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ABSTRACT

OPTIMAL DESIGN OF POWER TRANSMISSION SHAFTS

Atay, A. Necip
M.S., Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Tuna Balkan

Co-Supervisor: Prof. Dr. Bilgin Kaftanoglu

February 1998, 129 pages

In this study, a computer program is developed for analysis and
design of any type of a shaft, such as hollow or solid, stepped or uniform,
circular or noncircular which is subjected to single and combined, steady
and alternating bending, torsion and axial loads which can be integrated

with other machine elements.

For such a shaft , the problem is fundamentally a fatigue design
with constraints, such as shaft speed limitations. In such a case dynamic

analyses of the shaft must be carried out.
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Furthermore, in this study, in addition to shaft speed limitations
due to the critical speeds of lateral and torsional loads dynamic responses
due to various alternating loads are considered. These limitations are

generated as new design constraints for optimal design purpose.

Keywords:Power Transmission Shafts, Vibration Modeling,
Fatigue Design, Dynamic Modeling, Computer Aided Design, Optimum
Design

iv



OZET

GUC ILETIM MILLERININ OPTIMUM TASARIMI

Atay, A. Necip
Yiiksek Lisans,Makina Miihendisligi Boliimii
Tez Yoneticisi: Assoc. Prof. Dr. Tuna Balkan

Yardimci Yonetici: Prof.Dr. Bilgin Kaftanoglu

Subat 1998, 129 sayfa

Bu ¢aligmada tek yonli, birlesik, duragan, degisken tiirdeki
egilme burulma ve eksenel yiiklere maruz kalan, i¢i bog veya dolu, diizgiin
veya adimli, yuvarlak veya yuvarlak olmayan bitin mil tirlerinin
tasarlanmas: igin kullanilabilecek bir yazilim geligtirilmigtir.

Mil tasariminda problem genellikle yorulma tasarim gergevesinde
¢oziilebilir, ancak, baz1 durumlarda tasarimc1 mil hiz siirlarnim gézéniinde
bulundurmak zorundadir. Béyle durumlarda yorulmaya goére tasarim
yeterli degildir. Ayni zamanda milin dinamik analizinin yapilmas: gerekir.



Sunulan g¢ahgmada yalmz egilmeye ve burulmaya goére olan
sistemlerin kritik hizlan degil, aym zamanda, degisken yiiklerin dinamik
tepkileri tasarimda g6z oniinde bulundurulmustur. Bu simrlandirmalar
milin optimum tasarimu ¢ergevesinde tekrar ele alinmistir.

Anahtar kelimeler : Giig Iletim Milleri, Titresim Modellemesi,
Yorulmaya Gore Tasanm, Bilgisayar Destekli Tasarnm, Optimum

Tasarmm.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

There is no doubt that computers are invaluable in design and
production engineering. Their benefits are well and widely documented.
Its speed of doing complex calculations enable a designer to try many
possible design solutions. Computer technology has now become a useful
tool and created new design procedures. Its capability of doing complex
calculations enable a designer to try many possible design solutions and to

select the optimal one.

This study is a part of gear-shaft-bearing design project which can
be called as power transmission systems. The complete project is
composed of some subsystems which is called functional modules. The
development of the shaft module which is shown in Figure 1-1 is the main

scope of the study.
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Figure 1-1 Decomposition of the System

The objective is preparing a program that can be used to design
any type of shaft such as hollow or solid , stepped or uniform , circular or
noncircular, subjected to single or combined steady and alternating
bending , torsion and axial loads. The goal in the design is to calculate
shaft diameters so that it does not fail under loading and does not deflect
above allowable limits. This traditional design procedure consists of first
adopting intuitively the geometry and materials of the structure and then
calculating for specified design loads the value of behavioral or state
variables such as stresses and displacements. After successive modification
of geometry, this procedure is then repeated until calculated behavior
satisfies certain prescribed requirements which are usually expressed in the
form of inequalities representing upper limits on the stresses and the

displacements or a lower limit on the load capacity.

In the second part, it is aimed to analyze and predict the stability
of the system which is an important part of modern technology. The model
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and the program is developed so that shafts with any configuration and
with any number of machine elements can be analyzed. A mathematical
model which utilizes Influence Coefficient Method is developed in order
to analyze flexural behavior of the system. For torsional behavior, Holzer
Method which is very commonly used and takes less processing time is
preferred. Free and forced response analyses of system under alternating

loads and unbalances are considered.

The disadvantages of the foregoing procedure is obvious. The
design can be highly uneconomical even when an intuitively selected
solution satisfies the behavioral constraints. Until recently, however , there
has been relatively little work in the field of optimal structural
configurations, the economical importance force engineers to do so. With
these methods, the designer can evaluate more alternatives, thus resulting

in a better and more cost-effective design.

In what is defined in optimal design, first the required structural
behavior together with design loads and geometrical constraints are
specified and a further quantity termed as objective function is also
formulated. The aim of the subsequent computational effort is to select the
geometry of the shaft so that the required behavior is achieved at the

optimum conditions.

The program is mainly written in the C++ language. In order to
satisfy modularity, flexibility and multienvironment support user interface

is separated and developed by using Visual Basic.



1.2 SURVEY OF LITERATURE

A number of theoretical shaft design methods have been discussed
by many authors. H. Burr [1] discussed the design method in which the
shaft is under the simple or combined static and fluctuating stresses.
Similar formulas were given by Deutschman [2]. A number of approaches
are proposed for the fatigue life of the shaft is presented by Shigley [3]
which include Soderberg ,General Biaxial Stress with Modified Goodman ,
Sines and Kececioglu . These approaches are used with the combination
of fatigue failure theories which are distortion energy and maximum shear
stress theory. Maday [4] made an investigation on the design of stepped
shafts for minimum volume and minimum rotating inertia. The fatigue
factors in addition to bending moments , torque and load limit factors have
been included in the role of transmission shaft failure by NASA [5].

Walton, Prayoonrat and Taylor [6] described an interactive design
program, CAFA in their papers. This program enables transmission drives,
motor shafts axles and machine tool spindles to be analyzed in attempt to
ensure adequate fatigue life. This paper reviews fatigue analysis

particularly for the design of power transmission drives.

As an application of Computer-Aided Design Nguyen [7]
developed a computer program in FORTRAN for general convenient
design of the power shafts under stéady and alternating loads. He has
included the capability of designing noncircular shafts into the program.
Also designing a shaft for minimum weight subject to design constraints

was available.



In Turkey, in the Mechanical Engineering Department of Middle
East Technical University, Tiirkmen and Kaftanoglu [8] carried out a
research on the Computer-Aided Design of gear transmission for parallel
shafts. Another application for perpendicular shaft was done later by Ergiir
and Kaftanoglu [9]. After that a method and a computer program is
developed for design of power transmission shafts and for selection of
antifriction bearings by Arikan [10]. In that study results were used to
determine the most suitable solution according to criteria such as minimum
cost, minimum power loss or minimum weight. An expert computer
program system to design power transmission system is developed by
Kaynakoz [11]. In this study previously developed computer programs
were integrated to develop an expert computer program system on an
IBM-AT compatible pérsonal computer by using FORTRAN 77 language.
A similar computer program to design mechanical power transmission
systems was prepared by Carkoglu [12]. He has included , the integrated
design of power shafts, brake and clutches , spur and helical gears , journal
bearings , antifriction bearings to the program. In the study, a collection of
machine elements connected to the shaft were designed. The computer
programs which were used in this study, was taken from five different
theses and modified to work on the HP Apollo workstations under Domain

Operating Systems as an integrated system.

A design strategy was developed by Kaftanoglu, Ulugiil and
Carkoglu [13] for the optimal integrated design of a mechanical power
transmission system including the constraints of each member and with the

objective to satisfy a global optimum for the system.

Another paper by Fagan [14] that reported progress so far in the
development of an expert system that assists the designer in selecting the
correct combination of ball and roller bearing to support a shaft for a

given set of operating conditions. Also the methodology of a power
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transmission shaft was illustrated in the paper. The methodology was
similar with the strategy developed by Kaftanoglu , Ulugiil and
Carkoglu[13].

A computer program developed by Azarm [15] to design and
optimize a hydraulic dredge hub and shaft of a dual wheel excavator was
developed. The hub and shaft assembly were optimized for minimum
weight. In the study two different assemblies were examined , the keyed

connection and the threaded connection.

Parallel to these , there has been many studies for the vibratory
behavior of rotating and torsional power transmitting systems. An
extensive survey of linear mathematical models used in gear dynamics

analysis were given in the paper by Ozgiiven and Houser [16].

Dynamic analysis of geared shaft systems composed of two gears,
two shafts and two inertias representing the drive and the load was studied
by Ozgiiven and Sener [17] using continuous system models. Later a finite
element model and a computer program for dynamic analysis of multi
geared rotor systems were developed by Yilmaz [18]. In this study geared
rotor system to be analyzed consisted of three rotors which were composed
of discrete disks, circular shaft segments of distributed mass, multi
bearings, and were coupled by two pairs of gears. Another mathematical
model which utilizes Transfer Matrix Method has been developed in order
to analyze dynamics of multi stage helical geared rotor systems by Okan
[19]. A computer program was written and a parametric study was

performed in order to demonstrate the effectiveness of the model.



CHAPTER 2

DESIGN OF POWER TRANSMISSION SHAFTS

Shafts are solids of revolution intended for transmitting a torque
along their axis and for supporting rotating machine components. Since the
transmission of torque is associated with the development of forces
applied to the shafts, such as forces acting on the teeth of gear, brake and
clutch, shaft are usually subjected to transverse forces and bending

moments in addition to the torque.

Shafts can be plain shafts or stepped shafts. The diameter of a
shaft along its length is determined by the load distribution, bending
moments and torque, axial loads and conditions imposed by the

manufacturing and assembly processes used.

Shafts may be hollow in design. A hollow shaft with a hole-to-
outside diameter ratio of 0.75 is lighter by about 50% than a solid shaft of
equal strength and rigidity.

The transition between two shaft steps of different diameters is
usually designed with a fillet of a single radius. The radius of the fillet is
to be taken as smaller than that of the edge round or radial dimension of

the chamfer of the components to be mounted on the shaft step against the



shoulder. It is desirable to have the fillet radius of heavily stressed shafts
larger or equal to 1/10 of the shaft diameter.- '

2.1 CONVENTIONS AND ASSUMPTIONS

Shafts are usually designed as beams on hinged supports. This
assumption corresponds with sufficient accuracy to the actual conditions.
Forces are transmitted to a shaft through the components mounted on it:
toothed gears, brakes, clutches, couplings, etc. For simplest calculation it
is assumed that the components transmit forces and torques to the shaft at
the middle of their width , and the design is based on the corresponding

cross-sections.

The first step in analysis of a shaft is dividing the shaft into some
stations. Stations are the nodes that shaft should be defined by the user
with their components on it. In Figure 2-1 a sample shaft that is defined by
these nodes are shown. Distributed loads are usually equally lumped at the
nodes. In most cases this is adequate and also it simplifies stress analysis
since with concentrated masses, the maxima of shear forces and bending
moments exist at the nodes. Therefore analysis between nodes is not
necessary for stress analysis. For deflection analysis this is not true but
placing some nodes in the vicinity of the places where the maximum

deflection is expected, is usually adequate.

a groove ]
1
|
increasing | increpsing
smoﬁrth diameter i diameter
|
]
1 |
1 2 3 4

Figure 2-1 A Shaft Sample with Stations




Shafts with continuously variable cross section can be analyzed by
way of taking enough nodes and considering constant section properties
between nodes. In order to take this effect into consideration, shaft is
divided into some substations which is shown in Figure 2-2 where odd
numbers symbolize the left side of the original stations and the even
numbers symbolize the right. Also this kind of application in the
calculations makes it easier in drawing graphs which are not continuous

like the moment diagrams.

e k L
I lﬂ
|
12 51 !56 { QH'IO , 13 14 51 17 18
34 7 8 11 12 15 16

Figure 2-2 Sample Shaft with Its Substations

In order to determine the bearing reactions, loading, shear force,
bending moment, axial force and torque diagrams of the shaft, there is a
need of deciding a sign convention in axis. Figure 2-3 shows the positive

directions of the forces that are used in calculations.

+Y

e
¥ +Z

Figure 2-3 Sign Convention of Forces



Other sign conventions that are used for finding the torque and the
bending moment distributions around the shaft are shown in Figure 2-4
and Figure 2-5, respectively. Convention for the torque is decided while
looking from the left hand side of the shaft.

Figure 2-4 Sign Convention of Torque

+M

Figure 2-5 Sign Convention of Moment

Vibration analysis of shafts can be conveniently performed with
computer methods, in particular by using influence coefficient method for
the case of lateral vibration and Holzer method for the case of torsional

vibration.
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A typical geared rotor system consists of the following elements :
e shafts

e rigid disks

e flexible bearings

In vibrational systems, main difficulty is the solution of the
eigenvalue problem. For large systems by using numerical techniques it is
very difficult to find all of the eigenvalues and it takes time even with a
computer. This is why some simplifications without forgetting our main
purpose are needed. Since our main purpose to prepare a shaft design
program that can be integrated with other machine design projects,
processing time is very important. Another reason and the best one is the

memory problem which occur while opening arrays with large dimension.

In order to avoid non-symmetric system matrices which result in
complex eigenvalues, gyroscopic effect is ignored. Damping coefficients
of bearings and shaft are not included as these coefficients double the size
of matrices. Since the gear mesh causes coupling between the torsional

and transverse vibrations of the system , it is not very suitable for our aim.

In the above discussion, both for lateral and torsional vibration of
shafts, the masses and inertias are considered concentrated at the nodes.
For most practical purposes this procedure is accurate enough and simple.
The mass and inertia of shaft is equally divided at the nodes where discs
are added to these (if there is any). In the case of flexible supports a

linearized model with one spring coefficient for each bearings are used.
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2.2 DESIGN CRITERIA

Adequate rigidity and strength are the main criteria for shaft
design. Rigidity is needed to maintain good contact in gears, to have
uniform oil films in gears and journal bearings, and to avoid shortening of
life in rolling contact bearing. Strength is needed so that shaft will not
fracture or yield. Stability is another design criteria as loads ﬂl be
amplified 3 or 20 times their nominal value while the shaft speed passes
through a lateral or torsional natural frequency. Even running 20 percent

away from a natural frequency can double nominal loads.

2.3 DESIGN OF SHAFTS FOR STRENGTH

Figure 2-6 illustrates many of the terms used in fatigue analyses
and shows the typical performance of steel under frequently applied loads.
The stress , S to couse failure is plotted against the number of cycles, N,
of stress reversal to failure, to give the S-N curves as shown in the figure.
As the bending moment is reduced, the number of cycles to couse failure
increases. For steels, if the specimen survives more than about 10° cycles,
the part is unlikely to fail even if the test continues indefinitely. The stress
corresponding to the point at which curve becomes parallel to the abcissa
is called endurance limit, §,. Similar curves can be obtained for a
specimen subjected to reversed torsion, where the corresponding

endurance limit in shear is denoted as S, .

12
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Figure 2-6 S-N Diagrams from Endurance Tests

The important point as far as the design of a component is
concerned , is that the endurance limit is well below the ultimate and yield
strength of the material S, and S, . Thus machined part designed on the

basis of static stress analyses and with an apparently adequate factor of

safety can fail under relatively low stresses.

2.3.1 FATIGUE STRENGTH CALCULATIONS

The main loads acting on shafts are forces due to power
transmission. Loads constant in magnitude and direction cause constant
stresses that vary in an alternating symmetrical cycle in rotating shafts. On
the other hand loads alternating in magnitude are added to the mean
components for conservative design. Constant loads rotating together with
the shafts , due to unbalanced rotating components , cause constant

stresses.
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Any rotating shaft subjected to steady and alternating loads end
up with alternating and mean components of normal stresses and shear

stresses.

The distortion energy theory is concerned mainly with predicting
the onset of yielding. According to this criterion, yielding will occur when
the strain energy of distortion / unit volume equals the strain energy of
distortion / unit for a specimen in uniaxial tension or compression. For a
biaxial stress state this criterion can be expressed by :

2 2 2

In two dimensional case, there are normal stresses o, and o,
and the shear stress 7,, have both alternating and mean components. In

this case two Mohr's circle may be constructed for the alternating and
mean components. Then the corresponding principal stresses for
alternating and mean components are obtained. By using Von-Misses

stresses following equations are obtained.

o =\/02m ~0,0,, +3t,, 2-2

- _ 2
o, —\[olm O O + 3T ”s3

In the case of rotating shafts , these equations reduce to:

Ca= \/0'“2 +37,° 2-4
Om= \/0'”,2 + 3z'mz 2-5
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The formulations against this general form of loads are given in

the Figure 2-7 where :

M, alternating bending due to radial static + alternating loads

for conservative design

M, : mean or static bending due to unbalances

3

alternating torsion

T, : mean or steady torsion

P : alternating axial load

P, : mean or static axial load

15
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Figure 2-7 Alternating and Mean Stresses Due to Loads
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For a part in pure shear , the distortion energy theory predicts that
an increase in strength of 15% compared to that predicted using the
maximum shear stress theory. The distortion energy theory is in good
agreement with data from tests carried out on parts subjected to combined
loads, and gives a competitive design solution. It is however, relatively

complex to use.

There are many design procedures in literature. Figure 2-8 shows
the fatigue design theories for components subjected to varying stress and
mean stress. Deriving the equations for factor of safety is an appropriate
way of finding the safety levels at the stations. By the way, the strength
distribution of shaft can be calculated in terms of factor of safety.

A
4
S
g e S Y YIELDING
=
/) S e
9
o] SODERBERG
£
2
[
o,
) S . ' S S,
O-m Y (e} m Y u
mean stress mean stress
| 1
— + ASME
GERBER
BAGCI
g Se S.
L
» rKECECIOGLU
9
©
2 14
g O'a aa
=
]
! S o 4 S "
o, Y c, u
mean stress mean stress

Figure 2-8 Shaft Design Theories
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Due to their relative simplicity Soderberg, and Goodman are used
frequently in engineering design. On the other hand Langer (Yielding)
approach is commonly used for checking the other theories. As they are
all straight lines deriving them for the factor of safety is very easy and
straightforward.

Although other theories like Gerber , Kegecioglu and ASME fits
the data points more accurately , the fundamental equations are nonlinear
and this makes them difficult to use. At that point a numerical method is

suitable to use.

General case of the formulation given in literature due to function

of safety is in the form:
F(N)=N"A"+N"B" -1 2-6
If this formulation is generated by using Newton-Raphson method :

- _ f (N, old) 2.7
T (N )

Ny A" + Ny A" -1

N, =N, -
1d e R
“ mN A" +nN T AT

new

where A, B, m ,n for the various shaft design approaches are given in the

Table 2-1
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Table 2-1 Guidelines for Using Fatigue Theories

THEORY A B a b  NEED CHECK

SODERBERG  Ze Sm_ 1 1 NO
S s,

GOODMAN ‘;3 ‘;m 1 1 YES

LLANGER s % 11 NO
S}' SY

IKECECIOGLU ‘S’: Om 265 2 YES

GERBER i O 1 2 YES
S, S,

BAGCI Oy Cm 1 4 NO
S, S,

‘ELLIPTIC ‘S’:' f’s-m— ) YES

Using the relations between tensile yield and shear yield strength

for distortion energy theory :
= -
\/3 y
S = —=Se 2-10
R

Some of the theories that are presented in Table 2-1 should be
checked and modified since they sometimes exceed the yield as shown in

the Figure 2-9.
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Figure 2-9 General Form of Fatigue Theories

Check is done based on the fundamental equation of Langer
Theory. If safety factors that are found by using any of the theories does
not specify the condition :

N;(O';-i-O':”)Zl 2-11
Y

then equation for Langer should be used. This kind of check is mentioned
in literature as the modified form of the theories.
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2.3.2 METHODOLOGY IN FINDING STRENGTH

This section reviews the implementation of the formulations that

are presented in the previous section for finding the diameter of shaft that

satisfies strength and reviews the methodology step by step.

After finding alternating and mean components of bending
moments, axial forces and torque at each station, calculate the
initial diameter by assuming the loads as if they are static and

set a step size.

Find alternating and mean components of shear and normal

stresses which are o, , o, ,7, , 7, by using Figure 2-7 for

m ° a *>"m? "a

each station.

Use Von-Mises Theory to find the limiting values of
alternating stress o' and mean stress ¢, by using Equation

2-4 and Equation 2-5.

Find the safety factors for each station by using the Equation
2-6 if it can be directly found, else use a root finding method
(Equation 2-8).

Check if they specify the condition in Equation 2-11. If it does
not specify, then find the factor of safety at that section by
using Langer Theory.

Select the smallest factor of safety which mentions the critical
section of the shaft according to the strength and compare it
with the users entry. If it is larger increase diameter by adding
step size else decrease diameter by subtracting and set the

step size to its half.

The flowchart of this methodology is shown in Figure 2-10.
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Figure 2-10 Flowchart of Strength Calculations
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2.4 DESIGN OF SHAFTS FOR RIGIDITY

The required rigidity of shafts subject to bending is determined

mainly by conditions of proper operation of the drive and bearings.

The deflection of shafts has a small effect on brakes and clutches.
Therefore they are not usually checked for rigidity. The elastic
displacement of shafts carrying toothed gears, leads to angular
displacement of meshing gears with respect to each other and consequently
load concentration along the face width of the meshing teeth. It also leads
to separation of the shaft axes which is unfavorable for gearing. In the case
of involute gearing, it shortens the line of contact between the meshing

teeth.

The rigidity of shafts running in non-self-aligning sleeve bearings
should be sufficient to ensure the required uniform pressure distrubution
along the length of the bearing.

The rigidity of shafts running in ball bearing must be such that the
balls do not jam due to misalignment of the rings if self-aligning bearings

are not used.

Empirical rules are available for checking the allowable
deflections and angles of inclination of the elastic lines of shafts. Thus, in
speed gearboxes, the maximum deflection of shafts carrying toothed gears
should not exceed 0.0002 to 0.0003 of the distance between the supports;
the angle of mutual inclination of shafts with meshing gears should be less
then 0.001 radian. The angle of inclination in radial ball bearing can be
05° (under the condition that the bearing life is reduced by only 20% and
if the bearing unit is manufactured with ordinary accuracy). The same

values for roller bearings are 02°and 0.15° . The maximum deflection of
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the shafts of induction motors should not exceed 0.1 of the air gap

(Dimarogonas [23]).

Also torsional rigidity can be important for various shafts. Static
elastic angular deformation of kinematic trains can affect the accuracy of
machine performance. The elastic deformations of the drives for low-speed
machinery may cause stick-slip motion. For this reason, for example , the
angles of twist of long feed shafts of heavy machine tools are limited to
values of the order of 05° per meter length. The elastic deformation of
divided drives powered from a single motor and used for traversing
overhead cranes, portals, cross-members of heavy machine tools, etc. may
result in jamming of the slideways. In the transmission shafts of the
mechanisms traveling cranes, angles of twist range from 015° to 0.20°
per meter of length. For most shafts, torsional rigidity is of no essential
importance and there is no necessity to check the rigidity of such shafts.
An allowable angle of twist to 0.25° per meter length, frequently given in
the literature, has become obsolete and cannot be technically substantiated

These relationships are however, are not very specific and cannot
be generalized. Rigidity guidelines that are used as default values are
presented in Table 2-2.

Table 2-2 Rigidity Guidelines

Maximum Torsional
Case Maximum Lateral Deflection
Slope Deflection
SHAFTS
Transmission Shaft 001L
Line shaft 001L
Machinery 0.02L 0.1Lor0.5L/id
Machine Tool
GEARS
At mesh 0.0005 mm/mm  |0.003/0.005
In general 0.127 mm/(face width)
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2.4.1 DEFLECTION OF SHAFTS

Having determined the shaft diameter required to withstand the
severest load conditions, the next step is to calculate the shaft deflection.
As it is mentioned before, deflection of shaft is important as its strength.
For instances, it is used to establish the minimum permissible clearance
between the pulleys, gears and housing for the shaft assembly. The
deflection at the gear locations will increase the backlash between the gear

teeth, increase the pressure angle and reduce the length of tooth contact.

2.4.1.1 LATERAL DEFLECTION

Lateral deflections and angles of inclination of the elastic lines of
shafts are determined by the conventional methods of the strength of
materials. For simple cases of design it is expedient to employ design

formulas, treating the shaft as a beam (Figure 2-11)

Y

1 i E X >
— ;

i %

— b »

Figure 2-11 Shaft Treated as Beam

The amount of permissible lateral deflection for proper bearing
operation, accurate machine tool performance, satisfactory gear tooth
action , shaft alignment and other similar requirements may be determined

by two successive integration of :
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dy

5 =

MI/EI 2-12

dx
M = Bending moment
E= Modulus of elasticity
I= Area moment of inertia

The first integration of both sides of Equation 2-13 along the

neutral axis, x, yields:

Y _ (M. 2-13
dx < EI

A second integration over the same interval gives:
y= j(]ii/[—dfx)dx+Clx+C2 2-14
00 EI

There are many methods to find the deflection of the power shaft.
Besides graphical method, numerical method is the best way to use in

interactive computer program.

Since M/EI is a piecewice linear function of x if there are only
concentration forces acting on the shaft. Therefore, exact solution may be

obtained by using trapezoidal rule.

M
4, = !E‘i" = . (%= %)+ 6y 2-15
Then the slope can be found:
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6, = (%),« = ¢, +C, 2-16
The slope is a quadratic function and the use of the trapozoidal
rule for a second integration to get the deflection is not exact. Therefore,

Simpsons 1/3 rule is used to get a better result.

)5 (%) ()
=== +| = +4 = —X_ )+, 2-17
'//x 6|i(EI)I EI o EI oy (xl xx—l) '//x—l
Then the deflection can be written :
Y=y, +Cx, +C, 2-1%

where 6, and y, are the slope and the deflection at the i th station.

Locating supports x=a and x=b and specifying "zero" deflection at
these supports provides the two conditions for finding C, and C,. The

results are :
q:M 2-19
a-b
bw. —
cz= '//b a.//a 2_20
a-b

For the shaft subjected to the radial loads and unbalances which
are not in the same plane, calculations are done for each plane separately

and then they are combined for finding the maximum deflection.
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2.4.1.2 TORSIONAL DEFLECTION

The amount of twist permissible depends on the particular
application, and varies about 0.08 deg and 1 deg per foot (305 mm). The

following equation applies to torsional deflection :

98 [ Lasc 221
dx o GJ
where

G = Shear modulus of elasticity
0 = Angle of twist
C, = Integration constant refer to the reference plane

If the reference plane is put to the starting point of shaft at the left
handside, C, =0 can be taken and by using trapezoidal rule to find the

exact solution :

T T
i+ (o,
0, = GJ” 5 G/~ 05— %) +6,, 2-22

For portion weakened by keyways, factor of reduction in rigidity,

k, is introduced into the right-hand member of the equation :
k=[1-(4nh/D]" ; 6=k, 2-23

where h is the depth of the keyway, n= 0.5 and D is the shaft diameter at

the section.
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CHAPTER 3

VIBRATION OF POWER TRANSMISSION SHAFTS

The vibratory behavior of rotating and torsional power
transmitting systems plays an important role in the design of engineering
systems, since detailed predictions of dynamic loads are necessary
especially for high speed machinery. Lack of shaft stiffness will result in
both linear and torsional vibration, the effect of which can show up in
many ways. Not only will the machine perform poorly but this poor
performance will effect the quality of products produced by the machine.

Of main practical importance in shaft design is the determination
of the natural frequency of vibration to avoid resonance of vibration
Observed in shafts are transverse or bending vibrations, angular or
torsional vibrations and also combined bending and torsional vibrations. In

this study transverse and torsional vibrations are taken into consideration.

The most widely employed are calculations of the fundamental
frequencies of vibrations, since these vibrations are usually dangerous
because most machines operate under the lowest critical speed. Heavy or
high speed machinery, such as turbomachinery, might operate under the
second or third.



[Mi{g O} +[Ag @} +{Ka 0} ={F @)} 31

where [M] is the time-invariant mass matrix and {g ()} is the
displacement vector. [C] and [K] are linear time invariant damping and
stiffness matrices, respectively. Forcing vector {F(f)} represents external

excitations.

In the case of our simplification where there is no damping, the

equation of motion turns into :

(Mg O}+[Klfa 0} ={F @)} 32

3.2 FREE VIBRATION OF THE SYSTEM

The solution of a system of coupled differential equations can be
written as the sum of a homogeneous solution and a particular solution.
The homogeneous solution reflects the free vibration properties of the

system.

In the absence of external forces , {F(t)}={0}, e‘quation of motion

reduces to :

(Mg 0} +{Kllg O} ={9 33

which represents a set of n simultancous homogeneous differential

equations. We are interested in a special type of solution of the set, in
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which all the coordinates have the same time dependence, and general
configuration of the motion does not change, except for the amplitude so
that the ratio between any two coordinates remains constant during the

motion. Mathematically this type of motion is expressed by :
{a} = fu} o= »
If it is used in Equation 3-3 , equation becomes :

(] Kl = 0 35

which is an eigenvalue problem.
3.2.1 FREE VIBRATION OF THE TRANSVERSE SYSTEM

If the flexibility matrix is available, Equation 3-5 can be converted

into a form :
[A[ Mo, = 2,08, , 4, = — 3-6

where [ 4] is the flexibility matrix which is the inverse of stiffness matrix

and A, is the real eigenvalue .

These two equations are both available to solve free vibrational
behavior of the system. Development of stiffness matrix using influence
coefficients is straightforward. However, the calculation of a column of
stiffness coefficients for a structural system modeled with n degrees of
freedom requires the solution of n simultaneous equations. This leads to
significant computation time for systems with many degrees of freedom.

Flexibility influence coefficients provide a convenient alternative. They
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are easier to calculate for structural systems and their knowledge is

sufficient for solution of the free vibration problem.

The computation of the stiffness influence coefficients requires the
application of the principles of static and some algebraic manipulation. In
fact, the generation of n stiffness influence coefficients ky;, koj ... kg for
any specific j requires the solution of n simultaneous linear equations.
Thus n sets of linear equations (n equations in each set) are to be solved to
generate all the stiffness influence coefficients of an n degree of freedom
system. This implies a significant computational effort for large values of
n. The generation of the flexibility influence coefficients, on the other

hand, proves to be simpler and more convenient.

T TT’%

¥ N\
Fi J

1
D00

Figure 3-1 Discritized Multidegree of Shaft System

Consider the system shown in Figure 3-1. Let the system be acted

one force F;, and one moment A/, . Let the slope and deflection at point i,
(i.e. mass m; ) due to loading be 6,and y,. The flexibility influence

coefficient, denoted by a,, is defined as :

g’
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yi=a; F 3-7
0,, = jamy F; 3-8
Vi = Amys M, 3-9
Oy = Aanysamy* M 3-10

In the case of unit forces and moments (j=1,2,....n) act at different

points on the system, flexibility matrix can be expressed in form :

STATIC DEFLECTION
TATIC SLOPE
CLE TORLEIF QR DUS TO UNIT FgRCE
[Al=
STATIC DEFLECTION STATIC SLOPE
DUE TO UNIT MOMENT DUE TO UNIT MOMENT

— —2nx2n
Figure 3-2 Flexibility Matrix

The flexibility influence coefficients of a multidegree of freedom

system can be determined as follows.

33



Considering the flexibility matrix that is mentioned above, static
deflection due to unit forces at various stations has to be found. Equation
2-18 can be used to calculate lateral deflection of shafts. This calculation
concerns deflections at the bearings are "zero”. This assumption does not
change the fatigue design purposes very much. Thus, ignoring bearing
compliance do not give accurate results especially in finding fundamental
natural frequencies of the system. So there is a need of modification in

static deflection calculation for the system with flexible bearings.

—
L

Figure 3-3 Shaft with Flexible Bearings

In Figure 3-3 R, , R, are the reaction forces acting from the shaft

to the bearings. So the following equations can be written for the

deflections at the bearings:

Y, =Rk, 3-11
sz =Rk, 3-12
k,, k, : Stiffness constants at the bearings

Y, and Y, : Deflections at the bearings
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If the integration constants for the compliance at the bearings are
modified, then
\Vb - \Ua +Yb - Yb

= —— 3-13
G a—-b

G = 3-14

3.2.1.1 SOLUTION OF THE EIGENVALUE PROBLEM

There are various iteration schemes for the solution of the
eigenvalue problem, such as the Jacobi method , QR method and the
method based on Strum' s theorem. The Jacobi method yields all the
eigenvalue and eigenvectors simultaneously. On the other hand , the QR
method and the method based on Strum's theorem yield only the
eigenvalues, so the eigenvectors must be computed separately. A more
efficient technique for computing the eigenvectors and corresponding
eigenvalues is inverse iteration. In this study the power method using

matrix deflation is decided to solve our eigenvalue problem.

The power method is based on the expansion theorem. The
implication of the theorem is that the solution of the eigenvalue problem

consists of n linearly independent eigenvectors of [D ] , which is a

dynamical matrix given by Equation 3-5. The expansion theorem implies
further that these eigenvectors span the n-dimensional vector space {u} ,
where {u} represents a possible motion of the system. Hence , any such
vector {u} can be expressed as a linear combination of the eigenvectors

{u}, , where {u} satisfy the equations:
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(Dl =244, 2, = =5 3-15

r=1,2,3,....n

Solutions can be given an interesting interpretation in terms of

linear transformations. Specifically matrix [D] can be regarded as
representing a linear transformation that transforms any eigenvector {u},
into itself, within the constant scalar multiplier A, . On the other hand, if
an arbitrary vector {v} , other than eigenvector, is premultiplied by [D],
then the vector will be transformed into an other vector {v} .Of course,
the procedure can be repeated with {v}, as a new trialvector. A good

assumption for the first trial vector end with faster and better convergence.

This iteration scheme has a major advantage in the sense that if an
error is made in one of the iteration steps, this only sets back iteration
process but does not affect the final result. The iteration leads to the first
mode. The question remains as to how to obtain the higher modes. It shall
be considered instead of another technique not suffering from this

drawback , where the method is called matrix deflation.

If 4, and {u} are the first eigenvalue and eigenvector associated
with the dynamical matrix [D] , and {u} is normalized so as to satisfy

{u}\[m]{u}, =1 then the matrix

D], =[D]-4 {u}, {u}," [m] 3-16
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has the same eigenvalues as [D] except that 4, is replaced by zero. The
new iteration process using [D]2 leads invariably to second mode. The

process can be repeated up to enough number of modes are found.

Actually the power method using matrix deflation works also for
the case of repeated eigenvalues, provided that the -eigenvectors
corresponding to a repeated eigenvalue are orthogonal to each other. On
the other hand if eigenvectors are not computed with sufficient accuracy ,
deflation matrices become progressively inaccurate, thus propagating the

€1ITor1.

3.2.1.2 FREE VIBRATION OF THE TORSIONAL SYSTEM BY
USING HOLZER METHOD

Holzer’s method is essentially a trial-and-error scheme to find the
natural frequencies of undamped, damped semidefinite, fixed or branched
vibrating systems involving linear and angular displacements. The method
can also be programmed for computer applications. A trial frequency of
the system is first assumed, and a solution is found when the assumed
frequency satisfies the constraints of the system. This generally requires
several trials. Depending on the trial frequency used, the fundamental as
well as the higher frequencies of the system can be determined. The
method also gives the mode shapes.

Consider the undamped torsional semidefinite system shown in

Figure 3-4. The equation of motion of the discs can be derived as follows.

18, +k,(6,-90,)=0 3-17
Jzéz + kn(ez "91) +ktz(92 _93) =0 3-18
1.6, +k,(6,-96,)=0 3-19
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Since the motion 1s harmonic in a natural mode of vibration, it is assumed

that
6, = O, cos(wt + @) 3-20

then the following equations can be written:

®*J,0, =k, (0,-0,) 3-21
®*J,0, =k, (0, -0,)+k,(0,-0,) 3-22
0*J,0, =k,(0,-0,) 3-23

5 Shaft 1

Figure 3-4 Torsional Shaft System

Summing these equations gives :

3
sz‘]x’®i =0 3-24

i=1
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Equation 3-24 states that the sum of inertia torques of the
semidefinite system must be zero. The equation can be treated as another
form of the frequency equation, and the trial frequency must satisfy this

requirement.

In Holzer’s method, a trial frequency @ is assumed, and ©, is
arbitrarily chosen as unity. Next ®, is computed from Equation 3-22 and
then @, is found from Equation 3-23. Thus, the following equation can be

written:
0, =1 3-25
2
-J
0, =0, 2 X 9, 3-26
t1
wz
®,=0, —k—(J1®, +J,0,) 3-27
t2

These values are substituted in Equation 3-24 to verify whether the
constraint is satisfied, a new trial is value of @ is assumed and the process
is repeated. Equations 3-24 , 3-26 and 3-27 can be generalized for an »

disc system as follows :

3 0,0, =0 3-28

i=1

2 g
®,=0,_- ,f’ &l e,), =23, 3-29
-1

Thus, the method uses Equation 3-29 repeatedly for different trial
frequencies. If the assumed trial frequency is not a natural frequency of the

system Equation 3-28 is not satisfied.
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3.3 FORCED RESPONSE OF THE SYSTEM

The natural frequencies and the mode shapes of a system may
give quite useful information about the response under certain excitations.
The responses are the critical speeds from which a designer must certainly
avoid. However, the free vibration analysis of a system is not sufficient
when the magnitude of vibrations or the time history of the response are of

concern. Then the forced response analysis must be performed.

In the present study, forced responses of the torsional and
transverse system excitations due to unbalances and alternating forces are
studied.

A rotating shaft, due to unbalanced masses and alternating forces
repeating every revolution, is set to harmonic motion, i.e. vibration of the

form y,coso't, where y, is the vibration amplitude, variable along the

shaft, and o' is the frequency of the excitation.

If at any node there is a unbalanced mass m, there occurs an
unbalanced forcing which is constant in magnitude but changes its
direction. Since acceleration is the second derivative of displacement with
respect to time, at every position along the shaft there will be an
acceleration a = —-Rw’ coset in magnitude where R, is the distance between
the unbalanced mass and the geometric center of the shaft and @ is the
known rotational frequency. Therefore, if at any node there is a mass m,
there will be an inertia force mRa’coswt . In fact classifying unbalanced
force as an alternating force which has an amplitude of mR®” is not a
wrong assumption for conservative design purpose. On the other hand,
alternating forces may act with a frequency other than the operational
speed of shaft.
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Finding the maximum values of the displacements due to various
alternating forces is the main problem of this study. For example, if there
are alternating forces acting with different frequencies (w,0,,0,,..@, ),

maximum values of the displacement at a node will be the sum of their

).

absolute values (|)|+|y)| +|y,|+. |,

3.3.1 HARMONIC EXCITATION

To obtain the solution of forced response of the system, the
eigenvalue problem should be solved first. After finding the eigenvalues
and eigenvectors, it is very straight forward to find the excitations due to

alternating forces which was assumed to be harmonic.

After finding all of the eigenvalues and eigenvectors, the

following definition can be made:

{q}=[@]{n} | 3-30

where {n} is the response according to principal coordinates and [®] is

the normalized eigenvectors so as to satisfy :
[o] [m]o]=[] 331

Introducing Equation 3-30 into equation of motion, premultiplying the

result by [®] the following equation can be obtained.

{7}+o{n}={P} 3-32
where

(P)=loT () 333
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If this differential equation is solved for the r-th mode, harmonic

excitations can be found by the following equation.
N =—3 ¢ for =1,23..n 3.34

Then, the responses that are found according to the principal
coordinate system should be converted to our coordinate system that have
been chosen by using the Equation 3-30.

In section (3.2.1.1) it is mentioned that finding all of the
eigenvalues of the system is very difficult to converge and takes much

processing time. However, Equation 3-34 shows that it is possible to
truncate the higher modes of the system as for higher modes, 1/(0,” - 0?)
is getting smaller and is negligible.
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CHAPTER 4

OPTIMIZATION

In the pervious chapters, criteria to design power transmission
shaft is selected and the constraints are determined so that it will perform
its duty satisfactorily without failure. The disadvantages of the foregoing
procedure is obvious. The design can be highly uneconomical even when
an intuitively selected solution satisfies the behavioral constraints. So that
is not enough for the goal associated with the model. A goal of every
designer is to design the best systems.

It is important to contrast the optimum design process with
conventional design process. Figure 4-1 summarizes basic steps that are
common to both processes, the optimum design process differs from the

conventional design process in the following ways.

The conventional design process for the power transmission shaft
design problem is to select some initial values for the design variables.
Initial guess of variables are done by design procedure where variable are
assumed to be dependent on each other with fillet radii and the minimum

wall thickness according to the sign convention shown in the Figure 4-2:
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* Design variables
* Cost variables
* Constraints
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Conventioanal Design Process " Process

Figure 4-1 Conventional Design Versus Optimum Design Process

Increasing Diameter Decreasing Diameter

Figure 4-2 Sign Convention of Fillet Radii

D =D_ +2r,, 4-1
Dy=D-2w,, , if D;<D, 42
D,=D -2w,,, if D >D, 4-3
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If one of the constraints is exceeded, then design variables are
adjusted and process is repeated until the variables are in the allowable
limit. Next, the other constraints are checked until an acceptable design is
obtained. In contrast, the optimum design process takes into account all the
constraints simultaneously, and iteratively improves the design, while
minimizing the cost function that can result in better designs. New
solutions can be obtained very rapidly with optimum design process once

the problem has been formulated and coupled to an optimization program.

It can be seen that optimum design process is more formal than the
conventional design process. The designer must clearly and precisely
identify design variables, a design performance measure (the cost function)
by which the design satisfies its optimum, and all the performance
constraints that the final design must satisfy.

4.1 FORMULATION OF THE OPTIMIZATION PROBLEM

It is desirable and more economical to have a minimum weight
which would satisfy the constraint condition requirements in most design
problems. For shaft design, it is required to minimize the weight of shafts
which would satisfy the strength, fundamental critical speed and deflection
allowed.

Vis 3

ZJ; Zz Zm—l Zm Zm+l Zn-l Zn

- e EREE——

Figure 4-3 Sample Shaft to be Optimized
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In Figure 4-3 D, , i=0,1,2,3,... ,n are the independent variables.

Then the objective of shaft optimization problem can be formulated as :
7Ps 3 3 3 3 3
F(D)= —4—[(2,1), +Z,D,} +ZD)+..ZD>) - (Z, + Z,+..Z,)D, ] 4-4

D, : Diameter at the segments

(D, corresponds to inside diameter)
Z, : Shaft length starting from one segment to the other
r, : Fillet radii

p, : Density of steel , 76 x10° N /m’

If this objective function is only subjected to the design constraints
which are implicit variables, determined in the previous chapter,
meaningless solutions may be obtained. So some explicit constraints that
can be called physical constraints should be added. Although design

variables D, are seemed to be independendent of each other in the

objective function, they are dependent on some physical inequalities, such

as:
D_,+2r,_ <D <D,-2r, ; fori=23,..m-1 4-5
D, -2r<D <D_ +2r,_, ; for i=m+lm+2,..n-1 4-6
D, ,+2r, <D <D__ ; if D, 2D, 4-7
D,.,-2r.<D,<D_. ; if D, <D, 4-8

for the case of hollow shafts ;
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0<D, <D -2w,, ; if D <D,
0<D,<D,-2w,, ; if D, >D,
D,+2w,, <D <D,-2r

tick —

D,+2w,, <D, <D, ,+2r,,

for the case of solid shafts ;

D, =0

4-9

4-10

4-11

4-12

4-13

4-14

4-15

It is seen that the diameters at the sections are constrained with

their neighborhood geometries. However, D, and the end conditions are

constrained with D_ ,w,, and D,  which depends on the users

decisions. The definition of D, is obvious. It is the maximum diameter of

the sections at the index m where user defined while entering the

notchcodes and the fillet radii. Optimization procedure changes its value,

but never changes the index.

In contrast design constraints are dependent functions of the

explicit independent variables.
N < N,(D,,D)
00 c (D 0> Dx )

w2 8(Dy, D)

Imax =
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¥ s 2 Yo(Dy, D) 4-19

Y:zmax 2 Yac(Do,l)i) 4—20
where

N : Minimum allowable factor of safety

N, : Minimum factor of safety calculated at the

critical section

1) : Operational speed of shaft
@, : Fundamental critical speed
S, Y, : Maximum lateral slope and deflection calculated

at the critical section

Simx > Vme - Maximum allowable lateral slope and deflection

Y, : Maximum angular deflection calculated at the
critical section

Y, : Maximum allowable angular deflection
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4.2 CONSTRAINED ROSENBROCK ALGORITHM

This method is a sequential search technique which has proven

effective in solving some problems where the variables are constrained

Optimize F(DOaDlsDZ:'--aDn)

Subjectto G, <D, <H, , k=12,..NOC

where
G, : the lower constraints

H, : the upper constraints

NOC: number of constraints

The procedure requires a starting point that satisfies the constraints
and does not lie in the boundary zone. In order to guarantee this , instead
of guessing initial values , program collect them from the conventional
design procedure as shown in the Figure 4-1. Then the following steps are

carried out.

o Define by F° the current best objective function value for a
point where the constraints are satisfied, and F” the current
best objective function value for a point where the constraints
are satisfied and in addition the boundary zones are not
violated. They are initially set equal to the objective function
value at the starting point.
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o If the current point objective function evaluation, F , is worse
than F° or if the constraints are violated, the trial is a failure

and the unconstrained procedure is continued.

o If the current point lies within a boundary zone, the objective

function is modified as follows :
F,,, = F~(F-F*) (34~ 47 +22%) 4-21
where

1= [ G, +#H, -G)10* |-D,
(H, - G)10™

(lower zone) 4-22

1= D, _E{k - (H, - Gk)10—4 ]

H G0 (upper zone) 4-23
k k

Thus, the function value is replaced by the best current
function value in the feasible region and not in a boundary

zone.

e If an improvement in the objective function has been obtained

without violating the boundary zones or constraints, F* is set

equal to F° and procedure continued.

o The search procedure is terminated when the convergence

criteria is satisfied.

A flowchart showing the Rosenbrock procedure is given in
Figure 4-4.
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CHAPTER §

COMPUTER PROGRAM

In this chapter, the structure and the description of the
implementation features of the developed program will be discussed in
detail.

The program is composed of some subsystems which we call
functional modules. The modules have different priority levels within the
system. Since the other machine elements are connected to the shaft , the
shaft module is the backbone of the system. Each functional module has a
number of design factors. These factors are classified as design variables
and performance characteristics . Some of the design factors are shared by
more then one functional module. They are mainly performace

characteristics or general input specifications to the system.

The developed program is a part of a whole Design of Machine
Elements Project. In- Figure S5-1, general approach to the problem is
presented. The development of shaft module is the main scope of this
study. The interaction between the main modules of the project is
obtained using the same input- output files.
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Figure 5-1 Interactions Between the Main Parts of the Project

The program mainly consists of two modules , Visual-Basic and
C modules namely. Visual Basic is one of the most commonly used
windows based programming language that supplies powerful user
interface. On the other hand C is a general programming language,
however , it is not restricted to any operating system. Although C matches
the capability of many computers, it is independent of any particular
machine architecture. With a little care it is easy to write portable
programs, that is , programs that can be run without change on a variety of
hardware. This means that , using ANSI C standards the same code can be
run under UNIX , MACOS, DOS , WINDOWS 3.1 , WINDOWS 95 , ...
etc. environments. This property is unique to C language and with the help
of this feature the main goals of the project is satisfied which is modularity

,flexibility and multienvironment support.
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5.1 THE STRUCTURE OF THE COMPUTER AIDED DESIGN OF
POWER TRANSMISSION PROJECT

Computer Aided Design of Power Transmission Project consists
of several design modules . As shown in Figure 5-2 each of these modules
are the subject of several master thesis those are being done in Mechanical

Engineering Department of METU.

Each module develops a design according to the input data that are
requested from the other project . For example, in this thesis a shaft is
designed according to the transmission system constraints and the

specifications of the gears , bearings,... etc. on the shaft.

Visual Basic Part C Part
1/ I >
USER INTERFACE DESIGN | y DES%IBGN
e o _| MODULES

AT
i} 10

DATA FILES ; DATA TRANSFER FILE DATABASE FILES

L

&

Figure 5-2 The Complete Design Project

User interface part takes necessary data from user and generates a
data file that is the input file for the design calculation module. Design
module calculates the required results by the help of design sub modules
and database files if necessary. The obtained results are stored in an output
file. This file is read again by the user interface part and shown as the

result in appropriate way .
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5.2 THE STRUCTURE OF THE SHAFT DESIGN PROGRAM

The structure of the shaft design program is developed so that it
will be proper to the system design structure mentioned in the previous

section.

. USER INTERFACE
Proieq Data) |  _ _ _ __ »PROGRAM
-P1 (INPUT PART)
I
|
InputData e o o e A
input.io
| Data Files
[
v ,
_ _ _| cALcuLATION EXECUTE
l PROGRAM CALCULATION PART
Calculated
Data
output.io
USER INTERFACE
o — ——— — . —— — > PROGRAM
(OUTPUT PART)
Data Flow - L
Program Fl
ogra ow -

Figure 5-3 The Structure of the Shaft Design Program
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In the first step, user can start a previous project or create a new
project. If user starts a previous project, the stored design conditions are

placed in their fields. Then program is ready to accept design conditions.

After the reception of the inputs, program stores the input data in
a file "input.io”, then the execution of the calculation part starts as
described in Figure 5-3. Calculation program reads the input information
from the "input.io". If the calculation needs some information other than
inputs "Data Files" takes its place. The data is extrapolated or interpolated
by the program if it is needed. Before the calculation part comes to an end,
it outputs the results to the file "output.io" and program returns back to
User Interface for representation of output including comparison of

different design features (Table and graphical).

5.2.1 USER INTERFACE MODULE

User interface part of the program is developed by using Visual
Basic 4.0 in MS-Windows environment and consist of 15 forms and a help
file. The program is driven by pull down menu system which makes
interface user-friendly. The flowchart of the User Interface of the
program is given in APPENDIX A. Input Menu Structure of the Program

is given in Figure 5-4.
User interface part aims three important target
¢ Graphical input and graphical visualization of input data

e Representation of output including comparison of different

design features

¢ Reporting
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Figure 5-4 Input Menu Structure of the Program

5.2.1.1 THE STRUCTURE AND USE OF DATA FILES

The following data files are used for different purposes at different
stages of the software.

e record data files
e data transfer files

e database files
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Since the program is integrated between User Interface and
Calculation Parts, data transfer between these parts are made with two
files which are "input.io" and "output.io". Information about the input that
the user enters are kept in the "input.io" and the results of the calculation is
stored "output.io". Record data files are the copy of "input.io" which
gives the designer the capability of opening and saving input information.
These files are named "*.prj". Other data information that is needed in
calculating the results are kept in database files which are the submodules

of C compiler.
5.2.2 MAIN CALCULATION PROGRAM

Main calculation part of the program is developed by using TC 3.0
in MS-DOS environment consists of Design Sub-Programs (*.h) and a
main program (*.cpp) file. Calculation program reads "input.io" and table
files "Table.H" for inputs and produces "output.io” as output. The files that

are used in the calculation program are:

Shaft.cpp  : Determines the order in design submodules.

Input.h : Reads the input information from the data transfer
file "input.io".

Outputh  : Writes the results to the data transfer file "output.io”

Eigen.h : Calculates the eigenvalues and eigenvectors of the
matrices.
Force.h : Calculates reaction forces at the bearings and

shearing forces , bending moments , torque and axial
forces at the stations.

Defh : Calculates static deflections at the stations.
Endurenc.h : Calculates endurance limit of the material.

Lump.h  : Divide the shaft in to lump masses and calculates
critical speeds.
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Strength.h : Calculates stresses and factor of safety at the stations.
Matrixh  : Makes some matrix manipulations.

Mikro.h  : Sub-module in which some of the simple functions
or the constants are defined.

Holz .h : Finds eigenvalues and eigenvectors for torsional
system.
Response.h : Finds the dynamic deflections and the slopes at the
stations.
Opt.h : Iterates for optimization.

Tableh  : Extrapolates or interpolates some of the stored data
like stress concentration factors that are needed for
calculations.

The Design Sub-programs such as Matrix.h can be used by the
other design programs whenever needed. This approach make the project
more flexible and modular which is one of the objects of the present

study.

5.3 DISCUSSION OF COMPUTER PROGRAMMING
LANGUAGES

Although using two compilers like Visual Basic and C++ which
are really different programming languages seems a little bit odd , this
kind of integration has some benefits. These two compilers are not only
different in programming language but also authoritative in different
platforms. While programming the application, it is very convenient to use
the advantages of these two compilers where they are powerful in. For
example, you can use modularity , flexibility of C++ and simplicity in

creating graphics of Visual Basic in one aplication.
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CHAPTER 6

NUMERICAL RESULTS AND RELIABILITY OF THE
COMPUTER PROGRAM

In this chapter some of the results obtained from the developed
program will be checked and the reliability of the developed program will
be investigated.

In the first part static lateral deflection calculations will be
analyzed. Comparing the results with the exact values that are found by
hand calculation will also give a brief idea about the accuracy in
computation of reaction forces, shearing forces and bending moments. If
the method is decided to be accurate enough, the static deflections will be
compared with dynamic responses at a very small shaft speed where these
two results must satisfy each other. Later some of the parameters such as
shaft speed and bearing stiffness will be changed to examine free and

forced responses. These results are discussed as if they are expected .

For testing system namely System A is examined (Figure 6-1).
The parameters of the system and the applied load are listed in Table 6-1
and in Table 6-2.

60



== VIEW
WS l |Padial Forces | {amiat Forces | [Moments] | Torque | | Show Stations | LF‘l_ac:e Beatngs ]

vl o | v

v'f“} |

‘~ |

£ i

A A |
P b I I Hoer T F gk l B taran B TR RATING
' . en & . ﬁli‘fll‘_“:‘” 'hr— :'_:!:';I,lon;-

R (_\ - i el
SLTERRG T ING

Figure 6-1 System A

Table 6-1 Parameters of System A

PARAMETES NUMERICAL VALUES
d shaft (set constant)= 30 mm
Number of station = 9

Station number at first support= 2

Station number at second support= 7

Dist DX = 50 mm
Force at station 3 = 200 N
Force at station 6 = 200 N
Moment at station 3 = 400 Nm
Bearing type Rigid

Shaft type Circular Solid

Table 6-2 Applied Load with its Station Numbers and Distances

ST# DIST |X-Yplane| X-Y plane X-Y plane | X-Y plane Alternating
DX FORCE MOMENT FORCE MOMENT Load
(mean) (mean) (aitemating) | (altemating) Type
(mm) (N) (Nm) (N) (Nm)
1 50 0 0 0 0
2 50 0 0 0 0
3 50 900 400 900 400 cos(w,?)
4 50 0 0 0 0
5 50 0 0 0 0
6 50 900 0 900 0 cos(w,?)
7 50 0 0 0 0
8 50 0 0 0 0
9 50 0 0 0 0
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6.1.1 ERROR ACCUMULATION IN STATIC AND DYNAMIC
DEFLECTION

System A is used in examining the accumulation of error in
computing the deflection in the developed program. Computed values are
compared with the results calculated using the beam formulas for shaft
deformations which are given in Shigley [3]. These formulations adapted
to Excel Worksheet where they can be accepted as real values. Numerical

results are presented in Table 6-3.

Table 6-3 Error Accumulation For Static Deflection

STATION # STATIC DEFLECTION(mm E3) | % ERROR
Excel Dev. Prog.

1 -120.5481853 -120.5482 ~1.22151E-05
2 0 0 0

3 122.3209527 122.321 -3.86643E-05
4 196.7771848 196.7772 -7.73104E-06
5 184.6210653 184.6211 -1.8815E-05
6 110.1648332 110.1649 -6.06528E-05
7 0 0 0

8 -116.4961454 -116.4961 3.90002E-05
9 -232.9922809 -232.9922 3.90002E-05

The same procedure can be used to understand the reliability in
finding the dynamic deflection calculation. In order to do so, operating
speed of shaft can be taken low compared to critical speed of shaft.

Table 6-4 Error Accumulation For Dynamic Deflection

STATION # DYNAMIC DEFLECTION(mm E3) % ERROR
Excel Dev. Prog.

1 -120.5481853 -119.8418 0.585977527
2 0 0 0

3 122.3209527 123.2028 -0.72092906
4 196.7771848 195.9797 0.405272993
5 184.6210653 185.5555 -0.506136575
6 110.1648332 109.3728 0.718952826
7 0 0 0

8 -116.4961454 -116.7992 -0.260141282
9 -232.9922909 -225.402 3.257743352
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Examining the above tables, it is decided that dynamic deflections
are computed with less accuracy. This is expected since the static
deflection algorithm is operated in finding the flexibility matrix. Other
errors are collected in converging and truncating the eigenvalues and
eigenvectors. On the other hand the error accumulated is reasonable and

reliable.

6.1.2 BEARING STIFFNESS VERSUS COMPUTED CRITICAL
SPEED

System A is used in computing the fundamental critical speed. In
the system analyzed, stiffness coefficients in both of the bearings (%,,%,)
are the same. The change in fundamental critical speeds due to various
stiffness coefficients is plotted. This research is repeated by increasing the
station distances to observe the effects on various shaft lengths. The
graphical results calculated by the developed program is presented in

Figure 6-2.
. | —O—Short
45000 — shaft(DX=50mm)
—O— Moderate
40000 -+ shaft{DX=75mm)
—X-~—Long

35000 shaft(DX=100mm)
§ 50000 |
£ 30000 4
.g_ 25000 +
0
€ 20000 +
£
@

15000 +

10000 —+

5000 —+
0 — 2!2? + : - o
0 2 4 6 8 10 12
(L°g(k 19k z)N /m

Figure 6-2 Computed Graphical Results of Bearing Stiffness on Free Response
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From the above figure, it is natural to conclude that increasing
bearing stiffness will increase the critical speed of the system. As seen in
the Figure 6-2, computed effects of bearing stiffness on free response for
three different shaft lengths are not the same. For certain range of bearing
stiffness, the rate of increase in fundamental critical speed is high. Also the
graph shows that , flexible bearings have more effects on free response of

the system with short shaft than the system with long shaft.

Although the model that is used in the developed program is not
exact enough to examine the effects of stiffness coefficients on free
response, comparing the concluded result with the study of Okan [19], it

shows that the model is effective.

6.1.3 OPERATING SPEED OF SHAFT VERSUS COMPUTED
FORCED RESPONSE

In section (6.1.1) it is decided that program works reasonable if
the operating shaft speed is very low compared with critical speed. Hence,
developed program must find dynamic responses at higher shaft speeds in

order to constraint the design for deflection.

The efficiency of the developed program in finding forced
responses is tested under number of operating speeds by using System A.

The results are plotted in Figure 6-3.
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Figure 6-3 Graphical Results of Forced Response Under Different Shaft Speeds
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Although it is not very accurate to examine the effect of operating
speed of shafts on forced response due to the vibration model that is
implemented to the developed program, above diagram shows that
operating speed of shaft will increase the dynamic deflection of the
system. It is an approval of the known facts that are given in literature and

also verifies the program does not fail while analyzing these effects.
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CHAPTER 7

CASE STUDIES AND DISCUSSION OF RESULTS

To show the capabilities of the developed software some case

studies will be considered.

As an example a sample shaft shown in Figure 7-1 is used for the
parameters given in Table 7-1. Table 7-2 shows the number of stations and
loads acting on X-Y plane and X-Z plane. Numerical values of these loads

are given in Table 7-2.

As a first case, the sample will be examined under "Analyze",
"Conventional Design" and "Optimization" process of the developed
program. Advantages and disadvantages between "Conventional Design”

and "Optimization" process will be discussed.

Later new parameters like alternating loads will be added to the
problem. This case will be tried under the "analyze" process. Differences
between the static and dynamic responses will be compared and changes
in constraints will be verified with the results of the first case.
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Figure 7-1 Schematic Representation of the Sample Shaft with its Station
Numbers and Applied Loads
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Table 7-1 Input Information of the Sample Shaft

Type of the Shaft
Surface Condition
Maximum Temperature
Reliability
Factor of Safety
Material
Tensile Strength
Yield Strength
BHN
Shaft Speed
Design Approach
Number of Station
Station Number of First Support
Station Number of Second Support
Bearing Stiffness of First Support
Bearing Stiffness of Second Support
Keyway of Profile Type at Station 8

Keyway of Profile Type at Station 13

:Solid Circular Stepped Shaft

: Ground

:100C

199 %

:3.0

: AISI 1040 CD

: 689 MPa

: 606 MPa

:207

:1500 rpm

:Soderberg

13

‘10

: Rigid

: Rigid

: Sled-runner

. Sled-runner
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Table 7-2 Applied Loads with its Station Numbers and Distances

ST# DIST NOTCH | NOTCH | X-Y plane | X-Z plane | X-Y plane
DX RAD FORCE | FORCE |MOMENT| TORQUE
' (mean) | (mean) { (mean) | (mean)
(mm) (mm) (N) (N) (Nm) (Nm)
1 0 Smooth 0 0 0 0 0
2 30 Smooth 0 3000 -2500 500 300
3 80 Incr. Dia. 0.2 0 0 0 0
4 50 Smooth 0 0 0 0 0
5 50 Incr. Dia. 0.2 0 0 0 0
6 50 Smooth 0 0 0 0 0
7 50 Decr. Dia. 0.2 0 0 0 0
8 50 Keyway 0 -2000 -3500 -300 -250
9 80 Decr. Dia. -0.2 0 0 0 0
10 40 Smooth 0 0 0 0 0
11 40 Decr. Dia. -0.2 0 0 0 0
12 40 Smooth 0 0 0 0 0
13 40 Keyway 0 0 0 0 50

CASE 1-A ; In the first run of the program , shaft is analyzed for

the design criteria which are strength, rigidity and stability in favor of the

given parameters by entering a constant diameter of 50 mm for the first

section of the shaft. Diameters for the other sections are found by the

program dependently and automatically by adding fillet radii as it is

mentioned in Chapter(2).

Numerical results calculated by the developed program are given

in Table 7-3 and Table 7-4. Graphical outputs of these results are

presented in Figure 7-2 -Figure 7-7.
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Table 7-3 Numerical Results of the Loading for X-Y Plane

ST# XY-Plane X-Y Plane X-Y Plane X-Y Plane
SHEAR BENDING SLOPE DEF
Nm Nm deg*10E-3 | mm*(10*E-3)

1 0 0 44 1 -73.9574
2 0 0 44 1 -50.8792
3 3000 -260 16.6414 -10.5113
4 3000 -110 8.5529 0
5 156.25 -102.1875 3.9096 5.4107
6 156.25 -94.375 -0.2522 6.9819
7 156.25 -86.5625 -4,0873 5.0649
8 156.25 -78.75 -7.7045 -0.1016
9 -1843.75 73.75 2.6197 -2.4478
10 -1843.75 0 3.9497 0
1 0 0 3.9497 2.7576
12 0 0 3.9497 5.5152
13 0 0 3.9497 8.2727

Table 7-4 Numerical Results of the Loading for X-Z Plane

ST # X-Z Plane X-Z Plane X-Z Plane X-Z Plane
SHEAR BENDING SLOPE DEF
Nm Nm deg10E-3 | mm*(10*E-3)

1 0 0 31.9987 -75.047
2 0 0 31.9987 -58.2996
3 -2500 -200 247758 -17.0008
4 -2500 -325 13.2936 0
5 2328.125 -208.5938 1.628 6.1369
6 2328.125 -92.1875 -4.7465 4.4167
7 2328.125 24.2188 -6.1854 -0.711
8 2328.125 140.625 -2.5854 -4.9061
9 -1171.875 46.875 3.9783 -3.1696
10 -1171.875 0 48268 0
1 0 0 4.8268 3.3666
12 0 0 4.8268 6.7331
13 0 0 4.8268 10.0997
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Table 7-5 First Two Critical Speeds of Flexural and Torsional System

[Mode# | __Critical Speeds(rpm)
Flexural |Torsional
1 37618 0
2 72095 161954
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Table 7-6 Combined Numerical Results of the Analysis

ST# | Diameter| MAX MAX MAX MAX MAX STRENGTH
SHEAR |BENDING| SLOPE DEF |ANG DEF| DISTRIBUTION

mm Nm Nm degE-3 | mmE-3 | deg E-3

1 50 0 0 0

2 50 0 0 1 77. 0 v

3 50 3905.125| 328.0244 | 29.8459 | 19.9879 | 29.5166 |*

4 50.4 |3905.125| 343.1108| 15.8073 0 47.3847

5 50.4 |[2333.362(232.2793( 4.235 8.1815 | 65.2586

6 50.8 [2333.362|131.9287| 4.7532 | 8.2616 | 82.5707

7 50.8 |[2333.362| 89.8867 | 7.4138 | 5.1146 | 99.8828 10.4853

8 50.4 |2333.362]161.1737] 8.1267 | 4.9072 | 117.7567 10.4476

9 50.4 |2184.652| 87.3861 | 4.7634 | 4.0048 | 122.5204 14.8324

10 50 2184.652 0 6.2368 0 124.9796 158.5985

11 50 0 0 6.2368 | 4.3518 | 127.4389 158.5985

12 49.6 0 0 6.2368 | 8.7036 155.1124

13 49.6 0 0 6.2368 | 13.0553 155.1124

VOLUME (mm®) = 1188579

From the above table, it can be examined that critical shaft

sections for rigidity and strength which are shown shaded, are at different
stations and 50 mm shaft diameter is a good assumption for strength. On
the other hand, critical speed of shaft is far from the operating shaft speed.

CASE 1-B ;. The same problem is examined under "Conventional

Design" process. Design constraints for rigidity are not taken in to
consideration by entering higher numbers. Table 7-7 shows constraints of

the problem. Convergence of strength distribution to the factor of safety is

examined.
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Table 7-7 Design Constraints for Conventional Design Process

Factor of Safety 3

Shaft Speed ' 1500 rpm
Maximum Allowable Slope 1 deg
Maximum Allowable Deflection 1 mm
Maximum Allowable Ang. Deflection 1 deg

The conventional design process for the power transmission shaft
design problem is to select some initial values for the design variables.
Initial guess of variables are accomplished by design procedure where
variables are assumed dependent to each other with fillet radii. There is no

objective function. Main purpose is an acceptable design.

Table 7-8 Combined Numerical Results of the Conventional Design

Process
ST# | Diameter MAX MAX MAX STRENGTH
DEF. ANG DEF | DISTRIBUTION

mm mm E-3 deg E-3
1 46.71875 | | ‘1 137.0458 0 1000
2 46.71875 | 101.2855 0
3 46.71875 26.1444 | 38.7229
4 47.11875 20.67 0 62.1172
5 47.11875 | 5.5208 106892 | 855115
6 4751875 | 6.2232 10.7842 | 108.1261 9.9476
7 4751875 | 9.6985 6.6758 130.735 8.6067
8 47.11875 | 10.6283 6.4363 | 154.1293 8.5729
9 47.11875 | 6.2405 52502 | 160.3662 12.1694
10 | 46.71875 | 8.1752 0 163.5936 131.272
11 | 4671875 | 8.1752 5.7055 166.821 131.272
12 | 46.31875 | 8.1752 11.411 | 170.1631 128.1396
13_| 46.31875 | 8.1752 17.1165 | 1734984 128.1396

VOLUME (mm*) = 1038382

Table 7-8 shows that, convergence obtained to an acceptable
design for strength by 0.03% accuracy.
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CASE 1-C : The same problem is examined under "Optimum

Design" process. Table 7-9 shows constraints for this case.

Table 7-9 Design Constraints for Optimum Design Process

Factor of Safety : 3

Shaft Speed : 1500 rpm
Maximum Allowable Slope : 1 deg
Maximum Allowable Deflection : 1 mm
Maximum Allowable Ang. Deflection : 1 deg
Maximum Allowable Diameter : 100mm
Minimum Allowable Diameter : 5mm
Maximum Number of Stages 5

Vector of Initial Step Size 0.5

The optimum design process takes into account all the constraints
simultaneously, and iteratively improves the design, while minimizing the

"Volume".

Table 7-10 Combined Numerical Results of the Optimization Process

[ ST# | Diameter | MAX MAX MAX | STRENGTH
SLOPE DEF | ANG DEF | DISTRIBUTION
mm deg E-3 mm E-3 deg E-3

1 46.6966 0 1000

2 46.6966 047 . 0 1000

3 466066 | 36.8533 | 242661 | 387975 |-

4 471167 | 18.5066 0 62.1975 4.9702

5 471167 | 3.195 86877 | 855917 3.3671

6 52448 | 4.8486 79991 | 100.8287 | 13.2994
7 52.448 7.249 44185 | 116.0656 10.953

8 51.204 78186 | 44795 | 1328389 |  10.9448
9 51.204 4.18 43091 | 1373102 | 12.1008
10 42.026 7.1955 0 142.2401 97.2551
11 42.026 7.1955 50215 | 147.1701 97.2551
12 15.58 7.1955 10.043 5.1859
13 15.58 71955 | 15.0645 5.1859

VOLUME (mm’) = 972227
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This case have been tried for an initial step size at 0.1 for the first
time but it failed. This can sometimes happen in optimization. In such
cases the user can slightly change the stepsize. After changing the step
size to 0.5 the results shown in Table 7-10 is obtained. The design is in
acceptable limits by %0.02 accuracy but this time volume decreased by
6.37 % with respect to design procedure. If the maximum number of
stages is increased, more accurate results can be obtained. Hence, it should

increase the process time.

CASE 1-D : The same problem is examined for hollow shaft

under "Optimum Design" process. Table 7-11 shows constraints for this

casc.

Table 7-11 Design Constraints for Hollow Shaft Under Optimum Design Process

Factor of Safety : 3

Shaft Speed : 1500 rpm
Maximum Allowable Slope : 1 deg
Maximum Allowable Deflection : 1 mm
Maximum Allowable Ang. Deflection : 1deg
Maximum Allowable Walil-Tickness : 5mm
Maximum Allowable Diameter : 100mm

Table 7-12 Combined Numerical Results of the Optimization Process for Hollow

Shaft
ST# |Diamete] Inside MAX MAX MAX | STRENGTH ||
Diamete{ SLOPE DEF | ANG DEF | DISTRIBUTION

mm mm deg E-3 mm E-3 deg E-3

§7.62336 35.16395| 5.5045 3.507 85.2764 12.6659
56.68976| 35.16395] 5.9953 3.6464 98.3752 12.5738
56.68976| 35.16395| 3.4294 3.2106 101.872 14.1586
10 51.02855] 35.16395] 5.1988 0 104.8013 132.3354
11 51.02855| 35.16395] 5.1988 3.6297 107.7248 132.3354
12 ]45.16055} 35.16395] 5.1988 7.2596 | 113.572 77.062
13 45.16055]| 35.16395] _ 5.1988 10.8894 | :119.413¢ 77.062

VOLUME (mm’) = 772242

1 52.43721 35.16395} . :50.40 22 0 1000
2 |52.43721)35.16395} 1504 66.906 0

3 |52.43721)35.16395 16.2935 | 30.5885

4  |54.94423| 3516395 12.6292 0 45.7854 6.4822
5 |54.94423(35.16395( 2.7391 6.208 60.9879 4.8279
6 |57.62336]35.16395| 3.6143 5.9626 73.1293 15.1089
7

8

9
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CASE 1-E : The same problem is examined for hollow shaft
under "Optimum Design" process again. Hence, this time constraint for

maximum allowable deflection decreased to 0.05 mm. Table 7-13 shows

constraints for this case.

Table 7-13 Design Constraints for Hollow Shaft Under Optimum Design Process
Constrained by Maximum Allowable Deflection

Factor of Safety : 3

Shaft Speed : 1500 rpm
Maximum Allowable Slope : 1 deg
Maximum Allowable Deflection : 0.05 mm
Maximum Allowable Ang. Deflection : 1 deg
Maximum Aliowable Wall-Tickness : 5mm
Maximum Allowable Diameter : 100mm

The important factor affecting the selection of that value is the
maximum deflection that is obtained from the previous case (0.092 mm).
In order to control the program for rigidity, less maximum allowable

deflection is entered.

Table 7-14 Combined Numerical Results of the Optimization Process for Hollow

Shaft Constrained for Deflection
B R BT B U B vy TV B v vty S v Y E—r—r—vy=~—sma ]
ST# |Diameter] Inside MAX MAX MAX STRENGTH

Diameter] SLOPE DEF ANG DEF | DISTRIBUTION
mm mm deg E-3 mm E-3 deg E-3

498228 0 1000

56.0129| 36.479 2.0696 1.4443 53.2032 180.6868
46.486 | 36.479 2.0696 2.8886 | 58.5057 82.2867
83814 82.2867

1 54.7119| 36.479 |.. 3

2 547119 36.479 33.4083 0

3 54.7119| 36.479 6.1554 25.6586

4 67.4181| 36.479 4.6272 0 31.7637 12.9497
5 67.4181| 36.479 0.6243 2.0799 37.8688 8.6445
6 77.5562| 36.479 1.1677 1.8128 41.2223 39.9744
7 77.5562| 36.479 1.7029 0.9105 44.5701 32.3728
8 75.2213| 36.479 1.8257 1.0659 48.3822 31.997
9 75.2213| 36.479 0.8919 1.1655 49.4025 33.9487
10 56.0129| 36.479 2.0696 0 51.3057 180.6868
1

12

e
A

13 46.486 | 36.479 2.0696 4.3328
VOLUME (mm*) = 1370916
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The numerical results that is presented in Table 7-14 shows that
the design is again in acceptable limits. This time in order to achieve the
maximum allowable deflection optimization process increased outside

diameter for some of the stations.

Another point that can be added for the hollow shaft cases by
examining the stations 12 and 13, the minimum wall-thickness constraint

works at these sections.

CASE 2: Some alternating loads are added to the sample problem.
Types and intensity of the loads are shown in Figure 7-8 and static versus

dynamic responses are compared in X-Y plane.

Table 7-15 Included Alternating Loads with its Station Numbers and Distances

ST# DIST NOTCH NOTCH | X-Y plane | X-Y plane | Alternating
DX RAD FORCE | MOMENT Load
(alternating)| (alternating) Type
_(mm) (mm) N) (Nm)

1 0 Smooth 0 0 0

2 30 Smooth 0 1500 250 cos(w, )

3 80 Incr. Dia. 0.2 0 0

4 50 Smooth 0 0 0

5 50 Incr. Dia. 0.2 0 0

6 50 Smooth 0 0 0

7 50 Decr. Dia. -0.2 0 0

8 50 Keyway 0 1000 100 cos(a?)

9 80 Decr. Dia. -0.2 0 0

10 40 Smooth 0 0 0

11 40 Decr. Dia. -0.2 0 0

12 40 Smooth 0 0 0

13 40 Keyway 0 0 0
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Table 7-16 Combined Numerical Results of Dynamic Loading

ST# | Diameter MAX MAX MAX MAX MAX STRENGTH
SHEAR |BENDING| SLOPE DEF ANG DEF | DISTRIBUTION

mm Nm Nm deg E-3 | mmE-3 deg E-3

1 50 0 0 61.4717 | 1253131 0

2 50 0 0 61.1196 | 94.0964 0

3 50 5147.815| 352.2783 | 37.5104 | 27.0865 | 29.5166

4 50.4 5147.815] 331.4363 | 24.3892 0 47.3847 R

5 50.4 2355.699 | 224.4887 | 13.154 | 15.88590 | 65.2586 5.1901

6 50.8 2355.699 | 136.7001 7.5 23.1381 82.5707 11.8513

7 50.8 2414657 | 170.6337 | 8.0034 | 23.6221 99.8828 6.6179

8 50.4 2414657 | 196.24 | 12.6436 | 17.5541 | 117.7567 90.1646

9 50.4 1794.768 | 71.7907 | 12.309 9.4124 122.5204 17.7295

10 50 1794.768 0 14,0243 0 124.9796 158.5985

11 50 0 0 142182 | 9.8168 | 127.4389 158.5985

12 496 0 0 147208 | 19.9181 155.1124

13 49.6 0 0 14,9214 | 29.8448 155.1124

In this example, for conservative design, different types of
dynamic displacements are calculated separately and their absolute values

are used in finding their combination. That is why numerical values of

maximum deflection and maximum slopes are increased without changing

the critical sections that are shown shaded in Table 7-16.
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CHAPTER 8

CONCLUSIONS AND FUTURE RECOMMENDATIONS

8.1 CONCLUSION

Development and increased usage of software packages have
greatly improved efficiency of engineering design. Due to such programs,
design, analysis and documentation are made easier and more reliable for

the designer.

In this study a general program for the design of power
transmission shafts is developed. With the developed software a solid or
stepped shaft with different cross sections can be designed. The reaction
forces at the supports are calculated by the program. The loading
diagrams, together with shear force, bending moment, deflection and slope

diagrams can be obtained in two dimensional drawings.

Also in this study dynamic behavior of shafts for lateral and
torsional systems is determined. While finding dynamic behavior of the
shaft, alternating forces, unbalances and flexible bearings are taken into
consideration, not only in finding critical speeds but also in finding
dynamic responses. These are generated as new design constraints for

conservative design purposes.

Two kinds of processes which are "Conventional Design" and
"Optimum Design", are included to increase the capability of the software.
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In conventional design process, initial guess of variables are done
by design procedure where variables are assumed dependent to each other
with fillet radii. This process only takes care of the design constraints like
strength, rigidity, and stability. If one of the design variables is exceeded,
then design variables are adjusted and process is repeated until the

variables are in the allowable limits.

The developed conventional design process can play role as a

design assistant and following benefits can be obtained.
o Decrease the process time as variables are assumed dependent

o Finds the minimum diameter that satisfies the design

constraints

e A clever guess in determining the initial values of the variables

for optimization process

In contrast optimum design process takes into account all the
variables independently and improves the design, while minimizing the
volume that result in better design. It is more formal then the conventional
design process. However, it increases the process time depending on the

number of sections and also it does not guarantee a solution.

Implicit and explicit constraints are determined and implemented
to the Constrained Rosenbrock Algorithm for the optimal design of power
transmission shafts. The developed optimum design process increased the

capability of the program and following benefits are obtained.

e Finds minimum diameter at each section that satisfies the design

constraints

o Another design alternative to try
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o A new design procedure which is more accurate
e It minimizes the volume

The program is helpful to the design engineer who wishes to
design a power transmission shaft, since it decreases the calculation time
and allows the designer to try different design alternatives in a short time.
The errors made during the manual design process, like inaccurate
calculations, incorrect data read from tables or charts are also eliminated
through the use of the program. Two dimensional drawings can be viewed,
entering the inputs and presenting the outputs for initial check. Tables and
charts that presents the numerical and graphical results of the calculation
can be copied to an other Windows application in order to compare the

results.

8.2 FUTURE RECOMMENDATIONS

Forced responses of power transmission shafts were calculated for
harmonic excitations. In this study alternating forces repeating every
revolution is set to harmonic motion without knowing the phase
differences. They are taken into account for conservative design. If
dynamic behavior of other machine element can be included, more

accurate results can be obtained.

Optimization process can be change individual to individual only
in determining the implicit variables that constraints the shaft for
physically meaningful solution. This process can be improved by enlarging
the implicit variables, including distance between the stations other then

the diameters at the sections and the inside diameter.
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The data needed for manufacturing of the shaft could be added to
its database engine. Writing another subroutine that gives the
manufacturing information about the calculated results can be very useful.
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APPENDIX A

USER'S GUIDE

This appendix has been designed to provide the user an overview

of the developed "Shaft Design" program.

A.1. SYSTEM REQUIREMENTS

Minimum IBM compatible 486 based computer, VGA graphics
driver (640 x 480,256 colors), 640 Kb base memory , MS-DOS 6.0 , MS-
WINDOWS 3.1, MS-WINDOWS 95 (previous versions are not tested).

The program consists of five subdirectories under the directory
"SHAFT". Main calculation of the program is developed by using TC 3.0
in MS-DOS environment consist of Design Sub-Programs (*.h) and a main
program (shaft.cpp) file. User interface part of the program is developed
by using Visual Basic 4.0 in MS-Windows environment. The sub-

-programs are located in the directory structure shown in Figure A.1.

After running the program, "PASSWORD" menu is placed on the
screen. If the password is written right in order, "MAIN" menu takes its
place as shown in Figure A.2. Otherwise there is only three chances to

enter the right password.
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———» COMP—*

Design modules

and submodules
Userinterface
——» INTER—»| modules and
submodules
SHAFT |——> PROJECT—»| _saved projects

— INOUT —{ Data transfer files
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> HELP —

Help files ;
(svanisi | secury e

é‘d‘g é

Figure A 1. Directory Structure of the Sub-programs

Now running an application is considered and described as an

example by showing the windows designed for the developed program.

Figure A.2 Main Menu
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Main Menu :

1. Click on the "Unit" menu to change the unit system.

2. Click on the "KEY" icon. This icon will move and open the
selections under the "File" menu.

3. Click on one of the selections as shown in Figure A.2.

The user can open a previous project or create a new project to
analyze or design a shaft system. If the user wants to open a previous

project, a dialog box that shows the names of the files appears as shown in
Figure A.3.

=] Main [~]+]
File
File Hame: Directories:
] opwork.prj ) c:Ashaft\project :
o
[ shait
= project
[ Bead Only
List Files of Type: Drives:
f'.l)l’i L%j I c: ms-dos_B Ej
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After choosing a specified file, the stored design conditions are
placed to their field and first design window appears as shown in Figure
A4

Esel'8 FORMAT
Circular

Square
Hexagonal
Octagonal

Nfprn) Shaft Speed Inside Diameter {ram]

STEEL USED T0O DESIGN THE SHAFT IS
Praperties =
Tensile Strength{MPa]

Yield Strength [(Mpa)

SHAFT SURFACE FINISH CONDITION

Brinel Hardness

Nuriter Of
Stationis

Statior Murm At
First Beating
Station Mum At
Second Bearing

Figure A4 First Design Window

First Design Window :

1. Choose one of the shaft types by pressing the "Design” menu.
2. Click on the "Design Theories" and choose one of them.

3. Enter the shaft speed using keyboard.

4. Click on one of the selections in the box where "AISI" steels
are specified or enter a numerical value in the "Tensile
Strength", "Yield Strength", "Brinell Hardness" boxes.
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5. Click on one of the selections in the "Shaft Surface Finish
Condition" box.

6. Select the reliability and factor of safety of the shaft from the

appropriate boxes.
7. Enter the environmental temperature in the "Temperature” box.

8. Enter the number of stations, the station number at first bearing

and the station number at second bearing

9. Enter the distance between stations and press "Return” from
the keyboard until the box does not give a response. In order to

control the values click on the arrows over the box.

10. Click on the arrows which are at the right corner of the first
design window to open the "Bearing Window" as shown in

Figure A.5. or to return back to the "Main Menu".

BEARING

Spring Constants [Nt/m)

A sl
P B ER

E
w2

k1(N/m) Facsa

k2(N/m) asvetEs

Figure A.5 Bearing Window
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| EORMAT HELP

Bearing Window :

1. If the bearings are rigid then press the "Rigid" button in the

bearing window.
2. If the bearings are not rigid then enter the spring constants.

3. By pressing the right arrow load the second design window.

I8

Torque INm) :
' '

| UNBALANCE || MACHINE ELEMENT
MEAN | ALTERNATING

“Moments Anmg on >< Yy Plane(Nm) Moments Acting on X-Z Plane(Nm) |

9 o o e

ﬁ Forces Acting on %Y Plane(N)-— Forces Acting on %-Z Plans(N)

Figure A.6 Second Design Window

Second Design Window :

1. Write the numerical values of the mean loads (if there is any)
in the boxes under "MEAN" tab for the station number shown
under the "Station" label. The same thing can be done for
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alternating loads, machine elements and unbalances by
pressing the "Alternating", "Machine Element" and
"Unbalances" tabs.

. Pressing the icons which are near the loads can be helpful in

the sign conventions of the mean loads.

. If the values at a station are entered wrong, pressing the

"RESET" button will clear them.

. Define the notch code by clicking on one of the icons that are

shown in the "Notch Code" frame.

. Increase or decrease the station number by clicking on the "+"

or "-" icon under the "Station" label.

. In order to see the sign convention that is used while preparing

the developed program, click on the "Convention Info" icon.

. Click on the "View" icon in order to examine the drawing of

the shaft as shown in Figure A.7.

Markine rrm...’m:] % MEAN % ALTERNATING
S AR (f: :“IF‘“’H
fsre

ALTERNATING

Figure A.7 View Window while Showing the Input Values
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View Window :

1. Click on the "X-Y plane" or "X-Z plane” box to select the

plane.
2. Sign on the "Alternating” and "Mean" boxes or both of them.

3. Only the schematic representation of the shaft appears by

pressing on the "View" button.

4. In order to view radial forces, axial forces, torques, moments,

stations and machine elements, press the appropriate buttons.

5. Press the "Return” button in order to return to the second

design window.

In the second design window by pressing the "Convention Info"

icon, user can examine the sign convention as shown in the Figure A 8.

= Convention Info K

MoMENT| [ ToRQUE

SHAFT

{ e 4 i bt o e B
(i Force Lonventio

Figure A.8 Convention Window
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Convention Window :

1. In order to examine the sign conventions that are used in the

calculation, press the "Force", the "Moment" and the "Torque"

buttons. Order is not important.

2. By pressing the "Return” button, return to the second design

window.

After returning back to the second design

in the Figure A.9.

OPTIMIZATION

Run Options

Cos ShowBackground show

C Conventional Design

Max Lateral Slope [deg)

® Opamum Design Max Lateral Deflection{mm)

Min Wall-tickness{mm])

Max Diameter{mm])
RESET |

Min Diameter (mm)

OPTIMIZATION OPTIONS

o

window by clicking on

the right arrow icon the user can activate the constraint window as shown

0.08
[0.z075

Max Torsional Deflection [deg.} | pp25

|

125

-

rrawirmum nurnber of Yeetar of Initial Step
stages to be calculated Size

ot [£]

[atay | | ©

J | opize §

Figure A.9 Constraint Window
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Constraint Window :

1. Sign one of the "Analyze", "Conventional Design" or
"Optimum Design" selections. This will activate the related

constraints.

2. Enter the constraints which are activated under the "Design
Constraints" label or press the "Default" button in order to

enter the default values.

3. Click on the "Save As" selection under the "File" menu in

order to save the application as shown in the Figure A.10.

4. Press the button which is activated by the selection at the
bottom of the window in order to run the calculation program

under MS-DOS environment.

5. Click on the right arrow icon in order to examine the results.

=I : OPTIMIZATION =]
| T T
File Name: Directories:
[upwmk_pli c:\shaft\project
o — Cancel |
: ==
(= shaft
% project
T T — ™ Bead Only
Save File as Type: Drives:
=pi l_!J I c: ms-dos_6 IEJ
Yreverey o
OPTIMIZATION DPTION
maximurn number of ‘Yector of Initial Step
stages 1o be calculated Size

(- @ em

& i "u‘anstE i

Figure A.10 Saving the Application
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First Result Window:

QUT Graph Format Edit

Select one of the planes in which the results will be examined
which are the "X-Y plane", "X-Z plane" and "Maximum".

Sign the other selections that are wanted to be examined and
click on the "Graph" icon in order to see the graphical results
or click on the "Table" icon in order to see the numerical

results.

For the specified selections if the "Table" icon is clicked after
clicking on the "Graph" icon, both of the results can be

observed as shown in Figure A.11.

Press the "View" icon in order to examine the calculated

diameters at the stations as shown in Figure A.12.

SHEAR FORCE DIAGRAM | stion MoK om0 1
4000, =
Shear BDDG
Fere 00 - 1o g
(ae)
1080 2l c
3 - 3 [3905.1248 3280244
T 100 200 300 400 500 600 4 [3005.1248 343.1108
5 23333624 232.2793
MOMENT DIAGRAM 6 [2333.3624 131.9287
500 = 7 [2333.3624 89.8867
40 i — e 8 (23333624 161.1737
s 300 T B 9 |2184.6522 87.3861
200 10 [2184.6522
100 1
0500 200 300 400 500 600 |12

€ %y PLANE 1% SHEAR FORCEMN) T~ AXIALFORCE M) I SLOPE (deg™iE-3)
C %Z PLANE [ MOMENT (b [~ TORGUE (Nm)
@ pMaxiMUM

M [~ STRENGTH

Figure A 11 First Result Window while Showing the Maximum Values of the

Selection
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DIAMETER AT THE SECTIONS {rara)

Figure A.12 View Window while Showing the Results of the Optimum Design

View Window :

1. Press the "View" button in order to view the picture as shown

in Figure A.12.

2. Press the "Return” button in order to return back to the first

result window.

After returning back to the first result window, byclicking on the
right arrow icon the user can activate the compare window as shown in the
Figure A.13. This window is created in order to show the accuracy of the
calculation by comparing the calculated values of the constraints with the
allowable limits that are specified in the design windows. If the accuracy is
satisfactory, the user can continue examining the other results as shown in

Figure A.14 by clicking on the right arrow.
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Figure A.13 Compare Window
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Mode Shape ST ﬂ
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Figure A.14 Second Result Window
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Second Result Window:

1. In order to examine the numerical results of the mode shape
and the critical speed for the first mode, click on the "Table"

selection under the "Out" menu.

2. Increase or decrease the mode number by pressing the right
arrow or the left arrow under "Mode" and examine the results

for the other modes.

3. Click on the "Graph" selection under the "Out" menu in order
to make the "System" box visible and choose one of the

systems which are "Flexural" and "Torsional”.

4. Sign the "Deflection” or the "Slope" box and press the "View"
button in order to examine the numerical results together with

the graphical results as shown in the Figure A.14.

5. In order to examine the results for other modes press the left

arrow or the right arrow under the "Mode" frame.

A.2. OTHER FUNCTIONS

File Menu :
New : Create a new project
Open : Open a previous project
Save - Saves the opened project without changing the file name
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Save As - Saves the opened project by changing the file name
Delete : Deletes the opened project
Change Password : This button is used for changing the password

Unit Menu :
SI - Converts the input values to "SI" unit system
British - Converts the input values to "British" unit system

Format Menu :

Color : Changes the color of the form
Font : Changes the font of the text
Print : Prints the form

Run Options Menu:
Show Background : Shows the flow of the program at the
background
Edit Menu :
Copy : Copies the selected graph or selected table
Graph Menu :
Min Max - Shows the minimum and maximum values
StdDev - Calculates the standard deviation of the selected

curve and draws on the selected graph
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BestFit : Draws the line that fits the selected curve
Mean - Shows the mean value of the selected graph
View Icons or Buttons :

Draws 2D graph of the input values or the results to be visualized by the

user
Convention Info Icon :

Draws 2D graph of the force, torque and moment conventions
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APPENDIX B

SAMPLE PROBLEMS

This appendix has been designed to check some of the critical
calculations that are implemented to the developed program. Some of the
problems that are solved in this section are taken from the literature and
adapted to solve with the program. Comparing the results with the answers
given in the literature will give a brief idea about these critical

calculations.

It must be remembered that the simplicity of these problems that

are computed, does not show the capability of the developed program.

Sample Problem 1 :

Calculation for strength is tested under "Optimization Process" by
entering the parameters given in Table B-1 (Shigley [3], Example 18-2).
Although original problem taken from Shigley [3] concerns diameter
calculation at the most critical section of a stepped shaft, where stress
concentration factors are given, the developed program finds these factors
according to the fillet radii. Assuming the shaft as if it is uniform, the
diameter at the most critical section can be found without taking the stress
concentration factors in to account. Other parameters that are not given in

the example are assumed as well.
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Table B.1 Input Information Given in Shigley [3] for Sample Problem 1

PARAMETES NUMERICAL VALUES
%esign Theory Modified Goodman
Number of station = 6
Station number at first support= 2
Station number at second support= 4
Force at station 3 = -2000 Ib.
Force at station 5 = -1100 Ib.
Torque at station 3 = 3300 Ib.in
Torque at station 5 = -3300 Ib.in
Bearing type Rigid
Factor of Safety 1.8
Tensile Strength 80 kpsi
Yield Strength 66 kpsi
Distance Between Stations 1 and 2 0.5 in.
Distance Between Stations 2 and 3 3 in.
Distance Between Stations 3 and 4 3 in.
Distance Between Stations 4 and 5 1.75 in.
Distance Between Stations 5 and 6 1 in.

- VIEW

ViEw | |RadalForces [Asial Forces | [Moments] [ Torque | | Show Stations | |Place Bearings

v | e

| iy bl Ased l I I aching Flempnt £ R MEAN

Figure B.1 Loading Diagram of Sample Problem 1
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SHEAR FORCE DIAGRAM
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Figure B.2 Shear Force Calculated by the Developed Program

MOMENT DIAGRAM
2500

2000 =
1500 /\ h\
1000 -
S0 ./’I/ \\
s00 n/// N
;! At
-500
L 5
e \ =
1000 /
1500 =1s ! \/ o
2000 | ‘

RN (15, in)

it}

o
L~
~H

Figure B.3 Moment Diagram Calculated by the Developed Program
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Figure B.4 Diameter Calculated by the Developed Program

Although diameter that is found by Shigley [3] was 1.26 in. , the

result that is calculated by the developed program is reasonable as the

problem is adapted for the unknown parameters.

Sample Problem 2 :

Simply supported stepped shaft is tested for deflection under

"Analyze Process" by entering the parameters given in Shigley [3]

(Section 3-6 "Finding Deflections by Numerical Integration"). The

parameters which are used in the developed program, are given in Table

B:2.
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Table B.2 Input Information Given in Shigley [3] for Sample Problem 2

[PARAMETES NUMERICAL VALUES
Number of station = 9

Station number at first support= 2

Station number at second support= 8

Force at station 4 = -600 Ib.

Force at station 6 = -1000 Ib.

Bearing type Rigid

Distance Between Stations 1 and 2 0.375 in.
Distance Between Stations 2 and 3 0.375 in.
Distance Between Stations 3 and 4 1.625  in.
Distance Between Stations 4 and 5 7 in.
Distance Between Stations 5 and 6 o in.
Distance Between Stations 6 and 7 1.628° i,
Distance Between Stations 7 and 8 0.375 in

Distance Between Stations 8 and 9 0.375 in.

- VIEW N

EDIT

DIAMETER
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Figure B.6 Simply Supported Stepped Shaft

| l

R MEAN [ ALTERNATING

s click ori the stations

b {Gtation Disfin]

ALTERNATING | e S\ Number
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Figure B.7 Loading Diagram of Sample Problem 2
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Figure B.8 Deflection Diagram Calculated by the Developed Program
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Table B.3 Numerical Results of the Sample Problem 2

STATION # DEFLECTIONS(in E-3)

Dev. Program Shigley [3]
2 0 0
3 -3.8449 -3.844
4 -19.4881 -19.5
5 -40.4145 -40.408
6 -15.0857 -15.084
T -2.9491 -2.9488
8 0 0

As the results that are given in Shigley [3] are calculated with the
same numerical method used in the developed program, they are very
close to each other and none of them introduces the exact values. On the
other hand accuracy between numerical values shows that method is

implemented to the program correct.

Sample Problem 3

Eigensolver of the flexural system implemented to the developed
program is tested under a simple problem where its parameters are given
in Table B.4. Results of the analyze can be seen in Figure B.10-B.12.
First three critical speeds are compared with the exact values calculated by
the formulations given in Kelly [29] (Table 9.4, "Natural Frequencies and
Mode Shapes for Beams").
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Table B.4 Input Information for Sample Problem 3

PARAMETES NUMERICAL VALUES
Number of station = 9
Station number at first support= 1
Station number at second support= 9
Bearing type Rigid
Distance Between Stations 50 mm.
Shaft Diamter 30 mm.
=] e VIEW '

| view Fiadial Forces] [Aial Forces | Moments] [ Torque | [ Show Stations ] [Piace Bearings |

Y

o o' ' "' 9 99

]
~J
|
|
|
|

Limn Mass

chick on the stations

Figure B.9 Lumped Mass Model of Sample Problem 3

115



=[ = MODE SHAPES = [~1~]
OUT _Edit
‘Rv ME“”"{‘(“I"R”‘!‘"[“ — Critical Speeds frpm)
Mode Shape ST
i = NU
0 [iD 50 inn 150 200 W
A # 2 |-0.5218
o 3 |-0.9637
o/ pa 4 |-1.259
X 5 |-1.3626
ki 6 |-1.259
' e b 7 |-0.9637
L 8 |-0.5216
-L5 9 |-0.1336
i
sl i

Figure B.10 First Mode Shape and Critical Speed Calculated by the Developed Program
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Figure B.11 Second Mode Shape and Critical Speed Calculated by the Developed Program
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Figure B.12 Third Mode Shape and Critical Speed Calculated by the Developed Program

Table B.5 Numerical Results of the Sample Problem 3

MODE # CRITICAL SPEED (rpm)
Dev. Program Kelly [29]
1 92138 94758
2 360015 379034
3 780852 852827

Although formulations that are given in Kelly [29] concerns
vibrations of continuous systems, the results that are presented in the
above table shows that numerical method that is implemented to the
developed program finds the eigenvalues accurate enough for design
purpose. It must be remembered that exact results can not be expected for

the lumped mass model.

117



APPENDIX C

DETAILED FLOWCHART OF THE PROGRAM

B ) ,
T

Selection of the

shaft profile
1.Circular
2.Square Yes i Ilrcllput. SDIt
3.Hexegonal nside Diameter
4 Octagonal
NO -
Selection of the
theories
1.Saoderberg
2.ModGoodman
3.Sines
———» 4. Kececioglu
5.Peterson
Modification
6.Gerber
7.Asme Eliptic
8.Bagci
.

Selection of Steel
Types and Properties |
PTS, PYS, BBHN ’

Input: ws
The Shaft Speed

s

Selection of the type of
'Surface Finishing Condition
'1.As forged

'2.Ground

.Hot-rolled
4.Machined or Cold-drawn
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oo
(2)
0
Input: NOS
Total Number of
Station

— ]
Input: B1
Station no of the

first bearing
S
Input: B2

Station no of the
second bearing

Input: TEMP
Temperature of
Lhe environment

‘!nput: RELI
Reliability
1.90

2.95

3.99
4.99.9
5.99.99
6.99.999

Load
BEARING.FRM
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©),

Input: K1

Spring
Constant at
first bearing

Input: K2 Input: R1

Spring Reaction
Constant at 3 Force at
2 <
second ANIMEE VES First
bearing = bearing ]
— L

Input: R2
Reaction
Force at

| Second
‘ Bearing ‘

Load
DESIGN2.FRM

Load: Animation

—
-
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—~ !
4 i ﬁ
; Read :

FV(K)  UM(K)
FAS(k) UR(K)
= | FAAGK)  UQ(k)
Read The | FHK) ML)
number of | MVS(k) MDo(k)
Station NOS | MHS(K)  MDi(k)
TORQ(K)
TORA(K)
FVA(K)
FHA(K)
MVA(K)
MHA(K)

1

NO*—(<k<NOS/\Ves>{—-k=k*1
Mo

) achine T
alternating? NO*@- NO‘@_*\L/
YES

YES YES

Input:
TORQ(K)
Torque

Input: TORA(K)
Torque

Input: MVA®K)

Input: MVS(K)
Moments Acting Moments Acting
on X-Y Plane on X-Y Plane

Input: MHS(k) Input: MHA(K)
Acting ts Acting
on X-Y Plane

on X-Y Plane

Input: FV(k)
Forces Acting on
X-Y Plane

Input: FVA(K)
Forces Acting on|
X-Y Plane

Input: FAS(k)
Forces Acting on
X-Y Plane

Input: FAA(K)
Forces Acting on
X-Y Plane

Input: FH(K)
Forces Acting on
X-Z Plane

Input: FHA(K)
Forces Acting on|
X-Z Plane
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=
NOTCHNAME(K) = Groove
Input: NRAD:!
NO NCODE(K) =1 5 I\fotch Radl\f‘s()
e < increasing dia?
Jpeseasing A8 1)
P
YES

x

NOTCHNAME(K) = Increasing Dia

No |NCODE(K) =2
/:

_——@
NOTCHNAME(K) = Decreasing Dia J £
ut: NRAD(K
NREODE(OE2 rfmch Radlu(s)

Input: NRAD(K) {
Notch Radius J

L

14ﬁ_,

|

No  |NCODE(K) =3

NOTCHNAME(K) = Hole . Input: NRAD(¥) l

Notch Radius

NOTCHNAME(K) = Smooth
NCODE(K) = 4
NRAD(K)=0

NO

default value

Lo NOTCHNAME(K) = Smooth

YES

Input: NCODE=5(sled-runner)
NCODE=6(end-milled)

NOTCHNAME(K) = Keyway
NRAD(K) =0
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* _|Convention Information
Load CON.FRM

convention
info 7

b4 _—

g i View the Current Design
/"‘9%_"“ Show VIEW.FRM

Load CONSTRAINT.FRM

e

N input: SD \

Ana]ly}}—— e 4{ outside diameter S,
NO

F input:
= ‘\ max. lateral slope

nti '\> Lo ool dotoi
i Ye! max, lateral deflection
design | max. ang. deflection
Smax, Ymax, Ytmax
|
-
NO
@—m

&

input:
max. lateral slope

max. lateral deflection
max. ang. deflection

max.wall-thickness(hollow)

max.diameter

min.diameter(solid)
Smax,Ymax,Ytmax

Wmax,Dmax,Dmin

select:
max. number of stages
vector of initial step size
loopy, step
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_____@7_1,

=
|
I
|
I
|
I

InputData r
*io
Calculated -
Data

2
Read Stored
data

f
Show OUTPUT.FRM

-—_—_l

|
|

g e
EXECUTE

CALCULATION PART

(shaft.exe)

|

——\7!.—OEdOUTPUT.F RM
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|

Data
*io

| Read

‘ Choice :1 for Analyze
2 for Design

\ 3 for Optimization

Number of stations:NOS
Station numb for first support:B1
Station numb for first support:B2

Steel Properties :SUT,SY,BR
Reliability :RELI
Temp: TEMP
Inside Diameter :SDI
Aproach :AP
Number of harmonic forces :noh
Factor of safety :N
Shft Speed :NS

Read
Spring Constantk1 k2
Constraints :
Drmin,Wmin,Ymax,Smax,Ytmax

“Read Alternating and steady
Torque,
Moment,Axial Forces, lateral
Forces
Unbalances
for each station

FA,FM,MA,MM,TORQ,TORA FAA
FAM,MU,QU.RU

Read
Notch radiuse,Nrad
Notch Code, Ncode
Machine Element
ML,MDo,MDi
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Call input

Call Load
Calculate minimum
Factor of safety and -e
static deflection

Calculate critical
speeds and response

Combine static and
dynamic
displacements

increase the diameter choice =1

4 = e
YES—{ call output /\.———b\ End |

choice =3 E

Call Optimization
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Call Table 2
v 4

(Calculate Kf Kfs,Kfa .. "
N e

— —.
Calculate Stress & Call Stress )
\\r'_/
Calculate Factor ﬁ—’/
Of Safety at the < Call Aproach
stations 3 Vi

Calculate min factor
Safet

|

v
".—b‘. N
Calculate Static 7 X

return min factor
safety and deflection
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Call Alternating Loads
Unbalances and Sprin
Constants

Divide Shaft in to sub

stations

Calculate flexural mass
- Ca" Masma( Vs

PN e

Calculate flexibility "
matrix

f Call Eigen >

Call Format >
[ Calculate response <& Call Resp
-~

Calculate force matrix t:: 7 B8
for X.Z < Call Format >

Calculate response

Calculate torsional mass
matrix

Calculate flexural
critical speed

Calculate force matrix
for X-Y

Call Resp

Calculate torsional
critical speed

Calculate response

Calculate min. critical
speed

Return
minimum critical speed
and dynamic responce
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Increment Di From Best Point
A Distance Si Parallel to Axis and
Evaluate Objective Function

Si(new)= a x Si(old)|
azl

I YE: Retumn
Obtained ? Final Diameters (Di),

Set Step Size
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