

MICROCONTROLLER – BASED MULTIPORT COMMUNICATION

SYSTEM FOR DIGITAL ELECTRICITY METERS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

FIRAT BEŞTEPE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2004

 Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan ÖZGEN

 Director

 I certify that this thesis satisfies all the requirements as a thesis for the

degree of Master of Science.

 Prof. Dr. İsmet ERKMEN

 Head of Department

 This is to certify that we have read this thesis and that in our opinion it is

fully adequate, in scope and quality, as a thesis for the degree of Master of

Science

 Prof. Dr. Hasan GÜRAN

 Supervisor

 Examining Committee Members

Prof. Dr. Osman SEVAIOĞLU (METU,EE)

Prof. Dr. Hasan GÜRAN (METU,EE)

Assoc. Prof Dr. Gözde BOZDAĞI (METU,EE)

Asst. Prof. Dr. Cüneyt BAZLAMAÇCI (METU,EE)

Graduate Engineer Turgay ŞENDUR (KOSGEB)

 iii

 I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, I have
fully cited and referenced all material and results that are not original to this
work.

 Name, Last name : Fırat BEŞTEPE

Signature :

 iv

ABSTRACT

MICROCONTROLLER-BASED MULTIPORT COMMUNICATION

SYSTEM FOR DIGITAL ELECTRICITY METERS

BEŞTEPE, Fırat

Ms., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Hasan GÜRAN

December 2004, 116 pages

This thesis explains the design of a microcontroller-based device, which

provides an efficient and practical alternative for the remote reading of digital

electricity meters over Public Switch Telephone Network (PSTN). As an

alternative application, a system is constructed providing file transfer capability to

the PC connected to the port of implemented device in addition to remote reading

of digital electricity meters. This thesis also provides detailed explanations about

the basics of serial asynchronous communication over modem for PICs

(peripheral interface controllers) together with description of each component

included by the constructed system, which can be used in energy metering sector

commonly.

Keywords: PIC, Microcontroller, Serial Communication

 v

ÖZ

ELEKTRONİK ELEKTRİK SAYAÇLARI İÇİN MİKRODENETLEYİCİ

TEMELLİ ÇOKLU PORT HABERLEŞME SİSTEMİ

BEŞTEPE, Fırat

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Hasan GÜRAN

Aralık 2004, 116 sayfa

Bu tez elektronik elektrik sayaçlarının, Genel Telefon Ağı (PSTN)

üzerinden uzaktan okunması amacına yönelik etkili ve kullanışlı bir alternatif

sunan, mikrodenetleyici temelli bir cihazın dizaynını açıklamaktadır. Alternatif bir

uygulama olarak da, elektronik elektrik sayaçlarının uzaktan okunmasının

yanısıra, dizayn edilen cihazın portlarından birine bağlanan PC ile dosya

transferinin de yapılabildiği bir sistem oluşturulmuştur. Ayrıca enerji ölçüm

sektöründe yaygın olarak kullanılabilecek bu sistemin tüm temel unsurlarının

izahı ile birlikte, çevresel arayüz denetleyicileri (PICs) için modem üzerinden seri

ve eşzamanlı olmayan haberleşme temelleri konusunda ayrıntılı bilgi vermektedir.

Anahtar Kelimeler: PIC, Mikrodenetleyici, Seri Haberleşme

 vi

ACKNOWLEDGEMENTS

 The author wishes to express his deepest gratitude to his supervisor Prof.

Dr. Hasan GÜRAN for his guidance, advices, criticism, and encouragements and

insight throughout the study.

 The technical assistances of Tuncay KANDEMİR, Ali Erkan ERKOL and

Kadir ERDOĞAN are gratefully acknowledged.

 This study was supported by Aktif Enerji Ltd. Şti., ANKARA.

 vii

TABLE OF CONTENTS

PLAGIARISM……………………………………………………………. iii
ABSTRACT……………………………………………………………….. iv
ÖZ………………………………………………………………………….. v
ACKNOWLEDGEMENTS……………………………………………….vi
TABLE OF CONTENTS………………………………………………… vii
LIST OF TABLES………………………………………………………... x
LIST OF FIGURES………………………………………………………. xi

CHAPTER 1)- GENERAL DESCRIPTION OF THE SYSTEM

1.1 Introduction………………………………………………………….... 1
1.2 Common Remote Reading Infrastructure…...……………………… 2
1.3 Developed Remote Reading Infrastructure…...…………………….. 3
1.4 Alternative Application of Multi-port Device…..……………...…… 6
1.5 Objective of This Thesis………………………………..…………….. 8

CHAPTER 2)- DATA COMMUNICATION INTERFACE

2.1 Introduction………………………………………………………....… 10
2.2 EIA232 Standard…………………………………………………...… 11
2.3 EIA232 Signal Functions…………………………………………...… 11

2.3.1 Signal Ground and Shield………………………………….… 16
2.3.2 Primary Communications Channel……………………….….. 16
2.3.3 Secondary Communications Channel…………………….….. 17
2.3.4 Modem Status and Control Signals……………………….…. 18
2.3.5 Transmitter and Receiver Timing Signals…………………… 19
2.3.6 Channel Test Signals…………………………………….…… 20

2.4 Electrical Standards…………………………………………...……....21

CHAPTER 3)- PIC 16F877 MICROCONTROLLER

3.1 General Overview to Microcontrollers…………………………...…. 23

3.1.1 Program Counter and Program Memory EPROM……...……. 25
3.1.2 Data RAM…………………………………………….……… 26
3.1.3 Arithmetic Logic Unit………………………………..………. 26
3.1.4 I/O ports……………………………………………..……….. 27

3.1.4.1 PORTA and the TRISA Register………...………… 28
3.1.4.2 PORTB and the TRISB Register………………...… 28
3.1.4.3 PORTC and the TRISC Register……………...…… 29
3.1.4.4 PORTD and TRISD Registers…………………...… 29
3.1.4.5 PORTE and TRISE Register……………………….. 29

3.1.5 Peripherals……………………………………………….……30
3.2 Microcontroller Programming Procedure……..………………...…. 32

 viii

CHAPTER 4)- SERIAL COMMUNICATION WITH
 MICROCONTROLLERS

4.1 Introduction…………..……………………………………………….. 34
4.2 USART Module……………...………………………………………... 34

4.2.1 Signal Level Conversion……………………………………... 35
4.2.2 The USART Module Asynchronous Mode………………..….38

4.2.2.1 USART Asynchronous Transmitter……………..…. 39
4.2.2.2 USART Asynchronous Receiver………………..…. 41

4.3 Inverted Logic……………………………………………..…… 43
4.4 Comments on Serial Communication with Microcontrollers….. 45

CHAPTER 5)- DESCRIPTION OF IMPLEMENTED SYSTEM

5.1 Remote Access Software…………………………………………...…. 46

5.1.1 Running of Full Version Remote Access Software………….. 47
5.1.2 Running of Lite Version Remote Access Software………….. 49
5.1.3 Flow Diagram of Reading Software…………………………..51

5.2 Modem……………………………………………………………….... 55
 5.2.1 Communication Protocol…………………………………….. 55

5.3 The Implemented Multi-port Device…………………………………57
5.3.1 General Description………………………………………….. 57
5.3.2 Voltage Regulator……………………………………………. 57
5.3.3 LCD Module…………………………………………………. 58
5.3.4 Microcontroller Module……………………………………… 61

5.3.4.1 Reset Process………………………………………. 61
5.3.4.2 Oscillator…………………………………………… 61
5.3.4.3 Serial Communication with USART………………. 61
5.3.4.4 Serial Communication with Inverted Logic……….. 63

5.3.5 Operational Principles of Multi-port Device………………….63
5.3.6 Flow Diagram of Microcontroller Code………………………66
5.3.7 Circuit Diagram……………………………………………… 69

5.4 The Digital Electricity Meter………………………………………… 72
5.4.1 General Description………………………………………….. 72
5.4.2 EDIS (Energy Data Identification System)…………………... 73
5.4.3 Combi Meter / 4-Quadrant Meter……………………………. 74

5.4.3.1 Combi Meter……………………………………….. 74
5.4.3.2 Four-Quadrant Meter………………………………. 75

5.4.4 Modules……………………………………………………… 76
5.4.4.1 Power Unit………………………………….……… 77
5.4.4.2 Suppressor Circuits………………………………… 77
5.4.4.3 Modular Construction……………………………… 78

5.4.5 Digital Measuring Mechanism……………………….………. 78
5.4.5.1 Measurement principle…………………….……….. 78
5.4.5.2 Voltage measurement……………………...………..78
5.4.5.3 Current measurement………………………………. 79
5.4.5.4 Digitization…………………………...……………. 79

 ix

5.4.5.5 Integral values……………………………………… 79
5.4.5.6 Measurement values…………………………...…… 79
5.4.5.7 Calibration…………………………………….……. 80

5.4.6 Tariff Mechanism…………………………………….………. 80
5.4.7 Data Interface………………………………………………… 80

CHAPTER 6)- CONCLUSION…...……………………………………... 81

REFERENCES………………………………………………………….… 83

APPENDIX A – READING SOFTWARE SOURCE CODE…………….. 85
APPENDIX B – SOURCE CODE IN PICBASIC………………………... 96
APPENDIX C – MULTIPORT DEVICE USER MANUAL……………... 105
APPENDIX D – XMODEM FILE TRANSFER PROTOCOL…………… 112
APPENDIX E – COMPLETE LIST OF SERIN2/SEROUT2 MODES….. 115

 x

LIST OF FIGURES

Figure – 1.1 Remote Reading Infrastructure used in metering solutions….. 2
Figure – 1.2 More feasible remote reading solution with Implemented
 Multi-port Device………….…………………………………. 3
Figure – 1.3 Meter-Device connection….………………………………… 4
Figure – 1.4 Modem-Device connection…..………………………………. 5
Figure – 1.5 Alternative Application of Implemented Multi-port Device… 6
Figure – 1.6 Remote PC-Device connection…………….………………… 7

Figure – 2.1 DTE and DCE……………………………………………….. 11
Figure – 2.2 DB25 Male DTE device connector…………………………. 12
Figure – 2.3 DB9 Male DTE device connector…………………………… 12
Figure – 2.4 DB25 Female DCE device connector…..……………………. 13
Figure – 2.5 DB9 Female DCE device connector…….…………………… 13
Figure – 2.6 Conventional usage of signal names………...………………. 15
Figure – 2.7 Non-Return to Zero format………………………………….. 21

Figure – 3.1 PIC 16F877 Block Diagram…………………………………. 23
Figure – 3.2 Two situations of loading PC…………….………………….. 25
Figure – 3.3 PDIP package…………………………….………………….. 27

Figure – 4.1 TT/CMOS Serial Logic Waveform…….……………………. 36
Figure – 4.2 RS-232 Logic Waveform………………..…………………… 36
Figure – 4.3 Logical Regions of signal……………………………………. 36
Figure – 4.4 MAX232 pin diagram………………….…………………….. 37
Figure – 4.5 MAX232 circuit diagram……………….……………………. 37
Figure – 4.6 USART Transmit Block Diagram……………………...……. 40
Figure – 4.7 USART Receive Block Diagram………………………..…… 43
Figure – 4.8 Inverted logic connections………………………………….... 44

Figure – 5.1 Main screen of Reading Software on main PC……….....…… 47
Figure – 5.2 Main screen of Reading Software on remote PC…...……..… 49
Figure – 5.3 Reading software flow diagram (I)………….……………….. 51
Figure – 5.3 Reading software flow diagram (II)…………………………. 52
Figure – 5.4 Asynchronous transmission packets…………………………. 57
Figure – 5.5 Voltage regulation circuit……………………………………. 58
Figure – 5.6 General LCD connection diagram……………...……………. 59
Figure – 5.7 Microcontroller code flow diagram (I)………………………. 66
Figure – 5.7 Microcontroller code flow diagram (II)……………………… 67
Figure – 5.8 Multi-port device PCB diagram……………………...……… 70
Figure – 5.9 Multi-port device circuit diagram... 71
Figure – 5.10 General EDIS code system…………….…………………… 74
Figure – 5.11 EDIS coding for Combi-meter……….…………………….. 75
Figure – 5.12 EDIS coding for Four-quadrant meter……………………… 76

 xi

LIST OF TABLES

Table – 3.1 Basic features of PIC 16F877……………………………...…. 24
Table – 5.1 Summary of the most commonly used protocols………...…… 56

 1

CHAPTER 1

GENERAL DESCRIPTION OF THE SYSTEM

1.1 Introduction

Electricity meters functioned according to electromechanical principles

until 1980’s. Therefore, desired measures in accuracy, reliability, lifetime and

price of metering solutions could not be attained. Since that time, electronics has

made a remarkable development. Today electricity meters are mass-produced

using the most modern microelectronics. This digital processing technology is not

only providing better solutions than the classical measurement technology but also

is able to operate with auxiliary devices (e.g. modem). Also these high technology

meters enable the consumers to construct very feasible remote reading

infrastructures via their advanced communication facilities.

 Within this scope, in this thesis, an implemented device will be presented

and elucidated as a solution for simplifying the remote reading infrastructures of

digital electricity meters by means of reducing the number of components used in

the system.

1.2 Common Remote Reading Infrastructure

Figure – 1.1 shows the brief model of a system, which is used very

commonly in the metering sector. The system mainly consists of a PC including

software for remote reading purpose, a modem at PC side, a telephone line

dedicated to the PC side modem, modems for each meter at remote side and

dedicated telephone lines for each modem. This kind of infrastructure has been

widely used in metering systems, especially in high power plants, multi lined

power plants and auto-producers. The main difficulty in this kind of systems is

the necessity of modem and telephone line for each meter. Using a small but

sufficient telephone exchange instead of using one dedicated line for each meter

can eliminate this hardship a bit. But using a modem for each meter is an

unavoidable necessity for these kinds of systems.

 2

Figure – 1.1 Remote Reading Infrastructure used in metering solutions

1.3 Developed Remote Reading Infrastructure

 3

Figure – 1.2 More feasible remote reading solution with Implemented Multi-port

Device

 4

 Considering the previous mentioned issues, Figure – 1.2 shows the same

which is the subject of this thesis. As in Figure – 1.2, there is

o need to have modems and telephone lines for each meter any more. One

nnector at the other end for the serial

port of

system in Figure – 1.1 but materialized by the implemented multi-port device,

 it can be seen clearly

n

telephone line and one modem connected to the multi-port device is now enough

to communicate with more than one meter.

In a system shown in Figure – 1.2, the PC establishes the communication

with the multi-port device over PSTN. The direct connection between PC and

modem is done by original modem cable, which has 25-pin female connector for

the end of modem side, and 9-pin female co

 PC. In addition to that, two different types connection cables are also

needed in the system; one of which is to be used for connection between remote

modem and the multi-port device, and the other of which to be used for

connection between multi-port device and each meter. The pin specifications of

these cables are shown in Figure – 1.3 and 1.4.

 Meter Side RJ-12 Male Socket - Device

E: empty, not used

Figure – 1.3 Meter-Device connection

 5

 Modem Side
 (25-pin Male) RJ-12 Male Socket - Device

E: empty, not used

Figure – 1.4 Modem-Device connection

Using the software running on the PC, which will be described in Chapter

5, the user enters the telephone number of the remote modem for dialing. After the

communication is established b user chooses only the port of

the implemented multi-port device to which the meter is connected. Right after

the reception of the lti-port device, the

microcontroller in the device sends the string to the specified port according to the

Flag p

 the reception process, an indication message demonstrating a

continuing data reception appears on the LCD. After data reception is completed,

etween two ends, the

 port number of the meter by the mu

rotocol, which arranges the communication rules of the meter with the

peripherals. If the meter is password protected, it will reply with a specific string

that indicates a password requirement or if there is no meter connected to this

port, time-out occurs and the multi-port device sends a related message to the user

station. A similar message is also sent to LCD on the device for local recognition

by the users.

If there is a meter connected to a specified port and the meter is not

password protected, it will reply in 20 msec after receiving a request according to

the protocol. If the request is standard readout request of the meter, the meter will

send all the standard readout data character by character to the multi-port device

and the multi-port device sends all the characters to the PC as soon as it receives

them. During

 6

the mu

Figure – 1.5 Alternative Application of Implemented Multi-port Device

lti-port device sends another message indicating the completed readout

process to both LCD and user station and then starts to wait for the next request.

1.4 Alternative Application of Multi-port Device

 7

 As shown in Figure – 1.5, the implemented multi-port device has 4 ports

(expandable to 8) apart from the port providing the connection to the remote

modem. Four digital electricity meters can be connected to these ports as well as

one PC and three digital electricity meters. As shown in Figure – 1.5 the device

connected to the port 1 may be a PC or a digital electricity meter according to the

application. The application with a PC connected to port 1 provides the users to

carry out two-way file transfer between the main PC and the remote PC. This two-

way file transfer process is performed according to Xmodem file transfer protocol.

The details of Xmodem protocol are explained in Appendix D. The pin

specifications of the connection cable between the multi-port device and remote

PC is as shown in Figure – 1.6.

 Remote PC Side DB9 Female RJ-12 Male Socket – Device

E: empty, not used

Figure – 1.6 Remote PC-Device connection

1.5 Objective of This Thesis

 This thesis aims to reduce the number of components used in the remote

reading infrastructures of digital electricity meters and thus simplify the system

together with a cost reduction.

 The topic of meter remote reading has become very popular in last decade

in the world and almost all producers have integrated communication interfaces to

their meters, which provide the capability of remote access. Correspondingly,

 8

rofessional remote reading infrastructure, several

ompanies with different proficiencies should work together. For example, The

W in

Australia and their meter remote reading infrastructure has been constructed based

on GSM technology by a group being composed of CallDirect

Telecommunications, Nokia and a software development company. Another

example is Clark Public Utilities, which is a customer-owned utility providing

electricity, water and wastewater service in Clark County, Washington and they

have more 164.000 electricity customer and 26.000 water customer. The meters of

customers are connected to the remote reading system by radio transmitter or

telephone line according to met ess.

 The remote 1.1 and 1.2 may

sometimes need many more meters as m ntioned previous examples, which will

also mean more modems and more inter-phone lines or dedicated lines. At most of

the sites where a lot o er with inter-phone or

edicated lines, various problems might be come across. For instance, enough

aller space a system requires, the more adaptable

ber of ports of implemented multi-port device

several companies, such as CallDirect Telecommunications [Ref. 19], Adaptive

Networks [Ref. 20], Enermet [Ref. 21], PERAX Remote Automated Management

Systems [Ref. 22], started to carry on business related with constructing remote

reading infrastructures for meters.

 In order to construct a p

c

Integral Energy is the second largest state-owned energy corporation in NS

er type and feasiblen

 reading infrastructures illustrated in Figure –

e

f modems will be installed togeth

d

space for modems could not be found on the panel where the meters will be put.

Additionally, operating and maintaining too many devices is not very simple.

It is obvious that the sm

the system is. Therefore reducing the number of devices used in a system is an

engineering matter, which provides several advantages including maintenance

ease.

As an example, when we consider a remote reading infrastructure having

32 meters, an implemented 4-port multi-port device will be able to decrease the

number of modems and phone lines to 8. This type of a reduction in the system

will be more remarkable if the num

is expanded to 8.

 9

ances this two-way file

that

the PIC

 explained in details in Chapter 4. Finally, the developed remote access

softwar

hich is written by using PicBasic Pro, is presented in Appendix

 Moreover, if the implemented multi-port device is connected to a PC

together with digital electricity meters as shown in Figure – 1.5, this application

will provide two-way file transfer between the main PC and the remote PC. The

readout data of a meter contains all the information that the meter has, such as all

energy registers according to tariff measurements and their old values, all mean

power values, instantaneous date and time, meter serial number, error code giving

the current situation of the meter, etc. With regard to that, the readout data of the

meters or some evaluation reports of this readout data may be necessary to be

shared between the remote ends. Under the circumst

transfer opportunity can simplify this process fairly.

 The system constructed in the scope of this thesis will be explained in next

chapters by giving the details about operating principles of used components and

devices, designing of multi-port device and code implementation.

 First of all, the basics of serial communication and RS 232 standard, which

constitute the base of interface between multi-port device and peripherals such as

digital electricity meters and computers, will be explained in Chapter 2. After

 16F877, which is the microcontroller used in the multi-port device, will

be explained in Chapter 3. Then the fundamentals of serial communication with

the microcontrollers, which is the main issue performed by the multi-port device,

will be

e, modems, implemented multi-port device and digital electricity meters,

which are the main parts of the system, will be described in Chapter 5.

 The source code of developed remote access software written by using

Delphi 7.0 is presented in Appendix A and the code of PIC 16F877

microcontroller, w

B. In Appendix C the user manual of multi-port device is given. The Appendix D

includes the details of Xmodem, which is the protocol used for the file transfer

between main PC and remote PC. The final appendix gives the serial

communication modes in PicBasic Pro, which is explained in Chapter 4.

 10

ly between

different

anufacturers. From these ideas, the RS232 standard, which is the short of

ecommended Standard-232, was born. It specified signal voltages, signal timing,

ignal function, a protocol for information exchange, and mechanical connectors.

Over the 40 years since this s dard was developed, the Electronic

Industries Association published ons, the most recent being the

EIA232E standard introduced in 1991 [Ref. 12]. Besides changing the name from

RS232 to EIA232, some signal lines were

defined, inclu

CHAPTER 2

 DATA COMMUNICATION INTERFACE

2.1 Introduction

SCI is an abbreviation for Serial Communication Interface, as a special

subsystem, and it exists on most microcontrollers. In the early 1960s, a standards

committee, today known as the Electronic Industries Association, developed a

common interface standard for data communications equipment. At that time, data

communications was thought to mean digital data exchange between a centrally

located mainframe computer and a remote computer terminal, or possib

two terminals without a computer involved. These devices were linked by

telephone voice lines, and consequently required a modem at each end for signal

translation. While simple in concept, the chances for data errors that could occur

when transmitting data through an analog channel are considerably high and

therefore transmission over phone lines require a relatively complex design. It was

thought that a standard was needed first to ensure reliable communication, and

second to enable the interconnection of equipment produced by

m

R

s

tan

 three modificati

renamed and various new ones were

ding a shield conductor.

 11

2.2 EIA232 Standard

If the full EIA232 standard is implemented, the equipment at the far end of

the connection, which is named as DTE device (Data Terminal Equipment,

usually a computer or terminal), has a male DB25 connector, and utilizes 22 of the

25 available pins for signals or ground. Equipment at the near end of the

connection (the telephone line interface), which is named as DCE device (Data

Circuit-terminating Equipment, usually a modem), has a female DB25 connector,

and utilizes the same 22 available pins for signals and ground. The cable linking

DTE and DCE devices is a parallel straight-through cable. If all devices exactly

followed this standard, all cables would be identical, and there would be no

chance that an incorrectly wired cable could be used. Figure – 2.1 shows the

orientation and connector types for DTE and DCE devices:

Figure – 2.1 DTE and DCE

Figure – 2.1 also shows EIA232 communication function and connector

types for a personal computer and modem. DCE devices are sometimes called

“Data Communications Equipment” instead of Data Circuit-terminating

Equipment [Ref. 3].

Figure – 2.2 DB25 Male DTE device connector

Figure – 2.3 DB9 Male DTE device connector

Figure – 2.2 and Figure – 2.3 is the full EIA232 signal definition for the

DTE device (usually the PC). The most commonly used signals are shown in

bold.
 12

 13

Figure – 2.4 DB25 Female DCE device connector

Figure – 2.5 DB9 Female DCE device connector

the DCE device (usually the m

 Figure – 2.4 and Figure – 2.5 show the full EIA232 signal definition for

odem). The most commonly used signals are

shown in bold.

 14

Many of the 22 signal lines in the EIA232 standard pertain to connections

where the DCE device is a modem, and then are used only when the software

protocol employs them. For any DCE device that is not a modem, or when two

DTE devices are directly linked, fewer signal lines are necessary.

 It can be noticed that in the pin-out drawings there is a secondary channel,

which includes a duplicate set of flow-control signals. This secondary channel

provides the management of the remote modem, enables retransmission when a

parity error is detected and also provides other control functions. Furthermore, it

enables baud rates to be changed during the flow. This secondary channel, when

used, is typically set to operate at a very low baud rate in comparison with the

primary channel to ensure reliability in the control path. In addition, it may

operate as either a simplex, half-duplex, or full-duplex channel, depending on the

capabilities of the modem [Ref. 3].

 Transmitter and receiver timing signals (pins 15, 17, and 24) are used only

for a synchronous transmission protocol. For the standard asynchronous 8-bit

protocol, external timing signals are unnecessary.

 Signal names that imply a direction, such as Transmit Data and Receive

Data, are name d were strictly

followed, these signals would have the same name for the same pin number on the

DCE side as well. Unfortunately, most engineers do not do this in practice,

probably because no one pays attention to which side is DTE and which is DCE.

As a result, direction-sensitive signal names are changed at the DCE side to reflect

their drive direction at DCE. Figure – 2.6 gives the conventional usage of signal

names:

d according to DTE device. If the EIA232 standar

Figure – 2.6 Conventional usage of signal names

ctions

3 - Secondary communications channel: If implemented, this is

sed for control of the remote modem, requests for retransmission when errors

occur.

4 - Modem status and control signals: These signals indicate

modem status and provide intermediate checkpoints as the telephone voice

channel is established.

5 - Transmitter and receiver timing signals: If a synchronous

protocol is used, these signals provide timing information for the transmitter and

receiver, which may operate at different baud rates.

2.3 EIA232 Signal Fun

Signal functions in the EIA232 standard can be divided into six

subcategories. These categories are summarized as below. After that each signal

category is described more comprehensively.

1 - Signal ground and shield.

2 - Primary communications channel: This is used for data

interchange and includes flow control signals.

u

 15

 16

6 - Channel test signals: Before data is interchanged, the channel

may be tested for its integrity, and the baud rate automatically adjusted to the

maximum rate that the channel could support.

2.3.1 Signal Ground and Shield

 Pin 7, pin 1, and the shell are included in this category. Cables provide

separate paths for each, but internal wiring often connects pin 1 and the cable

shell/shield to signal ground on pin 7.

Pin 7 – Ground: All signals are referenced to a common ground, as defined by the

voltage on pin 7. This conductor may or may not be connected to protective

ground inside th otential within

the cable makes the EIA232 standard different from a balanced differential

voltage standard, such as EIA530, which provides far greater noise immunity.

2.3.2 Primary Communications Channel

Pin 2 -

e DCE device. The existence of a defined ground p

 Transmitted Data (TxD): This signal is active when data is transmitted

from the DTE device to the DCE device. When no data is transmitted, the signal

is held in the mark condition (logic 1, negative voltage).

It s DCE device is commonly labeled

“Received

t to be destined for a remote DTE

device.

Received Data (RxD):

hould be noted that pin 2 on the

Data”, although by the EIA232 standard it should still be called

“Transmitted Data” because the data is though

Pin 3 - This signal is active when the DTE device receives

data from

ted that pin 3 on the DCE device is commonly labeled

“Transmitt

the DCE device. When no data is transmitted, the signal is held in the

mark condition (logic 1, negative voltage).

It should be no

ed Data”, although by the EIA232 standard it should still be called

“Received Data” because the data is thought to arrive from a remote DTE device.

 17

Pin 4 - Request to Send (RTS): This signal is changed to space condition (logic 0,

positive voltage) to prepare the DCE device for accepting transmitted data from

the DTE device. Such preparation might include enabling the receive circuits, or

in half-duplex applications. When the DCE is

ady, it acknowledges by changing Clear To Send to positive voltage.

tined for a remote DTE device.

setting up the channel direction

re

It should be noted that pin 4 on the DCE device is commonly labeled Clear

to Send, although by the EIA232 standard it should still be called Request to Send

because the request is thought to be des

Pin 5 - Clear to Send (CTS): This signal is changed to space condition (logic 0,

positive voltage) by the DCE device to inform the DTE device that transmission

may begin. RTS and CTS are commonly used as handshaking signals to moderate

the flow of data into the DCE device.

It should be noted that pin 5 on the DCE device is commonly labeled

“Request to Send”, although by the EIA232 standard it should still be called Clear

inate from a remote DTE device.

Pin 13 - Secondary Clear to Send (SCTS)

to Send because the signal is thought to orig

2.3.3 Secondary Communications Channel

Pin 14 - Secondary Transmitted Data (STxD)

 Pin 16 - Secondary Received Data (SRxD)

 Pin 19 - Secondary Request to Send (SRTS)

 These signals are equivalent to the corresponding signals in the primary

communications channel. The baud rate, however, is typically much slower in the

secondary channel for increased reliability.

 18

.3.4 Modem Status and Control Signals 2

Pin 6 - DCE Ready (DSR): When originating from a modem, this signal is

changed to space condition (logic 0, positive voltage) when the following three

conditions are all satisfied:

1 - The modem is connected to an active telephone line that is “off-hook”,

If the line goes “off-hook”, a fault condition is detected or a voice

e that the device is turned on and ready to

functio

TE

evice may be programmed to ignore this signal.

2 - The modem is in data mode, not voice or dialing mode,

3 - The modem has completed dialing or call setup functions and it is

generating an answer tone.

connection is established, the DCE Ready signal is changed to mark condition

(logic 1, negative voltage).

If DCE Ready originates from a device other than a modem, it may be

changed to space condition to indicat

n, or it may not be used at all. If unused, DCE Ready should be

permanently held in space condition (logic 0, positive voltage) within the DCE

device or by use of a self-connect jumper in the cable. Alternatively, the D

d

Pin 20 - DTE Ready (DTR): This signal is changed to space condition (logic 0,

ositive voltage) by the DTE device when it wishes to open a communication

annel ondition

e circuit, and once connected,

aintai ged to mark condition (logic

, negative voltage), the modem is switched to "on-hook" to terminate the

xample, a printer) is not responding,

onfirm that DTE Ready is changed to space condition.

in 8 - Received Line Signal Detector (CD):

p

ch . If the DCE device is a modem, changing DTE Ready to space c

prepares the modem to be connected to the telephon

m ns the connection. When DTE Ready is chan

1

connection.

 If the DCE device is not a modem, it may require DTE Ready to be

changed to space condition before the device can be used, or it may ignore DTE

Ready altogether. If the DCE device (for e

c

P It is also called carrier detect. This

signal is relevant when the DCE device is a modem. It is changed to space

 19

e modem when the telephone line is

off-hook”, a connection has been established, and an answer tone is being

quirements (perhaps due to a noisy channel).

Pin 12

condition (logic 0, positive voltage) by th

“

received from the remote modem. The signal is changed to mark condition when

no answer tone is being received, or when the answer tone is of inadequate quality

to meet the local modem's re

 - Secondary Received Line Signal Detector (SCD): This signal is

equival

ent to the Received Line Signal Detector (pin 8), but refers to the

secondary channel.

Pin 22 - Ring Indicator (RI): This signal is relevant when the DCE device is a

modem, and is changed to space condition (logic 0, positive voltage) when a

ringing signal is being received from the telephone line. The time of holding in

space condition for this signal will approximately equal the duration of the ring

signal, and it will be held in mark condition between rings or when no ringing is

present.

Pin 23 - Data Signal Rate Selector: This signal may originate either in the DTE or

CE devices (but not both), and is used to select one of two prearranged baud D

rates. The space condition (logic 0, positive voltage) selects the higher baud rate.

2.3.5 Transmitter and Receiver Timing Signals

Pin 15 - Transmitter Signal Element Timing (TC): It is also called Transmitter

Clock. This signal is relevant only when the DCE device is a modem and is

operating with a synchronous protocol. The modem generates this clock signal to

control

l

ontinuously, except when it is performing internal diagnostic functions.

 exactly the rate at which data is sent on Transmitted Data (pin 2) from the

DTE device to the DCE device. The logic 1 to logic 0 (negative voltage to

positive voltage) transition on this line causes a corresponding transition to the

next data element on the Transmitted Data line. The modem generates this signa

c

 20

Pin 17 - Receiver Signal Element Timing (RC): It is also called Receiver Clock.

This signal is similar to TC described above, except that it provides timing

information for the DTE receiver.

Pin 24 - Transmitter Signal Element Timing (ETC): It is also called External

nsition (negative voltage to positive voltage) indicates the

e-center of the data element. Timing signals will be provided whenever the

Transmitter Clock. Timing signals are provided by the DTE device for use by a

modem. This signal is used only when TC and RC (pins 15 and 17) are not in use.

The logic 1 to logic 0 tra

tim

DTE is turned on, regardless of other signal conditions.

2.3.6 Channel Test Signals

Pin 18 - Local Loopback (LL): This signal is generated by the DTE device and is

used to place the modem into a test state. When local loopback is changed to

space condition (logic 0, positive voltage), the modem redirects its modulated

in 21 - Remote Loopback (RL):

output signal, which is normally fed into the telephone line, back into its receive

circuitry. This enables data generated by the DTE to be echoed back through the

local modem to check the condition of the modem circuitry. The modem changes

its Test Mode signal on Pin 25 to space condition in order to acknowledge that it

has been placed in local loopback condition.

P

is used to place the remote modem into a test state. When remote loopback is

changed to space condition (logic 0, positive voltage), the remote modem

redirects its received data back to its transmitted data input, thereby re-modulating

the received data and returning it to its source. When the DTE initiates such a test,

transmitted data is passed through the local modem, the telephone line, the remote

modem, and back, to exercise the channel and confirm its integrity. The remote

modem signals the local modem to change pin 25 to space condition when the

remote loopback test is in progress.

This signal is generated by the DTE device and

 21

in 25 - Test Mode (TM):P This signal is relevant only when the DCE device is a

lso cause Test Mode to be changed to space

condition.

 standard used in 1950s

teletype machines in which a flowing current (and hence a low voltage) represents

gative logic assignment of EIA232 is the reverse of

ost modern digital circuit designs.

modem. When changed to space condition (logic 0, positive voltage), it indicates

that the modem is in a local loopback or remote loopback condition. Other

internal self-test conditions may a

2.4 Electrical Standards

 The EIA232 standard uses negative, bipolar logic in which a negative

voltage signal represents logic 1, and positive voltage represents logic 0. This

probably originated with the pre-RS232 current loop

logic 1. Be aware that the ne

that found in m

 The EIA232 standard includes a common ground reference on Pin 7, and

is frequently joined to Pin 1 and a circular shield that surrounds all 25-cable

conductors. Data, timing, and control signal voltages are measured with respect to

this common ground. EIA232 cannot be used in applications where the equipment

on opposite ends of the connection must be electrically isolated. Optical isolators

may be used to achieve ground isolation, however, this option is not mentioned or

included in the EIA232 specification [Ref. 3].

Figure –2.7 Non-Return to Zero format

Standard NRZ (Non Return to Zero) format is also known as 8 (9)-N-1 (8

or 9 data bits, with/without parity bit and with one stop bit). Free line is defined as

 22

s is when the data line is held in a logic 0 state for a time long enough

to send an entire word. Therefore if the line is not put back into an idle state, then

the receiving end will inte

the status of logic 1. Start of transmission - Start Bit, has the status of logic 0. The

data bits follow the start bit (the first bit is the low significant bit-LSB), and after

the bits we place the Stop Bit as logic 1. If there is no more data coming then the

receive line will stay in idle state (logic 1). There is another signal called as Break

Signal. Thi

rpret this as a break signal.

The duration of the stop bit “T” depends on the transmission rate and is

adjusted according to the needs of the transmission. For the transmission speed of

9600 baud, T is 104 µS.

 23

ntrollers

CHAPTER 3

PIC 16F877 MICROCONTROLLER

3.1 General Overview to Microco

Figure – 3.1 PIC 16F877 Block Diagram [Ref. 8]

 24

Microcontroller is a single integrated ircuit containing specialized circuits

and functions that are applicable to ontrol based systems. The

microcontrollers are low-cost and high performance devices and mostly use

Reduced Instruction Set Computer (RISC) architecture. The core blocks of a

microcontroller are s

between microprocessor and microcontroller is that microcontrollers also

incorporate on torage), and

peripherals, which would be externally icroprocessor system.

This arrangement simplifies the design of microcontroller systems. On the other

hand, the peripherals are generally simpler than external device and the amount of

available memory would be much smaller [Ref. 2].

Figure – 3.1 shows the layout of architecture of the PIC 16F877

microcontroller [Ref. 8], which is manufactured by Microchip Technology. The

key features of the PIC 16F877 microcontroller are shown in the Table – 3.1

below.

Table – 3.1 Basic features of PIC 16F877

Key Features PIC 16F877

 c

 intelligent and c

imilar to those of a microprocessor. The main difference

board RAM, EPROM (for program and data s

 interfaced on a m

Operating Frequency DC - 20 MHz
Resets (and Delays) POR, BOR (PWRT, OST)

FLASH Program Memory 8K x 14bit
Data Memory 368 bytes

EEPROM Data Memory 256 bytes

Interrupts 14

I/O Ports Ports A,B,C,D,E

Timers 3

Serial Communication MSSP, USART

Capture/Compare/PWM Modules 2

Parallel Communications PSP

10-bit Analog-to-Digital Module 8 input channels

Instruction Set 35 instructions

 25

3.1.1 P

y space. That means that the

PIC 16

es from the PCL register, which is a readable and writable register. The

upper 4 bits are not readable, but are indirectly writable through the PCLATH

register. On any RE eared. Figure – 3.2

hows the two situations for the loading of the PC. The upper example in the

figure shows how ed on a write to lower example in

the figure shows how the PC is loaded during a CALL or GOTO instruction.

rogram Counter and Program Memory EPROM

 The program counter is used to fetch each instruction in order.

Modifications to the program counter by JUMP instructions affect program flow.

Program memory is addressed word-wise, rather than byte-wise, so the first

instruction is located at 0x000, the second at 0x001, etc. Program memory is

organized into pages. Memory pages can be selected using the PCLATH register.

There are three memory blocks in each of the PIC16F877 microcontrollers. The

Program Memory and Data Memory have separated buses so that concurrent

access can occur. The PIC16F877 microcontrollers have a 13-bit program counter

capable of addressing an 8K x 14 program memor

F877 microcontrollers have 8K x 14 words of FLASH program memory

[Ref. 8].

 As mentioned before, the program counter (PC) is 13-bits wide. The low

byte com

SET, the upper 5 bits of the PC will be cl

s

 the PC is load PCL and the

Two situations of loading PC

Figure – 3.2

 26

deep and 13-bit wide

ardware stack, which operates as a circular buffer. The stack space is not a part

 variable storage, or user settings. The data memory of the PIC 16F877

icroc

 and

peripheral.

3.1.3 Arithmetic Logic Unit

Actual arithmetic instructions (add, subtract, shift, AND, OR, etc.) are

carried out here. The results of arithmetic instructions are generally stored in the

working (W) register, although some instructions allow a file register to be

operated on directly. The contents of the W register can be transferred to the I/O

ports, or used as an indirect address to access program or data memory.

The PIC 16F877 microcontrollers have an 8-level

h

of neither program space nor data space and the stack pointer is not readable or

writable. The PC is pushed onto the stack when a CALL instruction is executed,

or an interrupt causes a branch. The stack is popped in the event of a RETURN, a

RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH

or POP operation.

3.1.2 Data RAM

Data RAM is organized as file registers (usually 8 bit) which are both

readable and writable. Data RAM can be used to hold data for calculations,

temporary

m ontroller is partitioned into multiple banks each of which has 128 bytes

long. A specific bank can be selected by setting special bits (RP0 and RP1) of the

STATUS register. All implemented banks contain Special Function Registers,

which may be mirrored in another bank for code reduction and quicker access.

Special Function Registers are registers used by CPU and peripheral modules for

controlling the desired operation of the device. These registers, which are

implemented as static RAM, can be classified into two groups: core (CPU)

 27

3.1.4 I/

xternal reset is used, the pin should be tied to Vdd. The PIC

6F877 microcontroller has A (6 pins), B (8 pins), C (8 pins), D (8 pins) and E (3

 33 pins.

O ports

The PIC 16F877 microcontroller is 40-pin device as shown in Figure – 3.3

[Ref. 8]. Vdd and Vss pins provide power and ground references, respectively.

There are two ports for external oscillator connection. The Master Clear/Reset pin

(MCLR) is used to reset the PIC device externally. This could be tied to a system-

reset circuit. If no e

1

pins) ports, totally

Figure – 3.3 PDIP package

n for the

eripheral features on the device. The function of the pin (input, output, or

eripheral) is determined by internal control registers. In general, when a

eripheral is enabled, that pin may not be used as a general purpose I/O pin.

The generic I/O ports are bidirectional pins that can be set up for input (the

microcontroller reads the data on the pins) or output (the microcontroller sets the

value on the pins) by the code. For output, each pin has an internal latch to drive

the output. Some I/O ports are multiplexed with the onboard peripherals. Some

pins for these I/O ports are multiplexed with an alternate functio

p

p

p

 28

.1.4.1 PORTA and the TRISA Register

gister reads the status of the pins, whereas writing to

it will write to the port latch. All write operations are read-modify-write

operations. Pin RA4 is multiplexed with the Timer0 module clock input. This pin

is a Schmitt Trigger input and an open drain output. All other PORTA pins have

TTL input levels and full CMOS output drivers. Other PORTA pins are

multiplexed with analog inputs and analog VREF input. The operation of each pin

is selected by clearing or setting the control bits in the ADCON1 register (A/D

Control Register1). It should be noted that on a Power-on Reset (POR), these pins

are configured as analog inputs and read as '0'. The TRISA register controls the

direction of the RA pins, when they are being used as analog inputs.

3.1.4.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bi-directional port and the corresponding data

direction register is TRISB multiplexed with the Low

Voltage Programming function. Each of the PORTB pins has a weak internal pull-

up. A s

e the

3

PORTA is a 6-bit wide, bi-directional port and the corresponding data

direction register is TRISA. Setting a TRISA bit (one) will make the

corresponding PORTA pin an input (i.e., put the corresponding output driver in a

Hi-Impedance mode). Clearing a TRISA bit (zero) will make the corresponding

PORTA pin an output (i.e., put the contents of the output latch on the selected

pin). Reading the PORTA re

. Three pins of PORTB are

ingle control bit can turn on all the pull-ups. This is performed by clearing

bit RBPU (bit 7 of OPTION_REG register). The weak pull-up is automatically

turned off when the port pin is configured as an output. The pull-ups are disabled

on a Power-on Reset.

Four of the PORTB pins (RB4, RB5, RB6 and RB7) have an interrupt-on-

change feature. Only pins configured as inputs can cause this interrupt to occur.

These input pins are compared with the old value latched on the last read of

PORTB. The mismatched outputs of these pins are OR’ed together to generat

 29

RB Port Change Interrupt with flag bit RBIF (bit 0 of INTCON register). This

. In the Interrupt Service Routine the

terrupt can be cleared in the following manner:

e TRISC bit

verride is in effect while the peripheral is enabled, read-modify-write

ISC as destination, should be avoided.

.1.4.4

3.1.4.5

the I/O control inputs for the microprocessor port when bit PSPMODE is set. In

interrupt can wake the device from SLEEP

in

a) Any read from or write to PORTB.

b) Clear flag bit RBIF.

This interrupt-on-mismatch feature, together with software configurable

pull-ups on these four pins, allow easy interface to a keypad and make it possible

for wake-up on key depression. RB0 is an external interrupt input pin and is

configured using the INTEDG bit (bit 6 of OPTION_REG register).

3.1.4.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bi-directional port and the corresponding data

direction register is TRISC. PORTC is multiplexed with several peripheral

functions, and PORTC pins have Schmitt Trigger input buffers. When enabling

peripheral functions, care should be taken in defining TRIS bits for each PORTC

pin. Some peripherals override the TRISC bit to make a pin an output, while other

peripherals override the TRISC bit to make a pin an input. Since th

o

instructions (BSF, BCF, XORWF) with TR

3 PORTD and TRISD Registers

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is

individually configurable as an input or output. PORTD can be configured as an

8-bit wide microprocessor port (parallel slave port) by setting control bit

PSPMODE (bit 4 of TRISE register). In this mode, the input buffers are TTL.

 PORTE and TRISE Register

PORTE has three pins, which are individually configurable as inputs or

outputs. These pins have Schmitt Trigger input buffers. The PORTE pins become

 30

egister also controls the parallel

slave p iplexed with analog inputs. When

selected for analog input, these pins will read as ’0’s. The user must make sure to

keep th

ybe included on the chip. The various

pes included by the PIC 16F877 microcontroller are summarized below:

enerates a digital result of this analog level via successive approximation. The

l results in a corresponding 10-bit digital

umber. The A/D module has high and low voltage reference input that is

softwar

The A/D module has four registers. These registers are:

ESH)

• A/D Result Low Register (ADRESL)

•

this mode, the user must make certain that the bit 0, bit 1 and bit 2 of TRISE are

set, and that these pins are made digital inputs by configuring ADCON1 register.

In this mode, the input buffers are TTL. TRISE r

ort operation. PORTE pins are mult

e pins configured as inputs when using them as analog inputs. On a Power-

on Reset, these pins are configured as analog inputs, and read as ‘0’.

3.1.5 Peripherals

There are many peripherals that ma

ty

■ Analog to Digital Converters: Analog inputs on some pins are converted to a

digital value, which can then be processed by the microcontroller. This is useful

for obtaining data from external devices like thermistors, accelerometers, and

other sensors. The PIC 16F877 microcontroller has 10-bit ADC module with 8

input channels.

The analog input charges a sample and hold capacitor. The output of the

sample and hold capacitor is the input into the converter. The converter then

g

A/D conversion of the analog input signa

n

e selectable to some combination of VDD, VSS, RA2, or RA3.

The A/D converter has a unique feature of being able to operate while the

device is in SLEEP mode. To operate in SLEEP, the A/D clock must be derived

from the A/D’s internal RC oscillator.

• A/D Result High Register (ADR

A/D Control Register0 (ADCON0)

• A/D Control Register1 (ADCON1)

 31

ler USART

odule will be explained comprehensively in Chapter 4.

 Master Synchronous Serial Port (MSSP): This module provides a mode in

which

r or a

peripheral, which may be a serial EEPROM, shift register, display drivers, A/D

•

•

o 8-bit registers (TMR1H, TMR1L)

The ADCON0 register controls the operation of the A/D module. The

ADCON1 register configures the functions of the port pins.

■ Universal Synchronous/Asynchronous Receiver/Transmitter (USART):

This device allows the microcontroller to interface serially with other devices

through protocols such as RS232. The PIC 16F877 microcontrol

m

■

Data bus, RD, WR, and Chip Select are all made available. This allows the

microcontroller to be interfaced to a microprocessor, a microcontrolle

converters, etc. The MSSP module can operate in one of two modes, such as

Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C). The I2C bus is

a proprietary serial bus developed by Microchip Technology. Not all

microcontrollers have both I2C Master function and I2C Slave function, but

16F877 has.

■ Timers: Timers can be used to time events. Timers have an advantage over

merely using wait loops in that other processing can take place while the timer is

running. 16F877 has three independent timers.

Timer 0 has the following features:

• 8-bit timer/counter

Readable and writable

• Software programmable prescaler

• Internal or external clock select

Interrupt on overflow from FFh to 00h

• Edge select for external clock

Timer 1 has the following features:

• 16-bit timer/counter consisting of tw

 32

le

Interrupt on overflow from FFFFh to 0000h

• Software programmable prescaler and postscaler

Capture register

• 16-bit Compare register

 identical in operation, with the

excep al event trigger.

gramming Procedure

dio programming environment was

used it to the microcontroller. MicroCode Studio

is a powerful, visual Integrated Development Environment (IDE) with In Circuit

Debugging (ICD) capability with PicBasic PRO compiler [Ref. 9]. The code

explo s,

• Readable and writab

• Software programmable prescaler

• Internal or external clock select

•

Timer 2 has the following features:

• 8-bit timer/counter

• Readable and writable

• Interrupt on overflow from FFh to 00h

■ Capture/Compare/PWM (CCP): This module allows the microcontroller to

watch an input until it reaches a certain value, then take some action. It is

especially useful for implementing Pulse Width Modulation (PWM) schemes. The

PIC 16F877 microcontroller has two CCP module, each contains 16-bit register

which can operate as a:

• 16-bit

• PWM Master/Slave Duty Cycle register

Both the CCP1 and CCP2 modules are

tion being the operation of the speci

3.2 Microcontroller Pro

During this thesis study MicroCode Stu

to compose the code and to load

rer allows the user to automatically jump to include files, defines, constant

 33

varia s, symbols and labels that are contained within the

sourc set up the compiler, assembler and

progr t MicroCode Studio do it for him with its

built embler errors can easily be

identified and corrected using the error results window. MicroCode Studio even

provi .

ugger (ICD) enables the user to execute a PicBasic

Progr ontroller and view variable values, Special Function

Regis is executing. The user

can to h the PicBasic code line by line.

 PicBasic programming language, which can be defined as compiler in

nique.co.uk/code-studio/

icBasic code in MicroCode Studio, hex code is

create code is sent to microcontroller via ICProg PIC

progr grammer in MicroCode Studio

ptionally. ICProg allows the user to program all types of serial programmable

Integra

VR, 80C51 etc. using

indows 95/98/NT/2000/ME/XP. ICProg or other equivalent PIC programmers

an be obtained from Internet easily.

bles, aliases and modifier

e code. It is easy for a user to

ammer options or the user can le

in auto-search feature. Compilation and ass

des a serial communications window

The In Circuit Deb

am on a host PIC microc

ters (SFR), memory and EEPROM as the program

ggle multiple breakpoints and step throug

MicroCode Studio, has nearly 100 different and powerful commands. These

commands were determined according to the microcontroller needs, so PicBasic

helps the user to write powerful codes much simpler than assembly. MicroCode

Studio can be obtained from the following web page [Ref. 16]:

http://www.meca

After compiling the P

d automatically. This hex

ammer, which can be defined as pro

o

ted Circuits as 12Cxx, 16Cxxx, 16Fxx, 16F87x, 18Fxxx, 16F7x, 24Cxx,

93Cxx, 90Sxxx, 59Cxx, 89Cx051, 89S53, 250x0, PIC, A

W

c

 34

s

ented multi-port

device. ctioned for communicating with

other m crocontroller devices and peripherals, such as serial EEPROMs, shift

register

logic level technology. Hereafter the details

f the USART module and inverted logic level technology will be explained.

4.2 USART Module

The Universal Synchronous Asynchronous Receiver Transmitter

(USART) module is one of the two serial I/O modules embedded in PIC 16F877

microcontrollers. The USART, which is also known as a Serial Communications

CHAPTER 4

SERIAL COMMUNICATION WITH MICROCONTROLLERS

4.1 Introduction

 There are two modules embedded in the PIC 16F877 microcontrollers for

serial communication purpose. These are USART (Universal Synchronou

Asynchronous Receive Transmit) module and MSSP (Master Synchronous Serial

Port) module. The USART module is mainly used in order to interface the

microcontroller with a peripheral device with RS 232. That is why the USART

module is in the scope of this thesis and it is implemented in order to perform the

serial communication between the main PC and the implem

 Whereas the MSSP module is mainly fun

i

s, display drivers, A/D converters, etc. So the MSSP module is not covered

in this thesis.

 In addition to these two serial communication modules, the ordinary I/O

pins can be used for serial communication purpose thanks to the advanced I/O

features of the PIC 16F877 microcontroller. This technique is named as inverted

logic level method. The serial communication between the implemented multi-

port device and the digital electricity meters and the remote PC is performed over

the 8 RB pins by using this inverted

o

 35

Interface or SCI, can be configured as a full duplex asynchronous system that can

communicate with peripheral devices such as CRT terminals and personal

computers, or it can be configured as a half duplex synchronous system that can

communicate with peripheral devices such as A/D or D/A integrated circuits,

s

The USART module can be confi ured in the following modes:

- Asynchronous

- Synchronous - Master (half duplex)

cess.

 the

icrocontroller is +5 V for logic one, and 0 V for logic zero, we need an

intermediary stage that will e are some chips specially

 for this task. These chips receive signals from -10 to +10 V and convert

them into 0 and 5 V [Re

erial EEPROMs etc.

g

 (full duplex)

- Synchronous - Slave (half duplex)

Bit 7 of RCSTA register and bit 7 and bit 6 of TRISC registers have to be

set in order to configure pins RC6 and RC7 as the Universal Synchronous

Asynchronous Receiver Transmitter.

 As mentioned previously, because of the mismatch between the

TTL/CMOS signal level and RS 232 signal level, the serial data communication

between a microcontroller and a peripheral device with RS 232 interface, via

USART module must be fulfilled over a level converter device. So before giving

the details of USART module, it should be better to explain signal level

conversion pro

4.2.1 Signal Level Conversion

In order to connect a microcontroller to the serial port of a peripheral

device (EIA 232 or RS 232) properly, we need to adjust the level of the signal.

The signal level on the serial port of a PC is –10 V for logic zero, and +10 V for

logic one as shown in Figure – 4.1 and 4.2. Since the signal level on

m

 convert the levels. Ther

designed

f. 1].

Figure – 4.1 TT/CMOS Serial Logic Waveform

Figure – 4.2 RS-232 Logic Waveform

Figure – 4.3 Logical Regions of signal

ch package contains 4 inverters, but only one type,

either Drivers or Receivers. The driver requires two supply rails, +7.5 to +15 V

and -7.5 to –15 V. As it could be understood this may be a problem in many

Voltages of –3 V to –25 V with respect to signal ground pin are considered

logic 1 (the marking condition), whereas voltages of +3 V to +25 V are

considered as logic 0 (the spacing condition) as shown in Figure – 4.3. The range

of voltages between –3 V and +3 V is considered a transition region for which a

signal state is not assigned.

 Two common RS-232 Level Converters are the 1488 RS-232 Driver and

the 1489 RS-232 Receiver. Ea

 36

 37

instances where only a single supply of +5 V is present. However the advantages

of these I.C.’s are their cheapness [Ref. 3].

Another device is the MAX 232, which is used in the implemented multi-

port device. It includes a charge pump, which generates +10 V and –10 V from a

single 5 V supply. M smitters in

the same package [Ref. 1]. This is handy in many cases when you only want to

use the Transmit and Receive data lines. And also there is no need to use two

chips, one for the receive line and one for the transmit line.

AX 232 also includes two receivers and two tran

Figure – 4.4 MAX232 pin diagram

Figure – 4.5 MAX232 circuit diagram

 The large valued capacitors, which are used with level converters, are not

only bulky, but also expensive. Therefore some level converter devices are

available which use smaller capacitors and even some with inbuilt capacitors.

However the MAX-232 is the most common one.

 38

ode

scillator it should be

necessary to look at the PIC 16F877 data sheet [Ref. 8].

The USART module transmits and receives the LSB first. The transmitter

and receiver are functionally independent, but use the same data format and baud

rate. Parity is not supported by the hardware, but can be implemented in the

software (and stored as the ninth data bit). Asynchronous mode, which is activated

by clearing bit SYNC (bit 4 of TXSTA register), is stopped during SLEEP.

The USART Asynchronous m ing important

elements:

• Baud Rate Generator

• Sampling Circuit

• Asynchronous Transmitter

• Asynchronous Receiver

 In PicBasic Pro, the parameters of USART module, which affects both

USART receiver and transmitter, must be declared at the beginning of the

program with “Define” commands as below [Ref. 5 and 6]:

 Define HSER_EVEN 1 'If even parity desired

 Define HSER_ODD 1 'If odd parity desired

 Define baud rate

 Define HSER_CLROERR 1 'Clear USART overrun error

 in PicBasic Pro module are as

4.2.2 The USART Module Asynchronous M

In this mode, the USART module uses standard non-return-to zero (NRZ)

format with one START bit, eight or nine data bits, and one STOP bit. The most

common data format is 8-bit. An on-chip, dedicated, 8-bit baud rate generator can

be used to derive standard baud rate frequencies from the oscillator. In order to

define appropriate baud rate according to the employed o

odule consists of the follow

 HSER_BAUD 4800 'USART

 After these declarations, the transmit and receive processes in the code

with commands Hserout and Hserin respectively will be fulfilled according

defined parameters. The default settings of USART

 39

 data bits, none parity, 1 stop bit. Please refer to the PicBasic Pro code in

4.2.2.1

oaded until the STOP bit

has be

nable

bit TXI

it TXIE and cannot be cleared in software. It will reset only when new

data is loaded . While flag bit TXIF indicates the status of

the TXREG register, another bit TRMT (bit 1 of TXSTA register) shows the

status of the TSR register. Status bit TRMT is a read only bit, which is set when

the TSR regist ogic is tied to this bit, so the user has to

ll thi bit in order to determine if the TSR register is empty. It should be noted

ransm setti ena actual

 w egis ith data

d the aud r a nsmission

XEN. Normally, when transmission is first started, the TSR register is empty. At

8

Appendix B.

 USART Asynchronous Transmitter

The USART transmitter block diagram is shown in Figure – 4.6. The heart

of the transmitter is the transmit (serial) shift register (TSR). The shift register

obtains its data from the read/write transmit buffer, TXREG. The TXREG register

is loaded with data in software. The TSR register is not l

en transmitted from the previous load. As soon as the STOP bit is

transmitted, the TSR is loaded with new data from the TXREG register (if

available). Once the TXREG register transfers the data to the TSR register (occurs

in one TCY), the TXREG register becomes empty and flag bit TXIF (bit 4 of PIR1

register) is set. This interrupt can be enabled/disabled by setting/clearing e

E (bit 4 of PIE1 register). Flag bit TXIF will be set, regardless of the state

of enable b

into the TXREG register

er is empty. No interrupt l

po s

that the TSR register is not mapped in data memory, so it is not available to the

user and flag bit TXIF is set when enable bit TXEN (bit 5 of TXSTA register) is

set, TXIF is cleared by loading TXREG.

T ission is enabled by ng ble bit TXEN. The

transmission ill not occur until the TXREG r ter has been loaded w

an b ate generator (BRG) has produced shift clock. The tra

can also be started by first loading the TXREG register and then setting enable bit

T

that point, transfer to the TXREG register will result in an immediate transfer to

TSR, resulting in an empty TXREG. A consecutive transfer is thus possible.

Clearing enable bit TXEN during a transmission will cause the transmission to be

aborted and will reset the transmitter. As a result, the RC6 pin will revert to hi-

impedance.

 40

Figure – 4.6 USART Transmit Block Diagram

When setting up an Asynchronous Transmission, the following steps are

executed [Ref. 8]:

1 - Initialize the SPBRG register for the appropriate baud rate. If a high-

speed baud rate is desired, set bit BRGH.

2 - Enable the asynchronous serial port by clearing bit SYNC and setting

bit SPEN.

3 - If interrupts are desired, then set enable bit TXIE.

4 - If 9-bit transmission is desired, then set transmit bit TX9.

5 - Enable the transmission by setting bit TXEN, which will also set bit

TXIF.

6 - If 9-bit transmission is selected, the ninth bit should be loaded in bit

TX9D.

7 - Load data to the TXREG register (starts transmission).

8 - If using interrupts, ensure that GIE bit and PEIE bit (bits 7 and 6 of the

INTCON register) are set.

 41

vided by PicBasic Pro, sending data over USART module becomes

fairly practical. At the beginning of the code, the initiation of transmit over

USART module must be also defined as below:

Define HSER_TXSTA 20h 'USART transmit status init

4.2.2.2 USART Asynchronous Receiver

The receiver block diagram is shown in Figure – 4.7. Once Asynchronous

mode is selected, reception is enabled by setting bit CREN (bit 4 of RCSTA

register). The data is received on the RC7 pin and is passed to the data recovery

block. The data r operating at x16

times the baud rate. Whereas, the main receive serial shifter (RSR) operates at the

baud rate or at FOSC.

r (if it is empty). If the transfer is complete, flag bit RCIF (bit 5

of PIR

g bit RCIF is a read

only bi

ad and is empty. The RCREG is a double-buffered register (that is, it is

a two to be received and

transfe to the RSR

register

ull, the overrun error bit OERR (bit 1 of RCSTA register) will be set. The

word in

bytes in the FIFO. Overrun bit OERR has to be cleared in software. This

is done et). If bit OERR

is set, t

d. It is therefore, essential to clear error bit OERR if it

is set. Framing error bit FERR (bit 2 of RCSTA register) is set if a STOP bit is

detected as clear. Bit FERR and the 9th receive bit (RX9D, bit 0 of RCSTA

It seems that these steps are troublesome a bit. But owing to the “Hserout”

command pro

ecovery block is actually a high-speed shifter,

After sampling the STOP bit, the received data in the RSR is transferred to

the RCREG registe

1 register) is set. The actual interrupt can be enabled/disabled by

setting/clearing enable bit RCIE (bit 5 of PIE1 register). Fla

t, which is cleared by the hardware. It is cleared when the RCREG register

has been re

deep FIFO). It is possible for two bytes of data

rred to the RCREG FIFO and a third byte to begin shifting

. On the detection of the STOP bit of the third byte, if the RCREG register

is still f

 the RSR will be lost. The RCREG register can be read twice to retrieve

the two

 by resetting the receive logic (CREN is cleared and then s

ransfers from the RSR register to the RCREG register are inhibited, and no

further data will be receive

 42

register) are buffered the same way as the receive data. Reading the RCREG will

load bits RX9D and FERR with new values, therefore, it is essential for the user

to read the RCSTA register before reading the RCREG register in order not to

lose the old FERR and RX9D information.

Figure – 4.7 USART Receive Block Diagram

When setting up an Asynchronous Reception, the following steps are

executed [Ref. 8]:

1 - Initialize the SPBRG register for the appropriate baud rate. If a high-

speed baud rate is desired, set bit BRGH.

2 - Enable the asynchronous serial port by clearing bit SYNC and setting

bit SPEN.

3 - If interrupts are desired, then set enable bit RCIE.

4 - If 9-bit reception is desired, then set bit RX9.

5 - Enable the reception by setting bit CREN.

6 - Flag bit RCIF will be set when reception is complete and an interrupt

will be generated if enable bit RCIE is set.

7 - Read the RCSTA register to get the ninth bit (if enabled) and determine

if any error occurred during reception.

 43

Similar to the USART transmit process, the USART receive process can

be fulfilled very practically by using “Hserin” command provided by PicBasic

Pro. At the beginning of the code, the initiation of transmit over USART module

must be also defined as below:

 Define HSER_TXSTA 90h 'USART receive status init

4.3 Inverted Logic

 As mentioned previously normal I/O pins can be utilized as serial

communication interface thanks to plementation and the

excellent I/O specifications of the PI

 I/O pins as serial interface is a necessity for this thesis, because the

ulti-port device needs at least 5 serial communication interfaces, but the PIC

6F877

ed for serial interface to digital

electricity m

ponent for level conversion other than

resistors between RB pins of the m

munication still has voltage level conflict. Under these circumstances

the PIC 16F877 m

I/O pin can be inverted for serial

requirem rent. The pins of the

microcontro

as Tx are connected to Rx

of othe

8 - Read the 8-bit received data by reading the RCREG register.

9 - If any error occurred, clear the error by clearing enable bit CREN.

10 - If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the

INTCON register are set.

 current RS-232 im

C 16F877. As a matter of fact, utilizing

ordinary

m

1 has only one USART module.

 8 RB pins of PIC 16F877 are allocat

eters and remote PC. As it can be seen from the circuit diagram in

Figure – 5.9, there are not any extra com

icrocontroller and the ports for the peripherals,

so the com

icrocontroller provides an effective solution. Voltage level of an

communication purpose by the code. Only

ent is using resistors in order to limit the cur

ller used as Rx are connected to Tx pins of other peripherals over 22

KΩ resistors, similarly the pins of microcontroller used

r peripherals over 1 KΩ resistors as shown in Figure – 4.8 [Ref. 9].

Figure – 4.8 Inverted logic connections

ic according to application and hardware.

, which

efines the specifications of receiving such as baud rate, parity enabling, inverted

There are several commands used in PicBasic Pro in order to transmit or

receive character serially. Serin2 and Serout2 are two of them, which can be

utilized as inverted logic or normal log

Only the number of data-bits and odd parity enabling (if parity is enabled, even

parity is default) of Serout2 and Serin2 commands must be declared at the

beginning of the program as below:

Define SER2_BITS 8 'Set number of data bits

Define SER2_ODD 1 'Use odd parity instead of even parity

The usage of Serin2 command in the code is as following [Ref. 5 and 6]:

Serin2 PortB.2,16572,65000,receivernotready,[char]

 The above code performs the required procedure in order to receive the

char character over PortB.2. The parameter 16572 is the mode of receiving

d

 44

 45

logic or normal logic. The complete table of Serin2 and Serout2 modes is

presented in Appendix E. The number of 65000 is the timeout value (65000

milisec = 65 sec) to receive a character. Please refer to PicBasic code to see the

different usages of Serout2 and Serin2 commands. For the detailed information

about the PicBasic Pro, please look at http://picbasic.com [Ref. 9].

4.4 Comments on Serial Comm nication with Microcontrollers

According to given explanation, the remarks listed below should be taken

into consideration for properly performing serial communication with

microcontrollers:

- Firstly a stable oscillator should be equipped in the circuit. If 4

MHz Crystal or Resonator oscillator is equipped, that would be enough for prope

data communication type oscillator is

sed, it would be unlikely to get stable communication above 1200 baud rate [Ref

0].

Throughout designing level, operating the system starting with

lower b

ards a PC is realized, it should be better to

terminate the > a se Carriage

Return and Li r ate the data buffer string at the PC and

start a new string with the next data packet.

u

r

 at 4800 baud rate. But if internal or RC

u

1

-

aud rates would be a good designing method. After success, the baud rate

should be increased step by step.

- The signal level conversion between TTL/CMOS logic and RS 232

should be fulfilled properly, otherwise nothing can be transmitted or received

between a microcontroller and a peripheral device.

- If a transmission tow

data packets with a <CR nd <LF> characters. The

ne Feed characters te min

 46

 ,

a developed remote access software running on the main PC, one modem

connec

icity meters. The device connected to the port 1 may be a PC or

a digita lectr

5.1 Remote Access Software

ous Professional) Libraries to perform serial

commu catio

 programs easily together with

advanced term

e has two versions, one of them is for

ain PC, and the other one is for remote PC. The version operating on remote PC

an be stated as lite version, because it does not have many functions such as

eter remote reading options. This lite version is specified for the Xmodem file

ansfer. So the program execution procedure will be explained separately for full

ersion and lite version.

CHAPTER 5

 DESCRIPTION OF IMPLEMENTED SYSTEM

As mentioned briefly in Chapter 1, the overall system contains a main PC

ted to main PC, the multi-port device, another modem connected to the

multi-port device, one remote PC and three digital electricity meters or no remote

PC and four electr

l e icity meter according to the application. Hereafter the main parts of

the system and their operating principles will be explained one by one.

The remote access software used in the system was developed with Delphi

7.0 by using APRO (Asynchron

ni n [Ref. 11]. With APRO, the implemented programs can send

alphanumeric characters to anywhere in the world, even across the Internet. The

user can add Dial-Up networking capabilities to the

inal control, automated scripting for complex communication tasks,

and even multi-user fax server solutions. The software developed in this thesis

mainly uses the Dial-Up networking features of APRO Libraries.

The developed remote access softwar

m

c

m

tr

v

 47

5.1.1 Running of Full Version Remote Access Software

Figure – 5.1 Main screen of Reading Software on main PC

When the program, which is developed by Delphi 7.0 programming

languag

x at left side of

Dial bu

lished and the program starts to send communication

indication string to the multi-port device. After the handshake process between the

e and loaded to main PC, is started, the program window shown in Figure

– 5.1 should appear on the screen.

The execution steps of software are described below:

1)- First of all, the serial port of main PC, which will be used for serial

communication, should be selected. The active serial ports are listed in the left

upper box.

2)- Then the phone number, which will be dialed to establish the

communication with the remote side, should be specified in the bo

tton.

3)- Next, the timeout values for main PC to modem connection and main

PC to multi-port device should be entered to right upper box. After that, Dial

button can be clicked, thus the “ATDT + Phone Number” command is sent to

modem. Then, if the remote modem and telephone lines are available, the

communication is estab

 48

 will receive the port

status o rt device, such as which device is connected to which port. If

the handshake process between main PC and multi-port device, which can

continue 60 seconds at most, fails anyhow, the connection will be closed

automatically by the program. The related indication messages appear on the left

log window.

4)- After the communication is established successfully, the request may

be to perform a remote reading of a meter or to perform a file transfer to the

remote PC.

5)- If the request is to perform a remote reading of a meter, the desired

meter should be selected from the box and then Read Device button should be

clicked. If the meter is not password protected and also connected to the port

properly, the readout data will be listed in reading window on the left. The readou

data can be written to a text file by clicking right button of mouse over the

window.

6)- This meter readout procedure can be executed for each meter in the

same m

m a file transfer to the remote PC, the request

must b ter that the file to be

sent sh

cedure will wait for 30 seconds for preparation of remote PC to

receive

 a file transfer request is initiated from remote PC, the multi-port

device

multi-port device and main PC is completed, the program

f the multi-po

t

anner. The readout window on the left can be cleared anytime by clicking

Clear Text button.

7)- If the request is to perfor

e initiated by clicking to the Initiate FTP button and af

ould be selected by clicking File Open icon at the bottom of the program

window at same line with Send button. After clicking to the Send button, the file

transfer pro

 a file. Within 30 seconds, when the remote PC passes to receiving file

mode, the file transfer process will start according to Xmodem protocol.

8)- If

informs the main PC to be in receiving mode within 30 seconds. When the

main PC enters to receiving file mode, the file transfer process will start according

to Xmodem protocol.

9)- The connection between main PC and multi-port device can be closed

anytime by the user of main PC by clicking Close Port button.

 49

are

Note: The buttons below the reading window indicates the status of serial

communication performed by using APRO Libraries [Ref. 11]. They will be red

or green according to the status of process while the program is running. Clear

Text button clears the reading window to be prepared for next reading. Clear Text

button can be used anytime.

The source code of the reading software is presented in Appendix A.

5.1.2 Running of Lite Version Remote Access Softw

Figure – 5.2 Main screen of Reading Software on remote PC

 When the program is started on remote PC and Slave Computer box at the

right b

e serial port to be used for the communication with multi-

port de

ice sends the port

status detection string to all ports. As soon as the remote PC receives this string, it

ottom of window is checked, the program window shown in Figure – 5.2

should appear on the screen of remote PC.

The execution steps of software are described below:

1)- First of all, th

vice should be specified and opened.

2)- During the start up procedure, the multi-port dev

 50

immed

0 seconds. Within 30 seconds, when the remote PC

asses to receiving file mode, the file transfer starts immediately.

ialize

TP button at the right bottom of the program window. If the remote PC receives

e started. When Send

utton is clicked, the file transfer procedure will wait for 30 seconds for

preparation of main PC to receive a file. Within 30 seconds, when the main PC

passes to receiving file mode, the file transfer process starts according to Xmodem

protocol.

5)- After the file transfer from remote PC to main PC is completed, the

program execution turns back step 2. Throughout running of lite version remote

access software, the specified serial port must be opened and the Slave Computer

button must be checked.

Note: The buttons below the reading window indicates the status of serial

communication performed by using APRO Libraries. They will be red or green

according to the status of process while the program is running. The Clear Text

utton clears the reading window to be prepared the window for next reading.

Clear Tex

iately replies with a specified string that indicates remote PC is connected

and ready.

3)- Then the remote PC starts to wait for a file transfer procedure

initialization message. When this message is received, the program should be in

receiving file mode within 3

p

4)- The remote PC can initiate a file transfer anytime by clicking Init

F

“Ready for file transfer” message, the file transfer can b

b

b

t button can be used anytime.

5.1.3 Flow Diagram of Reading Software

 51

Figure 5.3 Reading software flow diagram (I)

 52

re flow diagram (II) Figure 5.3 Reading softwa

 53

 It should be useful to describe the program code by following the flow

diagram in order to give the theory.

 When the program is started, first of all the Slave PC check box must be

checked or not according to operating user station. If the program is running on

remote PC, the box must be checked, and after that some options peculiar to main

PC and meter readout process will be off by calling the TForm1.ChkboxClick()

procedure.

 If we assume that the operating user station is main PC, the next step will

be establishing communication with remote side. In order to that, first of all the

serial port to be used should be specified. When the upper left ComboBox is

clicked, the available and properly working serial ports are listed. The Comfind()

procedure in the program performs this port detection process. Then the timeout

values for the establishment of communication between main PC and remote

modem and main PC and the implemented multi-port device should be defined.

The usage of timeout values in these EditBoxes by the program will be explained.

Finally, the phone number, which will be dialed, should be defined before

clicking Dial button.

 When the Dial button is clicked, the program calls the TForm1.DialClick()

procedure. In this procedure, the program branches to SingOn() procedure and

then the selected serial port is assigned to the TApdComPort component of APRO

(Asynchronous Professional) serial communication library. After that, the number

is dialed by sending the ‘ATDT’ + Edit2.Text to the modem. At the same time,

the timers controlling the periods for communication establishment are set by

using previously mentioned timeout values defined in EditBoxes. If the remote

modem or multi-port device does not respond with specified strings before the

timers are expired, the program calls ComEnd() procedure and closes the serial

port assigned to TApdComPort. If communication is established properly

between main PC and multi-port device, the program will receive the port status

information, which is sent by multi-port device. The reception of characters by

sing TApdCom p2TriggerAvail()

procedure. Please look at APRO manual for more detailed information [Ref. 11].

u Port component is performed by TForm1.c

 54

 After acq ram is ready to

perform meter readout or file transfer. For remote reading of a meter, after the

e required string is sent to the multi-port

ox. The readout data on the reading window can be saved to a text

g <ACK> character by sender. After the file transfer is

mple

uiring the knowledge of port status, the prog

device is selected from the ComboBox, the Read Device button should be clicked.

By clicking Read Device button, th

device by TForm1.RdeviceClick() procedure. If there is a problem about the

specified meter, the multi-port device informs the user of main PC by sending a

message. If everything is OK, the readout data sent by the meters is received by

TForm1.cp2TriggerAvail() procedure and screened on the reading window, which

is a MemoB

file, if it is required.

 When a file transfer is wanted to be performed, first of all the Initiate FTP

button must be clicked in order to inform the multi-port device. After that, an

acknowledgement message should be waited to start file transfer. If the message is

received and the file, which will be sent, is selected, the Send button can be

clicked. By clicking Send button, the XmodemCRC file transfer protocol is

initiated by TForm1.FsendClick () procedure. As soon as the handshake character,

which is sent by the receiver (i.e. remote PC), is received, the XmodemCRC file

transfer process starts and continues until sending <EOT> character and

subsequently receivin

co ted, the TForm1.Prt1ProtocolFinish() procedure is called.

 If a message indicating the initiation of file transfer by remote PC is

received, the file name should be specified by clicking the folder icon. After that

by clicking Receive button, the file transfer process, which is initiated by remote

PC, starts. During file reception process according to XmodemCRC protocol,

TForm1.FreceiveClick() procedure is executed. After the file transfer is

completed, the TForm1.Prt1ProtocolFinish() procedure is called.

 The file transfer process performed by the remote PC follows the same

steps and executes the same procedures as it can be seen clearly from the flow

diagram. As the remote PC is not allowed to perform meter readout, all the related

options are disabled under the condition of checked Slave Computer box.

 55

s refers to connecting a device to a network via a modem

5.2 Modem

Modem term is the acronym for modulator-demodulator. A modem is a

device or a program that enables a computer to transmit digital data in the form of

analog waves over telephone lines.

There is a standard interface for connecting external modems to computers

which is called as RS-232. By using this interface, any external modem can be

attached to any computer that has an RS-232 port, which almost all personal

computers have. RS-232 standard is explained comprehensively in Chapter 2.

There are also onboard or internal modems as an expansion board that you can

insert into a vacant expansion slot.

Dial-up Acces

and a public telephone network. Dial-up access is really just like a phone

connection, except that two ends are the computers (or the devices having at least

an RS-232 port) rather than people. Because dial-up access uses normal telephone

lines, the quality of the connection is not always good and data rates are limited.

In the past, the maximum data rate with dial-up access was 56 Kbps (56,000 bits

per second), but new technologies such as ISDN provide faster rates [Ref. 4].

An alternative way to connect two devices is through a leased line, which

provides a permanent connection between two devices. Leased lines provide faster

throughput and better quality connections, but they are also more expensive.

5.2.1 Communication Protocol

 All communications between devices require that the devices agree on the

format of the data. The set of rules defining a format is called as protocol. At

least, a communication protocol must define the followings:

• Rate of transmission (in baud or bps).

• Whether transmission is to be synchronous or asynchronous.

• Whether data is to be transmitted in half-duplex or full-duplex mode.

 56

In addition, protocols can include sophisticated techniques for detecting

and recovering from transmission errors and for encoding and decoding data.

Table – 5.1 summarize only used protocols for

communication via modems [Ref. 13]. These protocols are almost always

plemented in the hardware; that is, they ar ilt into modems.

ost commonly used protocols

s the most comm

im e bu

Table – 5.1 Summary of the m

Protocol

Maximum
Transmission

Rate

Duplex
Mode

Bell 103 300 bps Full
CCITT V.21 300 bps Full
Bell 212A 1,200 bps Full
ITU V.22 1,200 bps Half
ITU V.22bis 2,400 bps Full
ITU V.29 9,600 bps Half
ITU V.32 9,600 bps Full
ITU V.32bis 14,400 bps Full
ITU V.34 36,600 bps Full
ITU V.90 56,000 bps Full

 In addition to the standard protocols listed in the table, there are numerous

rotocols that complement these standards by adding extra functions such as error

ompression, etc. Some of these protocols are

Xmodem, Kermit, MNP, and CCITT V.42 [Ref. 17]. These protocols can be

plem

 packets. Once these

are rec e les them into a form computer

can use

p

detection, error recovery, data c

im ented either in hardware or software.

Typical modems are known as asynchronous devices. This means that

these devices transmit data in an intermittent stream of small

eiv d, the receiving system then reassemb

.

 57

Sto

p
1 bit

Data
8 bits

Start
1 bit

Stop
1 bit

Data
8 bits

Start
1 bit

Packet Packet
10 bits 10 bits

Figure – 5.4 Asynchronous transmission packets

Figure – 5.4 represents the packet format in an asynchronous transmission

over a ph bits) is

ansferred within 1 packet, which is equivalent to one character. However for the

computer to receive this information each packet must contain a Start and a Stop

bit therefore the complete packet b basics of serial

communication is des compreh ly in C .

5 plem lti-port ce

5.3.1 General De

 The imple port signed b n the PIC 16F877,

which is a micro produce chip Co and explained in

Chapter 3. The m vice ca ed in th in parts as voltage

regulator module, LCD module, and mic ocontroller module. These modules will

e described in this section.

 voltage adaptors between 12-24 V

range c

one line. In an asynchronous communication, 1 byte (8

tr

would be 10

ensive

its. The

hapter 2cribed more

.3 The Im ented Mu Devi

scription

mented multi- device is de ased o

controller d by Micro mpany

ulti-port de n be examin ree ma

r

b

5.3.2 Voltage Regulator

The multi-port device includes an internal voltage regulation circuit.

Owing to this voltage regulation circuit, any

an be used as a power supply for the multi-port device. Voltage regulation

circuit diagram is shown in Figure – 5.5 [Ref. 15].

Figure – 5.5 Voltage regulation circuit

Although a voltage adaptor acquired from the market has its own

regulation circuit, this extra regulation circuit is used because the microcontrollers

require very pure and stabilized voltage level in order to operate properly. The

required stabilized +5V is achieved by using the power stabilizer LM-7805. If the

utput voltage goes down, the LM-7805 regulator will draw more current, forcing

e output voltage back to 5V. Thus, the LM-7805 regulator controls the output

voltage and keep

Because the microcontrollers require very clear voltage, a capacitor

 the MCU is also used in order to filter the distortion

om the circuit itself.

D’s are inexpensive and easy to use. Hitachi LCDs

ave a standard ASCII set of characters along with Japanese, Greek and

The LCD module can be wired for a 4-bit or an 8-bit mode. In PicBasic

Pro, th

es D4-D7 default, but it can be

changed to D0-D3 by code, if required [Ref. 9 and 15]. Four-bit mode is a good

o

th

s it at 5V.

between Vdd and Vss pins of

fr

5.3.3 LCD Module

The LCD used in the multi-port device has 16-pin Hitachi LCD with

HD44780 module. These LC

h

mathematical symbols.

e LCD mode (4-bit or 8-bit) must be defined at the beginning of the

program via “DEFINE LCD_BITS” instruction, please refer to microcontroller code

in Appendix B. In 4-bit mode shown in Figure – 5.6, a byte is sent by

microcontroller as two successive 4-bit over the lin

 58

 59

way to save control lines. The entire LCD module can normally be controlled

from 6 control lines. The initialization commands are constructed in such a way

that you can instruct the LCD module which interface is to be used just after reset.

Figure – 5.6 General LCD connection diagram

only requires the supply lines plus 7 I/O lines. When the

CD display is not enabled, data lines are tri-state which means that they are in a

ence (as though they are disconnected) and this also means

at they do not interfere with the operation of the microcontroller when the

display

For an 8-bit data bus, the display requires a +5V supply plus 11 I/O lines.

For a 4-bit data bus it

L

state of high impend

th

 is not being addressed.

 The LCD requires mainly 3 control lines from the microcontroller:

Read/Write (R/W): This line determines the direction of data between the LCD

d mian crocontroller. When it is low, data is written to the LCD. When it is high,

data is read from the LCD.

Register Select (RS): With the help of this line, the LCD interprets the type of

data on data lines. When it is low, an instruction is being written to the LCD, and

when it is high, a character is being written to the LCD.

 60

Enable (E): This line allows access to the display through R/W and RS lines.

When this line is low, the LCD is disabled and ignores signals from R/W and RS.

When (E) line is high, the LCD checks the state of the two control lines and

responds accordingly.

Logic status on control lines:

 E 0 Access to LCD disabled

 1 Access to LCD enabled

 R/W 0 Writing data to LCD

 1 Reading data from LCD

 RS 0 Instruction

 1 Character

Writing data to the LCD is done in several steps:

 - Set R/W bit to low

 - Set RS bit to logic 0

 - Set data to data lines

ontrol ports must be declared at the

PORTE 'LCD register select port

Define LCD_RSBIT 0 'LCD register select bit

or 1 (instruction or character)

 - Set E line to high

 - Set E line to low

The “LCDOUT” command, which performs the above explained steps, is

used for writing data to the LCD in PicBasic Pro.

The definition of LCD data ports and c

beginning of the program by “Define” command in PicBasic Pro code as shown

below:

Define LCD_DREG PORTD 'LCD data port

Define LCD_DBIT 0 'LCD data starting bit 0

Define LCD_RSREG

Define LCD_EREG PORTE 'LCD enable port

Define LCD_EBIT 1 'LCD enable bit

 61

PIC 16F877, which is produced by Microchip Company.

 hoose PIC 16F877 for this study. First of all

e PIC 16F877 is a low-cost and high performance device with RISC CPU

chite ure. O o m memory it provides designing

practical interfacing options with

 this study. Also owing to large

mber of I/O pins and their inverted logic feature, which is explained in Chapter

n cessity of 8 more (4 of them are in use) serial communication interfaces

ld satisfied very practically. It is very obvious that the PIC 16F877

microc ause of its powerful and

actic interf

ntroller in the

plem scribed in this section. The PIC 16F877 is

scrib com ter 3.

3.4.1 eset Process

er nto a known condition. That

practic

at is all registers would be placed in a starting position. Reset is not only

used w esir e used to get

a microcontroller ready when loading a program.

MCL s,

which the

microc ese e-low pin,

has to der gical zero to

5.3.4 Microcontroller Module

 As mentioned previously the microcontroller used in the implemented

multi-port device is the

There are several reasons to c

th

ar ct wing t electrically erasable progra

ease. Also it has very powerful I/O features and

peripherals. Especially the USART module is a very feasible peripheral option for

serial communication, which is the main issue of

nu

4, the e

cou be

ontroller is really a good choice for this study bec

pr al acing features.

 The auxiliary processes and components used with microco

im ented multi-port device are de

de ed prehensively in Chap

5. R

Reset is used for putting the microcontroll i

ally means that microcontroller can behave inaccurately under certain

undesirable conditions. In order to continue its proper functioning it has to be

reset, th

hen microcontroller does not behave as d ed, but also can b

The PIC 16F877 microcontroller has R pin for resetting proces

is logic one during normal operation of microcontroller. When

ontroller is required to be r t, the MCLR pin, which is an activ

be made logic zero. In or to prevent from bringing a lo

 62

CLR pin accidentally it has to be connected via resistor to the positive supply

en 5K and 10K. This kind of resistor, whose

nction is to keep a certain line on a logical one as a preventive, is called as pull

ng together with two 33 pF capacitors. The crystal

re the most common source of time and

ls. The crystal is sometimes called as timing crystal. They can be

 circuits.

5.3.4.3

l conversion process between

microc

M

pole. Resistor should be betwe

fu

up. If MCLR pin will not be used, it has to be connected to positive supply pole

(i.e. to +5V) [Ref. 8].

During a reset, RAM memory locations are not being reset. They are

unknown during a power up and are not changed at any reset. On the other hand,

special function registers are reset to a starting position initial state. One of the

most important effects of a reset is setting the program counter (PC) to zero

(0000h), which enables the program to start executing from the first written

instruction.

5.3.4.2 Oscillator

The microcontroller included by implemented multi-port device has the 4

MHz crystal oscillator operati

oscillator is a good choice for a reliable triggering required by the

microcontrollers. The crystal is usually made of quartz, but can also be made of

rubidium or ceramic. Crystal oscillators a

frequency signa

embedded in integrated

 Serial Communication with USART

The communication between the implemented multi-port device and

modem is fulfilled over MAX 232 level converter device by using the RC6 and

RC7 pins of the microcontroller. RC6 and RC7 pins are the Rx and Tx pins of

USART module respectively. The voltage leve

ontroller and modem is realized by MAX 232. PicBasic Pro supports the

USART module with very powerful and practical commands, such as HSERIN

and HSEROUT (mean that “Hardware Serial Input” and “Hardware Serial Output,

respectively, please refer to PicBasic Pro code presented in Appendix B). The

 63

ocontroller has only one USART module, these asynchronous serial

ommunications must be fulfilled by some other ordinary I/O pins. Naturally there

ces between these connections and the USART module

onnection. Inverted logic serial communication can be used very practically via

PicBas

ulti-port device is powered on, it will take less

an one second to be ready for the operation. Then the device starts to wait for a

ason the device listens

e Rx pin of USART module (RC7 pin of the PIC 16F877). The communication

betwee

detailed description of serial communication with USART module is presented in

Chapter 4.

5.3.4.4 Serial Communication with Inverted Logic

In this thesis, the microcontroller has 5 serial interfaces (may increase to

9) with peripheral devices. As mentioned previously one of them is used for

asynchronous serial communication with an external modem, which provides the

connection to the main PC via USART module. Other 4 ports are specified for the

connections to the digital electricity meters and the remote PC. As the PIC

16F877 micr

c

are some differen

c

ic Pro, please refer to PicBasic code in Appendix B and check the

“Serout2” and “Serin2” commands in the code. The detailed description of serial

communication with inverted logic is presented in Chapter 4.

5.3.5 Operational Principles of Multi-port Device

When the implemented m

th

communication initialization from the main PC. For that re

th

n main PC and multi-port device is performed with 4800-baud rate and

8N1 (1 start bit, 8 data bits, none parity and 1 stop bit). As soon as the multi-port

device receives the communication initialization string from main PC, it triggers a

port detection process by sending a specified string to all ports (8 RB pins of the

PIC 16F877 utilized as serial port). If a meter is connected to a port, the meter will

respond with its serial number. If a PC is connected to the port 1, it will respond

by a specified string. If there is not a PC or a meter connected to a port, time-out

will occur. After this process the multi-port device could detect the connected

 64

Then the multi-port device starts to wait for the instruction from the main

ll be evaluated immediately

nd the code loaded to the microcontroller will branch to the related part of the

program

ack to the point of

waiting instruction.

quest sent by main PC, the

essages giving the instruction to start the file transfer process are sent to main

PC and

peripherals and informs the user of main PC as which device is connected to

which port.

PC and remote PC. If an instruction is received, it wi

a

 according to the received instruction.

If the received instruction is the indication string of closing port process

sent by main PC, the execution turns back to starting point and waits for the

communication initialization again.

If the received instruction is the meter readout request, the serial

communication with 4800-baud rate and 7E1 (1 start bit, 7 data bits, even parity

and 1 stop bit) will be established between the multi-port device and the meter on

the specified port. Then readout request string is sent to the meter. As soon as the

meter receives readout request, it starts to transmit all standard readout data, if the

meter is not password protected. All received characters by the multi-port device

will be transmitted to the main PC over Tx pin of USART module (RC6 of PIC

16F877). After the readout is completed, the execution turns b

If the received instruction is the file transfer re

m

 remote PC. As mentioned previously the file transfer process is fulfilled

according to Xmodem protocol with 4800-baud rate and 8N1 (which is a

requirement for Xmodem protocol [Ref. 17]). In file transfer mode, firstly, remote

PC sends handshake character, which is <C> for CRC error checks, to the main

PC, and waits 10 seconds for the transmitter to send a block of data. The main PC

starts to send the blocks as soon as it receives handshake character. The remote

PC responds with <ACK> character to each successfully received block. The file

transfer will end after receiving <EOT> character by the remote PC. The details of

Xmodem protocol is given in Appendix D.

If the received instruction is the file transfer request sent by remote PC, the

above explained steps will be repeated as the remote PC is sender and the main

 65

 PC and remote PC.

ocontroller, which is written in

PicBas

PC is receiver. After file transfer is completed, the multi-port device starts to

listen to main

During the whole operation, all required messages giving the information

about the current situation of the process for local recognition appears on the

LCD.

 The source code loaded to the micr

ic Pro language is presented in Appendix B. Figure – 5.7 shows the flow

diagram of the source code.

5.3.6 Flow Diagram of Microcontroller Code

 66

Figure – 5.7 Microcontroller code flow diagram (I)

 67

Figure – 5.7 Microcontroller code flow diagram (II)

 It should be useful to describe the PicBasic code with the help of sample

code fragments by following the flow diagram in order to give the theory of code.

 After the implemented multi-port device is powered on, it will start to wait

a communication initiation from main PC by means of the PicBasic code:

 Hserin[wait("m"),b] .

 Hserin command is used for receiving character by utilizing USART

ned at the beginning module. The parameters of this serial communication are defi

 68

of the program such as 4800 baud rate, 8 data bits, no parity bit and 1 stop bit by

means of the code such as:

 Define HSER_………………

 If the expected string for communication initiation is received, the port

status detection process is triggered by multi-port device. During this operation,

the device sends a specific string to each port by means of the code line:

 Serout2 PortB.1,24764,[13,10,21,47,63,33,13,10]

then waits for the response by means of the code line:

 Serin2 PortB.0,24764,2000,meterdetect1,[str a1\16]

 These Serin2 and Serout2 commands can use the inverted logic property

of PIC 16F877 I/O pins, which is defined by the mode 24764 in the code [Ref. 6

and 9]. This mode number also defines the parameters of this serial

communication, such as 4800 baud rate, 7 data bits, Even parity and 1 stop bit.

Please look at Appendix E for Serin2 and Serout2 mode definitions.

 The devices connected to each port of implemented multi-port device are

determined according to the received responses.

 Then the multi-port device starts to wait for operation request, which can

be sent by main PC or remote PC. The device performs this process by listening

Rx pins of USART module and Port1 in a loop. The program branches from this

point to the related part of the code according to what the request is and which PC

ends it.

 If the r the specified

eter is connected to, is utilized and the data transfer between the multi-port

 the r e transfer between main PC and remote PC,

ram branches to the code part related with Xmodem protocol. The file

s

equest is remote reading of a meter, the port, which

m

device and meter is performed over this port according to Flag protocol. The

received characters are sent to the main PC over the USART module. After the

process is completed, the multi-port device turns back to wait for operation

request.

 If equest is to perform a fil

the prog

 69

 <ACK> or <NACK> from receiver, transmitting to

ure:

 Hserout [13,10,"Ready for file transfer",13,10]

]

 Hserout [nak]

 Hserin 500,ftpcompleted,[char2]

k]

urns back to the point of waiting for communication initiation.

spectively. The PCB diagram was created by ARES tool in Proteus

transfer process can be performed from main PC to remote PC or from remote PC

to main PC. There is only one difference, that is the direction of transfer, but the

idea is same; receiving the Xmodem data blocks from sender, transmitting to

receiver, and receiving the

sender. The below code performs this proced

 pause 1000

 Serout2 PortB.1,16572,[13,10,"Be ready for receiving file",13,10]

 pause 1000

 Serin2 PortB.0,16572,30000,receivernotready,[nak

 loop1:

 Hserin 5000,nofiletransfer,[char1]

 Hserin 1000,problem,[char3]

 Hserin 1000,problem,[str char\65]

Hserin 1000,problem,[str a\65]

 Serout2 PortB.1,16572,[char1,char2,char3,str char\65,str a\65]

 Serin2 PortB.0,16572,11000,noreplyfromreceiver,[na

 Hserout [nak]

goto loop1

 After the file transfer is completed or failed anyhow, the program turns

back to wait for operation request. The file transfer, which is failed, can be

initiated again at this point. If the communication is terminated by main PC, the

program t

5.3.7 Circuit Diagram

The PCB (Printed Circuit Board) and the circuit diagram, which are

designed and built in the scope of this thesis, are shown in Figure – 5.8 and Figure

– 5.9 re

 70

trollers and a set of animated

ypads, an RS232

a and m re. It is possible to simulate complete microcontroller systems and

s to evelo

q ently roteus 6.0 allows professional engineers to set up a

s and finally

t the P t.

Professional 6.0 after circuit diagram was drawn by ISIS tool again in Proteus

Professional 6.0 [Ref. 18].

Proteus Professional 6.0 is a software package, which combines a mixed

mode circuit simulator with animated component models. And it provides an

architecture in which additional animated models may be created by users. Indeed,

many types of animated model can be produced without coding. Proteus also

provides simulator models for popular microcon

models for related peripheral devices such as LED, LCD, ke

termin l o

thu d p the software for them without access to a physical prototype.

Conse u P Professional

circuit of real designs, run the circuit as interactive simulation

construc CB of the circui

Figure – 5.8 Multi-port device PCB diagram

Fi
gu

re
 –

 5
.9

 M
ul

ti-
po

rt
de

vi
ce

 c
irc

ui
t d

ia
gr

am

 72

5.4 The Digital Electricity Meter

5.4.1 General Description

The electricity meters that operate according to electromechanical

plete, high performance tariff system. The interfaces of the past have been

extended by an optical fibre interface in this meter generation. The information

important for the d from the main

eter with this interface and fed into an isolating relay box. The relay model can

e chosen by the customer.

This concept allows that the relays, which were previously in the meter,

an be removed to external boxes. This guarantees the maximum possible

sulation from outward interference and also reduces the need for additional

olating relays in the meter cabinet. Before electronics arrived in the meters of

e electricity providers, a classical measuring set for special contract customers

sually looked like as following: For the measurement set there was a maximum

principles could not satisfy some requirements such as accuracy, reliability,

lifetime and compatibility with electronic solutions. After electronics has made a

remarkable development, electricity meters have been mass-produced using the

most modern microelectronics in order to satisfy the requirements of present age.

Upon closer view, EMH meters, which are used with implemented multi-

port device in this thesis, will be examined briefly. EMH is a digital electricity

meter producer in Germany. EMH developed digital electricity meters, which are

self-contained functioning tariff systems. These have little resemblance to the old

meter technology.

The term ‘digital meter’ requires a brief explanation. The digital principle

means that voltages and currents in individual phases are measured

simultaneously. They are measured at a high sample and hold rate, and trans-

formed into digital words. This information is then fed into a signal processor,

which calculates all the desired values.

The control elements used, such as the real time clock with calendar and a

universal ripple control receiver, which were previously external, are already

integrated into the meter. The result is that a simple meter is transformed into a

com

 final customer of this system can be separate

m

b

c

in

is

th

u

 73

and a power distribu according to tariffs,

n external ripple control receiver or tariff time switch was added. And also the

e meter were separated by additional relays in the

with this newest technology w

urers such as EMH, ACTARIS

(Schlum

ean power, last recorded mean power, maximum

demand and energy. Maxim

tion meter. In order to control the device

a

transmission contacts for th

measuring set cabinet.

With the introduction of the combi-meter with integrated ripple control

receiver, integrated real time clock and optical fibre interface, the costs can be

reduced remarkably.

There is no doubt that introduction and equipping of a measurement point

ill lead to an increase in reliability and a reduction

of error sources in the system.

5.4.2 EDIS (Energy Data Identification System)

The EDIS code system was created on the basis of the future-oriented

efforts by the German Electrical Engineering Commission of the DIN and VDE

(DKE) [Ref. 14]. The purpose of the EDIS is to provide unambiguous

identification of data for display and processing originating from devices, which

are produced by different manufact

berger), SIEMENS, ABB etc.

Some examples shown in Figure – 5.10 illustrate the structure of EDIS

code system. As seen from the examples, the first digit, which can be any number

between 1 and 8, defines the measurement, as 1 for active imported, 2 for active

exported, 3 for reactive imported, 4 for reactive exported, 5 for reactive-inductive

imported, 6 for reactive-capacitive imported, 7 for reactive-inductive exported and

8 for reactive-capacitive exported. The second digit defines which quantity is

measured. It may indicate m

um demand is one of the most important values for

plants and factories. If the consumer has a demand agreement with the energy

provider, the consumer will be limited for importing power with this undertaken

maximum demand value. If the limit is exceeded, the consumer will have to pay

fine. So maximum demand value should be measured and controlled very

carefully. The third digit is related with the tariff indication. The last two digits

show the historical values of measurement.

Figure – 5.10 General EDIS code system

induction-type meters, an active use meter (which is coded as 1.x.x in EDIS code

5.4.3 Combi Meter / 4-Quadrant Meter

EMH combi meter and 4-quadrant meters are identical in appearance and

belong to the same family of devices. The combi meter has become widely used.

The 4-quadrant meter is more complex than combi-meter and is state of the art in

hardware and software [Ref.14].

5.4.3.1 Combi Meter

The EMH combi meter replaces measurement sets, which consisted of two

 74

 75

active use measurement separately in

). The

ombi meter is capable of depicting the measurements according to the EDIS code

system which is illustrated in Figure – 5.11 [Ref. 14].

system) and a reactive use meter (which is coded as 3.x.x in EDIS code system).

In addition, the combi meter can perform re

quadrants 1 and 4 (which are coded as 5.x.x and 8.x.x in EDIS code system

c

ing for Combi-meter

5.4.3.2

mption meter for imported and exported energy.

he 4-quadrant meter is able to display the measurements, the codes of which are

 from the EDIS code system.

Figure – 5.11 EDIS cod

 Four-Quadrant Meter

The EMH 4-quadrant meter replaces the classical 4 induction-type meters

each comprising an active consu

T

shown in Figure – 5.12

Figure – 5.12 EDIS coding for Four-quadrant meter

5.4.4 Modules

The meter consists of two essential elements as digital measuring

mechanism and tariff mechanism.

The measuring mechanism is critical for the accuracy of the meter. It

s, then transforms them into digital information

nd transmits them to the tariff mechanism for calculation and processing. EMH

meters

technology has been used to

obtain this high degree of meter accuracy. Both the measuring and the tariff

mechanisms are charged with a common power unit.

realizes the basic measurement

a

with LZ prefix belong to accuracy class 0.5S while with PZ prefix are

class 0.2S (precision meters). Class 0.5S and 0.2S mean that in normal operation

conditions the maximum probable measurement error will not exceed 0.5 % and

0.2 % respectively. The experience in meter testing

 76

 77

5.4.4.1 Power Unit

This is a primary switched-mode power unit with a high degree of

effectiveness. Even in case of a module defects it is secure against overload or

short-circuiting. Potential damage remains limited and consequential damage is

avoided.

For EMH meters with LZ prefix with a single-phase connected meter,

error-free operation until Unom - 20% is guaranteed. EMH meters with PZ prefix

(precision meters) have a wide area power unit that is supplied from external

auxiliary power terminals, independent of the measurement path. This prevents

unnecessary load on the measurement path and that the meter's measurement path

remains functional and ready to measure even in the event of power failure.

While the meter is operating, the current measurements are stored in the

working me in a non-volatile

memory. The m

below nomi

event of a pow ectronics will

ontinue to function normally for the next 500 ms. It is powered by the energy in

acitor. If it is only a short outage of less than 500 ms, then the

eter will continue to operate quasi-non-stop. Only in case of longer interruptions

will the

be started when the meter is reactivated. Data

remain

eans that fast, energy-rich

mory (RAM). Every 24 hours, this data is stored

eter also performs this storage operation when there is a 20% drop

nal voltage or a total power interruption (loss of 50 Hz signal). In the

er outage or drop below the minimum voltage, the el

c

the charger-cap

m

 measuring period be interrupted and the device completely shut down so

that a new measuring period can

s stored in the non-volatile memory for at least ten years. No buffer battery

is needed to preserve the data. The data received is retained alone through the

qualities of the storage medium (EEPROM).

5.4.4.2 Suppressor Circuits

The suppressor circuit behind the voltage terminals consists of a

combination of surge-proof power resistors and varistors, which dilute the surge

energy in the event of an overvoltage. This m

 78

which can be caused by turning off reactive loads, are

revented effectively thanks to the microelectronics.

e entire measuring and tariff mechanism including the options, such as

clock m

gram

code a

urrent values are then digitized. The

digitized current and voltage values are then transmitted individually to a digital

 multiplexer.

5.4.5.2

levels. These are fed into the input channels of the ADC.

disturbance pulses,

p

5.4.4.3 Modular Construction

Th

odule, tariff time switch, ripple control receiver and electrical interface,

control inputs and outputs. They are all included on a single circuit board. The

modular structure of the entire meter means that the meter can be assembled to

perform functions in accordance with the customer’s desired meter properties. The

display is plugged onto the circuit board and can be easily replaced.

The meters have a memory (EPROM or FLASH) containing the pro

nd an additional memory (EPROM) for storing the relevant billing data,

parametering, settings and correction factors for the measuring mechanism which

operate independent of any battery.

EMH meters with LZ prefix with optical fibre interface or load profiles

have an additional circuit board. On this circuit board is a FLASH containing the

program code. Depending on the meter version, there may be a further FLASH for

the load profile.

5.4.5 Digital Measuring Mechanism

5.4.5.1 Measurement principle

Measurement is performed by taking voltage and current measurements at

very short intervals. The analog voltage and c

signal processor by means of a

 Voltage measurement

The terminal voltages generate network-proportional internal voltage

 79

n ferrite cores that generate current-proportional

oltages. These are fed into the two ADC inputs via an instrument amplifier.

idual integral of i2, u2, u * i and u90
o * i for

each p

g to the tariff structures configured.

The following measurement values can be seen on the display and read out

using th

 line voltages,

• Number of active phases, network frequency and power factor

idual phases.

5.4.5.3 Current measurement

The current paths contai

v

5.4.5.4 Digitization

The analog current and voltage proportional instantaneous values are

digitized in the ADCs and fed into the digital signal processor (DSP) input

through a multiplexer with a high sampling rate.

5.4.5.5 Integral values

The DSP calculates the indiv

hase. These integral values and other information are transmitted to the

tariff mechanism and in particular to the tariff controller CPU. Here the P, Q and

S for each phase are calculated and assigned to the respective energy and power

registers accordin

5.4.5.6 Measurement values

e data interfaces:

• Instantaneous active, reactive, apparent power for each phase

and the combined value,

• Individual line current and

as well as power factor for indiv

 80

.4.5.7 Calibration

EMH's combi meter and 4-quadrant meter are fully static and digital

meters.

s are

o matched to each other that a partial calibration between manufacturing steps is

e devices can be produced rationally in identical series.

At the end of the production process, the meters are subjected to a final

calibra

easurement with its own precise

measurement and sends measurement correction factors back to the various points

 of measurement constants. These are then stored in the

on-volatile memory elements of the meter. This allows the error curve to be

improv

riff mechanism calculates

lectricity consumed or supplied as well as electrical power. It then assigns it to

r register according to the tariff control and meter

onfiguration provided.

e between meters and read out devices is performed by

means of the h is located on the

meter’s auxilia

 (1 stop bit, 7 data bits, even parity

it and 1 stop bit).

5

 In practice, this means that there are no mechanical moving parts in the

measuring device. This also means that the electronic components’ tolerance

s

unnecessary. Thus th

tion. The meters are submitted to precise normal load on the test stand.

Each meter measures this load and transmits its measurement to the test stand via

an optical interface. This compares the meter's m

in the meter in the form

n

ed by offset corrections [Ref. 14].

5.4.6 Tariff Mechanism

Using digitized measurement values, the ta

e

the respective energy or powe

c

5.4.7 Data Interface

The data exchang

electrical interface (RS-232, RS-485), whic

ry terminal below the sealable terminal cover. The transmission is

fixed between 300 – 4800 baud rate and 7E1

b

 81

CHAPTER 6

 and

implem

transfer between two remote computers, was described.

his software was developed in Delphi 7.0 by using APRO (Asynchronous

Profess

plained comprehensively. Also the file transfer process

etween two computers performed over the multi-port device according to

escribed.

 The PIC 16F877 microcontroller, which is used in the design, was

describ

 work, the multi-port device can be improved by providing

eter readout capability to remote PC with only the help of code modification.

esides, more advanced file transfer protocols with the aspect of speed and error

CONCLUSION

In the scope of this thesis, a general overview of a remote reading

infrastructure for digital electricity meters was given. Then, the design

entation of a multi-port device, which can reduce the cost of this

infrastructure and also simplify it effectively by reducing the number of device

used in the system, were described. And also an alternative application of

implemented multi-port device, which provides interfacing with a PC together

with digital electricity meters, was described.

The operating principles of auxiliary devices used in the system such as

modems and digital electricity meters were explained along with implemented

multi-port device.

 A remote access software, which performs remote reading of digital

electricity meters and file

T

ional) Libraries.

 As the serial communication was the main issue of the design of this

multi-port device, the fundamental principles of serial communication with

microcontrollers were ex

b

Xmodem protocol is d

ed in detail. Additionally, the LCD usage, which is one of the popular

applications realized with microcontrollers, is also mentioned. The source code of

microcontroller written in PicBasic Pro including the procedures of serial

communication and LCD application is also presented.

As a future

m

B

 82

cate with more than one device

ossessing a serial communication port at the same time. Owing to this feature,

the multi-port device can be u lications by making required

odifications in the code.

tolerance, such as Zmodem can be implemented with multi-port device. In fact the

multi-port device can be used in order to communi

p

tilized in lots of app

m

REFERENCES

[1] Peatman, J.B. 2003, Embedded Design with the PIC 18F452

Microcontroller, Prentice Hall.

 83

Hintz, K. , Tabak, D. 1992, Microcontrollers : Architecture,
Implementation & Programming, McGraw Hill.

] Kheir, Michael 1997, The M68HC11 Microcontroller: Applications in
control, instrumentation and communication, Prentice Hall.

] Anderson, D., Dawson, P., Tribble, M., The Modem Technical Guide

] Doğan , İbrahim, PIC BASIC : Programlama ve Projeler,
İstanbul Bileşim Yayınları

] Altınbaşak, Orhan 2002, PicBasic Pro ile PIC Programlama,
Altaş Basım Yayın.

] Altınbaşak, Orhan 2003, Microdenetleyiciler ve PIC Programlama,
Altaş Basım Yayın.

] http://www.microchip.com/

]

0] http://www.picbasic.co.uk/forum/

1] http://www.turbopower.com

2] http://www16.boulder.ibm.com/pseries/en_US/aixasync/asycomgd/
mastertoc.htm#mtoc

3] http://readthetruth.com/modems.htm

4] http://www.emh-meter.de

5] http://www.microelektronika.co.yu

6] http://www.mecanique.co.uk/code-studio/

7] http://www.totse.com/en/technology/telecommunications/wxmodem.html

8] http://labcenter.co.uk

[2]

[3

[4

[5

[6

[7

[8

[9 http://picbasic.com

[1

[1

[1

[1

[1

[1

[1

[1

[1

 84

9] http://www.calldirect.at

[20] http://www.adaptivenet

1] http://www.enermet.com

[1

works.com

[2

[22] http://www.perax.fr

 85

PPENDI

nit mdmshare;

terface

ses
WinTypes, WinProcs, SysUtils, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, AdPort, OoMisc, AdStatLt, Buttons, ExtCtrls,
cxControls, cxContainer, cxEdit, cxTextEdit, cxMaskEdit, cxDropDownEdit,
cxImageComboBox, Mask, sCustomComboEdit, sTooledit, AdProtcl, AdPStat,
sButtonControl, sCustomButton,Registry, ComCtrls, Menus;

pe
TForm1 = class(TForm)
 Memo1: TMemo;
 cp2: TApdComPort;
 lc1: TApdSLController;
 ApdStatusLight1: TApdStatusLight;
 ApdStatusLight2: TApdStatusLight;
 ApdStatusLight3: TApdStatusLight;
 ApdStatusLight4: TApdStatusLight;
 ApdStatusLight5: TApdStatusLight;
 ApdStatusLight6: TApdStatusLight;
 ApdStatusLight7: TApdStatusLight;
 ApdStatusLight8: TApdStatusLight;
 Label1: TLabel;
 Label2: TLabel;
 Label3: TLabel;
 Label4: TLabel;
 Label5: TLabel;
 Label6: TLabel;
 Label7: TLabel;
 Label8: TLabel;
 Edit2: TEdit;
 Dial: TBitBtn;
 Rdevice: TBitBtn;
 Pclose: TBitBtn;
 Panel1: TPanel;
 cbIslem: TcxImageComboBox;
 Clstxt: TButton;
 Panel2: TPanel;
 Fedit1: TsFilenameEdit;
 Fsend: TsBitBtn;
 Freceive: TsBitBtn;
 Fedit2: TsFilenameEdit;
 Prt1: TApdProtocol;

A X A – READING SOFTWARE SOURCE CODE

u

in

u

ty

 86

 PrtSt: TApdProtocolStatus;

 Memo2: TMemo;
ssBar;

 PMenu1: TPopupMenu;
xt1: TMenuItem;

 ClearTxt1: TMenuItem;
lg: TSaveDialog;

 Label10: TLabel;
t3: TEdit;

pen(Sender: TObject);
Avail(CP: TObject; Count: Word);

ender: TObject);
ct);
ject);
t; var Action: TCloseAction);
ct);
ct);
ject);

ct);
ject);

eClick(Sender: TObject);
tocolFinish(CP: TObject; ErrorCode: Integer);
findDropDown(Sender: TObject);

ick(Sender: TObject);
ggerData(CP : TObject; TriggerHandle : Word);
ggerTimer(CP: TObject; TriggerHandle: Word);
s:longint);
xt1Click(Sender: TObject);

etoTxt1Click(Sender: TObject);
oxClick(Sender: TObject);

lick(Sender: TObject);
lick(Sender: TObject);

4Click(Sender: TObject);

ions }
n;

d;

}

 CbComfind: TComboBox;

 PBar: TProgre

 SavetoT

 SD
 Chkbox: TCheckBox;
 Btnopen: TButton;
 Btnftp: TButton;
 Edit1: TEdit;
 Label9: TLabel;

 Edi
 Button4: TButton;
 procedure cp2PortO
 procedure cp2Trigger
 procedure RdeviceClick(S
 procedure PcloseClick(Sender: TObje
 procedure cp2PortClose(Sender: TOb
 procedure FormClose(Sender: TObjec
 procedure FormCreate(Sender: TObje
 procedure ClstxtClick(Sender: TObje
 procedure Fedit1Change(Sender: TOb
 procedure FsendClick(Sender: TObje
 procedure Fedit2Change(Sender: TOb
 procedure Freceiv
 procedure Prt1Pro
 procedure CbCom
 procedure DialCl
 procedure cp2Tri
 procedure cp2Tri
 procedure Tmr(m
 procedure ClearT
 procedure Sav
 procedure Chkb
 procedure BtnopenC
 procedure BtnftpC
 procedure Button
 private
 { Private declarat
 procedure SignO
 procedure Comfind;
 procedure ComEn

 public
 { Public declarations

 87

ord;

 #22;

 ESC = #27;
#28;

 end;

var
 Form1: TForm1;
 S: String = '';
 TF:Boolean = False;

 MCnttrg : Word;
 DCnttrg : Word;
 Timeout : Word;
 TCnttrg : Word;
 TDCnttrg : W
 PCnttrg : Word;
 RCnttrg :Word;

const
 bos = #0;
 SOH = #1;
 STX = #2;
 ETX = #3;
 EOT = #4;
 ENQ = #5;
 ACK = #6;
 BEL = #7;
 BS = #8;
 TAB = #9;
 LF = #10;
 VT = #11;
 FF = #12;
 CR = #13;
 SO = #14;
 SI = #15;
 DLE = #16;
 DC1 = #17;
 DC2 = #18;
 DC3 = #19;
 DC4 = #20;
 NAK = #21;
 SYN =
 ETB = #23;
 CAN = #24;
 EM = #25;
 SUB = #26;

 FS =
 GS = #29;

 88

 = #30;
 US = #31;

 = #32;

p2PortOpen(Sender: TObject);
n

 lc1.ComPort:=cp2;
 lc1.Monitoring:=True;

el1.Color:=clGreen;

rm1.cp2TriggerAvail(CP: TObject; Count: Word);

ount do

har;

s.Text:=memo1.Lines.Text+S;

1.RdeviceClick(Sender: TObject);

erties.Items[cbIslem.ItemIndex].Tag=1 then
 'm1'

perties.Items[cbIslem.ItemIndex].Tag=2 then
 'm2'

roperties.Items[cbIslem.ItemIndex].Tag=3 then
= 'm3'

 RS

 SP

implementation

uses Windows;

{$R *.DFM}

procedure TForm1.c
begi

 Pan
end;

procedure TFo
var
 I : Word;
 C : Char;
 S : String;
begin
 S := '';
 for I := 1 to C
 begin
 C :=cp2.GetC
 S := S+C;
 end;
 memo1.Line
 end;

procedure TForm
begin
 if cbIslem.Prop
 cp2.OutPut :=
 else
 begin
 if cbIslem.Pro
 cp2.OutPut :=
 else
 begin
 if cbIslem.P
 cp2.OutPut :

 89

= 'm4';
;

 end;
nd;

1.PcloseClick(Sender: TObject);
egin

'm9';
Tmr(100);
ComEnd;
nd;

ure TForm1.cp2PortClose(Sender: TObject);

rocedure TForm1.FormCreate(Sender: TObject);

slem.ItemIndex :=0;
isible :=False;
ible :=False;

re TForm1.ClstxtClick(Sender: TObject);

t:= '';
xt:='';

rocedure TForm1.Fedit1Change(Sender: TObject);

ileMask := Fedit1.FileName;

ure TForm1.FsendClick(Sender: TObject);

rotocolType := ptXmodemCRC ;
tTransmit;

 else
 cp2.Output :
 end

e

procedure TForm
b
 cp2.Output:=

e

proced
begin
 Panel1.Color:=clRed;
end;

p
begin
 cbI
 Btnopen.V
 Btnftp.Vis

end;

procedu
begin
 memo1.Tex
 memo2.Te
 Pbar.Position:=0;
end;

p
begin
 Prt1.F
end;

proced
begin
 PrtSt.Visible:=True;
 Tmr(200);
 Prt1.P
 Prt1.Star
 S:='';
 Memo1.Text:='';

 90

.Visible:=False;
;

dure TForm1.Fedit2Change(Sender: TObject);
egin
rt1.FileName:= Fedit2.FileName;

receiveClick(Sender: TObject);

.ProtocolType := ptXmodemCRC;
memo1.Visible:=False;

tartReceive;

nd;

ure TForm1.Prt1ProtocolFinish(CP: TObject; ErrorCode: Integer);

emo1.Visible:=True;
Close.Enabled:=True;

ssMessages;
=
omfind.Text,4,Length(CbComfind.Text)-3));

;
cp2.Open:=True;

trg := cp2.AddDataTrigger('CONNECT 4800', False);
T', False);

PCnttrg := cp2.AddDataTrigger('/?!',True);
',True);

erTrigger;
merTrigger;

 cp2.AddTimerTrigger;

 Memo1
 Pclose.Enabled:=False
end;

proce
b
 P
end;

procedure TForm1.F
begin
 S:='';
 Prt1

 Pclose.Enabled:=False;
 Prt1.S

e

proced
begin
PrtSt.Visible:=False;
Memo1.Text:='';
M
P
end;

procedure TForm1.SignOn;
begin
 Application.Proce
 cp2.ComNumber:
StrToInt(Copy(CbC
 S:=''

 cp2.OutPut := 'ATDT'+ Edit2.Text+CR;
 MCnt
 DCnttrg := cp2.AddDataTrigger('CN

 RCnttrg := cp2.AddDataTrigger('FTP Completed
 TimeOut:= cp2.AddTim
 TCnttrg:= cp2.AddTi
 TDCnttrg:=

 Pbar.Position:=0;
end;

 91

findDropDown(Sender: TObject);

ind;
nd;

ure TForm1.Comfind;

 TRegistry;
ts,PL : TStrings;

LOCAL_MACHINE;
devicemap\serialcomm',false);

eate;
PL := TStringList.Create;
reg.GetValueNames(ts);

 := 0 to ts.Count -1 do
begin

osition

ar Action: TCloseAction);
egin

rocedure TForm1.DialClick(Sender: TObject);

egin

procedure TForm1.CbCom
begin
Comf
e

proced
var
 reg :

 i : integer;
begin

 reg := TRegistry.Create;
 reg.RootKey := HKEY_
 reg.OpenKey('hardware\
 ts := TStringList.Cr

 for i

 PL.Add(reg.ReadString(ts.Strings[i]));
 end;
 ts.Free;
 reg.CloseKey;
 reg.free;
 CbComfind.Items:=PL;
 end;

procedure TForm1.ComEnd;
begin

 cp2.Open:=False;
 Dial.Enabled:=True;
 Pbar.P :=0;
end;

procedure TForm1.FormClose(Sender: TObject; v
b
 cp2.Open:=False;
 Application.Terminate;
end;

p
var i:integer;

b

 92

toint(Edit1.Text);
led:=False;

On;
cp2.SetTimerTrigger(Timeout, i, True);

orm1.cp2TriggerData(CP : TObject; TriggerHandle : Word);
nteger;

egin

ttrg then

etTimerTrigger(Timeout, 36, False);

 True;
F = True do

.Output:='m9';
 Tmr(2000);

r(2000);
 cp2.Output:='m0';

F:=False;
 ComEnd;
 Memo2.Lines.Add('Not Connected to Device '+ DateTimeToStr(Now));

 DCnttrg then
in

 TF:= False;
 Cp2.SetTimerTrigger(TDCnttrg,t,True);

 else if TriggerHandle = PCnttrg then
n

 s:='';
 i:= str
 Dial.Enab
 Sign

end;

procedure TF
var i,t:i
b

 PBar.Min:=1;
 PBar.Max:=12;
 i:=0;
 t:= StrToInt(Edit3.Text);
 if TriggerHandle = MCn
 begin
 cp2.S
 Pclose.Enabled:=False;
 TF:=
 While T
 begin
 i:=i+1;
 Pbar.Position:= i;
 cp2

 cp2.Output:='m9';
 Tm

 Tmr(5000) ;
 if i=12 then
 begin
 T

 end
 end
 end
 else if TriggerHandle =
 beg

 end

 begi

 93

utput:='Comp';

 = RCnttrg then

 Memo1.Lines.Add('FTP Completed');
;

end;

ount -t)< ms do
essMessages;

 TForm1.cp2TriggerTimer(CP: TObject; TriggerHandle: Word);

ut then

odem Time Out.. '+ DateTimeToStr(Now));
;

 = TDCnttrg then

Add('Connected to device '+ DateTimeToStr(Now));
e;

=0;

m1.ClearTxt1Click(Sender: TObject);

ext:='';

der: TObject);

 then
;

 cp2.o
 end
 else if TriggerHandle
 begin
 PrtSt.Visible:=False;

 end

procedure TForm1.Tmr ;
var t : longint;
begin
 t:= GetTickCount;
 while (GetTickC
 Application.Proc
 end;

procedure
begin
 if TriggerHandle = Timeo
 begin
 Memo2.Lines.Add('M
 ComEnd
 end
 else if TriggerHandle
 begin
 Memo2.Lines.
 Pclose.Enabled:=Tru
 Pbar.Position:

 end;

 end;

procedure TFor
begin
Memo1.T
end;

procedure TForm1.SavetoTxt1Click(Sen
begin
if SDlg.Execute
 Memo1.Lines.SaveToFile(SDlg.FileName)
end;

 94

oxClick(Sender: TObject);

.Checked =True then

isible:=False;
.Visible:=False;

device.Visible:=False;

True;
.Visible:=False;

lse;

4.Visible:=False;
 Chkbox.Checked =False then
egin

isible:=True;

.Visible:=True;

le:=True;
.Visible:=True;

isible:=False;

dit3.Visible:=True;
4.Visible:=True;

nd

= StrToInt(Copy(CbComfind.Text,4,Length(CbComfind.Text)-

p2.Open:=True;
alse);

ct);

 cp2.Open = False then
egin
emo2.Lines.Add('The Port Is Not Opened '+ DateTimeToStr(Now));

procedure TForm1.Chkb
begin

If Chkbox
Edit2.Visible:=False;
Dial.Visible:=False;
Clstxt.V
cbIslem
R
Btnopen.Visible:=True;
Btnftp.Visible:=
Label9
Label10.Visible:=Fa
Edit1.Visible:=False;
Edit3.Visible:=False;
Button
if
b
Edit2.Visible:=True;
Dial.V
Clstxt.Visible:=True;
cbIslem
Rdevice.Visible:=True;
memo1.Visib
memo2
Btnopen.Visible:=False;
Btnftp.V
Label9.Visible:=True;
Label10.Visible:=True;
Edit1.Visible:=True;
E
Button
e
end;

procedure TForm1.BtnopenClick(Sender: TObject);
begin
cp2.ComNumber:
3));
c
PCnttrg := cp2.AddDataTrigger('CRLFNAK/?!CRLF',F
end;

procedure TForm1.BtnftpClick(Sender: TObje
begin
If
b
M

 95

cp2.Open = True then
p2.Output:='m6';

tton4Click(Sender: TObject);

end
else if
c
end;

procedure TForm1.Bu
begin
cp2.Output:='m5';
end;

end.

 96

ODE IN PICBASIC

e "modedefs.bas"

 OSC 4
SED 1

efine LCD_BITS 4 ‘LCD bus size 4 or 8’
efine LCD_DREG PORTD ‘LCD data port’

e LCD_DBIT 0 ‘LCD data starting bit 0’
efine LCD_RSREG PORTE ‘LCD register select port’
efine LCD_RSBIT 0 ‘LCD register select bit’
efine LCD_EREG PORTE ‘LCD enable port’
efine LCD_EBIT 1 ‘LCD enable bit’

efine HSER_RCSTA 90h ‘Hser receive status init’
efine HSER_TXSTA 20h ‘Hser transmit status init’
efine HSER_BAUD 4800 ‘Hser baud rate’
efine HSER_CLROERR 1 ‘Hser CLEAR overrun error’

efine SER2_BITS 8 ‘Set number of data bits for Serin2’
 ‘and Serout2’

1 var byte[16]
har0 var byte

har var byte[65]
 var byte[65]
 var byte

har1 var byte
har2 var byte
har3 var byte

ak var byte

 ADCON1 = 7 ‘Set PORTA and PORTE to digital, otherwise portA ADC’
 Low PORTE.2 ‘LCD R/W line low (W)’
 Pause 500 ‘Wait for LCD to startup’

 Lcdout $fe, 1, " Waiting for"
 Lcdout $fe, $C0, "initialization!"

APPENDIX B – SOURCE C

Includ

Define
Define LOADER_U

D
D
Defin
D
D
D
D

D
D
D
D

D

a
c

c
a
b

c
c
c

n

 97

g Tx port of USART’

serin 6000,notinitialized,[wait ("m"), b]

]
m nication "

Lcdout $fe, $C0, " initialized! "

erin2 PortB.0,24764,20

erin2 PortB.2,24764,2000,meterdetect2,[str a1\16]

etect3:

13,10,21,47,63,33,13,10]
4,2000,meterdetect3,[str a1\16]

serout [13,10,"Port 3 = Meter",13,10]

64,[13,10,21,47,63,33,13,10]
erin2 PortB.6,24764,2000,meterdetect4,[str a1\16]

 4 = Meter",13,10]

 Lcdout $fe, 1, "Status of Ports "
, " detected! "

 Hserout [13,10,"Multi-port device is waiting for request!",13,10]

etting the operation request by listenning the USART serial port and’

inverted logic serial port in a loop’

‘Waiting for communication initialization by listenin

start:
H

Hserout ["CNT"

Lcdout $fe, 1, " Co mu

pause 1000

‘Port status detection procedure’

Serout2 PortB.1,24764,[13,10,21,47,63,33,13,10]
S 00,meterdetect1,[str a1\16]
Hserout [13,10,"Port 1 = Meter",13,10]

detect2:
Serout2 PortB.3,24764,[13,10,21,47,63,33,13,10]
S
Hserout [13,10,"Port 2 = Meter",13,10]

d
Serout2 PortB.5,24764,[
Serin2 PortB.4,2476
H

detect4:
Serout2 PortB.7,247
S
Hserout [13,10,"Port

loop:

 Lcdout $fe, $C0

pause 2000
 Lcdout $fe, 1, " Waiting for"
 Lcdout $fe, $C0, " request!!! "

‘G
‘

 98

 2000,listennext,[wait ("m"),char0]

Serin2 PortB.0,24764,2000,listenstart,[wait ("m"),char0]
goto lis

sten:

 Case "1"

d the readout string to meter’

rwise branch to noconnection’
 Serin2 PortB.0,24764,3010,noconnection,[str a1\16]

rout [str a1\16]

 ‘Data receiving after getting Meter id from meter, if ended goto datason’

cdout $fe, 1, " Data Receiving "

$C0, " from 2 "

,13,10]

erin2 PortB.2,24764,3000,noconnection,[str a1\16]
 Hserout [str a1\16]
 pause 10

listenstart:

Hserin
goto listen

listennext:

ten

li

Select Case char0

 Lcdout $fe, 1, " Data Receiving "
 Lcdout $fe, $C0, " from 1 "

 ‘Sen
 Serout2 PortB.1,24764,[47,63,33,13,10]

 ‘Start to receive data(meter id), othe

 Hse
 pause 10

Don1:
 Serin2 PortB.0,24764,3010,datason,[char0]
 Hserout [char0]
 Goto Don1

 Case "2"

 L
 Lcdout $fe,

 Serout2 PortB.3,24764,[47,63,33

 S

 99

on2:
 PortB.2,24764,3000,datason,[char0]

 Hserout [char0]

 Lcdout $fe, 1, " Data Receiving "
 Lcdout $fe, $C0, " from 3 "

 Serout2 PortB.5,24764,[47,63,33,13,10]

erin2 PortB.4,24764,3000,noconnection,[str a1\16]

erin2 PortB.4,24764,3000,datason,[char0]

 Case "4"

dout $fe, 1, " Data Receiving "

B.7,24764,[47,63,33,13,10]
 pause 10

 Serin2 PortB.6,24764,3000,noconnection,[str a1\16]
t [str a1\16]

ause 10

4:
0]

serout [char0]

 "5"

D
 Serin2

 Goto Don2

 Case "3"

 pause 10

 S
 Hserout [str a1\16]
 pause 10

Don3:
 S
 Hserout [char0]
 Goto Don3

 Lc
 Lcdout $fe, $C0, " from 4 "

 Serout2 Port

 Hserou
 p

Don
 Serin2 PortB.6,24764,3000,datason,[char
 H
 Goto Don4

 Case

 100

nsfer procedure is initiated from main PC’

TP initiated "
0, " by main PC"

 Hserout [13,10,"Ready for file transfer",13,10]
 pause 1000

erout2 PortB.1,16572,[13,10,"Be ready for receiving file",13,10]

 Serin2 PortB.0,16572,30000,receivernotready,[nak]

op1:

leted,[char2]
00,problem,[char3]

 Hserin 1000,problem,[str char\65]
erin 1000,problem,[str a\65]

6572,[char1,char2,char3,str char\65,str a\65]

 Serin2 PortB.0,16572,11000,noreplyfromreceiver,[nak]
 Hserout [nak]

ase "6"

 Lcdout $fe, 1, " FTP initiated "

ortB.1,16572, [13,10,"Ready for file transfer",13,10]
1000

erout [13,10,"Be ready for receiving file",13,10]

0,receivernotready1,[nak]
 Serout2 PortB.1,16572,[nak]

‘File tra

 Lcdout $fe, 1, " F
 Lcdout $fe, $C

 S
 pause 1000

 Hserout [nak]

lo
 Hserin 5000,nofiletransfer,[char1]
 Hserin 500,ftpcomp
 Hserin 10

 Hs

 Serout2 PortB.1,1

 goto loop1

 C
‘File transfer procedure is initiated from remote PC’

 Lcdout $fe, $C0, " by remote PC"

 Serout2 P
 pause

 Hs
 pause 1000

 Hserin 3000

loop12:

 101

ar1]
erin2 PortB.0,16572,500,ftpcompleted1,[char2]

lem1,[char3]

 Serin2 PortB.0,16572,1000,problem1,[str char\65]

 Hserout [char1,char2,char3,str char\65,str a\65]

,noreplyfromreceiver1,[nak]
 Serout2 PortB.1,16572,[nak]

out2 PortB.1,16572,["Modem connection is closed by remote end!!"]

 Lcdout $fe, $C0, "initialization!"

oto start

 Case Else

 Lcdout $fe, 1, "FALSE REQUEST!"

oto loop

otinitialized:

t 1 = Computer",13,10]
2 PortB.1,16572,[13,10,"The main PC is online now!!!",13,10]

eterdetect2:
rout [13,10,"Port 2 = No connection",13,10]

ct3

 Serin2 PortB.0,16572,5000,nofiletransfer1,[ch
 S
 Serin2 PortB.0,16572,1000,prob

 Serin2 PortB.0,16572,1000,problem1,[str a\65]

 Hserin 11000

 goto loop12

 Case "9"

Ser

 Lcdout $fe, 1, " Waiting for"

 g

End Select

g

n
goto start

meterdetect1:
Hserout [13,10,"Por
Serout
goto detect2

m
Hse
goto dete

 102

o detect4

rout [13,10,"Port 4 = No connection",13,10]

fter Data reading is completed’

 Lcdout $fe, 1, " Data Received "
 Hserout [13,10,"Data receiving is completed!",13,10]

000
 goto loop

’

 Lcdout $fe, 1, " No connection!"
 [13,10,"No meter connected to this port!",13,10]

 pause 1000
 goto loop

low program parts are related with ftp process’

tp process from main PC to remote PC is not started’
ransfer:

 Lcdout $fe, 1, "No data received"
ut ["No data received"]

 Serout2 PortB.1,16572,["No data received from sender"]
 pause 1000

f ftp process from main PC to remote PC is completed’
pcompleted:

t2 PortB.1,16572,[4]
 Hserout [6]

00

t2 PortB.1,16572,[13,10," FTP Completed",13,10]

meterdetect3:
Hserout [13,10,"Port 3 = No connection",13,10]
got

meterdetect4:
Hse
goto loop

‘A
datason:

 pause 3

‘If no access to meter at related port
noconnection:

 Hserout

‘Be

‘If f
nofilet

 Hsero

 goto loop

‘I
ft

 Lcdout $fe, 1, "FTP completed!"
 pause 2000
 Serou

 pause 1
 Hserout [13,10," FTP Completed",13,10]
 Serou

 103

 goto loop

main PC to remote PC’

24]

ut $fe, 1, "problem"
 pause 2000
 goto loop

e char’
ady:

f receiver does not respond with ACK or NACK to last received block’
yfromreceiver:

noreplyfromrcvr"
t reply with ACK or NACK for last

m sender"]

rom remote PC to main PC is completed’
pcompleted1:

, "FTP completed!"

B.1,16572,[6]

‘If a problem is occured during file transfer from
problem:

 Hserout [
 Serout2 PortB.1,16572,[24,24,24]
 Lcdo

‘If receiver does not send handshak
receivernotre

 Lcdout $fe, 1, " Receiver"
 Lcdout $fe, $C0, " not ready!! "
 goto loop

‘I
norepl

 Lcdout $fe, 1, "
 Serout2 PortB.1,16572,["You did no
block"]
 goto loop

‘If ftp process from remote PC to main PC is not started’
nofiletransfer1:

 Lcdout $fe, 1, "No data received"
 Hserout ["No data received fro
 Serout2 PortB.1,16572,["Data could not be received!!"]
 pause 1000
 goto loop

‘If ftp process f
ft

 Lcdout $fe, 1
 pause 2000
 Serout2 Port
 Hserout [4]
 pause 100
 Hserout [13,10," FTP Completed",13,10]

 104

rtB.1,16572,[13,10," FTP Completed",13,10]
 goto loop

em is occured during file transfer from remote PC to main PC’
roblem1:

,24,24]
, "problem"

 goto loop

t send handshake char’
ernotready1:

e in receving file mode!"]
oto loop

spond with ACK or NACK to last received block’
yfromreceiver1:

rout ["You did not reply with ACK or NACK for last block"]

nd

 Serout2 Po

‘If a probl
p

 Hserout [24]
 Serout2 PortB.1,16572,[24
 Lcdout $fe, 1
 pause 1000

‘If receiver does no
receiv

 Lcdout $fe, 1, "notready"
 Hserout ["B
 g

‘If receiver does not re
norepl

 Lcdout $fe, 1, "noreplyfromrcvr"
 Hse
 goto loop
E

 105

MULTIPORT DEVICE USER MANUAL

sions of the Device

shows the dimensions of the multi-port device. As it can be
e can be located easily thanks to its

APPENDIX C –

1)- Dimen

 Figure – 1
seen from the figure multi-port devic
reasonable dimensions.

Figure – 1 Dimensions of the device

)- Connection Specifications

onnection point in the system:

2

C The multi-port is connected between the remote

odem and digital electricity meters as shown in Figure – 2: m

Figure – 2 The multi-port device and digital electricity meters

Figure – 3 The multi-port device, remote PC and digital electricity meters

Port Specifications: The connection points of modem, PC and electricity m

n in Figure – 4. The connections are realized by RJ12 connectors as
specified in Figure 5 and 6.

eters
are as show

Figure – 4 Connections to the ports

 106

 107

 Meter Side

 RJ-12 Male Socket - Device

 Modem Side

Figure – 5 Meter-Device Connection

 (25-pin Male) RJ-12 Male Socket - Device

Figure – 6 Modem-Device Connection

 Remote PC Side DB9 Female RJ-12 Male Socket – Device

Figure – 7 Modem-Device Connection

E: empty, not used

 108

Power Supply: The multi-port device can be operated by using a standard voltage
daptor. The voltage of the adaptor can be changed between 12 V –24 V. The

recomm an adaptor.

3)- Minimum Requirements for the Main Parts of the System

 PC:

a
ended voltage is 12 V DC from

The PC might be a standard personal computer, which has Windows 2000 or
XP operating system. For other Windows or Linux, Unix some settings about the
operating system might be needed. The main and easy requirement for the PC is a
properly working serial com. Port.

PC Side Modem : It ter producers

at the modem should be Hayes compatible, under this circumstances the modem
ight be internal or external. The recommended and tested as properly working

and sets are as following:

AT &F1
AT+MS=9,0,4800,0,0,4800
AT&M0
AT%C0
ATX3
ATE0
AT&W0
AT&W1
AT&Y0

But it should be noted that these settings are not the only way for solution
and might be changed according to user and system preferences.

emote Side Modem :

is recommended by the Digital Electricity Me
th
m
modem settings with AT comm

R It is recommended by the Digital Electricity Meter
 and

sted as properly working modem settings with AT command sets are as
following:

AT &F1
AT+MS=9,0,4800,4800,0,0,4800
ATS0=1
AT&M0
AT%C0
ATE0
AT&D0
AT&W0
AT&W1
AT&Y0

producers that the modem should be Hayes compatible. The recommended
te

 109

But it should be noted that these settings are not the only way for solution
nd might be changed according to user and system preferences. a

Meters : The meters which can be read properly in this system must have at least
ne RS232 communication port and very importao ntly they must communicate
ith the peripherals according to the FLAG protocol. FLAG protocol is created

w
by FLAG Association as guide to IEC Meter Communications Specifications.

4)- Reading Software

Figure – 8 Main Screen of Reading Software on Main PC

tion, should be selected. The active ports are listed in the left upper
ox.

2)- h will be dialed to establish the
communic specified in the box at left side of
Dial button

3)- Next, the timeout values for main PC to modem connection and main
PC to mul vice should be entered to right upper box. After that, Dial
button should be clicked, and thus the “ATDT + Phone Number” command is sent
to modem. Then connection is established and the program starts to send
connection indication string to the multi-port device. After the handshake process
between th rt device and main PC is completed, the program will receive
the por st e multi-port device, such as which device is connected to

When the program is started on the main PC, the program window shown

in Figure – 2.1 should appear on the main PC screen.
The execution steps of software are described below:
1)- First of all, the port of main PC, which will be used for serial

ommunicac
b

Then the phone number, whic
e remote side, should beation to th

.

ti-port de

e multi-po
atus of tht

 110

which
nnection will be

losed automatically by the program. The related indication messages appear on
e left log window.

esired meter should be selected from the box and then Read Device button
hould be clicked. If the meter is not password protected and also connected to the

ata will be listed in reading window on the left. The
ut data can be written to a text file by clicking right button of mouse over the

window.
6)- This meter readout procedure can be executed for each meter in the

same manner. The readout window on the left can be cleared at anytime by
clicking Clear Text button.

7)- If the request is to perform a file transfer to the remote PC, the request
must be initiated by clicking to the Initiate FTP button and after that the file to be
sent should be selected by clicking File Open icon at the bottom of the program
window at same line with Send button. After clicking to the Send button, the file
transfer procedure will wait for 30 seconds for preparation of remote PC to
receive a file. Within 30 seconds, when the remote PC passes to receiving file
mode, the file transfer process will start according to Xmodem protocol.

8)- If a file transfer request is received from remote PC, the multi-port
device informs the main PC to be in receiving mode within 30 seconds. When the
main PC enters to receiving file mode, the file transfer process will start according
to Xmodem protocol.

9)- The connection between main PC and multi-port device can be closed
at anytime by the user of main PC by clicking Close Port button.

Note s of serial

ommunicat or green
accordi

. Clear Text button can be
used at

port. If the handshake process between main PC and multi-port device,
which can continue 60 seconds at most, fails anyhow, the co
c
th

4)- After the connection is established successfully, the request may be to
perform a remote reading procedure of a meter or to perform a file transfer to the
remote PC.

5)- If the request is to perform a remote reading procedure of a meter, the
d
s
port properly, the readout d
reado

: The buttons below the reading window indicates the statu
ion performed by using APRO Libraries. They will be redc

ng to the status of process while the program is running. Clear Text button
clears the reading window to prepare for next reading

 anytime.

 111

Figure – 9 Main Screen of Reading Software on Remote PC

 When the program is started on the remote PC, the program window
shown in Figure – 2.2 should appear on the remote PC screen.

The execution steps of software are described below:
1)- First of all, the Slave Computer box must be checked in order to turn

the lite version on. As soon as the program is started, the serial port to be used for
the communication with multi-port device should be specified and opened.

2)- While the start up procedure of the multi-port device, the multi-port
device sends the port status detection messages to all ports. As soon as the remote
PC receives this message, it immediately replies with a specified string that
indicates remote PC is connected and ready.

3)- Then the remote PC starts to wait for a file transfer procedure
initialization message. When this message is received, the program should be in
receiving file mode within 30 seconds. After a few seconds, the file transfer starts.

4)- The remote PC can initiate a file transfer anytime by clicking Initialize
FTP button at the right bottom of the program window. If the remote PC receives
Ready for file “ transfer” message, the file transfer can be started. When Send
utton is clicked, the file transfer procedure will wait for 30 seconds for
reparation of main PC to receive a file. Within 30 seconds, when the main PC
asses to receiving file mode, the file transfer process will start according to

Xmodem protocol.
5)- After the file transfer from remote PC to main PC is completed, the

program execution turns back step 2. Throughout running of lite version remote
access software, the specified serial port must be opened and the Slave Computer
button must be checked.

b
p
p

 112

APPENDIX D – XMODEM FILE TRANSFER PROTOCOL

Xmodem

 Xmodem, which is one of the oldest, simplest and slowest file transfer

t

a

an is req

protocols, was developed and first implemented by Ward Chrlstensen in 1977 and

placed in the public domain. Since then, it has become an extremely popular

protocol and continues in use today (although at a diminished frequency).

 Xmodem uses blocks of only 128 bytes and requires an acknowledgmen

of each block. It uses only a simple checksum for data integrity.What follows is

simplified description of the Xmodem protocol, although it describes far more

th uired to actually use the protocol.

Figure – 1 Xmodem block structure

 The <SOH> character marks the start of the block. Next comes a one byte

block number followed by a ones complement of the block number. The block

number starts at one and goes up to 255 where it rolls over to zero and starts the

cycle again. Following the block numbers are L28 bytes of data and a one-byte

checksum. The checksum is calculated by adding together all the data bytes and

ignoring any carries that result. Below table describes a typical Xmodem protocol

transfer.

 113

itter to send a block of

data. If it does not get a block within 10 seconds, it sends another <NAK>. This

continues for 10 retries, after which the receiver gives up.

 If the receiver does get a block, it compares the checksum. It calculates to

the received checksum. If the checksums differ, the receiver sends a <NAK> and

the transmitter resends the block. If the checksums match, the receiver accepts the

block by sending an <ACK>. This continues until the complete file is transmitted.

The transmitter sign which the receiver

cknowledges with an <ACK>.

 of value BlockFillChar, whose default is ^Z.

Xmodem often exhibits a start-up delay. The transmitter always waits for a

<NAK> from the receiver as its start signal If the receiving program was started

first, the transmitter probably missed the first <NAK> and must wait for the

receiver to time out and send another <NAK>.

Figure – 2 Xmodem protocol transfer steps

 The receiver always starts the protocol by issuing a <NAK>, also called

the handshake character. It waits 10 seconds for the transm

ifies this by sending an <EOT>,

a

 From this description several things become clear. First, this protocol does

not transfer any information about the file being transmitted. Hence, the receiver

must assign a name to the incoming file.

 The receiver also does not know the exact size of the file, even after it is

completely received. The received file size is always a multiple of the block size.

This Xmodem implementation fills the last partial block of a transfer with

characters

 114

 Xmodem has been tweaked and improved through the years. Some of

 which substitutes

 16 bit CRC (cyclic redundancy check) for the original checksum. This offers a

 the transmitter doesn't

ck starts with an <STX> character instead of an

it for an acknowledgment. However, it

 The only merit of the basic Xmodem protocol is that it is so widespread

that it is probably supported by any microcomputer communications program you

can find, thus providing a lowest common denominator between systems.

Xmodem Extensions

these variations have become standards of their own.

 The first of these improvements is called Xmodem CRC,

a

much higher level of data integrity. When given the opportunity, you should

always choose Xmodem CRC over plain Xmodem.

 The receiver indicates that it wants to use Xmodem CRC by sending the

character ‘C’ instead of <NAK> to start the protocol. If

respond to the ‘C’ within three attempts, the receiver assumes the transmitter is

not capable of using Xmodem CRC. The receiver automatically drops back to

using checksums by sending a <NAK>.

 Another popular extension is called Xmodem 1K. This derivative builds

on Xmodem CRC by using 1024 byte blocks instead of 128 byte blocks. When

Xmodem 1K is active, each blo

<SOH>. Xmodem 1K also uses a 16 bit CRC as the block check.

 A larger block size can greatly speed up the protocol because it reduces the

number of times the transmitter must wa

can actually reduce throughput over noisy lines because more data must be

retransmitted when errors are encountered.

 115

APPENDIX E – COMPLETE LIST OF SERIN2/SEROUT2 MODES

Baud Rate Bit 15
(Output)

Bit 14
(Conversion)

Bit 13
(Parity) Mode Number

300 Driven True None 3313
300 Driven True Even* 11505
300 Driven Inverted None 19697
300 Driven Inverted Even* 27889
300 Open True None 36081
300 Open True Even* 44273
300 Open Inverted None 52465
300 Open Inverted Even* 60657

600 Driven True None 1646
600 Driven True Even* 9838
600 Driven Inverted None 18030
600 Driven Inverted Even* 26222
600 Open True None 34414
600 Open True Even* 42606
600 Open Inverted None 50798
600 Open Inverted Even* 58990

1200 Driven True None 813
1200 Driven True Even* 9005
1200 Driven Inverted None 17197
1200 Driven Inverted Even* 25389
1200 Open True None 33581
1200 Open True Even* 41773
1200 Open Inverted None 49965
1200 Open Inverted Even* 58157

2400 Driven True None 396
2400 Driven True Even* 8588
2400 Driven Inverted None 16780
2400 Driven Inverted Even* 24972
2400 Open True None 33164
2400 Open True Even* 41356
2400 Open Inverted None 49548
2400 Open Inverted Even* 57740

4800 Driven True None 188
4800 Driven True Even* 8380
4800 Driven Inverted None 16572
4800 Driven Inverted Even* 24764
4800 Open True None 32956
4800 Open True Even* 41148
4800 Open Inverted None 49340
4800 Open Inverted Even* 57532

9600 baud may be unreliable with 4MHz clock
9600 Driven True None 84
9600 Driven True Even* 8276
9600 Driven Inverted None 16468

 116

9600 Driven Inverted Even* 24660
9600 Open True None 32852
9600 Open True Even* 41044
9600 Open Inverted None 49236
9600 Open Inverted Even* 57428

baud rates Hz c terbelow require 8M lock or fas
14400 Driven True None 49
14400 Driven True Even* 8241
14400 Driven I nverted None 16433
14400 Driven Inverted Even* 24625
14400 Open True None 32817
14400 Open True Even* 41009
14400 Open I nverted None 49201
14400 Open Inverted Even* 57393

baud rates belo z c aster w require 10MH lock or f
19200 Driven True None 32
1920 Driven Tru Even 82240 e *
1920 0 Driven I nverted None 16416
1 I920 0 Driven nverted Even* 24608
1920 0 Open True None 32800
1920 0 Open True Even* 40992
1920 0 Open I nverted None 49184
1 I920 0 Open nverted Even* 57376

baud rates belo z c aster w require 16MH lock or f
28800 Driven True None 15
28800 Driven True Even* 8207
28800 Driven I nverted None 16399
28800 Driven I nverted Even* 24591
28800 Open True None 32783
28800 Open True Even* 40975
28800 Open Inverted None 49167
28800 Open I nverted Even 57359

33600 Driven True None 10
33600 Driven True Even* 8202
33600 Driven Invert ed None 16394
33600 Driven I 2nverted Even* 4586
33600 Open True None 32778
33600 Open True Even* 40970
33600 Open Inverte d None 49162
33600 Open I nverted Even 57354

baud rates below z c aster require 20MH lock o fr
38400 Driven True None 6
38400 Driven True Even* 8198
38400 Driven Inverted None 16390
38400 Driven I 2nverted Even* 4582
38400 Open True None 32774
38400 Open True Even* 40966
38400 Open Inverted None 49158
38400 Open Inverted Even 57350

ty when E SER D 1 is u

]

*Pari is odd DEFIN 2_OD sed.
[Ref. 9

	Tez_pdf.pdf
	Tez_pdf.pdf
	Tez2_pdf.pdf
	Tez2_pdf.pdf
	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS

	Tez3_pdf.pdf
	LIST OF FIGURES………………………………………………………. xi
	REFERENCES………………………………………………………….… 83

	Tez4_pdf.pdf
	LIST OF TABLES

	Tez_son_son1.pdf
	Tez_son1.pdf
	Tez3_pdf.pdf
	CHAPTER 1
	GENERAL DESCRIPTION OF THE SYSTEM
	Common Remote Reading Infrastructure
	Figure – 1.1 Remote Reading Infrastructure used in metering
	Figure – 1.2 More feasible remote reading solution with Impl
	E: empty, not used
	Figure – 1.3 Meter-Device connection
	E: empty, not used
	Figure – 1.6 Remote PC-Device connection

	CHAPTER 2
	DATA COMMUNICATION INTERFACE
	2.3.1 Signal Ground and Shield
	2.3.2 Primary Communications Channel
	2.3.4 Modem Status and Control Signals
	2.3.5 Transmitter and Receiver Timing Signals
	2.3.6 Channel Test Signals

	2.4 Electrical Standards
	Table – 3.1 Basic features of PIC 16F877
	Key Features
	PIC 16F877
	Figure – 3.2 Two situations of loading PC

	3.2 Microcontroller Programming Procedure
	Figure – 4.6 USART Transmit Block Diagram
	Figure – 4.7 USART Receive Block Diagram

	4.3 Inverted Logic

	CHAPTER 5
	DESCRIPTION OF IMPLEMENTED SYSTEM
	5.1.3 Flow Diagram of Reading Software
	Table – 5.1 Summary of the most commonly used protocols

	Figure – 5.4 Asynchronous transmission packets
	5.3 The Implemented Multi-port Device
	Figure – 5.6 General LCD connection diagram
	Figure – 5.8 Multi-port device PCB diagram

	Tez5_pdf.pdf
	Common Remote Reading Infrastructure
	Figure – 1.1 Remote Reading Infrastructure used in metering
	Figure – 1.2 More feasible remote reading solution with Impl
	E: empty, not used
	Figure – 1.3 Meter-Device connection
	E: empty, not used
	Figure – 1.6 Remote PC-Device connection

	CHAPTER 2
	DATA COMMUNICATION INTERFACE
	2.3.1 Signal Ground and Shield
	2.3.2 Primary Communications Channel
	2.3.4 Modem Status and Control Signals
	2.3.5 Transmitter and Receiver Timing Signals
	2.3.6 Channel Test Signals

	2.4 Electrical Standards
	Table – 3.1 Basic features of PIC 16F877
	Key Features
	PIC 16F877
	Figure – 3.2 Two situations of loading PC

	3.2 Microcontroller Programming Procedure
	Figure – 4.6 USART Transmit Block Diagram
	Figure – 4.7 USART Receive Block Diagram

	4.3 Inverted Logic

	CHAPTER 5
	DESCRIPTION OF IMPLEMENTED SYSTEM

