MICROCONTROLLER - BASED MULTIPORT COMMUNICATION
SYSTEM FOR DIGITAL ELECTRICITY METERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FIRAT BESTEPE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan OZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the

degree of Master of Science.

Prof. Dr. iIsmet ERKMEN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is

fully adequate, in scope and quality, as a thesis for the degree of Master of

Science

Examining Committee Members

Prof. Dr. Osman SEVAIOGLU

Prof. Dr. Hasan GURAN

Assoc. Prof Dr. Gozde BOZDAGI
Asst. Prof. Dr. Cuneyt BAZLAMACCI
Graduate Engineer Turgay SENDUR

Prof. Dr. Hasan GURAN

(METU,EE)
(METU,EE)
(METU,EE)
(METU,EE)
(KOSGEB)

Supervisor

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, | have
fully cited and referenced all material and results that are not original to this
work.

Name, Last name : Firat BESTEPE

Signature

ABSTRACT

MICROCONTROLLER-BASED MULTIPORT COMMUNICATION
SYSTEM FOR DIGITAL ELECTRICITY METERS

BESTEPE, Firat
Ms., Department of Electrical and Electronics Engineering
Supervisor : Prof. Dr. Hasan GURAN

December 2004, 116 pages

This thesis explains the design of a microcontroller-based device, which
provides an efficient and practical alternative for the remote reading of digital
electricity meters over Public Switch Telephone Network (PSTN). As an
alternative application, a system is constructed providing file transfer capability to
the PC connected to the port of implemented device in addition to remote reading
of digital electricity meters. This thesis also provides detailed explanations about
the basics of serial asynchronous communication over modem for PICs
(peripheral interface controllers) together with description of each component
included by the constructed system, which can be used in energy metering sector

commonly.

Keywords: PIC, Microcontroller, Serial Communication

0z

ELEKTRONIK ELEKTRIK SAYACLARI ICiN MiKRODENETLEYICI
TEMELLI COKLU PORT HABERLESME SISTEMI

BESTEPE, Firat
Yiksek Lisans, Elektrik-Elektronik Mihendisligi Bolimi
Tez Yoneticisi : Prof. Dr. Hasan GURAN

Aralik 2004, 116 sayfa

Bu tez elektronik elektrik sayaclarinin, Genel Telefon Agi (PSTN)
Uzerinden uzaktan okunmasi amacina yonelik etkili ve kullanigh bir alternatif
sunan, mikrodenetleyici temelli bir cihazin dizaynini agiklamaktadir. Alternatif bir
uygulama olarak da, elektronik elektrik sayaclarinin uzaktan okunmasinin
yanisira, dizayn edilen cihazin portlarindan birine baglanan PC ile dosya
transferinin de yapilabildigi bir sistem olusturulmustur. Ayrica enerji 6lgim
sektoriinde yaygin olarak kullanilabilecek bu sistemin tim temel unsurlarinin
izahi ile birlikte, cevresel arayiiz denetleyicileri (PICs) icin modem (zerinden seri

ve eszamanli olmayan haberlesme temelleri konusunda ayrintili bilgi vermektedir.

Anahtar Kelimeler: PIC, Mikrodenetleyici, Seri Haberlesme

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to his supervisor Prof.
Dr. Hasan GURAN for his guidance, advices, criticism, and encouragements and

insight throughout the study.

The technical assistances of Tuncay KANDEMIR, Ali Erkan ERKOL and
Kadir ERDOGAN are gratefully acknowledged.

This study was supported by Aktif Enerji Ltd. Sti., ANKARA.

Vi

TABLE OF CONTENTS

PLAGIARISM ... e e e e e i
O v
ACKNOWLEDGEMENTS ..ottt i i e e e e e 22V
TABLE OF CONTENTSottt e e e vii
LISTOF TABLES......ci i e e X
LISTOFFIGURES.......ccoiii i W X
CHAPTER 1)- GENERAL DESCRIPTION OF THE SYSTEM
1.1 Introduction.. . P |
1.2 Common Remote Readlng Infrastructure 2
1.3 Developed Remote Reading Infrastructure........................... 3
1.4 Alternative Application of Multi-port Device..................cc.... 6
1.5 Objective of This ThesiS.........cccoeviiiiiiiiiiii e 8
CHAPTER 2)- DATA COMMUNICATION INTERFACE
2.1 INtroducCtion........coooieiie i e e 10
2.2 EIA232 Standard.. PO N
2.3 EIA232 Signal Functlons . w1l
2.3.1 Signal Ground and Shleld Y o
2.3.2 Primary Communications Channel 16
2.3.3 Secondary Communications Channel......................... 17
2.3.4 Modem Status and Control Signals................................ 18
2.3.5 Transmitter and Receiver Timing Signals.................... 19
2.3.6 Channel Test Signals............ccccovvee i 2. 20
2.4 Electrical Standards.............cooiiiiiiiiii 21
CHAPTER 3)- PIC 16F877 MICROCONTROLLER
3.1 General Overview to Microcontrollers...............c.coviiiiin, 23
3.1.1 Program Counter and Program Memory EPROM........... 25
3.1.2 Data RAM.. .. .26
3.1.3 Arithmetic Loglc Unlt ..26
3.1.4 1/0 ports... . A
3141 PORTA and the TRISA Reglster 28
3.1.4.2 PORTB and the TRISB Register................ccu..... 28
3.1.4.3 PORTC and the TRISC Register.............cccceeune.n. 29
3.1.4.4 PORTD and TRISD Registers............ccoveeueuannnns 29
3.1.45 PORTE and TRISE Register.............c.cov v eennt. .29
3.1.5 Peripherals... . P 0
3.2 Microcontroller Programmlng Procedure 32

CHAPTER 4)- SERIAL COMMUNICATION WITH
MICROCONTROLLERS
ot I o (oo U T 1 o o PP 7.
42 USART MOUIE.o e e 34
4.2.1 Signal Level Conversion..........couveveiieiie e 35
4.2.2 The USART Module Asynchronous Mode........................ 38
4.2.2.1 USART Asynchronous Transmitter..................... 39
4.2.2.2 USART Asynchronous Receiver........................ 41
4.3 Inverted Logic... ... 43
4.4 Comments on Serlal Communlcatlon Wlth Mlcrocontrollers 45
CHAPTER 5)- DESCRIPTION OF IMPLEMENTED SYSTEM
5.1 Remote ACCESS SOftWAIE.c.uieiieiie it 46
5.1.1 Running of Full Version Remote Access Software.............. 47
5.1.2 Running of Lite Version Remote Access Software.............. 49
5.1.3 Flow Diagram of Reading Software........coooveiiviiiiieee e, 51
5.2 Modem.. " ..55
5.2.1 Communlcatlon Protocol P o 1o
5.3 The Implemented Multi-port DeV|ce.......................................57
5.3.1 General Description.. 57
5.3.2 Voltage Regulator... .57
5.3.3 LCD Module.. PP o1 |
5.34 Mlcrocontroller Module ... 61
5.3.4.1 RESEL PrOCESS. ... cvvviveiieiienieeeieeie e neinnnenn.n. 01
5.3.4.20sCIHIatOr......ie i, 61
5.3.4.3 Serial Communication with USART................... 61
5.3.4.4 Serial Communication with Inverted Logic........... 63
5.3.5 Operational Principles of Multi-port Device......................63
5.3.6 Flow Diagram of Microcontroller Code.................c.ce.e. .. 66
5.3.7 Circuit Diagram..........oceiviieiie i eieveienee e aenen. 09
5.4 The Digital Electricity Meter...........ccooviiiii i, 72
5.4.1 General Description... .12
5.4.2 EDIS (Energy Data Identlflcatlon System) U £
5.4.3 Combi Meter / 4-Quadrant Meter.............coveeiieiiiiiennnnn. 74
5.4.3.1 Combi Meter.......c.ovviiiiiii i 74
5.4.3.2 Four- Quadrant Meter... ..o 75
5.4.4 Modules.. PP o
5441 Power Unlt ... 77
5.4.4.2 Suppressor CirCUitS.......coveevvieieiieee e e en e 77
5.4.4.3 Modular Construction...........ccovevvievievniennennns 78
5.4.5 Digital Measuring Mechanism................c.cccooiiiiiiieennnn. 78
5.4.5.1 Measurement principle...........c.cooooiiiiiiiiinieninnn 78
5.4.5.2 Voltage measurement...........c.coevveeevivieiene e eenn. 78
5.4.5.3 Current measurement..........c.oovvieiieiieiininennen. 79
5.4.5.4 Digitization..........coooeiii i 79

5.4.5.5 Integral values..........cooeveiiiiii i,

5.4.5.6 Measurement values.ooveeee o
5.45.7 Calibration.......cocee et
5.4.6 Tariff MechaniSm.......c.ovenee i e e e

5.4, 7 Data INtBITaCe . .. e e e e e e e e e e

CHAPTER 6)- CONCLUSION.. ..ottt it et e e e

REFERENCES.o e

APPENDIX A - READING SOFTWARE SOURCE CODE.................

APPENDIX B - SOURCE CODE INPICBASIC........ccoviiiiiiiiiiee

APPENDIX C - MULTIPORT DEVICE USER MANUAL..................
APPENDIX D - XMODEM FILE TRANSFER PROTOCOL...............

APPENDIX E - COMPLETE LIST OF SERIN2/SEROUT2 MODES

79
79
80
80
80

81

83

85
96

105
112
115

LIST OF FIGURES

Figure — 1.1 Remote Reading Infrastructure used in metering solutions.....
Figure — 1.2 More feasible remote reading solution with Implemented
MUItI-POIrt DEVICE. e e e
Figure — 1.3 Meter-Device CONNECLION.........ccviiiiie e vie e e e
Figure — 1.4 Modem-Device CONNECHION.vviiiii i
Figure — 1.5 Alternative Application of Implemented Multi-port Device...
Figure — 1.6 Remote PC-Device CONNEeCtioN...........c.cviviviiiiieiieieennnn.

Figure — 2.1 DTE aNd DCE........o ot e e e e e
Figure — 2.2 DB25 Male DTE device connector............ccooevvvevneennnnn.

Figure — 2.3 DB9 Male DTE device CONNECLOr..........oevvveiineiniianiennns
Figure — 2.4 DB25 Female DCE device CONNECOr..........ccvevvrveniinnnnnnns
Figure — 2.5 DB9 Female DCE device cOnnector............o.vvvevveennannnn.
Figure — 2.6 Conventional usage of signal names.................ccovivenn.n.
Figure — 2.7 Non-Return to Zero format.............coooo i iiiii i,

Figure — 3.1 PIC 16F877 Block Diagram............cocevvvieieinin i,
Figure — 3.2 Two situations of loading PC..............cooiiiiiiiiiiiinenn,
Figure — 3.3 PDIP package.........ccovviiiie e e e,

Figure — 4.1 TT/CMOS Serial Logic Waveform...................ccceevennen,
Figure — 4.2 RS-232 Logic Waveform..........ooovuiviiiie i e
Figure — 4.3 Logical Regions of signal................cooiiiiiiiiin e,
Figure — 4.4 MAX232 pin diagram..........ooeuiiniiiiniiee e e e aene
Figure — 4.5 MAX232 circuit diagram........c.ccoueviiiee e e i ieiieenanns
Figure — 4.6 USART Transmit Block Diagram.............cccoviiviiinenn.
Figure — 4.7 USART Receive Block Diagram...................ooveiviieeenn .
Figure — 4.8 Inverted 10giC CONNECTIONS.........ovvvieiie i e

Figure — 5.1 Main screen of Reading Software on main PC...................
Figure — 5.2 Main screen of Reading Software on remote PC.................
Figure — 5.3 Reading software flow diagram (I)..........c.ccooviiiiniii i
Figure — 5.3 Reading software flow diagram (I1)...................coooenie,
Figure — 5.4 Asynchronous transmission packets................cc.oovevn.
Figure — 5.5 Voltage regulation Circuit..................ccoiiiiiiiiii e,
Figure — 5.6 General LCD connection diagram.............coceeeenineennnen.
Figure — 5.7 Microcontroller code flow diagram (1)................oooiienni.
Figure — 5.7 Microcontroller code flow diagram (11).............coooeenn.
Figure — 5.8 Multi-port device PCB diagram................c.coovviiieevennns
Figure — 5.9 Multi-port device circuit diagram............ccccceverierenininieenennen,
Figure —5.10 General EDIS code SyStem............cooveiiiiiiieiie e enn e,
Figure —5.11 EDIS coding for Combi-meter.............cocevviiiiiiineinnnnn,
Figure — 5.12 EDIS coding for Four-quadrant meter...........................

LIST OF TABLES

Table — 3.1 Basic features of PIC 16F877........ccoooiiiiiiiiiii i,
Table — 5.1 Summary of the most commonly used protocols..................

Xi

CHAPTER 1

GENERAL DESCRIPTION OF THE SYSTEM

1.1 Introduction

Electricity meters functioned according to electromechanical principles
until 1980’s. Therefore, desired measures in accuracy, reliability, lifetime and
price of metering solutions could not be attained. Since that time, electronics has
made a remarkable development. Today electricity meters are mass-produced
using the most modern microelectronics. This digital processing technology is not
only providing better solutions than the classical measurement technology but also
is able to operate with auxiliary devices (e.g. modem). Also these high technology
meters enable the consumers to construct very feasible remote reading
infrastructures via their advanced communication facilities.

Within this scope, in this thesis, an implemented device will be presented
and elucidated as a solution for simplifying the remote reading infrastructures of
digital electricity meters by means of reducing the number of components used in

the system.

1.2 Common Remote Reading Infrastructure

Figure — 1.1 shows the brief model of a system, which is used very
commonly in the metering sector. The system mainly consists of a PC including
software for remote reading purpose, a modem at PC side, a telephone line
dedicated to the PC side modem, modems for each meter at remote side and
dedicated telephone lines for each modem. This kind of infrastructure has been
widely used in metering systems, especially in high power plants, multi lined

power plants and auto-producers. The main difficulty in this kind of systems is

the necessity of modem and telephone line for each meter. Using a small but
sufficient telephone exchange instead of using one dedicated line for each meter
can eliminate this hardship a bit. But using a modem for each meter is an

unavoidable necessity for these kinds of systems.

L]

=i

Computer
%
Public Switched Telephone Metwork

{FSTN)

Dooo
Mogem
Modem
Mogam
Meter 1 T Meter 4
Meter 2 Metear 3

Figure — 1.1 Remote Reading Infrastructure used in metering solutions

1.3 Developed Remote Reading Infrastructure

Public Switched Telephone Network
{PSTN)

Mater 2 Mater 3

Figure — 1.2 More feasible remote reading solution with Implemented Multi-port
Device

Considering the previous mentioned issues, Figure — 1.2 shows the same
system in Figure — 1.1 but materialized by the implemented multi-port device,
which is the subject of this thesis. As it can be seen clearly in Figure — 1.2, there is
no need to have modems and telephone lines for each meter any more. One
telephone line and one modem connected to the multi-port device is now enough
to communicate with more than one meter.

In a system shown in Figure — 1.2, the PC establishes the communication
with the multi-port device over PSTN. The direct connection between PC and
modem is done by original modem cable, which has 25-pin female connector for
the end of modem side, and 9-pin female connector at the other end for the serial
port of PC. In addition to that, two different types connection cables are also
needed in the system; one of which is to be used for connection between remote
modem and the multi-port device, and the other of which to be used for
connection between multi-port device and each meter. The pin specifications of

these cables are shown in Figure — 1.3 and 1.4.

Meter Side RJ-12 Male Socket - Device
Rx |23 5 | Ix
Tx | 24 3 |Bx
ond | 25 4 |end
1 |E
2 |E
6 |E

E: empty, not used

Figure — 1.3 Meter-Device connection

Modem Side

(25-pin Male) RJ-12 Male Socket - Device
Rx | 3 3 |Rcb
Tx 2 5 |Re7
gnd | 7 4 |ond
RTS| 4 1 |E
CTS| 5 2 |E
6 |E

E: empty, not used

Figure — 1.4 Modem-Device connection

Using the software running on the PC, which will be described in Chapter
5, the user enters the telephone number of the remote modem for dialing. After the
communication is established between two ends, the user chooses only the port of
the implemented multi-port device to which the meter is connected. Right after
the reception of the port number of the meter by the multi-port device, the
microcontroller in the device sends the string to the specified port according to the
Flag protocol, which arranges the communication rules of the meter with the
peripherals. If the meter is password protected, it will reply with a specific string
that indicates a password requirement or if there is no meter connected to this
port, time-out occurs and the multi-port device sends a related message to the user
station. A similar message is also sent to LCD on the device for local recognition
by the users.

If there is a meter connected to a specified port and the meter is not
password protected, it will reply in 20 msec after receiving a request according to
the protocol. If the request is standard readout request of the meter, the meter will
send all the standard readout data character by character to the multi-port device
and the multi-port device sends all the characters to the PC as soon as it receives
them. During the reception process, an indication message demonstrating a

continuing data reception appears on the LCD. After data reception is completed,

5

the multi-port device sends another message indicating the completed readout

process to both LCD and user station and then starts to wait for the next request.

1.4 Alternative Application of Multi-port Device

Public Switched Telephone Metwork
{PSTN)

Remote PC '_ Meter 4

hetar 2 hetar 3

Figure — 1.5 Alternative Application of Implemented Multi-port Device

As shown in Figure — 1.5, the implemented multi-port device has 4 ports
(expandable to 8) apart from the port providing the connection to the remote
modem. Four digital electricity meters can be connected to these ports as well as
one PC and three digital electricity meters. As shown in Figure — 1.5 the device
connected to the port 1 may be a PC or a digital electricity meter according to the
application. The application with a PC connected to port 1 provides the users to
carry out two-way file transfer between the main PC and the remote PC. This two-
way file transfer process is performed according to Xmodem file transfer protocol.
The details of Xmodem protocol are explained in Appendix D. The pin
specifications of the connection cable between the multi-port device and remote

PC is as shown in Figure — 1.6.

Remote PC Side DB9 Female RJ-12 Male Socket — Device
Rx | 3 3 | Tx
Tx | 2 5 |Rx
end | 5 4 |end
1 |E
2 |E
6 |E

E: empty, not used

Figure — 1.6 Remote PC-Device connection

1.5 Objective of This Thesis

This thesis aims to reduce the number of components used in the remote
reading infrastructures of digital electricity meters and thus simplify the system
together with a cost reduction.

The topic of meter remote reading has become very popular in last decade
in the world and almost all producers have integrated communication interfaces to

their meters, which provide the capability of remote access. Correspondingly,

7

several companies, such as CallDirect Telecommunications [Ref. 19], Adaptive
Networks [Ref. 20], Enermet [Ref. 21], PERAX Remote Automated Management
Systems [Ref. 22], started to carry on business related with constructing remote
reading infrastructures for meters.

In order to construct a professional remote reading infrastructure, several
companies with different proficiencies should work together. For example, The
Integral Energy is the second largest state-owned energy corporation in NSW in
Australia and their meter remote reading infrastructure has been constructed based
on GSM technology by a group being composed of CallDirect
Telecommunications, Nokia and a software development company. Another
example is Clark Public Utilities, which is a customer-owned utility providing
electricity, water and wastewater service in Clark County, Washington and they
have more 164.000 electricity customer and 26.000 water customer. The meters of
customers are connected to the remote reading system by radio transmitter or
telephone line according to meter type and feasibleness.

The remote reading infrastructures illustrated in Figure — 1.1 and 1.2 may
sometimes need many more meters as mentioned previous examples, which will
also mean more modems and more inter-phone lines or dedicated lines. At most of
the sites where a lot of modems will be installed together with inter-phone or
dedicated lines, various problems might be come across. For instance, enough
space for modems could not be found on the panel where the meters will be put.
Additionally, operating and maintaining too many devices is not very simple.

It is obvious that the smaller space a system requires, the more adaptable
the system is. Therefore reducing the number of devices used in a system is an
engineering matter, which provides several advantages including maintenance
ease.

As an example, when we consider a remote reading infrastructure having
32 meters, an implemented 4-port multi-port device will be able to decrease the
number of modems and phone lines to 8. This type of a reduction in the system
will be more remarkable if the number of ports of implemented multi-port device

is expanded to 8.

Moreover, if the implemented multi-port device is connected to a PC
together with digital electricity meters as shown in Figure — 1.5, this application
will provide two-way file transfer between the main PC and the remote PC. The
readout data of a meter contains all the information that the meter has, such as all
energy registers according to tariff measurements and their old values, all mean
power values, instantaneous date and time, meter serial number, error code giving
the current situation of the meter, etc. With regard to that, the readout data of the
meters or some evaluation reports of this readout data may be necessary to be
shared between the remote ends. Under the circumstances this two-way file
transfer opportunity can simplify this process fairly.

The system constructed in the scope of this thesis will be explained in next
chapters by giving the details about operating principles of used components and
devices, designing of multi-port device and code implementation.

First of all, the basics of serial communication and RS 232 standard, which
constitute the base of interface between multi-port device and peripherals such as
digital electricity meters and computers, will be explained in Chapter 2. After that
the PIC 16F877, which is the microcontroller used in the multi-port device, will
be explained in Chapter 3. Then the fundamentals of serial communication with
the microcontrollers, which is the main issue performed by the multi-port device,
will be explained in details in Chapter 4. Finally, the developed remote access
software, modems, implemented multi-port device and digital electricity meters,
which are the main parts of the system, will be described in Chapter 5.

The source code of developed remote access software written by using
Delphi 7.0 is presented in Appendix A and the code of PIC 16F877
microcontroller, which is written by using PicBasic Pro, is presented in Appendix
B. In Appendix C the user manual of multi-port device is given. The Appendix D
includes the details of Xmodem, which is the protocol used for the file transfer
between main PC and remote PC. The final appendix gives the serial
communication modes in PicBasic Pro, which is explained in Chapter 4.

CHAPTER 2

DATA COMMUNICATION INTERFACE

2.1 Introduction

SCI is an abbreviation for Serial Communication Interface, as a special
subsystem, and it exists on most microcontrollers. In the early 1960s, a standards
committee, today known as the Electronic Industries Association, developed a
common interface standard for data communications equipment. At that time, data
communications was thought to mean digital data exchange between a centrally
located mainframe computer and a remote computer terminal, or possibly between
two terminals without a computer involved. These devices were linked by
telephone voice lines, and consequently required a modem at each end for signal
translation. While simple in concept, the chances for data errors that could occur
when transmitting data through an analog channel are considerably high and
therefore transmission over phone lines require a relatively complex design. It was
thought that a standard was needed first to ensure reliable communication, and
second to enable the interconnection of equipment produced by different
manufacturers. From these ideas, the RS232 standard, which is the short of
Recommended Standard-232, was born. It specified signal voltages, signal timing,
signal function, a protocol for information exchange, and mechanical connectors.

Over the 40 years since this standard was developed, the Electronic
Industries Association published three modifications, the most recent being the
EIA232E standard introduced in 1991 [Ref. 12]. Besides changing the name from
RS232 to EIA232, some signal lines were renamed and various new ones were

defined, including a shield conductor.

10

2.2 EIA232 Standard

If the full EIA232 standard is implemented, the equipment at the far end of
the connection, which is named as DTE device (Data Terminal Equipment,
usually a computer or terminal), has a male DB25 connector, and utilizes 22 of the
25 available pins for signals or ground. Equipment at the near end of the
connection (the telephone line interface), which is named as DCE device (Data
Circuit-terminating Equipment, usually a modem), has a female DB25 connector,
and utilizes the same 22 available pins for signals and ground. The cable linking
DTE and DCE devices is a parallel straight-through cable. If all devices exactly
followed this standard, all cables would be identical, and there would be no
chance that an incorrectly wired cable could be used. Figure — 2.1 shows the

orientation and connector types for DTE and DCE devices:

Computer
P Telephone
E tale DEZS Female DEZS Line
Interface
= . . Cahle
o) ==l =1 [P | b:,:ﬂ%‘ | _____
==l O
Data Daa
Termminal Grcuittetminating
Equiprn et Equiipristt

Figure — 2.1 DTE and DCE

Figure — 2.1 also shows EIA232 communication function and connector
types for a personal computer and modem. DCE devices are sometimes called
“Data Communications Equipment” instead of Data Circuit-terminating
Equipment [Ref. 3].

11

DBZ25 Male

ac, Clear to Send Thigld /Tat hMode
Sec. Receivad Line I 25 Transmitter Signa Timing
Signal Detect [DTE Source)

N

’ Data Sgnal Rake Sl ector

(un2ssigned) ""“"-.1 1 \. /I/

23

/

reserved for testin
I: el 10 I ___,....--'Ring Indicatar

2
d for testi
(rEsary rtesting) “——— ¢~ Remote Loophack
[F=ceived Line —_—r
Sighal Detact 20~ DTE Reacly

7
Signal Growund — 173 5or . Request ta Send

<]
DCE Reacly —~ 15t Laocal Loopbadk

7

—_

Clear o Send " " Receiver Signal Timing

(DE Source)

—_

Request to Send -

ZFTTLTLNN

\/__,

w

e

Sec. Feceived Data
Received Data /

Transmitted Data / (DE Source)

\\ Trarsmitter Fgnal Timing

Shield Sac. Trahsmitted Daka

& -alf}—— Feceived by 0 TE Device
—e~ Tzt ed from DTE Device

Figure — 2.2 DB25 Male DTE device connector

DBE? Male
Shisdd

Signal Ground
q e ?#,,....- Fing Indicator

DTE Ready w4
g —— Clear to Send

Transmitted Data -3
B
Received Data ——=2 Request to Serd

!
Received Line Sgnal Detect =~ "™~ DCE Ready

& -aif}— [Feceived by D TE Device
o~ Transmitted from DTE D evice

Figure — 2.3 DB9 Male DTE device connector

Figure — 2.2 and Figure — 2.3 is the full EIA232 signal definition for the
DTE device (usually the PC). The most commonly used signals are shown in

bold.
12

DB25 Female Ser. Received Data

Received Data

Shield \1
™~

—— 14 Tramzmitter Sgnal Timing

"’ (IE Source)

=

1
3& OI/:/m’Sec.Trensm'rttad Daa

Clear to Send ""---....,_4)

.

Request to Send -wg. |

%
W

2
Transmitted Data
.,

Receiver Signal Timing

179 (D E Source)

-\

DCE Peady "--5-I—o O‘.‘” S | o2l Loopbaick,
|, oo
Signal Ground _,_._.-?-'-"'3'! i Sec. Jear to Send

20m
Fecsived Line 8" | o,,"_. DTE Ready
Si I O 21
anal b ‘?'T.o O"-!..‘_ - Rem ote Loophadk,
(reserved for testing) -"'""F /O O‘I\EE
Ring Indicator

10
{reserved for testing) / 23

11

o
2

4\""Data Sighal Rate Sedector

[unassigned) 12}3 Q\? \
Sec. Received Line /1 3 ‘Td = Teansmitter Sigrnal Timing
Signal Detea / Shidd (D TE Source)

Sec. Fequest to Send Test Mode

& —atfl——— F=ceived by DTE Device

—e~ Trarzmitted from DTE Device

Figure — 2.4 DB25 Female DCE device connector

DBE? Female

Received Line 3ignal Dated
-
1 .5’ DCE Rﬂﬂdy
Trarsmi tted Data -wgp.
7 e Clear to Send
Feceived Data ——3

a8
DTE Ready o4 e pequest to Send
9

5
Signal Ground =" Ring Indi cator

Shigdd

& -al}—— F=ceived by D TE Device

—e~ Tranzmitted friom DTE Device

Figure — 2.5 DB9 Female DCE device connector

Figure — 2.4 and Figure — 2.5 show the full EIA232 signal definition for
the DCE device (usually the modem). The most commonly used signals are

shown in bold.

13

Many of the 22 signal lines in the EIA232 standard pertain to connections
where the DCE device is a modem, and then are used only when the software
protocol employs them. For any DCE device that is not a modem, or when two
DTE devices are directly linked, fewer signal lines are necessary.

It can be noticed that in the pin-out drawings there is a secondary channel,
which includes a duplicate set of flow-control signals. This secondary channel
provides the management of the remote modem, enables retransmission when a
parity error is detected and also provides other control functions. Furthermore, it
enables baud rates to be changed during the flow. This secondary channel, when
used, is typically set to operate at a very low baud rate in comparison with the
primary channel to ensure reliability in the control path. In addition, it may
operate as either a simplex, half-duplex, or full-duplex channel, depending on the
capabilities of the modem [Ref. 3].

Transmitter and receiver timing signals (pins 15, 17, and 24) are used only
for a synchronous transmission protocol. For the standard asynchronous 8-bit
protocol, external timing signals are unnecessary.

Signal names that imply a direction, such as Transmit Data and Receive
Data, are named according to DTE device. If the EIA232 standard were strictly
followed, these signals would have the same name for the same pin number on the
DCE side as well. Unfortunately, most engineers do not do this in practice,
probably because no one pays attention to which side is DTE and which is DCE.
As a result, direction-sensitive signal names are changed at the DCE side to reflect
their drive direction at DCE. Figure — 2.6 gives the conventional usage of signal

names:

14

DTE DCE

Side Side
2 Transmitted Data - [oceived Data 2
3 RecgivedDaa - Trazmitted Data 3
4 Request to Send - Joxw to Send 4
5% Jdearto send -l Request to Send 5
14 Zec Transmitted Data - Goc Recaived Daa 14
16 Zec Received Datn -l ec. Transmitted Data 16
19 Sec Request to Send - oo Clear to Send 19
13 sec. desrtodend -l Sec. Fequest to Send 13

Figure — 2.6 Conventional usage of signal names

2.3 EIA232 Signal Functions

Signal functions in the EIA232 standard can be divided into six
subcategories. These categories are summarized as below. After that each signal
category is described more comprehensively.

1 - Signal ground and shield.

2 - Primary communications channel: This is used for data
interchange and includes flow control signals.

3 - Secondary communications channel: If implemented, this is
used for control of the remote modem, requests for retransmission when errors
occur.

4 - Modem status and control signals: These signals indicate
modem status and provide intermediate checkpoints as the telephone voice
channel is established.

5 - Transmitter and receiver timing signals: If a synchronous
protocol is used, these signals provide timing information for the transmitter and

receiver, which may operate at different baud rates.

15

6 - Channel test signals: Before data is interchanged, the channel
may be tested for its integrity, and the baud rate automatically adjusted to the

maximum rate that the channel could support.

2.3.1 Signal Ground and Shield

Pin 7, pin 1, and the shell are included in this category. Cables provide
separate paths for each, but internal wiring often connects pin 1 and the cable

shell/shield to signal ground on pin 7.

Pin 7 — Ground: All signals are referenced to a common ground, as defined by the

voltage on pin 7. This conductor may or may not be connected to protective
ground inside the DCE device. The existence of a defined ground potential within
the cable makes the EIA232 standard different from a balanced differential

voltage standard, such as EIA530, which provides far greater noise immunity.

2.3.2 Primary Communications Channel

Pin 2 - Transmitted Data (TxD): This signal is active when data is transmitted

from the DTE device to the DCE device. When no data is transmitted, the signal
is held in the mark condition (logic 1, negative voltage).

It should be noted that pin 2 on the DCE device is commonly labeled
“Received Data”, although by the EIA232 standard it should still be called
“Transmitted Data” because the data is thought to be destined for a remote DTE

device.

Pin 3 - Received Data (RxD): This signal is active when the DTE device receives

data from the DCE device. When no data is transmitted, the signal is held in the
mark condition (logic 1, negative voltage).

It should be noted that pin 3 on the DCE device is commonly labeled
“Transmitted Data”, although by the EIA232 standard it should still be called

“Received Data” because the data is thought to arrive from a remote DTE device.

16

Pin 4 - Request to Send (RTS): This signal is changed to space condition (logic 0,

positive voltage) to prepare the DCE device for accepting transmitted data from
the DTE device. Such preparation might include enabling the receive circuits, or
setting up the channel direction in half-duplex applications. When the DCE is
ready, it acknowledges by changing Clear To Send to positive voltage.

It should be noted that pin 4 on the DCE device is commonly labeled Clear
to Send, although by the EIA232 standard it should still be called Request to Send
because the request is thought to be destined for a remote DTE device.

Pin 5 - Clear to Send (CTS): This signal is changed to space condition (logic 0,

positive voltage) by the DCE device to inform the DTE device that transmission
may begin. RTS and CTS are commonly used as handshaking signals to moderate
the flow of data into the DCE device.

It should be noted that pin 5 on the DCE device is commonly labeled
“Request to Send”, although by the EIA232 standard it should still be called Clear
to Send because the signal is thought to originate from a remote DTE device.

2.3.3 Secondary Communications Channel

Pin 14 - Secondary Transmitted Data (STxD)
Pin 16 - Secondary Received Data (SRxD)
Pin 19 - Secondary Request to Send (SRTS)

Pin 13 - Secondary Clear to Send (SCTS)

These signals are equivalent to the corresponding signals in the primary
communications channel. The baud rate, however, is typically much slower in the

secondary channel for increased reliability.

17

2.3.4 Modem Status and Control Signals

Pin 6 - DCE Ready (DSR): When originating from a modem, this signal is

changed to space condition (logic 0, positive voltage) when the following three
conditions are all satisfied:

1 - The modem is connected to an active telephone line that is “off-hook”,

2 - The modem is in data mode, not voice or dialing mode,

3 - The modem has completed dialing or call setup functions and it is
generating an answer tone.

If the line goes “off-hook”, a fault condition is detected or a voice
connection is established, the DCE Ready signal is changed to mark condition
(logic 1, negative voltage).

If DCE Ready originates from a device other than a modem, it may be
changed to space condition to indicate that the device is turned on and ready to
function, or it may not be used at all. If unused, DCE Ready should be
permanently held in space condition (logic 0, positive voltage) within the DCE
device or by use of a self-connect jumper in the cable. Alternatively, the DTE

device may be programmed to ignore this signal.

Pin 20 - DTE Ready (DTR): This signal is changed to space condition (logic 0,

positive voltage) by the DTE device when it wishes to open a communication
channel. If the DCE device is a modem, changing DTE Ready to space condition
prepares the modem to be connected to the telephone circuit, and once connected,
maintains the connection. When DTE Ready is changed to mark condition (logic
1, negative voltage), the modem is switched to "on-hook™ to terminate the
connection.

If the DCE device is not a modem, it may require DTE Ready to be
changed to space condition before the device can be used, or it may ignore DTE
Ready altogether. If the DCE device (for example, a printer) is not responding,

confirm that DTE Ready is changed to space condition.

Pin 8 - Received Line Signal Detector (CD): It is also called carrier detect. This

signal is relevant when the DCE device is a modem. It is changed to space
18

condition (logic 0, positive voltage) by the modem when the telephone line is
“off-hook”, a connection has been established, and an answer tone is being
received from the remote modem. The signal is changed to mark condition when
no answer tone is being received, or when the answer tone is of inadequate quality

to meet the local modem's requirements (perhaps due to a noisy channel).

Pin 12 - Secondary Received Line Signal Detector (SCD): This signal is

equivalent to the Received Line Signal Detector (pin 8), but refers to the

secondary channel.

Pin 22 - Ring Indicator (RI): This signal is relevant when the DCE device is a

modem, and is changed to space condition (logic O, positive voltage) when a
ringing signal is being received from the telephone line. The time of holding in
space condition for this signal will approximately equal the duration of the ring
signal, and it will be held in mark condition between rings or when no ringing is

present.

Pin 23 - Data Signal Rate Selector: This signal may originate either in the DTE or

DCE devices (but not both), and is used to select one of two prearranged baud

rates. The space condition (logic 0, positive voltage) selects the higher baud rate.

2.3.5 Transmitter and Receiver Timing Signals

Pin 15 - Transmitter Signal Element Timing (TC): It is also called Transmitter

Clock. This signal is relevant only when the DCE device is a modem and is
operating with a synchronous protocol. The modem generates this clock signal to
control exactly the rate at which data is sent on Transmitted Data (pin 2) from the
DTE device to the DCE device. The logic 1 to logic 0 (negative voltage to
positive voltage) transition on this line causes a corresponding transition to the
next data element on the Transmitted Data line. The modem generates this signal

continuously, except when it is performing internal diagnostic functions.

19

Pin 17 - Receiver Signal Element Timing (RC): It is also called Receiver Clock.

This signal is similar to TC described above, except that it provides timing

information for the DTE receiver.

Pin 24 - Transmitter Signal Element Timing (ETC): It is also called External

Transmitter Clock. Timing signals are provided by the DTE device for use by a
modem. This signal is used only when TC and RC (pins 15 and 17) are not in use.
The logic 1 to logic 0 transition (negative voltage to positive voltage) indicates the
time-center of the data element. Timing signals will be provided whenever the

DTE is turned on, regardless of other signal conditions.

2.3.6 Channel Test Signals

Pin 18 - Local Loopback (LL): This signal is generated by the DTE device and is
used to place the modem into a test state. When local loopback is changed to
space condition (logic 0, positive voltage), the modem redirects its modulated
output signal, which is normally fed into the telephone line, back into its receive
circuitry. This enables data generated by the DTE to be echoed back through the
local modem to check the condition of the modem circuitry. The modem changes
its Test Mode signal on Pin 25 to space condition in order to acknowledge that it

has been placed in local loopback condition.

Pin 21 - Remote Loopback (RL): This signal is generated by the DTE device and

is used to place the remote modem into a test state. When remote loopback is
changed to space condition (logic 0, positive voltage), the remote modem
redirects its received data back to its transmitted data input, thereby re-modulating
the received data and returning it to its source. When the DTE initiates such a test,
transmitted data is passed through the local modem, the telephone line, the remote
modem, and back, to exercise the channel and confirm its integrity. The remote
modem signals the local modem to change pin 25 to space condition when the

remote loopback test is in progress.

20

Pin 25 - Test Mode (TM): This signal is relevant only when the DCE device is a

modem. When changed to space condition (logic 0, positive voltage), it indicates
that the modem is in a local loopback or remote loopback condition. Other
internal self-test conditions may also cause Test Mode to be changed to space

condition.

2.4 Electrical Standards

The EIA232 standard uses negative, bipolar logic in which a negative
voltage signal represents logic 1, and positive voltage represents logic 0. This
probably originated with the pre-RS232 current loop standard used in 1950s
teletype machines in which a flowing current (and hence a low voltage) represents
logic 1. Be aware that the negative logic assignment of EIA232 is the reverse of
that found in most modern digital circuit designs.

The EIA232 standard includes a common ground reference on Pin 7, and
is frequently joined to Pin 1 and a circular shield that surrounds all 25-cable
conductors. Data, timing, and control signal voltages are measured with respect to
this common ground. EIA232 cannot be used in applications where the equipment
on opposite ends of the connection must be electrically isolated. Optical isolators
may be used to achieve ground isolation, however, this option is not mentioned or
included in the EIA232 specification [Ref. 3].

Free line Free line

Figure —2.7 Non-Return to Zero format

Standard NRZ (Non Return to Zero) format is also known as 8 (9)-N-1 (8
or 9 data bits, with/without parity bit and with one stop bit). Free line is defined as

21

the status of logic 1. Start of transmission - Start Bit, has the status of logic 0. The
data bits follow the start bit (the first bit is the low significant bit-LSB), and after
the bits we place the Stop Bit as logic 1. If there is no more data coming then the
receive line will stay in idle state (logic 1). There is another signal called as Break
Signal. This is when the data line is held in a logic O state for a time long enough
to send an entire word. Therefore if the line is not put back into an idle state, then
the receiving end will interpret this as a break signal.

The duration of the stop bit “T” depends on the transmission rate and is
adjusted according to the needs of the transmission. For the transmission speed of
9600 baud, T is 104 uS.

22

CHAPTER 3

PIC 16F877 MICROCONTROLLER

3.1 General Overview to Microcontrollers

13 8
Diada Bus ; PCRTA
FLASH Program Cauntar - 1
Memony —
8 Lavel Slack RF-::] T
[13+-bif) :
Pragram
g RRAM Addrl) u:]
Insiruction reg I
[—
Oires Addr 7 4
7 -
|
a
= PORTC
Powar-up N
hvi Timar M
Instruction O=cillabar] I
Doccds 8 [| Start-up Timar ALL 1
Control N
Powar-on)
FiEsat B n
Timing Wabchda
Eq:::' Generaon = Timar ¥ PORTD
DFCICLEIN Brown-cut 1
CECHCLEOUT Rosat N
Ir-Circutl ¥
Osbugger —y 5
Lew-\cllage B
Pregramming Parallal Stave Pertf ¥
o
PORTE
MCLR oo, Vas -—pﬂ
— | | H~&
&
Timeell Timari Timer2 10-bit AT
Synchronous
Cinta EEFRGM coez Seral Pert USART

Figure — 3.1 PIC 16F877 Block Diagram [Ref. 8]

RADIAND
RATANT
RAZANZVRE-
RAJANIVREF+
RAATOGKI
RASIANA/ES

RBOANT
RB1

RBZ2
REIPGM
RB4

RB3
RESIFEE
RETIPGD

RCUTICSONT 1 CH)
RCUTIOSINCCRZ
RC2ICCM
RCASCKISCL
RCAMSDUVSDA
RCISE00
RCBITHICK
RCTRXDT

ROMVPEPDR
RO1PSP1
ROZP5P2
ROIPSP3
RO4PSP4
RDEPEPE
RDEPSPE
ROTPSPT

REMANSHALT

23

Microcontroller is a single integrated circuit containing specialized circuits
and functions that are applicable to intelligent and control based systems. The
microcontrollers are low-cost and high performance devices and mostly use
Reduced Instruction Set Computer (RISC) architecture. The core blocks of a
microcontroller are similar to those of a microprocessor. The main difference
between microprocessor and microcontroller is that microcontrollers also
incorporate onboard RAM, EPROM (for program and data storage), and
peripherals, which would be externally interfaced on a microprocessor system.
This arrangement simplifies the design of microcontroller systems. On the other
hand, the peripherals are generally simpler than external device and the amount of
available memory would be much smaller [Ref. 2].

Figure — 3.1 shows the layout of architecture of the PIC 16F877
microcontroller [Ref. 8], which is manufactured by Microchip Technology. The
key features of the PIC 16F877 microcontroller are shown in the Table — 3.1

below.

Table — 3.1 Basic features of PIC 16F877

Key Features PIC 16F877

Operating Frequency

DC-20 MHz

Resets (and Delays)

POR, BOR (PWRT, OST)

FLASH Program Memory 8K X 14bit
Data Memory 368 bytes
EEPROM Data Memory 256 bytes
Interrupts 14
1/0 Ports Ports A,B,C,D,E
Timers 3
Serial Communication MSSP, USART
Capture/Compare/PWM Modules 2
Parallel Communications PSP

10-bit Analog-to-Digital Module

8 input channels

Instruction Set

35 instructions

24

3.1.1 Program Counter and Program Memory EPROM

The program counter is used to fetch each instruction in order.
Modifications to the program counter by JUMP instructions affect program flow.
Program memory is addressed word-wise, rather than byte-wise, so the first
instruction is located at 0x000, the second at 0x001, etc. Program memory is
organized into pages. Memory pages can be selected using the PCLATH register.
There are three memory blocks in each of the PIC16F877 microcontrollers. The
Program Memory and Data Memory have separated buses so that concurrent
access can occur. The PIC16F877 microcontrollers have a 13-bit program counter
capable of addressing an 8K x 14 program memory space. That means that the
PIC 16F877 microcontrollers have 8K x 14 words of FLASH program memory
[Ref. 8].

As mentioned before, the program counter (PC) is 13-bits wide. The low
byte comes from the PCL register, which is a readable and writable register. The
upper 4 bits are not readable, but are indirectly writable through the PCLATH
register. On any RESET, the upper 5 bits of the PC will be cleared. Figure — 3.2
shows the two situations for the loading of the PC. The upper example in the
figure shows how the PC is loaded on a write to PCL and the lower example in
the figure shows how the PC is loaded during a CALL or GOTO instruction.

PO ACL

12 8 7 i

y Instruction with
F'-:'.| ' | BCl a5
..-_. Dgg-'na-'gn
T TH=d-0 a8
5 PCLATH=4:0> | ALL
LTI T TP T]
PCLATH
PCH PCL
12 11 E T 1]
PC | | | @omo, carn
L T _PoLaTHea:3> RE
Opcode <10:0=

s

PCLATH

Figure — 3.2 Two situations of loading PC

25

The PIC 16F877 microcontrollers have an 8-level deep and 13-bit wide
hardware stack, which operates as a circular buffer. The stack space is not a part
of neither program space nor data space and the stack pointer is not readable or
writable. The PC is pushed onto the stack when a CALL instruction is executed,
or an interrupt causes a branch. The stack is popped in the event of a RETURN, a
RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH

or POP operation.

3.1.2 Data RAM

Data RAM is organized as file registers (usually 8 bit) which are both
readable and writable. Data RAM can be used to hold data for calculations,
temporary variable storage, or user settings. The data memory of the PIC 16F877
microcontroller is partitioned into multiple banks each of which has 128 bytes
long. A specific bank can be selected by setting special bits (RPO and RP1) of the
STATUS register. All implemented banks contain Special Function Registers,
which may be mirrored in another bank for code reduction and quicker access.
Special Function Registers are registers used by CPU and peripheral modules for
controlling the desired operation of the device. These registers, which are
implemented as static RAM, can be classified into two groups: core (CPU) and

peripheral.

3.1.3 Arithmetic Logic Unit

Actual arithmetic instructions (add, subtract, shift, AND, OR, etc.) are
carried out here. The results of arithmetic instructions are generally stored in the
working (W) register, although some instructions allow a file register to be
operated on directly. The contents of the W register can be transferred to the 1/0

ports, or used as an indirect address to access program or data memory.

26

3.1.4 1/O ports

The PIC 16F877 microcontroller is 40-pin device as shown in Figure — 3.3
[Ref. 8]. Vyg and Vg pins provide power and ground references, respectively.
There are two ports for external oscillator connection. The Master Clear/Reset pin
(MCLR) is used to reset the PIC device externally. This could be tied to a system-
reset circuit. If no external reset is used, the pin should be tied to V4. The PIC
16F877 microcontroller has A (6 pins), B (8 pins), C (8 pins), D (8 pins) and E (3
pins) ports, totally 33 pins.

FIC1EF&77
O “MCLR A pp - REF/PGD
O RADASMO REG/PGC A
O RA1AAN1 RESA
O RA2AANEAdnef- RE4
O RA3AAN 3 A ef+ RE3/PGM 1
O RA4/TOCK REZ2A
O RAS/AAN4M55 RE1O
O REOARDAANG REOANT 3
O RE1AWR/ANE Ydd 1
O RE2ALCS AANT Yz [
O %dd ROD7/PSPY O
R RDE/PSPE
O O5C1/CLEIN RDE/PSPE
O oscz/cukouTt RD4/PSP4
ORCOTIOSOLTICKED RCFAR/DT O
O RC1/T10SI/CCRPZ RCE/T=/CK.A
O RC2/CCHA RC5/500
O RC3/5CKASCL RC4501/504
O RDOPSPO RD3/PSPIE
ORD1APSM RDE/PSPEE

Figure — 3.3 PDIP package

The generic 1/0 ports are bidirectional pins that can be set up for input (the
microcontroller reads the data on the pins) or output (the microcontroller sets the
value on the pins) by the code. For output, each pin has an internal latch to drive
the output. Some 1/0O ports are multiplexed with the onboard peripherals. Some
pins for these I/O ports are multiplexed with an alternate function for the
peripheral features on the device. The function of the pin (input, output, or
peripheral) is determined by internal control registers. In general, when a

peripheral is enabled, that pin may not be used as a general purpose 1/O pin.

27

3.1.4.1 PORTA and the TRISA Register

PORTA is a 6-bit wide, bi-directional port and the corresponding data
direction register is TRISA. Setting a TRISA bit (one) will make the
corresponding PORTA pin an input (i.e., put the corresponding output driver in a
Hi-Impedance mode). Clearing a TRISA bit (zero) will make the corresponding
PORTA pin an output (i.e., put the contents of the output latch on the selected
pin). Reading the PORTA register reads the status of the pins, whereas writing to
it will write to the port latch. All write operations are read-modify-write
operations. Pin RA4 is multiplexed with the TimerO module clock input. This pin
Is a Schmitt Trigger input and an open drain output. All other PORTA pins have
TTL input levels and full CMOS output drivers. Other PORTA pins are
multiplexed with analog inputs and analog VREF input. The operation of each pin
is selected by clearing or setting the control bits in the ADCONL1 register (A/D
Control Registerl). It should be noted that on a Power-on Reset (POR), these pins
are configured as analog inputs and read as '0". The TRISA register controls the

direction of the RA pins, when they are being used as analog inputs.

3.1.4.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bi-directional port and the corresponding data
direction register is TRISB. Three pins of PORTB are multiplexed with the Low
Voltage Programming function. Each of the PORTB pins has a weak internal pull-
up. A single control bit can turn on all the pull-ups. This is performed by clearing
bit RBPU (bit 7 of OPTION_REG register). The weak pull-up is automatically
turned off when the port pin is configured as an output. The pull-ups are disabled
on a Power-on Reset.

Four of the PORTB pins (RB4, RB5, RB6 and RB7) have an interrupt-on-
change feature. Only pins configured as inputs can cause this interrupt to occur.
These input pins are compared with the old value latched on the last read of

PORTB. The mismatched outputs of these pins are OR’ed together to generate the

28

RB Port Change Interrupt with flag bit RBIF (bit 0 of INTCON register). This
interrupt can wake the device from SLEEP. In the Interrupt Service Routine the
interrupt can be cleared in the following manner:

a) Any read from or write to PORTB.

b) Clear flag bit RBIF.

This interrupt-on-mismatch feature, together with software configurable
pull-ups on these four pins, allow easy interface to a keypad and make it possible
for wake-up on key depression. RBO is an external interrupt input pin and is
configured using the INTEDG bit (bit 6 of OPTION_REG register).

3.1.4.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bi-directional port and the corresponding data
direction register is TRISC. PORTC is multiplexed with several peripheral
functions, and PORTC pins have Schmitt Trigger input buffers. When enabling
peripheral functions, care should be taken in defining TRIS bits for each PORTC
pin. Some peripherals override the TRISC bit to make a pin an output, while other
peripherals override the TRISC bit to make a pin an input. Since the TRISC bit
override is in effect while the peripheral is enabled, read-modify-write
instructions (BSF, BCF, XORWF) with TRISC as destination, should be avoided.

3.1.4.4 PORTD and TRISD Registers

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is
individually configurable as an input or output. PORTD can be configured as an
8-bit wide microprocessor port (parallel slave port) by setting control bit
PSPMODE (bit 4 of TRISE register). In this mode, the input buffers are TTL.

3.1.45 PORTE and TRISE Register

PORTE has three pins, which are individually configurable as inputs or
outputs. These pins have Schmitt Trigger input buffers. The PORTE pins become

the 1/0 control inputs for the microprocessor port when bit PSPMODE is set. In
29

this mode, the user must make certain that the bit 0, bit 1 and bit 2 of TRISE are
set, and that these pins are made digital inputs by configuring ADCONL1 register.
In this mode, the input buffers are TTL. TRISE register also controls the parallel
slave port operation. PORTE pins are multiplexed with analog inputs. When
selected for analog input, these pins will read as *0’s. The user must make sure to
keep the pins configured as inputs when using them as analog inputs. On a Power-

on Reset, these pins are configured as analog inputs, and read as ‘0’.

3.1.5 Peripherals

There are many peripherals that maybe included on the chip. The various

types included by the PIC 16F877 microcontroller are summarized below:

m Analog to Digital Converters: Analog inputs on some pins are converted to a
digital value, which can then be processed by the microcontroller. This is useful
for obtaining data from external devices like thermistors, accelerometers, and
other sensors. The PIC 16F877 microcontroller has 10-bit ADC module with 8
input channels.

The analog input charges a sample and hold capacitor. The output of the
sample and hold capacitor is the input into the converter. The converter then
generates a digital result of this analog level via successive approximation. The
A/D conversion of the analog input signal results in a corresponding 10-bit digital
number. The A/D module has high and low voltage reference input that is
software selectable to some combination of VDD, VSS, RA2, or RA3.

The A/D converter has a unique feature of being able to operate while the
device is in SLEEP mode. To operate in SLEEP, the A/D clock must be derived
from the A/D’s internal RC oscillator.

The A/D module has four registers. These registers are:

» A/D Result High Register (ADRESH)
* A/D Result Low Register (ADRESL)
» A/D Control Register0 (ADCONO)
» A/D Control Registerl (ADCON1)

30

The ADCONO register controls the operation of the A/D module. The
ADCONL register configures the functions of the port pins.

m Universal Synchronous/Asynchronous Receiver/Transmitter (USART):
This device allows the microcontroller to interface serially with other devices
through protocols such as RS232. The PIC 16F877 microcontroller USART
module will be explained comprehensively in Chapter 4.

m Master Synchronous Serial Port (MSSP): This module provides a mode in
which Data bus, RD, WR, and Chip Select are all made available. This allows the
microcontroller to be interfaced to a microprocessor, a microcontroller or a
peripheral, which may be a serial EEPROM, shift register, display drivers, A/D
converters, etc. The MSSP module can operate in one of two modes, such as
Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (1°C). The I1°C bus is
a proprietary serial bus developed by Microchip Technology. Not all
microcontrollers have both 1°C Master function and 1°C Slave function, but
16F877 has.

m Timers: Timers can be used to time events. Timers have an advantage over
merely using wait loops in that other processing can take place while the timer is
running. 16F877 has three independent timers.

Timer 0 has the following features:

* 8-bit timer/counter

* Readable and writable

» Software programmable prescaler

* Internal or external clock select

* Interrupt on overflow from FFh to 00h

* Edge select for external clock

Timer 1 has the following features:
* 16-bit timer/counter consisting of two 8-bit registers (TMR1H, TMR1L)

31

* Readable and writable

* Software programmable prescaler

* Internal or external clock select

* Interrupt on overflow from FFFFh to 0000h

Timer 2 has the following features:

* 8-bit timer/counter

* Readable and writable

» Software programmable prescaler and postscaler

* Interrupt on overflow from FFh to 00h

m Capture/Compare/PWM (CCP): This module allows the microcontroller to
watch an input until it reaches a certain value, then take some action. It is
especially useful for implementing Pulse Width Modulation (PWM) schemes. The
PIC 16F877 microcontroller has two CCP module, each contains 16-bit register

which can operate as a:

* 16-bit Capture register
* 16-bit Compare register
* PWM Master/Slave Duty Cycle register

Both the CCP1 and CCP2 modules are identical in operation, with the

exception being the operation of the special event trigger.

3.2 Microcontroller Programming Procedure

During this thesis study MicroCode Studio programming environment was
used to compose the code and to load it to the microcontroller. MicroCode Studio
is a powerful, visual Integrated Development Environment (IDE) with In Circuit
Debugging (ICD) capability with PicBasic PRO compiler [Ref. 9]. The code
explorer allows the user to automatically jump to include files, defines, constants,

32

variables, aliases and modifiers, symbols and labels that are contained within the
source code. It is easy for a user to set up the compiler, assembler and
programmer options or the user can let MicroCode Studio do it for him with its
built in auto-search feature. Compilation and assembler errors can easily be
identified and corrected using the error results window. MicroCode Studio even
provides a serial communications window.

The In Circuit Debugger (ICD) enables the user to execute a PicBasic
Program on a host PIC microcontroller and view variable values, Special Function
Registers (SFR), memory and EEPROM as the program is executing. The user
can toggle multiple breakpoints and step through the PicBasic code line by line.

PicBasic programming language, which can be defined as compiler in
MicroCode Studio, has nearly 100 different and powerful commands. These
commands were determined according to the microcontroller needs, so PicBasic
helps the user to write powerful codes much simpler than assembly. MicroCode
Studio can be obtained from the following web page [Ref. 16]:

http://www.mecanique.co.uk/code-studio/

After compiling the PicBasic code in MicroCode Studio, hex code is
created automatically. This hex code is sent to microcontroller via ICProg PIC
programmer, which can be defined as programmer in MicroCode Studio
optionally. ICProg allows the user to program all types of serial programmable
Integrated Circuits as 12Cxx, 16Cxxx, 16Fxx, 16F87x, 18Fxxx, 16F7x, 24CxX,
93Cxx, 90Sxxx, 59Cxx, 89Cx051, 89S53, 250x0, PIC, AVR, 80C51 etc. using
Windows 95/98/NT/2000/ME/XP. ICProg or other equivalent PIC programmers
can be obtained from Internet easily.

33

CHAPTER 4

SERIAL COMMUNICATION WITH MICROCONTROLLERS

4.1 Introduction

There are two modules embedded in the PIC 16F877 microcontrollers for
serial communication purpose. These are USART (Universal Synchronous
Asynchronous Receive Transmit) module and MSSP (Master Synchronous Serial
Port) module. The USART module is mainly used in order to interface the
microcontroller with a peripheral device with RS 232. That is why the USART
module is in the scope of this thesis and it is implemented in order to perform the
serial communication between the main PC and the implemented multi-port
device. Whereas the MSSP module is mainly functioned for communicating with
other microcontroller devices and peripherals, such as serial EEPROMSs, shift
registers, display drivers, A/D converters, etc. So the MSSP module is not covered
in this thesis.

In addition to these two serial communication modules, the ordinary 1/O
pins can be used for serial communication purpose thanks to the advanced 1/0
features of the PIC 16F877 microcontroller. This technique is named as inverted
logic level method. The serial communication between the implemented multi-
port device and the digital electricity meters and the remote PC is performed over
the 8 RB pins by using this inverted logic level technology. Hereafter the details

of the USART module and inverted logic level technology will be explained.

4.2 USART Module

The Universal Synchronous Asynchronous Receiver Transmitter
(USART) module is one of the two serial 1/0 modules embedded in PIC 16F877
microcontrollers. The USART, which is also known as a Serial Communications

34

Interface or SCI, can be configured as a full duplex asynchronous system that can
communicate with peripheral devices such as CRT terminals and personal
computers, or it can be configured as a half duplex synchronous system that can
communicate with peripheral devices such as A/D or D/A integrated circuits,
serial EEPROMSs etc.
The USART module can be configured in the following modes:

- Asynchronous (full duplex)

- Synchronous - Master (half duplex)

- Synchronous - Slave (half duplex)

Bit 7 of RCSTA register and bit 7 and bit 6 of TRISC registers have to be
set in order to configure pins RC6 and RC7 as the Universal Synchronous
Asynchronous Receiver Transmitter.

As mentioned previously, because of the mismatch between the
TTL/CMOS signal level and RS 232 signal level, the serial data communication
between a microcontroller and a peripheral device with RS 232 interface, via
USART module must be fulfilled over a level converter device. So before giving
the details of USART module, it should be better to explain signal level

conversion process.

4.2.1 Signal Level Conversion

In order to connect a microcontroller to the serial port of a peripheral
device (EIA 232 or RS 232) properly, we need to adjust the level of the signal.
The signal level on the serial port of a PC is —10 V for logic zero, and +10 V for
logic one as shown in Figure — 4.1 and 4.2. Since the signal level on the
microcontroller is +5 V for logic one, and 0 V for logic zero, we need an
intermediary stage that will convert the levels. There are some chips specially
designed for this task. These chips receive signals from -10 to +10 V and convert
them into 0 and 5 V [Ref. 1].

35

Logic '1' —

Logic 0"

Mark

Start) 0 | 1| 213|435 6|7 |stp

+5V

ov

Figure — 4.1 TT/CMOS Serial Logic Waveform

Space

Start) 0 | 1| 2| 3|4 | 35| 6|7 |Stop

Figure — 4.2 RS-232 Logic Waveform

Vatage 1
r+25 T
Space Space
Logic 0"
= 3w
Tranzition [Region -
— }- Tirne
Logic'1’ - hark
- 2Ew T

Figure — 4.3 Logical Regions of signal

-10%

+10%V

Voltages of -3 V to —25 V with respect to signal ground pin are considered

logic 1 (the marking condition), whereas voltages of +3 V to +25 V are

considered as logic 0 (the spacing condition) as shown in Figure — 4.3. The range

of voltages between =3 V and +3 V is considered a transition region for which a

signal state is not assigned.
Two common RS-232 Level Converters are the 1488 RS-232 Driver and

the 1489 RS-232 Receiver. Each package contains 4 inverters, but only one type,

either Drivers or Receivers. The driver requires two supply rails, +7.5 to +15 V

and -7.5 to —15 V. As it could be understood this may be a problem in many

36

instances where only a single supply of +5 V is present. However the advantages
of these 1.C.’s are their cheapness [Ref. 3].

Another device is the MAX 232, which is used in the implemented multi-
port device. It includes a charge pump, which generates +10 V and —10 V from a
single 5 V supply. MAX 232 also includes two receivers and two transmitters in
the same package [Ref. 1]. This is handy in many cases when you only want to
use the Transmit and Receive data lines. And also there is no need to use two

chips, one for the receive line and one for the transmit line.

cl+ 1 — 18 [Jwco
W [] GHD
c1- [] TR1CUT
o+ O I RE1IN
- MM Hepour
w-] 1 TR
TR20UT [1 TR2IM
REZIN [& a [rE20OUT

Figure — 4.4 MAX232 pin diagram

I

oo

16

10pF

1

T2 (v C1+ 1+
4 - ol |3 =T 1OWF
Yy L =
10pF
T 5o | o
MAK 22 =
13 m 17
8 g
RE232 I>: TTL
Qq 10 CMOS
14 Qq 11
15

Figure — 4.5 MAX232 circuit diagram

The large valued capacitors, which are used with level converters, are not
only bulky, but also expensive. Therefore some level converter devices are
available which use smaller capacitors and even some with inbuilt capacitors.
However the MAX-232 is the most common one.

37

4.2.2 The USART Module Asynchronous Mode

In this mode, the USART module uses standard non-return-to zero (NRZ)
format with one START bit, eight or nine data bits, and one STOP bit. The most
common data format is 8-bit. An on-chip, dedicated, 8-bit baud rate generator can
be used to derive standard baud rate frequencies from the oscillator. In order to
define appropriate baud rate according to the employed oscillator it should be
necessary to look at the PIC 16F877 data sheet [Ref. 8].

The USART module transmits and receives the LSB first. The transmitter
and receiver are functionally independent, but use the same data format and baud
rate. Parity is not supported by the hardware, but can be implemented in the
software (and stored as the ninth data bit). Asynchronous mode, which is activated
by clearing bit SYNC (bit 4 of TXSTA register), is stopped during SLEEP.

The USART Asynchronous module consists of the following important
elements:

* Baud Rate Generator
» Sampling Circuit
» Asynchronous Transmitter

* Asynchronous Receiver

In PicBasic Pro, the parameters of USART module, which affects both
USART receiver and transmitter, must be declared at the beginning of the

program with “Define” commands as below [Ref. 5 and 6]:

Define HSER_EVEN 1 'If even parity desired
Define HSER_ODD 1 'If odd parity desired

Define HSER_BAUD 4800 'USART baud rate

Define HSER_CLROERR 1 ‘Clear USART overrun error

After these declarations, the transmit and receive processes in the code
with commands Hserout and Hserin respectively will be fulfilled according

defined parameters. The default settings of USART in PicBasic Pro module are as

38

8 data bits, none parity, 1 stop bit. Please refer to the PicBasic Pro code in

Appendix B.

4.2.2.1 USART Asynchronous Transmitter

The USART transmitter block diagram is shown in Figure — 4.6. The heart
of the transmitter is the transmit (serial) shift register (TSR). The shift register
obtains its data from the read/write transmit buffer, TXREG. The TXREG register
is loaded with data in software. The TSR register is not loaded until the STOP bit
has been transmitted from the previous load. As soon as the STOP bit is
transmitted, the TSR is loaded with new data from the TXREG register (if
available). Once the TXREG register transfers the data to the TSR register (occurs
in one Tcy), the TXREG register becomes empty and flag bit TXIF (bit 4 of PIR1
register) is set. This interrupt can be enabled/disabled by setting/clearing enable
bit TXIE (bit 4 of PIEL register). Flag bit TXIF will be set, regardless of the state
of enable bit TXIE and cannot be cleared in software. It will reset only when new
data is loaded into the TXREG register. While flag bit TXIF indicates the status of
the TXREG register, another bit TRMT (bit 1 of TXSTA register) shows the
status of the TSR register. Status bit TRMT is a read only bit, which is set when
the TSR register is empty. No interrupt logic is tied to this bit, so the user has to
poll this bit in order to determine if the TSR register is empty. It should be noted
that the TSR register is not mapped in data memory, so it is not available to the
user and flag bit TXIF is set when enable bit TXEN (bit 5 of TXSTA register) is
set, TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN. The actual
transmission will not occur until the TXREG register has been loaded with data
and the baud rate generator (BRG) has produced a shift clock. The transmission
can also be started by first loading the TXREG register and then setting enable bit
TXEN. Normally, when transmission is first started, the TSR register is empty. At
that point, transfer to the TXREG register will result in an immediate transfer to
TSR, resulting in an empty TXREG. A consecutive transfer is thus possible.

Clearing enable bit TXEN during a transmission will cause the transmission to be

39

aborted and will reset the transmitter. As a result, the RC6 pin will revert to hi-

impedance.

]: Data Bus
TXREG Register |
]
""""""""""" L5071
! Fin Buffer
e I:I| " and Control _"IE
__________ TSR Begister _____ ___| RCETAHICK pin
—
|THMT| |EPEH

Baud Rae Generator
Figure — 4.6 USART Transmit Block Diagram

When setting up an Asynchronous Transmission, the following steps are
executed [Ref. 8]:

1 - Initialize the SPBRG register for the appropriate baud rate. If a high-
speed baud rate is desired, set bit BRGH.

2 - Enable the asynchronous serial port by clearing bit SYNC and setting
bit SPEN.

3 - If interrupts are desired, then set enable bit TXIE.

4 - If 9-bit transmission is desired, then set transmit bit TXO.

5 - Enable the transmission by setting bit TXEN, which will also set bit
TXIF.

6 - If 9-bit transmission is selected, the ninth bit should be loaded in bit
TX9D.

7 - Load data to the TXREG register (starts transmission).

8 - If using interrupts, ensure that GIE bit and PEIE bit (bits 7 and 6 of the
INTCON register) are set.

40

It seems that these steps are troublesome a bit. But owing to the “Hserout”
command provided by PicBasic Pro, sending data over USART module becomes
fairly practical. At the beginning of the code, the initiation of transmit over

USART module must be also defined as below:

Define HSER_TXSTA 20h 'USART transmit status init

4.2.2.2 USART Asynchronous Receiver

The receiver block diagram is shown in Figure — 4.7. Once Asynchronous
mode is selected, reception is enabled by setting bit CREN (bit 4 of RCSTA
register). The data is received on the RC7 pin and is passed to the data recovery
block. The data recovery block is actually a high-speed shifter, operating at x16
times the baud rate. Whereas, the main receive serial shifter (RSR) operates at the
baud rate or at Fosc.

After sampling the STOP bit, the received data in the RSR is transferred to
the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (bit 5
of PIR1 register) is set. The actual interrupt can be enabled/disabled by
setting/clearing enable bit RCIE (bit 5 of PIE1 register). Flag bit RCIF is a read
only bit, which is cleared by the hardware. It is cleared when the RCREG register
has been read and is empty. The RCREG is a double-buffered register (that is, it is
a two deep FIFO). It is possible for two bytes of data to be received and
transferred to the RCREG FIFO and a third byte to begin shifting to the RSR
register. On the detection of the STOP bit of the third byte, if the RCREG register
is still full, the overrun error bit OERR (bit 1 of RCSTA register) will be set. The
word in the RSR will be lost. The RCREG register can be read twice to retrieve
the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This
is done by resetting the receive logic (CREN is cleared and then set). If bit OERR
is set, transfers from the RSR register to the RCREG register are inhibited, and no
further data will be received. It is therefore, essential to clear error bit OERR if it
is set. Framing error bit FERR (bit 2 of RCSTA register) is set if a STOP bit is

detected as clear. Bit FERR and the 9th receive bit (RX9D, bit 0 of RCSTA
41

register) are buffered the same way as the receive data. Reading the RCREG will
load bits RX9D and FERR with new values, therefore, it is essential for the user
to read the RCSTA register before reading the RCREG register in order not to
lose the old FERR and RX9D information.

=54 Baud Rate CLK

_________________ | OERH| FERR
! ! CREM
Fose SPBRG ; . l _____ r __________ I _______
! ! | ,-.gFt I MSh RSR Regisier LSh
" " Baud Rate Generator +18 W sTop|@E| T| ess [1]0|sTRRT]!
1 1
RCTIRXOT l P e
Pin Buffer Data .
" and Control Rgcﬂw&r_-.r RX3
‘»._l -
SPEM |RX80| RCREG Register
FIFO
g
Interrupt -~ RCIF Ciata Bus
—

RCI

Figure — 4.7 USART Receive Block Diagram

When setting up an Asynchronous Reception, the following steps are
executed [Ref. 8]:

1 - Initialize the SPBRG register for the appropriate baud rate. If a high-
speed baud rate is desired, set bit BRGH.

2 - Enable the asynchronous serial port by clearing bit SYNC and setting
bit SPEN.

3 - If interrupts are desired, then set enable bit RCIE.

4 - If 9-bit reception is desired, then set bit RX9.

5 - Enable the reception by setting bit CREN.

6 - Flag bit RCIF will be set when reception is complete and an interrupt
will be generated if enable bit RCIE is set.

7 - Read the RCSTA register to get the ninth bit (if enabled) and determine

if any error occurred during reception.
42

8 - Read the 8-bit received data by reading the RCREG register.

9 - If any error occurred, clear the error by clearing enable bit CREN.

10 - If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the
INTCON register are set.

Similar to the USART transmit process, the USART receive process can
be fulfilled very practically by using “Hserin” command provided by PicBasic
Pro. At the beginning of the code, the initiation of transmit over USART module
must be also defined as below:

Define HSER_TXSTA 90h 'USART receive status init

4.3 Inverted Logic

As mentioned previously normal I/O pins can be utilized as serial
communication interface thanks to current RS-232 implementation and the
excellent 1/0 specifications of the PIC 16F877. As a matter of fact, utilizing
ordinary 1/O pins as serial interface is a necessity for this thesis, because the
multi-port device needs at least 5 serial communication interfaces, but the PIC
16F877 has only one USART module.

8 RB pins of PIC 16F877 are allocated for serial interface to digital
electricity meters and remote PC. As it can be seen from the circuit diagram in
Figure — 5.9, there are not any extra component for level conversion other than
resistors between RB pins of the microcontroller and the ports for the peripherals,
so the communication still has voltage level conflict. Under these circumstances
the PIC 16F877 microcontroller provides an effective solution. VVoltage level of an
I/0O pin can be inverted for serial communication purpose by the code. Only
requirement is using resistors in order to limit the current. The pins of the
microcontroller used as Rx are connected to Tx pins of other peripherals over 22
KQ resistors, similarly the pins of microcontroller used as Tx are connected to Rx

of other peripherals over 1 KQ resistors as shown in Figure — 4.8 [Ref. 9].

43

DBY DB25

1K
Pin — AAN— RS5-232 RX Pin 2 Pin 3
RS-232 GND Pin 5 Pin 7
DB9 DB25
22K
Pin —ANANA— RS5-232 TX Pin 3 Pin 2

RS-232 GND Pin 5 Pin 7

Figure — 4.8 Inverted logic connections

There are several commands used in PicBasic Pro in order to transmit or
receive character serially. Serin2 and Serout2 are two of them, which can be
utilized as inverted logic or normal logic according to application and hardware.
Only the number of data-bits and odd parity enabling (if parity is enabled, even
parity is default) of Serout2 and Serin2 commands must be declared at the
beginning of the program as below:

Define SER2_BITS 8 'Set number of data bits
Define SER2_ODD 1 '‘Use odd parity instead of even parity

The usage of Serin2 command in the code is as following [Ref. 5 and 6]:
Serin2 PortB.2,16572,65000,receivernotready,[char]

The above code performs the required procedure in order to receive the
char character over PortB.2. The parameter 16572 is the mode of receiving, which

defines the specifications of receiving such as baud rate, parity enabling, inverted

44

logic or normal logic. The complete table of Serin2 and Serout2 modes is
presented in Appendix E. The number of 65000 is the timeout value (65000
milisec = 65 sec) to receive a character. Please refer to PicBasic code to see the
different usages of Serout2 and Serin2 commands. For the detailed information
about the PicBasic Pro, please look at http://picbasic.com [Ref. 9].

4.4 Comments on Serial Communication with Microcontrollers

According to given explanation, the remarks listed below should be taken
into consideration for properly performing serial communication with
microcontrollers:

- Firstly a stable oscillator should be equipped in the circuit. If 4
MHz Crystal or Resonator oscillator is equipped, that would be enough for proper
data communication at 4800 baud rate. But if internal or RC type oscillator is
used, it would be unlikely to get stable communication above 1200 baud rate [Ref
10].

- Throughout designing level, operating the system starting with
lower baud rates would be a good designing method. After success, the baud rate
should be increased step by step.

- The signal level conversion between TTL/CMOS logic and RS 232
should be fulfilled properly, otherwise nothing can be transmitted or received
between a microcontroller and a peripheral device.

- If a transmission towards a PC is realized, it should be better to
terminate the data packets with a <CR> and <LF> characters. These Carriage
Return and Line Feed characters terminate the data buffer string at the PC and

start a new string with the next data packet.

45

CHAPTER 5

DESCRIPTION OF IMPLEMENTED SYSTEM

As mentioned briefly in Chapter 1, the overall system contains a main PC,
a developed remote access software running on the main PC, one modem
connected to main PC, the multi-port device, another modem connected to the
multi-port device, one remote PC and three digital electricity meters or no remote
PC and four electricity meters. The device connected to the port 1 may be a PC or
a digital electricity meter according to the application. Hereafter the main parts of

the system and their operating principles will be explained one by one.

5.1 Remote Access Software

The remote access software used in the system was developed with Delphi
7.0 by using APRO (Asynchronous Professional) Libraries to perform serial
communication [Ref. 11]. With APRO, the implemented programs can send
alphanumeric characters to anywhere in the world, even across the Internet. The
user can add Dial-Up networking capabilities to the programs easily together with
advanced terminal control, automated scripting for complex communication tasks,
and even multi-user fax server solutions. The software developed in this thesis
mainly uses the Dial-Up networking features of APRO Libraries.

The developed remote access software has two versions, one of them is for
main PC, and the other one is for remote PC. The version operating on remote PC
can be stated as lite version, because it does not have many functions such as
meter remote reading options. This lite version is specified for the Xmodem file
transfer. So the program execution procedure will be explained separately for full

version and lite version.

46

5.1.1 Running of Full Version Remote Access Software

R5232 Share for Meter =100
M[com1 -] [p3123022620 Dial | [FirstMeter ~| Read Device| SetModem Timeout [1000
[Initiate ETP | Set Device Timeout 100
Close Port | Clear Text |
=

B

kil

Break CTS DCD DSR Eror RING RXD TDX
| H E E E E E =

[™ Slave Computer

Send Please select file to be sent =
Receive Please select file to be received =

Figure — 5.1 Main screen of Reading Software on main PC

When the program, which is developed by Delphi 7.0 programming
language and loaded to main PC, is started, the program window shown in Figure
— 5.1 should appear on the screen.

The execution steps of software are described below:

1)- First of all, the serial port of main PC, which will be used for serial
communication, should be selected. The active serial ports are listed in the left
upper box.

2)- Then the phone number, which will be dialed to establish the
communication with the remote side, should be specified in the box at left side of
Dial button.

3)- Next, the timeout values for main PC to modem connection and main
PC to multi-port device should be entered to right upper box. After that, Dial
button can be clicked, thus the “ATDT + Phone Number” command is sent to
modem. Then, if the remote modem and telephone lines are available, the
communication is established and the program starts to send communication

indication string to the multi-port device. After the handshake process between the

47

multi-port device and main PC is completed, the program will receive the port
status of the multi-port device, such as which device is connected to which port. If
the handshake process between main PC and multi-port device, which can
continue 60 seconds at most, fails anyhow, the connection will be closed
automatically by the program. The related indication messages appear on the left
log window.

4)- After the communication is established successfully, the request may
be to perform a remote reading of a meter or to perform a file transfer to the
remote PC.

5)- If the request is to perform a remote reading of a meter, the desired
meter should be selected from the box and then Read Device button should be
clicked. If the meter is not password protected and also connected to the port
properly, the readout data will be listed in reading window on the left. The readout
data can be written to a text file by clicking right button of mouse over the
window.

6)- This meter readout procedure can be executed for each meter in the
same manner. The readout window on the left can be cleared anytime by clicking
Clear Text button.

7)- If the request is to perform a file transfer to the remote PC, the request
must be initiated by clicking to the Initiate FTP button and after that the file to be
sent should be selected by clicking File Open icon at the bottom of the program
window at same line with Send button. After clicking to the Send button, the file
transfer procedure will wait for 30 seconds for preparation of remote PC to
receive a file. Within 30 seconds, when the remote PC passes to receiving file
mode, the file transfer process will start according to Xmodem protocol.

8)- If a file transfer request is initiated from remote PC, the multi-port
device informs the main PC to be in receiving mode within 30 seconds. When the
main PC enters to receiving file mode, the file transfer process will start according
to Xmodem protocol.

9)- The connection between main PC and multi-port device can be closed

anytime by the user of main PC by clicking Close Port button.

48

Note: The buttons below the reading window indicates the status of serial
communication performed by using APRO Libraries [Ref. 11]. They will be red
or green according to the status of process while the program is running. Clear
Text button clears the reading window to be prepared for next reading. Clear Text
button can be used anytime.

The source code of the reading software is presented in Appendix A.

5.1.2 Running of Lite Version Remote Access Software

RS232 Share for Meter =101 x|
-ICnm1 vl Open Port |
|
Close Port |
=l
Kl ;l_l
Break CTS DCD DSR Emor RING RXD TDX
[v Slave Computer
Send Please select file to be sent =)
Initialize FTP |
Receive Please select file to be received [

Figure — 5.2 Main screen of Reading Software on remote PC

When the program is started on remote PC and Slave Computer box at the
right bottom of window is checked, the program window shown in Figure — 5.2
should appear on the screen of remote PC.

The execution steps of software are described below:

1)- First of all, the serial port to be used for the communication with multi-
port device should be specified and opened.

2)- During the start up procedure, the multi-port device sends the port
status detection string to all ports. As soon as the remote PC receives this string, it

49

immediately replies with a specified string that indicates remote PC is connected
and ready.

3)- Then the remote PC starts to wait for a file transfer procedure
initialization message. When this message is received, the program should be in
receiving file mode within 30 seconds. Within 30 seconds, when the remote PC
passes to receiving file mode, the file transfer starts immediately.

4)- The remote PC can initiate a file transfer anytime by clicking Initialize
FTP button at the right bottom of the program window. If the remote PC receives
“Ready for file transfer” message, the file transfer can be started. When Send
button is clicked, the file transfer procedure will wait for 30 seconds for
preparation of main PC to receive a file. Within 30 seconds, when the main PC
passes to receiving file mode, the file transfer process starts according to Xmodem
protocol.

5)- After the file transfer from remote PC to main PC is completed, the
program execution turns back step 2. Throughout running of lite version remote
access software, the specified serial port must be opened and the Slave Computer

button must be checked.

Note: The buttons below the reading window indicates the status of serial
communication performed by using APRO Libraries. They will be red or green
according to the status of process while the program is running. The Clear Text
button clears the reading window to be prepared the window for next reading.

Clear Text button can be used anytime.

50

5.1.3 Flow Diagram of Reading Software

START

Main

Main PC ar
Remote PC7?

Dialing the Assigning
phone + timeout -
numéber values

Receiving
Port status

Close port

Sending
readout
raguest to M1

Sending
readout
reguest o M2

Sending
readout
request to M3

Sending
readout
request to M4

Figure 5.3 Reading software flow diagram (1)

Initiate FTP

Maming the
file to be
received

¥

¥modem FTP
prOCEss

Com Port

-

Selection

Selecting the
file to be sent

Xmodem FTP
Process

Maming the
file to be
received

Process

Xmadem FTP

Initiate FTP

Selecling the
fileto be sent

k

Hmodem FTP
process

Figure 5.3 Reading software flow diagram (1)

52

It should be useful to describe the program code by following the flow
diagram in order to give the theory.

When the program is started, first of all the Slave PC check box must be
checked or not according to operating user station. If the program is running on
remote PC, the box must be checked, and after that some options peculiar to main
PC and meter readout process will be off by calling the TForm1.ChkboxClick()
procedure.

If we assume that the operating user station is main PC, the next step will
be establishing communication with remote side. In order to that, first of all the
serial port to be used should be specified. When the upper left ComboBox is
clicked, the available and properly working serial ports are listed. The Comfind()
procedure in the program performs this port detection process. Then the timeout
values for the establishment of communication between main PC and remote
modem and main PC and the implemented multi-port device should be defined.
The usage of timeout values in these EditBoxes by the program will be explained.
Finally, the phone number, which will be dialed, should be defined before
clicking Dial button.

When the Dial button is clicked, the program calls the TForm1.DialClick()
procedure. In this procedure, the program branches to SingOn() procedure and
then the selected serial port is assigned to the TApdComPort component of APRO
(Asynchronous Professional) serial communication library. After that, the number
is dialed by sending the *ATDT’ + Edit2.Text to the modem. At the same time,
the timers controlling the periods for communication establishment are set by
using previously mentioned timeout values defined in EditBoxes. If the remote
modem or multi-port device does not respond with specified strings before the
timers are expired, the program calls ComEnd() procedure and closes the serial
port assigned to TApdComPort. If communication is established properly
between main PC and multi-port device, the program will receive the port status
information, which is sent by multi-port device. The reception of characters by
using TApdComPort component is performed by TForml.cp2TriggerAvail()

procedure. Please look at APRO manual for more detailed information [Ref. 11].

53

After acquiring the knowledge of port status, the program is ready to
perform meter readout or file transfer. For remote reading of a meter, after the
device is selected from the ComboBox, the Read Device button should be clicked.
By clicking Read Device button, the required string is sent to the multi-port
device by TForml.RdeviceClick() procedure. If there is a problem about the
specified meter, the multi-port device informs the user of main PC by sending a
message. If everything is OK, the readout data sent by the meters is received by
TForml.cp2TriggerAvail() procedure and screened on the reading window, which
is a MemoBox. The readout data on the reading window can be saved to a text
file, if it is required.

When a file transfer is wanted to be performed, first of all the Initiate FTP
button must be clicked in order to inform the multi-port device. After that, an
acknowledgement message should be waited to start file transfer. If the message is
received and the file, which will be sent, is selected, the Send button can be
clicked. By clicking Send button, the XmodemCRC file transfer protocol is
initiated by TForm1.FsendClick () procedure. As soon as the handshake character,
which is sent by the receiver (i.e. remote PC), is received, the XmodemCRC file
transfer process starts and continues until sending <EOT> character and
subsequently receiving <ACK> character by sender. After the file transfer is
completed, the TForm1.Prt1ProtocolFinish() procedure is called.

If a message indicating the initiation of file transfer by remote PC is
received, the file name should be specified by clicking the folder icon. After that
by clicking Receive button, the file transfer process, which is initiated by remote
PC, starts. During file reception process according to XmodemCRC protocol,
TForm1.FreceiveClick() procedure is executed. After the file transfer is
completed, the TForm1.Prt1ProtocolFinish() procedure is called.

The file transfer process performed by the remote PC follows the same
steps and executes the same procedures as it can be seen clearly from the flow
diagram. As the remote PC is not allowed to perform meter readout, all the related

options are disabled under the condition of checked Slave Computer box.

54

5.2 Modem

Modem term is the acronym for modulator-demodulator. A modem is a
device or a program that enables a computer to transmit digital data in the form of
analog waves over telephone lines.

There is a standard interface for connecting external modems to computers
which is called as RS-232. By using this interface, any external modem can be
attached to any computer that has an RS-232 port, which almost all personal
computers have. RS-232 standard is explained comprehensively in Chapter 2.
There are also onboard or internal modems as an expansion board that you can
insert into a vacant expansion slot.

Dial-up Access refers to connecting a device to a network via a modem
and a public telephone network. Dial-up access is really just like a phone
connection, except that two ends are the computers (or the devices having at least
an RS-232 port) rather than people. Because dial-up access uses normal telephone
lines, the quality of the connection is not always good and data rates are limited.
In the past, the maximum data rate with dial-up access was 56 Kbps (56,000 bits
per second), but new technologies such as ISDN provide faster rates [Ref. 4].

An alternative way to connect two devices is through a leased line, which
provides a permanent connection between two devices. Leased lines provide faster

throughput and better quality connections, but they are also more expensive.

5.2.1 Communication Protocol

All communications between devices require that the devices agree on the
format of the data. The set of rules defining a format is called as protocol. At
least, a communication protocol must define the followings:

« Rate of transmission (in baud or bps).

e Whether transmission is to be synchronous or asynchronous.

o Whether data is to be transmitted in half-duplex or full-duplex mode.

55

In addition, protocols can include sophisticated techniques for detecting
and recovering from transmission errors and for encoding and decoding data.

Table — 5.1 summarizes the most commonly used protocols for
communication via modems [Ref. 13]. These protocols are almost always
implemented in the hardware; that is, they are built into modems.

Table — 5.1 Summary of the most commonly used protocols

Maximum

Transmission || Duplex

Protocol Rate Mode
Bell 103 1300 bps | Full |
ICCITTV.21 |[300 bps | Full |
Bell 212A 11,200 bps | Full |
ITU V.22 11,200 bps | Half |
ITU V.22bis 2,400 bps | Full |
ITU V.29 19,600 bps | Half |
ITU V.32 19,600 bps | Full |
ITUV.32bis [14,400bps | Full |
ITU V.34 136,600 bps || Full |
ITU V.90 156,000bps || Full |

In addition to the standard protocols listed in the table, there are numerous
protocols that complement these standards by adding extra functions such as error
detection, error recovery, data compression, etc. Some of these protocols are
Xmodem, Kermit, MNP, and CCITT V.42 [Ref. 17]. These protocols can be
implemented either in hardware or software.

Typical modems are known as asynchronous devices. This means that
these devices transmit data in an intermittent stream of small packets. Once these
are received, the receiving system then reassembles them into a form computer

can use.

56

Stop Data Start Stop Data Start

1 bit 8 bits 1 bit 1 bit 8 bits 1 bit
Packet Packet
10 bits 10 bits

Figure — 5.4 Asynchronous transmission packets

Figure — 5.4 represents the packet format in an asynchronous transmission
over a phone line. In an asynchronous communication, 1 byte (8 bits) is
transferred within 1 packet, which is equivalent to one character. However for the
computer to receive this information each packet must contain a Start and a Stop
bit therefore the complete packet would be 10 bits. The basics of serial

communication is described more comprehensively in Chapter 2.

5.3 The Implemented Multi-port Device

5.3.1 General Description

The implemented multi-port device is designed based on the PIC 16F877,
which is a microcontroller produced by Microchip Company and explained in
Chapter 3. The multi-port device can be examined in three main parts as voltage
regulator module, LCD module, and microcontroller module. These modules will
be described in this section.

5.3.2 Voltage Regulator
The multi-port device includes an internal voltage regulation circuit.
Owing to this voltage regulation circuit, any voltage adaptors between 12-24 V

range can be used as a power supply for the multi-port device. Voltage regulation

circuit diagram is shown in Figure — 5.5 [Ref. 15].

57

Ly p7aps |3 N

2200~

Figure — 5.5 Voltage regulation circuit

Although a voltage adaptor acquired from the market has its own
regulation circuit, this extra regulation circuit is used because the microcontrollers
require very pure and stabilized voltage level in order to operate properly. The
required stabilized +5V is achieved by using the power stabilizer LM-7805. If the
output voltage goes down, the LM-7805 regulator will draw more current, forcing
the output voltage back to 5V. Thus, the LM-7805 regulator controls the output
voltage and keeps it at 5V.

Because the microcontrollers require very clear voltage, a capacitor
between Vgy¢ and Vs pins of the MCU s also used in order to filter the distortion

from the circuit itself.

5.3.3 LCD Module

The LCD used in the multi-port device has 16-pin Hitachi LCD with
HD44780 module. These LCD’s are inexpensive and easy to use. Hitachi LCDs
have a standard ASCII set of characters along with Japanese, Greek and
mathematical symbols.

The LCD module can be wired for a 4-bit or an 8-bit mode. In PicBasic
Pro, the LCD mode (4-bit or 8-bit) must be defined at the beginning of the
program via “DEFINE LCD_BITS” instruction, please refer to microcontroller code
in Appendix B. In 4-bit mode shown in Figure — 5.6, a byte is sent by
microcontroller as two successive 4-bit over the lines D4-D7 default, but it can be

changed to D0-D3 by code, if required [Ref. 9 and 15]. Four-bit mode is a good
58

way to save control lines. The entire LCD module can normally be controlled
from 6 control lines. The initialization commands are constructed in such a way

that you can instruct the LCD module which interface is to be used just after reset.

Ll PICTEFA7? Y
. WMCLRApr = RB7/PEDI
2 | CRAWAND RBE/PGCT 45y
O] RAT/ANT RES]
O] RAZAN2Aref- RB4[]
O] RN ek + RB3/PGM I = [
O] R/ TOCK| RB20] = e
O] RAG/ANAAGS RE1[]
v CIREDARD/ANS REO/NT [
T OREIAWR/NS Vadp | 1 1-Vas
O] REZACS/AANT Vsl ! Jw Jw = 2-dd
Vil roresert ||| 15 I:'II"IF'IIJ'IIJ'I r1r1r1r1r1r'|r1r1r118 - i:g?
Vs ROE/PSPE] 5 R
= DSC1/CLKIN RD&/PSPE B-E
|] 0sCa/eLKouT RD4/PSPAT] DDDDDDDDDDDDDDDD s
Uﬂ% CRCO/TI0S0/TICK RCT/RX/DT 9.02
1% OrRcwmosCcP? RCETRACKD DDDDDDDDDDDDDDDD 10-D3
" QRc2/oeet RC5/5000 I
O RC3/SCKACL RC4/501/5DA o] 216 chars LCD module o] 13-DE
CJRDO/PSFO RDHPSP3H 14-07
= [ORoIRse RD2/PSP2— 12 LED

Figure — 5.6 General LCD connection diagram

For an 8-bit data bus, the display requires a +5V supply plus 11 1/O lines.
For a 4-bit data bus it only requires the supply lines plus 7 1/O lines. When the
LCD display is not enabled, data lines are tri-state which means that they are in a
state of high impendence (as though they are disconnected) and this also means
that they do not interfere with the operation of the microcontroller when the
display is not being addressed.

The LCD requires mainly 3 control lines from the microcontroller:

Read/Write (R/W): This line determines the direction of data between the LCD

and microcontroller. When it is low, data is written to the LCD. When it is high,
data is read from the LCD.

Reqister Select (RS): With the help of this line, the LCD interprets the type of

data on data lines. When it is low, an instruction is being written to the LCD, and

when it is high, a character is being written to the LCD.
59

Enable (E): This line allows access to the display through R/W and RS lines.
When this line is low, the LCD is disabled and ignores signals from R/W and RS.
When (E) line is high, the LCD checks the state of the two control lines and
responds accordingly.

Logic status on control lines:

E 0 Access to LCD disabled

1 Access to LCD enabled
R/W 0 Writing data to LCD

1 Reading data from LCD
RS O Instruction

1 Character

Writing data to the LCD is done in several steps:
- Set R/W bit to low
- Set RS bit to logic 0 or 1 (instruction or character)
- Set data to data lines
- Set E line to high
- Set E line to low

The “LCDOUT” command, which performs the above explained steps, is
used for writing data to the LCD in PicBasic Pro.
The definition of LCD data ports and control ports must be declared at the

beginning of the program by “Define” command in PicBasic Pro code as shown

below:
Define LCD_DREG PORTD 'LCD data port
Define LCD_DBIT 0 'LCD data starting bit 0
Define LCD_RSREG PORTE 'LCD register select port
Define LCD_RSBIT 0 'LCD register select bit
Define LCD_EREG PORTE 'LCD enable port
Define LCD_EBIT 1 'LCD enable bit

60

5.3.4 Microcontroller Module

As mentioned previously the microcontroller used in the implemented
multi-port device is the PIC 16F877, which is produced by Microchip Company.

There are several reasons to choose PIC 16F877 for this study. First of all
the PIC 16F877 is a low-cost and high performance device with RISC CPU
architecture. Owing to electrically erasable program memory it provides designing
ease. Also it has very powerful /O features and practical interfacing options with
peripherals. Especially the USART module is a very feasible peripheral option for
serial communication, which is the main issue of this study. Also owing to large
number of 1/O pins and their inverted logic feature, which is explained in Chapter
4, the necessity of 8 more (4 of them are in use) serial communication interfaces
could be satisfied very practically. It is very obvious that the PIC 16F877
microcontroller is really a good choice for this study because of its powerful and
practical interfacing features.

The auxiliary processes and components used with microcontroller in the
implemented multi-port device are described in this section. The PIC 16F877 is

described comprehensively in Chapter 3.

5.3.4.1 Reset Process

Reset is used for putting the microcontroller into a known condition. That
practically means that microcontroller can behave inaccurately under certain
undesirable conditions. In order to continue its proper functioning it has to be
reset, that is all registers would be placed in a starting position. Reset is not only
used when microcontroller does not behave as desired, but also can be used to get
a microcontroller ready when loading a program.

The PIC 16F877 microcontroller has MCLR pin for resetting process,
which is logic one during normal operation of microcontroller. When the
microcontroller is required to be reset, the MCLR pin, which is an active-low pin,

has to be made logic zero. In order to prevent from bringing a logical zero to

61

MCLR pin accidentally it has to be connected via resistor to the positive supply
pole. Resistor should be between 5K and 10K. This kind of resistor, whose
function is to keep a certain line on a logical one as a preventive, is called as pull
up. If MCLR pin will not be used, it has to be connected to positive supply pole
(i.e. to +5V) [Ref. 8].

During a reset, RAM memory locations are not being reset. They are
unknown during a power up and are not changed at any reset. On the other hand,
special function registers are reset to a starting position initial state. One of the
most important effects of a reset is setting the program counter (PC) to zero
(0000h), which enables the program to start executing from the first written

instruction.

5.3.4.2 Oscillator

The microcontroller included by implemented multi-port device has the 4
MHz crystal oscillator operating together with two 33 pF capacitors. The crystal
oscillator is a good choice for a reliable triggering required by the
microcontrollers. The crystal is usually made of quartz, but can also be made of
rubidium or ceramic. Crystal oscillators are the most common source of time and
frequency signals. The crystal is sometimes called as timing crystal. They can be
embedded in integrated circuits.

5.3.4.3 Serial Communication with USART

The communication between the implemented multi-port device and
modem is fulfilled over MAX 232 level converter device by using the RC6 and
RC7 pins of the microcontroller. RC6 and RC7 pins are the Rx and Tx pins of
USART module respectively. The voltage level conversion process between
microcontroller and modem is realized by MAX 232. PicBasic Pro supports the
USART module with very powerful and practical commands, such as HSERIN
and HSEROUT (mean that “Hardware Serial Input” and “Hardware Serial Output,

respectively, please refer to PicBasic Pro code presented in Appendix B). The

62

detailed description of serial communication with USART module is presented in
Chapter 4.

5.3.4.4 Serial Communication with Inverted Logic

In this thesis, the microcontroller has 5 serial interfaces (may increase to
9) with peripheral devices. As mentioned previously one of them is used for
asynchronous serial communication with an external modem, which provides the
connection to the main PC via USART module. Other 4 ports are specified for the
connections to the digital electricity meters and the remote PC. As the PIC
16F877 microcontroller has only one USART module, these asynchronous serial
communications must be fulfilled by some other ordinary 1/0O pins. Naturally there
are some differences between these connections and the USART module
connection. Inverted logic serial communication can be used very practically via
PicBasic Pro, please refer to PicBasic code in Appendix B and check the
“Serout2” and “Serin2” commands in the code. The detailed description of serial
communication with inverted logic is presented in Chapter 4.

5.3.5 Operational Principles of Multi-port Device

When the implemented multi-port device is powered on, it will take less
than one second to be ready for the operation. Then the device starts to wait for a
communication initialization from the main PC. For that reason the device listens
the Rx pin of USART module (RC7 pin of the PIC 16F877). The communication
between main PC and multi-port device is performed with 4800-baud rate and
8N1 (1 start bit, 8 data bits, none parity and 1 stop bit). As soon as the multi-port
device receives the communication initialization string from main PC, it triggers a
port detection process by sending a specified string to all ports (8 RB pins of the
PIC 16F877 utilized as serial port). If a meter is connected to a port, the meter will
respond with its serial number. If a PC is connected to the port 1, it will respond
by a specified string. If there is not a PC or a meter connected to a port, time-out

will occur. After this process the multi-port device could detect the connected

63

peripherals and informs the user of main PC as which device is connected to
which port.

Then the multi-port device starts to wait for the instruction from the main
PC and remote PC. If an instruction is received, it will be evaluated immediately
and the code loaded to the microcontroller will branch to the related part of the
program according to the received instruction.

If the received instruction is the indication string of closing port process
sent by main PC, the execution turns back to starting point and waits for the
communication initialization again.

If the received instruction is the meter readout request, the serial
communication with 4800-baud rate and 7E1 (1 start bit, 7 data bits, even parity
and 1 stop bit) will be established between the multi-port device and the meter on
the specified port. Then readout request string is sent to the meter. As soon as the
meter receives readout request, it starts to transmit all standard readout data, if the
meter is not password protected. All received characters by the multi-port device
will be transmitted to the main PC over Tx pin of USART module (RC6 of PIC
16F877). After the readout is completed, the execution turns back to the point of
waiting instruction.

If the received instruction is the file transfer request sent by main PC, the
messages giving the instruction to start the file transfer process are sent to main
PC and remote PC. As mentioned previously the file transfer process is fulfilled
according to Xmodem protocol with 4800-baud rate and 8N1 (which is a
requirement for Xmodem protocol [Ref. 17]). In file transfer mode, firstly, remote
PC sends handshake character, which is <C> for CRC error checks, to the main
PC, and waits 10 seconds for the transmitter to send a block of data. The main PC
starts to send the blocks as soon as it receives handshake character. The remote
PC responds with <ACK> character to each successfully received block. The file
transfer will end after receiving <EOT> character by the remote PC. The details of
Xmodem protocol is given in Appendix D.

If the received instruction is the file transfer request sent by remote PC, the

above explained steps will be repeated as the remote PC is sender and the main

64

PC is receiver. After file transfer is completed, the multi-port device starts to
listen to main PC and remote PC.

During the whole operation, all required messages giving the information
about the current situation of the process for local recognition appears on the
LCD.

The source code loaded to the microcontroller, which is written in
PicBasic Pro language is presented in Appendix B. Figure — 5.7 shows the flow

diagram of the source code.

65

5.3.6 Flow Diagram of Microcontroller Code

START

h

Camm,
Imitiation

L
Port Status

Detection
2 I—._

.
o

— T »

k.

Waiting for

Operation
Request

Sending
readout
request o M1

.1_| Sending

M Mater readout

ar Access request to M2
Denied -

F 3

Sending
— readaut

+ raguest o M3

Sending
readout
reguest to hMd

Inwalid port |'|

[Data Read
out

[
Figure — 5.7 Microcontroller code flow diagram (1)

no. msg |

66

From Remote PG _<FTP initiated From Main PC

from whera?

Xmodem
Handshake

Xmodem
Handshake

uccessiul? uccessful?,
¥ 1
Fecaiving Receiving
¥modem Xmodem
block from block from
Remote PC Main PC
L h
Sending Sending
Xmodem Xmodem
block to Main block to
PC Remote PC
M , ¥
End of file? End of file®

Figure — 5.7 Microcontroller code flow diagram (1)

It should be useful to describe the PicBasic code with the help of sample
code fragments by following the flow diagram in order to give the theory of code.
After the implemented multi-port device is powered on, it will start to wait
a communication initiation from main PC by means of the PicBasic code:
Hserin[wait("m™),b] .

Hserin command is used for receiving character by utilizing USART

module. The parameters of this serial communication are defined at the beginning

67

of the program such as 4800 baud rate, 8 data bits, no parity bit and 1 stop bit by
means of the code such as:
Define HSER_..................

If the expected string for communication initiation is received, the port
status detection process is triggered by multi-port device. During this operation,
the device sends a specific string to each port by means of the code line:

Serout2 PortB.1,24764,[13,10,21,47,63,33,13,10]

then waits for the response by means of the code line:
Serin2 PortB.0,24764,2000,meterdetectl,[str a1\16]

These Serin2 and Serout2 commands can use the inverted logic property
of PIC 16F877 1/0 pins, which is defined by the mode 24764 in the code [Ref. 6
and 9]. This mode number also defines the parameters of this serial
communication, such as 4800 baud rate, 7 data bits, Even parity and 1 stop bit.
Please look at Appendix E for Serin2 and Serout2 mode definitions.

The devices connected to each port of implemented multi-port device are
determined according to the received responses.

Then the multi-port device starts to wait for operation request, which can
be sent by main PC or remote PC. The device performs this process by listening
Rx pins of USART module and Portl in a loop. The program branches from this
point to the related part of the code according to what the request is and which PC
sends it.

If the request is remote reading of a meter, the port, which the specified
meter is connected to, is utilized and the data transfer between the multi-port
device and meter is performed over this port according to Flag protocol. The
received characters are sent to the main PC over the USART module. After the
process is completed, the multi-port device turns back to wait for operation
request.

If the request is to perform a file transfer between main PC and remote PC,

the program branches to the code part related with Xmodem protocol. The file

68

transfer process can be performed from main PC to remote PC or from remote PC
to main PC. There is only one difference, that is the direction of transfer, but the
idea is same; receiving the Xmodem data blocks from sender, transmitting to
receiver, and receiving the <ACK> or <NACK> from receiver, transmitting to
sender. The below code performs this procedure:

Hserout [13,10,"Ready for file transfer”,13,10]

pause 1000
Serout2 PortB.1,16572,[13,10,"Be ready for receiving file",13,10]
pause 1000
Serin2 PortB.0,16572,30000,receivernotready, [nak]
Hserout [nak]
loop1l:

Hserin 5000,nofiletransfer,[charl]

Hserin 500,ftpcompleted,[char2]

Hserin 1000,problem,[char3]

Hserin 1000,problem,[str char\65]

Hserin 1000,problem,[str a\65]

Serout2 PortB.1,16572,[charl,char2,char3,str char\65,str a\65]

Serin2 PortB.0,16572,11000,noreplyfromreceiver,[nak]

Hserout [nak]

goto loopl

After the file transfer is completed or failed anyhow, the program turns
back to wait for operation request. The file transfer, which is failed, can be
initiated again at this point. If the communication is terminated by main PC, the

program turns back to the point of waiting for communication initiation.

5.3.7 Circuit Diagram

The PCB (Printed Circuit Board) and the circuit diagram, which are
designed and built in the scope of this thesis, are shown in Figure — 5.8 and Figure

— 5.9 respectively. The PCB diagram was created by ARES tool in Proteus

69

Professional 6.0 after circuit diagram was drawn by ISIS tool again in Proteus
Professional 6.0 [Ref. 18].

Proteus Professional 6.0 is a software package, which combines a mixed
mode circuit simulator with animated component models. And it provides an
architecture in which additional animated models may be created by users. Indeed,
many types of animated model can be produced without coding. Proteus also
provides simulator models for popular microcontrollers and a set of animated
models for related peripheral devices such as LED, LCD, keypads, an RS232
terminal and more. It is possible to simulate complete microcontroller systems and
thus to develop the software for them without access to a physical prototype.
Consequently Proteus Professional 6.0 allows professional engineers to set up a
circuit of real designs, run the circuit as interactive simulations and finally

construct the PCB of the circuit.

e A

NN
U u

: LLLLL)
max232

-

-

1EFE7T

A0S UTIM
393Te3a TAAI7

Figure — 5.8 Multi-port device PCB diagram

70

wrelbelp 1n2412 821A8p Lod-NINAl 6°G — 84nbi4

= AL
— 1
ozd e L——
noL —— +—F—=
ol |_Hﬁ oL
r o
SP s~ €0 8ld ——1
—1
EZXYIN s I3 —k Sy
' 61 g L———
60-NNOO o 2o —e
Ot—= . AL vry
o 5 5 —1
O = *SA /1 e ——
O—1% —1
O NiZy 1N0Ty = AL cLy
O w wu 1NozL NIZL m_ 1
O1—= B m,jfwrr Sm_vm_. Pzr £2849101d 6 —iee o
o= I k4%
O vt H 5| Lasaizay L zZLy
10 +10 51 9dsdieqy —1
\r S5 sdsdrsay 8y —Ke s
L Ze— vasdvay
ol zn — Se— edsdreay AL RS
—
90 == = cdsdreay
S| Ldsdiay PAS| Ace e
—
el 5 odsdroay
AL [o]3=]
5o Laneuod —}
=] MOIXL90H on oz L——
v w 0as/soy
< vas/aswod SO/NV/EIY [T [y}
10S/MOS/EDY BWONY/L I (—=
S 1d00/eoN Q/SNV/03 [—¢
57— 2dO0/ISOLLLOY
S| DIOLUOSOLLI0OY SSITNV/SYY [——
IMO0UPYY =g
55— od/Lay +HTINENV/EVY e
55— Oodieay HFUNENYIEYS (= -
51 o INV/LYY -
e T v ONV/OVY |—=
L - L—5c— Wodreay
e e =1 o AHLAAATON [
e 7o 18y 1NOMTD/ZOSO T
_ S LNwoay e
Wa)
ILISAUO
oL ML X —
cd 1Y
0L
O O
€y ®T—

S
33A

aaa
SSA

T9L0AT
1ao

oL
v

G 1+

¥00Z 19qusoe(
3d31s39 4

5.4 The Digital Electricity Meter

5.4.1 General Description

The electricity meters that operate according to electromechanical
principles could not satisfy some requirements such as accuracy, reliability,
lifetime and compatibility with electronic solutions. After electronics has made a
remarkable development, electricity meters have been mass-produced using the
most modern microelectronics in order to satisfy the requirements of present age.

Upon closer view, EMH meters, which are used with implemented multi-
port device in this thesis, will be examined briefly. EMH is a digital electricity
meter producer in Germany. EMH developed digital electricity meters, which are
self-contained functioning tariff systems. These have little resemblance to the old
meter technology.

The term “digital meter’ requires a brief explanation. The digital principle
means that voltages and currents in individual phases are measured
simultaneously. They are measured at a high sample and hold rate, and trans-
formed into digital words. This information is then fed into a signal processor,
which calculates all the desired values.

The control elements used, such as the real time clock with calendar and a
universal ripple control receiver, which were previously external, are already
integrated into the meter. The result is that a simple meter is transformed into a
complete, high performance tariff system. The interfaces of the past have been
extended by an optical fibre interface in this meter generation. The information
important for the final customer of this system can be separated from the main
meter with this interface and fed into an isolating relay box. The relay model can
be chosen by the customer.

This concept allows that the relays, which were previously in the meter,
can be removed to external boxes. This guarantees the maximum possible
insulation from outward interference and also reduces the need for additional
isolating relays in the meter cabinet. Before electronics arrived in the meters of
the electricity providers, a classical measuring set for special contract customers
usually looked like as following: For the measurement set there was a maximum

72

and a power distribution meter. In order to control the device according to tariffs,
an external ripple control receiver or tariff time switch was added. And also the
transmission contacts for the meter were separated by additional relays in the
measuring set cabinet.

With the introduction of the combi-meter with integrated ripple control
receiver, integrated real time clock and optical fibre interface, the costs can be
reduced remarkably.

There is no doubt that introduction and equipping of a measurement point
with this newest technology will lead to an increase in reliability and a reduction

of error sources in the system.

5.4.2 EDIS (Energy Data Identification System)

The EDIS code system was created on the basis of the future-oriented
efforts by the German Electrical Engineering Commission of the DIN and VDE
(DKE) [Ref. 14]. The purpose of the EDIS is to provide unambiguous
identification of data for display and processing originating from devices, which
are produced by different manufacturers such as EMH, ACTARIS
(Schlumberger), SIEMENS, ABB etc.

Some examples shown in Figure — 5.10 illustrate the structure of EDIS
code system. As seen from the examples, the first digit, which can be any number
between 1 and 8, defines the measurement, as 1 for active imported, 2 for active
exported, 3 for reactive imported, 4 for reactive exported, 5 for reactive-inductive
imported, 6 for reactive-capacitive imported, 7 for reactive-inductive exported and
8 for reactive-capacitive exported. The second digit defines which quantity is
measured. It may indicate mean power, last recorded mean power, maximum
demand and energy. Maximum demand is one of the most important values for
plants and factories. If the consumer has a demand agreement with the energy
provider, the consumer will be limited for importing power with this undertaken
maximum demand value. If the limit is exceeded, the consumer will have to pay

fine. So maximum demand value should be measured and controlled very

73

carefully. The third digit is related with the tariff indication. The last two digits

show the historical values of measurement.

Measurement

Unit
l l Tariff

Mean power

Last mean power
Maximum demand
Energy

ook

: . Tariff 1
to to
X. 8. Tariff 8

x
-

X. X. X. XX Hist. values

1. 6. 1 Active import,
Maximum demand,
Tariff 1

2. 8. 2 Active export,
energy, Tariff 2

3. 8. 1 Reactive import
energy, Tariff 1

4. 8. 2 48 Reactive export
energy, Tariff 2
at 48. reset

Figure — 5.10 General EDIS code system

5.4.3 Combi Meter / 4-Quadrant Meter

EMH combi meter and 4-quadrant meters are identical in appearance and
belong to the same family of devices. The combi meter has become widely used.
The 4-quadrant meter is more complex than combi-meter and is state of the art in

hardware and software [Ref.14].

5.4.3.1 Combi Meter

The EMH combi meter replaces measurement sets, which consisted of two

induction-type meters, an active use meter (which is coded as 1.x.x in EDIS code

74

system) and a reactive use meter (which is coded as 3.x.x in EDIS code system).
In addition, the combi meter can perform reactive use measurement separately in
quadrants 1 and 4 (which are coded as 5.x.x and 8.x.x in EDIS code system). The
combi meter is capable of depicting the measurements according to the EDIS code
system which is illustrated in Figure — 5.11 [Ref. 14].

Exported active Imported active
power power
< = >
A - +
Imported | +
reactive
power
I
—— 1_
Exported
reactive
owWer -
P v

Figure — 5.11 EDIS coding for Combi-meter
5.4.3.2 Four-Quadrant Meter
The EMH 4-quadrant meter replaces the classical 4 induction-type meters
each comprising an active consumption meter for imported and exported energy.

The 4-quadrant meter is able to display the measurements, the codes of which are
shown in Figure — 5.12 from the EDIS code system.

75

Exported active Imported active

power power
< >
A 3 i
Imported | +
reactive 6
power
I
Exported
reactive 7
power v- '

Figure — 5.12 EDIS coding for Four-quadrant meter

5.4.4 Modules

The meter consists of two essential elements as digital measuring
mechanism and tariff mechanism.

The measuring mechanism is critical for the accuracy of the meter. It
realizes the basic measurements, then transforms them into digital information
and transmits them to the tariff mechanism for calculation and processing. EMH
meters with LZ prefix belong to accuracy class 0.5S while with PZ prefix are
class 0.2S (precision meters). Class 0.5S and 0.2S mean that in normal operation
conditions the maximum probable measurement error will not exceed 0.5 % and
0.2 % respectively. The experience in meter testing technology has been used to
obtain this high degree of meter accuracy. Both the measuring and the tariff

mechanisms are charged with a common power unit.

76

5.4.4.1 Power Unit

This is a primary switched-mode power unit with a high degree of
effectiveness. Even in case of a module defects it is secure against overload or
short-circuiting. Potential damage remains limited and consequential damage is
avoided.

For EMH meters with LZ prefix with a single-phase connected meter,
error-free operation until Unem - 20% is guaranteed. EMH meters with PZ prefix
(precision meters) have a wide area power unit that is supplied from external
auxiliary power terminals, independent of the measurement path. This prevents
unnecessary load on the measurement path and that the meter's measurement path
remains functional and ready to measure even in the event of power failure.

While the meter is operating, the current measurements are stored in the
working memory (RAM). Every 24 hours, this data is stored in a non-volatile
memory. The meter also performs this storage operation when there is a 20% drop
below nominal voltage or a total power interruption (loss of 50 Hz signal). In the
event of a power outage or drop below the minimum voltage, the electronics will
continue to function normally for the next 500 ms. It is powered by the energy in
the charger-capacitor. If it is only a short outage of less than 500 ms, then the
meter will continue to operate quasi-non-stop. Only in case of longer interruptions
will the measuring period be interrupted and the device completely shut down so
that a new measuring period can be started when the meter is reactivated. Data
remains stored in the non-volatile memory for at least ten years. No buffer battery
is needed to preserve the data. The data received is retained alone through the
qualities of the storage medium (EEPROM).

5.4.4.2 Suppressor Circuits

The suppressor circuit behind the voltage terminals consists of a

combination of surge-proof power resistors and varistors, which dilute the surge

energy in the event of an overvoltage. This means that fast, energy-rich

7

disturbance pulses, which can be caused by turning off reactive loads, are

prevented effectively thanks to the microelectronics.

5.4.4.3 Modular Construction

The entire measuring and tariff mechanism including the options, such as
clock module, tariff time switch, ripple control receiver and electrical interface,
control inputs and outputs. They are all included on a single circuit board. The
modular structure of the entire meter means that the meter can be assembled to
perform functions in accordance with the customer’s desired meter properties. The
display is plugged onto the circuit board and can be easily replaced.

The meters have a memory (EPROM or FLASH) containing the program
code and an additional memory (EPROM) for storing the relevant billing data,
parametering, settings and correction factors for the measuring mechanism which
operate independent of any battery.

EMH meters with LZ prefix with optical fibre interface or load profiles
have an additional circuit board. On this circuit board is a FLASH containing the
program code. Depending on the meter version, there may be a further FLASH for

the load profile.

5.4.5 Digital Measuring Mechanism
5.4.5.1 Measurement principle

Measurement is performed by taking voltage and current measurements at
very short intervals. The analog voltage and current values are then digitized. The
digitized current and voltage values are then transmitted individually to a digital

signal processor by means of a multiplexer.

5.4.5.2 Voltage measurement

The terminal voltages generate network-proportional internal voltage

levels. These are fed into the input channels of the ADC.

78

5.4.5.3 Current measurement

The current paths contain ferrite cores that generate current-proportional
voltages. These are fed into the two ADC inputs via an instrument amplifier.

5.4.5.4 Digitization

The analog current and voltage proportional instantaneous values are
digitized in the ADCs and fed into the digital signal processor (DSP) input

through a multiplexer with a high sampling rate.

5.4.5.5 Integral values

The DSP calculates the individual integral of i%, u?, u * i and uge® * i for
each phase. These integral values and other information are transmitted to the
tariff mechanism and in particular to the tariff controller CPU. Here the P, Q and
S for each phase are calculated and assigned to the respective energy and power

registers according to the tariff structures configured.

5.4.5.6 Measurement values

The following measurement values can be seen on the display and read out
using the data interfaces:
* Instantaneous active, reactive, apparent power for each phase
and the combined value,
e Individual line current and line voltages,
* Number of active phases, network frequency and power factor
as well as power factor for individual phases.

79

5.4.5.7 Calibration

EMH's combi meter and 4-quadrant meter are fully static and digital
meters. In practice, this means that there are no mechanical moving parts in the
measuring device. This also means that the electronic components tolerances are
so matched to each other that a partial calibration between manufacturing steps is
unnecessary. Thus the devices can be produced rationally in identical series.

At the end of the production process, the meters are subjected to a final
calibration. The meters are submitted to precise normal load on the test stand.
Each meter measures this load and transmits its measurement to the test stand via
an optical interface. This compares the meter's measurement with its own precise
measurement and sends measurement correction factors back to the various points
in the meter in the form of measurement constants. These are then stored in the
non-volatile memory elements of the meter. This allows the error curve to be

improved by offset corrections [Ref. 14].

5.4.6 Tariff Mechanism

Using digitized measurement values, the tariff mechanism calculates
electricity consumed or supplied as well as electrical power. It then assigns it to
the respective energy or power register according to the tariff control and meter

configuration provided.

5.4.7 Data Interface

The data exchange between meters and read out devices is performed by
means of the electrical interface (RS-232, RS-485), which is located on the
meter’s auxiliary terminal below the sealable terminal cover. The transmission is
fixed between 300 — 4800 baud rate and 7E1 (1 stop bit, 7 data bits, even parity
bit and 1 stop bit).

80

CHAPTER 6

CONCLUSION

In the scope of this thesis, a general overview of a remote reading
infrastructure for digital electricity meters was given. Then, the design and
implementation of a multi-port device, which can reduce the cost of this
infrastructure and also simplify it effectively by reducing the number of device
used in the system, were described. And also an alternative application of
implemented multi-port device, which provides interfacing with a PC together
with digital electricity meters, was described.

The operating principles of auxiliary devices used in the system such as
modems and digital electricity meters were explained along with implemented
multi-port device.

A remote access software, which performs remote reading of digital
electricity meters and file transfer between two remote computers, was described.
This software was developed in Delphi 7.0 by using APRO (Asynchronous
Professional) Libraries.

As the serial communication was the main issue of the design of this
multi-port device, the fundamental principles of serial communication with
microcontrollers were explained comprehensively. Also the file transfer process
between two computers performed over the multi-port device according to
Xmodem protocol is described.

The PIC 16F877 microcontroller, which is used in the design, was
described in detail. Additionally, the LCD usage, which is one of the popular
applications realized with microcontrollers, is also mentioned. The source code of
microcontroller written in PicBasic Pro including the procedures of serial
communication and LCD application is also presented.

As a future work, the multi-port device can be improved by providing
meter readout capability to remote PC with only the help of code modification.

Besides, more advanced file transfer protocols with the aspect of speed and error

81

tolerance, such as Zmodem can be implemented with multi-port device. In fact the
multi-port device can be used in order to communicate with more than one device
possessing a serial communication port at the same time. Owing to this feature,
the multi-port device can be utilized in lots of applications by making required
modifications in the code.

82

REFERENCES
[1] Peatman, J.B. 2003, Embedded Design with the PIC 18F452
Microcontroller, Prentice Hall.

[2] Hintz, K. , Tabak, D. 1992, Microcontrollers : Architecture,
Implementation & Programming, McGraw Hill.

[3] Kheir, Michael 1997, The M68HC11 Microcontroller: Applications in
control, instrumentation and communication, Prentice Hall.

[4] Anderson, D., Dawson, P., Tribble, M., The Modem Technical Guide

[5] Dogan , ibrahim, PIC BASIC : Programlama ve Projeler,
Istanbul Bilesim Yayinlari

[6] Altinbasak, Orhan 2002, PicBasic Pro ile PIC Programlama,
Altas Basim Yayin.

[7] Altinbasak, Orhan 2003, Microdenetleyiciler ve PIC Programlama,
Altas Basim Yayin.

[8] http://www.microchip.com/

[9] http://picbasic.com

[10] http://www.picbasic.co.uk/forum/
[11] http://www.turbopower.com

[12] http://www16.boulder.ibm.com/pseries/en_US/aixasync/asycomgd/
mastertoc.htm#mtoc

[13] http://readthetruth.com/modems.htm

[14] http://www.emh-meter.de

[15] http://www.microelektronika.co.yu

[16] http://www.mecanique.co.uk/code-studio/

[17] http://www.totse.com/en/technology/telecommunications/wxmodem.html

[18] http://labcenter.co.uk

83

[19]
[20]
[21]

[22]

http://www.calldirect.at
http://www.adaptivenetworks.com
http://www.enermet.com

http://www.perax.fr

84

APPENDIX A - READING SOFTWARE SOURCE CODE
unit mdmshare;
interface

uses
WinTypes, WinProcs, SysUtils, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, AdPort, OoMisc, AdStatLt, Buttons, ExtCitrls,
cxControls, cxContainer, cxEdit, cxTextEdit, cxMaskEdit, cxDropDownEdit,
cxlmageComboBox, Mask, sCustomComboEdit, sTooledit, AdProtcl, AdPStat,
sButtonControl, sCustomButton,Registry, ComCtrls, Menus;

type
TForm1 = class(TForm)
Memol: TMemo;
cp2: TApdComPort;
Ic1: TApdSLController;
ApdStatusLightl: TApdStatusLight;
ApdStatusLight2: TApdStatusLight;
ApdStatusLight3: TApdStatusLight;
ApdStatusLight4: TApdStatusLight;
ApdStatusLight5: TApdStatusLight;
ApdStatusLight6: TApdStatusLight;
ApdStatusLight7: TApdStatusLight;
ApdStatusLight8: TApdStatusLight;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Edit2: TEdit;
Dial: TBitBtn;
Rdevice: TBitBtn;
Pclose: TBIitBtn;
Panell: TPanel;
cbislem: TcximageComboBox;
Clstxt: TButton;
Panel2: TPanel;
Feditl: TsFilenameEdit;
Fsend: TsBitBtn;
Freceive: TsBitBtn;
Fedit2: TsFilenameEdit;
Prt1: TApdProtocol,

85

PrtSt: TApdProtocolStatus;
CbComfind: TComboBox;
Memo2: TMemo;
PBar: TProgressBar;
PMenul: TPopupMenu;
SavetoTxtl: TMenultem;
ClearTxtl: TMenultem;
SDIg: TSaveDialog;
Chkbox: TCheckBox;
Btnopen: TButton;
Btnftp: TButton;
Editl: TEdit;
Label9: TLabel,
Label10: TLabel;
Edit3: TEdit;
Button4: TButton;
procedure cp2PortOpen(Sender: TObject);
procedure cp2TriggerAvail(CP: TObject; Count: Word);
procedure RdeviceClick(Sender: TObject);
procedure PcloseClick(Sender: TObject);
procedure cp2PortClose(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormCreate(Sender: TObject);
procedure ClstxtClick(Sender: TObject);
procedure FeditlChange(Sender: TObject);
procedure FsendClick(Sender: TObject);
procedure Fedit2Change(Sender: TObject);
procedure FreceiveClick(Sender: TObject);
procedure Prt1ProtocolFinish(CP: TObject; ErrorCode: Integer);
procedure CbComfindDropDown(Sender: TObject);
procedure DialClick(Sender: TObject);
procedure cp2TriggerData(CP : TObject; TriggerHandle : Word);
procedure cp2TriggerTimer(CP: TObject; TriggerHandle: Word);
procedure Tmr(ms:longint);
procedure ClearTxt1Click(Sender: TObject);
procedure SavetoTxt1Click(Sender: TObject);
procedure ChkboxClick(Sender: TObject);
procedure BtnopenClick(Sender: TObject);
procedure BtnftpClick(Sender: TObject);
procedure Button4Click(Sender: TObject);
private
{ Private declarations }
procedure SignOn;
procedure Comfind,;
procedure ComEnd,;

public
{ Public declarations }

86

end;

var
Forml: TForm1,
S: String =";
TF:Boolean = False;

MCnttrg : Word;
DChnttrg : Word;
Timeout : Word,
TCnttrg : Word,;
TDCnttrg : Word,
PCnttrg : Word,
RCnttrg :Word;

const

bos =#0;
SOH = #1;
STX =#2;
ETX =#3;
EOT =#4;
ENQ = #5;
ACK = #6;
BEL =#7;
BS =#8;
TAB =#9;
LF =#10;
VT =#11;
FF =#12;
CR =#13;
SO =#14;
S| =#15;
DLE =#16;
DC1 =#17;
DC2 =#18;
DC3 =#19;
DC4 =#20;
NAK = #21;
SYN =#22;
ETB =#23;
CAN = #24;
EM =#25;
SUB =#26;
ESC =#27,
FS =#28;
GS =#29;

RS =#30;
US =#31;
SP =#32,

implementation
uses Windows;

{$R *.DFM}

procedure TForm1.cp2PortOpen(Sender: TObject);
begin

Ic1.ComPort:=cp2;

Ic1.Monitoring:=True;

Panell.Color:=clGreen;
end;

procedure TForm1.cp2TriggerAvail(CP: TObject; Count: Word);

var
| : Word;
C: Char;
S : String;
begin
S:="
for | := 1 to Count do
begin
C :=cp2.GetChar;
S :=S+C;
end;
memol.Lines. Text:=memol.Lines.Text+S;
end;

procedure TForml1.RdeviceClick(Sender: TObject);
begin
if cblslem.Properties.ltems[cblslem.ItemIndex].Tag=1 then
cp2.0utPut :='m1’
else
begin
if cblslem.Properties.ltems[cblslem.ltemIndex].Tag=2 then
cp2.0utPut :='m2'
else
begin
if cblslem.Properties.ltems[cblslem.ltemIndex].Tag=3 then
cp2.0utPut :='m3'

88

else
cp2.Output :='m4’;
end;
end;
end;

procedure TForml.PcloseClick(Sender: TObject);
begin

cp2.0utput:='m9’,

Tmr(100);

ComEnd;
end;

procedure TForml.cp2PortClose(Sender: TObject);
begin

Panell.Color:=clRed;
end;

procedure TForml.FormCreate(Sender: TObject);
begin

cblslem.ltemindex :=0;

Btnopen.Visible :=False;

Btnftp.Visible :=False;

end;

procedure TForm1.ClstxtClick(Sender: TObject);
begin

memol.Text:=";

memo2.Text:=";

Pbar.Position:=0;
end;

procedure TForm1.FeditlChange(Sender: TObject);
begin

Prtl.FileMask := Feditl.FileName;

end;

procedure TForml1.FsendClick(Sender: TObject);
begin

PrtSt.Visible:=True;

Tmr(200);

Prt1.ProtocolType := ptXmodemCRC ;
Prtl.StartTransmit;

S:="

Memol.Text:=",

89

Memo1l.Visible:=False;
Pclose.Enabled:=False;
end;

procedure TForm1.Fedit2Change(Sender: TObject);
begin

Prtl.FileName:= Fedit2.FileName;

end;

procedure TForm1.FreceiveClick(Sender: TObject);
begin
S="
Prt1.ProtocolType := ptXmodemCRC;
memol.Visible:=False;
Pclose.Enabled:=False;
Prtl.StartReceive;

end;

procedure TForm1.Prt1ProtocolFinish(CP: TObject; ErrorCode: Integer);
begin

PrtSt.Visible:=False;

Memol.Text:=";

Memol.Visible:=True;

PClose.Enabled:=True;

end;

procedure TForm1.SignOn;
begin
Application.ProcessMessages;
cp2.ComNumber:=
StrTolnt(Copy(CbComfind.Text,4,Length(CbComfind.Text)-3));
S:="
cp2.0pen:=True;
cp2.0utPut :="'ATDT'+ Edit2. Text+CR;
MCnttrg := cp2.AddDataTrigger(CONNECT 4800', False);
DCnttrg := cp2.AddDataTrigger(CNT', False);

PCnttrg := cp2.AddDataTrigger('/?!", True);

RChnttrg := cp2.AddDataTrigger('FTP Completed', True);
TimeOut:= cp2.AddTimerTrigger;

TCnttrg:= cp2.AddTimerTrigger;

TDCnttrg:= cp2.AddTimerTrigger;

Pbar.Position:=0;
end;

90

procedure TForm1.CbComfindDropDown(Sender: TObject);
begin

Comfind;

end;

procedure TForm1.Comfind;
var

reg : TRegistry;

ts,PL : TStrings;

i : integer;
begin

reg := TRegistry.Create;
reg.RootKey := HKEY_LOCAL_MACHINE;
reg.OpenKey(‘hardware\devicemap\serialcomm',false);
ts := TStringL.ist.Create;
PL := TStringList.Create;
reg.GetValueNames(ts);
fori:=0tots.Count-1do
begin
PL.Add(reg.ReadString(ts.Strings[i]));
end;
ts.Free;
reg.CloseKey;
reg.free;
CbComfind.ltems:=PL;
end;

procedure TForm1.ComEnd,;
begin

cp2.0Open:=False;

Dial.Enabled:=True;

Pbar.Position:=0;
end;

procedure TForml.FormClose(Sender: TObject; var Action: TCloseAction);
begin

cp2.0Open:=False;

Application. Terminate;
end;

procedure TForm1.DialClick(Sender: TObject);
var i:integer;

begin

91

s:="

i:= strtoint(Editl. Text);
Dial.Enabled:=False;

SignOn;

cp2.SetTimerTrigger(Timeout, i, True);

end;

procedure TForm1.cp2TriggerData(CP : TObject; TriggerHandle : Word);
var i t:integer;
begin

PBar.Min:=1;
PBar.Max:=12;
i:=0;
t:= StrTolnt(Edit3.Text);
if TriggerHandle = MChnttrg then
begin
cp2.SetTimerTrigger(Timeout, 36, False);
Pclose.Enabled:=False;
TF:=True;
While TF = True do
begin
i=i+1;
Pbar.Position:=1i;
cp2.0Output:='m9’;
Tmr(2000);
cp2.0Output:='m9’;
Tmr(2000);
cp2.0Output:='m0";
Tmr(5000) ;
if i=12 then
begin
TF:=False;
ComEnd;
Memo2.Lines.Add('Not Connected to Device '+ DateTimeToStr(Now));
end
end
end
else if TriggerHandle = DCnttrg then
begin
TF:= False;
Cp2.SetTimerTrigger(TDCnttrg,t, True);
end

else if TriggerHandle = PCnttrg then
begin

92

cp2.output:="Comp";
end
else if TriggerHandle = RCnttrg then
begin
PrtSt.Visible:=False;
Memol.Lines.Add('FTP Completed');
end;

end;

procedure TForm1.Tmr ;

var t : longint;

begin

t:= GetTickCount;

while (GetTickCount -t)< ms do
Application.ProcessMessages;
end;

procedure TForml.cp2TriggerTimer(CP: TObject; TriggerHandle: Word);
begin
if TriggerHandle = Timeout then
begin
Memo2.Lines.Add('Modem Time Out.. '+ DateTimeToStr(Now));
ComEnd;
end
else if TriggerHandle = TDCnttrg then
begin
Memo2.Lines.Add('Connected to device '+ DateTimeToStr(Now));
Pclose.Enabled:=True;
Pbar.Position:=0;

end;
end;

procedure TForm1.ClearTxt1Click(Sender: TObject);
begin

Memol.Text:="

end;

procedure TForm1.SavetoTxt1Click(Sender: TObject);

begin

if SDIg.Execute then
Memol.Lines.SaveToFile(SDlg.FileName);

end;

93

procedure TForm1.ChkboxClick(Sender: TObject);
begin

If Chkbox.Checked =True then
Edit2.Visible:=False;
Dial.Visible:=False;
Clstxt.Visible:=False;
cblslem.Visible:=False;
Rdevice.Visible:=False;
Btnopen.Visible:=True;
Btnftp.Visible:=True;
Label9.Visible:=False;
Label10.Visible:=False;
Editl.Visible:=False;
Edit3.Visible:=False;
Button4.Visible:=False;
if Chkbox.Checked =False then
begin
Edit2.Visible:=True;
Dial.Visible:=True;
Clstxt.Visible:=True;
cblslem.Visible:=True;
Rdevice.Visible:=True;
memol.Visible:=True;
memo2.Visible:=True;
Btnopen.Visible:=False;
Btnftp.Visible:=False;
Label9.Visible:=True;
Label10.Visible:=True;
Editl.Visible:=True;
Edit3.Visible:=True;
Button4.Visible:=True;
end

end;

procedure TForm1.BtnopenClick(Sender: TObject);

begin

cp2.ComNumber:= StrTolnt(Copy(CbComfind.Text,4,Length(CbComfind.Text)-
3));

cp2.0pen:=True;

PCnttrg := cp2.AddDataTrigger(CRLFNAK/?!CRLF'False);

end;

procedure TForm1.BtnftpClick(Sender: TObject);

begin

If cp2.0pen = False then

begin

Memo2.Lines.Add('The Port Is Not Opened '+ DateTimeToStr(Now));

94

end

else if cp2.0pen = True then
cp2.0Output:='m6";

end;

procedure TForm1.Button4Click(Sender: TObject);
begin

cp2.0Output:='m5";

end;

end.

95

APPENDIX B - SOURCE CODE IN PICBASIC

Include "modedefs.bas"

Define OSC 4

Define LOADER_USED 1

Define LCD_BITS 4 ‘LCD bus size 4 or 8’

Define LCD_DREG PORTD ‘LCD data port’

Define LCD_DBIT 0 ‘LCD data starting bit 0’

Define LCD_RSREG PORTE ‘LCD register select port’

Define LCD_RSBIT 0 ‘LCD register select bit’

Define LCD_EREG PORTE ‘LCD enable port’

Define LCD_EBIT 1 ‘LCD enable bit’

Define HSER_RCSTA 90h “Hser receive status init’

Define HSER_TXSTA 20h *Hser transmit status init’

Define HSER_BAUD 4800 ‘Hser baud rate’

Define HSER_CLROERR 1 ‘Hser CLEAR overrun error’

Define SER2_BITS 8 ‘Set number of data bits for Serin2’
‘and Serout2’

al var byte[16]

charO var byte

char var byte[65]

a var byte[65]

b var byte

charl var byte

char2 var byte

char3 var byte

nak var byte

ADCON1 =7 ‘Set PORTA and PORTE to digital, otherwise portA ADC’
Low PORTE.2 ‘LCD R/W line low (W)’
Pause 500 ‘Wait for LCD to startup’

Lcdout $fe, 1, " Waiting for"
Lcdout $fe, $CO, "initialization!"

96

‘Waiting for communication initialization by listening Tx port of USART’

start:
Hserin 6000,notinitialized,[wait ("m"), b]

Hserout ["CNT"]
Lcdout $fe, 1, " Communication "
Lcdout $fe, $CO, " initialized! "

pause 1000

‘Port status detection procedure’

Serout2 PortB.1,24764,[13,10,21,47,63,33,13,10]
Serin2 PortB.0,24764,2000,meterdetectl,[str a1\16]
Hserout [13,10,"Port 1 = Meter",13,10]

detect2:

Serout2 PortB.3,24764,[13,10,21,47,63,33,13,10]
Serin2 PortB.2,24764,2000,meterdetect2,[str a1\16]
Hserout [13,10,"Port 2 = Meter",13,10]

detect3:

Serout2 PortB.5,24764,[13,10,21,47,63,33,13,10]
Serin2 PortB.4,24764,2000,meterdetect3,[str a1\16]
Hserout [13,10,"Port 3 = Meter",13,10]

detect4:

Serout2 PortB.7,24764,[13,10,21,47,63,33,13,10]
Serin2 PortB.6,24764,2000,meterdetect4,[str a1\16]
Hserout [13,10,"Port 4 = Meter",13,10]

loop:
Lcdout $fe, 1, "Status of Ports "
Lcdout $fe, $CO, " detected! "

pause 2000
Lcdout $fe, 1, " Waiting for"
Lcdout $fe, $CO, " request!!! ™
Hserout [13,10,"Multi-port device is waiting for request!"”,13,10]

‘Getting the operation request by listenning the USART serial port and’
“ inverted logic serial port in a loop’

97

listenstart:

Hserin 2000, listennext,[wait ("m'™),char0]
goto listen

listennext:
Serin2 PortB.0,24764,2000,listenstart,[wait ("m"),char0]
goto listen

listen:

Select Case char0
Case "1"

Lcdout $fe, 1, " Data Receiving "
Lcdout $fe, $CO, " from1 "

‘Send the readout string to meter’
Serout2 PortB.1,24764,[47,63,33,13,10]

‘Start to receive data(meter id), otherwise branch to noconnection’
Serin2 PortB.0,24764,3010,noconnection,[str a1\16]

Hserout [str a1\16]

pause 10

‘Data receiving after getting Meter id from meter, if ended goto datason’
Donl:

Serin2 PortB.0,24764,3010,datason,[charQ]

Hserout [charO0]

Goto Donl

Case "2"

Lcdout $fe, 1, " Data Receiving "
Lcdout $fe, $CO, " from2 "

Serout2 PortB.3,24764,[47,63,33,13,10]
Serin2 PortB.2,24764,3000,noconnection,[str a1\16]

Hserout [str a1\16]
pause 10

98

Don2:
Serin2 PortB.2,24764,3000,datason,[charQ]
Hserout [char0]
Goto Don2

Case "3"

Lcdout $fe, 1, " Data Receiving "
Lcdout $fe, $CO, " from3 "

Serout2 PortB.5,24764,[47,63,33,13,10]
pause 10

Serin2 PortB.4,24764,3000,noconnection,[str a1\16]
Hserout [str a1\16]
pause 10

Dona:
Serin2 PortB.4,24764,3000,datason,[charQ]
Hserout [char0]
Goto Don3

Case "4"

Lcdout $fe, 1, " Data Receiving "
Lcdout $fe, $CO, " from4 "

Serout2 PortB.7,24764,[47,63,33,13,10]
pause 10

Serin2 PortB.6,24764,3000,noconnection,[str a1\16]
Hserout [str a1\16]
pause 10

Don4:
Serin2 PortB.6,24764,3000,datason,[char0Q]
Hserout [char0]
Goto Don4

Case "5"

99

‘File transfer procedure is initiated from main PC’

Lcdout $fe, 1, " FTP initiated "
Lcdout $fe, $CO, " by main PC"

Hserout [13,10,"Ready for file transfer”,13,10]
pause 1000

Serout2 PortB.1,16572,[13,10,"Be ready for receiving file",13,10]
pause 1000

Serin2 PortB.0,16572,30000,receivernotready, [nak]
Hserout [nak]

loop1l:
Hserin 5000,nofiletransfer,[charl]
Hserin 500, ftpcompleted,[char2]
Hserin 1000,problem,[char3]

Hserin 1000,problem,[str char\65]
Hserin 1000,problem,[str a\65]

Serout2 PortB.1,16572,[charl,char2,char3,str char\65,str a\65]

Serin2 PortB.0,16572,11000,noreplyfromreceiver,[nak]
Hserout [nak]

goto loopl

Case "6"
‘File transfer procedure is initiated from remote PC’

Lcdout $fe, 1, " FTP initiated "
Lcdout $fe, $CO, " by remote PC"

Serout2 PortB.1,16572, [13,10,"Ready for file transfer*,13,10]
pause 1000

Hserout [13,10,"Be ready for receiving file",13,10]
pause 1000

Hserin 30000, receivernotreadyl,[nak]
Serout2 PortB.1,16572,[nak]

loopl2:
100

Serin2 PortB.0,16572,5000,nofiletransferl,[charl]
Serin2 PortB.0,16572,500,ftpcompletedl,[char2]
Serin2 PortB.0,16572,1000,problem1,[char3]

Serin2 PortB.0,16572,1000,problem1,[str char\65]
Serin2 PortB.0,16572,1000,problem1,[str a\65]

Hserout [charl,char2,char3,str char\65,str a\65]

Hserin 11000,noreplyfromreceiverl,[nak]
Serout2 PortB.1,16572,[nak]

goto loop12

Case "9"
Serout2 PortB.1,16572,["Modem connection is closed by remote end!!"]

Lcdout $fe, 1, " Waiting for"
Lcdout $fe, $CO, "initialization!"

goto start

Case Else

Lcdout $fe, 1, "FALSE REQUEST!"

End Select

goto loop

notinitialized:
goto start

meterdetectl.:

Hserout [13,10,"Port 1 = Computer",13,10]

Serout2 PortB.1,16572,[13,10,"The main PC is online now!!!",13,10]
goto detect2

meterdetect2:
Hserout [13,10,"Port 2 = No connection”,13,10]
goto detect3

101

meterdetect3:
Hserout [13,10,"Port 3 = No connection”,13,10]
goto detect4

meterdetect4:
Hserout [13,10,"Port 4 = No connection”,13,10]
goto loop

‘After Data reading is completed’
datason:

Lcdout $fe, 1, " Data Received "

Hserout [13,10,"Data receiving is completed!",13,10]
pause 3000

goto loop

‘If no access to meter at related port’
noconnection:
Lcdout $fe, 1, " No connection!"
Hserout [13,10,"No meter connected to this port!",13,10]
pause 1000
goto loop

‘Below program parts are related with ftp process’

‘If ftp process from main PC to remote PC is not started’
nofiletransfer:

Lcdout $fe, 1, "No data received"

Hserout [*No data received"]

Serout2 PortB.1,16572,["No data received from sender"]
pause 1000

goto loop

‘If ftp process from main PC to remote PC is completed’
ftpcompleted:

Lcdout $fe, 1, "FTP completed!"

pause 2000

Serout2 PortB.1,16572,[4]

Hserout [6]

pause 100

Hserout [13,10," FTP Completed”,13,10]

Serout2 PortB.1,16572,[13,10," FTP Completed",13,10]

102

goto loop

‘If a problem is occured during file transfer from main PC to remote PC’
problem:

Hserout [24]

Serout2 PortB.1,16572,[24,24,24]
Lcdout $fe, 1, "problem"

pause 2000

goto loop

“‘If receiver does not send handshake char’
receivernotready:

Lcdout $fe, 1," Receiver"
Lcdout $fe, $CO, " not ready!! "
goto loop

‘If receiver does not respond with ACK or NACK to last received block’
noreplyfromreceiver:

Lcdout $fe, 1, "noreplyfromrcvr"

Serout2 PortB.1,16572,["You did not reply with ACK or NACK for last
block"]

goto loop

‘If ftp process from remote PC to main PC is not started’
nofiletransferl:

Lcdout $fe, 1, "No data received"

Hserout ["No data received from sender"]

Serout2 PortB.1,16572,["Data could not be received!!"]
pause 1000

goto loop

‘If ftp process from remote PC to main PC is completed’
ftpcompleted1.:

Lcdout $fe, 1, "FTP completed!"

pause 2000

Serout2 PortB.1,16572,[6]

Hserout [4]

pause 100

Hserout [13,10," FTP Completed”,13,10]

103

Serout2 PortB.1,16572,[13,10," FTP Completed™,13,10]
goto loop

‘If a problem is occured during file transfer from remote PC to main PC’
problem1:

Hserout [24]

Serout2 PortB.1,16572,[24,24,24]
Lcdout $fe, 1, "problem™

pause 1000

goto loop

“‘If receiver does not send handshake char’
receivernotreadyl:

Lcdout $fe, 1, "notready"
Hserout ["Be in receving file mode!"]
goto loop

‘If receiver does not respond with ACK or NACK to last received block’
noreplyfromreceiverl:

Lcdout $fe, 1, "noreplyfromrcvr"
Hserout ["'You did not reply with ACK or NACK for last block"]
goto loop

End

104

APPENDIX C - MULTIPORT DEVICE USER MANUAL

1)- Dimensions of the Device

Figure — 1 shows the dimensions of the multi-port device. As it can be
seen from the figure multi-port device can be located easily thanks to its
reasonable dimensions.

185 mm

30 min
135 mm

B85 mm . 30mm

\ |

55 mm 45 mm

R N

Figure — 1 Dimensions of the device
2)- Connection Specifications

Connection point in the system: The multi-port is connected between the remote
modem and digital electricity meters as shown in Figure — 2:

EOOOOI

Remote|Modem

Meter 1 Meter 4

Meter 2 Meter 3

105

Figure — 2 The multi-port device and digital electricity meters

ODQQE

RemoielModem

ted Multi-por Dew

Remote PC = = Meter 4

=L Esl

Metar 2 Meter 3

Figure — 3 The multi-port device, remote PC and digital electricity meters

Port Specifications: The connection points of modem, PC and electricity meters
are as shown in Figure — 4. The connections are realized by RJ12 connectors as
specified in Figure 5 and 6.

Madam

Metar 2 Matar 3

Figure — 4 Connections to the ports

106

Meter Side RJ-12 Male Socket - Device

Rx | 23 5 | Ix
Ix |24 3 |Rx
and | 25 4 |gnd
1 |E
2 |E
6 |E

Figure — 5 Meter-Device Connection

Modem Side
(25-pin Male) RJ-12 Male Socket - Device
Bx | 3 3 |Rcb
Tx 2 5 Re7
gnd | 7 4 |gnd
RTS| 4 1 E
CTS| 5 2 E
6 E

Figure — 6 Modem-Device Connection

Remote PC Side DB9 Female RJ-12 Male Socket — Device
Rx | 3 3 |Ix
Tx 2 5 |Bx
gnd | 5 4 |end
1 |E
2 |E
6 |E

Figure — 7 Modem-Device Connection
E: empty, not used
107

Power Supply: The multi-port device can be operated by using a standard voltage
adaptor. The voltage of the adaptor can be changed between 12 V -24 V. The
recommended voltage is 12 VV DC from an adaptor.

3)- Minimum Requirements for the Main Parts of the System

PC: The PC might be a standard personal computer, which has Windows 2000 or
XP operating system. For other Windows or Linux, Unix some settings about the
operating system might be needed. The main and easy requirement for the PC is a
properly working serial com. Port.

PC Side Modem : It is recommended by the Digital Electricity Meter producers
that the modem should be Hayes compatible, under this circumstances the modem
might be internal or external. The recommended and tested as properly working
modem settings with AT command sets are as following:

AT &F1

AT+MS=9,0,4800,0,0,4800

AT&MO

AT%CO

ATX3

ATEO

AT&WO

AT&W1

AT&YO0

But it should be noted that these settings are not the only way for solution
and might be changed according to user and system preferences.

Remote Side Modem : It is recommended by the Digital Electricity Meter
producers that the modem should be Hayes compatible. The recommended and
tested as properly working modem settings with AT command sets are as
following:

AT &F1
AT+MS=9,0,4800,4800,0,0,4800
ATS0=1

AT&MO

AT%CO

ATEO

AT&DO

AT&WO

AT&W1

AT&YO0

108

But it should be noted that these settings are not the only way for solution
and might be changed according to user and system preferences.

Meters : The meters which can be read properly in this system must have at least
one RS232 communication port and very importantly they must communicate
with the peripherals according to the FLAG protocol. FLAG protocol is created
by FLAG Association as guide to IEC Meter Communications Specifications.

4)- Reading Software

R5232 Share for Meter =10] |
M |Com1 -| 03123022620 Dial First Meter ~| Read Device| SetModem Timeout [1000
[Initiate ETP | Set Device Timeout |1|]|]

Close Port | Clear Text |
=
Kl _'l_I
Break CTS DCD DSR Error RING RXD TDX
| | H E E E E E B
[™ Slave Computer
Send Please select file to be sent =
Receive Please select file to be received =

Figure — 8 Main Screen of Reading Software on Main PC

When the program is started on the main PC, the program window shown
in Figure — 2.1 should appear on the main PC screen.

The execution steps of software are described below:

1)- First of all, the port of main PC, which will be used for serial
communication, should be selected. The active ports are listed in the left upper
box.

2)- Then the phone number, which will be dialed to establish the
communication to the remote side, should be specified in the box at left side of
Dial button.

3)- Next, the timeout values for main PC to modem connection and main
PC to multi-port device should be entered to right upper box. After that, Dial
button should be clicked, and thus the “ATDT + Phone Number” command is sent
to modem. Then connection is established and the program starts to send
connection indication string to the multi-port device. After the handshake process
between the multi-port device and main PC is completed, the program will receive
the port status of the multi-port device, such as which device is connected to

109

which port. If the handshake process between main PC and multi-port device,
which can continue 60 seconds at most, fails anyhow, the connection will be
closed automatically by the program. The related indication messages appear on
the left log window.

4)- After the connection is established successfully, the request may be to
perform a remote reading procedure of a meter or to perform a file transfer to the
remote PC.

5)- If the request is to perform a remote reading procedure of a meter, the
desired meter should be selected from the box and then Read Device button
should be clicked. If the meter is not password protected and also connected to the
port properly, the readout data will be listed in reading window on the left. The
readout data can be written to a text file by clicking right button of mouse over the
window.

6)- This meter readout procedure can be executed for each meter in the
same manner. The readout window on the left can be cleared at anytime by
clicking Clear Text button.

7)- If the request is to perform a file transfer to the remote PC, the request
must be initiated by clicking to the Initiate FTP button and after that the file to be
sent should be selected by clicking File Open icon at the bottom of the program
window at same line with Send button. After clicking to the Send button, the file
transfer procedure will wait for 30 seconds for preparation of remote PC to
receive a file. Within 30 seconds, when the remote PC passes to receiving file
mode, the file transfer process will start according to Xmodem protocol.

8)- If a file transfer request is received from remote PC, the multi-port
device informs the main PC to be in receiving mode within 30 seconds. When the
main PC enters to receiving file mode, the file transfer process will start according
to Xmodem protocol.

9)- The connection between main PC and multi-port device can be closed
at anytime by the user of main PC by clicking Close Port button.

Note: The buttons below the reading window indicates the status of serial
communication performed by using APRO Libraries. They will be red or green
according to the status of process while the program is running. Clear Text button
clears the reading window to prepare for next reading. Clear Text button can be
used at anytime.

110

R5232 Share for Meter =101 x|
-ICnm1 vl Open Port |
|
Close Port |
=l
Kl ;l_l
Break CTS DCD DSR Emor RING RXD TDX
[v Slave Computer
Send Please select file to be sent =)
Initialize FTP |
Receive Please select file to be received [

Figure — 9 Main Screen of Reading Software on Remote PC

When the program is started on the remote PC, the program window
shown in Figure — 2.2 should appear on the remote PC screen.

The execution steps of software are described below:

1)- First of all, the Slave Computer box must be checked in order to turn
the lite version on. As soon as the program is started, the serial port to be used for
the communication with multi-port device should be specified and opened.

2)- While the start up procedure of the multi-port device, the multi-port
device sends the port status detection messages to all ports. As soon as the remote
PC receives this message, it immediately replies with a specified string that
indicates remote PC is connected and ready.

3)- Then the remote PC starts to wait for a file transfer procedure
initialization message. When this message is received, the program should be in
receiving file mode within 30 seconds. After a few seconds, the file transfer starts.

4)- The remote PC can initiate a file transfer anytime by clicking Initialize
FTP button at the right bottom of the program window. If the remote PC receives
“Ready for file transfer” message, the file transfer can be started. When Send
button is clicked, the file transfer procedure will wait for 30 seconds for
preparation of main PC to receive a file. Within 30 seconds, when the main PC
passes to receiving file mode, the file transfer process will start according to
Xmodem protocol.

5)- After the file transfer from remote PC to main PC is completed, the
program execution turns back step 2. Throughout running of lite version remote
access software, the specified serial port must be opened and the Slave Computer
button must be checked.

111

APPENDIX D - XMODEM FILE TRANSFER PROTOCOL

Xmodem

Xmodem, which is one of the oldest, simplest and slowest file transfer
protocols, was developed and first implemented by Ward Chrlstensen in 1977 and
placed in the public domain. Since then, it has become an extremely popular
protocol and continues in use today (although at a diminished frequency).

Xmodem uses blocks of only 128 bytes and requires an acknowledgment
of each block. It uses only a simple checksum for data integrity.What follows is a
simplified description of the Xmodem protocol, although it describes far more

than is required to actually use the protocol.

{ <SOH> I <block#s I<hgg}<#> I <128 bytes of data> I <checksum> }

The format for XModem blocks.

Figure — 1 Xmodem block structure

The <SOH> character marks the start of the block. Next comes a one byte
block number followed by a ones complement of the block number. The block
number starts at one and goes up to 255 where it rolls over to zero and starts the
cycle again. Following the block numbers are L28 bytes of data and a one-byte
checksum. The checksum is calculated by adding together all the data bytes and
ignoring any carries that result. Below table describes a typical Xmodem protocol

transfer.

112

Transmitter Receiver

w-—= <HAK=

<80H>=1><254><128 data bytes=><«chk= i

i <ACK=>

<80H=»=2>=253><128 data b}’t&ﬂ'.--\:ch]{'a e

= <ACK=>

<EQT> i

- L i

Figure — 2 Xmodem protocol transfer steps

The receiver always starts the protocol by issuing a <NAK>, also called
the handshake character. It waits 10 seconds for the transmitter to send a block of
data. If it does not get a block within 10 seconds, it sends another <NAK>. This
continues for 10 retries, after which the receiver gives up.

It the receiver does get a block, it compares the checksum. It calculates to
the received checksum. If the checksums differ, the receiver sends a <NAK> and
the transmitter resends the block. If the checksums match, the receiver accepts the
block by sending an <ACK>. This continues until the complete file is transmitted.
The transmitter signifies this by sending an <EOT>, which the receiver
acknowledges with an <ACK>,

From this description several things become clear. First, this protocol does
not transfer any information about the file being transmitted. Hence, the receiver
must assign a name to the incoming file.

The receiver also does not know the exact size of the file, even after it is
completely received. The received file size is always a multiple of the block size.
This Xmodem implementation fills the last partial block of a transfer with
characters of value BlockFillChar, whose default is "Z.

Xmodem often exhibits a start-up delay. The transmitter always waits for a
<NAK> from the receiver as its start signal If the receiving program was started
first, the transmitter probably missed the first <NAK> and must wait for the

receiver to time out and send another <NAK>.

113

The only merit of the basic Xmodem protocol is that it is so widespread
that it is probably supported by any microcomputer communications program you

can find, thus providing a lowest common denominator between systems.

Xmodem Extensions

Xmodem has been tweaked and improved through the years. Some of
these variations have become standards of their own.

The first of these improvements is called Xmodem CRC, which substitutes
a 16 bit CRC (cyclic redundancy check) for the original checksum. This offers a
much higher level of data integrity. When given the opportunity, you should
always choose Xmodem CRC over plain Xmodem.

The receiver indicates that it wants to use Xmodem CRC by sending the
character ‘C’ instead of <NAK> to start the protocol. If the transmitter doesn't
respond to the ‘C’ within three attempts, the receiver assumes the transmitter is
not capable of using Xmodem CRC. The receiver automatically drops back to
using checksums by sending a <NAK>.

Another popular extension is called Xmodem 1K. This derivative builds
on Xmodem CRC by using 1024 byte blocks instead of 128 byte blocks. When
Xmodem 1K is active, each block starts with an <STX> character instead of an
<SOH>. Xmodem 1K also uses a 16 bit CRC as the block check.

A larger block size can greatly speed up the protocol because it reduces the
number of times the transmitter must wait for an acknowledgment. However, it
can actually reduce throughput over noisy lines because more data must be

retransmitted when errors are encountered.

114

APPENDIX E - COMPLETE LIST OF SERIN2/SEROUT2 MODES

Bit 15 Bit 14 Bit 13

e R (Output) (Conversion) (Parity) BRI UG
300 Driven True None 3313
300 Driven True Even* 11505
300 Driven Inverted None 19697
300 Driven Inverted Even* 27889
300 Open True None 36081
300 Open True Even* 44273
300 Open Inverted None 52465
300 Open Inverted Even* 60657
600 Driven True None 1646
600 Driven True Even* 9838
600 Driven Inverted None 18030
600 Driven Inverted Even* 26222
600 Open True None 34414
600 Open True Even* 42606
600 Open Inverted None 50798
600 Open Inverted Even* 58990
1200 Driven True None 813
1200 Driven True Even* 9005
1200 Driven Inverted None 17197
1200 Driven Inverted Even* 25389
1200 Open True None 33581
1200 Open True Even* 41773
1200 Open Inverted None 49965
1200 Open Inverted Even* 58157
2400 Driven True None 396
2400 Driven True Even* 8588
2400 Driven Inverted None 16780
2400 Driven Inverted Even* 24972
2400 Open True None 33164
2400 Open True Even* 41356
2400 Open Inverted None 49548
2400 Open Inverted Even* 57740

4800 Driven True None 188

4800 Driven True Even* 8380
4800 Driven Inverted None 16572
4800 Driven Inverted Even* 24764
4800 Open True None 32956
4800 Open True Even* 41148
4800 Open Inverted None 49340
4800 Open Inverted Even* 57532

9600 baud may be unreliable with 4MHz clock

9600 Driven True None 84

9600 Driven True Even* 8276
9600 Driven Inverted None 16468

115

9600
9600
9600
9600
9600

14400
14400
14400
14400
14400
14400
14400
14400

19200
19200
19200
19200
19200
19200
19200
19200

28800
28800
28800
28800
28800
28800
28800
28800

33600
33600
33600
33600
33600
33600
33600
33600

38400
38400
38400
38400
38400
38400
38400
38400

Driven
Open
Open
Open
Open

baud rates below require 8MHz clock or faster

Driven
Driven
Driven
Driven
Open
Open
Open
Open

baud rates below require 10MHz clock or faster

Driven
Driven
Driven
Driven
Open
Open
Open
Open

baud rates below require 16MHz clock or faster

Driven
Driven
Driven
Driven
Open
Open
Open
Open

Driven
Driven
Driven
Driven
Open
Open
Open
Open

baud rates below require 20MHz clock or faster

Driven
Driven
Driven
Driven
Open
Open
Open
Open

Inverted
True
True

Inverted

Inverted

True
True
Inverted
Inverted
True
True
Inverted
Inverted

True
True
Inverted
Inverted
True
True
Inverted
Inverted

True
True
Inverted
Inverted
True
True
Inverted
Inverted

True
True
Inverted
Inverted
True
True
Inverted
Inverted

True
True
Inverted
Inverted
True
True
Inverted
Inverted

Even*
None
Even*
None
Even*

None
Even*
None
Even*
None
Even*
None
Even*

None
Even*
None
Even*
None
Even*
None
Even*

None
Even*
None
Even*
None
Even*
None
Even

None
Even*
None
Even*
None
Even*
None
Even

None
Even*
None
Even*
None
Even*
None
Even

24660
32852
41044
49236
57428

49
8241
16433
24625
32817
41009
49201
57393

32
8224
16416
24608
32800
40992
49184
57376

15
8207
16399
24591
32783
40975
49167
57359

10
8202
16394
24586
32778
40970
49162
57354

6
8198
16390
24582
32774
40966
49158
57350

*Parity is odd when DEFINE SER2_ODD 1 is used.

[Ref. 9]

116

	Tez_pdf.pdf
	Tez_pdf.pdf
	Tez2_pdf.pdf
	Tez2_pdf.pdf
	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS

	Tez3_pdf.pdf
	LIST OF FIGURES………………………………………………………. xi
	REFERENCES………………………………………………………….… 83

	Tez4_pdf.pdf
	LIST OF TABLES

	Tez_son_son1.pdf
	Tez_son1.pdf
	Tez3_pdf.pdf
	CHAPTER 1
	GENERAL DESCRIPTION OF THE SYSTEM
	Common Remote Reading Infrastructure
	Figure – 1.1 Remote Reading Infrastructure used in metering
	Figure – 1.2 More feasible remote reading solution with Impl
	E: empty, not used
	Figure – 1.3 Meter-Device connection
	E: empty, not used
	Figure – 1.6 Remote PC-Device connection

	CHAPTER 2
	DATA COMMUNICATION INTERFACE
	2.3.1 Signal Ground and Shield
	2.3.2 Primary Communications Channel
	2.3.4 Modem Status and Control Signals
	2.3.5 Transmitter and Receiver Timing Signals
	2.3.6 Channel Test Signals

	2.4 Electrical Standards
	Table – 3.1 Basic features of PIC 16F877
	Key Features
	PIC 16F877
	Figure – 3.2 Two situations of loading PC

	3.2 Microcontroller Programming Procedure
	Figure – 4.6 USART Transmit Block Diagram
	Figure – 4.7 USART Receive Block Diagram

	4.3 Inverted Logic

	CHAPTER 5
	DESCRIPTION OF IMPLEMENTED SYSTEM
	5.1.3 Flow Diagram of Reading Software
	Table – 5.1 Summary of the most commonly used protocols

	Figure – 5.4 Asynchronous transmission packets
	5.3 The Implemented Multi-port Device
	Figure – 5.6 General LCD connection diagram
	Figure – 5.8 Multi-port device PCB diagram

	Tez5_pdf.pdf
	Common Remote Reading Infrastructure
	Figure – 1.1 Remote Reading Infrastructure used in metering
	Figure – 1.2 More feasible remote reading solution with Impl
	E: empty, not used
	Figure – 1.3 Meter-Device connection
	E: empty, not used
	Figure – 1.6 Remote PC-Device connection

	CHAPTER 2
	DATA COMMUNICATION INTERFACE
	2.3.1 Signal Ground and Shield
	2.3.2 Primary Communications Channel
	2.3.4 Modem Status and Control Signals
	2.3.5 Transmitter and Receiver Timing Signals
	2.3.6 Channel Test Signals

	2.4 Electrical Standards
	Table – 3.1 Basic features of PIC 16F877
	Key Features
	PIC 16F877
	Figure – 3.2 Two situations of loading PC

	3.2 Microcontroller Programming Procedure
	Figure – 4.6 USART Transmit Block Diagram
	Figure – 4.7 USART Receive Block Diagram

	4.3 Inverted Logic

	CHAPTER 5
	DESCRIPTION OF IMPLEMENTED SYSTEM

