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Abstract

YIELD CURVE MODELLING

VIA TWO PARAMETER PROCESSES

Pekerten, Uygar

M.Sc., Department of Financial Mathematics

Supervisor: Prof. Dr. Hayri KÖREZLİOĞLU

January 2005, 42 pages

Random field models have provided a flexible environment in which the prop-

erties of the term structure of interest rates are captured almost as observed. In

this study we provide an overview of the forward rate random field models and

propose an extension in which the forward rates fluctuate along with a two pa-

rameter process represented by a random field. We then provide a mathematical

expression of the yield curve under this model and sketch the prospective utilities

and applications of this model for interest rate management.

Keywords: Interest Rate Models, Multiparameter Processes, Random Fields,

Term Structure, Yield Curve.

iii



Öz

İKİ PARAMETRELİ SÜREÇLERLE

GETİRİ EǦRİSİ MODELLENMESİ

Pekerten, Uygar

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hayri Körezlioğlu

Ocak 2005, 42 sayfa

Rastgele alanlar faiz haddi ve verim eğrisi modellemelerinde önemli yenilik-

ler getirmiştir. Bu çalışmanın amacı forward oranların rastgele alanlarla mod-

ellenmesine genel bir bakış açısıyla yaklaşmak ve bu modellerin uzantısı olarak

forward oranları, rastgele alanlarla betimlenen iki parametreli süreçlerle mod-

ellemektir. Bu modelin bir uygulaması olarak verim eǧrisi için matematiksel bir

ifade sunulmuş ve gelecekte faiz haddi yönetiminde kullanılabilecek çalışmalar

önerilmiştir.

Anahtar Kelimeler: Faiz Haddi Modelleri, Rastgele Alanlar , Çok Parametreli

Süreçler, Verim Eğrisi.
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Chapter 1

INTRODUCTION

The beginning of modern interest rate modelling is credited to Vasic̆ek in 1977

and Cox, Ingersoll, and Ross in 1985. Their work were extended by other models

but no model for the interest rates has been accepted as a whole as it has been

for the Black and Scholes model in the stock markets. This is mainly due to the

fact that interest rates are driven with the change of the whole yield curve, not

by just one single interest rate. The most popular models are the ones which try

to describe interest rates by one or more driving factors. Models of this class are

tractable and easy to implement, moreover, they produce explicit formulas for

prices of options. However, a model calibrated to perform at pricing one type of

derivative cannot perform well on another type of derivative. This is a typical

example of trying to explain too much with too few information which results

in inadequacies to match the expectations that the agents in modern finance

nurture.

As the solution of the differential equation in the Black-Scholes model was

taken from the science of projectile motions, interest rate theory has adapted

random fields which are widely used in an array of disciplines such as meteorol-

ogy, climatology, hydrology, machine learning, image processing and many more1.

Random fields are multi-dimensional stochastic processes Z(x), x ∈ R
d, specified

by the joint distribution of any subset of (Z(x1), Z(x1), . . . , Z(xn)). Random

field models which specified the dynamics of the instantaneous forward rates

1See [Adl81], [Fur03], [CDMP02], [LMP01].
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were first introduced by Kennedy [Ken94] on the backbone of the Heath-Jarrow-

Morton model and carried further by Kennedy [Ken97] and Goldstein [Gol00],

having been attracting more attention ever since. Random field models attach

every maturity of a forward rate its own stochastic shock, hence, they eliminate

the shortcomings of describing the whole term structure with small amounts of

factors.

Random field models had their own costs. During the ten years of their life

in the interest rate theory, they had been considered as not practical unless they

were approximated by a low dimensional model. However, recent studies show

that it is possible to construct a feasible random field model without reducing

it to lower dimensions. It has been shown empirically that random fields have a

superiority in performing accurate estimations of volatility and correlation than

their finite factor counterparts. The subject is relatively new in the financial

mathematics community and the results are promoting hopes that a standard

model for interest rates can be raised, too.

Our aim in this thesis is provide a flexible two-parameter setting that carries

the random field framework further. We propose that the dynamics of the forward

rates be driven by a drift term and a diffusion term attached to a two-parameter

process that is identified by a random field. We also give the proof of the existence

of the risk-neutral probability measure of which its existence has been assumed

but not proven in the random field framework. We finally assert an expression of

the yield curve where the forward rates are driven by a two-parameter Ornstein-

Uhlenbeck process.

The thesis is organized as follows. Chapter 2 provides the necessary mathe-

matical and financial background necessary to build the framework of the models.

Chapter 3 gives a brief overview of random fields and introduces the forward rate

random fields, with applications to the interest rate market. Chapter 4 defines

the two-parameter martingale model and contains the proof of the existence of

the risk-neutral probability measure. We also provide a mathematical applica-

tion that produces an expression for the expectation of the yield curve. Chapter

5 concludes this thesis.
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Chapter 2

PRELIMINARIES

This chapter consists of two sections. The first section contains introduces the

necessary mathematical concepts to build the interest rate models given in the

following chapters. The second section introduces the definitions of the elements

of the interest rate markets.

2.1 Mathematical Background

To model prices of financial instruments and their derivatives one needs an

extensive probabilistic framework. The basic building block is the probability

space (Ω,A, P), where Ω is the sample space, A is a family of events and P is

a probability measure. The definitions in this section are compiled from [DJ03],

[HK01], [Kle01], [LL00], and [Mik99]. We begin with the following assumption.

Assumption 2.1.1. All random objects appearing in this thesis are defined on

a probability space (Ω,A, P) and are in continuous time.

The mathematical entity for representing the flow of information through time

is filtration.

Definition 2.1.2. A filtration F = (Ft)t≥0 is an increasing family of sub-σ

algebras of A.

We will impose some conditions on F.
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Assumption 2.1.3. F satisfies the following conditions called the usual condi-

tions.

• F contains all P-null (or negligible) subsets of Ω, i.e., if A ∈ A and if

P(A) = 0, then for any t, A ∈ Ft.

• F is right continuous, i.e.,

Ft =
⋂

ε≥0

Ft+ε

for any t ≥ 0.

The σ-algebra Ft represents the information available at time t. As time passes

we learn more about prices and rates, hence more information. If the price of an

asset indexed by time is characterized by (St)t≥0 at time t the fact that ”the past

prices are known” is represented by the statement ”(Su)u≥t is Ft-measurable.”.

We now give the definition of a stochastic process.

Definition 2.1.4. A stochastic process is a family {X(t, ω), t ∈ R+, ω ∈ Ω}

of random variables defined on a probability space (Ω,A, P).

A stochastic process X is a function of two variables: For a fixed t it is a

random variable X(t) = X(t, ω), ω ∈ Ω, whereas, for a fixed random outcome

ω ∈ Ω, it is a function of time X(t) = X(t, ω), t ∈ R+. We will drop ω in

representing stochastic processes for clarity. A common stochastic process is the

Brownian Motion.1

Definition 2.1.5. The standard Brownian motion is a continuous real-valued

stochastic process W = {Wt, t ≥ 0} with the following properties:

• W0 = 0 a.s.2,

1The (standard) Brownian motion is widely used as an indicator of the fluctuations in the
movements of prices. Brownian motion is also called as the Wiener process, named after Norbert
Wiener who made the most meticulous definition of the process among all definitions that were
present in his time.

2In a probability space (Ω,A, P), a property which holds for all ω ∈ Ω except on a negligible
subset of Ω is said to hold almost surely (a.s.) or P-a.s..
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• independent increments: if 0 ≤ s ≤ t, Wt − Ws is independent of Fs =

σ(Wu, u ≤ s).

• stationary increments: if 0 ≤ s ≤ t,Wt−Ws and Wt−s have the same probability law

• if 0 ≤ s < t, Wt − Ws ∼ N(0, t − s) where N(0, t − s) is the normal

distribution with mean 0 and variance t − s.

The portfolio choices of an agent is characterized by trading strategies.

Definition 2.1.6. Assume that the assets in a market are indexed by the set I.

A trading strategy is a progressively measurable3 stochastic process

φ = ((φ0
t , φ

1
t , . . . , φ

#(I)
t ))t≥0

in R
#(I) where φi

t denotes the number of shares of asset i that an agent holds at

time t.

A trading strategy φ over the time interval [0, T ] is self-financing if its wealth

generating process V (φ) which is defined as

Vt(φ) = S0
t φ

0
t + S1

t φ
1
t + . . . + S

#(I)
t φ

#(I)
t , ∀t ∈ [0, T ],

satisfies the following:

Vt(φ) = V0(φ) +

∫ t

0

φ0
udS0

u +

∫ t

0

φ1
udS1

u + . . . +

∫ t

0

φ#(I)
u dS#(I)

u , ∀t ∈ [0, T ].

For a portfolio to be considered as executable its value must always be nonnega-

tive.

Definition 2.1.7. A strategy φ is admissible if it is self-financing and if Vt(φ) ≥

0 for any t ≥ 0.

One of the most interesting dilemmas in the world of finance rises from the

concept of arbitrage. People hate it in theory but love to do it in practice.

3A progressively measurable process (Xt)t≥0 satisfies the following: ∀t ≥ 0 Xt is Ft-
measurable.
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Definition 2.1.8. An arbitrage strategy4 is an admissible strategy that has

zero initial value and non-zero final value.

Definition 2.1.9. The market is viable if it is arbitrage-free.

Arbitrage is mainly profiting from the different prices of the same asset. A

model producing arbitrage opportunities is basically useless since it will produce

more than one price for an asset. The notion of self-financing strategy is not

sufficient to exclude arbitrage opportunities from a model (see [MR97]). Thus we

need to introduce the definition of a martingale.

Definition 2.1.10. Under the probability space equipped with a filtration

(Ω,A, P, F), a progressively measurable family (Mt)t≥0 of integrable random vari-

ables (i.e., E(|Mt|) < +∞ for any t) is

• a martingale if, for any u ≤ t, E(Mt|Fu) = Mu,

• a submartingale if, for any u ≤ t, E(Mt|Fu) ≥ Mu,

• a supermartingale if, for any u ≤ t, E(Mt|Fu) ≤ Mu.

In a model, if the discounted price processes are rendered martingales, the

model satisfies what is known as the efficient market hypothesis5. That is, intu-

itively, every agent in the economy will have the same expectation of what the

price of a particular asset will become at a future point in time. This enables a

unified pricing perspective.

Next, we describe a crucial instrument.

Definition 2.1.11. A European option of maturity T is a contract which

has a payoff h ≥ 0 where h is Ft-measurable. A call on the underlying instrument

S with strike price K has a payoff h = (S −K)+ = max{0, S −K}; a put on the

same instrument with strike price K is defined by h = (K−S)+ = max{0, K−S}.

4Arbitrage is also referred as free lunch.
5Price processes are discounted to generate comparable prices. What is meant by comparable

is discussed in the definition of a numeràire in the next section.
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An option gives the owner the right to exercise it. For a call, if S − K < 0

then an agent may not exercise the option and be left with just the loss occurring

from paying the price of the option. The same argument applies to a put when

K − S < 0. Therefore the payoff of an option is a contingent claim, it may or

may not be realized and this depends on the future prices of the asset.

Definition 2.1.12. The contingent claim defined by h is attainable if there

exists an admissible strategy which replicates h. The market is complete if

every contingent claim is attainable.

The assumption that the market is complete is a strict assumption which may

not have an economical justification. Rather, it allows to derive simple models for

pricing contingent claims and it is useful for hedging purposes. There are many

recent works that build up models where the market is incomplete.

The following theorems are the building blocks of pricing contingent claims.

Theorem 2.1.13. A market is viable if and only if there exists a probability

measure P
∗ equivalent to P under which the discounted asset prices are martin-

gales.

Theorem 2.1.14. A viable market is complete if and only if there exists a unique

probability measure P
∗ equivalent to P under which the discounted asset prices

are martingales.

The latter theorem is referred to as the Fundamental Theorem of Asset Pric-

ing. The measure P
∗ can be thought in analogy with a pricing function, since

in a probabilistic framework prices are related to the probability of the states of

the economy. Thus the latter theorem can be interpreted in the following sense:

The economy is arbitrage free and every contingent claim can be replicated if and

only if for every discounting procedure there exists a unique pricing function in

the economy.
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2.2 Elements of the Interest Rate Markets

We begin with the most fundamental instrument, the zero-coupon bond (also

called the pure discount bond).

Definition 2.2.1. A zero-coupon bond is a contract that guarantees the pay-

ment of one unit of money at a future date T and makes no payments before T.

Its price at time t ≤ T is denoted by P (t, T ). We will assume, for theoretical

reasons, that for every T there exists a zero-coupon bond with maturity T .

The price of a zero-coupon bond reflects the current value of one unit paid

with complete certainty at some future point in time. Thus risk is eliminated.

This makes P (t, T ) representative for the time value of money. A translation of

the zero-coupon bond prices yields their rate of return Y (t, T ), called the yield to

maturity6 at time t for the time to maturity T − t, which is implicitly formulated

as

P (t, T ) = e−Y (t,T )(T−t) (2.2.1)

The above relation yields

Y (t, T ) = −
ln P (t, T )

T − t
. (2.2.2)

The zero-coupon bond price and its translation yield to maturity has a wide array

of implementations such as bond pricing, discounting future cash flows, pricing

fixed-income derivative products, obtaining other types of interest rates and de-

termining risk premia of portfolios of bonds with different maturities [BG02]. The

set of yields to maturities Y (t, T ), t < T , constitute the yield curve. The short

rate, a useful theoretical entity, is derived from the yield to maturity.

Definition 2.2.2. The short rate at time t r(t) = Y (t, t) is intuitively defined

as the instantaneous rate for borrowing and lending. Obviously there exists no

such tangible asset.7

6Y (t, T ) is also called zero rate or spot rate and often denoted by R(t, T )
7Practitioners use short term rates ranging from overnight rates to 3-month-rates as sub-

stitutes for the instantaneous short rate but they should not be confused with the theoretical
entity proposed in this context.
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A precisely defined discounting process is crucial for any model. Discounting

processes are used to compare prices of an asset having different maturities. Such

a discounting process is called a numeràire.

Definition 2.2.3. A numeràire (N(t), t ≥ 0) is a process used to compute and

compare relative prices of a particular asset. If the price of an asset at time t is

S(t), then its value relative to the numeràire is

S̃(t) =
S(t)

N(t)
.

A numeràire must be strictly positive and self-financing. It can be chosen

among many instruments which satisfy these conditions. A choice of a numeràire

does not affect the pricing of assets structurally. It only eliminates outside influ-

ences (such as inflation, opportunity cost, or simply the time value decay) one

is able to compare prices of an asset at different times. Suppose that an agent

is to choose between receiving 100 unit of money today and 110 unit next year.

These prices are non-comparable, since, if the risk-free bond has a rate of return

at 20 percent, receiving 100 today, investing it in the bond, and receiving 120

next year is more profitable: Here, if the bond returns at 5 percent this strategy

is less profitable8. Similar to the risk free bond choice presented in this example

a typical choice of a numeràire is the bank account process.

Definition 2.2.4. A sum of 1 unit deposited in a bank and accumulated con-

tinuously up to time t is called the bank account. Its value is denoted by B(t)

and is equal to

B(t) = e
∫

t

0
r(s)ds.

We take the bank account as our numeràire for the rest of our dissertation.

Assumption 2.2.5. N(t) = B(t) for all t ≥ 0.

Definition 2.2.6. The continuously compounded forward rate for the

period [T1, T2] at time t, t ≤ T1 ≤ T2, fixes the rate assigned to borrowing at

T1 and repaying at T2, at time t. It is denoted by f(t, T1, T2).

8Surely this reasoning is subject to the agent’s utility function. This is a logical reasoning
made to clarify the notion of numeràire presented here.
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To preclude arbitrage:

eY (t,T2)(T2−t) = eY (t,T1)(T1−t)ef(t,T1,T2)(T2−T1)

⇔

Y (t, T2)(T2 − t) = Y (t, T1)(T1 − t) + f(t, T1, T2)(T2 − T1)

⇔

f(t, T1, T2) =
1

(T2 − T1)
ln

P (t, T1)

P (t, T2)
.

Then, by (2.2.2),

f(t, T1, T2) = −
1

(T2 − T1)
(ln P (t, T2) − ln P (t, T1)). (2.2.3)

Definition 2.2.7. The instantaneous forward rate f(t, T ) is the instanta-

neous short rate at time T anticipated at time t.

f(t, T ) = f(t, T, T ) = lim
T2→T

f(t, T, T2). (2.2.4)

Remark 2.2.8. Before going on to the next chapter, we should note the following:

• P (T, T ) = 1 in an arbitrage-free economy.

• Y (t, T ) = f(t, t, T ) and r(t) = f(t, t)

• f(t, T1, T2) = 1
(T2−T1)

∫ T2

T1

f(t, u)du in analogy with Intermediate Value The-

orem from calculus.

• f(t, T ) = limT2→T f(t, T, T2) = limT2→T − (ln P (t,T2)−ln P (t,T ))
T2−T

by (2.2.3) and

setting h = T2 − T ,

f(t, T ) = − lim
h→0

ln P (t, T + h) − ln P (t, T )

h

⇒

f(t, T ) = −
∂

∂T
ln P (t, T ). (2.2.5)

10



• Following (2.2.5) we have

Y (t, T ) =
1

T − t

∫ T

t

f(t, s)ds (2.2.6)

and

P (t, T ) = e−
∫

T

t
f(t,s)ds. (2.2.7)

11



Chapter 3

RANDOM FIELD MODELS

The first section of the chapter introduces random fields, the second section

provides an overview of the forward-rate-random-field models in the literature,

and the third section briefly shows the applications of the random-field models

and the comparison of their performance with that of the other term-structure

models in the literature.

3.1 Introduction to Random Fields

Definition 3.1.1. A random field is a family of random variables Z(x, ω) in-

dexed by x ∈ R
d, and ω ∈ Ω, together with a collection of marginal distributions1

Fx1,x2,...,xn
(b1, b2, . . . , bn) = P{Z(x1, ω) ≤ b1, Z(x2, ω) ≤ b2, . . . , Z(xn, ω) ≤ bn},

(b1, b2, . . . , bn) ∈ R
n. The mean function, the covariance function, and the corre-

lation function of Z, respectively, are defined by

m(x) := E[Z(x, ω)],

R(x, y) := E[Z(x, ω)Z(y, ω)] − m(x)m(y),

c(x, y) :=
R(x, y)

√

R(x, x)R(y, y)
.

1The marginal distributions of Z are also called the finite-dimensional distributions or fi-dis
in short.
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We will drop the ω parameter in representations of random fields for conve-

nience. A random field, in the most crude meaning, is a multiparameter stochastic

process defined by its marginal distributions. Another aspect of the random fields

is that, when fixing any set of d − 1 parameters and allowing one parameter to

fluctuate, one obtains a stochastic process in the fluctuating parameter. The

following remark is crucial in constructing random fields.

Remark 3.1.2. The covariance function R(·, ·) is non-negative definite since for

ζi ∈ R, i = 1, 2, . . . , d,

d∑

i=1

d∑

j=1

ζiζjR(xi, xj) =
d∑

i=1

d∑

j=1

ζiζjE[Z(xi)Z(xj)] −
d∑

i=1

d∑

j=1

ζiζjm(xi)m(xj)

= E





(
d∑

i=1

ζiZ(xi)

)2


−

(
d∑

i=1

ζim(xi)

)2

≥ 0.

The property of non-negative definiteness characterizes covariance functions.

As Santa-Clara and Sornette (2001) shows, given m : R
d → R and a non-negative

definite R : R
d × R

d → R it is possible to construct a random field for which m

and R are its mean and covariance functions respectively [SS01].

Stationarity in random fields, which is a central concept, is reflected by ho-

mogeneity. A random field is homogeneous or second-order stationary if

• m(x) = m ∈ R is independent of x ∈ R
d.

• R(x, y) depends only on x − y.

The second feature is called the translation invariance. A common class of random

fields is isotropic random fields. An isotropic random field is a random field which

has a covariance function satisfying R(v) = R(‖v‖) for a vector v ∈ R
d. This

implies that correlation of any two points depends between the distance between

them. Next, we give three examples of random fields.

Definition 3.1.3. A Gaussian random field is a random field which has mul-

tivariate normal finite-dimensional distributions.

13



An example, analogous with its one-dimensional counterpart, is the standard

Brownian sheet.

Definition 3.1.4. A standard Brownian sheet W (t, T ) is the centered Gaus-

sian random field with the covariance function

R(W (t1, T1),W (t2, T2)) = (t1∧ t2)(T1∧T2), 0 ≤ t1 ≤ T1, 0 ≤ t2 ≤ T2 (3.1.1)

where ”x ∧ y” in probability theory jargon denotes ”inf(x, y)”.

Definition 3.1.5. Let Z1, Z2, . . . , Zn be independent, homogeneous real-valued

Gaussian random fields with mean m(x) = E[Zi(x)] = 0 ∀i = 1, 2, . . . , n, and

common covariance function R(y) = E[Z(x)Z(x+y)]2 and variance σ2(x) = R(0).

For x ∈ R
d, the process

Y (x) := Z2
1 (x) + Z2

2 (x) + . . . + Z2
n(x)

is called a chi-squared random field with parameter n.

Its density function is

fχ2(r,σ)(u) =
1

Γ( r
2
)(2σ)( r

2
)
u

r

2
−1e−

u

2σ

where r denotes the degrees of freedom.

3.2 Forward Rate Random Field Models

In this section, we present the forward rate models driven by random fields.

The term structure models can be dated back to Vasiček, Cox-Ingersoll, and

Ross whose work was modelling the short rate r(t) depending on finite factor

processes and constant coefficients [LL00]. Their models were extended to affine

models by Dai and Singleton. These models are tractable and used widely in

the world of finance. They produce explicit forms for bond prices, yields and

2The homogeneity of the fields enables such a covariance function.
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forward rates and the process of calibrating them to price interest-rate derivatives

is easy but they have serious empirical shortcomings, the most severe one is

their inconsistency with the current term structure. Also, they fail to capture

the stochastic volatility of short rates. Jagannathan, Kaplin, and Sun (2001)

show that a third shortcoming of the affine models is that low dimensional affine

models3 fail to capture the joint dynamics of yields, caps and swaptions, i.e., once

calibrated to price a specific derivative, the model performs poorly when pricing

another kind of derivative.

The second generation of term structure models either made explicit de-

pendence on the short rate e.g., log-r models of Black-Derman-Toy and Black-

Karasinski or modelled the forward rates directly with taking the initial forward

curve as an input, e.g., Heath-Jarrow-Morton (henceforth HJM) model4. The

second class of models fit the current yield curve, due to taking the initial for-

ward curve as an input, however they are not able to capture the changes of a

new yield curve. Thus, practitioners need to calibrate the model once a new term

structure is realized. Although recalibration may seem innocent at a first glance,

since the parameters of the models are non-stochastic, it is structurally erroneous.

Consequently, the second class of models is inconsistent with empirical data.

The random field models were derived on the HJM framework described below.

In the HJM model the innovation of the entire forward rate curve depends on

multiple Brownian motions with drifts and volatilities that are arbitrary adapted

deterministic processes. Kennedy (1994) carried the HJM framework further by

allowing the forward rates to follow a continuous Gaussian random field with two

parameters X(t, T ) where t represents the calendar time (i.e. time flows in the

t-direction) and T is the maturity of the forward rate [Ken94]. For the time being

it is necessary to make the following assumption.

Assumption 3.2.1. All assertions in the random field setting are under the risk

neutral probability P
∗ which satisfies the Fundamental Theorem of Asset Pricing.

We begin with the definition of the HJM model.

3By low dimensional we mean models with three or less diffusive factors.
4For a thorough view of these models, see [JW02].
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Definition 3.2.2. The HJM model specifies the instantaneous forward rate dy-

namics as follows:

df(t, T ) = µ(t, T ) +
N∑

i=1

σi(t, T )dWi(t),

where Wi, i = 1, . . . , N are independent Brownian motions and (µ(t, T ))0≤t≤T

and (σ(t, T ))0≤t≤T satisfy the following so-called the HJM conditions :

1.
∫ T

0
|µ(u, T )dt| < ∞ P

∗-a.s. for all 0 ≤ T .

2.
∫ T

0
σ2(u, T )du < ∞ P

∗-a.s. for all 0 ≤ T .

3.
∫ T ′

0
|f(0, u)|ds < ∞ P

∗-a.s. for 0 ≤ T ≤ T ′.

4.
∫ T ′

0

∫ s

0
|µ(u, s)|duds < ∞ P

∗-a.s. for 0 ≤ T ≤ T ′.

Definition 3.2.3. The Gaussian Random Field Model for the instantaneous

forward rates is defined as

f(t, T ) = µ(t, T ) + X(t, T ), (3.2.2)

where X(t, T ) is a centered continuous Gaussian random field with the covariance

structure specified by

R(X(t1, T1), X(t2, T2)) = c(t1 ∧ t2, T1, T2), 0 ≤ ti ≤ Ti, i = 1, 2. (3.2.3)

for a given c(·, ·, ·).

The drift function µ(t, T ) is deterministic and continuous in 0 ≤ t ≤ T . The

covariance function c(t, T1, T2) is non-negative definite and symmetric in T1 and

T2. The choice made by defining the covariance function by c(t1∧ t2, ·, ·) in t1 and

t2 ensures that X(t, T ) has independent increments in the t-direction. Indeed if

0 ≤ t1 ≤ t2 ≤ T the random variable X(t2, T ) − X(t, T ) is independent of the
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σ-field Ft = σ{X(u, v) : u ≤ t, u ≤ v}. For u ≤ t, u ≤ v,

R(X(t2, T ) − X(t1, T ), X(u, v)) = c(t2 ∧ u, T, v) − c(t1 ∧ u, T, v)

= c(u, T, v) − c(u, T, v)

= 0,

implying independence by the Gaussian assumption.

Based on this model it is easy to derive a necessary and sufficient condition

on the drift surface to obtain the discounted bond price process P̃ (t, T ) which is

a martingale.

Theorem 3.2.4. The following statements are equivalent:

(a) For each T ≥ 0, the discounted bond price process
(

P̃ (t, T )
)

0≤t≤T
is a

martingale.

(b) µ(t, T ) = µ(0, T ) +
∫ T

0
c(t ∧ v, v, T )dv for all 0 ≤ t ≤ T .

(c) P (t, T ) = E

[

e−
∫

T

t
r(u)du|Ft

]

for all 0 ≤ t ≤ T .

Remark 3.2.5. If F0 is not the trivial σ-field then (b) in Theorem 3.2.4 becomes

µ(t, T ) = µ(0, T ) +

∫ T

0

[c(t ∧ v, v, T ) − c(0, v, T )] dv.

Goldstein generalizes Kennedy’s results to include non-Gaussian random fields

by defining the forward rate dynamics by the stochastic differential equation

df(t, T ) = µ(t, T )dt + σ(t, T )Z(dt, T ), (3.2.4)

where Z(t, T ) is a random field with a correlation structure specified by the

quadratic covariance dynamics d〈Z(·, T1), Z(·, T2)〉t = c(t, T1, T2), 0 ≤ t ≤ T1 ∧ T2.

It is assumed that (µ(t, T ))0≤t≤T and (σ(t, T ))0≤t leqT are progressively measur-

able processes satisfying the technical conditions imposed by the HJM framework

given in Definition 3.2.2. Goldstein reaches the necessary and sufficient conditions

given in Theorem 3.2.4, thus his model is a generalized version containing both
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Gaussian and non-Gaussian fields [Gol00]. The following lemma will be useful in

reaching his conclusion.

Lemma 3.2.6. Assume that the forward rate dynamics are given as in equation

(3.2.4) with the drift and volatility satisfying the conditions stated above. Define

I(t) :=

∫ T

t

f(t, v)dv

so that P (t, T ) = e−It . Then,

(a)

d(It) = d

(∫ T

t

f(t, v)dv

)

=

(∫ T

t

µ(t, s)ds

)

︸ ︷︷ ︸

call this µ∗(t, T )

dt +

∫ T

t

dvσ(t, v)Z(dt, v) − r(t)dt

= µ∗(t, T )dt +

∫ T

t

dvσ(t, v)Z(dt, v) − r(t)dt.

(b)

dP (t, T )

P (t, T )
= −µ∗(t, T ) −

∫ T

t
dvσ(t, v)Z(dt, v) + r(t)dt

+1
2

∫ T

t
σ(t, u)σ∗(t, T, u)dudt,

where σ∗(t, T1, T2) =
∫ T1

t
σ(t, v)c(t, T2, v).

Proof We replicate Furrer’s proof [Fur03].

(a) Since df(t, T ) = µ(t, T )dt + σ(t, T )Z(dt, T )

I(t) =

∫ T

t

(

f(0, v) +

∫ t

0

µ(s, v)ds +

∫ t

0

σ(s, v)Z(ds, v)

)

dv

=

∫ T

t

f(0, v)dv +

∫ T

t

∫ t

0

µ(s, v)dsdv +

∫ T

t

∫ t

0

σ(s, v)Z(ds, v)dv.
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Apply the stochastic version of Fubini’s Theorem5 to get

I(t) =

∫ T

0

f(0, v)dv +

∫ t

0

∫ T

0

µ(s, v)dvds +

∫ t

0

∫ T

s

σ(s, v)dvZ(ds, v)

−

∫ t

0

f(0, v)dv −

∫ t

0

∫ t

0

µ(s, v)dvds −

∫ t

0

∫ t

s

σ(s, v)dvZ(ds, v)

= I(0) +

∫ t

0

µ∗(s, v)ds +

∫ t

0

∫ T

s

dvσ(s, v)Z(ds, v)

−

∫ t

0

(

f(0, v) +

∫ v

0

µ(s, v)ds +

∫ v

0

σ(s, v)Z(ds, v)

)

dv

= I(0) +

∫ t

0

µ∗(s, T )ds +

∫ t

0

∫ T

s

dvσ(s, v)Z(ds, v) −

∫ t

0

f(v, v)dv

= I(0) +

∫ t

0

µ∗(s, T )ds +

∫ t

0

∫ T

s

dvσ(s, v)Z(ds, v) −

∫ t

0

r(v)dv.

Thus, taking derivative with respect to t yields

dI(t) = µ∗(t, T )dt +

∫ T

t

dvσ(t, v)Z(dt, v) − r(t)dt. (3.2.5)

(b) Let f(x) = e−x. Apply the Itô formula to f(Xt) where Xt is an Itô process:

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X·〉s

= e−X0 −

∫ t

0

e−XsdXs +
1

2

∫ t

0

e−Xsd〈X·〉s

⇒ df(Xt) = e−Xt

(

−dXt +
1

2
d〈X·〉t

)

Then,

de−It = dP (t, T ) = P (t, T )(−dIt +
1

2
d〈I·〉t) (3.2.6)

5See [BDKR98].
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which implies

d〈I·〉t =

∫ T

t

∫ T

t

σ(t, v)σ(t, u)d〈Z(·, u), Z(·, v)t〉dudv

=

∫ T

t

∫ T

t

σ(t, u)σ(t, v)c(t, u, v)dtdudv

=

∫ T

t

σ(t, u)

∫ T

t

σ(t, v)c(t, u, v)dv

︸ ︷︷ ︸

σ∗(t,T,u)

dudt. (3.2.7)

Combine (3.2.6) with (3.2.5) and (3.2.7) to get

dP (t, T )

P (t, T )
= −µ∗(t, T )dt −

∫ T

t

dvσ(t, v)Z(dt, v) + r(t)dt

+
1

2

∫ T

t

σ(t, u)σ∗(t, T, u)dudt.

�

The following is the main result of the generalized random field models:

Proposition 3.2.7. Let the dynamics of the forward rates be specified by

Lemma 3.2.6. Then the risk neutral drift condition is given by

µ(t, T ) = σ(t, T )σ∗(t, T, T ).

Proof Under the risk neutral probability P
∗ the discounted bond prices are

martingales. Let P̃ (t, T ) = P (t,T )
B(t)

where B(·) is the bank account process given
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by B(t) = e
∫

t

0
r(s)ds. Notice that dB(t) = B(t)r(t)dt. Hence,

dP̃ (t, T ) =
dP̃ (t, T )

B(t, T )
+ P (t, T )d

(
1

B(t)

)

=
dP (t, T )

B(t)
+ P (t, T )

(

−
1

B2(t)
dB(t)

)

=
dP (t, T )

B(t)
−

P (t, T )

B(t)
r(t)dt

=
P (t, T )

P (t, T
·
dP (t, T )

B(t)
− P̃ (t, T )r(t)dt

= P̃ (t, T )
dP (t, T )

P (t, T )
− P̃ (t, T )r(t)dt

⇒
dP̃ (t, T )

P̃ (t, T )
=

dP (t, T )

P (t, T )
r(t)dt.

By Lemma (3.2.6)

dP̃ (t, T )

P̃ (t, T )
= −µ(t, T )dt −

∫ T

t

dvσ(t, v)Z(dt, v) +
1

2

∫ T

t

σ(t, u)σ∗(t, T, u)dudt.

If P̃ (t, T ) is a martingale then the terms with dt must vanish. Then

−µ(t, T )dt +
1

2

∫ T

t

σ(t, u)σ∗(t, T, u)dudt = 0

⇒ µ∗(t, T ) =
1

2

∫ T

t

σ(t, u)σ∗(t, T, u)dudt

⇒

∫ T

t

µ(t, s)ds =
1

2

∫ T

t

σ(t, u)σ∗(t, T, u)du.

Differentiating with respect to t gives

µ(t, T ) = σ(t, T )σ∗(t, T, T ).

21



3.3 Applications of Random Field Models

The forward rate random field models delineated in the previous section provide

a more parsimonious and flexible environment compared to their counterparts.

Finite factor models have the same finite set of shocks affects all forward rates

thus any observed sample of forward rates may have a covariance matrix of rank

at most N which imposes severe restrictions on the covariance structures of the

factor models. The random field models attribute each forward rate its own

drift, diffusion and stochastic shock in consistency with the fact that the

forward rates form a continuum6. Due to these desirable properties random field

models attracted much attention and in this section we will demonstrate some

applications of the random field models.

3.3.1 Option Pricing

One application field of interest rate models is pricing interest rate and bond

options. Kennedy [Ken94] applies the Gaussian random field model for the

forward rates to price an interest rate caplet.

An interest rate caplet at strike rate d for the period [T1, T2] is a European

option on the forward rate f(t, T1, T2) where, if the rate f(T1, T2, T2) exceeds d,

it is feasible to exercise the option which then gives a payoff at time T2 of

[
e(T2−T1)f(T1,T1,T2) − e(T2−T1)d

]

+
.

A series of caplets is called a cap which its price is calculated using the price of

its caplets. The discounted payoff of a caplet at time 0 is

e−
∫ T2

0
r(u)du

[
e(T2−T1)f(T1,T1,T2) − e(T2−T1)d

]

+
(3.3.8)

6A continuum is a linearly ordered set which is densely ordered, i.e., between any two
members of the set there exists another member. The idea that forward rates form a continuum
comes from the assumption that for every T there exists a zero coupon bond with maturity T .

22



The price of this caplet at time 0 is the expectation of (3.3.8):

E

[

e−
∫ T2

0
r(u)du

[
e(T2−T1)f(T1,T1,T2) − e(T2−T1)d

]

+

]

.

Let N1 = (T2 − T1)f(T1, T1, T2), N2 = −
∫ T2

0
r(u)du, and γ = (T2 − T1)d. Here,

N1 and N2 are normally distributed with E[Ni] = µi and Var(Ni) = σ2
i , i = 1, 2.

The conditional distribution of N2 given N1 is

N

(

µ2 + ρσ2
N1 − µ1

σ1

, σ2
2(1 − ρ2)

)

,

where ρ = Corr(N1, N2). Then

E
[
(eN1 − eγ)+e−N2

]
= eµ1−µ2+Var(N1−N2)/2Φ

(
µ1 − γ + σ2

1 − R(N1, N2)

σ1

)

−eγ−µ2+σ2

2
/2Φ

(
µ1 − γ − R(N1, N2)

σ2

)

, (3.3.9)

where Φ is the standard normal distribution function. Using Theorem 3.2.4(b)

and setting

g(s, t, T ) =

∫ T

u=t

∫ u

v=t

c(s, u, v)dudv, h(t, T ) =

∫ T

u=t

∫ u

v=t

c(v, u, v)dudv,

we can write

µ1 =

∫ T2

T1

µ(T1, u)du =

∫ T2

T1

[

µ(0, u) +

∫ u

0

c(T1 ∧ v, v, u)dv

]

du

=

∫ T2

T1

µ(0, u)du +

∫ T2

u=T1

∫ T1

v=0

c(v, u, vdudv) +

∫ T2

u=T1

∫ u

v=T1

c(t, u, v)dudv

=

∫ T2

T1

µ(0, u)du + h(0, T2) − h(0, T1) − h(T1, T2) + g(T1, T1, T2).
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Similarly,

µ2 =

∫ T2

0

µ(0, u)du + h(0, T2)

σ2
1 = 2g(T1, T1, T2)

σ2
2 = 2h(0, T2)

R(N1, N2) = h(0, T2) − h(0, T1) + h(T1, T2) + 2g(T1, T1, T2).

Then,

µ1 − µ2 +
Var(N1 − N2)

2
= −

∫ T1

0

µ(0, u)du (3.3.10)

−µ2 +
σ2

2

2
= −

∫ T2

0

µ(0, u)du (3.3.11)

µ1 + σ2
1 − R(N1, N2) =

∫ T2

T1

µ(0, u)du +
σ2

1

2
. (3.3.12)

Substituting (3.3.10), (3.3.11), (3.3.12) to (3.3.9) gives the price of the caplet as

e−
∫ T2

0
µ(0,s)du

[

e(T2−T1)µ(0,T1,T2)Φ

(
(T2 − T1)(µ(0, T1, T2) − d)

σ
+

σ

2

)]

−e−
∫ T2

0
µ(0,s)du

[

e(T2−T1)dΦ

(
(T2 − T1)(µ(0, T1, T2) − d)

σ
−

σ

2

)]

,

where

µ(t, T1, T2) = E[f(t, T1, T2)] =
1

(T2 − T1)

∫ T2

T1

µ(s, u)du

and

σ2 = Var((T2 − T1)f(T1, T1, T2)) = 2

∫ T2

T1

∫ u

T1

c(t, u, v)dudv.

3.3.2 Random Fields vs. Affine Models

Random field models are not flawless in practicability. As Collin-Dufresne and

Goldstein ([CG03] suggest, random field models have been considered as

non-implementable unless they are reduced to low dimensions. Longstaff,

Santa-Clara, and Schwartz [LSS99] estimate a random field model where the
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drift and diffusion parameters of the model are calibrated by the principal

components analysis approach so that the model produces the first N

components of the data. However, such a model is equivalent to a finite factor

model, as observed by Kerkhof and Pelsser [KP02]. By using the Markov Chain

Monte Carlo (MCMC) method Bester [Bes04] estimates both random field and

affine models from the same set of forward rates data and compares them. The

finite-factor models fail to capture the volatility towards the end of the term

structure, whereas the random field models produce exactly the observed

volatilities for nine out of ten long term maturities in the sample. They also

accurately reflect the humps and increases in the term structure of volatilities.

Another subject that the random fields surpass the finite-factor models is the

correlation structure of the forward rates. In the short maturities, both types of

models can be considered successful but as the time to maturity gets greater the

performance of the finite factor models drop.
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Chapter 4

THE

TWO-PARAMETER-PROCESS

MODEL

In this chapter we propose a model which is an extension to the random field

models. The first section introduces the model and its features –along with a

setting which allows to operate under any probability measure, a distinct

attribute of our extension. The second section brings forth an expression of the

yield curve under the model proposed in the first section.

4.1 Introduction

We will operate under a modified version of the filtration introduced in

Definition 2.1.2.

Assumption 4.1.1. The filtration F is modified for our model as follows:

F = (Ft = σ{W (u, v) : u ≤ t, u ≤ v})t≥0 .

We now define a two parameter process represented by a Brownian sheet and

construct our model.
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Definition 4.1.2. Let

M(t, T ) =

∫ t

0

∫ T

0

F (u, v)W (du, dv)

be a martingale with respect to Ft where W (du, dv) is a Brownian sheet. The

dynamics of the forward rates is defined as

f(t, T ) = f(0, T ) +

∫ t

0

µ(u, T )du +

∫ t

0

ϕ(u, T )M(du, T ), (4.1.1)

where µ(t, T ) and ϕ(t, T ) are adapted processes satisfying the HJM conditions

given in Definition 3.2.2.

Differentiating (4.1.1) with respect to t yields

df(t, T ) = µ(t, T )dt + ϕ(t, T )M(dt, T ) (4.1.2)

The zero coupon bond prices satisfy P (t, T ) = exp{−
∫ T

t
f(t, s)ds} and the spot

rate is r(s) = f(s, s), thus the bank account process is

B(t) = exp

{∫ t

0

(

f(0, s) +

∫ s

0

µ(u, s)du +

∫ s

0

ϕ(u, s)M(du, s)

)}

.

Then, the discounted bond price process P̃ (t, T ) becomes

P̃ (t, T ) = e{−[
∫

T

t
f(0,s)ds+

∫
T

t (
∫

t

0
µ(u,s)du)+

∫
T

t (
∫

t

0
ϕ(u,s)M(du,s))ds]}

· e{−[
∫

t

0
f(0,s)ds+

∫
t

0(
∫

s

0
µ(u,s)du)ds+

∫
t

0(
∫

s

0
ϕ(u,s)M(du,s))ds]}

︸ ︷︷ ︸

Discount factor

. (4.1.3)

Let

Kt =

∫ T

s=t

(∫ t

u=0

ϕ(u, s)M(du, s)

)

ds +

∫ t

s=0

(∫ s

u=0

ϕ(u, s)M(du, s)

)

ds (4.1.4)

denote the terms with M(du, s) in (4.1.3). Differentiating (4.1.3) with respect

to t delineates the necessary condition for dP̃ /P̃ to be a martingale (see
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Definition 2.1.10):

dP̃

P̃
= non-martingale terms
︸ ︷︷ ︸

Atdt

+ martingale terms
︸ ︷︷ ︸

dMt

+
1

2
d〈K,K〉t

Here, dP̃ /P̃ is a martingale if and only if Atdt = −1
2
d〈K,K〉t. The following

lemma will be useful in proving the subsequent proposition.

Lemma 4.1.3. For the two process M described above the following relation

holds:

∫ t

0

∫ T

0

ϕ(u, s)M(du, s) =

∫ t

u=0

∫ T

v=0

(∫ T

s=v

ϕ(u, s)ds

)

M(du, dv). (4.1.5)

Proof Apply the stochastic version of Fubini’s Theorem to the left hand side of

(4.1.5):

∫ t

0

∫ T

0

ϕ(u, s)M(du, s) =

∫ T

0

(∫ t

0

ϕ(u, s)M(du, s)

)

ds

=

∫ T

s=0

(∫ t

u=0

∫ s

v=0

ϕ(u, s)M(du, dv)

)

ds

since 0 ≤ v ≤ s and 0 ≤ s ≤ T ,

=

∫ t

u=0

∫ T

v=0

(∫ T

s=v

ϕ(u, s)ds

)

M(du, dv).

�

The following proposition will be decisive in distinguishing the martingale terms

in (4.1.3).

Proposition 4.1.4. Kt, defined as in (4.1.4) is an F-martingale.
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Proof Consider the first integral appearing in (4.1.4):

∫ T

s=t

(∫ t

u=0

ϕ(u, s)M(du, s)

)

ds =

∫ t

u=0

(∫ T

s=0

ϕ(u, s)M(du, s)

)

ds

=

∫ t

u=0

∫ T

s=0

ϕ(u, s)M(du, s)ds −

∫ t

u=0

∫ t

s=0

ϕ(u, s)M(du, s)ds (4.1.6)

=

∫ t

u=0

∫ T

v=0

(∫ T

s=v

ϕ(u, s)ds

)

M(du, s) −

∫ t

u=0

∫ t

s=0

ϕ(u, s)M(du, s)ds. (4.1.7)

The expression in (4.1.6) equals (4.1.7) by Lemma 4.1.3. Then,

Kt =

∫ t

u=0

∫ T

v=0

(∫ T

s=v

ϕ(u, s)ds

)

M(du, dv) −

∫ t

u=0

∫ t

s=0

ϕ(u, s)M(du, s)ds

+

∫ t

s=0

(∫ s

u=0

ϕ(u, s)M(du, s)

)

ds

=

∫ t

u=0

∫ T

v=0

(∫ T

s=v

ϕ(u, s)ds

)

M(du, dv)

−

∫ t

s=0

(∫ t

u=s

ϕ(u, s)M(du, s)

)

ds. (4.1.8)

Let

Yt :=

∫ t

s=0

(∫ t

u=s

ϕ(u, s)M(du, s)

)

ds, 0 ≤ v ≤ s ≤ u ≤ t.

=

∫ t

s=0

(∫ t

u=s

ϕ(u, s)

∫ s

v=0

M(du, dv)

)

ds. (4.1.9)

Examining the limits of the above integrals reveals that 0 ≤ v ≤ s, s ≤ u ≤ t,

and 0 ≤ s ≤ t. Then, it is possible to reconstruct (4.1.9) with s, v, u so that

v ≤ s ≤ u, 0 ≤ v ≤ u, and 0 ≤ u ≤ t.

Yt =

∫ t

u=0

∫ u

v=0

(∫ u

s=v

ϕ(u, s)ds

)

M(du, dv). (4.1.10)

Combine (4.1.8) with (4.1.10),

Kt =

∫ t

u=0

∫ T

v=0

(∫ T

s=v

ϕ(u, s)ds

)

M(du, dv)ds −

∫ t

u=0

∫ u

v=0

(∫ u

s=v

ϕ(u, s)ds

)

M(du, dv).

29



By rearranging the first integral we can write

Kt =

∫ t

u=0

∫ T

v=u

(∫ T

s=v

ϕ(u, s)ds

)

M(du, dv) +

∫ t

u=0

∫ u

v=0

(∫ T

s=v

ϕ(u, s)ds

)

M(du, dv)

−

∫ t

u=0

∫ u

v=0

(∫ u

s=v

ϕ(u, s)ds

)

M(du, dv)

=

∫ t

u=0

∫ T

v=u

(∫ T

s=v

ϕ(u, s)ds

)

M(du, dv)

︸ ︷︷ ︸

I

+

∫ t

u=0

∫ u

v=0

(∫ T

s=u

ϕ(u, s)ds

)

M(du, dv)

︸ ︷︷ ︸

II

.

The integrals I and II are martingales since ϕ(u, s) = is F-adapted and M(du, ·)

is an F-martingale by construction. Therefore, Kt is an F-martingale.

�

Let K1
t = I and K2

t = II. The quadratic variations of K1
t and K1

t are:

〈K1
· , K

1
· 〉t =

∫ t

u=0

∫ T

v=u

(∫ T

s=v

ϕ(u, s)ds

)2

F 2(u, v)dudv (4.1.11)

〈K2
· , K

2
· 〉t =

∫ t

u=0

∫ u

v=0

(∫ T

s=u

ϕ(u, s)ds

)2

F 2(u, v)dudv (4.1.12)

Notice that in (4.1.11) v varies between u and T , whereas in (4.1.12) it varies

between 0 and u. Thus, 〈K1
· , K

1
· 〉t and 〈K2

· , K
2
· 〉t are orthogonal. Hence, the

quadratic variation of Kt is:

〈K·, K·〉t = 〈K1
· , K

1
· 〉t + 〈K2

· , K
2
· 〉t

The derivative of 〈K·, K·〉t with respect to t is:

κ =
d

dt
〈K·, K·〉t =

∫ T

v=t

(∫ T

s=v

ϕ(t, s)ds

)2

F 2(t, v)dv +

∫ t

v=0

(∫ T

s=t

ϕ(t, s)ds

)2

F 2(t, v)dv.
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The derivative of the non-martingale terms in (4.1.3) with respect to t is:

∂

∂t

[∫ T

t

f(0, s)ds +

∫ t

0

f(0, s)ds +

∫ T

t

(∫ t

0

µ(u, s)du

)

ds +

∫ t

0

(∫ t

0

µ(u, s)du

)

ds

]

+
1

2
κ

=
∂

∂t

[∫ T

0

f(0, s)ds +

∫ T

t

(∫ t

0

µ(u, s)du

)

ds +

∫ t

0

(∫ t

0

µ(u, s)du

)

ds

]

+
1

2
κ

= −

∫ t

0

µ(u, t)du +

∫ T

t

µ(t, s)ds +

∫ t

0

µ(u, t)du +
1

2
κ

= 0.

The last equality is necessary to ensure that P̃ (t, T )/P̃ is a martingale. Taking

the derivative of the last equation with respect to T leaves an expression for the

drift surface of the forward rates:

µ(t, T ) = ϕ(t, T )

[∫ T

t

(∫ T

v

ϕ(t, s)ds

)

F 2(t, v)dv +

∫ t

0

(∫ T

t

ϕ(t, s)ds

)

F 2(t, v)dv

]

.

(4.1.13)

In (4.1.13) the variables of the first integral satisfy t ≤ v ≤ s ≤ T and the

variables in the second integral satisfy v ≤ t ≤ s ≤ T . Therefore, a change in

the bounds of the integral and application of Fubini’s Theorem to both integrals

yield:

µ(t, T ) = ϕ(t, T )

[∫ T

s=t

(∫ s

v=t

ϕ(t, s)F 2(t, v)dv

)

ds +

∫ T

s=t

(∫ t

v=0

ϕ(t, s)F 2(t, v)dv

)

ds

]

.

Hence,

µ(t, T ) = ϕ(t, T )

∫ T

t

ϕ(t, s)

(∫ s

0

F 2(t, v)dv

)

ds. (4.1.14)

Compare this with the drift surface obtained in the generalized random field

model:

µ(t, T ) = σ(t, T )

∫ T

t

σ(t, v)c(t, T, v)dv.

Up to this point, all results concerning the drift surface were derived under the
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risk neutral probability along with Assumption 3.2.1. Goldstein states that in

an N -factor model (N + 1) bonds are needed in order to perfectly hedge a

portfolio where this hedging strategy allows to identify the risk-neutral measure,

whereas, since the random field models imply that there are an infinite number

of economic factors that derive the interest rates, hedging with a finite number

of bonds is impossible [Gol00]. So, rather than proving the existence of the

risk-neutral measure, its existence is taken as granted. This approach is

convenient in the random field setting, whereas, the flexibility in our proposed

model leads to a different scheme. This is illustrated in the following setting:

Let X(t, s) = ϕ(t, s)M(t, s), then forward rates can be written as:

f(t, s) = µ(t, s) + X(t, s). (4.1.15)

Thus the dynamics of the forward rates are:

df(t, s) =
∂µ(t, s)

∂t
dt +

∂ϕ(t, s)

∂t
M(t, s)dt + ϕ(t, s)M(dt, s) (4.1.16)

=
∂µ(t, s)

∂t
dt +

∂ϕ(t, s)

∂t
ϕ−1(t, s)X(t, s)dt + ϕ(t, s)M(dt, s)

= A(t, s)dt + ϕ(t, s)M(dt, s).

Here, A(t, s) = ∂µ(t,s)
∂t

+ ∂ϕt,s
∂t

ϕ−1(t, s)X(t, s) is the new drift surface. This drift

surface contains a term with X(t, s) hence it is no longer deterministic, giving

rise to a need for a change of probability measure under which, the drift term is

rendered riskless. This change of measure can be constructed with an algorithm

similar to Girsanov’s Theorem in one-parameter framework1.

Let H(u, s) be a process that satisfies the following Novikov condition:

E
∗
[

e
1

2

∫
t

0
H2(u,s)du

]

< ∞ ∀s ∈ [0, T ],

where E
∗ is the expectation operator under the risk neutral probability P

∗. Let

1See [LL00].
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us put

B(dt, s) :=

(∫ s

0

F 2(t, v)dv

)− 1

2

M(dt, s).

Observe that ∀s, B(t, s)0≤t≤T is a Brownian motion. The entity B(dt, s) defined

above is rather a Gaussian random field. Therefore,

Lt(s) := exp

{∫ t

0

H(u, s)B(du, s) −
1

2

∫ t

0

H2(u, s)du

}

(4.1.17)

is a (F, P∗) martingale in t for any fixed s. Consider the probability measure Ps

defined by

dPs = LT (s)dP
∗ (4.1.18)

Notice that the probability measure Ps is dependent on s which forms a

continuum, thus this probability measure can be thought as a coordinate of an

infinite dimensional probability measure. According to Girsanov’s Theorem,

B̂(t, s) = B(t, s) −

∫ t

0

H(u, s)du

is a Ps-Brownian motion in t for any fixed s. We have

M(dt, s) =

(∫ s

0

F 2(t, v)dv

) 1

2

B(dt, s).

Define

M̂(dt, s) := M(dt, s) −

(∫ s

0

F 2(t, v)dv

) 1

2

H(t, s)dt. (4.1.19)

Taking into account the relation (4.1.19), we can write

df(t, s) =
∂µ(t, s)

∂t
dt + ϕ(t, s)M(dt, s)

=
∂µ(t, s)

∂t
dt + ϕ(t, s)

[

M̂(dt, s) +

(∫ s

0

F 2(t, v)dv

) 1

2

H(t, s)dt

]

.
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We impose H to satisfy the equation

ϕ(t, s)

(∫ s

0

F 2(t, v)dv

) 1

2

H(t, s) =
∂ϕ(t, s)

∂t
M̂(t, s), (4.1.20)

in order to have

df(t, s) =
∂µ(t, s)

∂t
dt +

∂ϕ(t, s)

∂t
M̂(t, s)dt + ϕ(t, s)M̂(dt, s). (4.1.21)

The relation (4.1.21) is, in turn, equivalent to

f(t, s) = µ(t, s) + X̂(t, s),

with X̂(t, s) = ϕ(t, s)M̂(t, s). Under this setting it is possible to obtain the drift

surface as given by (4.1.14) without the restriction of operating under the risk

neutral probability measure. In fact, with any H satisfying (4.1.20), one can

calculate the drift surface using the model in hand with parameters estimated

with respect to the market rates. Equation (4.1.20) can be written as:

ϕ(t, s)

(∫ s

0

F 2(t, v)dv

) 1

2

H(t, s) =
∂ϕ(t, s)

∂t

[

M(t, s) −

∫ t

0

(∫ s

0

F 2(u, v)dv

) 1

2

H(u, s)du

]

.

Let

G(t, s) :=

∫ t

0

(∫ s

0

F 2(u, v)dv

) 1

2

H(u, s)du. (4.1.22)

Then, Equation (4.1.22) becomes

∂G(t, s)

∂t
=

∂ ln ϕ(t, s)

∂t
[M(t, s) − G(t, s)]. (4.1.23)

Equation (4.1.23) can then be written as

∂G(t, s)

∂t
= −A(t, s)G(t, s) + A(t, s)M(t, s) (4.1.24)
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We use the method of variation of constants and put

G(t, s) = C(t, s)e−
∫

t

0
A(u,s)du. (4.1.25)

We obtain

∂G(t, s)

∂t
=

∂C(t, s)

∂t
e−

∫
t

0
A(u,s)du − C(t, s)A(t, s)e−

∫
t

0
A(u,s)du (4.1.26)

Combining (4.1.24) and (4.1.26) we get

∂C(t, s)

∂t
= A(t, s)M(t, s)e

∫
t

0
A(u,s)du,

which is equivalent to

C(t, s) = C(0, s) +

∫ s

0

A(u, s)M(u, s)e
∫

u

0
A(v,s)dvdu.

By using the relation above, (4.1.25) can be rearranged as

G(t, s) =

[

C(0, s) +

∫ s

0

A(u, s)M(u, s)e
∫

u

0
A(v,s)dvdu

]

e−
∫

t

0
A(u,s)du. (4.1.27)

Combining (4.1.22), (4.1.23), (4.1.24), and (4.1.27) we deduce

∂G(t, s)

∂t
=

(∫ s

0

F 2(t, v)dv

) 1

2

H(t, s)

=
[

A(t, s)M(t, s)e
∫

t

0
A(v,s)dv

]

e
∫

t

0
A(u,s)du

−A(t, s)

[

C(0, s) +

∫ s

0

A(u, s)M(u, s)e
∫

u

0
A(v,s)dvdu

]

e−
∫

t

0
A(u,s)du

Since A(t, s) = ∂ ln ϕ(t,s)
∂t

,
∫ t

0
A(v, s)dv = ln ϕ(t, s) − ln ϕ(0, s). Using this fact,

35



we can obtain an expression for H(t, s):

H(t, s) =

(∫ s

0

F 2(t, v)dv

)− 1

2 ∂ ln ϕ(t, s)

∂t

[

M(t, s)

(
ϕ(t, s)

ϕ(0, s)

)2

+

(

C(0, s) +

∫ t

0

∂ ln ϕ(u, s)

∂u
M(u, s)

ln ϕ(u, s)

ln ϕ(0, s)
du

)
ϕ(t, s)

ϕ(0, s)

]

We had assumed that H satisfied the Novikov condition. Indeed, since H

depends linearly on M(t, s) –which is Gaussian itself– the Novikov condition is

automatically satisfied.

4.2 An Expression for the Yield Curve

Let the forward rate model be given by (4.1.15). We know that

Y (t, T ) =
1

T − t

∫ T

t

f(t, s)ds.

Then,

E[Y (t, T )] =
1

T − t

∫ T

t

E[f(t, s)]ds

=
1

T − t

∫ T

t

µ(t, s)ds.

The drift condition (4.1.14) yields

µ(t, T ) = µ(0, T ) +

∫ t

0

ϕ(u, T )

[∫ T

u

(

ϕ(u, s)

∫ s

0

F 2(u, v)dv

)

ds

]

du. (4.2.28)
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Let ϕ(t, s) = e−at−bs which makes X a two parameter Ornstein-Uhlenbeck

process. In this framework, F 2(u, v) = e2aue2bv. The equation (4.2.28) implies

µ(t, s) = µ(0, s) +

∫ t

0

e−bs

[∫ s

u

(

e−bq

∫ q

0

e2bvdv

)

dq

]

du

= µ(0, s) +

∫ t

0

e−bs

(
ebs − ebu + e−bs − e−bu

2b2

)

du

= µ(0, s) +
t

2b2
−

e−bs

2b3
ebt +

e−bs

2b3
+

e−bs

2b2
t +

e−bs

2b3
e−bt −

e−bs

2b3

= µ(0, s) +
t

2b2
−

e−bs

2b3
ebt +

e−2bs

2b2
t +

e−bs

2b3
e−bt.

Then, E[Y (t, T )] becomes

E[Y (t, T )] =
1

T − t

∫ T

t

(

µ(0, s) +
t

2b2
−

e−bs

2b3
ebt +

e−2bs

2b2
t +

e−bs

2b3
e−bt

)

ds

=
1

T − t

[∫ T

t

µ(0, s)ds +
t

2b2
+

e−bt

2b4

(
e−bT − e−bt

T − t

)]

−
1

T − t

[

−
t

4b3

(
e−2bT − e−2bt

T − t

)

−
e−bt

2b4

(
e−bT − e−bt

T − t

)]

.

Notice that µ(0, s) is the initial term structure of the forward rates and can be

estimated via various methods such as the Nelson-Siegel method, spline-based

methods and their variations.

4.3 Further Work

The applications of this model is only limited with the boundaries of the usage

of any interest rate model. It is open to experimentation, both mathematically

and empirically. Option pricing is one issue. One may implement any two

parameter process in the model, thus any two parameter process will bring its

own advantages and disadvantages in pricing options. Also, the existence of the

risk-neutral probability measure is a delicate issue in option pricing, thus the

problem of exposing the infinite-dimensional probability measure stated in

Section 4.1 must be tackled.
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Another experiment is taking an approach similar to Kimmel’s stochastic

volatility concept to define the process M [Kim03]. The stochastic volatility

topic itself is a wide area which can provide good opportunities to produce

models consistent with empirical data. A third field of interest is the parameter

estimation of the model. Bester’s work is inspiring in the sense that random

field models perform much better in reproducing the observed volatility and

correlation of the data than affine models [Bes04].
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Chapter 5

CONCLUSION

In this study we tried to give a general overview of the random fields and their

applications in interest rate modelling and formulated a flexible interpretation

of the forward rate random field models. In this model, rather than taking a

random field as a driving source for the innovation of the forward rates, we

attached a two parameter process M(t, T ). This process provides flexibility in

choosing both the random field that derives the process and its incremental

process. Any two parameter process can be imposed in the model. Another

feature of this model is that one can calculate the drift surface under different

probability measures. Also, the model can be reduced into any random field

model. Thus this model provides a broad area of mobility for researches in

forward rate random field models.
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