response at an interior surface 

point x = (a, b/2, c/2) is obtained using loss values even larger than those found in 

literature. Structural damping effect on the coupled system behavior is illustrated in 

Figure 5.4. It is observed that structural damping effects are local to regions near 

coupled mode frequencies. In this figure, SPL changes are indicated at coupled 

system modes. As before, response level at coupled system modes are truncated due 

to frequency resolution used in calculations. 

 

 
 

Figure 5.4 Effect of structural damping to cavity-backed-plate study 
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CHAPTER 6 

COMPUTATIONAL ACOUSTIC ANALYSES 

 This chapter presents some computer implementation and case study applications 

of the analysis methods presented in previous chapters. The contents are organized 

in two sections. 

 In the first section, the main steps in computer implementations of BE and BE-FE 

methods are given. Additional analysis details in view of BE and FE formulations 

are also described. 

 Second section is devoted to the analysis of some case studies using the 

implemented methods. Most of the case studies presented in this section involve a 

fundamental geometric shape for analysis domain. Analytical solutions for acoustic 

field variables within this analysis domain are available in literature [5, 8]. 

Verification of BE implementation is illustrated with two case studies. A sound-

structure interaction study known as cavity-backed-plate problem is analyzed by 

BE-FE method and analysis results are compared to the results using analytical 

solution developed in Chapter 4. Case studies involving sound absorptive treatment 

on the full interaction boundary in the cavity-backed-plate problem and modified 

configurations with additional full interaction surfaces are presented. Next, a more 

complicated problem is analyzed. Here, interaction effects are studied by BEM and 

by a modal method known as acoustoelasticity, in the presence of a Helmholtz 

resonator tuned to cavity acoustic mode. Section continues with a multi-domain BE 

analysis of a cavity-resonator configuration and with an investigation of positioning 

effectiveness of resonators. Section ends by summarizing the case studies and 

discussing, in view of presented material, contributions of the thesis to 

computational acoustic studies. 
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6.1 Computer Implementation of BE and BE-FE Methods 
 
 Numerical acoustic analyses using BE and BE-FE methods are performed 

through computer implementation of these techniques. In this study, several simple 

computer programs have been coded in Fortran and in Matlab ® platform to analyze 

some special acoustic problems considered in the following sections.  

 BE and BE-FE analyses are performed in frequency domain by solving system of 

equations at each frequency point in the analysis range. The two flow charts in 

Figure 6.1 illustrate the main steps of BE and BE-FE analyses. Some details are 

described below. 

 Input data for a typical analysis are the acoustic fluid properties (i.e., equilibrium 

density, speed of sound) and structure properties (i.e., density, elasticity modulus, 

Poisson’s ratio, structural loss factor), geometric information of acoustical domain 

and structure, boundary conditions, excitations (i.e., acoustical and mechanical 

loads), number of numerical integration points and error tolerance in the solutions.   

 BE matrices can be computed in two separate sections, which involve 

computation for regular and singular integrals, respectively. These matrices have 

non-linear frequency dependence hence need to be re-evaluated at each frequency 

point of analysis. Furthermore, BE influence matrices are densely populated, 

complex valued and non-symmetric. 

 FE matrices, namely mass, damping and stiffness matrices are symmetric and 

sparse. These matrices need to be evaluated only once unless input data (geometric 

description and/or material properties of structure) is altered. 

 After imposing boundary conditions, BE or BE-FE system equations can be 

solved for unknown field variables on the boundary surface using Gaussian 

elimination technique with complex solution algorithms. Solution within domain of 

analysis can be calculated using already obtained boundary surface solution.  

 Convergence of results can be determined by observing the resulting effect of 

refining geometric mesh, increasing number of numerical integration points and 

adjusting error tolerance; or by comparing the results to other solutions (analytical, 

numerical or experimental) if available. 
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Figure 6.1 Flow charts for BE and BE-FE analyses 
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6.2 Computational Studies 
 
 In the following sections a selection of acoustic case studies are given to illustrate 

application of computer implementations of the BE and BE-FE methods. These 

studies involve use of the formulations introduced in Chapters 2, 3, 4 and 5. Case 

studies are selected to verify the implemented numerical and/or analytical solutions, 

to illustrate some details of acoustic analysis and to present some new applications 

with comparisons of analysis results obtained by different techniques. 

 

6.2.1 BE Acoustic Field Analysis  
 
 In most of the case studies, acoustic domain of interest is mainly a rectangular 

parallelepiped cavity. This main geometric configuration is chosen due to 

availability of related analytical or experimental solutions found in literature. It 

should be noted that, as described in the previous chapters, BE and BE-FE methods 

are general tools to analyze various configurations.   

 Parallelepiped cavity used in the following acoustic analyses is illustrated in 

Figure 6.2. The cavity is referred to the Cartesian coordinate system x = (x1, x2, x3) 

located at a corner shown in the figure and has dimensions of a, b and c in x1-, x2- 

and x3-directions, respectively.  

 

 
 

Figure 6.2 Parallelepiped cavity 
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 In the case of rigid wall cavity with perfectly reflective boundaries and excited by 

a compact acoustic source, steady-state harmonic acoustic pressure solution is [5, 8] 

∑
= −Λ

−=
N

1n
2
n

2
n

onn
o )kk(

)x(ψ)x(ψ
V
Q̂ωρi)x(p̂       (6.1) 

where p̂  is the amplitude of sound pressure, i is the imaginary constant, ω  is 

angular frequency, oρ  is equilibrium fluid density, V is cavity volume, Q̂  is the 

source strength of the compact source located at xo, k is wave number, n indicates 

acoustic modes, N is the maximum number of modes, nψ are mode shapes and 

nΛ are modal coefficients.  

 Acoustic particle velocity is, in view of equations 6.1 and 2.3, 
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 Acoustic modes (eigenfunctions) of the rigid-walled cavity satisfy [5, 8], 
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2
nn

2 =ψ+ψ∇  

where eigenfunctions and eigenvalues are 

) x
c
πn

 cos() x
b
πn cos() x

a
πn cos(A)x( 3

3
2

2
1

1
nn =ψ  

and 

2322212
n ) 

c
πn

 () 
b
πn () 

a
πn (k +=  

with ni indicating an acoustic mode represented by three non-negative integer 

numbers (n1, n2, n3), and An representing modal scaling constants. 

 The orthogonality condition relating eigenfunctions to modal coefficients nΛ  is 

nmn
V

mn δΛd )x()x(
V
1 =ψψ∫ v  

where δnm is the Kronecker delta. 

 The normal component of acoustic particle velocity is equal to zero on the rigid 

boundary surface of the acoustic domain. 
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6.2.1.1 Case Study 1: Rigid Wall Cavity Response  
 
 In this case study, acoustic response of a rigid walled enclosure (see Figure 6.2) 

due to excitation by a compact acoustic source is analyzed by BEM. Cavity 

dimensions and acoustic field properties for this study are given in Table 6.1. A 

purpose of this case study is to verify the implementation of the quadrilateral 

elements. So, boundary surface is modeled separately by four quadrilateral BE 

patches, namely, QLC, QLL, QLQ and QQQ elements. Walls of the cavity are 

modeled using a uniform surface mesh and for each quadrilateral element type, there 

are 864 total acoustic variable nodes. Figure 6.3 illustrates a typical boundary 

surface mesh used in the BE analysis. 

 For this case study, enclosure geometry involves only planar surfaces. Therefore, 

boundary surface can be modeled accurately using linear geometric interpolation 

functions. In other words quadratic geometric interpolation functions (used in QQQ 

elements) is unnecessary and increases computational cost in the BE analysis.  

 Acoustic pressure and its phase at the interior response point are calculated 

between frequencies 100 Hz and 275 Hz. BE analysis results for sound pressure 

level SPL, (SPL = 20 log (P/Pref) dB, Pref=20 µPa) and phase response are illustrated 

in Figure 6.4. In this figure, analytical solutions using equation 6.1 are also 

illustrated. 

 

Table 6.1 Properties of rigid wall parallelepiped cavity configuration 
 

Cavity 

dimensions 

Acoustic field properties,  

excitation and response locations 

a = 1.36 m 

b = 1.13 m 

c = 0.97 m 

fluid: air 

equilibrium density: ρo = 1.21 kg/m3 

speed of sound: co = 340 m/s 

source strength: Q̂ =10-6 1/s 

source location: xo = (0.01, 0.01, 0.01) 

response location: x = (a-0.01, b-0.01, 0.01) 
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Figure 6.3 Typical surface mesh of rigid wall cavity 

 

 In the illustrations, both the analytical and the BE SPL responses at cavity modes 

are truncated because of the frequency resolution used in the calculations and due to 

numerical integration orders and error tolerances used in BE evaluations.  

 Comparison of analytical and BE solutions in Figure 6.4 reveals that, both 

analyses results are in good agreement over the whole frequency range. Deviations 

are more noticeable at higher frequencies. The deviations could be minimized by 

increasing number of modes used in analytical solution and by using a refined BE 

analysis involving a finer mesh, increased numerical integration orders and reduced 

error tolerances. It is observed that performances of all quadrilateral elements are 

good. Due their higher order acoustic variable interpolation functions, QLQ and 

QQQ elements perform better than QLC and QLL elements.  

 Calculated acoustic modes of the rigid wall cavity are given in Table 6.2. An 

acoustic mode is estimated using SPL and phase response data. At an acoustic mode, 

as it can be observed from Figure 6.4, a peak SPL response and a zero degree phase 

pair occur. BE results in Table 6.2 are obtained using 0.1 Hz frequency resolutions 

in computations. 
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(a) 

 
(b) 

 
Figure 6.4 Rigid wall enclosure response: (a) SPL, (b) Phase 
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Table 6.2 Rigid wall cavity modes 
 

BE modes (Hz) Mode 

(n) 

Analytical 

modes (Hz) QLC QLL QLQ QQQ 

1 125.0 125.2 125.2 125.0 125.0 

2 150.4 150.6 150.6 150.4 150.4 

3 175.3 175.4 175.4 175.2 175.2 

4 195.6 195.8 196.0 195.6 195.6 

5 215.3 215.4 215.6 215.2 215.2 

6 231.0 231.2 231.2 231.0 231.0 

7 250.0 250.4 250.6 250.0 250.0 

8 262.6 263.0 263.2 262.6 262.6 

 

 For this case study, interior acoustic pressure and particle velocity solutions at the 

cavity cross-section x3 = c/2 are also monitored. Results of BE analysis, using a 

refined surface mesh with QLQ BE patches yielding a total of 1944 acoustic 

variable nodes, are compared to the analytical results using equations 6.1 and 6.2. 

Figure 6.5 illustrates the interior acoustic pressure contours and projection of 

normalized particle velocity vectors at 195 Hz which is a frequency point close to 

the fourth acoustic mode (195.6 Hz).  

 Illustrated results of BE analysis and analytical solutions reveal that at the 

frequency point close to the cavity acoustic resonance, analyses are in moderate 

agreement. Differences are noticeable in the illustrated pressure contours shown in 

Figure 6.5. However, in this figure, directional information of illustrated velocity 

vectors is in good agreement since projection of the normalized acoustic particle 

velocity vectors at the cavity cross-section are plotted. BE analysis results could be 

further improved by using a refined analysis with increased number of numerical 

integration points and reduced error tolerance for the solutions. 
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(a) 

 
(b) 

 
Figure 6.5 Interior acoustic field (pressure contours and particle velocity vectors)  

at cross-section x3 = c/2 and at frequency 195 Hz: (a) analytical, (b) BEM 
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6.2.1.2 Case Study 2: Pulsating Sphere  
 
 In the second case study, a pulsating sphere is considered. The elastic surface of 

the sphere pulsates harmonically with a uniform radial velocity. The analytical 

solution for acoustic pressure is [14, 62] 

)ar(ik
oo e)

ika1
ika)(

r
a(v̂cρ)r(p̂ −−

+
=         (6.3) 

where r is the radial distance measured from the center of the sphere, a is the radius 

of the sphere and v̂ is the amplitude of surface velocity. 

 The surface of the sphere is modeled by triangular BE patches, namely, TLC, 

TLL, TLQ and TQQ elements. Although this case study posseses geometric and 

acoustic field symmetry, total sphere surface is considered in the BE analysis. A 

sphere with 1 m radius is chosen. Figure 6.6 illustrates surface mesh for the case of 

200 TLL elements. Acoustic pressure on the pulsating boundary surface is obtained 

by BE analysis and compared to the analytical solution given in equation 6.3. 

Comparative results are listed in Table 6.3 for five wave numbers. BE results are 

obtained by evaluating arithmetic average of surface nodal solutions. Results 

indicate good performance of the triangular elements. For this case study, use of 

quadratic geometric interpolation functions is advantageous in modeling the curved 

boundary surface. 

 

 
Figure 6.6 A typical surface mesh used in the pulsating sphere study 
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Table 6.3 Comparative results for pulsating sphere study 
 

    
 

 

 

 

 

BEM solution k 
Analytical solution 

)v̂c/()a(p̂ ooρ  
512 TLC elements 200 TLL elements 200 TLQ elements 72 TQQ elements 

1 0.5000+0.5000i 0.4974+0.5022i 0.4936+0.5049i 0.4935+0.5076i 0.4997+0.5004i 

2 0.8000+0.4000i 0.7981+0.4043i 0.7967+0.4097i 0.7994+0.4168i 0.7997+0.4005i 

3 0.9000+0.3000i 0.8820+0.3012i 0.8756+0.3067i 0.9043+0.3222i 0.8960+0.2963i 

4 0.9412+0.2353i 0.9465+0.2424i 0.9532+0.2486i 0.9495+0.2596i 0.9421+0.2373i 

5 0.9615+0.1923i 0.9620+0.1997i 0.9652+0.2065i 0.9739+0.2203i 0.9607+0.1937i 
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6.2.2 BE-FE Acoustic Field Analysis 
 
 This section presents applications of the BE-FE method to analyze sound-

structure interaction problems. Presented case studies include a selection from those 

cases analyzed analytically in Chapter 5. Furthermore, additional case studies 

involving more complex interaction mechanisms are presented. 

 

6.2.2.1 Case Study 3: Cavity Backed by One Plate 
 
 First, computational analysis of the cavity-backed-plate case study presented in 

Chapters 4 and 5 is given. The configuration for the cavity backed by one plate study 

is illustrated in Figure 6.7. Table 6.4 lists the properties of the analysis domain. 

Figure 6.7 illustrates that uniform external pressure (PE) excites the elastic wall of 

the cavity. This elastic wall is modeled as a simply-supported plate where full 

acoustic-structure interaction is considered while rest of the walls of the cavity are 

assumed to be rigid. Cavity is referred to a Cartesian coordinate system x = (x1, x2, 

x3) located at a corner as shown in the Figure 6.7. 

 

 

 
 

Figure 6.7 Cavity backed by one plate configuration 
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Table 6.4 Properties of cavity backed by one plate configuration 
 

Cavity  Acoustic field Plate 

a = 0.2 m 

b = 0.2 m 

c = 0.2 m 

fluid: air 

equilibrium density: 

   ρo = 1.21 kg/m3 

speed of sound: co = 340 m/s 

response location: 

   x = (a, b/2, c/2) 

material: brass 

density: ρ = 8500 kg/m3 

elasticity modulus: E = 104 GPa 

Poisson’s ratio: v = 0.37 

loss factor: η = 0 

thickness: h = 0.9144 mm 

lateral dimensions: 0.2 m by 0.2 m 

 

 Boundary surface is modeled by BEM using 150 QLQ elements and plate is 

modeled by FEM using 25 rectangular plate elements. As described in Chapter 2, 

boundary surface is considered to be composed of two regions. One is the rigid part 

and the other is the remaining elastic boundary. BE equations can be written as 
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where nodal variables associated with the rigid and elastic regions are indicated by 

superscripts 0 and 1, respectively. The BE matrices are partitioned according to this 

nodal classification. H and G are the acoustic pressure and the velocity influence 

matrices, respectively, and f is the excitation vector due to compact acoustic sources. 

 On the boundary surface, the acoustic particle normal velocity (v) related to the 

surface normal velocity (vs) and the acoustic pressure (p) through 
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where Y denotes the diagonal admittance matrix. 

 FE equations for the elastic plate are 

 eas ffuD +=            (6.6) 
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where Ds is the structure dynamic matrix, u is the plate normal displacement vector, 

fa is the load vector on the plate due to interior acoustic pressure p1 and fe is the load 

vector on the plate due to external excitation. 

 On the elastic plate, interface conditions relating load on the plate to interior 

acoustic pressure, and acoustic normal velocity 1
sv  to plate normal displacement are  

1
a Tpf =            (6.7) 

and 

Luv =1
s            (6.8) 

where T and L are the coupling matrices. 

 Combining equations 6.4 and 6.6 in view of equations 6.5, 6.7 and 6.8, 
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 For this case study, there is no compact acoustic source, hence, f = 0. With no 

sound absorptive treatment, admittance matrices are Y0 = 0 and Y1 = 0. On rigid 

surfaces, the boundary conditions are v0 = 0 and 0
sv = 0.  

 Equation 6.9 is the mixed-variable formulation of this study. Structural-variable-

formulation might be preferred due to reduced sizes of system matrices. Due to 

reasonable matrix sizes, solution of equation 6.9 is preferred in the BE-FE analysis. 

 Figure 6.8 comparatively illustrates the SPL (SPL = 20 log (PE/P)) and phase at 

response location obtained by BE-FE analysis and the developed analytical solution 

presented in Chapter 4. Results of the BE-FE analysis and analytical solution are in 

good agreement.  

 Next, the same cavity-backed-plate configuration but with sound absorptive 

treatment on the interior plate surface is considered. Properties of this modified 

configuration are given in Table 6.4. The absorptive treatment is modeled by taking 

the locally reacting admittance condition as Y = (αf/ρoco)eiθ [94, 95]. Figure 6.9 

illustrates the results for SPL (SPL = 20 log (PE/P)) and phase at response location 

using admittance parameter values of α = 4/10000 and θ = 80°. The results obtained 

by BE-FE analysis and analytical solutions are in good agreement. 
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(a) 

 
(b) 

 

Figure 6.8 Cavity-backed-plate response: (a) SPL, (b) Phase 
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(a) 

 
(b) 

 

Figure 6.9 Cavity-backed-plate response with sound 

absorptive treatment: (a) SPL, (b) Phase 
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6.2.2.2 Case Study 4: Cavity Backed by Two Plates 
 
 This case study illustrates the effect of introducing another elastic plate to the 

cavity backed by one plate configuration. This second plate is also simply-supported 

and located parallel to the first plate constitutes the wall opposing to the first plate. 

Figure 6.10 illustrates this modified configuration.  

 BE-FE equations for the two interacting plate case is similar to the cavity backed 

by a single plate study. However, addition of the second plate needs to be accounted 

in the formulation. Using previous notations of the cavity backed by one plate study, 

BE equations can be written as 
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where superscript 2 is used to indicate the association of related variables with the 

second plate. 

 FE equations for the two plates are 
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and interface conditions are 
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 When BE and FE equations 6.10 and 6.11 are written together, in view of 

equations 6.12 and 6.13, 
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Figure 6.10 Cavity-backed by two plates configuration 

 

 For this case study, configuration properties are as listed in Table 6.4, both plates 

have identical properties, and f = 0, 2
ef = 0, v0 = 0 in equation 6.14. Figure 6.11 

shows results for SPL (SPL = 20 log (PE/P)) and phase at response location. BE-FE 

analysis results are obtained by solving equation 6.14. Analytical solution for this 

case study is available in literature [73, 79]. The illustrated analytical results are 

obtained as described in Chapter 4. Results of BE-FE analysis and analytical 

solution are in good agreement. Furthermore, it is observed that introduction of the 

second plate produced a noticeable effect only near the first coupled mode of the 

cavity backed by a single plate study. For this study coupled modes are found at 

frequencies 77 Hz, 95 Hz, 390 Hz, 701 Hz, 854 Hz. 

 It should be noted that in cavity-backed by plate(s) case study configurations only 

out-of-plane (normal to plate surface) structure displacements need to be considered. 

In the next case study both in-plane and out-of-plane motion of an elastic structure 

interacting with interior acoustic field of a cavity is considered. This type of 

structural behavior may be found in many practical engineering applications. 
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(a) 

 
 

Figure 6.11 Cavity-backed by two plates response: (a) SPL, (b) Phase 
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6.2.2.3 Case Study 5: Cavity with L-shaped Folded Plate 
 
 The configuration used in this study involves a parallelepiped cavity with rigid 

wall boundary surface except an L-shaped elastic region as illustrated in Figure 6.12. 

A compact acoustic source in the cavity excites the coupled system. Configuration 

properties for this study is given in Table 6.1 except addition of an L-shaped folded 

steel plate structure with properties: ρ = 7850 kg/m3, h = 1.21 mm, E = 207 GPa, v = 

0.3 and η = 0 and response location is x = (a-0.15, b/2, c-0.15). The dimensions of 

the L-shaped folded plate are: width is 215 mm and segment lengths from 90° fold 

line are 280 mm and 428 mm. Short side of the L-shaped structure forms the elastic 

boundary of the cavity wall at x1 = 1.36 m and long side lies on the x3 = 0.97 m face 

of the cavity. The folded plate is centered on the symmetry line x2 = 0.565 m. Nodal 

displacements along the peripheral boundary of the L-shaped plate are set to zero 

(fixed boundary condition). Uncoupled modes of L-shaped plate with free and fixed 

boundary conditions are listed in Table 6.5. For comparison, Table 6.5 includes 

modes for the free boundary condition case found in literature [92]. 

 

Table 6.5 Uncoupled L-shaped folded plate modes 

Calculated plate modes (Hz) Free plate modes (Hz) [92] 

Fixed Free Measured Calculated 

161.92 10.70 10.49 10.73 

186.45 24.76 25.24 24.85 

209.45 32.70 32.24 32.99 

286.08 38.28 36.44 38.80 

 

 

 This case study is analyzed by the BE-FE method. Boundary surface is modeled 

with 968 TLC BE patches and the elastic plate is modeled with 168 triangular shell 

FE patches as illustrated in Figure 6.13. Figure 6.14 illustrates BE-FE analysis 

results for SPL (SPL = 20 log (P/Pref) dB, Pref=20 µPa) and phase response together 
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with rigid wall analytical solutions. The coupled modes at frequencies 160.5 Hz, 

187.0 Hz and 208.8 Hz are originated by the folded plate. It is observed that, 

introduction of the folded plate structure modifies rigid wall acoustic cavity modes 

slightly. First plate mode yielded the most noticeable effect on the acoustic field. 

 

 
 

Figure 6.12 Configuration of a cavity with a L-shaped elastic region 
 

 
Figure 6.13 Mesh used for the cavity with a L-shaped elastic region 
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(a) 

 
(b) 

 

Figure 6.14 Response of the cavity with folded plate region: (a) SPL, (b) Phase 
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6.2.3 Cavity-Helmholtz Resonator Interaction Analysis 
 
 In this section modification of acoustic response of a rigid-walled parallelepiped 

cavity by Helmholtz resonators is analyzed. 

 

6.2.3.1 Case Study 6: Single-Domain BE Analysis 
 
The configuration for cavity and resonator coupling is illustrated in Figure 6.15. The 

cavity and acoustic field properties are same as those given in Table 6.1. The 

uncoupled acoustic modes of the rigid wall cavity are listed in Table 6.6.  

 

 

 
 

Figure 6.15 Cavity and Helmholtz resonator coupling 

 

Table 6.6 Acoustic modes of rigid wall cavity 
 

Mode Modal index 
n n1 n2 n3 

Frequency (Hz) 
(analytical) 

Mode type 

1 1 0 0 125.0 axial 
2 0 1 0 150.4 axial 
3 0 0 1 175.3 axial 
4 1 1 0 195.6 tangential 
5 1 0 1 215.3 tangential 
6 0 1 1 231.0 tangential 
7 2 0 0 250.0 axial 
8 1 1 1 262.6 oblique 
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 Helmholtz resonator considered in this study has a hollow cylindrical geometric 

shape as illustrated in Figure 6.16. In this figure, resonator volume (V), resonator 

cavity height (h), neck cross-section area (S), neck length (L), neck radius (r) and 

cavity radius (R) are indicated. Denoting acoustic wavelength by λ, when λ>>L, 

λ>> 3/1V  and λ>> 2/1S , the resonator behaves as a lumped single degree of freedom 

acoustic element. Mass of this lumped element is provided by the fluid in the neck, 

its stiffness is provided by the acoustic pressure in the resonator cavity, and its 

resistance is provided by resonator aperture [4]. The resonator frequency is [4] 

VL
S

2
cf

eff

o
o π

=           (6.15) 

where Leff is the effective neck length of the resonator. For the type of placement as 

shown in Figure 5.16, the effective neck length is approximated by [4] 

r7.1LLeff +=  

 A set of Helmholtz resonators, tuned to uncoupled cavity modes as listed in Table 

6.7, are used in this study. The dimensions of the resonators are selected in view of 

cavity modes listed in Table 6.6 and equation 6.15. 

 

 

 

 
 

Figure 6.16 Helmholtz resonator geometry 
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Table 6.7 Properties of resonators 
 

Resonator dimensions (m) 
(L: neck length, r: neck radius, 

R: cavity radius, h: cavity height) 

 
Helmholtz  
resonator 

L r R h 

Resonator  
frequency 

fo (Hz) 

HR1 0.05 0.01 0.03 0.31080 125.0 
HR2 0.05 0.01 0.03 0.21468 150.4 
HR3 0.05 0.01 0.03 0.15802 175.3 
HR4 0.05 0.01 0.03 0.12692 195.6 
HR5 0.05 0.01 0.03 0.10476 215.3 
HR6 0.05 0.01 0.03 0.09100 231.0 
HR7 0.05 0.01 0.03 0.07770 250.0 
HR8 0.05 0.01 0.03 0.07040 262.6 

 

 The cavity and Helmholtz resonators are modeled using QQQ type BE patches. A 

typical mesh used in BE analysis is illustrated in Figure 6.17. In this figure resonator 

dimensions are exaggerated to show details. 

 

 
 

Figure 6.17 Typical mesh used in cavity-resonator interaction study 
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 Interaction of the cavity with each Helmholtz resonator listed in Table 6.7 is 

analyzed by BEM. Results from the BE analyses are compared to results obtained by 

a modal method known as method of acoustoelasticity. 

 Acoustoelasticity is a general theory used to analyze interaction between acoustic 

pressure field and elastic boundary surface of enclosures [22]. Analysis of cavity and 

Helmholtz resonator interaction by acoustoelasticity method is also available in 

literature [83], where lumped idealization of resonator behavior is coupled to cavity 

modes that are expressed in terms of rigid wall uncoupled acoustic modes. In other 

words, in modal method of acoustoelasticity a Helmholtz resonator is considered as 

an acoustic point source. 

 When a Helmholtz resonator, tuned to an acoustic cavity mode, interacts with 

cavity, original mode disappears and two new modes arise. These new modes lie on 

either side of the original uncoupled mode. The separation between the new modes 

is proportional to the square root of resonator volume to cavity volume ratio. The 

separation is maximum for oblique modes and minimum for axial modes, and 

proportional to modal pressure amplitude at the position of the resonator location 

[81, 82]. 

 In case studies illustrated below, each Helmholtz resonator is positioned 

individually at location x = (a, b/6, c/6) as indicated in Figures 6.15 and 6.17. 

Resulting modification of the acoustic field due to cavity and resonator interaction is 

examined by evaluating SPL’s, (SPL = 20 log (P/Pref) dB, Pref=20 µPa) at the 

interior response point. 

 Comparative SPL results obtained by BE and acoustoelasticity methods are 

illustrated in Figure 6.18. In this figure, BE results are plotted over a frequency 

range where rigid wall cavity acoustic field is effectively modified due to cavity and 

Helmholtz resonator interaction. Analysis results obtained by the modal method of 

acoustoelasticity are given over the whole frequency range of interest. As can be 

observed from Figure 6.18, analysis results of each method are in good agreement 

for each cavity-resonator configuration except those involving HR1 and HR2. 

Refined BE analyses for these two configurations did not yield noticeable 

improvements. 
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(a) 

 

 
(b) 

Figure 6.18 SPL response of cavity coupled to Helmholtz resonator: 
(a) HR1, (b) HR2, (c) HR3, (d) HR4, (e) HR5, (f) HR6, (g) HR7, (h) HR8 
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(c) 

 

 
(d) 

 

Figure 6.18 (Continued) 
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(e) 

 
(f) 

 
Figure 6.18 (Continued) 
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(g) 

 
(h) 

 

Figure 6.18 (Continued) 
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 Table 6.8 lists the new modes appearing in the vicinity of original uncoupled 

acoustic modes due to resonator-cavity interactions (see Figure 6.18). 

 

Table 6.8 Cavity-resonator coupled modes 
 

Original mode (Hz) New modes (Hz) 

n Analytical BEM Acoustoelasticity 

1 125.0 (120, 126) (122, 127) 

2 150.4 (146, 151) (148, 152) 

3 175.3 (173, 177) (173, 176) 

4 195.6 (192, 198) (192, 198) 

5 215.3 (212, 217) (212, 218) 

6 231.0 (228, 233) (228, 233) 

7 250.0 (247, 251) (248, 252) 

8 262.6 (259, 266) (260, 266) 

 

 

6.2.3.2 Case Study 7: Multi-Domain BE Analysis 
 
 In this case study, a multi-domain BE analysis is utilized in order to investigate 

the disagreement of analysis results observed in the previous cavity-resonator 

interaction study. In particular, the case involving HR1 is chosen. Figure 6.19 

illustrates the cavity and resonator configuration. In multi-domain BE analysis, 

initially, cavity and Helmholtz resonator are considered as two separate acoustic 

domains and then the BE formulations of these two domains are coupled to each 

other. Addition of interface region between cavity and resonator in multi-domain BE 

analysis might yield a better computational model for the interaction study. 
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Figure 6.19 Configuration used in multi-domain BE analysis  

 

 Results obtained by single-domain and multi-domain BE analyses are illustrated 

in Figure 6.20. Single-domain and multi-domain analyses yielded similar results. 

The two new mode pairs, due to cavity-resonator interaction, obtained by single- and 

multi-domain BE analyses are (120 Hz, 126 Hz) and (119 Hz, 126 Hz), respectively.  

 Possible reasons for the discrepancy between BE and acoustoelasticity solutions 

could include the following. In acoustoelasticity method, Helmholtz resonators are 

approximated as point sources. On the other hand, BE analysis is carried out by 

modeling the physical geometry of the resonators. Besides, as noted by other 

researchers [22, 24], in acoustoelasticity method, particle velocity calculations on 

flexible interaction surfaces are slow in convergence and suffer in accuracy. 

Furhermore, when Helmholtz resonator cavity height is long compared to neck 

length, as in the HR1 case, equation 6.15 used in the acoustoelasticity method yields 

overestimated results [84]. Therefore, lumped parameter idealization used in 

acoustoelasticity method might not properly model the behavior of the resonator. It 

should be noted that in all methods modeling errors could be more pronounced at the 

lower frequency region due to increase in inertial effects compared to those in higher 

frequency region. 
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Figure 6.20 SPL response using single-domain and multi-domain BE analysis  

 

6.2.3.3 Case Study 8: Resonator Positioning Effects 
 
 The effect of Helmholtz resonator location is investigated as the last case study. 

Figure 6.21 illustrates three locations where HR3 is positioned. These locations are 

A = (a, b/6, c/6), B = (a, b/3, c/3) and C = (a, b/2, c/2). Effects of resonator coupling 

to cavity by changing resonator position are illustrated in Figure 6.22. As can be 

seen in this figure, both BE and acoustoelasticity analyses are in good agreement, 

and response of acoustic field is as expected. In other words, when the resonator is 

positioned at or near an acoustic pressure anti-node of the cavity (i.e., at A or B) 

cavity-resonator interaction may modify original acoustic field effectively and when 

it is positioned at or near a pressure node of the cavity (i.e., at C), the effect of the 

resonator diminishes. 
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Figure 6.21 Configurations used in resonator position analyses 

 

 
 

Figure 6.22 Positioning effect of resonator HR3; (a) at A, (b) at B, (c) at C 

 

6.2.4 Overview of Case Studies 
 
 Flexibility provided with the BE and the BE-FE methods as given in Chapters 2, 

3 and 4 can be utilized to analyze several sound-structure interaction configurations 

[98-100]. In this section, computational acoustic analyses of a selected set of case 

studies are given. Presented case studies illustrate acoustic analyses in enclosures 
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where partial and/or full interaction between acoustic domain(s) and enclosing 

boundary is considered.  

 Verification of BE implementation is provided through comparisons of analysis 

results and analytical solutions for the case studies. In these case studies, it is 

observed that higher order elements involving quadratic variable interpolation 

functions used in BE formulation perform better in terms of modeling accuracy. This 

observation is in agreement with published data about the convergence of BE 

formulation [96, 97]. A case study was used to illustrate computation of acoustic 

pressure field and particle velocity within analysis domain using BE acoustic 

particle velocity formulation [16]. This formulation may be utilized in research 

studies involving acoustic intensity analysis. 

 BE-FE analysis of a cavity-backed-plate study with and without sound absorptive 

treatments are presented. Comparisons of BE-FE analysis results to those obtained 

by the derived analytical formulation are given. Both analyses yielded good 

agreement. A case study that involved a rather more complicated sound-structure 

interaction due to an additional fully interacting boundary to the cavity-backed-plate 

problem is given. Last case study for BE-FE acoustic analysis involved a more 

general structural behavior that may be found in many practical applications. Case 

studies for which BE-FE and developed analytical solutions have been used for 

acoustic analysis may provide a basis for analytical and experimental research 

studies in acoustics. BE-FE analysis of the cavity-backed-plate study involving 

sound absorptive treatment, which is also verified by the derived analytical solution, 

is a new and unique study that may be utilized in related research studies. 

 Case studies are given to illustrate acoustic field modification of a rigid wall 

cavity due to its interaction with a modally tuned Helmholtz resonator. Both BEM 

and acoustoelasticity methods are utilized to analyze cavity-resonator interaction. In 

the studied cases, it is observed that results from these methods are in good 

agreement in most of the frequency range of analysis. Deviations, which are more 

noticeable at lower frequency region, are quite negligible for most practical 

engineering applications. Analysis of cavity-resonator interaction by BEM provided 

an alternative approach to existing modal based approaches [81, 82, 83]. These case 
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studies can also be utilized as a basis for research studies. 

 Sound-structure analysis is an active research area with numerous engineering 

applications. However, essential experimental studies are rare in literature. To this 

end, the presented fundamental case studies along with the derived analytical, BE 

and BE-FE formulations could provide a basis for further research in acoustics with 

special emphasis on sound-structure interaction. 

 Computation time for acoustic analysis in a sound-structure interaction study 

depends on several factors that vary with the order of BE or BE-FE system matrices, 

number of quadrature points used in the numerical evaluation of integrals and error 

tolerance used in solutions. Computationally most expensive parts of analyses are 

the construction of the BE matrices at each frequency point of analysis and solution 

of final BE or BE-FE equations.  
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CHAPTER 7 

DISCUSSION, CONCLUSIONS AND FUTURE WORK 

 In this thesis, steady-state dynamic sound-structure interaction between coupled 

acoustic domain(s) with enclosing rigid or elastic boundary is studied. Linear 

acoustic (inviscid) and elasticity theories are assumed in modeling interactions in 

frequency domain. 

 Single- and multi-domain direct BE formulations for acoustic analysis within 

enclosures are presented. For the enclosing thin plate or shell-like structure, FE 

formulation is used. Combining these BE and FE formulations, BE-FE method is 

used to analyze sound-structure interaction problems. Mixed-, structural- and fluid-

variable approaches to combine BE and FE equations are considered to model BE-

FE sound-structure coupling. 

 Existing analytical formulations for a fundamental sound-structure interaction 

problem (cavity-backed-plate problem) are considered to develop an enhanced 

analytical formulation to include locally reacting sound absorptive treatment on fully 

coupled interaction surface. Modal and frequency response acoustic analyses of 

cavity-backed-plate problem with and without sound absorptive treatment are given. 

Convergence observed in these analyses indicates accurate modeling by this new 

formulation. In addition, independent BE-FE analyses of cavity-backed-plate 

problems also supported the accuracy of the developed analytical solution. Coupled 

modal frequencies obtained by a reduced form of the developed solution (i.e., 

without sound absorptive treatment) and available experimental data as well as 

analytical and acoustoelasticity solutions are generally in good agreement. However, 

discrepancies between experimental data and all other solutions indicate the need for 

more reliable experimental investigations to the interaction problem. Modifications 

of interior acoustic field of the coupled cavity-plate system due to sound absorptive 

treatment and structural damping illustrate that absorptive treatment is more 
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effective in attenuating acoustic pressure than structural damping. 

 Acoustic field analysis using BEM can be interpreted as computational acoustic 

analysis using discrete form of BE integral equations. In this thesis, two families of 

discontinuous BE patches, namely, triangular and quadrilateral elements, are 

utilized. These elements provide flexibility in modeling the acoustic domain. A 

treatment of regular and singular integrals in BE formulation for these elements are 

given. Rectangular plate and triangular shell elements are used to develop FE 

models for thin plate or shell-like structures. Consequently, provided BE and BE-FE 

methods have the flexibility to analyze various interaction configurations. 

 Acoustic analyses of a wide spectrum of configurations using the derived 

analytical solution and implemented BE and BE-FE methods are presented 

comparatively. These configurations involve cavity-boundary and cavity-Helmholtz 

resonator interactions. Presented case studies illustrate the details of analytical and 

computational acoustic analyses. 

 In view of this thesis, a range of analytical, computational and experimental 

topics can be considered for future research.  

 The analytical solution developed in this thesis is a contribution to the limited 

number of analytical solutions to sound-structure interaction problems available in 

literature. An extension of the derived solution could include double-plate 

configurations involving sound absorptive treatment.  

 Regarding computational topics, the following could be investigated: cavity-

Helmholtz resonator configurations including multiple coupled resonators with and 

without sound absorptive treatment; BE acoustic particle velocity computations that 

might involve acoustic intensity analyses; implementation of axisymmetric BE 

patches; and, adaptive algorithms considering weak or strong interaction conditions. 

 The case studies provided in thesis involve basic and widely applicable 

configurations. It is believed that experimental investigation of these cases would 

complement the presented analytical and computational studies. Such a combination 

of theoretical, numerical and experimental work can provide an invaluable basis for 

benchmark case development in the field of acoustics. 
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