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ABSTRACT 

3D FACE MODEL GENERATION 

 

Büyükatalay, Soner 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 

 

November 2004, 76 pages 

 

Generation of photo-realistic 3D human face models is a hot topic in the area 

joining computer graphics and computer vision. Many different techniques are 

used for this purpose, but most of them are not feasible for home users. These 

techniques may use advanced hardware such as laser scanners, calibrated stereo 

cameras, or very sophisticated software that can be as expensive as advanced 

hardware. Face model generation by morphing an initial 3D model with 

uncalibrated camera photographs is studied in this thesis. Manually marked 

feature points on photographs are used to deform initial 3D face model. Initial 

photographs also are processed to form a single texture image covering deformed 

3D face model. 

 

Keywords : Human face, 3D model generation, uncalibrated camera,   
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ÖZ 

3 BOYUTLU YÜZ MODELİ OLUŞTURMA 

 

Büyükatalay, Soner 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 

Kasım 2004, 76 sayfa 

 

Fotograf gerçekçiliğinde 3 boyutlu (3B) yüz modelleri oluşturma, bigisayar 

grafikleri ve bilgisayarla görme alanlarının her ikisini de kullanan en sıcak 

konulardan biridir. Bu konuda birçok uygulama geliştirilmiş olsa da ev 

kullanıcılarına uygun çözümler hala eksik kalmaktadır. Kullanılan tekniklerin 

çoğu lazer tarayıcılar, kalibre edilmiş stereo kameralar gibi pahalı ve ev 

kullanıcıların sahip olamayacağı donamınlar veya oldukça karmaşık yazılımlara 

ihtiyaç duymaktadır. Bu tezde kalibre edilmemiş kamera fotografları kullanılmsı 

suretiyle üç boyutlu başlangıç yüz modeli değiştirilerek yeni bir yüz modeli 

oluşturulmaya çalışılmıştır. 3B Başlangıç yüz modelini değiştirmek için manuel 

olarak işaretlenmiş özel noktalar kullanılmaktadır. Ayrıca başlangıç fotografları, 

değiştirilmiş 3B başlangıç modelini saracak tek bir doku resmi oluşturmak için 

işlenmektedir. 

  

Anahtar Kelimeler: İnsan yüzü, 3B model oluşturma, kalibrasyonsuz kamera, 
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CHAPTER 1                                            

INTRODUCTION 

 

Human face model generation process can be explained as a translation from two 

dimensional representations (2D) of a face that are photographs, to three 

dimensional representation (3D) that is 3D space coordinates of a mesh 

representing the shape of face and a texture image to wrap this mesh. 

 

Face modeling can be used in many areas. It is the first step in character 

animation, which is widely used in films, advertising and computer games. Some 

newly developing fields are user-interface agents and avatars, facial surgery 

planning and video teleconferencing [12] [19]. In video teleconferencing, 

forming face models of callers, and transmitting only the speech and gesture data 

will reduce bandwidth. Many application examples will follow these if home 

users with a simple web cam and a conventional PC can generate face models. 

 

In recent years, there has been considerable interest in computer-based 3D face 

modeling and animation. However this is not a very new subject, hence twenty 

years ago, researchers used computer to represent and animate human faces [6]. 

But, realistic facial animation has become recently possible partially due to the 

incredible growth of the computation power during the last 20 years. Since, 
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computers and internet have become essential parts of our daily life, 

computerized face animation has more importance than before. 

 

The human face is interesting and challenging because of its familiarity. We 

distinguish individuals mostly from their face. Also we are able to detect even 

small changes in facial expressions in social life. Humans learn these recognition 

skills in childhood and develop rapidly since many different faces are seen every 

day. 

 

The ability to model a realistic human face still remains a significant challenge in 

computer graphics [2] [4] [14] [22]. Despite of the traditional computer graphics 

algorithms such as modeling and rendering, realistic face model generation of 

human face is still one of the most difficult goals in computer animation. Because 

of familiarity of human face, human beings try to find tiny details on generated 

face model, and this causes the main problem in face modeling. In addition to 

familiarity, the geometric form of the human face is extremely complex, which is 

another drawback of face modeling. Indeed, there are a few impressive facial 

animations such as the ones created by Pixar Co., but these results need many 

years of highly skilled animators.  
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1.1 A Survey on Face Modeling 

 

This section is a survey of computer face modeling [8]. The most significant 

results in this area have been published at ACM SIGGRAPH conferences as well 

as in other related computer graphics journals and conference proceedings. 

 

The first computer-generated images of faces were generated by F. I. Parke in the 

early 1970s. The head was represented by polygons, which were used to open and 

close eyes and mouth [6]. Henri Gouraud was also working on his smooth 

polygon shading algorithm (Gouraud shading) during this period and he 

demonstrated it by applying the new technique to a digitized face model. Parke 

[7] had completed the first parameterized facial model by 1974. In 1971, 

Chernoff [11] published for the first time; his work of using computer generated 

2D face drawings to represent a k-dimensional space.  

 

In 1980, Platt published his master thesis on a physically based muscle-controlled 

facial expression model [20]. Weil’s [16] work which uses video system to 

interactively select and composite facial features was reported in 1982. 

 

A new wealth of data for facial modeling was provided through the development 

of optical range scanners, such as the Cyberware optical laser scanner [3]. In 

1998, new techniques for creating a photorealistic textured 3D facial model from 
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photographs and for creating smooth transitions between different facial 

expressions to make realistic facial animation were presented by Pighin et al. [9]. 

 

A system to capture three-dimensional geometry, color, and shading information 

for human facial expressions was created by Guenter et al, [2] these data were 

used to reconstruct photo-realistic 3D facial animation. 

 

1.2 Face Modeling Techniques 

 

Generation of face model involves determining geometric descriptions like 3D 

coordinates, and additional surface color attributes named as texture. Face model 

generation techniques can be divided into two main categories; photogrammetric 

 techniques and laser scanner based approach. Photogrammetric techniques are 

acquisition of geometry and texture from photographs or videos. In laser scanner 

based approach, scanning devices, such as those developed by Cyberware [3] are 

employed to digitize face geometry and texture. These systems can acquire more 

precise 3D surface shape data, as well as surface color, of static sculptures, but in 

case of real people, subject tends to move during scanning since it takes a long 

time. 

 

Face modeling algorithms, and also modeling algorithms in general, require a 

decision concerning the trade-off between model specificity and generality. With 
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this respect, model generation can be categorized in two based on the object 

restrictions: 

• Unconstrained modeling: There is no constraint on the object to be 

modeled. Free-form meshes are used in this category. In case of face 

modeling, this type may not show detailed information about the face. 

• Constrained modeling: In this category modeling algorithm has a bias 

towards representing the desired class of objects. Object to be modeled 

must belong to this class. Two different face modeling algorithm are 

developed up to now in this category. The first one employs a 3D scanned 

face model database, which generates new face models as a linear 

combination of the models from database, based on some statistical 

parameters derived from a single face photograph [22]. The second one, 

which is also used in this thesis, is to deform an initial face model with 

some 3D coordinates derived from multiple photographs. 

 

In this study, an easy-to-use technique is proposed. The process consists of 

several basic steps similar to those explained in [9]: 

1. Multiple photographs of the human face to be modeled are captured from 

arbitrary directions where the individual stands still with a firm face 

expression.  

2. Some corresponding points (feature points of face, such as corners of 

eyes, and mouth, tip of nose etc.) are marked manually on each 
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photograph and 3D generic face model separately. These points will be 

used to find camera position relative to feature points of face.  

3. 3D space coordinates of these feature points and relative camera positions 

are calculated using an iterative algorithm. 

4. More refining feature points other than the ones used for camera 

calibration can be defined after camera calibration. These refinement 

points will not be used for camera calibration, but only for a better 

deformation of 3D face mesh. 

5. 3D coordinates of feature points are used to deform the generic initial 3D 

face mesh [24].  

6. Texture map and texture image are formed from the photos and the 3D 

face mesh. Then texture image is fitted on to 3D face mesh. 
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An overview of the system that we developed in this thesis is given in Figure 1.1. 

In our system, the images that are obtained by arbitrarily placed cameras are 

used. Beside arbitrary camera placement, algorithm does not have any constraints 

on camera lenses. In the following text, the term “uncalibrated images” means 

that these images are taken without any calibration constraint. In this thesis 

predefined 18 feature points are used for model generation. There are two 

constraints on the number of these feature points, thus the images must be taken 

considering these constraints which are listed as follows: 

• A feature point must be specified in at least 2 different images to calculate 

its 3D coordinates. 

•  At least 6 feature points must be specified at each image so that the 

camera position related to that image can be calculated. 

 

After the feature points are specified at the initialization step, the 3D coordinates 

of these points is calculated iteratively in the next step. Each iteration is 

composed of two linear calculations, which calculate relative camera positions 

and 3D coordinates of the features. The iteration loop is initialized by 3D initial 

feature points. After initialization, at each loop of iteration, camera positions and 

new 3D feature points are calculated sequentially. In this thesis, another 

initialization method which initializes the iteration with camera positions is also 

applied.  
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The next step is deforming a generic face mesh considering the coordinates of the 

3D feature points found in the iteration phase. This small number of feature 

points will shape the rest of the face employing Radial Basis Functions. After 

deformation, if results are not satisfactory, then some more new refining feature 

points can be added to the initial images. This sub-step of deformation is called 

refining in this work. The aim of the refining step is to specify more feature 

points which are specific to the current subject’s face. There are two reasons why 

we do not include these refining feature points in camera calibration. First, these 

points may not be easily marked on images and can affect calibration of camera. 

Second, these 3D feature points may be specific to the current subject only and 

may not be marked on the initial generic 3D face model.  

 

The last step is forming of a texture image to wrap the final 3D face mesh. An 

initial texture map that defines the wrapping of texture image to the 3D face mesh 

is used. Whole deformed 3D face is projected to each image considering camera 

position of that image and a new texture image is formed by combining pixels of 

images with respect to the projected 3D coordinates. Brightness equalization can 

be applied to reduce differences from image to image and a blur function can be 

employed to reduce contours emerged by image combination in order to obtain 

the texture image.  
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1.3 Organization 

 

The rest of this thesis is organized as follows: The next chapter describes camera 

calibration and calculation of 3D coordinates of feature points altogether. The 

third chapter describes the generic face mesh deformation using the feature 

points. The fourth chapter describes the texture extraction using initial images 

and the feature point coordinates. The fifth chapter describes our FaceGenerator 

application, in which programming language Java and Java3D library employed. 

In the sixth chapter experimental results are presented. Finally in the last chapter, 

conclusion and possible future works are explained.   

 10



  

CHAPTER 2                                                          

FEATURE POINT CALCULATION 

2.1 Introduction 

 

Feature point calculation is composed of four parts, which are feature point 

normalization [19], camera calibration [18], 3D feature point calculation and data 

renormalization. The flow of these calculations is listed below: 

1. First, feature points from the images and the 3D face mesh are normalized 

separately for each image in order to the 3D face mesh to have a scale 

invariant space. After normalization, 3D coordinates of feature points do 

not change place with scaling or translation of the face in the image.  

2. After normalization, 3D positions of feature points are used to calculate 

the camera parameters. 

3. Recovered camera parameters and 2D coordinates of feature points are 

used to find the new 3D positions of the feature points. If the total amount 

of error between the initial and new 3D coordinates of feature points is 

greater than the desired error value, process goes back to step 2 with new 

3D positions. This iteration process finishes when error is reduced to an 

acceptable level.  

4. Finally normalized 3D and 2D coordinates of feature points are 

renormalized to real world space. This step is simply composed of 
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application of the inverse normalizations to feature points of 3D face 

mesh and this process will not be mentioned again in the rest of the thesis. 

 

In this process, beside the calculation of 3D coordinates of feature points, camera 

positions, which will be employed later in texture generation, are computed.  

 

2.2 Feature Point Normalization 

 

Feature Point Calculation uses both 2D and 3D coordinates of the marked feature 

points. The performance of the 3D calculation process should not be affected by 

the change of the origin and scaling of images or 3D face mesh. While relative 

3D coordinates of feature points will be calculated, algorithm should depend only 

to relative displacements of feature points. But this is not appropriate when 

camera calibration is solved linearly [19]. Normalization step defined here 

provides origin and scale invariant solution for camera calibration. This is 

essential for minimization of error for each image equally so that each image has 

the same contribution to the result. 

 

Also normalized data produces normalized error values that can be used as 

performance criteria. With the help of this performance value, we can compare 

the algorithm performance on different faces. 
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Before normalization, in 2D images, origin of coordinates are at the top left 

corner, with increasing pixel units from left to right and up to down. In 3D face 

mesh model, origin of coordinates is at the center of head model, with meter 

units. Tip of the nose is on the positive Z axis, and X axis passes through the 

center of ears of 3D face mesh. 

 

As the first step of normalization, the coordinates in each image and 3D object 

are translated separately (by a different translation for each image) so that 

centroid of all feature points in each image is at the center of image. Secondly, 

the coordinates in each image are also scaled so that the average magnitudes of 

all points in each image are the same. Rather than choosing different scale factors 

for each coordinate direction, an isotropic scaling factor is chosen so that x, and y 

coordinates (also z coordinate for 3D case) are scaled equally. We scale the 

coordinates so that the average distance to origin is 2  for 2D, 3  for 3D. 

 

Normalization method is defined as follows; 

• Center of mass of the feature points will be at origin.  (0, 0) for 2D 

images, (0, 0, 0) for 3D face model. 

• Average distance of the feature points to the center of mass is 2  for 2D 

images, 3 for the 3D face model. 

 

The above rules can be applied with a normalization transformation N, defined as 

follows. For a sample image having n 2D feature points, , niyx iii L1),( ==p
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translation parameters  and scaling factors for 2D and 3D are 

defined respectively as follows: 
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Then normalization matrix for 2D is: 
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Similarly normalization matrix for 3D is; 
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These normalization matrices are preserved to be used later for inverse 

normalization. 
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2.3 Camera Calibration 

 

Camera calibration means the calculation of the perspective projection matrix of 

the camera which transforms the 3D real world to a 2D photograph and it can be 

expressed as follows [19]: 
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Where  is 2D image coordinates and ),( yx=x ),,( ZYX=X  is 3D coordinates. 

In Eq. 2.4, P, which expressed in homogeneous coordinates, is a 3x4 camera 

projection matrix and  is the arbitrary scale factor. P can be decomposed as; s

 

[ ]TRCP =  Eq. 2.5

 

In this decomposition C is an upper triangular matrix, representing the intrinsic 

parameters of the camera such as: 
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heightpixel
lengthfocal

widthpixel
lengthfocal

vu == αα ,  

),( 00 uu : Center of projection plane with respect to top left corner 

k : skew factor (non-zero when coordinates are not orthogonal) 

 R is a 3x3 orthogonal rotation matrix and T is the 1x3 translation vector of the 

camera. 

 

The linear camera calibration algorithm used in this thesis is composed of 2 parts: 

1. Computation of P using a set of feature points whose image positions and 

3D positions are known; 

2. Computation of R and T using QR decomposition. 

 

The first part is sufficient to re-calculate the 3D coordinates of the feature points. 

Although the second part is not necessary for 3D feature point calculation 

process, it needs to be calculated later for texture generation where the direction 

of the camera is necessary [1]. However, the whole calibration process will be 

described in the followings. 

 

2.3.1 Computation of Camera Projection Matrix (P)  

 

Eq. 2.4 can be written in open form as follows for the i`th feature point:  
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While the equation has an arbitrary scale factor s and P has 11 level of freedom 

(3 from rotation, 3 from translation, 5 from intrinsic parameters), we can set 

.  134 =p

 

For each 2D feature point we have 2 equation: 
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To find P we rearrange these equations as follows; 
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We can write these equations for all of the feature points in matrix form: 

 

 17



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−−
−−−

−−−

−−−

N

N

i

i

NNNNNNNNN

NNNNNNNNN

iiiiiiiii

iiiiiiiii

v
u

v
u

v
u

p
p
p
p
p
p
p
p
p
p
p

ZvYvXvZYX
ZuYuXuZYX

ZvYvXvZYX
ZuYuXuZYX

ZvYvXvZYX

ZuYuXuZYX

M

M

M

M

M

MMMMMMMMMMM

MMMMMMMMMMM

MMMMMMMMMMM

MMMMMMMMMMM

MMMMMMMMMMM

1

1

33

32

31

24

23

22

21

14

13

12

11

111111111

111111111

10000
00001

10000
00001

10000

00001

 
Eq. 
2.10

 

We can rewrite Eq. 2.10 as follows: 

 

[ ] apB =  Eq. 2.11 

 

 

Where B is the 2N x 11 matrix of known values. With 11 unknowns, the linear 

equation requires at least 6 feature points (N >= 6) to have a unique solution.  

 

In Eq. 2.11 B is a non-square matrix and can be solved using various linear 

algebra methods, like LU Decomposion, QR Decomposion, and Pseudo-

Inverse. In this work Pseudo-Inverse method is employed which can be 

formulated as follows;  
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Eq. 2.12

 

Where is the pseudo-inverse of B. This method will work if we have 

sufficient number of feature points, and if they are not planar in 3D space.  

+B

 

2.3.2 Camera Center Extraction from Camera Projection Matrix (P) 

  

Camera Center is the point for which 0Pc = . This point can be used as camera 

position in 3D world to calculate imaging angle.  

In homogenous coordinates c is 

),,,( tzyx=c  

and can be calculated from P as follows: 
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Where .  denotes the determinant of the covered matrix. 
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2.3.3 Principal Plane Extraction from Camera Projection Matrix (P) 

 

The principal plane is defined as the plane passing through the camera center and 

parallel to the image plane. It consists of the set of 3D points X, which are 

imaged as a line at infinity of the image.  
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So equation of principal plane is; 

 

034333231 =+++ pZpYpXp  
Eq. 2.15

 

The normal of this plane, that is normalized vector, defines the 

direction of camera that the photograph is taken. 

),,( 333231 ppp

 

2.3.4 Camera Projection Matrix (P) Decomposition 

 

As expressed in Eq. 2.5, P can be decomposed into C, R matrices and T vector, 

which are calibration, rotation matrices and translation vector respectively. This 

can be done in two different ways; either by using QR Decomposition or by using 

orthogonal properties of rotation matrix. 
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QR Decomposition is simple because C is already an upper triangular matrix, and 

R is a rotation matrix that is orthogonal where  

TRR =−1  

On the other hand if we write Eq. 2.5 in a more open form 
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Where, , and  are the 1x3 row vectors of P without the last coordinate and 

similarly , and  are the row vectors of R. When calculating P, the equation 

has an arbitrary scale factor and  is set to 1. But when we decompose P this 

scale factor must be considered as well. The following equations are derived by 

employing orthogonallity property of r vectors [17]. 

1p 2p 3p

1r 2r 3r
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Where )(,)(,. •∗ denote magnitude of vector, cross product of vectors and 

dot product of vector respectively. 

 

All of these parameters can be determined if we know the sign of k. This is 

equivalent to knowing whether the origin of the 3D world coordinate system is in 

front of the camera or not ( 00 >< zz tort ). 
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2.4 3D Feature Point Calculation 

 

To find the 3D coordinates of feature points, we bring together the 2D 

coordinated of feature points and calibration matrices from all photographs [10]. 

Then Eq. 2.7 can be rearranged as follows: 
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Where and are 2D coordinates of the feature points on the i`th image and p`s 

are the entries of the perspective projection matrix (P) of the same image. For this 

equation system to have a valid solution, each feature point must be specified in 

at least two images. These equations can be written in a matrix form; 

iu iv
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This linear equation system is solved by pseudo-inverse method which was used 

for perspective projection matrix calculation in Eq. 2.12. 
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CHAPTER 3                                                         

FACE MESH DEFORMATION 

3.1 Introduction 

 

In the previous chapter we found the 3D coordinates of the feature points. Now, 

feature points will be used to deform all the vertices in the generic face mesh [9]. 

A smooth interpolation function will be constructed for the 3D displacements of 

the mesh vertices. Given n feature points, displacement for a feature point i is 

defined as follows: 

 

0
iii XXd −=  Eq. 3.1

 

Where  are final and initial 3D coordinates of i'th feature point. 0, ii XX

 

We want to construct a function, producing displacement vectors for 

unconstrained vertices. So we attempt to find a smooth vector-valued function f 

satisfying; 

 

niii ...1)( == Xfd  
Eq. 3.2
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Then function f can be applied to the vertices of face mesh. There are several 

ways to construct such an interpolation function f. We use a weighted linear 

combination of radial basis functions that give reasonable results for face mesh 

deformation [13].  

 

Function f is in the following form: 

 

∑ −=
i

ii )()( 0XXrcXf  
Eq. 3.3

 

 

Where r stands for radial basis function (RBF), and c is the displacement 

coefficient for each feature point. First of all RBF should be selected as a smooth, 

continuous, and decreasing function. Possible RBF functions are: 

 

Polynomial Functions:  nkxcxbxa ++++= L2)(xr  

Exponential Functions: )( 2

)(
nkxcxbxa ++++−= Lexr  

Eq. 3.4

  

 

In this work, both of these functions were tried and the best result has been 

obtained with the Gaussian Function which is the Exponential Function with only 

a single non-zero coefficient of . In addition to these RBF’s, we also applied a 

bounded RBF function that is zero outside the given boundary.  

2x
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Also a variable parameter RBF method, in which x is scaled such that RBF 

function output at nearest neighboring feature point will be close to zero, is 

applied. Hence RBF of dense feature points have smaller boundaries than sparse 

feature points. As a result, we minimize the number of vertices which remain 

unchanged by widening the boundaries of sparse feature points, and minimize the 

cross effects of feature points to each other. 

 

After deciding on an RBF type, the construction of the f function needs the 

calculation of c vectors that are the coefficients of RBF. Values of c vectors will 

be arranged so that function f moves initial feature points to their known 

destination coordinates. For this aim, the following matrix is formed which is the 

combined form of the f function for all known feature points.  
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Eq. 3.5

 

Simply  

 

DCR =∗  Eq. 3.6
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In the linear equation system Eq. 3.6, R is the RBF results of known feature point 

displacements. C is the unknown coefficient vectors written as a vector and D is 

the displacement vectors of feature points from their initial to final positions.  

 

Since matrix R is an NxN square matrix and has an inverse, C can be calculated 

as follows: 

 

DRC ∗= −1  Eq. 3.7

 

Now we can apply this f function to all vertices of the generic face mesh, and 

deform it to fit to our subject’s face features. 

 

3.2 Addition of Refining Feature Points 

 

Refining points are only used for 3D face model deformation, but they are not 

included in camera calibration. Their 3D coordinates are calculated in the same 

way as the feature points are. In deformation step, they are used together with 

feature points. There are no constraints on the number of refining points to be 

used. However if places of refining points are too close to the feature points, and 

variable parameter RBF’s are used, the resulting face mesh deformation may not 

be very successful. 
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Feature points are assumed to be independent from each other, which means that 

a change in the coordinates of one, should not affect the other. Actually this is not 

an obligation and that can be eliminated by wider RBF. But experimental results 

show that the best results are achieved when the boundaries are arranged in a way 

that feature points have minimum affect on the others as in variable parameter 

RBF case. When a refining point is defined close to a feature point it reduces the 

boundary of this feature point and may cause undesired results in variable 

parameter RBF case. Instead bounded RBF’s should be employed in such a case.
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CHAPTER 4                                                          

TEXTURE EXTRACTION 

4.1 Introduction 

 

Up to now we have captured photographs of the subject’s face, and manually 

marked some feature points on these photographs. Feature points on the 

photographs are employed to calibrate these photographs. Then, 3D coordinates 

of feature points are calculated and these coordinates are used to deform the 3D 

generic face mesh. It is now time to form the texture of our deformed face mesh. 

 

The texture extraction problem can be defined as follows: Given a set of 

photographs, their viewing parameters and fitted face mesh, compute texture 

color T(p) for each point p on the face mesh. 

 

Texture extraction is composed of two parts that are texture image formation and 

texture map formation, both of these are solved together in this thesis. We have 

multiple photographs of the subject which need to be combined to form a single 

texture image. Combined texture image is transformed with respect to a constant 

texture map. We also consider the reverse case, keeping texture image constant 

and transforming the texture map. But results obtained for this case are 
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unsatisfactory due to the lack of control on texture mapping in the 3D library 

used. 

 

4.2 Texture Image Formation 

 

Texture image function T(p) is a function of 3D coordinates of face mesh and 

gives the color values for each mesh point p. T can be expressed as the weighted 

combination of all images that have texture color information. Then  

 

∑
∑=

i i

i iiii

m
yxIm

)(
),()(

)(
p

p
pT  Eq. 4.1

 

In this equation, function  stands for the i’th image that returns color value of 

input point .  is the weighting function of i’th image to texture 

image. These weights should be calculated by considering the following facts: 

iI

),( ii yx )(pim

• Self-Occlusion: should be zero if point p is occluded in the i’th 

photograph.  

)(pim

• Positional Certainty:  should depend on the “Positional Certainty” 

of point p that is defined as the dot product of surface normal and 

direction of perspective projection [21]. So has the maximum value 

with the surfaces perpendicular to photograph direction, and 0 if they are 

parallel. 

)(pim

)(pim
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Self-Occlusion part can be divided in two parts. Surfaces whose front side are not 

visible from the point of view and surfaces which are occluded by other parts of 

the face. First is the definition of back face culling which can be calculated easily 

as follows: 

If normalized direction of i’th camera is labeled as  and surface normal at point 

p is , then: 

id

pn

 

)(cos p
p nd •= iiα  Eq. 4.2

 

Where  is dot product and  is the angle between the surface normal and 

the camera direction. If surface can be seen from the camera direction then the 

angle between them must be greater than 90 degrees which is . 

)( • p
iα

0cos <p
iα

 

Second type of Self-Occlusion is not easy to calculate and it can be neglected 

after back face culling for performance reasons.  

 

Positional certainty is calculated similar to back face culling, where is the 

angle between i'th camera direction and the normal of surface containing point p. 

Weighting function of images in combining process is defined as: 

p
iα
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pp iim αcos)( −=  Eq. 4.3

 

Self-Occlusion occurs at concave surfaces such as sides of the nose. Depending 

on the direction of camera, the nose can occlude a part of the cheek. While the 

algorithm used here does not eliminate Self-Occlusion, texture from the nose can 

also be used for the occluded cheek part. A lower limit to weighting function can 

help to reduce occlusion errors while occluded parts usually have fewer weights. 

This limit also eliminates other small errors which may be mapped to large 

surfaces. 

 

After texture image blending using Eq. 4.1, blended texture will be transformed 

to fit the surfaces as defined at generic face texture map.  For each surface (in our 

case triangular patch) a transformation function is defined by colliding corners of 

the surface with the coordinates from the texture map. So we reduce the 

transformation of texture image problem to calculation of a 2D affined 

transformation matrix T, capable of transforming initial triangle to final one. 

Corners of initial and final triangles are  and respectively, 

where: 

321 ,, iii 321 ,, fff
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Eq. 4.4 can be rewritten in a combined form: 
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Eq. 4.5

 

This linear equation system has a solution if rows of the left most matrix are 

linearly independent, in other words, corners of triangles do not lie on a line. 
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CHAPTER 5                                            

FACEGENERATOR 

5.1 Introduction 

 

Previous chapters describe the theoretical aspects of the study. This chapter 

explains the FaceGenerator application that is capable of forming 3D face models 

from photographs.  

 

The FaceGenerator application is compiled with Standard Development Kit 

(SDK) version 1.4.2. In addition to this, standard Java core application employs 

Java3D and JFreeChart. Standard JDK includes Java2D that has been employed 

in this thesis for image processing and viewing purposes. Standard JDK also 

includes “Java API for XML Processing” (JAXP) library that has been employed 

for Extensible Markup Language (XML) processing. Java3D is a 3 dimensional, 

high-level graphics extension of Java that is used to form 3D part of 

FaceGenerator. JFreeChart is a free library capable of drawing vast variety of 

plots on to the screen, and is used for process analysis and debugging.   

 

This chapter explains the programming language Java and Java3D and 

FaceGenerator application. 
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5.2 Java 

 

First of all, Java is a platform independent programming language that needs an 

interpreter Java Runtime Environment (JRE) to run java programs. Platform 

independency makes java very feasible for internet applications. Code is written 

and deployed once and runs on all operating systems.  

 

Second, Java has a huge developer community that publishes free extensions like 

JFreeChart which is also used in this study for plotting purposes in explaining 

program execution. A lot of open source examples and free books are also 

available at internet on nearly all Java related subjects. 

  

Finally, java is a pure object-oriented language that makes it invaluable. The 

programs that are written in this manner are extensible and easy-to-understand. It 

also has a default exception handling mechanism that is easy-to-debug and 

shortens the development time. 

 

However, Java has some drawbacks such as the lack of simple binary types like 

unsigned char and the interpreter that could cause a performance decrease. Since 

excluding some simple data types is the choice of SUN Inc. developers, there is 

nothing to be done about it. But on the other hand, new versions of JRE use Just-

In-Time Compilers that convert simple binary operations to native platform 

 35



machine code, and nearly no performance difference can be sensed compared to 

native codes. 

 

5.3 Java2D 

 

Java2D is a 2D graphics framework and is included in standard JRE. This library 

is capable of creating arbitrary shapes, texts and images. You can manipulate 

generated graphics with the help of Java2D API. Affined Transformations that 

are rotation and translation, Composition that generates transparent graphics, 

Color Transformation that changes any color parameter, Filtering that is applies 

any kind of convolution to graphics for blurring or sharpening purposes, Data 

Selection that chooses any arbitrary region of interest, are widely used tools in 

FaceGenerator. 

 

In FaceGenerator, points, lines, bezier curves are the main tools for feature point 

marking. It is also very flexible so that user can modify the rendered lines by 

mouse movements. Also lines can define regions that can be used for any 

purposes such as affine transformation, clipping, etc. 

 

Images can be loaded from and saved to JPEG, PNG and GIF formats which are 

most common ones. Images are easily resized by the Java2D API. User can 

define rendering quality and performance by setting rendering parameters. 
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All of these graphics can be manipulated easily with vast variety of 

transformations. FaceGenerator creates texture image by employing affine 

transforms, composition, color transformation, filtering by the help of feature 

lines and points defining the region of interest. Affined transforms are applied in 

homogeneous coordinates, so that user can apply rotation and translation at the 

same time. Color transformation is used to equalize brightness of the face images. 

Composition can be applied to any image loaded to the program with an alpha 

parameter that is weight of newly rendered image. New graphics and background 

are blended with alpha parameter providing a transparent look. At the last stage 

of texture generation blur filtering is applied on to the texture to reduce the 

contours of texture image by Java2D API. 

 

5.4 JAXP 

 

Java API for XML Processing (JAXP) is a standard API in Java, enables parsing 

and transforming XML documents. XML is a simple, widely used standard which 

enables the user to define complex data types. In FaceGenerator, all the 

application data specific to FaceGenerator is stored in XML format. The main 

advantage of XML is its capability of viewing and editing them by external 

programs. This is very helpful for debugging.  The future advantage of XML 

usage is the capability of sharing XML documents over internet for 

teleconferencing.   
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5.5 Java3D 

 

Java3D is a Java extension developed by Sun Microsystems, Inc. as a joint 

collaboration with Silicon Graphics, Inc., Intel Corporation, Apple Computer, 

Inc. and it is free to use. In this study Java3D version 1.3 is employed. Actually 

this extension is not implemented in pure Java; it is a wrapper of two commonly 

used graphics libraries, openGL and directX. This study uses openGL core 

Java3D that is used on platforms like UNIX.  

 

Java3D extension is designed as a high-level library, which is the main advantage 

of using it. Developers do not need to optimize its performance for different 

hardware platforms. 

 

The scene graph programming model is a simple and flexible way for both 

representing and rendering complex 3D worlds. All information of the virtual 

world and the entire scene is included in this scene graph. 
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Figure 5.1 : Java3D scene graph 

 

 

Figure 5.1 illustrates a simple application’s scene graph. A simple scene graph 

consists of superstructure components which are a VirtualUniverse, Locale 

objects, and scene graph branches, or subgraphs. Each subgraph is rooted by a 

BranchGroup node that is attached to the superstructure. Subgraphs hold data of 

3D shapes and viewing properties.  

 

A VirtualUniverse object is the root of a scene graph. User can create more than 

one VirtualUniverse in Java 3D which is not the case vast majority of 

applications. All Java 3D scene graphs must be connected to a Virtual Universe 

object to be displayed. 
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Below the VirtualUniverse object is a Locale object. The Locale object defines 

the origin, in high-resolution coordinates, of its attached subgraphs. A Virtual 

Universe may contain as many Locales as needed.  

 

The scene graph branch itself starts with the BranchGroup nodes. Only 

BranchGroup objects can attach to Locales. A BranchGroup roots a subgraph, or 

branch graph, of the scene graph. In Figure 5.1, there are two subgraphs and, 

thus, two BranchGroup nodes. Attached to the left BranchGroup are two subtrees. 

One subtree consists of a user-extended Behavior leaf node which contains Java 

programming language code to manipulate the transform matrix associated with 

the object’s geometry. The other subtree in this BranchGroup consists of a 

TransformGroup node that specifies the position (relative to the Locale), the 

orientation, and the scale of the geometric object in the virtual universe. A single 

child, a Shape3D node, refers to two component objects: a Geometry object and 

an Appearance object. The Geometry object describes the geometric shape of a 

3D object and the appearance object describes the appearance of the geometry. 

The right BranchGroup has a single subtree that consists of a TransformGroup 

node and a ViewPlatform leaf node. The TransformGroup specifies the position 

(relative to the Locale), the orientation, and the scale of the ViewPlatform. This 

transformed ViewPlatform object defines the end user’s view within the virtual 

universe. Finally, the ViewPlatform is referenced by a View object that specifies 

all of the parameters needed to render the scene from the point of view of the 

ViewPlatform. 
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5.6 FaceGenerator  

 

In this section, our face modeling process is explained in conjunction with our 

application named FaceGenerator. Face modeling can be divided into three sub-

roblems which are: 

1. Camera calibration and feature point calculation handled in Image 

Calibration module,  

2. 3D model deformation handled in Model Deformation module and  

3. Texture generation handled in Texture Generation module.  

A proper process must be performed in the same order that is calibration, 

deformation and texture generation. 

 

5.6.1 Image Calibration 

 

Face Modeling starts with image calibration in which captured digital 

photographs are loaded to FaceGenerator. FaceGenerator can use common image 

formats JPEG, GIF and PNG, which are standard Java2D file formats.  
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Figure 5.2 : Image Calibration 

 

 

Quality of face images directly effects the results of the modeling process. Better 

resolution images result better modeling which is bounded by the capability of 

computer used in modeling. Images occupy a lot of memory when they are 

viewed. Since multiple images are viewed - typically 5 face images in our 

application - an optimum size should be selected. Experimentally we decided on 

image size of 800x600 pixels which requires 60 kilobytes on average in JPEG 

format. A sample FaceGenerator application operating on 5 such images uses up 

to 70 megabytes of memory.  
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Besides resolution, sharpness is another important factor that affects feature point 

marking process and calibration in turn. Feature points can be recognized and 

marked more precisely on shaper images. 

 

These loaded images will be used in texture generation which has similar image 

prerequisites with calibration phase. In addition to these constraints, images of 

face should have equivalent luminance. Flash should not be used because shining 

effects texture images. It is also better not to have shadow on face for the same 

reason. Some of these imperfections can be eliminated by the help of histogram 

equalization of face images. But histogram equalization is left as future work and 

only simple brightness equalization is performed over feature points. So the 

photographs used in this thesis should be taken in equivalent lighting conditions. 

 

All of these practical rules are summarized as follows:  

• Photographs should be taken roughly at the same vertical level. 

• Landscape orientation of cameras should be preferred to increase face 

details. 

• Resolution of images should be larger than 800x600. 

• Similar lighting conditions should be supplied. Photographs should be 

taken with plenty of light, which should not cause shining and shadows on 

the face. 
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• Subject should have neither any hair on face, like bread or mustache, nor 

any instruments that occlude face parts, like glasses. 

• Direction of the camera should be such that maximum number of feature 

points appears on photographs. 

 

FaceGenerator application can load up to 5 images of the subject, which are left, 

front, right and 2 front side views. To calculate 3D coordinates of a feature point 

it must be marked on at least 2 images. As a result we need at least 2 images of 

subject theoretically, but because of occlusion of feature points – only front 

image can see all of them – practically 3 images are needed for a successful 

solution. 

 

 

Next step in the image calibration part is feature point marking on photographs. 

In this work 18 predefined feature points are used for calibration. They are inner 

and outer corners of eyes, upper and lower connections of ears to the face, left, 

right up and down corners of mouth and left, right, and tip of nose. These points 

are selected for their ease of distinguish ability  

[5] from all point of views. 
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Figure 5.3 : Feature Points in 2D and 3D 

 

 

There are same other parameters used in calibration process which will be 

mentioned later as they are used.  

 

Calibration process starts with normalization phase. Feature points in each image 

and face model will be normalized before calibration. Normalization is performed 

separately for each image and face model.  

 

After image calibration is completed, inverse of these normalization transforms 

will be applied to the calibration results to convert the normalized results to real 

world coordinates. 
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Feature point normalization is followed by the camera calibration and 3D feature 

point calculation. This is an iterative process composed of three subtasks that are 

camera calibration, error calculation and 3D feature coordinate calculation. 

Convergence of this iterative process depends on the error of initial state that you 

start. If inputs differ from the generic face hugely, then iteration may not 

converge or it converges to a local minimum. Since this iteration has two sets of 

unknowns, 3D feature coordinates and projection matrices of cameras, the 

iteration can be started in two different ways. First one is guessing the initial 3D 

feature points, and the trying to find the projection matrices. The second one is 

guessing the initial projection matrices of cameras, and then trying to find 

coordinates of feature points. They both have some advantages compared to each 

other.  

 

In the first case, initial 3D feature coordinates are feature points of the generic 

face. Also algorithm becomes capable of using arbitrary face images while there 

is not any assumption on initial camera positions. 

 

Second case demands a guess of initial projection matrices which hold the 

information of internal camera parameters and geometric positions of the camera. 

In case of normalized data, scaling and translation are eliminated but it is still a 

difficult task to guess other parameters like focal length. This type of iteration is 

useful when projection matrix of an image has inverse rotation (determinant of 

rotation matrix is -1) or symmetric projection ( center of projection is symmetric 

with respect to origin in normalized case ). 
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Mathematical details of iterative camera calibration and 3D feature coordinate 

calculation were explained in Chapter 2 previously. There are two types of 

pseudo-inverse method used in these calculations in over-defined problem case. 

First one is direct implementation of pseudo-inverse method that is using all the 

data at once. The second type is using a combination of input data and then 

averaging the results of each combination to find the final result. An example to 

the second method is the calculation of the projection matrix for the front image 

that has typically 18 feature points where 6 of them could be enough. Projection 

matrix will be calculated for each of the 6 combinations of 15 feature points and 

the results will be averaged. No improvement has been achieved with this second 

method while the calculation costs much more CPU time compared to using all 

data at once.   

  

Error value is calculated as two dimensional displacement between the marked 

feature point and the iterated one which was projected to the image plane. The 

program draws a graph of error versus iteration count so that user can see if the 

error of each image decreases to an acceptable level. Feature points with 

minimum error values are displayed on images and saved for 3D face model 

deformation. 
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5.6.2 Model Deformation 

 

FaceGenerator has a model deformation module similar to Image Calibration one.   

 

Figure 5.4 : Model Deformation 

 

 

 

Model deformation panel is composed of a 3D scene viewer and feature point 

edition property.  
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Initial face mesh whose feature points were used in calibration process must be 

loaded to the scene viewer. FaceGenerator application can load OBJ and VRML 

3D file formats. In addition to 3D geometry definition, these formats also support 

texture loading. A default face mesh and a texture map with 827 vertices are 

mainly used in this thesis. 

 

Following the face model loading, results of image calibration module, 3D 

feature and refinement points must also be loaded. This module is capable of 

editing all attributes including deletion of 3D feature points. The program 

displays initial and final coordinates of features and refinements in 3D scene 

viewer. 

The next step is to select a radial basis function (RBF) which will be used to 

deform the generic face model. The user can define the type of RBF which are 

polynomial and exponential RBF’s. In boundary definition we propose two 

solutions, fixed boundary and variable boundary.  

In fixed boundary definition, the RBF has zero value outside the given boundary.  

In variable boundary definition, the parameters of RBF are calculated for each 

feature point so that RBF has the desired value at the nearest neighboring feature 

point.  

 

Given a 3D feature point set, a RBF and a generic 3D face mesh, FaceGenerator 

can deform the face mesh and show the resultant mesh in this module. Feature 

points can be applied more than once to have less error. 
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Figure 5.5 : Radial Basis Function (RBF) 
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5.6.3 Texture Generation 

 

 

Figure 5.6 : Texture Generation 

 

 

Texture generation module is developed to collect all the necessary information 

and then generate texture image. Data used for texture generation is listed below: 

• Deformed face mesh 

• Camera directions for each image 

• Image files 
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• Texture map 

This module automatically collects the most recent versions of listed information. 

 

 

Figure 5.7: Texture Map 
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In this thesis a fixed texture map as shown in Figure 5.7 is employed, and texture 

image is transformed to fit this texture map. 

 

In addition to texture generation data, some adjustable performance criterias may 

be involved to achieve a better texture image. Now these criterias will be 

explained. 

 

The most important parameter is the threshold that is applied to weight images in 

blending process. This threshold is very useful in eliminating faulty texture 

triangles. The higher the threshold value, the more triangles discarded, which 

may be both faulty or not. 

 

The next property of texture generation module is brightness normalization. This 

is a simple function that calculates brightness of feature points. Then average 

brightness’s of all feature points are equalized. Reference brightness is obtained 

from frontal image. This is not working perfectly because of nature of the feature 

points. Feature points are corners of face organs, which do not have a smooth 

surface. As an alternative method, 25 pixels (5x5 window) neighborhood of each 

feature point is averaged to reduce the brightness variation around that feature 

point. With this method, satisfactory results are obtained. 

 

Another property of this module is blurring. While triangles are transformed to 

their mapped positions, small errors may occur due to casting of double values of 

pixels to integers. This type of error usually creates contour lines at the 
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intersection of triangles. A color value close to human skin color can be selected 

as background and if the result is still poor, we may apply a blurring convolution 

to the texture  map. Kernel of blurring convolution is: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1.01.01.0
1.02.01.0
1.01.01.0

BLUR  
Eq. 5.1

 

Height and width of the generated texture can be changed. Performance of face 

rendering is directly affected by the size of the texture image. 

 

Finally, images which will contribute to the texture image can be selected. This 

selection can be used to discard the mis-calibrated images.   
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CHAPTER 6                                                         

EXPERIMENTAL RESULTS 

6.1 Introduction 

 

The deliverables of face generation method and the results are explained in this 

chapter. There are two deliverables for each face model. One of them is the face 

mesh deformation file in XML format and the other is the face texture image file 

in JPEG format. 3D face model can be generated with these files and initial face 

model.  

 

FaceGenerator application is executed with 5 images and 18 feature points as 

shown in Figure 6.1. Blue marks on face images indicate feature points of this 

sample run. 11 points on the left image, 15 points on the front left image, 18 

points on the front image, 13 points on the front right image, 11 points on the 

right image are marked. 
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Figure 6.1 : Face images with feature points 
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        (a)    (b)            (c) 

Figure 6.2 : 3D deformation of initial face mesh 

(a) initial face mesh with feature points, (b) deformed face mesh with feature 
points, (c) deformed face mesh with feature points and refinement points. 

 

 

        (a)       (b) 

Figure 6.3 : Refinement on nose and cheek 

(a) mesh deformation for nose contour, (b) mesh deformation for cheek contour. 
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Figure 6.2 shows the sequence of 3D deformation of face mesh. Figure 6.2 (b) is 

the deformed 3D face model with 18 feature points and Figure 6.2 (c) is with 18 

feature points and 10 additional refinement points. Figure 6.3 shows enhancement 

obtained at refinement step. 

 

              (a)            (b) 

Figure 6.4 : 3D face model and texture image 

(a) Textured 3D face model, (b) generated texture image. 

 

 

Figure 6.4 (a) shows the textured 3D face model using texture image given in 

Figure 6.4 (b). In texture image the undefined texture surfaces such as inside the 

mouth and below the chin and unused parts of the texture image such as areas 

around ears are painted in yellow background color. 
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Figure 6.5 : Face images with projected final 3D mesh 

 

 

Final results of the 3D face mesh deformation with feature and refinement points 

are shown in Figure 6.5 by projecting the mesh on to the initial images. 
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Face model generation method proposed in this thesis depends on different 

parameters. The following sections explain the effects of these parameters for 

each of them separately while keeping others constant. 

 

6.2 Models with Different Number Photographs 

 

Feature point calculation method seeks at least two 2D coordinates of a feature 

point to find its 3D coordinate. Hence the whole method needs at least two 

photographs of the face. Since feature points can not be viewed at each image 

simultaneously, we may need to increase the number of images to maintain all 

feature points to be seen at two or more images simultaneously. 3D coordinates 

of 18 feature points defined in this thesis can be found typically with 5 images. 

 

Examples of face modeling with 2 to 5 images are presented below. The same 

images with the same feature points are used but only the number of images is 

changed. The images for each example are taken in a way that the maximum 

possible number of feature points is observed in them. Chosen images and the 

number of feature points with their 3D coordinates are as follows: 

• 2 Images (front left, front right) : 8 

• 3 Images (left, front, right) : 16 

• 4 Images (left, front left, front right, right) : 16 

• 5 Images (left, front left, front, front right, right) : 18 

 

 60



 (a)   (b)            (c)         (d) 

Figure 6.6 : 3D feature points found in each trial 

(a) for 2 images, (b) for 3 images, (c) for 4 images, (d) for 5 images. 

 

 

 

(a)   (b)            (c)         (d) 

Figure 6.7 : 3D face models found in each trial  

(a) for 2 images, (b) for 3 images, (c) for 4 images, (d) for 5 images. 
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In Figure 6.6, feature points on deformed 3D face mesh are shown. With two 

images, we can not deform both sides of the mouth and nose. We can deform the 

inner corners of the eyes only when the front image is introduced together with 

the front left and front right images, which is 5 images case. 

 

In addition to the feature points, less number of images reduces our ability to 

refine the model. Also blending in texture is reduced while we less texture data 

for same point on face. The effects of change in number images on refined 

textured models are shown in Figure 6.7. 

 

6.3 Models with Different Direction of Photography 

 

Our face modeling method is independent of imaging directions. All kinds of 

images satisfying the constraints of having two 2D points for each feature point 

and six 2D feature points for each image, are enough modeling.  

 

An exception to this rule occurs when the iteration for feature point calculation in 

the FaceGenerator Application is desired to be initialized with initial camera 

directions. In this case, since we want to employ a guess on camera directions, 

the direction of photograph is important. Infeasible results can be obtained when 

compared to the method used in this thesis that initializes the iteration using the 

initial 3D feature points from the initial face mesh. 

 

 62



Three examples of face modeling, in which images of same the face are taken 

from different directions, are given below. The blue points on images are the 

marked feature points. The first rows of the images are images used in modeling; 

the second rows contain the same images with deformed face meshes projected 

on them. These projections are performed with the projection matrices which are 

calculated in feature point calculation phase. 

 

The images in Figure 6.8 are taken horizontally while images in Figure 6.9 are 

taken downwards with 30 degrees angle with horizontal plane, and images in 

Figure 6.10 are taken from horizontal direction with 30 degrees of camera 

rotation around direction of projection. 

 

 

 

Figure 6.8 : Images taken with horizontal alignment 
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Figure 6.9 : Images taken from downwards direction 

 

 

Figure 6.10 : Images taken with horizontal rotation 
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      (a)      (b)    (c) 

Figure 6.11 : 3D face models with different direction of photography 

(a) horizontal images, (b) downwards images, (c) horizontally rotated images   

 

 

Figure 6.11 shows that 3D face meshes do not change with changing direction of 

photography if we ignore small feature point marking errors. But same thing can 

not be said for the generated texture image, since the direction of photographs are 

used as weighting function in texture blending, and also illumination of images 

can change with direction. 

 

6.4 Models with Different RBF 

 

Radial basis functions (RBF) are used to deform the whole 3D face mesh with the 

guidance of feature points. FaceGenerator application involves two types of 

RBF’s: 

• RBF with constant boundary for all feature points 
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• RBF with variable boundary for each feature point which has constant 

value at neighboring feature points 

 

 

Figure 6.12 : Variation of RBF for the same model 
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This method of face model generation usually employs the variable boundary 

Gaussian RBF. Figure 6.12  presents the effect of RBF boundary changes, which 

have constant boundaries relatively 1 at the top left image, 2.5 at the top right 

image, 5 at the bottom left image, and variable boundary at bottom right. 

    

6.5 Models with Occluded Faces 

 

One of the biggest difficulties of this thesis is to find perfect faces which do not 

have parts occluded with any apparatus like glasses, beard or mustache. However, 

a face modeling should also handle such occluded images. Human beings of 

recent year’s society like to look different with such apparatus. While this is a 

way of expressing yourself, so an important feature of face, face modeling should 

handle these apparatus.  

 

If the apparatus does not occlude any feature point as on the face as in Figure 

6.13, 3D mesh is not affected severely but this is not true for texture. Eye glasses 

project to different places on the different face images and generate alias effects 

on the texture image. For example you can see that the same nose contact can be 

seen three times in texture image, each comes from front, front right and right 

images. In the case a beard, this alias effect causes a blurred hairy texture.    
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Figure 6.13 : 3D model of a man with eye glasses 
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CHAPTER 7                                                 

CONCLUSION 

 

3D computer graphics is a rapidly developing area. Many complicated 3D games 

and 3D animation films are available in the market. Home users can play the 

games with their standard PC’s capable of creating realistic virtual universes. 

Unfortunately, applications of 3D are usually trapped in games and films. Users 

are not able to generate their own 3D environment. This study is concentrated on 

a simple method for the generation of 3D models - especially human face models.  

 

In the market, companies like Pixar Inc. generate photo-realistic face models that 

are indistinguishable from real ones. But their generation method is very 

complicated and involves extremely expensive hardware. The method presented 

in this thesis will make it possible for home users to generate their own face 

models. A conventional PC with a web cam will be sufficient.  

 

In this thesis, face model generation by morphing an initial 3D model with 

uncalibrated camera photographs is performed satisfactorily with some simple 

problems. On initial photographs, manually marked feature points are used to 

deform initial 3D face model. These photographs also are processed to form a 

single texture image covering deformed 3D face model. 
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7.1 Future Works 

 

Lots of additional work can be introduced to the proposed method of face 

generation. These additions will improve the performance of face model 

generation. 

 

In our algorithm, there is no constraint in initial images of the subjects. 

Introduction of some constraints such as structured light and multiple cameras for 

simultaneous photography can improve calibration of cameras dramatically.  

 

The main drawback of our method is the manual feature point marking process. 

The number of markings can be reduced or totally eliminated by employing a 

face feature extraction. Such an algorithm may place features automatically 

perhaps with a better precision than human users. Resulting in the development 

of a much more autonomous image generation process, a potential tool that 

carries great promise for mass application purposes. 

 

An improvement in feature marking can also be achieved with the help of some 

better marking methods. Nature of the face limits the number feature points since 

we are limited to the corners of each face part. The feature line making concept 

can be introduced. Use of feature lines may be difficult in calibration but they can 
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easily be employed in the refinement process. Furthermore structured light 

sources can be used to create additional feature points on the face. 

 

The second biggest drawback of the method explained in this thesis is the 

calibration step. The simple linear calibration process can be replaced with a 

more sophisticated calibration algorithm such as error minimization calibration. 

Error function can be defined in a way that calibration has a bias towards a 

predefined camera position. 

 

Manual marking of feature points may also introduce some errors. This possible 

error has not been considered in our face modeling algorithm. In the iterative 

feature point calculation process, an error value can be defined for each feature 

point and feature point can be updated in an error boundary. Updating initial 

feature point can help the iteration to find the exact solution of camera 

calibration. 

 

Finally, blurring operation applied to the generated texture image can be replaced 

by a non-linear moving average operation. Moving average may be more 

powerful in filtering contour lines in such texture images. 

 

These future works have a great potential on the improvement of the face 

modeling. Face model generation process could become an indispensable part of 

our life if these improvements were achieved. 

 71



REFERENCES 

[1] Alper Yilmaz, Mubarak A. Shah “Automatic Feature Detection and Pose 

Recovery for Faces”, ACCV2002, (2002) 

 

 [2] Brian Guenter, Cindy Grimm, Daniel Wood, Henrique Malvar, Fredric 

Pighin, “Making Faces”, in Proc. 25th annual conference on Computer graphics 

and interactive techniques, p.55-66, (July 1998) 

 

[3] Cyberware Laboratory Inc. 4020/RGB 3D Scanner with Color Digitizer. 

Monterey, CA, (1990) 

 

 [4] Douglas M. DeCarlo,  “Generation, Estimation and Tracking of Faces” 

University of Pennsylvania, Department of Computer and Information Science 

(1998) 

 

[5] Douglas M. DeCarlo, Dimitris Metaxas and Matthew Stone. “An 

Anthropometric Face Model using Variational Techniques”. in SIGGRAPH '98, 

pp. 67-74 (1998) 

 

 72



[6] Frederic I. Parke. “Computer Generated Animation of Faces” Master's thesis, 

University of Utah, Salt Lake City, UT, (1972) 

 

[7] Frederic I. Parke. A Parameterized Model for Human Face. PhD thesis, 

University of Utah, Salt Lake City, UT, (1974). 

 

[8] Frederic I. Parke, Keith Waters “Computer Facial Animation” A K Peters, 

Wellesley, Massachusetts, (1996). 

  

 [9] Frederic Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, David H. 

Salesin, “Synthesizing Realistic Facial Expressions from Photographs”, in 

Computer Graphics (Proc. SIGGRAPH'98), pp. 75-84, (1998) 

 

[10] G. M. Nielson, “Scattered Data Modeling”, Computer Graphics and 

Applications, pp. 60-70 (January 1993)  

 

[11] H. Chernoff “The Use of Face to Represent Points in n-dimensional Space 

Graphically” Technical Report NR-042-993, Office of Naval Research, 

Washington DC  (1971) 

 

 73



[12] Irfan Essa, Sumit Basu, Trevor Darrell, Alex Pentland, “Modeling, Tracking 

and Interactive Animation of Faces and Heads using Input from Video”, in 

Proceedings of Computer Animation ’96 Conference, Geneva, Switzerland, (June 

1996) 

 

[13] Junyong Noh, Douglas Fidaleo, Ulrich Neumann, “Animated Deformations 

with Radial Basis Functions”, ACM Virtual Reality and Software Technology 

(VRST) pages 166-174 (2000) 

 

 [14] Lee W. S., Magenat Thalmann N, “Head Modeling from Pictures and 

Morphing in 3D with Image Metamorphosis based on triangulation”, in Proc. 

Captech’98, LNCS(Subsereires LNAI), pp. 254-267, (1998) 

 

 [15] Leung W. H., Tseng B., Shae Z.-Y., Hendriks F. and Chen T. “Realistic 

Video Avatar”, IEEE Intl. Conf. on Multimedia and Expo., New York, (July 

2000) 

 

[16] P. Weil. “About Face” Master's thesis, Massachusetts Institute of 

Technology, Architechture Group, Cambridge, MA, (1982) 

 

 74



[17] Ricardo Chavarriaga, Raquel Urtasun, “Camera Calibration” Graduate 

School in Computer Science 00/01 Ecole Polytechnique Federale de Lausanne, 

(2001) 

 

[18] Richard I. Hartley, “Self-Calibration of Stationary Cameras”, in International 

Journal of Computer Vision, v.22 n.1, pp.5-23, (Feb./March 1997) 

 

[19] Richard I. Hartley, Andrew Zisserman “Multiple View Geometry in 

Computer Vision”, ISBN 0 521 62304 9, (2000) 

 

[20] S. M. Platt “A System for Computer Simulation of the Human Face” 

Master's thesis, The Moore Schook, University of Pennsylvania, Philadelphia, 

(1980) 

  

[21] Tsuneya Kurihara, Kiyoshi Arai, “A Transformation Method for Modeling 

and Animation of the Human Face from Photographs” In Nadia Magnenat 

Thalmann and Daniel Thalmann, editors, Computer Animation 91, pages 45–58. 

Springer-Verlag, Tokyo, (1991) 

 

[22] Volker Blanz, Thomas Vetter, “A Morphable Model For The Synthesis Of 

3D Faces” in SIGGRAPH 99 pp. 187-194, (1999) 

 75



 

 [23] Zicheng Liu, Zhengyou Zhang, Chuck Jacobs, Michael Cohen, “Rapid 

Modeling of Animated Faces From Video” in Proc. The Eighth ACM 

International Conference on Multimedia, Marina del Rey, California, United 

States pp. 475-476 (2000) 

 

[24] Zicheng Liu, Y. Shan, Zhengyou Zhang, “Model-Based Bundle Adjustment 

with Application to Face Modeling” in Proc. International Conference on 

Computer Vision (ICCV’01), Vancouver, Canada, (July 2001) 

 76


