AN EVALUATION OF THE REINSPECTION DECISION POLICIES FOR SOFTWARE CODE INSPECTIONS

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERKAN NALBANT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN INDUSTRIAL ENGINEERING

JANUARY 2005

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan ÖZGEN Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Prof. Dr. Çağlar GÜVEN Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Gülser KÖKSAL Supervisor

 Examining Committee Members

 Assoc. Prof. Dr. Yasemin SERİN (METU, IE)

 Assoc. Prof. Dr. Gülser KÖKSAL (METU, IE)

 Assoc. Prof. Dr. Tayyar ŞEN (METU, IE)

 Assoc. Prof. Dr. Ali Hikmet DOĞRU (METU, CENG)

 M.Sc. Levent TÜREL (MilSOFT Software Technologies)

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name :

Signature :

ABSTRACT

AN EVALUATION OF THE REINSPECTION DECISION POLICIES FOR SOFTWARE CODE INSPECTIONS

Nalbant, Serkan

M.S., Department of Industrial Engineering Supervisor: Assoc. Prof. Dr. Gülser KÖKSAL

January 2005, 197 pages

This study evaluates a number of software reinspection decision policies for software code inspections with the aim of revealing their effects regarding cost, schedule and quality related objectives of a software project.

Software inspection is an effective defect removal technique for software projects. After the initial inspection, a reinspection may be performed for decreasing the number of remaining defects further. Although, various reinspection decision methods are proposed in the literature, no study provides information on the results of employing different methods. In order to obtain insight about this unaddressed issue, this study compares the reinspection decision policies by finding out and analyzing their performance with respect to designated measures and preference profiles for cost, schedule, and quality perspectives in the context of a typical Software Capability Maturity Model Level 3 software organization. For this purpose, a Monte Carlo simulation model, which represents the process comprising initial code inspection, reinspection, testing and field use activities, is employed in the study together with the experiment designed in order to consider different circumstances under which the mentioned process operates.

The study recommends concluding the reinspection decision by comparing inspection effectiveness measure for major defects with respect to a moderately high threshold value (i.e. 75%). The study also reveals that applying default decisions of 'Never Reinspect' and 'Always Reinspect' do not exhibit the most appropriate outcomes regarding cost, schedule, and quality. Additionally, the study presents suggestions for further improving the cost, schedule, and quality of the software based on the analysis of the experiment factors.

Key Words: Software reinspection, software code inspection, decision making, Monte Carlo simulation, design of experiments.

ÖZ

YAZILIM KOD MUAYENELERİNE YÖNELİK YENİDEN MUAYENEYE KARAR VERME POLİTİKALARININ KARŞILAŞTIRILMASI

Nalbant, Serkan

Yüksek Lisans, Endüstri Mühendisliği Bölümü Tez Yöneticisi: Doç. Dr. Gülser Köksal

Ocak 2005, 197 sayfa

Bu çalışma yazılım kod muayeneleri için ortaya konan belirli sayıdaki yeniden muayeneye karar verme politikalarını, bu politikaların yazılım projesinin maliyet, takvim, ve kaliteye ilişkin hedefleri üzerindeki etkilerini ortaya çıkarmak amacıyla değerlendirmektedir.

Yazılım muayeneleri yazılım projelerinde oluşan hataların ortadan kaldırılması için etkili bir tekniktir. İlk muayaneden sonra yapılabilen yeniden muayene sayesinde ise yazılım ürününde kalan hatalar daha da azaltılabilir. Literatürde yeniden muayeneye karar vermeye yönelik bir çok metot önerilmesine rağmen, farklı metotların kullanılması sonucu karşılaşılan sonuçları gösteren bir çalışma bulunmamaktadır. Bu çalışma, literatürde değinilmemiş olan bu konu hakkında fikir sağlamak üzere, Yazılım Yetenek Olgunluk Modeli Seviye 3'e göre yapılanmış bir yazılım organizasyonu kontekstinde, yeniden muayeneye karar verme politikalarının maliyet, takvim, ve kalite bakış açılarına ilişkin performanslarını, belirlenen ölçülere ve tercih profillerine göre ortaya çıkarıp analiz ederek karşılaştırmaktadır. Bu amaç

doğrultusunda, çalışmada, ilk kod muayenesi, yeniden muayene, test ve yazılımın sahada kullanılması faaliyetlerini kapsayan süreci temsil etmek üzere bir Monte Carlo simülasyon modeli, bu süreç kapsamındaki farklı koşulların dikkate alınmasını sağlayan bir deney tasarımı ile beraber kullanılmaktadır.

Çalışma, yeniden muayene kararının majör hataların etkililik ölçüsünün kısmen yüksek bir eşik değerine göre karşılaştırılması sonucu alınmasını tavsiye etmektedir. Ayrıca, 'Hiçbir Zaman Yeniden Muayane Yapma' ve 'Her Zaman Yeniden Muayane Yap' sabit kararlarının uygulanmasının maliyet, takvim, ve kalite açılarından en uygun sonuçları vermediği de çalışma sonuçları tarafından ortaya konmaktadır. Buna ilaveten, çalışma, deneyde içerilen faktörlerin analiz edilmesi sonucunda, yazılım maliyet, takvim, ve kalitesinin daha da geliştirilmesi için çeşitli öneriler sunmaktadır.

Anahtar Kelimeler: Yazılım yeniden muayenesi, yazılım kod muayenesi, karar verme, Monte Carlo simülasyonu, deney tasarımı.

To My Family

ACKNOWLEDGEMENTS

I send my kindest regards and thanks to Mrs. Köksal for providing invaluable advices related to my research and supporting me endlessly while I am working on thesis study.

I would like to express my sincere thanks to my family for always trusting me and tolerating all my fancies in the stressful days.

I also thank to my company for excusing and supporting me during my Master of Science education.

TABLE OF CONTENTS

ABSTRACTiv
ÖZvi
ACKNOWLEDGEMENTSix
TABLE OF CONTENTSx
LIST OF TABLES xiii
LIST OF FIGURESxvi
CHAPTER
1. INTRODUCTION1
2. BACKGROUND AND LITERATURE SURVEY4
2.1. Software Peer Reviews4
2.2. Software Inspections
2.3. Software Code Defects and Relevant Studies15
2.4. Defect Content Estimation Techniques for Software Inspection21
2.4.1 Curve Fitting Models
2.4.2 Capture-Recapture Models
2.4.3 Subjective Defect Content Estimation Techniques
2.5. Evaluations of Different Software Inspection DCETs
2.5.1 Evaluation Measures for Software Inspection DCETs

2.5.2	Findings of the Studies that Evaluate Software Inspection			
DCE	Ts 35			
2.6.	Reinspections			
2.7.	Defect Detection Capability Estimation Techniques42			
3. DESCR	3. DESCRIPTION AND CONDUCT OF THE STUDY45			
3.1.	Description of the Method and the Simulation Model Applied in the			
3.1.1	Modeling the Defect Detection			
3.1.2	Modeling the Defect Injection54			
3.1.3	Modeling the Cost of Defect Correction55			
3.1.4	Modeling the Labor Cost of Reinspection56			
3.1.5	Defining the Output Measures of the Simulation Model			
3.1.6	Outline of the Study			
3.2.	Determining the Factors and Experimental Layout of the Study60			
3.3.	Determining the Reinspection Policies to be Evaluated67			
3.4.	Selecting the Defect Content Estimation Technique to be Employed.70			
3.5.	Selecting the Defect Detection Capability Estimation Technique to be			
Employ	ed85			
3.6.	Evaluating the Reinspection Decision Policies			
3.7.	Studying the Effects of the Factors on Output Measures103			
4. DISCUS	4. DISCUSSION			
4.1. Analyzing the Results Regarding Suitable Policies for Different Preference Profiles				
4.2.	4.2. Reviewing the Results of Tolerance Analysis 119			
4.3.	Validity of the Study Results			
5. CONCL	LUSION			

REFERENCES
APPENDICES
A.SIMULATED DATA FOR FAILURE RATE MEASURE OF ESTIMATORS
B. SIMULATED DATA FOR RELATIVE ERROR AND ROOT MEAN SQUARE ERROR MEASURES OF ESTIMATORS145
C.SIMULATED DATA FOR DECISION ACCURACY AND RELATIVE DECISION ACCURACY MEASURES OF ESTIMATORS150
D.SIMULATED OUTPUT MEASURES DATA OF REINSPECTION DECISION POLICIES THROUGH ALL TREATMENTS
E. REINSPECTION DECISION POLICIES' AGGREGATE STANDARDIZED MEAN SQUARED VALUES FOR ALL PREFERENCE PROFILES
F. ANALYSIS OF VARIANCE DETAILS REGARDING OUTPUT MEASURES OF RECOMMENDED POLICY

LIST OF TABLES

TABLES

Table 1 Ranges of Published Code Inspection Cost Data
Table 2 Defect Introduction Factors for COQUALMO Defect Introduction Submodel 17
Table 3 Defect Removal Profiles for COQUALMO Defect Removal Submodel19
Table 4 Code Defect Removal Fractions for COQUALMO Defect Removal
Submodel
Table 5 Closed Population Capture-Recapture Models & Their Sources of Variation
Table 6 Capture-Recapture Models and Estimators Used for Software Inspection28
Table 7 NSQE Defect Correction Costs in terms of Man-hours
Table 8 Factors and Corresponding Levels Considered in the Study
Table 9 Experimental Layout Employed in the Study
Table 10 Reinspection Policies Considered in the Study 68
Table 11 Capture-Recapture Estimators Considered in the Study 72
Table 12 Failure Rate Statistics for the Estimators Regarding All Defects 74
Table 13 Failure Rate Statistics for the Estimators Regarding Major Defects 74
Table 14 Decision Accuracy Statistics for the Estimators 76
Table 15 Relative Decision Accuracy Statistics for the Estimators

Table 16 Root Mean Square Error Statistics for the Estimators through Major Defects
Table 17 Root Mean Square Error Statistics for the Estimators through All Defects 80
Table 18 Relative Error Statistics for the Estimators through All Defects 84
Table 19 Relative Error Statistics for the Estimators through Major Defects
Table 20 Layout for Evaluating Reinspection Decision Policies
Table 21 Mean Output Measure Values for Reinspection Policies90
Table 22 Mean Squared Output Measure Values for Reinspection Policies
Table 23 Average and Standard Deviation of Mean Squared Values for Three Output Measures
Table 24 Standardized Mean Squared Output Measure Values for Reinspection
Policies
Table 25 Preference (Weight) Profiles for Output Measures Considered in the Study
Table 26 Ranks of Reinspection Policies for each Preference Profile 101
Table 27 Total Cost Measure's ANOVA Table for Policy 39104
Table 28 Schedule Delay Measure's ANOVA Table for Policy 39107
Table 29 Major Field Defects Measure's ANOVA Table for Policy 39 109
Table 30 Questionnaire for Determining the Appropriate Reinspection Policy114
Table 31 Sensitivity Analysis Regarding the Usage of Policy 39117
Table 32 Failure Rate Data of Considered Estimators for All Defects 137
Table 33 Failure Rate Data of Considered Estimators for Major Defects 141
Table 34 Relative Error and Root Mean Square Error Data of Estimators 3, 8, and 9for All Defects145
Table 35 Relative Error and Root Mean Square Error Data of Estimators 3, 8, and 9 for Major Defects 148

Table 36 Decision Accuracy and Relative Decision Accuracy Data of Estimato	rs 3,
8, and 9	.150
Table 37 Output Measures Data of Reinspection Decision Policies	.152
Table 38 Reinspection Decision Policies' Aggregate Standardized Mean Squ	ared
Values for All Preference Profiles	.183

LIST OF FIGURES

FIGURES

Figure 1 Reliability Growth Model for Software Inspection
Figure 2 The Inspection-Reinspection Process Flow
Figure 3 Boxplots for Estimator Failure Rate Regarding All Defects75
Figure 4 Boxplots for Estimator Failure Rate Regarding Major Defects75
Figure 5 Boxplots for Estimator Decision Accuracy77
Figure 6 Boxplots for Estimator Relative Decision Accuracy
Figure 7 MINITAB Output for One-way ANOVA and Fisher's Test Results (with 95
% confidence) of Root Mean Square Error through Major Defects
Figure 8 MINITAB Output for One-way ANOVA and Fisher's Test Results (with 95
% confidence) of Root Mean Square Error through All Defects
Figure 9 Boxplots for Estimator Root Mean Square Error through Major Defects82
Figure 10 Boxplots for Estimator Root Mean Square Error through All Defects82
Figure 11 Boxplots for Estimator Relative Error through All Defects
Figure 12 Boxplots for Estimator Relative Error through Major Defects
Figure 13 Total Cost Measure's Main Effects Plot for Policy 39105
Figure 14 Total Cost Measure's Interaction Plots for Policy 39106
Figure 15 Schedule Delay Measure's Main Effects Plot for Policy 39108
Figure 16 Major Field Defects Measure's Main Effects Plot for Policy 39110

Figure 17 Major Field Defects Measure's Interaction Plots for Policy 39111
Figure 18 Normal Probability Plot for Policy 39 Total Cost Measures191
Figure 19 Residual versus Fits Plot for Policy 39 Total Cost Measures
Figure 20 MINITAB Output for Significant Factors' Tukey Comparisons of Policy
39 Total Cost Measures
Figure 21 Normal Probability Plot for Policy 39 Schedule Delay Measures
Figure 22 Residual versus Fits Plot for Policy 39 Schedule Delay Measures
Figure 23 MINITAB Output for Significant Factors' Tukey Comparisons of Policy
39 Schedule Delay Measures
Figure 24 Normal Probability Plot for Policy 39 Major Field Defects Measures196
Figure 25 Residual versus Fits Plot for Policy 39 Major Field Defects Measures196
Figure 26 MINITAB Output for Significant Factors' Tukey Comparisons of Policy
39 Major Field Defects Measures

CHAPTER 1

INTRODUCTION

Today, software is a basic component of many businesses. In some areas, it is even impossible to survive for an organization without the use of associated computer software (e.g. banking, telecommunications). Because of this fact along with the increasing competition, advances in technology and enhancing capabilities of software development organizations, the need for more and more sophisticated software systems is growing constantly. The realization of such systems requires successful completion of complex projects. This means that the software product is delivered on time, within budget and with high quality. The accomplishment of these aims demands effective software processes which underpins the software development activities.

The delivery of high quality software is achieved by eliminating the defects injected in various phases of the software development life cycle, such as requirements analysis, software design, coding. Software organizations employ numerous techniques to remove the defects from the software, thus preventing their propagation to the user. These techniques include automated analysis of the software code, peer reviews and execution testing (generally performed in different levels such as unit testing, integration testing, acceptance testing). Among these techniques, peer review is getting more and more popular due to increasing recognition of its effectiveness in removing the defects in software. Also, software development related standards and models mandate the implementation of peer reviews. In the scope of peer review a software artifact is examined by the related project personnel (other than the author) with the aim of pointing out to defects and improvements. Software Inspection is a special type of peer review, where the examination of the software work product is conducted according to well-defined procedures with certain stages and by personnel who are trained on inspection procedures and techniques. The aim of conducting a software inspection is to improve the software project's performance in terms of cost, schedule, and quality. Additionally, software reinspections may be performed after the initial inspection is completed in order to further reduce the number of defects in the software work product, thus to obtain more of inspection benefits. However, this requires increasing the amount of project resources that are allocated for inspecting the product. Hence, the project management should make the decision to devote higher level of valuable resources for scrutinizing the software work product anew rationally, i.e. without arbitrariness and basing it on quantitative data. Although, various objective decision methods are proposed for concluding this important decision in addition to ad-hoc and historical data based decision methods, currently there is no guidance for the software engineering practitioners for selecting the appropriate objective reinspection decision method among the available ones. Hence, in this study this niche is addressed by evaluating the performance of different objective reinspection decision methods for code inspections conducted in the context of a Software Capability Maturity Model Level 3 organization. This evaluation is based on the comparisons of different policies (constituted from the available objective decision methods) with respect to the outcomes they depict at the end of the project lifecycle. Namely, for each considered reinspection policy the resulting cost, schedule delay and defect containment are revealed with the aim of determining the ranking of the policy for different preference profiles. These profiles refer to the different weights assigned to cost, schedule, defectiveness due to varying preferences shaped according to organizational policies, project structure, software type etc. In order to observe the related outcomes for various conditions underlying the study, an experiment is designed by designating the factors that affect software inspection. Then, the policies are evaluated by conducting Monte Carlo simulations that execute the model of the study for the determined experiment design. The usage of simulation technique enables observing the effects of various policies under various conditions as software code is flowing through the life cycle without conducting actual inspections, testing

etc., i.e. by just expending computer processor time. The study also utilizes the simulation results for providing guidance about the effects of changing factor levels on cost, quality, and schedule measures.

The study is presented as follows. In Chapter 2, first, software inspection and the issue regarding software defects are described in detail. This is followed by the explanation and comparison of the techniques that enable the estimation of the defect population in a software work product during inspection. Then, Chapter 2 concludes by providing information on software reinspections and the techniques to predict the number of defects to be found during a probable reinspection. Chapter 3 initially puts forward the method to be followed in the study along with the underlying simulation model. Then, the factors that are considerable for the purposes of the study are introduced, and by taking into account these factors, the experiment design which enables the representation of the different circumstances related to the study is constituted. Chapter 3 continues by identifying the reinspection decision policies which are compared with each other during the study. Further, the defect estimation techniques required while applying the selected reinspection policies are nominated. Afterwards Chapter 3 presents the simulation results that show the ranking of different policies under various preference profiles regarding cost, schedule, and quality. The ANOVA studies regarding the effects considered factors on output measures of the study completes Chapter 3. The succeeding chapter, namely Chapter 4, provides the analysis regarding the reinspection policy rankings and ANOVA studies along with the discussion on the validity of the study results. Chapter 4 also lists the suggestions for the software organizations which enable them to improve their cost, schedule, and quality performance by manipulating the factors considered in the scope of the study. Finally, in Chapter 5, the study is concluded by summarizing the study, portraying the overall findings and describing the potential research opportunities that may be considered in the future.

CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1. Software Peer Reviews

Peer Review is a process, where colleagues of the author, who developed the software work product, examine the product with intend to find defects and identify improvement opportunities (Wiegers, 2002). Wiegers defines a defect (also known as bug or fault) as "a condition in a software work product that would cause the software to produce an unsatisfactory or unexpected result". In software industry, peer reviews are employed to detect the defects in various work products such as requirements specifications, design descriptions, source code, planning documentation, test case descriptions, process descriptions, etc.

The software process improvement models such as Software Capability Maturity Model (SW-CMM) (Paulk et al., 1993), Capability Maturity Model Integration (CMMI) (CMMI Product Team, 2001), and Software Process Improvement and Capability Determination (SPICE) (ISO, 1998) impose peer reviews as an effective verification practice. SW-CMM deserves special attention among these models, since it is probably the most widely used and recognized one by software organizations (although it is recently started to be replaced by its extension CMMI). Even only recent (between January 2000 and June 2004) SW-CMM assessments are considered, the number of organizations assessed with respect to SW-CMM adds up to 1,543 (Software Engineering Institute, 2004). SW-CMM enables software development organizations to improve their software processes. On the other hand, it helps the software acquiring organizations in assessing the quality of their contractors. For supporting the process improvement goal, SW-CMM puts forward a framework

through which software organizations selects process improvement strategies after determining the current level of their process maturity and identifying the key factors that would lead to improvement. The underlying assumption of SW-CMM, as in all process models, is better processes lead to improved quality in the product. When a software organization is assessed with respect to SW-CMM, it is given one of the five available ratings. These ratings represent the software development maturity of the organization and called as 'maturity level'. For acquiring a certain maturity level a software organization must meet the requirements of this level and the requirements of the lower levels. Each maturity level is composed of a number of processes, which are called 'Key Process Area (KPA)', that correspond to these requirements. A KPA is defined as, "a cluster of related activities that, when performed collectively, achieve a set of goals considered important for establishing process capability" (Paulk et al., 1993). Hence, the software organizations must prove that it implements the related KPAs required by the aimed maturity level. One of the KPAs put forward by maturity level three is 'Peer Reviews'. The goal of Peer Review KPA is to remove and identify the defects in the software work products by performing planned peer review activities. In order to accomplish this the following practices shall be conducted; (i) a peer review policy is designated, (ii) resources are allocated to perform peer reviews, (iii) peer review participants are trained about peer reviews, (iv) planned peer reviews are carried out according to documented procedures by reviewers who have defined roles and by using checklists, (v) the actions identified during the peer review performed in order to remove the defects, (vi) quantitative data regarding the peer review are stored. (Paulk et al., 1993).

Actually, peer review is an umbrella term used to denote the different kinds of processes that enables manually examining the software work product for finding defects, i.e. there exists different types of peer reviews. 'IEEE Standard for Software Reviews' classifies peer reviews into three as (i) Technical Review, (ii) Walkthrough and (iii) Inspection (IEEE, 1998). The following definitions are put forward by this standard for these peer review types (IEEE, 1998):

(i) Technical Review: A systematic evaluation of a software product by a team of qualified personnel that examines the suitability of the software

product for its intended use and identifies discrepancies from specifications and standards. Technical reviews may also provide recommendations of alternatives and examination of various alternatives.

(ii) Walkthrough: A static analysis technique in which a designer or programmer leads members of the development team and other interested parties through a software product, and the participants ask questions and make comments about possible errors, violation of development standards, and other problems.

(iii) **Inspection:** A visual examination of a software product to detect and identify software anomalies, including errors and deviations from standards and specifications. Inspections are peer examinations led by impartial facilitators who are trained in inspection techniques. Determination of remedial or investigative action for an anomaly is a mandatory element of a software inspection, although the solution should not be determined in the inspection meeting.

Among these peer review types, inspection deserves special attention because of the following reasons:

- Inspection is more effective than other peer review types in terms of defect removal (Wiegers, 2002, Gilb and Graham, 1993, Radice, 2002).
- Many software organizations which undertake initiatives (such as SW-CMM, CMMI, ISO 9000, Six Sigma) to improve quality of their processes and products employ inspection.
- Inspection is more rigorous and systematic than other peer review types (Wiegers, 2002, Radice, 2002, Gilb and Graham, 1993).

A more detailed discussion on the differences between software inspection and other peer review types is available in Wheeler et al. (1997).

2.2. Software Inspections

Software Inspections are introduced to software community by Michael Fagan as a result of his development efforts regarding the inspection methodology at IBM in the

early 1970s (Fagan, 1976). The main goal of software inspection is to remove the defects in the software work product right after their injection. In this way inspection enables; (i) saving of rework cost and development time, which needs to be expended if the defects pass to later stages of software development life cycle and (ii) improves the quality of software product by enhancing its reliability, maintainability and availability. Software code is the work product for which software inspection is applied in most cases, i.e. applying software inspections is more common for software code vis-à-vis other work products such as requirements specifications, design descriptions etc (Laitenberger and DeBaud, 2000).

'IEEE Standard for Software Reviews' put forwards the scope of the software inspection by listing its objectives as follows (IEEE, 1998):

- To verify that software product;
 - o satisfies its specifications,
 - o satisfies specified quality attributes,
 - \circ conforms to applicable regulations, standards, guidelines, plans, and procedures.
- To identify deviations from standards and specifications.
- To collect software engineering data (for example, anomaly and effort data) (optional)

• Uses the collected software engineering data to improve the inspection process itself and its supporting documentation (for example, checklists) (optional).

The original inspection process proposed by Fagan consists of the following five activities (Fagan, 1976):

• **Overview:** The inspection participants obtain and are informed about the work product to be inspected.

• **Preparation:** Participants individually examine the work product to develop an understanding on the work product and to generate the issues that they deem as defects.

• **Inspection Meeting:** The inspection team finalizes and documents the list of defects in the work product by carrying out necessary discussions on the issues found during preparation and raised during the inspection meeting while going over the work product.

- **Rework:** The defects are corrected by the owner of the work product.
- Follow-Up: Inspection Moderator verifies whether the defects are resolved appropriately. If more than 5% of the work product is affected during the rework, a reinspection is conducted.

After Fagan's initial work, software inspections are employed widely by software organizations as an effective quality control technique. Also, many variations of original inspection process emerge as a result of widespread application of inspections in the software industry due to different needs of the organizations and because of the attempts to design a more efficient inspection process. These variations incorporate new activities to inspection process such as Entry Condition Checking, Planning, Data Recording, Consolidation, Entry Condition Checking and Prevention Meeting. Furthermore, among these variations organization, number of activities, participant roles, number of participants, the work product type, the reading techniques employed during preparation differ. MacDonald and Miller (1997) describe main inspection methods with the aim of developing an inspection process definition language which represents various inspection methods by considering their commonalities and differences. In this study, they list the following as the main inspection methods along with the related references; (i) Fagan Inspection, (ii) Structured Walkthrough, (iii) Humphrey's Inspection, (iv) Gilb Inspection, (v) Asynchronous Inspection, (vi) Active Design Reviews, (vii) Phased Inspection, (viii) N-Fold Inspection.

Also, Laitenberger and DeBaud (2000) manifest the following activities, which characterize most inspection methods, with the aim of having a reference model while discussing the similarities and differences among inspection methods:

• **Planning:** The inspection is organized by selecting the participants, assigning roles (such as moderator, recorder, reader etc.) to participants, scheduling the inspection meeting, and distribution of the inspection material.

• **Overview:** The work product is explained to the participants in order to facilitate their inspection and understanding.

• **Defect Detection:** Work product is examined with the aim of finding defects. During this activity, reading techniques are employed for facilitating defect identification. Among various inspection methods, there is no consensus on whether this activity should be carried out individually, in groups or both.

• **Defect Collection:** The issues that are accepted as defects are consolidated and documented. Furthermore, the decision for a second inspection is made.

• **Defect Correction:** The author makes the editions regarding the defects accepted in collection activity.

• **Follow-Up:** The resolution of the defects accepted in collection activity is ensured by checking the reworked work product.

As evident from the above explanations, software inspection is a group activity conducted by a number of people assigned among the members of the project team. The group that is composed of people participating to the inspection is generally referred as inspection team. The two factors related to an inspection team are team roles and team size.

Inspection participants perform different roles, whose proper conduct is critical for the success of the inspection. There are various roles put forward by different inspection methods. These can be listed as; Organizer, Moderator, Inspector, Reader/Presenter, Author, Recorder, Collector (Laitenberger and Debaud, 2000). Among these the main roles are author and inspector. The others actually represent the additional duties performed by the inspectors, i.e. in the course of an inspection cycle a person generally performs more than one role. An inspector is responsible for finding the defects in the inspected artifact. Whilst, an author is responsible for answering the questions related to the artifact during inspection meeting and for correcting the defects identified. Usually, all team members are assumed as inspectors regardless of other roles they are assigned. There are two exceptions to this, namely, organizer, who plans inspection activities to be performed in the course of the project (generally the project manager), and author, who must not evaluate the work product for inspection purposes due to independency constraints. The team size of a software inspection is determined by the number of inspectors plus the author (in some cases multiple people may attend as the author). The information regarding the average number of inspectors in an inspection team vary greatly throughout the literature. Actually, this is an expected outcome, since the appropriate value for 'number of inspectors' depends on many factors such as, the type of inspected artifact, the availability of resources, budget allocated to software inspections, the size of the artifact, and the criticality of the software developed (e.g. for a software product whose malfunction may cause losing of human life, the number of inspectors may be very high, since it is positively correlated with the number of defects found). This is also true for software inspections regarding software code. Wiegers (2002) states that two inspectors are usually sufficient while performing code inspection. Whilst, Radice (2002) suggests four as the maximum number of inspectors that should be allocated to code inspections. He also adds that the values lower than four can be equally effective with respect to aim of finding all available defects. Further, a study exploring the effect of varying values regarding the number of inspectors in code inspections considers 1, 2, and 4 as the inspector number (Porter et al., 1997). The results of this study provide evidence for the suggestion of Radice (2002), since it founds little difference between the effectiveness of code inspections performed with 2 and 4 inspectors. Whilst, conducting code inspections with one inspector is found to be the least effective of all.

There are many studies which mention success stories regarding software inspections. These studies report that inspection may detect and remove between 30% and 93% of the defects in the software (Laitenberger and DeBaud, 2000). In a study, Briand et al. (1998a) perform a simulation by using the published inspection data and find out 57% as the benchmark value for the ratio of defects eliminated by the inspection. They also report that code and design inspections save 39% and 44% of defect removal costs, respectively, vis-à-vis testing. Some studies also focus on the maintenance effort saved by applying software inspections. For example, Russell (1991) and Doolan (1992) state that each hour spent for inspections avoids a rework effort about 33 and 30 hours, respectively, during the maintenance phase. More comprehensive information on experiences with software inspection can be found in

Radice (2002), Wheeler et al. (1996), Gilb and Graham (1993) and Laitenberger and DeBaud (2000).

Besides these quantitative results, the benefits of software inspection can be listed qualitatively as below (Radice 2002, Wiegers, 2002, Gilb and Graham, 1993):

Software inspection;

- 1. Decreases the number of defects pass on to the testing and field use.
- 2. Reduces development cycle time.
- 3. Increases the probability of delivering the software on schedule.
- 4. Saves from testing, maintenance and support costs.
- 5. Reduces testing and debugging time.
- 6. Improves productivity (effort spent per unit code size).
- 7. Supports knowledge sharing and education.
- 8. Enhances teamwork and collaboration.
- 9. Provides early information on the quality of end product.

In order to obtain the above benefits, a software organization should invest in software inspections, which requires the expending of related costs. These include the start-up costs spent while deploying the software inspections throughout the organization (such as training, process definition, and adaptation costs), and implementation costs spent while actually carrying out the inspection steps. The latter one, in addition to indirect costs (such as overhead), is largely determined by the personnel effort used to perform software inspections. Since software inspection is a human-based activity, the studies reporting related cost values provide data in terms of effort spent per unit artifact size or effort spent per defect. A number of studies provide data on these costs for code inspections. Briand et al. (1998a), Laitenberger and Debaud (2000) and Radice (2002) provide good summaries of these studies. The ranges obtained from these summaries are listed in Table 1.

Cost Data Description	Range (in hours)
Individual preparation effort in code inspections per thousand lines	4.91-7.9
Meeting time in code inspections per thousand lines	3.32-4.4
Average effort to find and fix a defect in code inspections	0.2-2.7

Table 1 Ranges of Published Code Inspection Cost Data

Several studies publish the Return on Investment (ROI) values obtained by applying software inspections. In these studies, the return acquired from software inspections are expressed in terms of rework savings gathered due to early detection of defects. Grady and Van Slack (1994) report a ROI of 10.4 for Hewlett-Packard's inspection program, which resulted an estimated saving of 21.5 million dollars in 1993. By employing the data of a software organization, Mah (2001) reports the software inspection ROI values, which are 7 for code inspections and, 14 for design and requirements inspections. In addition to these, the results obtained from a more comprehensive study, namely National Software Quality Experiment (NSQE) (in which about 80 organizations participate by sharing their software quality related data), depict ROI values between 2 and 8 for the participating organizations (O'Neill, 2002). By employing NSQE data, O'Neill (2003) also figures out the code inspection ROI values for organizations that have varying degrees of process maturity. According to his results, an organization that implements structured software engineering (corresponds to SW-CMM Maturity Level 3) can obtain 6 as ROI value.

Other important information related to cost of performing software inspections comprises the rates regarding preparation and meeting steps of the inspection. Preparation rate is defined as the average quantity of material covered per labor hour of individual preparation (Wiegers, 2002). Whilst, meeting rate is the average quantity of material inspected per meeting hour (Wiegers, 2002). If the average values of these rates are known for an organization, a project manager can calculate the expected cost a software inspection based on the given size of the artifact that will be inspected. Although the published data about these rates varies for code

inspections, some sources provide guidance on suitable preparation and meeting rates. Namely, Tervonen and Iisakka (1997), Radice (2002), and Wiegers (2002) consistently suggest 150-200, 100-200, 150-200 source lines of code (SLOC) per hour, respectively, for both rates.

The literature also focuses on the ways for increasing the effectiveness of defect detection phase. These are commonly referred as 'Reading Techniques'. A reading technique can be defined as a series of steps that provides direction to the inspector on the ways for checking the work product and facilitates his/her understanding. Although the description of different reading techniques is out of the scope of this study, the main reading techniques can be named with related references as; Ad-Hoc Reading (i.e. no explicit guidance is available for the inspector) (Doolan, 1992), Checklist Based Reading (Fagan, 1976), (Gilb and Graham, 1993), Scenario-based Reading (Basili, 1997), (Cheng and Jeffrey, 1996), Defect-based Reading (Porter et al., 1995), Traceability-based Reading (Travassos et al., 1999), Perspective-based Reading (Basili et al., 1996), Reading by Stepwise Abstraction (Dyer, 1992), Usagebased Reading (Thelin et al., 2001). Among these the most widely used one is Checklist Based Reading. Laitenberger and DeBaud (2000) provides a good discussion on the different reading techniques by comparing their main characteristics, which Application Context, Usability, Repeatability, are Adaptability, Coverage, Overlap among Inspectors. Ad-hoc Reading and Checklistbased Reading are most commonly used reading techniques throughout the software industry (Freimut et al., 2001, Laitenberger and DeBaud, 2000). Ad-hoc Reading stands for examining the work product without employing any specific reading technique. However, regardless of how much widespread is a particular reading technique, a number of studies report on the experiments for comparing different reading techniques. Examples for such studies can be found in Thelin et al., (2003), Porter et al., (1995), Laitenberger et al., (2000), Laitenberger et al., (2001).

Testing is another activity which aims the detection and removal of the software defects in the software code. Testing is generally performed after the inspection is completed. During testing the software code is executed and evaluated with respect to test cases, which outlines the actions to be performed and expected outcomes. When any deviation occurs from the expected outcomes, this is treated as a defect.

Usually software development organizations conduct different levels of tests such as unit test, unit integration test, system test, which are related to different states of software code. Testing verifies the software code dynamically, i.e. as it is working, whilst inspection statically analyzes it. For instance, testing can not reveal the problems regarding the maintainability of the code, which may cause the expending of high amount of rework effort due to increased difficulty for identifying the location that should be modified. Similarly, it may be hard for an inspector to see the malfunctioning that will be encountered as code is run. However, there is no agreement in the literature regarding whether inspection and testing are mutually exclusive alternatives, i.e. if any defect can be identified by both inspection and testing or some defects can be only detectable only by one of two alternatives. For example, Gilb and Graham (1993) claim that although there are defects catchable by both testing and inspection, some defects are only detectable through testing and some are only detectable with the means of inspection. Consequently, according to them the two methods are complementary for each other. On the contrary, a study conducted by Laitenberger (1998) shows no evidence for the claim that states testing and inspection enable the finding of different defect classes. Besides, many studies that explore the savings gained by applying software inspections assume that both inspection and testing are capable of identifying a certain defect (examples can be found in (O'Neill, 2003, Radice, 2002, Gilb and Graham, 1993). Furthermore, a number of reports show that software inspections are more efficient than testing in terms of average effort spent to find a single defect. For example, a banking computer services firm's data is reported by Ackerman et al. (1989), where 2.2 hours are spent to remove a defect via code inspections on the average, whilst a value of 4.5 hours is observed during testing. Further, other illustrative reports provides the following values for the average effort (in terms of hours) required to eliminate a defect via code inspections and testing, respectively; 1 and 6 (Franz and Shih, 1994), 1.46 and 17 (Kelly et al., 1992), 1 and 6 (Weller, 1993). Hence, it can be concluded that removing a defect with the means of inspection is cheaper than removing it via testing. The main reason for this finding is the ease of locating and fixing a defect during code inspection vis-à-vis testing. Testing reveals symptom of a failure, so the project team should spent time to locate the problematic statements in the software

code. However, since the software code is directly examined in the course of an inspection, the root cause of a defect is located when it is found by the inspector.

2.3. Software Code Defects and Relevant Studies

A code defect is a condition which causes the software code to deviate with respect to expectations. These expectations are determined by (i) the standards that the code must conform to, (ii) the design that the code must comply with, (iii) the requirements that code must meet in order to satisfy the needs of the users, and (iv) the results (obtained by running the code) that code must depict. Code defects are generally classified according to their severity as major and minor defects. Severity refers to the significance of the adverse effects that are caused by a defect. A major defect affects the proper execution with respect to requirements put forward for the software. Thus it represents a problem for the user, if it remains undetected until field use. On the other hand, a minor defect generally refers to format, writing or representation errors that does not impede/halt the execution, but it may still be problematic for the user (although a work around solution exists) or be important regarding the maintenance of the software.

As defects are identified, they need to be removed from the software by performing necessary corrections. Certainly, this requires the spending of additional rework costs. The amount of this cost usually escalates as the artifacts progress to later phases of software development life cycle. By considering the published data, Radice (2002) provides the summary of defect removal costs (usually given in terms of personnel effort as in most of software engineering studies), for various phases where defect is encountered, namely inspection, test and field use. Further, with the aim of performing return on investment and saving analysis regarding software inspections, he utilizes this information to figure out the relative cost values to fix software defects identified during inspection, test and field as 1,10, and 100, respectively (Radice, 2002). Also, NSQE study supplies data regarding the cost to repair a code defect (O'Neill, 2003). As mentioned before in the text this study is a comprehensive one, since it considers data obtained from about 80 organizations. By using the data obtained from NSQE, O'Neill (2003) reports that for an organization operating according to SW-CMM Maturity Level 3 practices, a major defect consumes an

additional repair effort of 5-7 times during testing when compared to inspection, whilst a minor defect requires 3 times more effort. Further, he states that these ratios are also same when the repairing efforts during testing and field use are compared. Besides these quantitative costs, the defects found by the customer during usage also results in loss of goodwill for the software organization due to dissatisfaction of the customer.

The literature also provides guidance about the techniques for predicting the number of defects contained in the software code. These techniques enable the managers to assess the project progress, to plan the defect detection activities, to evaluate the quality of software product, and to carry out process improvement initiations. Most of the defect prediction techniques employ historical defect data. Namely, these techniques are; Empirical Defect Prediction (Humphrey, 1999), Orthogonal Defect Classification (Chillarege et al., 1992), Fault Proneness Evaluation (Selby and Basili, 1991), and Statistical Process Control (Florac and Carleton, 1999). Since they rely on the historical data, the application of such techniques requires data collected from the environment of the specific software development organization, which intends to use prediction techniques. So, these techniques do not help for obtaining benchmark information regarding the number of defects present in the software code at different phases of software development life cycle. However, another technique called Constructive Quality Model (COQUALMO) enables the prediction of the software defect level without the usage of historical data (Boehm et al., 2000). COQUALMO is actually an extension to well known Constructive Cost Model II (COCOMO II), which deals with the estimation of the cost, effort, and duration required to complete software projects. COQUALMO comprises of two submodels called Defect Introduction (DI) Model and Defect Removal (DR) Model.

DI model enables to predict the number of the defects injected into a software product given the size of the code. This is accomplished by adjusting the baseline defect values with the parameters regarding the environment of a software project. These parameters are specifically called Defect Introduction Drivers. DI submodel of COQUALMO puts forward 21 factors that determine the drivers. These factors are grouped into four categories as platform, product, personnel, and project as listed in Table 2 (Boehm et al., 2000).

Category	Defect Introduction Factor	
Platform	Required Software Reliability (RELY)	
	Data Base Size (DATA)	
	Required Reusability (RUSE)	
	Documentation Match to Life-Cycle Needs (DOCU)	
	Product Complexity (CPLX)	
Product	Execution Time Constraint (TIME)	
	Main Storage Constraint (STOR)	
	Platform Volatility (PVOL)	
Personnel	Analyst Capability (ACAP)	
	Programmer Capability (PCAP)	
	Applications Experience (AEXP)	
	Platform Experience (PEXP)	
	Language and Tool Experience (LTEX)	
	Personnel Continuity (PCON)	
Project	Use of Software Tools (TOOL)	
	Multisite Development (SITE)	
	Required Development Schedule (SCED)	
	Precedentedness (PREC)	
	Architecture/Risk Resolution (RESL)	
	Team Cohesion (TEAM)	
	Process Maturity (PMAT)	

Table 2 Defect Introduction Factors for COQUALMO Defect Introduction Submodel

The baseline number of code defects put forward by DI submodel is 33 per 1000 source lines of code. The total number of code defects can be computed by the following formula (Boehm et al., 2000).

$$D_{ICode} = D_{BCode} \cdot S \cdot \prod_{i=1}^{21} (DI - driver)_i$$
 (Eq. 1)

where,

 D_{ICode} : Estimated number of code defects introduced

 D_{BCode} : Baseline rate for code defect introduction per 1000 source lines of code (SLOC)

S: Size of the software code in kilo source lines of code (KSLOC)

(*DI-driver*)_{*i*}: Defect introduction driver corresponding to factor i

The value of a particular factor's defect introduction driver is designated by determining the rating corresponding to the as Very Low, Low, Nominal, High, Very High, and Extra High. If the rating of a specific factor is selected as Nominal, the value of the driver becomes 1. Whilst, a driver value less than 1 is found if the related factor's rating (different than nominal) affects the defect introduction positively (i.e. less defects are injected), and the driver value is greater than 1, otherwise. For instance, (DI-driver)_{PCAP} values are 0.76 and 1.32, for the cases where the rating of programmer capability factor is 'Very High' and 'Very Low', respectively. Consequently, if all factors are at their nominal level for a software project, this means that the predicted number of code defects introduced as a result of coding activity would be 33 for a 1 KSLOC of software code.

Defect Removal submodel of COQUALMO enables the prediction of the percentage of defects removed by applying certain defect removal activities, namely, automated analysis, people reviews, and execution testing and tools. For each of these activities, six different defect removal levels (ratings) are designated as Very Low, Low, Nominal, High, Very High, and Extra High. The description of the profiles that constitute the defect removal levels are given in Table 3 (Boehm et al., 2000).

Rating	Automated Analysis	People Reviews	Execution Testing and Tools
Very Low	Simple compiler syntax checking.	No people review.	No testing.
Low	Basic compiler capabilities for static module-level code analysis, syntax, type- checking.	Ad-hoc informal walkthroughs. Minimal preparation, no Follow-up.	Ad-hoc testing and debugging. Basic text-based debugger.
No- minal	Some compiler extensions for static module and inter-module level code analysis, syntax, type checking. Basic requirements and design consistency, traceability checking.	Well-defined sequence of preparation, review, minimal follow-up. Informal review roles and procedures.	Basic unit test, integration test, system test process. Basic test data management, problem tracking support. Test criteria based on checklists.
	Intermediate-level module and inter-module code syntax and semantic analysis.	Formal review roles and procedures applied to all products using basic checklists, follow	Well-defined test sequence tailored to organization (acceptance / alpha / beta / flight etc.) test.
High	Simple requirements/ design view consistency checking.	up.	Basic test coverage tools, test support system. Basic test process management.
N.	More elaborate requirements/design view consistency checking. Basic distributed- processing and temporal analysis, model checking, symbolic execution.	Formal review roles and procedures applied to all product artifacts & changes (formal change control boards).	More advanced test tools, test data preparation, basic test oracle support, distributed monitoring and analysis, assertion checking.
Very High		Basic review checklists, root cause analysis. Use of historical data on inspection rate, preparation rate, fault density.	Metrics-based test process management.
Extra	Formalized specification and verification. Advanced distributed processing and temporal analysis, model checking,	Formal review roles and procedures for fixes, change control. Extensive review checklists, root cause analysis	Highly advanced tools for test oracles, distributed monitoring and analysis, assertion checking. Integration of automated analysis and test tools
High	symbolic execution.	Continuous review process improvement. User/Customer involvement, Statistical Process Control.	Model-based test process management.

Table 3 Defect Removal Profiles for COQUALMO Defect Removal Submodel
For each of the above levels a defect removal percentage is assigned. By using the following formula and determining the inherent defect removal ratings, a software project can predict the number of remaining defects in the software code when it is deployed to the customer (Boehm et al., 2000).

$$D_{RCode} = D_{ICode} \cdot \prod_{i=1}^{3} (1 - DRF_i)$$
 (Eq. 2)

Where,

 D_{RCode} : Estimated number of residual code defects

D_{ICode}: Estimated number of code defects introduced

i: index for defect removal activities. i is equal to 1,2,3 for automated analysis, people reviews, and execution testing and tools, respectively.

DRF_i: Code defect removal fraction corresponding to defect removal activity i.

COQUALMO puts forward the DRF values in Table 4, for various defect removal ratings and activities (Boehm et al., 2000). For example, if all defect removal ratings are at their nominal level and if the number of introduced defects is 33, then the number of residual code defects is predicted as, $33\times(1-0.2)\times(1-0.48)\times(1-0.58) \cong 6$ per KSLOC.

Rating	Automated Analysis	People Reviews	Execution Testing and Tools
Very Low	0.00	0.00	0.00
Low	0.10	0.30	0.38
Nominal	0.20	0.48	0.58
High	0.30	0.60	0.69
Very High	0.48	0.73	0.78
Extra High	0.55	0.83	0.88

Table 4 Code Defect Removal Fractions for COQUALMO Defect Removal Submodel

2.4. Defect Content Estimation Techniques for Software Inspection

Defect Content Estimation Techniques (DCET) enable the estimation of the number of defects contained in the software work product that is subject to inspection. This information can be employed by the inspection team to estimate the number of remaining defects in the work product by subtracting the number of defects found in the inspection from the estimate for total number of defects contained. The number of remaining defects is important to make informed decisions about performing a second inspection activity (i.e. reinspection), where the inspection team repeats the inspection process with the aim of reducing the number of defects to a more suitable level before the work product is passed to the next phase of the development life cycle. The DCETs in the literature can be classified as objective techniques and subjective techniques. Objective techniques are further categorized as curve fitting models and capture-recapture models.

The main property of subjective techniques, which favors them with respect to objective techniques, is the ease of obtaining the estimate. Estimating the number of defects present in an inspected work product with subjective techniques is simpler because it does not require any data collection other than asking the guess of an individual inspector or a group of inspectors. However, its dependence on the human judgement (i.e. on the knowledge and capability of the person(s) from which the estimate is requested) is the main drawback of the subjective techniques, although the initial study on using subjective estimates, claims that these techniques can perform satisfactorily in terms of accuracy (El Amam et al., 2000). On the other hand, whilst objective techniques do not depend on personal opinion, they are more costly than subjective ones, since they require the rigorous collection of high amount of data. This data shall be sophisticated enough to depict the defects that are found by a particular inspector and the inspectors that catch a particular defect. The following sub-sections describe objective and subjective DCETs in more detail.

2.4.1 Curve Fitting Models

The idea of fitting curves to the defect data collected during inspection with the aim of defect content estimation is originated by Wohlin and Runeson (1998). They propose two methods based on sorting and plotting the defect data gathering during inspection; Detection Profile Method (DPM) and Cumulative Method. In DPM, first for each defect the number of inspectors that found a particular defect is found out. Then a plot, where the defect index is located in x-axis and number of inspectors identified the defect is located in y-axis, is created. After, sorting the defect indexes according to decreasing value for number of inspectors, an exponential curve is fitted to the scattered data. Lastly, the exponential curve is utilized to produce the estimate for total number of defects. In particular, this estimate is the largest integer in the xaxis for which the y-axis value of the exponential curve equals or greater than 0.5. Similarly, Cumulative Method plots the cumulative number of inspectors in the yaxis starting with the defect that is captured by the highest number of inspectors, and adding the inspector number corresponding to other defects in the decreasing order (e.g. if defect a, b and c are found by 5, 3 and 8 inspectors respectively, the plot depicts three bars from left-to-right with values 8, 13, 16). Again, after fitting an exponential function to this plot, the defect estimate can be produced by employing some reliability models. Although this original study does not report one of the two method as superior than the other, the succeeding studies focus on DPM by replicating the original procedure or proposing and conducting its variations (for example fitting linear, quadratic or other types of exponential functions to the plotted data) (Thelin and Runeson, 2000, Briand et al., 1998b). However, in these studies the performance of the tested alternatives is similar or inferior from the initially proposed DPM (Freimut et al., 2001).

2.4.2 Capture-Recapture Models

The capture-recapture models are adapted to software engineering from the biology field which developed them to estimate the size of animal populations. In order to produce this estimate, biologists settle to an area where the animal population lives. Then, they start to capture the animals, whose population size to be revealed, by conducting trapping occasions (i.e. the different days in which the capturing is performed). When an animal is captured in an occasion, it is marked, and released back to its habitat. If a marked animal is caught again in another trapping occasion, it is said that the animal is recaptured and the animal's tag is noted. The information collected in this way (i.e. as a result of the completion of all trapping occasions) is then used to make population size estimations based on statistical inference.

Biostatisticians proposed different models for open and closed populations to estimate the population size. An open population's size changes from one trapping occasion to another due to birth, death, migration etc., whilst the size of a closed population is assumed to be constant between trapping occasions. For estimating the fault content in an inspected software artifact, the closed population capture-recapture models are appropriate, since the defects in the artifact are fixed. So, for illustrating how the capture-recapture data is employed to estimate the size of an animal population, an estimator for closed populations should be used. For such a demonstration, consider the following: Suppose that, in a Capture-Recapture study which is composed of two trapping occasions, the following data is produced; n_1 : the number of animals captured in the first occasion, n_2 : the number of animals captured in both occasions. By assuming the percentage of the recaptured animals in the second occasion is equal to the percentage of animals captured in the first occasion with respect to the population size (say N), the estimation for the population size can be generated as follows:

$$\frac{n_1}{\hat{N}} = \frac{n_{12}}{n_2} \Longrightarrow \hat{N} = \frac{n_1 \times n_2}{n_{12}}$$
(Eq. 3)

In biology and wildlife research, the above formulation is one of the basic estimators to estimate the population size and it is known as Lincoln-Peterson Estimator (Seber, 1982). However, this estimator is not applicable for capture-recapture studies with more than two occasions.

In biological studies the closed population capture-recapture models can be classified with respect to their assumptions about catchability of animals (Otis et al., 1978). These models consider the following three factors as the sources which result in variations regarding the catchability of an animal (i.e. the probability that a particular animal will be captured):

• **Time Response:** The catchability of an animal differs according to the trapping occasion. For example, in cold days most of the animals prefer not to go out of their homes. So, the number of animals captured in such a day is expected to be lower when compared to a tepid day.

• **Heterogeneity:** Different animals possess different capture probabilities. For instance, old animals, which are less mobile, are captured less often vis-à-vis young animals.

• **Behavioral Response:** The catchability of an animal changes, when it is captured. Hence, a previously marked animal will avoid the trap or will become attracted with it based upon its past experience (e.g. the animal tends to be captured again, if during its first encounter with the trap, it obtained food without getting hurt).

The eight closed population capture-recapture models constituted with different assumptions regarding the source of the variation (i.e. a certain combination of the above factors) in capturing probability of the animals are listed in Table 5 (Otis et al., 1978). As can be understood by examining this table, the models are named by incorporating the corresponding letter according to the sources of variation considered while building the model. Namely, letters **t**, **h** and **b** are used to denote the time response, heterogeneity and behavioral response, respectively. For each of these models at least one population size estimator is proposed by the researchers in the biology field, see for example (Otis et al., 1978).

Table 5 (Closed	Population	Capture-l	Recapture	Models &	Their S	Sources of	Variation
-----------	--------	------------	-----------	-----------	----------	---------	------------	-----------

Model Name	Sources of Variation
Model M0	None, i.e. capture probabilities are same regardless of any factor.
Model Mt	Capture Probabilities vary with time.
Model Mb	Capture Probabilities vary by behavioral response to capture.
Model Mh	Capture Probabilities vary by individual animal.
Model Mtb	Capture Probabilities vary by time and behavioral response to capture.
Model Mth	Capture Probabilities vary by time and individual animal.
Model Mhb	Capture Probabilities vary by individual animal and behavioral response to capture.
Model Mtbh	Capture Probabilities vary by behavioral response to capture, time, and individual animal.

Regardless of the sources of variation taken into account, the following assumptions are valid for all of the above models (Otis et al., 1978).

1. The population is closed, i.e. animals enter or leave the population due to death, birth or migration reasons.

2. Animals do not lose their marks during the experiment.

3. All marks are correctly noted and recorded at each trapping occasion.

Actually, in addition to the above ones, a fourth assumption is manifested in the original work by Otis et al. (1978), as "each animal has a constant and equal probability of capture on each trapping occasion". Otis et al. (1978) state that one of the objectives of their work is to relax this assumption by putting forward the models with behavioral response. For other models, i.e. for models M0, Mt, Mh, and Mth all of the four assumptions are applicable.

The first adaptation of estimators based on capture-recapture models to the field of software engineering was made by Mills (1972), who applied the Lincoln-Peterson estimator with the aim of obtaining an estimate regarding the number of defects remaining after testing. Later, Eick et al. (1992) applied the capture-recapture techniques to estimate the number of defects remaining after a software inspection. The application of the capture-recapture models for software inspection is based on considering the defects as animals and the inspectors as trapping occasions. More clearly, the defects in the inspected artifact represent the population, and from this population the inspector obtains a sample as he finds the defects in the artifact. If the same defect is identified by two or more inspector, this defect is referred as recaptured. By using this analogy, it is possible to estimate the number of defects in the inspected artifact. This is achieved by collecting data on the particular defects identified by each inspector during software inspection, and using the capturerecapture estimators to calculate the estimate for total number of defects. Then, by using this estimate and the actual number of defects found in the inspection, the inspection team or project manager can estimate the number of remaining defects in the artifact. Certainly, since the estimation is based on the degree of commonality regarding the defects found by different inspectors, in order to employ capturerecapture models for a particular software inspection, the number of inspectors participate in the inspection shall be at least two. A good description for the rationale

regarding the usage of capture-recapture models to estimate the number of defects in a software work product is provided by Petersson et al. (2004) as follows:

The overlap among the faults that the reviewers found is used as a basis for the estimation. The smaller overlap among the reviewers, the more faults are assumed to remain, and the larger overlap, the fewer faults are assumed to remain. The extreme cases are the following: either, all reviewers have found exactly the same faults, which means that there are probably very few faults left, or none of the reviewers has found a fault that another reviewer has found, which indicates that there are probably many faults left.

The assumptions regarding the closed capture-recapture models (given before in the text) are translated to software inspection context by Miller (1999) as follows:

1. Closed population => The artifact is not revised once it is delivered for inspection; and a particular inspector finds exactly same defects if he is given the same artifact twice, i.e. inspector performance is constant.

2. Animals do not lose their marks => Inspectors do not publish the defects they found to other inspectors.

3. The marks are correctly recorded => Inspectors correctly record and document the defects they identify.

4. Equal catchability => All inspectors are continuously provided with identical information (such as inspected artifact, inspection aids, standards against which the artifact is evaluated etc.).

Furthermore, the three sources of variations that underpin the capture-recapture models can be considered in the context of software inspection as given below (Freimut, 1997):

• **Time Response:** As mentioned previously, the time response is utilized to model the varying capturing probability in different trapping occasions. Since the individual inspectors participating in the inspection is mapped to these trapping occasions, the time response explains the variations among different inspectors. In software inspection setting, the defect finding ability of the inspectors is viewed as the difference. Certainly, this detection ability is related to the factors such as expertise and education level of the inspector along with his familiarity with the work product.

• **Heterogeneity:** By applying the similar reasoning used for the catchability of the animals, this source of variation is considered as the factor that indicates the varying detectability of the defects in the inspected artifact. The defects in a software work product are not equally responsive to the reading activity of the inspection, i.e. more effort is needed to identify certain defects. Even a large amount of effort is spent, finding some of the defects may be impossible during the inspection (which are later noticed during testing or field use). This is in line with the results of Vander Wiel and Votta (1993), who reported that developers generally classify defects as 'easy to detect' and 'hard to detect'.

• Behavioral Response: Some ideas have been put forward for this source of variation in software inspection. According to these approaches, the capture-recapture models incorporating behavioral response can be used to adjust the detection probability of the defects that are pointed out by many inspectors (Briand et al., 2000), or taking into account the behavioral response might be useful in a situation where one inspector passes the inspected artifact to another with the markings that indicate the defects he found (Freimut, 1997). However, despite these attempts, none of the behavior based capture-recapture models have been employed for software inspection context due to the assumption of independence among inspectors and unreasonableness of ordering the inspectors as trapping occasions ordered while using the related models for animal populations.

Therefore, based on the non-applicability of behavioral response, the remaining four closed population capture-recapture models have been used throughout the literature for estimating the defect content of an inspected software artifact. These models are listed in Table 6 together with their underlying assumptions regarding software inspection and corresponding estimators. Thelin et al. (2002) defined an estimator as; "A formula used to predict the number of faults remaining in an artifact".

In order to model the detection probability of a particular defect, one can adapt a notation \mathbf{p}_{ij} , which denotes the probability that defect i is found by inspector j. In Table 6, also, the equality expressing \mathbf{p}_{ij} value according to the assumptions of the corresponding model is provided (Freimut, 1997) (where, \mathbf{p}_i : the probability that

defect i being detected by any inspector, and p_j : the probability that inspector j detects any defect).

Model	Assumptions	Estimators	\mathbf{p}_{ij}
M0	All defects have <u>equal</u> detection probability.	• Maximum Likelihood Estimator (Otis et al. 1978)	$p_{ij} = p$
	ability.	(013 01 al., 1970)	
Mt	All defects have <u>equal</u> detection probability. Inspectors may have different	• Maximum Likelihood Estimator (Otis et al., 1978)	$p_{ij} = p_i$
	detection abilities.	• Chao's Time Estimator (Chao, 1989)	
Mh	Defects may have <u>different</u> detection probabilities. All inspectors have equal <u>detection</u>	• Jack-knife Estimator (Burnham and Overton, 1978)	$p_{ij} = p_j$
	ability.	• Chao's Heterogeneity Estimator (Chao, 1987)	
Mth	Defects may have <u>different</u> detection probabilities.	• Chao's Heterogeneity-Time	$p_{ij} = p_i x p_j$
	Inspectors may have <u>different</u> detection abilities.	Estimator (Chao et al., 1992)	

Table 6 Capture-Recapture Models and Estimators Used for Software Inspection

As can be seen from Table 6, for each model, there is at least one estimator, which can be used to calculate a point estimate and corresponding confidence interval. The usage of any capture-recapture estimator for software inspection defect content estimation requires the collection of raw data in the following form.

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \dots & \dots & x_{ij} & \dots \\ x_{D1} & x_{D2} & \dots & x_{Dk} \end{bmatrix}$$

where $x_{ij} = 1$ if inspector i detected defect j.

Succeeding paragraphs provide the formulation relevant to capture-recapture estimators. The following notation is consistently used throughout these sections (Freimut, 1997).

k : number of inspectors

 n_i : number of defects detected by inspector j

n. : the sum of n_j values for all inspectors, i.e. $\sum_{j=1}^{k} n_j$

N: total number of defects in the inspected document

 \hat{N} : estimated total number of defects in the inspected document

D : number of distinct defects found during inspection

 f_j : number of defects found by exactly *j* inspectors. (Hence, f_0 denotes the number of defects identified by none of the inspectors, actually this is equivalent to the number of remaining defects which is subject to the estimation procedure)

 Z_j : the number of defects found only by inspector j

1. **Maximum Likelihood Estimator for Model M0 (MLE-M0):** The derivation of this estimator includes the employment of a log-likelihood function based on multi nominal distribution. The estimator (\hat{N}) is the N value that maximizes the following equation (Otis et al., 1978):

$$\left[\ln\left(\frac{N!}{(N-D)!}\right) + (n.)\ln(n.) + (kN-n.)\ln(kN-n.) - kN\ln(kN)\right]$$
(Eq. 4)

Where, $N \in \aleph$ and \aleph is the set defined as $\aleph := \{D, D+1, D+2, ...\}$. Hence, a search over \aleph , provides the estimated value regarding MLE-M0.

2. Maximum Likelihood Estimator for Model Mt (MLE-Mt): This estimator is the extension of MLE-M0 by incorporating time response into the related formulations. The estimator (\hat{N}) is the N value that maximizes the following equation (Otis et al., 1978):

$$\left[\ln\left(\frac{N!}{(N-D)!}\right) + \sum_{j=1}^{k} n_j \ln(n_j) + \sum_{j=1}^{k} (N-n_j) \ln(N-n_j) - kN \ln(kN)\right]$$
(Eq. 5)

Where, $N \in \aleph$ and \aleph is the set defined as \aleph := {D, D+1, D+2, ...}. Hence, a search over \aleph , provides the estimated value regarding MLE-Mt.

3. Chao's Time Estimator (ChaoMt): This estimator is proposed by Chao by claiming to overcome the situations where MLE estimator (for Model Mt) overestimates in the case of sparse data. The estimator is deduced by using the expected values for f_1 and f_2 with aim of calculating f_0 . The underlying formula is presented below (Chao, 1989):

$$\hat{N}_{tCh} = D + \frac{f_1^2 - \sum_{j=1}^k Z_j^2}{2(f_2 + 1)}$$
(Eq. 6)

4. Chao's Heterogeneity Estimator (ChaoMh): This estimator is proposed by Chao by claiming to overcome the situations where Jack-knife estimator's (for Model Mh) low performance in the case the animals are caught mostly once or twice. The corresponding formula is the following (Chao, 1987):

$$\hat{N}_{hCh} = D + \frac{f_1^2}{2f_2}$$
 (Eq. 7)

5. Jack-knife Estimator (JKMh): This estimator is actually composed of subestimators which employ the capture frequency information (i.e. f_i). The subestimators are referred to as first order jack-knife estimator, second order jack-knife estimator, and so forth. A procedure for selecting the appropriate sub-estimator is put forward by Burnham and Overton (1978). This procedure starting with the first order jack-knife estimator computes the estimator and compares it with the next order estimator by the means of hypothesis testing, i.e. the zero difference between the values outputted by two estimators is the null hypothesis. If the null hypothesis is not rejected the lower order estimator is employed to estimate the defect content. Otherwise, the hypothesis testing is repeated with second and third order estimators. The procedure continues until the procedure stops due to failure of rejecting the null hypothesis. The first five order sub-estimators of Jack-knife are given below (Burnham and Overton, 1978).

$$\hat{N}_{Jk1} = D + \left(\frac{k-1}{k}\right) f_1 \tag{Eq. 8}$$

$$\hat{N}_{Jk2} = D + \left(\frac{2k-3}{k}\right) f_1 - \left(\frac{(k-2)^2}{k(k-1)}\right) f_2$$
(Eq. 9)

$$\hat{N}_{Jk3} = D + \left(\frac{3k-6}{k}\right) f_1 - \left(\frac{3k^2 - 15k + 19}{k(k-1)}\right) f_2 + \left(\frac{(k-3)^3}{k(k-1)(k-2)}\right) f_3$$
(Eq. 10)

$$\hat{N}_{Jk4} = D + \left(\frac{4k-10}{k}\right) f_1 - \left(\frac{6k^2 - 36k + 55}{k(k-1)}\right) f_2 + \left(\frac{4k^3 - 42k^2 + 148t - 175}{k(k-1)(k-2)}\right) f_3 - \left(\frac{(k-4)^4}{k(k-1)(k-2)(k-3)}\right) f_4$$
(Eq. 11)

$$\hat{N}_{Jk5} = D + \left(\frac{5k-15}{k}\right) f_1 - \left(\frac{10k^2 - 70 + 125}{k(k-1)}\right) f_2 + \left(\frac{10k^3 - 120k^2 + 485k - 660}{k(k-1)(k-2)}\right) f_3 - \left(\frac{(k-4)^5 - (k-5)^5}{k(k-1)(k-2)(k-3)}\right) f_4 + (Eq. 12) \\ \left(\frac{(k-5)^5}{k(k-1)(k-2)(k-3)(k-4)}\right) f_5$$

Actually, it is possible to derive higher order estimators, however it is seen that these estimators do not improve the estimation. Additionally, Miller (1999) claims that the selection algorithm of Burnham and Overton (1978) is not suitable in software inspection setting due to different losses encountered in software engineering and biological domains when the estimation deviates from the true value. Because of this underlying reason, he proposes to treat the sub-estimators of Jack-knife estimator as separate estimators.

6. Chao's Heterogeneity-Time Estimator (ChaoMth): This estimator is the only one which enables to estimate when both time response and heterogeneity exist. By using the concept of sample coverage, Chao et al. (1992) put forward three versions of the estimator, but without mentioning the differences among them. So it is wise to

treat them as separate estimators. The formulas underlying these three estimators are given below:

$$\hat{C}_1 = 1 - \frac{f_1}{\sum_{i=1}^k j f_i}$$
 (Eq. 13)

$$\hat{C}_{2} = 1 - \frac{f_{1} - 2\frac{f_{2}}{k-1}}{\sum_{j=1}^{k} jf_{j}}$$
(Eq. 14)

$$\hat{C}_{3} = 1 - \frac{f_{1} - 2\frac{f_{2}}{k-1} + 6\frac{f_{3}}{(k-1)(k-2)}}{\sum_{j=1}^{k} jf_{j}}$$
(Eq. 15)

$$\hat{\gamma}_{i}^{2} = \max\left[\frac{D_{i}}{\sum_{j=1}^{k} j(j-1)f_{j}}{2\sum_{i< j} n_{i}n_{j}} - 1,0\right], \quad \hat{N}_{i} = \frac{D_{i}}{\hat{C}_{i}} + \frac{f_{1}}{\hat{C}_{i}}\hat{\gamma}_{i}^{2}, \quad i = 1, 2, 3 \quad \text{(Eq. 16)}$$

2.4.3 Subjective Defect Content Estimation Techniques

The defect content estimation techniques using subjective information, i.e. personal opinion, are less common in the literature when compared to the techniques aiming the generation the defect estimate with objective means. Subjective techniques rely on the knowledge and experience of the inspection participants, and their feelings with the current inspection, while producing the defect estimate. El Amam et al. (2000) propose asking the effectiveness value (i.e. percentage of defects found) to the individual inspectors and using this information to find out an estimate regarding the total number of defects in the artifact. They claim that, if the actual number of defects found by a particular inspector is divided by the estimated effectiveness value obtained from the same inspector, the total number of defects in the artifact can be obtained. Then, they conduct an experiment to test this proposal by using professional developers, and report that subjective estimation can be employed as an alternative to objective techniques since a median relative error of zero is observed.

Other approaches related to utilizing the individuals' perceptions for defect content estimation are provided by Biffl (2000). Biffl (2000) introduces the following three models for coming up with team estimates after obtaining individual opinions for the total number of defects present in the artifact: Largest Interval (LI), Weighted Average of Individual Estimates (WAE), and Weighted Average of Individual Offsets (WAO). Largest Interval model calculates the team estimate by averaging the maximum and minimum values that inspectors provide. WAE model reveals the weighted average of the individual weights, i.e. the sum of multiplications regarding individual weights and estimates is divided by total weight. Whilst, WAO model calculates the weighted average of the differences between the individual estimate and the actual defects found by the same inspector during the inspection. Further, Biffl (2000) puts forward three different approaches to represent the weights required for WAO and WAE models above, i.e. the contributions of the individual estimates to the team estimate. Later, these models are extended again by Biffl (2003) to handle the cases when more than one inspection is carried out with the aim of taking into account the defect data from the previous inspection.

2.5. Evaluations of Different Software Inspection DCETs

2.5.1 Evaluation Measures for Software Inspection DCETs

As it has been for any kind of evaluation, evaluation of DCETs also requires the designation of objective measures which enable the comparison of DCETs with respect to different aspects such as accuracy and variability. The related measures put forward in the literature, for evaluating DCETs, are outlined below.

• Relative Error (RE) (Briand et al., 2000, Thelin et al., 2002, El Amam and Laitenberger, 2001): This measure provides insight about the accuracy of a DCET by calculating the normalized bias between the estimated and actual number of defects contained in the artifact. As the median or mean of the relative error corresponding to a number of estimations performed with a particular DCET is found, the overestimation/underestimation tendency of the DCET can be observed. Whilst, the variance or inter quartile range of RE inform about the variability of the DCET regarding its accuracy. The underlying formula of this measure is given

below. The optimum value for RE measure is zero. However, in general, an overall RE value between $\pm 20\%$ range of zero is acceptable (Briand et al., 2000).

$$RE = \frac{\hat{N} - N}{N} \tag{Eq. 17}$$

• Decision Accuracy (DA) (El Amam et al., 2000, El Amam and Laitenberger, 2001): This measure calculates the proportion of correct reinspection decisions that a DCET proposed. This requires the designation of reinspection decision criteria and, the storing of the decision concluded according to estimated and actual number of defects contained in the artifact. DA measure enables to observe the capability of a DCET for guiding the practitioners in making correct decisions. The formula of DA is provided below. As it should be evident, the optimum value for DA measure is 1.

$$DA = \frac{m_0 + m_1}{M}$$
 (Eq. 18)

where,

M: Total number of reinspection decision instances

m₀: Number of instances that DCET correctly proposed 'do not reinspect' alternative m₁: Number of instances that DCET correctly proposed 'reinspect' alternative

• Relative Decision Accuracy (RDA) (El Amam et al., 2000, El Amam and Laitenberger, 2001): This measure is similar to DA, however it excludes the cases where the DCET correctly proposes the default decision of passing the artifact to the next phase, i.e. without performing a reinspection. This measure provides information about how much a DCET is successful beyond making the default decision. The formula of RDA is depicted below. The optimum value for RDA measure is zero.

$$RDA = DA - \frac{m_0}{m_0 + m_0}$$
 (Eq. 19)

where,

 m_0 : Number of instances that DCET proposed 'do not reinspect' alternative, although the correct decision was the opposite.

• Root Mean Square Error (RMSE) (Thelin et al., 2002): This measure is used to evaluate the bias and the variability of a DCET at the same time. If two DCETs

are compared solely with respect to their RMSE values, the one with lower RMSE is deemed better. The formula of RMSE measure is provided below.

$$RMSE = \sqrt{Var\left[\hat{N}\right] + \left(E\left[\hat{N}\right] - N\right)^2}$$
(Eq. 20)

• Failure Rate (FR) (Briand et al., 1998b, Briand et al., 2000): Some of the DCETs fail to estimate in certain situations. For example, Chao's Heterogeneity Estimator fail due to division by zero error, if none of the defects is captured by exactly two inspectors. Hence, FR measure accounts for the failure frequency of a DCET. If a DCET can not provide an estimation most of the time, it precludes the aims regarding the proper estimation of the number of defects. So, a failure rate of zero is the most preferable value for FR measure. The underlying formula of failure rate measure is given below.

$$FR = \frac{Number of cases that the DCET fails}{Total number of cases where the DCET used}$$
 (Eq. 21)

2.5.2 Findings of the Studies that Evaluate Software Inspection DCETs

A considerable amount of studies in the literature report the evaluations conducted for revealing the differences among Software Inspection Defect Content Estimation Techniques (DCET). The aim of these studies is to find out the most appropriate technique regarding the proper estimation of the number of defects contained in the inspected artifact. Further, these studies account for various circumstances that can be encountered in software development environments.

A recent survey study provides a good summary regarding the usage of Capture-Recapture estimators in software inspection defect estimation along with other related methods and issues (Petersson et al., 2004). By taking into account 15 studies that report evaluation results performed for different estimators, Petersson et al. (2004) finds out that; (i) Most estimators tend to underestimate, (ii) Jack-knife estimator is the best estimator for using in software inspections, and (iii) The recommended minimum number of inspectors, which makes the usage of Jack-knife estimator more appropriate, is four, (iv) The studies that evaluate Capture-Recapture estimators for the cases where two inspectors participates, do not show consensus about the best estimator, and (v) The related studies show that usage of different reading techniques does not affect the estimators' performance, so Capture-Recapture estimators can be employed with any reading technique. Furthermore, Petersson et al. (2004) also report that DPM is the most appropriate curve-fitting method, although it is generally found to be inferior than Jack-knife estimator. The findings of this study resulted from a comprehensive exploration of the literature. Consequently, the details of the studies included by Petersson et al. (2004) while constituting the above findings is not repeated here, unless they dwell upon the specific subjects related to this study. Among the studies that evaluate various Capture-Recapture estimators, Miller's (1999) study deserves special attention. Miller (1999) claims that the sub-estimator selection procedure of Burnham and Overton (1978) for Jack-knife estimator is inappropriate in the context of software engineering. So, he evaluates various estimators by considering the Jack-knife subestimators as separate estimators. His evaluations favor the usage of Jack-knife estimator order 1. However, in this study Miller (1999) does not include the estimations obtained by using Burnham and Overton's (1978) selection procedure (generally referred as full Jack-knife estimator). Thelin et al. (2002) later replicates Miller's (1999) proposal by including also the full Jack-knife estimator and DPM. In this replicated study, Jack-knife estimator order 2 is found as the most appropriate estimator. Since also full Jack-knife estimator is considered in the study, this finding supports the original claim of Miller (1999).

Several studies in the literature focus on the subjective DCETs by inspecting their performance in estimating the defect content of an inspected artifact. The idea for using of subjective estimates in order to predict the number of defects present in the software work product is originated by El Amam et al (2000). Their original study does not include any comparison of the subjective estimations with estimations obtained by any objective DCET. Fortunately, Biffl (2000) provides guidance about the performance of subjective DCETs proposed by himself. Biffl (2000) reports that when subjective DCETs are considered alone, Largest Interval (LI) model performs better than others. Additionally, he shows that subjective DCETs over objective DCETs, although Jack-knife estimator is even considered (which exhibits the best performance among objective techniques also in this study). By employing

the same requirements inspection experiment underpinning this study, Biffl (2003) provides insight also for the usage of DCETs for estimating the number of major defects. According to results of this study; (i) all DCETs tend to underestimate major defects, (ii) objective DCETs depict similar accuracy for major defects defects, but Chao's estimators for models Mh and Mth consistenly show good results, (iii) The performance of objective and subjective DCETs are comparable and (iv) The accuracy of DCETs are not affected significantly by the usage of different reading techniques.

2.6. Reinspections

After a software inspection is completed, i.e. the identified defects are resolved and verified; the project manager should decide either to pass the corresponding work product to the next phase in the software life cycle or to inspect it again for finding the defects missed in the first inspection. If the latter is the case, it is referred as a reinspection. To be more specific, a reinspection is inspecting the work product anew with the aim of reducing the number of defects further to a more suitable level. In reinspection, the parameters that can be changed with respect to the first inspection are as follows; (i) inspection process, (ii) number and content of the inspectors, and (iii) reading technique (Biffl et al., 2001). In practice, a considerable amount of software development organizations pass the work product to the next phase even giving no consideration to reinspection, i.e. the default decision is to baseline the work product after it is verified with the inspection and to take it as an input to the succeeding activity (Radice, 2002). However, performing reinspections is becoming more common in the software industry. Software Engineering Institute's (SEI) Capability Maturity Model Integration (CMMI) (CMMI Product Team, 2001), recommends the devising of reinspections by putting forward related subpractices in verification process area. This evidence shows the current commonality of reinspections in the industry and also, the prospects for the increasing implementation throughout the industry in the near future.

By performing a reinspection the software development project can obtain more of the potential benefits offered by software inspections (see Section 2.2). However, repeating of the inspection also requires additional resources and time to invest in the inspection activity. Hence, as for all decisions, reinspection decision also comprises a trade-off situation: to devote the valuable effort of software developers to a second inspection cycle or to use the effort for other planned activities. In the literature, many methods are proposed to make the reinspection decision. Some of these methods put forward ad-hoc criteria to conclude the decision. For example, the repeating of the inspection can be based on the belief of inspection leader or inspection team regarding the inspected work product defect level (Gilb and Graham, 1993, Strauss and Ebenau, 1993). However, such an approach results in arbitrariness and subjectivity while coming up with the decision for reinspection, which is not a desired situation for making good decisions with respect to corresponding objectives (Briand et al., 2000, Radice, 2002). Employing the historical information stands as a second approach for finding out whether the reinspection is needed. According to this approach, the results of the current inspection are compared to historical norms or related benchmarks. For example, the defect density (number of defects found in the first inspection divided by the size of the inspected artifact) of the inspected work product is evaluated against the upper and lower limits deduced from historical inspection data (Radice, 2002). If the defect density is above the upper limit, the document is deemed as inferior in terms of quality. Whilst, the application of the inspection is concluded to be poor, if the defect density is below lower limit. Consequently, in both cases a reinspection is justified. Although, this quantitative approach is employed by many software organizations (especially which implements statistical process control practices), the following shortcomings are supplied in the literature for explaining its inappropriateness.

• The historical or benchmark data may not be available, or obtaining it is too costly (Briand et al., 2000, Biffl, 2000).

• The historical or benchmark data may not be appropriate to use for the current project, since the circumstances of the projects, from which the data is obtained, differs with respect to current one (Biffl, 2000).

• Inspectors may tend to find a passing number of defects (Briand et al., 2000).

• The low quality work products may pass to next phase without reinspection and high quality work products may be needlessly reinspected (Biffl, 2000, El Amam and Laitenberger, 2001, Briand et al., 2000, El Amam et al., 2000).

Consequently, in the literature, using the estimated number of defects in the inspected artifact is proposed as a third and appropriate approach for concluding reinspection decision objectively (Miller, 1999, Briand et al., 2000, Biffl and Halling, 2001, Petersson et al., 2004). This approach requires the employment of Defect Content Estimation Techniques (described in Section 2.4) along with the related data from the initial inspection. We can call this approach as *deciding the reinspection with objective reinspection decision methods*, since it is purified from peoples' opinion and it does not include the bias of historical or benchmark data. In the literature, different objective methods are proposed regarding reinspection decision, which are listed and described in the paragraphs below. From now on, 'reinspection decision method' term will be used throughout the text for referring briefly to *objective reinspection decision methods*.

I. Deciding based on the effectiveness of the current inspection (El Amam and Laitenberger, 2001, Thelin and Runeson, 2000).

Criterion: Reinspect, if the effectiveness of the first inspection is smaller than a predetermined inspection effectiveness threshold.

The effectiveness of an inspection is the percentage of total defects found during the inspection. This method evaluates the quality of the inspection process with respect to defect finding performance and suggests a reinspection if it is not satisfactory. According to the method, the artifact should be reinspected if the following inequality holds.

$$\frac{D}{N} < e \tag{Eq. 22}$$

where,

D: The number of distinct defects found during inspection

N: Estimated total number of defects in the inspected document

e: Threshold value for inspection effectiveness

As evident from the above formulation, this method requires the estimate for the total number of defects in the document, which can be obtained by using appropriate defect content estimation technique.

II. Deciding based on the defect density after the current inspection (El Amam et al., 2000).

Criterion: Reinspect, if the defect density of the artifact corrected as a result of the initial inspection is greater than or equal to a given defect density threshold.

The defect density is the number of defects contained in the artifact per unit size. Hence, this method concludes the reinspection decision by considering a minimum quality level that should be attained by the artifact subject to inspection. According to the method, the artifact should be reinspected if the following inequality holds.

$$\frac{\hat{N} - D}{S} \ge d \tag{Eq. 23}$$

where,

S: The size of the artifact (in source lines of code or number of pages)

d: Defect density threshold

If the both sides of the above inequality is multiplied with artifact size, the method becomes deciding with respect to number of remaining defects. This method, again, needs the use of DCETs.

III.Deciding based on the defect density after the reinspection (Biffl and Halling, 2001).

Criterion: Reinspect, if the defect density is above the corresponding threshold and the reinspection will bring it to the acceptable level.

If the defect density is high after the first inspection with respect to the predetermined threshold, the potential of the reinspection for decreasing the defect containment to the suitable value is evaluated via this model. In order to reinspect the artifact this method requires the following inequalities to hold at the same time.

$$\frac{N-D}{S} \ge d \tag{Eq. 24}$$

$$\frac{\hat{N} - D - \hat{D_2}}{S} < d \tag{Eq. 25}$$

where,

 \hat{D}_2 : Estimate for the number of defects that would be identified during reinspection.

As can be seen from the above formulation, this method needs utilization of the suitable defect detection capability estimation and defect content estimation techniques together. By multiplying both sides of both inequalities with artifact size, the method can be converted to one considering the number of defects as the issue on which reinspection criterion is based.

IV. Deciding based on the effectiveness after the reinspection (Biffl and Gutjahr, 2002).

Criterion: Reinspect, if the effectiveness of the current inspection is below the effectiveness threshold and the reinspection will enable the exceeding of this threshold.

This method suggests reinspecting if it is worth to attain the required level of inspection quality, i.e. effectiveness, if it is not accomplished with the initial inspection. According to the method, the reinspection decision should be made if the following two inequalities are satisfied.

$$\frac{D}{\hat{N}} < e \tag{Eq. 26}$$

$$\frac{D+\hat{D_2}}{\hat{N}} \ge e \tag{Eq. 27}$$

Using this method means that the reinspection is not beneficial for the project as long as it would not decrease the percentage of the remaining defects below the required level.

V.Deciding based on the net benefit obtained from the reinspection (Biffl and Halling, 2001).

Criterion: Reinspect, if the net benefit (i.e. benefits minus costs) is above the predetermined benefit threshold.

This method proposes to quantify the benefits acquired by conducting a second inspection and compare them with the corresponding costs. The benefit of a reinspection is the saved rework effort regarding later phases of the software development life cycle, since if a defect remains undetected during inspection the cost to detect and correct it later is much higher than the one during inspection phase. If this method is employed, a reinspection is conducted as long as the following inequality is satisfied. Note that, the left side of the inequality corresponds to the net benefit value. Further, as in most software engineering studies the benefit and cost values are expressed in terms of staff effort in man-hours.

$$\frac{\hat{D}_2}{D} \left(M \cdot s_{mj} + (D - M) \cdot s_{mn} \right) - C_R > b$$
(Eq. 28)

where,

M: The number of major defects found during inspection

 s_{mj} : Average effort saved per major defect found during inspection

s_{mn}: Average effort saved per minor defect found during inspection

C_R: Effort spent to conduct the reinspection

b: Threshold for net benefit

2.7. Defect Detection Capability Estimation Techniques

Defect Detection Capability Estimation Techniques (DDCET) are constituted to predict number of defects to be found during reinspection. Hence, by using these techniques, an inspection team can conclude the reinspection decision based on the estimated gain that will be obtained if reinspection is carried out. DDCETs are relatively novel according to various DCETs. Several papers deal with this subject. The three DDCETs proposed in the literature are (i) Optimistic Linear Model (OLM), (ii) Improved Linear Model (ILM), and (iii) Reliability Growth Model (RGM). Actually, the first two models are heuristics structured with the assumption of linear relationships between first and second inspection (i.e. reinspection). Further, all three models assume that in the second inspection cycle, the same inspection process and the same inspectors are employed as in the first inspection. When these three techniques are compared, the usage of ILM is recommended (Biffl and Gutjahr, 2002) or ILM is deemed comparable with RGM (Biffl and Halling, 2001). The brief description of each DDCET is provided below. 1. **Optimistic Linear Model (OLM):** This model assumes that the efficiency in the first inspection is conserved during reinspection. Inspection efficiency is defined as the number of defects found per unit effort spent. Hence, the predicted number of defects to be found by reinspection team can be expressed as follows (Biffl and Halling, 2001):

$$\hat{D}_2 = \left(\frac{D_1}{E_1}\right) \times E_2$$
 (Eq. 29)

where,

 $\hat{D_2}$: Estimate for the number of defects that would be identified during reinspection.

 D_1 : Number of defects detected during the first inspection.

 E_1 , E_2 : The effort for examining the work product in the first and second inspection, respectively.

2. **Improved Linear Model (ILM):** This model is similar to OLM, but it discounts the number of defects to be found in reinspection by the estimated percentage of remaining defects after the first inspection. The aim of this is to account for the decreased efficiency during second inspection cycle due to decreased number of defects available for detection. This approach is concordant with the results of the study conducted by Biffl et al. (2001), which reports that reinspections provide lower net benefit when compared to initial inspection. The corresponding formula to this model is given below, in which –again- the efficiency values are utilized (Biffl and Halling, 2001):

$$\hat{D}_2 = \left(\frac{D_1}{E_1}\right) \times E_2 \times \left(1 - \frac{D_1}{\hat{N}_0}\right)$$
(Eq. 30)

where, $\hat{N_0}$ is the estimate for the total number of defects in the work product at the start of inspections and generated by using appropriate DCET with the data from the first inspection.

3. **Reliability Growth Model (RGM):** This model adapts the reliability approaches for inspection process. In software engineering, these approaches are frequently used to predict the number of defects to be found in testing. Reliability Growth models are

based on the assumption of decreasing rate of defect detection. Biffl and Gutjahr (2002) propose to use Jelinski-Moranda reliability model in software inspections. According to this method, during the first inspection cycle the time when a particular defect is detected needs to be stored. Then, this data is utilized together with the reliability model structured for a parametrized stochastic process, i.e. second inspection process, to estimate the mean time between defect detection events during the second inspection cycle. Finally, the mean time is employed to predict the number of defects that will be found in the reinspection given the duration of the reinspection cycle. This information can also be used to estimate the total number of defects in the artifact, if unlimited duration for reinspection is considered. Biffl and Halling (2001) demonstrate the usage of RGM for software inspections with the plot given in Figure 1. The drawback of the approach explained above is the need for collecting time-stamped data in the initial inspection, which is not available in most software inspection implementations.

Figure 1 Reliability Growth Model for Software Inspection (Biffl and Halling, 2001)

CHAPTER 3

DESCRIPTION AND CONDUCT OF THE STUDY

3.1. Description of the Method and the Simulation Model Applied in the Study

As depicted in Chapter 2, the literature investigates various issues related to software inspection in order to find answers to following questions: How should software inspection process be designed for making it efficient and effective?, How many inspectors should be allocated for obtaining most benefit from the software inspection with no significant cost increase?, How much benefit is acquired from performing software inspections with respect to return on investment, rework cost savings, percentage of defects found, and decrease in the costs of other defect removal activities such as testing, What is the optimum preparation and meeting rates for software inspection?, How much cost is incurred during software inspection?, How should the software artifact be examined during inspection, i.e. which reading technique is more appropriate for maximizing the effectiveness of the software inspection?, How much does it cost to correct (i.e. rework cost) a defect during software inspection phase and subsequent phases?, How can the number of defects contained in the software work product be estimated appropriately by employing the results of the software inspection? How does reinspection differs from the initial inspection in terms of benefits and other factors?, How should the number of defects to be identified during a potential reinspection be predicted?. In addition to these, the literature also provides different methods for concluding the reinspection decision by objectively guiding the decision maker based on the data from the initial inspection. The reinspection decision is a good example of various technical and managerial decisions that are made during a typical software development project. Decision

making in the context of software engineering is a complex, important and difficult task, due to complexity, human intensity, uncertainty, and existence of multiple objectives inherent in software development process (Rus et al., 2003). The three main objectives, which are generally pursued in software development projects, are related to cost, schedule and quality. More clearly, software project managers, in general, aim to assure a certain quality level, to reduce development costs and to keep the project within the schedule. Consequently, there is a constant striving in software engineering literature and software development industry to identify the ways for developing cheaper, faster, and better software. For this reason, any software engineering related decision should be evaluated with respect to its effects on the achievement of these objectives (Rus et al, 2003). Since, the final results regarding cost, quality and schedule objectives are revealed at the end of software development life cycle, the mentioned evaluation certainly requires the analysis of the outputs observed after completion of the software project for three objectives. When this necessity is considered, it is concluded that the effects of software reinspection decisions should also be investigated for their effects on software project objectives. However, although a number of reinspection decision methods proposed in the literature, no study exists (to author's knowledge) that evaluates and compares the different reinspection decision methods by revealing their impact on cost, quality and schedule of the software development project. Hence, this study aims to address this niche by following the method described extensively in subsequent paragraphs and sections.

In this study, the reinspection decision that needs to be made in a SW-CMM (Paulk, et al., 1993) Maturity Level 3 organization's project after the completion of a code inspection is considered. The requirements put forward by SW-CMM for peer reviews corresponds to software inspection, when they are examined according to characteristics of different peer review types, which are outlined in Section 2.1. In this study the software code inspections are considered, since, as stated in Section 2.2, software inspections are more common for removing the defects in software code. Hence, by using the underlying implementation data available through the literature, providing insight to reinspection decision for code inspections is more valuable. Further, SW-CMM Maturity Level 3 provides a good context for the study

as explained in the following sentences. Maturity Level 3 (also called as 'Defined Level') enables the "establishment of an infrastructure that institutionalizes effective software engineering and management processes across all projects" (Paulk, et al., 1993). By this way, all projects (in a maturity level 3 organization) operate according to procedures which are tailored from the standard processes put forward in the organizational level. This brings consistency among the process implementations performed by various projects. Hence, when this fact is considered together with the peer review KPA's rules that each maturity level 3 organization shall comply with, designating the context of the study as SW-CMM enables the applicability of the potential results to many organizations. More clearly, the variability among the different software inspection implementations is minimized, since the considered software organizations conduct peer reviews according to peer review rules of SW-CMM. This is also true for other processes such as testing, requirements analysis, software design etc. From this perspective, considering higher and lower maturity levelled organizations in this study is not reasonable. In organization with lower maturity levels of SW-CMM the software inspection may be in place, although not required by SW-CMM. However, since the process standardization is not implemented and the SW-CMM rules are not ensured, the variability of the software inspection implementations are expected to be high for such organizations. This is fact is also valid for other processes. Clearly, this hinders the generalization of the study results. Whilst, for organizations which have maturity levels 4 or 5, the employed technologies and followed project execution practices may vary greatly due to continuous process improvement and quantitative project management concepts in place. Again, this represents a situation that may be detrimental while generalizing the study results. Consequently, to sum up, considering maturity level 3 of a widely employed process improvement model, namely SW-CMM, makes sense for the purposes of this study.

For evaluating the effects of the decision made at the point where the initial inspection is completed, a Monte-Carlo simulation model to represent the activities that the software code goes through before and after the decision is constituted. The cycle that starts with the initial inspection and ends with the field use (i.e. the related operational environment the software is used in) is taken into account as the scope of

this model. This process is depicted in Figure 2. According to this process, a software code piece goes through the inspection. During inspection, the code follows the general inspection steps, namely planning, overview, preparation, meeting, rework (correction), and follow-up. The process assumes that no new insertion new defects are inserted during correction step. After the inspection is completed, the decision is made whether to reinspect the artifact (i.e. software code) or continue with testing. Based on this decision the code is passed to testing or it is verified with inspection once more. So, the code enters to testing phase after the defects are eliminated via one or two inspection cycles (the second being the reinspection). During testing, some of the remaining defects in the code are removed by executing the pre-designed test cases and identifying the failing functions. Then, the code is deployed to the field with the residual defects, i.e. the defects are revealed by the users sooner or later and corrected by the software organization.

Figure 2 The Inspection-Reinspection Process Flow

As clear from the above explanations, since all of the included activities aim to capture the defects in the software code, the defects should be considered as the main entity. Hence, the simulation model represents the different points that can detect the defects as they flow through the software life cycle.

As described before, the aim of the study is to evaluate different methods for code reinspection decision. In line with this aim, the study tries to find out the resulting cost, defect level encountered by the users and the schedule delay with respect to planned end date of the project. Among these, the cost and defect level require the information regarding how many defects are caught in each of the relevant detection activity, i.e. inspection, reinspection, testing or field use. Whilst, the schedule delay is caused by performing the reinspection, which is an unanticipated activity in the

project plans. Consequently, structuring the model based on the events the defects come across is reasonable. In order to achieve this, the following information needs to be known regarding the defects:

1. The activity where a particular defect is detected

2. Number and content of the defects present in the code at the beginning of the inspection

3. The cost to correct a particular defect when it is detected

4. The cost of conducting the reinspection

3.1.1 Modeling the Defect Detection

For evaluating the different reinspection decision methods Monte Carlo simulation is utilized in this study. This requires the modeling of the defect detection events for the activities in the model. Actually, if a defect is detected during field use that means it can not be identified by means of inspection or testing, thus propagated to the user. So, the consideration of the detection events regarding other activities (namely inspection, reinspection–if performed-, testing) is sufficient. For these activities, the related detection models are described in the succeeding paragraphs.

• Modeling the detection event for inspection activity: By recalling the background information provided in Section 2.4.2, a defect's detection is related to two factors which are defect's detectability and inspector's (defect detection) ability. Both of these factors can be expressed in probability terms. More clearly, the detectability of a defect refers the probability that it is found by any of the inspectors and the capability of the inspector refers to the probability that he identifies any defect. Thus, the multiplication of these two probabilities reveals the probability of detection for a particular defect by a specific inspector. Furthermore, since more than one inspector participate in inspection, a defect detection probability is realized for none of the inspectors. Additionally, here the detected defects refer to the defects which are really defects, i.e. it is assumed that no false positives exist and if an inspector claims a proper situation as a defect, this is identified during meeting phase, so it is not counted as a defect. Thus, the inspector defect detection event does not possess Type II error. As evident, the capabilities of different inspectors in an

inspection session vary. Besides, as mentioned in the text before, the defects can be classified into two as 'easy' and 'difficult' according the their degree of detectability, i.e. easy and difficult defects have high and low probabilities of being captured, respectively. Consequently, the following formulation can be constructed to represent the event of detection during inspection activity in the context of Monte Carlo simulation.

$$p_{ij} = p_i \, q_j \tag{Eq. 31}$$

$$p_{i} = \begin{cases} p_{1}, \text{if defect i is difficult to find} \\ p_{2}, \text{if defect i is easy to find} \end{cases}$$
(Eq. 32)

$$x_{ij} = \begin{cases} 1, \text{ if } r_{ij} \le p_{ij}, \text{ i.e. if defect i is captured by inspector j} \\ 0, \text{ otherwise} \end{cases}$$
(Eq. 33)

where,

pi: the probability that a defect i is detected by any inspector

p1: the probability that a difficult defect is detected by any inspector

p₂: the probability that an easy defect is detected by any inspector

q_i: the probability that inspector j detects any defect

p_{ij}: the probability that a defect i is detected by inspector j

 r_{ij} : A Uniform(0,1) random number

By employing the above notation the following measures can be derived regarding the results of the inspection activity.

$$X_{i} = \begin{cases} 1, \text{ if } \sum_{j=1}^{k} x_{ij} \ge 1, \text{ i.e if defect i is detected during inspection} \\ 0, \text{ otherwise} \end{cases}$$
(Eq. 34)

$$D = \sum_{i=1}^{N} X_i$$
 (Eq. 35)

where,

X_i: The indicator if defect i is detected during inspection or not

k: Number of inspectors

D: Number of defects found during inspection

N: Total number of defects present in the inspected code

• Modeling the detection event for reinspection activity: The modeling of the detection event during reinspection is the same as the one described for inspection activity above. Hence, the corresponding formulation can be directly provided as below without repeating the details. Remember that, the reinspection is performed for the remaining defects if the related decision method suggests reinspection. Recall that, during a reinspection it is possible to change the inspection process, reading technique, and number and content of inspectors. In this study, only the number and content of inspectors is assumed to be subject to change. However, this does not cause any change in the inspector's probability of catching a defect, since even different inspectors are employed during reinspection, they are selected from the same inspector pool which provides inspectors with similar characteristics due to common training given in SW-CMM Level 3 context. Consequently, it is assumed that the inspectors participated in the initial inspection.

$$p_{ij} = p_i q_j \tag{Eq. 36}$$

$$p_{i} = \begin{cases} p_{1}, \text{if defect i is difficult to find} \\ p_{2}, \text{if defect i is easy to find} \end{cases}$$
(Eq. 37)

$$\mathbf{x}_{ij} = \begin{cases} 1, \text{ if reinspection is performed, and } \mathbf{r}_{ij} \le \mathbf{p}_{ij}, \text{ and } \mathbf{X}_i = 0, \\ \text{ i.e. if defect i is captured by reinspector j} \\ 0, \text{ otherwise} \end{cases}$$
(Eq. 38)

where,

p_i: the probability that a defect i is detected by any reinspector
p₁: the probability that a difficult defect is detected by any inspector
p₂: the probability that an easy defect is detected by any inspector
q'_j: the probability that reinspector j detects any defect (actually, it is equal with q_j)

 p'_{ij} : the probability that a defect i is detected by reinspector j

r_{ij}: A Uniform(0,1) random number

By employing the above notation the following measures can be derived regarding the results of the reinspection activity.

$$X'_{i} = \begin{cases} 1, \text{ if } \sum_{j=1}^{k} x'_{ij} \ge 1, \text{ i.e if defect i is detected during reinspection} \\ 0, \text{ otherwise} \end{cases}$$
(Eq. 39)

$$D' = \sum_{i=1}^{N} X'_{i}$$
 (Eq. 40)

where,

X_i: The indicator if defect i is detected during reinspection or not

k: Number of reinspectors

D': Number of defects found during reinspection

• Modeling the detection event for testing activity: In order to represent the test detection event, simply the fraction of defects that will be found during testing is considered. Hence, it is assumed that all defects reaching to testing activity are equally likely to be removed from the software. The formulation underpinning the defect detection event for testing is depicted as follows.

 p_t = defect removal percentage of testing

$$y_{i} = \begin{cases} 1, \text{ if } r_{i} \le p_{t} \text{ and } X_{i} = 0 \text{ and } X_{i} = 0, \text{ i.e. if defect i is found in testing} \\ 0, \text{ otherwise} \end{cases}$$
(Eq. 41)

where,

 p_t : the probability that any defect propagating to testing is detected during testing

 r_i : A Uniform(0,1) random number

Thus, the number of defects removed during testing can be stated as follows.

$$T = \sum_{i=1}^{N} y_i \tag{Eq. 42}$$

Finally, the number of defects that are encountered by the users during field use is expressed as; F = N - D - D' - T.

3.1.2 Modeling the Defect Injection

The number (N) and content of the defects at the beginning of the initial inspection has to be known for being able to execute the Monte Carlo simulation. The COQUALMO model is employed for determining the number of defects, since it provides the most comprehensive and generic information with respect to other available data (Boehm et al., 2000). As explained in Section 2.3, COQUALMO enables to estimate the number of defects contained in for requirements, design and code artifacts injected during software requirements analysis, software design and software coding activities, respectively. For unit-sized software code (i.e. 1 kilo source lines of code), the Defect Introduction submodel of COQUALMO states that 33 defects is present at the end of the coding activity on the average, if all defect introduction drivers are at their nominal levels. A nominal level of process maturity driver is assumed in this study, since, a SW-CMM Maturity Level 3 organization is taken into account. Further, all of the remaining drivers (such as programmer capability, required software reliability, platform volatility, team cohesion etc.) are assumed at their nominal levels, for being able to model the environment of a typical software project. The defect removal submodel of COQUALMO states that the nominal defect removal percentage for code defects eliminated through automated code analysis is 0.2 (See Table 4). So, 80% of the defects reaches to inspection activity, meaning that $33 \times 0.8 \cong 26$ defects are waiting to be removed via inspection. The underlying reason for using a nominal level of automated analysis capability is the variability of the tools used for these purposes by various software projects due to different technologies utilized. Hence, there is no information regarding the automated analysis profile of SW-CMM Maturity Level 3 software organizations. Using 26 as the average number of defects present in a 1000 SLOC sized software code is also supported by O'Neill (2003), who reports a defect insertion rate of 20 to 30 for Software CMM Level 3 companies.

With the content of the defects, the severity (as major or minor) and the degree of inspection detectability (as difficult or easy) of each defect are meant. So, the severity and detectability for each of the 26 defects should be designated as they are inputted to the simulation model. Let p_m and p_d be the probabilities regarding a

certain defect being major and difficult, respectively. Then, the formulations for setting the severity and detectability of a particular defect can be stated as follows.

severity of defect i =
$$\begin{cases} major, \text{ if } r_m \le p_m \\ minor, \text{ otherwise} \end{cases}$$
(Eq. 43)

detectability degree of defect i =
$$\begin{cases} \text{difficult, if } \mathbf{r}_{d} \leq p_{d} \\ \text{easy, otherwise} \end{cases}$$
(Eq. 44)

Where, r_m and r_d are Uniform(0,1) random numbers used to simulate the defect severity and detectability, respectively.

3.1.3 Modeling the Cost of Defect Correction

In order to calculate the resulting cost at the end of the software life cycle described in this study, the cost of correcting a defect, i.e. rework cost (which also includes the cost of troubleshooting) needs to be computed, besides the labor cost of a reinspection. As explained in Section 2.3, in software engineering studies the costs are generally represented in terms of effort, i.e. man-hours. Further, again by recalling from Section 2.3, the rework costs are different for major and minor defects. In this study, the cost values supplied by National Software Quality Experiment (NSQE) (O'Neill, 2003) are employed due to its comprehensive nature with respect to other studies that report cost values from specific environments and experiments. According to NSQE the costs that are faced by a typical SW-CMM Maturity Level 3 organization are as given in Table 7 in terms of required effort hours. Here, for analysis purposes, NSQE study assumes an average cost of 1 effort hour to correct (repair) a defect (major or minor) during software inspection. This value is used by O'Neill (2003) to calculate Return on Investment value regarding different software inspections for software development environments. Consequently, in this study the same value is utilized, since no separate data can be found in the literature regarding the cost to correct a defect.
Activity	Cost to Correct Minor Defect	Cost to Correct Major Defect
Inspection	1	1
Testing	4	Between 6 and 8
Field Use	16	6 to 8 times the cost in testing

Table 7 NSQE Defect Correction Costs in terms of Man-hours

Throughout this study, the testing and field use costs for major defects are assumed to be uniformly distributed between the values outlined in Table 7, since results obtained from NSQE do not provide any information regarding the distribution.

3.1.4 Modeling the Labor Cost of Reinspection

The two other cost consuming activities of inspection process in addition to the defect correction, are preparation and meeting. The cost of other activities (such as overview, follow-up and consolidation) are not even reported by the related studies because of three possible reasons; (i) the inclusion of the corresponding costs in preparation and meeting costs, (ii) not applying the related activity since it is optional or not embraced in the selected inspection method, (iii) neglecting the corresponding costs. So, in this study the costs regarding the meeting and preparation activities are considered to model the extra labor cost that the project will bear due to conduct of the reinspection. Besides, the indirect costs (such as facility overhead or general & administration) are not included in the cost of reinspection since the related data is unavailable and subject to high variation for different organizations. Furthermore, these costs are actually irrelevant since they are expended by the organization in any case, i.e. whether reinspection is carried out or not. By reviewing the preparation rate and meeting rate values provided in Section 2.2 and by following a conservative approach, it is reasonable to assume a rate of 200 Source Lines of Code (SLOC) per hour for both values in the context of a SW-CMM Maturity Level 3 organization. Since, the code size subject to the study is 1000 SLOC, having these rates results in 5 hours of preparation and 5 hours of meeting effort for each inspector participating to the reinspection. In addition to this, since the author of the inspected artifact is assumed to be among the reinspection participants in order to discuss and answer issues, an additional 5 hours is spent for meeting. Thus, the labor cost of reinspection (C_R) can be expressed as; (Number of Reinspectors \times 10 + 5) man-hours.

3.1.5 Defining the Output Measures of the Simulation Model

As mentioned before in the text, the three objectives, for which software projects strive to improve their performance, are cost, schedule and quality. For being able to evaluate the cost, schedule delay and defect containment that come out at the end of the software life cycle (defined by the simulation model) as a result of applying various reinspection decision methods, the related measures need to be designated. The selected measures and the underpinning reasons are described in the paragraphs below. In this study, these measures are computed without considering the specific software development in which the values of some measures may escalate. For example, a defect that propagates to the user for life critical software has much more important consequences in terms of quality. However, the effect of software type is accounted while evaluating the reinspection decision policies by determining a number of preference profiles for output measures, which actually correspond to different importances assigned to cost, quality and schedule according to software type developed (See Section 3.6 and Table 25).

• Total Cost (TC): When a reinspection is conducted, the project faces the corresponding labor cost and correction cost. However, at the same time the correction costs in testing and field use are decreased due the defects found in reinspection, i.e. the rework cost is saved. So, this impact of reinspection should be taken into account in the study. This measure provides the cost performance observed as a result of following a certain reinspection decision method and refers to the costs incurred throughout the phases embraced by the simulation model. In the study, costs of initial inspection and testing are irrelevant along with indirect costs, since all of these costs are assumed to be independent of the conduct of reinspection, i.e. the related expenditures are the same regardless of reinspection decision. For example, the testing effort is constant as stabilized in the project schedule and it is not altered according to results of previous inspection activities. So, the defect correction costs and reinspection cost (if conducted) are taken into account to

calculate the total cost. Consequently, in the context of the study, the total cost for a single simulation replication is calculated as follows.

$$TC = C_R + c_R^{mj} D_{mj} + c_R^{mn} D_{mn} + c_T^{mj} T_{mj} + c_T^{mn} T_{mn} + c_F^{mj} F_{mj} + c_F^{mn} F_{mn}$$
(Eq. 45) where,

TC: Total cost incurred during the software life cycle

 C_R : The labor cost of conducting the reinspection (excluding the related correction cost)

 $c_R^{mj}, c_T^{mj}, c_F^{mj}$: The cost to correct a major defect found during reinspection, testing and field use, respectively.

 $c_R^{mn}, c_T^{mn}, c_F^{mn}$: The cost to correct a minor defect found during reinspection, testing and field use, respectively.

 D_{mj} , D_{mn} : The number of major and minor defects, respectively, identified during reinspection.

 T_{mj} , T_{mn} : The number of major and minor defects, respectively, identified during testing.

 F_{mj} , F_{mn} : The number of major and minor defects, respectively, identified during field use.

In order to evaluate the reinspection decision methods, the total cost values (TC) resulting for all replications are averaged.

• Schedule Delay (SD): As a reinspection is carried out, the project's completion time may be affected adversely, since the reinspection may cause the late start of other activities which are on the critical path. Hence, this impact of the reinspection should be considered while analyzing the effects of different reinspection decision methods. Actually, finding out the delay in the project schedule –if any- when a reinspection is performed, requires the availability of the entire project schedule. However, this information is not covered in the model used in this study. Because of this reason, another way should be found to investigate the delay caused by the reinspection. In order to achieve this, the percentage of replications in which reinspection is conducted, is selected as the required measure.

• Major Field Defects (MjFD): It is expected that the number of defects transferred to the field use (i.e. found by the user) decreases as the software code is reinspected. Hence, this is another impact that should be analyzed regarding reinspections. The number of defects detected during field use provides the indication of software quality as seen by the user. However, since minor defects do not generally hinder the users' business, the number of major defects propagating to the field use is a more appropriate measure to investigate the effect of reinspections regarding software quality. So, in the study the average (among all replications) number of major defects that users encounter is employed as the third measure.

3.1.6 Outline of the Study

Throughout the study a number of steps are carried out in line with the aim of evaluating various reinspection decision methods in the context of a SW-CMM Maturity Level 3 organization by using the simulation model described above along with the measures that underpin the evaluation task. Firstly, the factors that possibly impact the results of the study are put forward. Then, the levels of these factors are deduced for manifesting the varying circumstances inherent in the simulation model. By using these levels, an experiment is designed which enables the enumeration of different circumstances that are encountered. Since, the main objects in the study are the reinspection decision methods, the next step is to expose the reinspection policies (regarding code inspections) that are going to be compared in the course of the study. This in turn requires the selection of a defect content estimation technique (DCET), which serves satisfactorily in all conditions, for estimating the number of remaining defects in the inspected artifact. Further, since some of the considered reinspection decision methods are based on the estimated number of defects to be found during reinspection, a suitable defect detection capability estimation technique (DDCET) needs to be chosen. Next, the total cost, schedule delay, and major field defects measures are found out for all of the selected reinspection policies by executing the pre-specified simulation model in all the cases covered by the designed experiment. Then, the results from the simulation are evaluated by employing the performance measures regarding cost, schedule and quality. During this evaluation, different weight combinations assigned to cost, schedule and quality dimensions are

considered with the aim of proposing appropriate reinspection decision policies for the software projects with different objectives and circumstances. Finally, the effects of the factors considered in the study on the output measures are investigated by performing analysis of variance (ANOVA).

3.2. Determining the Factors and Experimental Layout of the Study

A number of factors, which underpin the study and the simulation model, are described in Section 3.1. The varying values of these factors certainly affect the results regarding the evaluations for different reinspection decision methods. Hence, the factors and their levels that determine the various conditions where simulation model will be executed should be put forward. By reviewing the discussions in the previous section the following factors and corresponding levels come into play in the context of a SW-CMM Maturity Level 3 organization.

• The probability that a given defect is major (\mathbf{p}_m) : As mentioned before, the severity of a defect (as major or minor) specifies the related correction costs. Note that, the complement of \mathbf{p}_m value (i.e. $1-\mathbf{p}_m$) denotes the probability that a defect is minor. In the course of software projects major defects are less likely to be encountered than minor defects. Hence, it is reasonable to select the levels of \mathbf{p}_m as smaller than 0.5. These levels are selected as 0.1, 0.25, and 0.4 which correspond to the low, medium, and high probabilities, respectively.

• The probability that a given defect is difficult (p_d) : The detectability degree of a defect determines its possibility for being captured by the inspectors in inspection or reinspection. So, as a defect is introduced in the simulation model its detectability should be assigned as difficult or easy. p_d value enables to handle this task, i.e. according to this probability, if it occurs, the defect is treated as a difficult one. Otherwise, the defect at hand is an easy one. Consequently, in this study three levels are proposed for p_d as 0.2, 0.5, and 0.8. Actually, these levels also represent the inspection difficulty of the artifact as low, medium, and high.

• Inspection detection probabilities of difficult and easy defects (p_1, p_2) : The simulation model should take as one of its inputs the probability of detection during inspection and reinspection for both easy and difficult defects. As it should be clear from the previous explanations, the probability that a defect is captured by any

inspector is lower for difficult defects than easy defects, i.e. $p_1 \le p_2$. In this study, the possible values for detection probabilities of easy and difficult defects should be considered along with the proximity of their probabilities. Hence, in order to achieve this, the following (p1, p2) pairs are designated: (0.1, 0.9), (0.25, 0.75), and (0.4, 0.6). Note that these levels correspond to extreme, moderate, and low difference in detection probabilities, respectively.

• Number of inspectors (k): In general, as the number of inspectors increases, the number of defects captured during inspection also increases. So, inspection team size is another factor that should be considered throughout the study. In Section 2.2, the range of inspector team size is stated as 2 to 4 for code inspection. So, by using this information, the corresponding levels are selected as 2, 3, and 4.

• Number of reinspectors (k): By following the same reasoning that is applied for number of inspectors above, the levels regarding the number of reinspectors are designated as 2,3, and 4. Certainly, this factor is relevant if 'reinspect' decision is made by the reinspection decision method. If this is the case, the project manager determines the inspection team that will conduct the reinspection. Hence, the reinspection may be carried out with the same, higher or lower number of inspectors. For example, it is possible to have 2 inspectors during inspection and 4 for reinspection, which represents probably a situation that project manager wants to ensure the quality of the inspected artifact by devoting additional resources for reinspection.

• Capability of a particular inspector (q_j) : For assigning the capturing probability of a specific defect during inspection or reinspection, the capabilities of the related inspectors should also be known, besides the defect detectability. As explained in the previous sections of the text, the capability of an inspector is represented with the probability that s/he detects any defect (which is independent of severity and detectability of the defect). In order to determine the levels corresponding to this probability, the Code People Review defect removal fraction values proposed by Defect Removal submodel of COQUALMO are employed. Very low and low people review ratings in COQUALMO correspond to no peer reviews and ad-hoc peer reviews, respectively. The peer review implementation put forward

by SW-CMM Maturity Level 3 requires documented procedure, training, defined roles, and use of checklists. Hence, it is reasonable to include the high and very high ratings of COQUALMO. Also, the nominal rating should be included in order to account for the situations where the related peer review procedures are followed improperly (causing a decrease in peer review effectiveness with respect to expectations). Furthermore, extra high rating is not included, because it refers to the practices (such as root cause analysis and statistical process control) which are not embraced in many inspection methods. As a result, the inspector capability levels to be used in this study are chosen as 0.48, 0.6, and 0.73 (See Table 4 in Section 2.3). Actually, in the study these are employed as the capability of an average inspector. It is assumed that there is not much variation among the capabilities of different inspectors, since they obtain same training for inspection process and other processes. However, still some degree of variation is present due to different background and experience of the inspectors. Hence, in order to account for this issue, in this study, the capability of a specific inspector is assumed to be normally distributed around the related capability level with standard deviation 0.05 (assuming a deviation of ± 0.15 around the average that covers about 99% of the population), e.g. if the inspector capability level at hand is 0.6, during a single replication of the Monte Carlo simulation, the probability representing the capability of an inspector will be sampled from the distribution N (0.6, 0.0025).

• Testing detection probability of a defect (p_t): If a defect remains undetected after inspection activities, it has still chance to be identified via testing before it is transferred to the user. The model proposed in this study requires the determination of the probability that a particular defect is detected during testing. As mentioned before in the text, this probability is taken as constant for all defects. The levels of the testing detection probability are selected again by referring to COQUALMO model. The Defect Removal submodel of COQUALMO provides different ratings for eliminating defects via execution testing and tools. In this study, the nominal and very high ratings are taken into account as two cases which represent the content of the testing activities employed by SW-CMM Maturity Level 3 organizations. Namely, nominal rating corresponds to the basic activities regarding different testing types as unit testing, integration testing and system (acceptance) testing. Whilst, very

high rating refers to the addition of advanced testing tools and techniques while applying the practices given by nominal case. The high rating is not included in the study since the corresponding defect removal fraction value does not differ much from one higher and lower ratings, i.e. from nominal and very high ratings. This also enables the saving from the number of cases enumerated in the study due to assumption that small difference in defect removal fraction value does not affect the results significantly. Besides, very low and low ratings are not considered, since they relate to cases where no testing and ad-hoc testing are applied, respectively. And extra high rating is not included, since it describes very extreme cases regarding testing capability. Finally, the two levels selected for p_t value are 0.58 and 0.78 (See Table 4 in Section 2.3).

As a result of the above discussions the factors and the levels to be considered throughout the study while executing the replications of Monte Carlo simulation can be outlined as given in Table 8 below. In this table, the levels are numbered according the increasing levels of factors.

Factor	Related Activity	Levels
p _m	Coding	1) 0.1
		2) 0.25
		3) 0.4
p_d	Coding	1) 0.2
		2) 0.5
		3) 0.8
(p ₁ ,p ₂)	Inspection	1) (0.1,0.9)
		2) (0.25,0.75)
		3) (0.4,0.6)
k	Inspection	1) 2
		2) 3
		3) 4
k	Reinspection	1) 2
		2) 3
		3) 4
\mathbf{q}_{j}	Inspection and Reinspection	1) N(0.48, 0.0025)
		2) N(0.60, 0.0025)
		3) N(0.73, 0.0025)
p_{t}	Testing	1) 0.58 2) 0.78

Table 8 Factors and Corresponding Levels Considered in the Study

In order to represent different conditions resulting from the varying levels of the above factors, an experiment needs to be designed. For this purpose, the Taguchi design (orthogonal array, fractional factorial design) shown in Table 9 is constructed by using the Minitab Statistical Software. The replications to be used for various analysis purposes in the succeeding parts of the study employ the treatments given in this table. Namely, the related treatments are repeatedly simulated for each of the 54 treatments in order to obtain data for different situations comprised in the study context. (The details of the simulation study are explained in Section 3.6.)

Treatment	p _t	Pd	թ _m	$\mathbf{q}_{\mathbf{j}}$	(p ₁ , p ₂)	k	k
1	1	1	1	1	1	1	1
2	1	1	1	2	1	1	1
3	1	1	1	3	1	1	1
4	1	2	2	1	2	1	2
5	1	2	2	2	2	1	2
6	1	2	2	3	2	1	2
7	1	3	3	1	3	1	3
8	1	3	3	2	3	1	3
9	1	3	3	3	3	1	3
10	1	1	2	1	2	2	1
11	1	1	2	2	2	2	1
12	1	1	2	3	2	2	1
13	1	2	3	1	3	2	2
14	1	2	3	2	3	2	2
15	1	2	3	3	3	2	2
16	1	3	1	1	1	2	3
17	1	3	1	2	1	2	3
18	1	3	1	3	1	2	3
19	1	2	1	1	3	3	1
20	1	2	1	2	3	3	1
21	1	2	1	3	3	3	1
22	1	3	2	1	1	3	2
23	1	3	2	2	1	3	2
24	1	3	2	3	1	3	2
25	1	1	3	1	2	3	3
26	1	1	3	2	2	3	3
27	1	1	3	3	2	3	3
28	2	3	3	1	2	1	1
29	2	3	3	2	2	1	1

Table 9 Experimental Layout Employed in the Study

Treatment	p _t	p _d	թտ	$\mathbf{q}_{\mathbf{j}}$	(p ₁ , p ₂)	k	k
30	2	3	3	3	2	1	1
31	2	1	1	1	3	1	2
32	2	1	1	2	3	1	2
33	2	1	1	3	3	1	2
34	2	2	2	1	1	1	3
35	2	2	2	2	1	1	3
36	2	2	2	3	1	1	3
37	2	2	3	1	1	2	1
38	2	2	3	2	1	2	1
39	2	2	3	3	1	2	1
40	2	3	1	1	2	2	2
41	2	3	1	2	2	2	2
42	2	3	1	3	2	2	2
43	2	1	2	1	3	2	3
44	2	1	2	2	3	2	3
45	2	1	2	3	3	2	3
46	2	3	2	1	3	3	1
47	2	3	2	2	3	3	1
48	2	3	2	3	3	3	1
49	2	1	3	1	1	3	2
50	2	1	3	2	1	3	2
51	2	1	3	3	1	3	2
52	2	2	1	1	2	3	3
53	2	2	1	2	2	3	3
54	2	2	1	3	2	3	3

Table 9 Experimental Layout Employed in the Study (cont.)

3.3. Determining the Reinspection Policies to be Evaluated

Recall that, the aim of this study is to compare various reinspection decision methods by observing their effects on cost, schedule and quality related objectives of a software project. In Section 2.6, five reinspection decision methods revealed from the literature are described. By employing these methods, the reinspection policies to be evaluated in this study are determined. In the context of the study, a reinspection policy refers to the rule used to decide whether to reinspect the code or not. Determination of the policies requires the designation of different values for the thresholds inherent in the outlined reinspection decision methods. Besides adapting all of the available methods for all defects (i.e. without differentiating major and minor defects), the methods I through IV are also adapted for major defects. The consideration of this kind of policies enables the study to account for the perspective which focuses on the removal of major defects, since they are deemed as much more critical than minor defects. Furthermore, in addition to the policies determined by adapting the reinspection decision methods, also 'Never Reinspect' and 'Always Reinspect' policies are included in the analysis. In order to increase the validity of the study, the thresholds regarding the policies are selected with the aim of coming up with a representative set of policies. Hence, while determining the policies tight threshold values are included as well as loose and moderate ones. However, in practice, i.e. for software development projects in real life, these thresholds are generally determined by considering the historical data generated from previous projects of the organization. The resulting policies are provided in Table 10. Note that, the thresholds for policies based on defect density include 'number of defects' in the description column, because in the study the code size is fixed in all cases as 1 KSLOC (recall that when defect density value is multiplied by code size it provides the number of defects).

Dollar	Threshold	Reinspection	Threshold Description	Considered Defect
Foncy	Value	decision method	Threshold Description	Severity Class
1	0.25			
2	0.5			
3	0.6	Ι	Minimum Effectiveness	All
4	0.75		Anter Inspection	
5	0.9			
6	0.25			
7	0.5			
8	0.6	Ι	Minimum Effectiveness After Inspection	Major
9	0.75		1	
10	0.9			
11	3			
12	6		Upper Bound for the	
13	9	П	Allowable Number of	All
14	12		Detects After Inspection	
15	15			
16	1			
17	2		Upper Bound for the	
18	3	Π	Allowable Number of	Major
19	4		Defects After Inspection	
20	5			
21	2	III	Upper Bound for the	All
22	4		Allowable Number of Defects After	
23	6		Reinspection	
24	8			
25	10			

Table 10 Reinspection Policies Considered in the Study

Dollar	Threshold	nreshold Reinspection Threshold Description		Considered Defect		
Folicy	Value	decision method	Threshold Description	Severity Class		
26	1					
27	2		Upper Bound for the			
28	3	III	Allowable Number of Defects After	Major		
29	4		Reinspection			
30	5					
31	0.25					
32	0.5					
33	0.6	IV	Minimum Effectiveness	All		
34	0.75		Anter Reinspection			
35	0.9					
36	0.25					
37	0.5			Major		
38	0.6	IV	Minimum Effectiveness			
39	0.75		Anter Kemspection			
40	0.9					
41	0					
42	25					
43	50	V	Minimum Net Benefit	All		
44	75					
45	100					
46	N/A	Never Reinspect	N/A	N/A		
47	N/A	Always Reinspect	N/A	N/A		

Table 10 Reinspection Policies Considered in the Study (cont.)

In the study, it is possible to encounter some occurrences where during inspection the number of identified defects is zero. This situation is especially probable for major defects, since their number is low vis-à-vis all defects. Hence, in these cases the above policies are adapted to result in 'do not reinspect decision', due to (i) unavailability of the information that enables the estimation of number of defects contained in the artifact, and (ii) in practice this probably is deemed as inexistence of considerable amount of defects in the artifact. Furthermore, the above policy formulations include the estimated values, which are obtained by applying appropriate DCETs and DDCETs. These estimates may result in non-integer values. For such situations, the rounding of the resulting value is not carried out, by assuming it is actually an approximation/average for the number of defects contained in the artifact and for the number of defects that will be identified during reinspection.

3.4. Selecting the Defect Content Estimation Technique to be Employed

Most of the reinspection decision methods described in Section 2.6 are based on the estimate for number of defects present in the inspected artifact (N). Consequently, the policies to be evaluated in this study (See Section 3.3) also require the calculation of this estimate for concluding reinspection decision. Hence, a defect content estimation technique (DCET), which performs satisfactorily in the underlying context, should be determined for accomplishing the purposes of this study. While selecting an appropriate DCET among the various DCETs outlined in Section 2.4, the techniques that rely on the subjective estimations of software practitioners are not taken into account, since they necessitate the people, from whom the estimates will be obtained. This shows that, such techniques are not applicable in a simulation study like this one. Furthermore, the objective curve-fitting models are also not preferable for the simulation purposes. Because, making the defect estimation by using one of the available curve-fitting models requires extensive work for determining the line that best represents the inspection data at hand. Certainly, to conduct that fitting operation for each replication of the simulation is infeasible with respect to cost (measured in terms of processing time). Furthermore, the literature implies that Capture-Recapture estimators perform better than curve-fitting techniques. As a

result, in this study, the Capture-Recapture estimators are considered, since they are also suitable and practical for the conditions of the study.

Recalling from Section 2.4, there exist six different estimators provided by the CR models that are applicable to software inspections. Again as mentioned in Section 2.4, some of these estimators, namely Chao's Heterogeneity-Time and Jack-knife estimators, have sub-estimators. In this study these sub-estimators are treated as

separate estimators while selecting the best CR estimator to compute the value of N. For Chao's Heterogeneity-Time estimator, the unavailability of the guidance for selecting the proper sub-estimators is the main reason for this fact. Whilst, for Jack-knife estimator the claims of Miller (1999) regarding the inappropriateness of using the selection procedure proposed by Burnham and Overton (1978) for software engineering practices, and the results supplied by Thelin et al. (2002), are accepted as the evidence for employing the sub-estimators along with their practicality for simulation purposes. Consequently, this results in 12 estimators considered in this study. These estimators are listed in Table 11. Actually, some of these estimators are not candidates for selection at certain levels designated for number of inspectors and reinspectors in the designed experiment (see Section 3.2). By definition, they are not applicable in the cases where the number of inspectors is equal to 2 (estimators 7, 10, 11, 12), 3 (estimators 11, 12), or 4 (estimator 12).

Estimator Number	Estimator Name
1	Maximum Likelihood Estimator for Model M0 (MLE-M0)
2	Maximum Likelihood Estimator for Model Mt (MLE-Mt)
3	Chao's Time Estimator (ChaoMt)
4	Chao's Heterogeneity Estimator (ChaoMh)
5	Chao's Heterogeneity-Time Estimator (ChaoMth) Order 1
6	Chao's Heterogeneity-Time Estimator (ChaoMth) Order 2
7	Chao's Heterogeneity-Time Estimator (ChaoMth) Order 3
8	Jack-knife Estimator (JKMh) Order 1
9	Jack-knife Estimator (JKMh) Order 2
10	Jack-knife Estimator (JKMh) Order 3
11	Jack-knife Estimator (JKMh) Order 4
12	Jack-knife Estimator (JKMh) Order 5

Table 11 Capture-Recapture Estimators Considered in the Study

In order to differentiate among the remaining 8 estimators, different DCET evaluation measures available through the literature are utilized (see Section 2.5.1). Namely, Failure Rate (FR), Relative Error (RE), Decision Accuracy (DA), Relative Decision Accuracy (RDA), and Root Mean Square Error (RMSE) measures are computed by replicating the underlying simulation model 1000 times for each estimator and for each treatment. Certainly, increasing the number of replications above 1000 would make the analysis results more reliable. However, this is not feasible because of the limited processing time. So, the reasonability for number of replications is considered by computing the estimated standard error values regarding 1000 replications for the related measures, namely, RE, FR and DA. For RDA and RMSE measures, estimated standard error is not revealed, since RDA is actually based on DA measure and RMSE, by definition, includes the variability among 1000 replications. The highest estimated standard error values encountered through all

treatments for RE, FR and DA measures are 0.0212, 0.0158, and, 0.0158, respectively. These values show that the number of replications employed for determining the appropriate estimator is reasonable. Because the estimated standard errors are small enough (compared to the average of all replications) to decrease the variability among different replications to an acceptable level, while obtaining the estimator's performance for each treatment. During the estimator comparison, using the designed experiment, which represents the different software inspection circumstances, enhances further the validity of the results with respect to variability. The succeeding paragraphs present the results of the analysis performed for each measure.

The values for FR measure are revealed by calculating, for a given replication, the percentage of replications, in which the related estimator fails to produce an estimate. This generally occurs when 'division by zero' is resulted due to estimator formulation. Table 12 supplies the FR statistics of each estimator for 54 treatments of the designed experiment. Further, the related boxplots are depicted in Figure 3. As can be seen from seen from Table 12, a number of estimators always estimate the number of defects present in the artifact, whilst others fail 4-5% of the time. Although, the mean values for different estimators seem not to differ significantly, the corresponding boxplots reveal that high failure rates are encountered for several estimators, namely for estimators 1, 2, 4, 5, and 6 in a number of treatments. When the estimators' FR profile for defects with major severity is examined with the aim of inspecting their performance related to policies based on major defects, the situation is even worse for these estimators. As evident from Figure 4 and Table 13, for major estimators they systematically result in failure, since the number of major defects is low (due to the experimental design) with respect to total number of defects. So, these estimators are deemed as inappropriate for using them throughout the study, since the estimator to be selected should produce estimates most of the time for all treatments and such estimators are already available. Hence, as a result of these facts, estimators 1, 2, 4, 5, and 6 are removed from the evaluations, which leaves estimators 3, 8, and 9 as the available options regarding the best DCET for the study.

Estimator	Mean	Median	Std Dev.	Min	Max	1 st Quartile	3 rd Quartile
1	0.0379	0.002	0.075	0	0.356	0	0.038
2	0.03783	0.0035	0.07266	0	0.326	0	0.04
3	0	0	0	0	0	0	0
4	0.0487	0.0095	0.0776	0	0.361	0.0008	0.078
5	0.0397	0.0035	0.0794	0	0.377	0	0.0395
6	0.0371	0.0025	0.0753	0	0.38	0	0.0305
8	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0

Table 12 Failure Rate Statistics for the Estimators Regarding All Defects

Table 13 Failure Rate Statistics for the Estimators Regarding Major Defects

Estimator	Mean	Median	Std Dev.	Min	Max	1 st Quartile	3 rd Quartile
1	0.3453	0.3292	0.2508	0	0.8218	0.0913	0.5742
2	0.3441	0.3326	0.2518	0	0.8164	0.0935	0.5466
3	0	0	0	0	0	0	0
4	0.3989	0.3943	0.245	0.027	0.8058	0.1445	0.5933
5	0.3408	0.3294	0.249	0	0.8105	0.0987	0.5543
6	0.344	0.3423	0.2484	0	0.8008	0.1085	0.5669
8	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0

Figure 3 Boxplots for Estimator Failure Rate Regarding All Defects

Figure 4 Boxplots for Estimator Failure Rate Regarding Major Defects

For the remaining three estimators, DA and RDA measures are considered by computing their average values through all treatments for each reinspection policy listed in Section 3.3. Actually, the average of the mean DA and mean RDA for each treatment, which are computed by taking into account 1000 replications corresponding to the treatment, are calculated. For each estimator, the DA and RDA statistics generated by taking into account the related average values of 45 reinspection policies, are given in Table 14 and Table 15, respectively. Also, the corresponding boxplots are shown in Figure 5 and Figure 6. Even without conducting hypothesis testing, these tables and figures obviously reveal no evidence supporting the fact, that one of the three estimators is better than others with respect to enabling more accurate decisions. So, based on these two measures, none of the remaining estimators can be eliminated. Further, by recalling that the best values for DA and RDA measures are 1 and 0, respectively, it can be concluded that, for the purposes of this study all of the three estimators perform satisfactorily on the average with respect to decision accuracy.

Table 14 Decision Accuracy Statistics for the Estimators

Estimator	Mean	Median	Std Dev.	Min	Max	1 st Quartile	3 rd Quartile
3	0.6763	0.6550	0.1367	0.4374	0.9622	0.5824	0.7471
8	0.6764	0.6673	0.1669	0.3054	0.9645	0.5704	0.7795
9	0.6707	0.6660	0.1579	0.3051	0.9647	0.5605	0.7620

Estimator	Mean	Median	Std Dev.	Min	Max	1 st Quartile	3 rd Quartile
3	0.0378	-0.0002	0.1964	-0.3388	0.7649	-0.0285	0.0866
8	0.0337	-0.0011	0.2666	-0.5252	0.9047	-0.0634	0.0132
9	0.0288	-0.0234	0.2639	-0.3923	0.8946	-0.1143	0.0151

Table 15 Relative Decision Accuracy Statistics for the Estimators

Figure 5 Boxplots for Estimator Decision Accuracy

Figure 6 Boxplots for Estimator Relative Decision Accuracy

In order to compare the performance of the estimators regarding the accuracy of the estimations they produce, RE and RMSE measures are employed for each. Since, some of the selected policies depend on only major defect containment; the related evaluations are also performed for major defects, in addition to evaluations conducted for all defects (i.e. regardless of the defect severity as major or minor). By calculating RMSE value through all replications of a treatment, the variance and bias of an estimator are accounted at the same time. If we deem each 1000 replications as a sample, this enables to observe in-sample results for the accuracy of the estimations with respect to the true value. As can be seen from Table 16, Figure 7 and Figure 9, RMSE values for major defects do not exhibit distinction among the estimators 3 and 9. However, estimator 8 seems to be better than the other two (recall that low values are more favorable for this measure), although not justified via pairwise comparisons of Fisher's Test (given in Figure 7). Further, regarding all defects, RMSE performance of estimator 3 seems deficient vis-à-vis estimators 8 and 9, based on results depicted in Table 17, Figure 8 and Figure 10. However, same exhibitions

show that when only RMSE performance regarding all defects is considered, the tie between estimators 8 and 9 is not broken. Consequently, as a result of the above discussion, it can be concluded that RMSE measure favors estimators 8 and 9 over estimator 3, but estimators 8 and 9 do not outperform each other, although estimator 8's RMSE performance seems better. Estimators 8 and 9 are even deemed as equivalent with respect to RMSE values computed regardless of defect severity.

Table 16 Root Mean Square Error Statistics for the Estimators through Major Defects

Estimator	Mean	Median	Std Dev.	Min	Max	1 st Quartile	3 rd Quartile
3	3.422	3.503	1.37	1.638	6.796	2.06	4.293
8	3.007	2.852	1.141	1.61	6.508	1.887	3.584
9	3.409	3.532	1.175	1.591	6.267	2.284	4.131

Analysis of Variance for RMSE
 Source
 DF
 SS
 MS
 F

 Estimato
 2
 5.99
 3.00
 1.97

 Error
 159
 241.59
 1.52

 Total
 161
 247.58
 F Ρ 0.143 Individual 95% CIs For Mean Level Based on Pooled StDev NMeanStDev543.4221.370543.0071.141543.4091.175
 Mean
 StDev
 ++----+

 3.422
 1.370
 (-----*----)

 3.007
 1.141
 (-----*----)
 8 9 (-----) Pooled StDev = 1.233 2.70 3.00 3.30 3.60 Fisher's pairwise comparisons Family error rate = 0.122Individual error rate = 0.0500Critical value = 1.975Intervals for (column level mean) - (row level mean) 3 8 -0.054 8 0.883 9 -0.870 -0.455 0.067 0.482

Figure 7 MINITAB Output for One-way ANOVA and Fisher's Test Results (with 95 % confidence) of Root Mean Square Error through Major Defects

Table 17 Root Mean Square Error Statistics for the Estimators through All Defects

Estimator	Mean	Median	Std Dev.	Min	Max	1 st Quartile	3 rd Quartile
3	8.949	9.293	3.434	2.826	16.012	5.422	11.483
8	7.315	6.36	4.01	2.979	15.945	3.761	10.689
9	7.593	6.665	3.304	3.492	15.249	4.856	10.01

Analysis of Variance for RMSE
 Source
 DF
 SS
 MS

 Estimato
 2
 82.6
 41.3

 Error
 159
 2056.0
 12.9

 Total
 161
 2138.6
 1
 F Ρ 3.19 0.044 Individual 95% CIs For Mean Based on Pooled StDev Ν Mean Level 8.949 3.434 (----4.010 (-----*-----) 3 54 (-----) 8 54 7.315 3.304 9 54 7.593 (-----) ____+ __+_ Pooled StDev = 3.596 7.0 8.0 9.0 Fisher's pairwise comparisons Family error rate = 0.122Individual error rate = 0.0500Critical value = 1.975Intervals for (column level mean) - (row level mean) 3 8 0.268 8 3.001 9 -0.010 -1.645 1.089 2.723

Figure 9 Boxplots for Estimator Root Mean Square Error through Major Defects

Figure 10 Boxplots for Estimator Root Mean Square Error through All Defects

Relative Error (RE) measure is further used as a final criterion to compare the three estimators. While finding out the values for RE measure, the mean value among 1000 replications is computed for each treatment. The related RE statistics are summarized in Table 18 and Table 19, for all defects and major defects, respectively. Additionally, the boxplots showing the distribution of RE values among 54 treatments are plotted in Figure 11 and Figure 12, for all defects and major defects, respectively. As clearly seen from this analysis, all three estimators tend to underestimate. This result conforms to the findings of the previous studies in the literature, as explained in Section 2.5.2. Additionally, as mentioned again in Section 2.5.1, the RE value of an estimator is considered acceptable if it lies in the range \pm 20% on the average. Hence, by considering this advice along with its RMSE measure performance, estimator 3 should not be selected as the DCET to be used in this study based on the mean and median RE values regarding major defects. Further, when the RE statistics of estimator 8 is examined, its mean and median RE values are found out unsatisfactory according to $\pm 20\%$ criterion, since they all lie on the boundary of -0.2. Whilst, estimator 9 performs well in terms of its accuracy (especially in the case of major defects), i.e. corresponding mean and median results are in the required range and close to the optimum value, which is zero. Consequently, since also its RMSE performance is adequate, estimator 9, namely Jack-knife (JKMh) estimator order 2, seems as the most appropriate Capture-Recapture estimator in the scope of this study. This finding supports the general result in the literature regarding the superiority of Jack-knife estimator in software inspection context. Further, when the subestimators are considered, the outcome of this study is in line with the work of Thelin et al. (2002), in which, also, second order estimator of Jack-knife is suggested.

Estimator	Mean	Median	Std Dev.	Min	Max	1 st Quartile	3 rd Quartile
3	-0.1894	-0.1394	0.166	-0.5785	-0.0094	-0.335	-0.0544
8	-0.2059	-0.1913	0.2054	-0.5989	0.0932	-0.3836	-0.027
9	-0.1534	-0.1255	0.2307	-0.5708	0.1859	-0.3523	0.0647

Table 18 Relative Error Statistics for the Estimators through All Defects

Table 19 Relative Error Statistics for the Estimators through Major Defects

Estimator	Mean	Median	Std Dev.	Min	Max	1st Quartile	3rd Quartile
3	-0.3026	-0.2969	0.1856	-0.7154	-0.0408	-0.4546	-0.1323
8	-0.2051	-0.1893	0.2057	-0.5962	0.0921	-0.399	-0.0206
9	-0.0794	-0.109	0.289	-0.5602	0.4029	-0.3529	0.2015

Figure 11 Boxplots for Estimator Relative Error through All Defects

Figure 12 Boxplots for Estimator Relative Error through Major Defects

The simulated data employed during the analysis in this section are provided in Appendix A for FR, in Appendix B for RE, and RMSE measures, and in Appendix C for DA and RDA measures.

3.5. Selecting the Defect Detection Capability Estimation Technique to be Employed

Several policies outlined in Section 3.3, namely the ones that are based on methods III IV and V, require the calculation of the estimated number of defects to be found in a probable reinspection. As mentioned in Section 2.7, Defect Detection Capability Estimation Techniques (DDCET) make this possible. Hence, in order to obtain the results of such policies a DDCET should be designated which serves satisfactorily for the purposes of the study. This means that the approach of determining different DDCETs for various situations is not followed, because the practicality of the proposed policy is one of the main concerns of the study. Therefore, since such an approach complicates the application of the policies in practice, a single DDCET is

considered throughout the study. Among the available three DDCETS outlined in Section 2.7, the one based on reliability growth model is not adapted in the study, due to 5 main reasons; (i) the study of Biffl and Gutjahr recommend another DDCET, namely ILM (Biffl and Gutjahr, 2002), (ii) it requires time-stamped data regarding each defect detection event of inspectors, which is not available through the designed simulation model, (iii) available methods for software inspection and their practical applications do not include the collection of this kind of data, (iv) infeasibility of fitting a reliability curve to the data (even it is available) for each replication of the simulation study, and (v) costly and impractical implementation of this approach in practice. The remaining two techniques, namely Optimistic Linear Model (OLM) and Improved Linear Model (ILM), are similar except the latter one accounts for the decreased efficiency in reinspection, which is the case in general as showed in the study of Biffl et al. (2001). Further, ILM is found superior than OLM in the literature (Biffl and Gutjahr, 2002, Biffl and Halling, 2001). Consequently, ILM is deemed as the most appropriate technique for this study, in order to reveal estimated number of defects to be eliminated if reinspection is performed.

3.6. Evaluating the Reinspection Decision Policies

The main aim of this study is to provide guidance on the effects of employing different reinspection policies for code inspections. In order to achieve this, the output measures outlined in Section 3.1.5 are revealed by running the simulation model described in Section 3.1 for each reinspection policy listed in Section 3.3 through all treatments of the designed experiment in Section 3.2. Further, while calculating the estimated values for number of defects in the inspected code and number of defects to be found during reinspection, the estimators designated in sections 3.4 and 3.5, respectively, are employed. The simulation model is executed 500 times for each treatment and for each reinspection policy. In order to make the results comparable, the same random number seed is initialized at the start of each 500 replications. The process describes in the previous sentences is demonstrated in Table 20. The data resulted from the running of all these replications are available in Appendix D. Increasing the number of replications further is deemed unsuitable due to processing time constraints. In order to check the appropriateness for selected number of replications, the estimated standard error values of three output measures

are computed. The highest estimated standard error values encountered through all policies and treatments for Total Cost, Schedule Delay and Major Field Defects measures are 3.687, 0.0223, and, 0.0692, respectively. These values show that the number of replications used for evaluating the reinspection decision policies is acceptable, since the estimated standard errors are small enough (compared to the average of all replications) to decrease the variability among different replications to a reasonable level. During the policy evaluation, using the designed experiment, which represents the different software inspection circumstances, improves further the validity of the results with respect to variability.

Policies													
	Treatments				Fact	ors					Ou	itput Me	easures
		Replications	\mathbf{p}_{m}	p_d	p_1, p_2	k	k'	$\mathbf{q}_{\mathbf{j}}$	\mathbf{p}_{t}	R	TC	SD	MjFD
		1	1	1	1	1	1	1	1	:	:	:	:
	1	:	:	:	:	:	:	:	:	:	:	:	:
		:	:	:	:	:	:	:	:	:	:	:	:
		500	1	1	1	1	1	1	1	:	:	:	:
		Output Meas	ure Va	lues	Averag	ed o	ver	Repl	icati	ons	\overline{TC}_{1}^{1}	\overline{SD}_1^1	\overline{MjFD}_{1}^{1}
	:	:	:	:	:	:	:	:	:	:	:	:	:
1	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:
		Replications	p _m	p_d	p ₁ ,p ₂	k	k'	$\mathbf{q}_{\mathbf{j}}$	\mathbf{p}_{t}	R	TC	SD	MjFD
		1	2	2	1	3	2	3	3	:	:	:	:
	54	:	:	:	:	:	:	:	:	:	:	:	:
		:	:	:	:	:	:	:	:	:	:	:	:
		500	2	2	1	3	2	3	3	:	:	:	:
		Output Meas	ure Va	lues	Average	ed o	ver]	Repl	icati	ons	\overline{TC}_{54}^{1}	\overline{SD}_{54}^{1}	\overline{MjFD}_{54}^{1}
		Output Mea	sure V	alues	s Avera	ged	over	Tre	atme	ents	$\overline{\overline{TC}}_1$	$\overline{\overline{SD}}_1$	\overline{MjFD}_1
:	•	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Treatments					-					TO	<u></u>	
		Replications	p _m	p_d	p_1, p_2	k	k'	$\mathbf{q}_{\mathbf{j}}$	\mathbf{p}_{t}	R	TC	SD	MjFD
		1	1	1	1	1	1	1	1	:	:	:	:
	1	:	:	:	:	:	:	:	:	:	:	:	:
		:	:	:	:	:	:	:	:	:	:	:	:
		300	1	I	1	1	1	1	1	•			47
		Output Meas	ure Va	lues	Average	ed o	ver]	Repl	icati	ons	TC_1	SD_1	$MjFD_1$
15	:	:	:	:	:	:	:	:	:	:	:	:	:
47	:	•	:	:	:	:	:	:	:	:	:	:	:
	:	: Danliaationa	:	:	:	:	:	:	:	: D	: TC	:	: MED
		Replications	Pm 2	Pd	p ₁ ,p ₂	<u>к</u>	K	q _j	Pt 2	ĸ	IC	3D	мјгD
	51	1	2	2	1	3	2	3	3	÷	:	:	:
	54	•	•	•	•	:	•	•			•	•	•
		500	· 2	· 2	1	3	2	3	3	:		:	•
		Output Measure	- ura Va	11100	Averag	ad o	vor	Panl	icati	one	$\frac{1}{TC}$ 47	$\frac{1}{50}$	$\frac{1}{M:ED}^{47}$
= = = =													
Output Measure Values Averaged over Treatments TC_{47} SD_{47} $MjFD_{47}$													
where, R: 1 if reinspection is performed, 0, otherwise.													
TC'_i , SD'_i , $MjFD'_i$: Average Total Cost, Schedule Delay, Major Field Defects													
over 500 replications, respectively, for treatment j of policy i.													

Table 20 Layout for Evaluating Reinspection Decision Policies

 $\overline{\overline{TC}}_i$, $\overline{\overline{SD}}_i$, $\overline{\overline{MjFD}}_i$: Average Total Cost, Schedule Delay, Major Field Defects over 54 treatments, respectively, for policy i.

As mentioned before, three measures that are designated in this study for evaluation purposes are Total Cost, Schedule Delay and Major Field Defects. Table 21 depicts, for each reinspection policy, the mean values of these measures averaged over 54 treatments, which are obtained from the simulation study. As the results are examined, it is seen that, although the conduct of a reinpection requires extra cost, as the number of reinspections increase the cost and defect measures tend to decrease. Hence, it is possible to have less cost and less major defects by allocating more time to reinspections, which in turn increases the risk of being late for accomplishing project milestones. Furthermore, as the values in Table 21 are studied more rigorously, it is deduced that some of the policies show equivalent performance regarding cost, schedule and quality. For example, both of policy 1 and 6 never propose to perform a reinspection, thus they end up with same cost and defect values. Truly, when the detailed results given in Appendix D are examined, it is seen that these policies results in exactly the same values for each treatment regarding the number of reinspections performed. Hence, it is wise to retain one policy from such policy groups and to remove the others from the subsequent analysis. The equivalent policy groups are; (1,6,31,36,46), (2,32), and (7,37). In line with the decision for eliminating the redundant policies, the policies 1,6,31,36,32,37 are not further included in the analysis work, but will be considered while discussing the results of the study. Therefore, this remains 41 reinspection policies available for further consideration.

Reinspection	Mean	Mean	Mean
Policy	Total Cost	Schedule Delay	Major Field Defects
1	116.798048	0	0.812370368
2	116.7724958	0.005740741	0.810814814
3	115.7054587	0.162555554	0.764666667
4	105.716796	0.755185184	0.506777776
5	104.7543723	0.970407409	0.443222226
6	116.798048	0	0.812370368
7	116.8169714	0.054259259	0.801111109
8	115.7619471	0.196703704	0.754148146
9	107.8830846	0.587185185	0.563407407
10	105.7882993	0.776518517	0.49137037
11	105.7635882	0.911296296	0.469962963
12	113.4406781	0.540703706	0.641407407
13	115.7654827	0.265962963	0.732962961
14	116.7832228	0.101259258	0.786592594
15	116.9437742	0.020481481	0.809185183
16	107.7358969	0.633962965	0.539074075
17	111.9711735	0.360555555	0.649925928
18	114.8449318	0.186925925	0.730074071
19	115.8786667	0.094407408	0.769518522
20	116.3694679	0.046555556	0.791592596
21	106.9019087	0.506629627	0.578925931
22	108.8620646	0.569666671	0.58148148
23	113.7690238	0.428481484	0.664407412
24	115.4504815	0.290481483	0.71781482
25	116.1648702	0.181999999	0.756000001
26	108.4767602	0.48088889	0.599259256
27	111.7367286	0.354407407	0.658629627
28	114.153731	0.24614815	0.715111107

Table 21 Mean Output Measure Values for Reinspection Policies

Reinspection	Mean	Mean	Mean		
Policy	Total Cost	Schedule Delay	Major Field Defects		
29	115.0771243	0.173111112	0.748111113		
30	115.5498474	0.131444445	0.768481484		
31	116.798048	0	0.812370368		
32	116.7724958	0.005740741	0.810814814		
33	115.7125367	0.162	0.76474074		
34	106.0156293	0.67611111	0.523000003		
35	107.3144223	0.533666666	0.571518516		
36	116.798048	0	0.812370368		
37	116.8169714	0.054259259	0.801111109		
38	115.847503	0.17337037	0.756999998		
39	108.0554617	0.478222223	0.587555554		
40	108.509004	0.37674074	0.615		
41	106.1201175	0.826555558	0.495555554		
42	110.7139721	0.407740743	0.62714815		
43	114.4025569	0.151481481	0.73137037		
44	116.3389104	0.056666667	0.786296297		
45	116.7985377	0.014888889	0.807111116		
46	116.798048	0	0.812370368		
47	105.1280341	1	0.436777778		

Table 21 Mean Output Measure Values for Reinspection Policies (cont.)
In order to be able to compare output measures resulted for each reinspection policy the average squared total cost, schedule, and major field defect values are employed. The reason for using squared values is to account for both the variability and average over all treatments, since $E(X^2) = [E(X)]^2 + Variance(X)$, where X is any of the output measures calculated for any reinspection policy. Hence, the average of all 54 squared values obtained for an output measure provides the overall performance of the reinspection policy (regarding all the conditions put forward by the experimental design) with respect to this particular measure. The resulting mean squared values are listed in Table 22 for three output measures.

Reinspection	Mean Squared	Mean Squared	Mean Squared		
Policy	Total Cost	Schedule Delay	Major Field Defects		
2	16553.98829	0.000406444	0.999372584		
3	16266.11611	0.068060961	0.907877918		
4	13250.14333	0.631229775	0.395909255		
5	12957.5875	0.949252522	0.327686451		
7	16535.68954	0.014109704	0.979244876		
8	16262.62936	0.072797704	0.894562357		
9	13783.46999	0.374804148	0.475079851		
10	13200.09919	0.632750072	0.378645702		
11	13264.37093	0.843644667	0.370930444		
12	15541.4098	0.391066742	0.713909187		
13	16243.59498	0.150827481	0.885277765		
14	16501.5413	0.028385777	0.962294369		
15	16579.19716	0.001701556	0.999253023		
16	13668.77735	0.445804225	0.440940814		
17	14967.59866	0.191509555	0.646302376		
18	15924.99456	0.075129556	0.830155846		
19	16280.40206	0.02757237	0.917446754		
20	16429.28299	0.008453556	0.95999179		
21	13499.63813	0.407193996	0.521987491		
22	14064.66165	0.392312081	0.530739257		
23	15602.55936	0.254584224	0.734568235		
24	16170.04461	0.159995186	0.859102305		
25	16339.33067	0.074566666	0.91447733		
26	13853.0968	0.287927852	0.538304437		
27	14895.47595	0.146690888	0.660125252		
28	15746.58048	0.081191557	0.80870162		
29	16072.84262	0.047047111	0.886079341		
30	16216.95876	0.030616667	0.926005861		

Table 22 Mean Squared Output Measure Values for Reinspection Policies

Reinspection	Mean Squared	Mean Squared	Mean Squared
Policy	Total Cost	Schedule Delay	Major Field Defects
33	16267.35959	0.067423407	0.907933325
34	13310.31405	0.525972813	0.419008823
35	13587.65251	0.440337405	0.525749845
38	16277.74862	0.058670444	0.896230282
39	13837.91261	0.273862815	0.513870811
40	13902.1977	0.239897333	0.570814742
41	13370.91196	0.721094892	0.414722364
42	14611.37483	0.246365411	0.619755189
43	15769.64245	0.082913333	0.823505989
44	16384.4794	0.018949778	0.946466224
45	16544.53541	0.001727852	0.993274977
46	16562.1141	0	1.004051691
47	13003.91995	1	0.322600074

Table 22 Mean Squared Output Measure Values for Reinspection Policies (cont.)

Actually, the evaluation of the reinspection policies with respect to cost, schedule, and quality measures requires multi criteria analysis. However, since the data for three measures are in different scales, using directly the current values, while making the required comparisons, is not appropriate. For overcoming this obstacle, the related values are standardized, thus they can be incorporated to the formulations that find out the overall performance of a policy. This is accomplished by applying the following formula to each mean squared output measure value of each policy.

$$z_i = \frac{x_i - X}{s_x}$$
(Eq. 46)

where (the below definitions correspond to any of the three output measures),

z_i: Standardized mean squared output value of reinspection policy i

 x_i : Mean squared output value of reinspection policy i

 \overline{X} : Average of mean squared output values over all reinspection policies

 s_x : Standard deviation of mean squared output values over all reinspection policies

 \overline{X} and s_x values calculated for each output measure are given in Table 23. Furthermore, standardized mean squared output values corresponding to each reinspection policy are available via Table 24.

 Table 23 Average and Standard Deviation of Mean Squared Values for Three

 Output Measures

Output Measure	Total Cost	Schedule Delay	Major Field Defects		
\overline{X}	15124.44501	0.255288988	0.717633093		
S _X	1333.56839	0.275563435	0.22962187		

Table 24 Standardized Mean Squared Output Measure Values for Reinspection Policies

Reinspection	Standardized	Standardized	Standardized
Policy	Total Cost	Schedule Delay	Major Field Defects
2	1.071968482	-0.924950527	1.226971501
3	0.856102405	-0.679437123	0.828513522
4	-1.405478487	1.364262233	-1.40110277
5	-1.624856681	2.518344043	-1.698212115
7	1.058246838	-0.875222379	1.139315617
8	0.853487801	-0.662247822	0.770524442
9	-1.00555399	0.433711967	-1.056315943
10	-1.443004971	1.369779283	-1.4762853
11	-1.394809661	2.135100687	-1.509885137
12	0.312668471	0.49272776	-0.016217558
13	0.839214533	-0.37908334	0.730090177
14	1.032640173	-0.823415529	1.065496395
15	1.090871804	-0.920250662	1.226450814
16	-1.091558311	0.691366172	-1.204990964
17	-0.117614029	-0.231451004	-0.310644265
18	0.600306333	-0.653785699	0.490034998
19	0.86681498	-0.826367324	0.870185666
20	0.978455994	-0.895748135	1.055468697
21	-1.218390366	0.551252411	-0.852033831
22	-0.794697419	0.497247004	-0.813920016
23	0.358522556	-0.002557539	0.073752304
24	0.784061481	-0.345814395	0.616096419
25	0.911003647	-0.655828387	0.857253869
26	-0.953343091	0.118444101	-0.780973764
27	-0.171696524	-0.394094741	-0.250445836
28	0.46651936	-0.631787129	0.396602147
29	0.711172831	-0.755694881	0.733581029

Reinspection	Standardized	Standardized	Standardized
Policy	Total Cost	Schedule Delay	Major Field Defects
30	0.81924089	-0.81531979	0.907460459
33	0.857034848	-0.681750762	0.828754819
34	-1.360358399	0.982292243	-1.300504478
35	-1.152391217	0.671527474	-0.835648834
38	0.864825247	-0.713514637	0.777788233
39	-0.964729225	0.067403089	-0.88738186
40	-0.916523904	-0.055855218	-0.639391844
41	-1.314917973	1.690376317	-1.319171946
42	-0.38473481	-0.032383025	-0.426256891
43	0.483812791	-0.625538929	0.461074964
44	0.944859224	-0.857658095	0.996565049
45	1.064880068	-0.920155234	1.200416509
46	1.078061767	-0.926425485	1.247348943
47	-1.590113468	2.702503011	-1.720363218

Table 24 Standardized Mean Squared Output Measure Values for Reinspection Policies (cont.)

Different reinspection policies show varying results with respect to three output measures, namely total cost, schedule delay, and major field defects. For each of these measures, the lower values are better, i.e. the aim should be to minimize each of them. However, decreasing the values for total cost and major field defects requires increasing the number of reinspections performed, thus the schedule delay measure. Hence, for being able to compare reinspection policies, the three values are combined into one value, the minimization of which will represent the concurrent minimization of three measures. In order to accomplish this, weights are assigned to each of the output measures. These weights are then multiplied with the standardized mean squared value of an output measure. Finally, the summation of weighted standardized mean squared value. The corresponding formulation is provided below.

$$z_i^A = w_C z_i^C + w_S z_i^S + w_D z_i^D$$
 (Eq. 47)

where,

 z_i^A : Aggregate standardized mean squared value of reinspection policy i.

 w_C , w_S , w_D : The weights corresponding to total cost, schedule delay, and major field defects measures, respectively.

 z_i^C , z_i^S , z_i^D : Standardized mean squared value of reinspection policy i for total cost, schedule delay, and major field defects measures, respectively.

Actually, the weights in the above formulation correspond to the different preferences regarding three output measures, thus also for cost, schedule, and quality perspectives underlying the inspected code and the software project. Briefly, the weight of an output measure implies the importance assigned to the corresponding perspective. As mentioned before in the text, these preferences are shaped according to organizational policies, project structure, software type, etc. Therefore, by varying the weights of each output measure, it is possible to reveal the performance of reinspection policies for different preference profiles. Hence, by this way, the study enables the exposing of the suitable reinspection policy for a particular preference profile. For determining the profiles to be considered in this study, the following profile patterns are identified for three output measures.

- Each measure is equally important.
- One of the measures is extremely important when compared to others.
- The importance of the three measures can be sorted as high, medium, and low.
- One of the measures is more important than two other equally important measures.
- One of the measures is less important than two other equally important measures.

By distributing a total weight of 1 to three measures according to these patterns, 16 different preference profiles depicted in Table 25 are designated for this study. The software organizations producing space shuttle software can be given as an example to profile 8 which represents a software development environment which can not bear even a single defect. Further, profile 5 illustrates an organization for which time-to-market is critical, thus no risk for late project completion is acceptable. Profile 2 corresponds to a software organization where the upper management is strictly against exceeding of project budget. Finally, a software development project that is executed according to a contract which comprises penalties for late completion and for user encountered defects is a good example for profile 7.

Profile	w _C	WS	WD
1	0.333	0.333	0.333
2	0.8	0.1	0.1
3	0.6	0.3	0.1
4	0.6	0.1	0.3
5	0.1	0.8	0.1
6	0.3	0.6	0.1
7	0.1	0.6	0.3
8	0.1	0.1	0.8
9	0.3	0.1	0.6
10	0.1	0.3	0.6
11	0.4	0.4	0.2
12	0.4	0.2	0.4
13	0.2	0.4	0.4
14	0.5	0.25	0.25
15	0.25	0.5	0.25
16	0.25	0.25	0.5

Table 25 Preference (Weight) Profiles for Output Measures Considered in the Study

For each of the above profiles the reinspection policies' performance is revealed by computing aggregate standardized mean squared value. Detailed results corresponding to these calculations are available in Appendix E. Furthermore, the ranking of each policy in the context of each preference profile is given in Table 26. In this table a rank of 1 corresponds to the policy with lowest aggregate standardized value (z_i^A) . When the ranks provided in the table are examined, policy 39 is seen as the best policy in the case of equal preference with respect to cost, schedule, and quality, which, in practice, can be deemed as the default profile. Further, if a policy's rank summation through 16 profiles is put forward as an indicator which shows the policy's overall performance, again policy 39 is the most suitable policy since its 'sum of ranks' value is the lowest. A more detailed discussion of the results regarding reinspection policy rankings is provided in Section 4.1.

																	Sum of
Profile	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Ranks
Policy																	
2	39	39	39	39	2	18	19	39	39	39	37	39	39	39	30	39	535
3	30	30	30	30	17	25	24	29	29	30	30	30	29	31	26	31	451
4	9	4	8	4	37	36	36	5	4	6	10	3	10	3	17	3	195
5	15	1	13	1	40	40	40	1	1	10	18	4	18	11	40	7	260
7	37	37	38	37	8	21	20	37	37	37	36	37	37	37	29	37	522
8	28	27	28	26	18	26	18	27	27	27	27	27	27	28	24	27	412
9	3	11	7	10	29	13	11	9	9	5	4	7	4	7	5	5	139
10	7	3	6	3	36	35	35	3	3	3	9	1	8	2	16	1	171
11	16	6	14	6	39	39	39	4	5	14	16	8	16	14	39	11	286
12	24	20	24	19	34	37	37	19	19	23	40	20	31	23	38	21	429
13	35	32	35	29	23	33	34	26	26	32	41	32	36	34	37	32	517
14	36	36	36	36	11	23	25	36	36	36	33	36	35	36	31	36	518
15	40	41	41	41	5	20	21	40	40	40	39	40	40	41	34	40	563
16	6	10	10	8	32	28	26	8	8	1	7	6	5	6	7	4	172
17	17	18	18	18	21	5	5	17	17	18	14	18	14	18	8	18	244
18	22	23	21	23	13	10	9	23	23	22	20	23	20	22	15	23	312
19	25	28	26	32	7	12	12	31	31	28	25	29	24	26	19	28	383
20	34	35	32	35	1	14	14	35	35	35	31	35	32	35	23	35	461
21	8	8	2	9	30	16	27	11	10	9	5	10	7	5	6	9	172
22	11	15	12	15	31	30	29	14	14	11	11	15	12	15	12	15	262
23	21	19	22	20	28	34	32	20	20	19	23	19	22	20	28	19	366
24	31	25	33	25	24	32	31	24	24	26	35	25	34	29	35	25	458
25	33	33	34	33	20	27	28	32	33	33	32	33	33	32	32	33	501
26	4	13	5	13	27	4	4	13	13	7	3	12	3	8	3	8	140
27	14	17	17	17	19	3	1	18	18	17	12	17	11	17	4	17	219
28	19	21	19	21	12	6	6	21	21	20	17	21	17	19	13	20	273
29	23	24	23	24	10	9	10	25	25	24	22	24	23	24	18	24	332
30	26	26	25	28	9	11	13	33	32	31	24	28	26	25	20	29	386
33	29	31	29	31	16	24	22	30	30	29	29	31	28	30	25	30	444

Table 26 Ranks of Reinspection Policies for each Preference Profile

																	Sum of
Profile	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Ranks
Policy																	
34	2	5	1	5	35	31	33	6	6	2	6	2	6	1	10	2	153
35	10	9	9	11	33	29	30	12	12	13	8	13	9	10	11	14	233
38	27	29	27	27	14	22	16	28	28	25	26	26	25	27	21	26	394
39	1	12	3	12	25	2	2	10	11	4	1	9	1	4	1	6	104
40	5	14	4	14	22	1	3	15	15	8	2	14	2	9	2	13	143
41	12	7	11	7	38	38	38	7	7	12	15	11	15	12	36	12	278
42	13	16	16	16	26	8	8	16	16	16	13	16	13	16	9	16	234
43	20	22	20	22	15	7	7	22	22	21	19	22	19	21	14	22	295
44	32	34	31	34	6	15	15	34	34	34	28	34	30	33	22	34	450
45	38	38	37	38	3	17	17	38	38	38	34	38	38	38	27	38	515
46	41	40	40	40	4	19	23	41	41	41	38	41	41	40	33	41	564
47	18	2	15	2	41	41	41	2	2	15	21	5	21	13	41	10	290

Table 26 Ranks of Reinspection Policies for each Preference Profile (cont.)

3.7. Studying the Effects of the Factors on Output Measures

In Section 3.2, seven factors, varying levels of which are considered throughout the study, are identified. Then these are employed to develop an experiment design which consists of 54 treatments. Certainly, as the levels corresponding to these factors are altered, the values of the three output measures are influenced. Because these measures indicate the outcomes encountered at the end of the software development life-cycle, which depends on the activities and parameters throughout the life-cycle. In this section, the results of Analysis of Variance (ANOVA) conducted for each output measure is reported, in order to acquire knowledge about the effects of different factor levels on total cost, schedule delay, and major field defects. While conducting the ANOVA study, the experiment described in Section 3.2 is employed. Actually, as it should be evident from the previous explanations, the simulation study corresponding to each reinspection policy is performed for all 54 treatments of the experiment. The ANOVA is carried out for the treatments related to the reinspection policy 39, since it is the most preferable policy when all designated preference profiles are considered. For each ANOVA, the main factor and two factor interaction effects are included in the analysis. Besides, 95% is employed as the significance level of the tests. Subsequent paragraphs summarize these analyses. Whilst, Appendix F includes normal probability and residual plots for each ANOVA study, along with the Tukey comparisons of factor levels.

For Total Cost measure, the concluded ANOVA table is given in Table 27. Furthermore, Figure 13 and Figure 14 provide corresponding Main Effects Plot and Interaction Plots for significant interactions, respectively. From these exhibitions, it is seen that the total cost faced in the context of the study is significantly affected by all of the seven factors except number of reinspectors. More specifically, if the probability regarding a defect's being major or difficult is increased, the total cost also increases. Whilst the remaining four factors result in a decrease in total cost as their levels are increased. Furthermore, three significant two-factor interactions (depicted in Figure 14) obviously show that the detection capability of testing activity determines how most of other factors influence the total cost measure. For instance, having one more inspector when the testing detection probability is high, lowers the cost value much more than the decrease gained when testing detection probability is low.

Source	DF	Seq SS	Adj SS	Adj MS	F	р
Testing detection probability of a defect (p_t)	1	9586.3	9586.3	9586.3	239.09	0.00
Probability that a given defect is difficult (p _d)	2	44386.9	21440	10720	267.37	0.00
Probability that a given defect is major (p _m)	2	2423.7	3273.8	1636.9	40.83	0.00
Inspector capability of a particular inspector (q _i)	2	10367	10367	5183.5	129.28	0.00
Inspection detection probabilities of difficult and easy defects (p1, p2)	2	22902.3	15421.0	7710.5	192.31	0.00
Number of inspectors (k)	2	8947	8947	4473.5	111.58	0.00
p _t *p _d	2	8002.3	8002.3	4001.2	99.79	0.00
p _t *(p1, p2)	2	3308.8	3308.8	1654.4	41.26	0.00
p _t *k	2	5376.5	5376.5	2688.2	67.05	0.00
Error	36	1443.4	1443.4	40.1		
Total	53	116744.2				

Table 27 Total Cost Measure's ANOVA Table for Policy 39

Figure 13 Total Cost Measure's Main Effects Plot for Policy 39

Figure 14 Total Cost Measure's Interaction Plots for Policy 39

The Schedule Delay measure's final ANOVA table, and Main Effects Plot are depicted in Table 28, and Figure 15, respectively. Note that, ANOVA results in no significant two-factor interactions. Furthermore, two factors, namely testing detection probability of a defect and probability that a given defect is difficult, do not have any effect on schedule delay. Regarding the remaining five factors, increasing the levels for probability that a given defect is major, and inspection detection probabilities cause an increase in schedule delay measure. Whilst, high values of inspector number and capability exhibit a decreasing effect. Although the effect of number of reinspectors factor is not same for identical for its different levels, nevertheless it can be concluded that it has a non-decreasing effect on schedule delay measure as number of reinspectors is increased.

Source	DF	Seq SS	Adj SS	Adj MS	F	р
Probability that a given defect is						
major (p _m)	2	0.42059	0.42059	0.2103	26.77	0.000
Inspector capability of a particular inspector (q_i)	2	0.09003	0.09003	0.04502	5.73	0.006
Inspection detection probabilities of difficult and						
easy defects (p1, p2)	2	0.37166	0.37166	0.18583	23.66	0.000
Number of inspectors (k)	2	1.02692	1.02692	0.51346	65.37	0.000
Number of reinspectors (k')	2	0.19203	0.19203	0.09601	12.22	0.000
Error	43	0.33775	0.33775	0.00785		
Total	53	2.43898				

 Table 28 Schedule Delay Measure's ANOVA Table for Policy 39

Figure 15 Schedule Delay Measure's Main Effects Plot for Policy 39

The Major Field Defects measure's final ANOVA table, Main Effects Plot, and Interaction Plots are depicted in Table 29, Figure 16, and Figure 17, respectively. These are obtained after applying square root transformation on 54 major field defects values. A brief examination of these results reveals that all seven factors affect the number of major defects found by the users. Among these, testing detection probability, inspector capability, inspection detection probabilities, number of inspectors, and number of reinspectors, on the average, decrease the major field defects as their corresponding levels are increased. Whilst, if a defect's being difficult or major probability is increased, a higher value of major field defects is observed. Furthermore, five different two-factor interactions seem significant for major field defects measure. For example, at the third highest level of probability that a given defect is difficult, major field defects increase if the testing detection probability is at its low level, and the major field defects decrease otherwise. Additionally, when the ANOVAs for total cost and major field defects are examined together, it is seen that they result in exactly same significant factors and two-factor interactions.

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Testing detection probability of a defect (p_t)	1	0.46622	0.46622	0.46622	838.18	0.00
Probability that a given defect is difficult (p_d)	2	0.8625	0.43569	0.21785	391.65	0.00
Probability that a given defect is major (p _m)	2	1.13449	0.70673	0.35336	635.29	0.00
Inspector capability of a particular inspector (q _i)	2	0.15687	0.15687	0.07843	141.01	0.00
Inspection detection probabilities of difficult and						
easy defects (p1, p2)	2	0.59992	0.21321	0.1066	191.66	0.00
Number of inspectors (k)	2	0.12503	0.12503	0.06251	112.39	0.00
Number of reinspectors (k')	2	0.03224	0.17043	0.08522	153.2	0.00
Pt [*] Pd	2	0.20614	0.20614	0.10307	185.3	0.00
$p_t * q_j$	2	0.00871	0.00871	0.00435	7.83	0.002
p _t *(p1, p2)	2	0.02381	0.02381	0.0119	21.4	0.000
p _t *k	2	0.07857	0.07857	0.03929	70.63	0.000
q _i *(p1, p2)	4	0.01936	0.01936	0.00484	8.7	0.000
Error	28	0.01557	0.01557	0.00056		
Total	53	3.72941				

Table 29 Major Field Defects Measure's ANOVA Table for Policy 39

Figure 16 Major Field Defects Measure's Main Effects Plot for Policy 39

Figure 17 Major Field Defects Measure's Interaction Plots for Policy 39

CHAPTER 4

DISCUSSION

4.1. Analyzing the Results Regarding Suitable Policies for Different Preference Profiles

The rankings given in Table 26 reveal many important inferences about reinspection policies. First, 8 reinspection policies become the first policy in at least one of the preference profiles. The common property of these 8 policies is their aggressive threshold values, i.e they put forward effectiveness or defect density values that are difficult to attain as thresholds. For instance, the most preferable policy, namely policy 39, requires the removal of 75% of the defects after reinspection is performed. The only exception to this finding is policy 20, which is ranked first for preference profile 5. Actually, this is a normal outcome, since profile 5 favors the policies that cause low schedule delay values without giving much importance to cost and defectiveness perspectives. Consequently, with a reinspection percentage of 4.6%, policy 20 outperforms other policies with low schedule delay (namely 2, 7, 15, 19, 44, 45, and 46) by resulting acceptable values also for total cost and major field defects measures. Another important finding through Table 26 is; the reinspection policies based on inspection effectiveness metric are generally more successful in satisfying the expectations put forward by different preference profiles. Since, except for three of preference profiles (namely, profiles 5, 7, and 10), the superior policies are the ones which are generated from reinspection decision methods I and IV. Actually, for three profiles that favor reinspection policies related to other decision methods, the second best alternatives (policies) are again based on inspection effectiveness, and they are outperformed due to very small differences in aggregate standardized mean squared value. Besides, the study results emphasize none of the policies underpinned by net benefit criterion, i.e. reinspection decision method V. Thus, the estimated effectiveness after initial or second inspection should be employed while making the reinspection decision. Additionally, the majority of the superior policies employ the information regarding major defects while concluding the reinspection decision. This is due to important cost and quality related consequences of major defects.

As explained in the previous sections, 'Never Reinspect' is the default reinspection decision in most of the software development environments. Actually, in most of the cases, the code is directly passed to testing, even without considering the 'reinspect' alternative. Hence, policy 46 deserves special attention, since it always suggests continuing to next phase without conducting a reinspection. The ranks corresponding to policy 46 reveal that this policy may be beneficial only if the schedule performance of the project is deemed as extremely critical. Consequently, always skipping reinspection, is not a wise practice in general. This is also evident from the high total cost and major field defects values encountered when policy 46 is applied. Also, policy 47 that corresponds to 'Always Reinspect' strategy is ranked first for none of preference profiles, although it is in second place for some of the profiles which favor measures regarding cost and number of defects (namely, profiles 2, 4, 8, and 9). In all these cases, policy 47 is outperformed by policy 5, which results in a slightly less number of reinspections. Hence, it is possible to obtain same cost and defect performance by relaxing 'Always Reinspect' strategy. Further, it is concluded that applying a straightforward policy that makes the conduct of the second inspection a common practice is not the solution, since policy 47 never succeeds to become the first policy. When the performance of the policies that represent the policies excluded from the analysis (since they are equivalent) is examined, it is seen that none of them (namely policy 2, 7, and 46) is superior in any of the preference profiles. So, this shows no necessity for dwelling upon the performance of removed policies.

It should be clear from the discussions up to this point; this study shows that the appropriate reinspection policy to be employed for reinspection decision making, differs according to the preference structure of the software organization/project

regarding cost, schedule, and quality. The questionnaire given in Table 30 is constituted for providing guidance to practitioners on selecting the policy that best fits to the organizational needs. Further, this questionnaire also summarizes the results obtained by evaluating various reinspection policies under different preference profiles. In the questionnaire, the questions are designed according to importance assigned to three perspectives, namely, cost, schedule, and quality, which correspond to the output measures taken into account throughout this study, i.e. total cost, schedule delay, and major field defects, respectively. Also, note that, for simplicity reasons regarding the usage of the questionnaire, some of the preference profiles' the second or third best reinspection policy included in the questionnaire, since its aggregate standardized value is very close to the one corresponding to the best policy.

No	Question	Answer	Action	Related Profile(s)
1	Are all perspectives equally	Yes	Apply Policy 39	1
	important?	No	Answer Question 2	-
2	Are there any two criteria that are	Yes	Answer Question 3	-
	equally important?	No	Answer Question 4	-
3	Are there any perspective that is	Yes	Apply Policy 10	12,14,16
	important than schedule?	No	Apply Policy 39	11,13,15
4	Is schedule perspective is	Yes	Apply Policy 20	5
	extremely important?	No	Answer Question 5	-
5	Is the importance given to	Yes	Apply Policy 5	2,4,8,9
	schedule perspective low, while the cost or defect perspectives are assigned the highest priority?	No	Answer Question 6	-
6	Is the importance of defect	Yes	Apply Policy 16	10
	perspective is high?	No	Apply Policy 39	3,6,7

Table 30 Questionnaire for Determining the Appropriate Reinspection Policy

Policy 39, which requires the estimated inspection effectiveness after reinspection to be at least 75%, is the best reinspection policy with respect to total rank value. Further, it is the policy with highest rank if the default weights are employed for three perspectives. In addition to this, the questionnaire above proposes to employ this policy for 7 out of 16 preference profiles. Consequently, policy 39 can be deemed as the policy which is overall acceptable and performs satisfactorily in most of the considered situations. So, it is concluded that while making the reinspection decision, one should examine the percentage of major defects captured when the reinspection is completed. Further, this percentage level should be moderately high as 75%, i.e. increasing the related threshold to a higher value as in the case of policy 40 –with 90% threshold- does not result in better performance in terms of aggregate standardized mean squared value. Recall that, since policy 39 is based on reinspection decision method IV, it does not propose reinspection, if the required effectiveness determined by the threshold will not be attained when reinspection is carried out. This implies that a reinspection should be performed if it provides the related benefits with respect to effectiveness objective. Finally, superiority of policy 39 implies that the reinspection decision should be based on the data regarding major defects. Actually, this is an expected outcome, since generally major defects are deemed as more critical and more costly than minor defects.

As a result, this study suggests using policy 39 if one policy that serves well for majority of software organizations is requested. In order to scrutinize the effects of using policy 39 when actually another policy is more appropriate, a sensitivity analysis is performed. For the preference profiles where other policies are ranked first, this analysis reveals the gain or loss with respect to three output measures, if policy 39 is applied instead of the corresponding most appropriate policy. The results of this analysis are depicted in Table 31. In this table, the positive difference percentage values correspond to situations where the employment of policy 39 causes to a loss with respect to value of the best policy. By selecting the 20% as the threshold value above which the related deviation with respect to corresponding best value is not acceptable, the following findings can be reached.

• If the schedule perspective's importance is high (especially if it is extremely important), policy 39 should not be applied (See profiles 5, 6, and 7). Because in this

case the schedule delay value is affected adversely. So, the policy ranked first should be followed as usual.

• When policy 5 is the most appropriate policy, replacing it with policy 39 should be avoided, since this causes a high increase in the major field defects.

• Regarding total cost, the usage of policy 39 never results a significant deviation vis-à-vis the original policy. However, since this observation is due to close mean total cost values of different policies, it can be more suitable to put forward a scalar threshold. For instance, if expending 3 hours more is deemed critical for an organization, policy 39 should not be an alternative for policy 5.

Furthermore, if the specific values of the experiment factors are known for a software development environment for which the results of this study will be used, the output measure values of reinspection decision policies may be employed by just considering the treatment corresponding to these specific factor levels. Thus, by this way, the best policy can be identified for the subject environment.

	Preference Profile	2	3	4	5
Output Measure	Policy Ranked First	5	34	5	20
Mean Total Cost	Policy 39	108.0555	108.0555	108.0555	108.0555
	Other Policy	104.7544	106.0156	104.7544	116.3695
	Difference Percentage (%)	3.151266	1.924087	3.151266	-7.14449
Mean Schedule Delay	Policy 39	0.478222	0.478222	0.478222	0.478222
	Other Policy	0.970407	0.676111	0.970407	0.046556
	Difference Percentage (%)	-50.7194	-29.2687	-50.7194	927.2076
Mean	Policy 39	0.587556	0.587556	0.587556	0.587556
Major	Other Policy	0.443222	0.523	0.443222	0.791593
Field Defects	Difference Percentage (%)	32.56455	12.34332	32.56455	-25.7755
			[
	Preference Profile	6	7	8	9
Output Measure	Preference Profile Policy Ranked First	6 40	7 27	8	9 5
Output Measure	Preference Profile Policy Ranked First Policy 39	6 40 108.0555	7 27 108.0555	8 5 108.0555	9 5 108.0555
Output Measure Mean Total	Preference Profile Policy Ranked First Policy 39 Other Policy	6 40 108.0555 108.509	7 27 108.0555 111.7367	8 5 108.0555 104.7544	9 5 108.0555 104.7544
Output Measure Mean Total Cost	Preference Profile Policy Ranked First Policy 39 Other Policy Difference Percentage (%)	6 40 108.0555 108.509 -0.41798	7 27 108.0555 111.7367 -3.29459	8 5 108.0555 104.7544 3.151266	9 5 108.0555 104.7544 3.151266
Output Measure Mean Total Cost	Preference Profile Policy Ranked First Policy 39 Other Policy Difference Percentage (%) Policy 39	6 40 108.0555 108.509 -0.41798 0.478222	7 27 108.0555 111.7367 -3.29459 0.478222	8 5 108.0555 104.7544 3.151266 0.478222	9 5 108.0555 104.7544 3.151266 0.478222
Output Measure Mean Total Cost Mean Schedule	Preference Profile Policy Ranked First Policy 39 Other Policy Difference Percentage (%) Policy 39 Other Policy	6 40 108.0555 108.509 -0.41798 0.478222 0.376741	7 27 108.0555 111.7367 -3.29459 0.478222 0.354407	8 5 108.0555 104.7544 3.151266 0.478222 0.970407	9 5 108.0555 104.7544 3.151266 0.478222 0.970407
Output Measure Mean Total Cost Mean Schedule Delay	Preference Profile Policy Ranked First Policy 39 Other Policy Difference Percentage (%) Policy 39 Other Policy Difference Percentage (%)	6 40 108.0555 108.509 -0.41798 0.478222 0.376741 26.93669	7 27 108.0555 111.7367 -3.29459 0.478222 0.354407 34.93573	8 5 108.0555 104.7544 3.151266 0.478222 0.970407 -50.7194	9 5 108.0555 104.7544 3.151266 0.478222 0.970407 -50.7194
Output Measure Mean Total Cost Mean Schedule Delay Mean	Preference Profile Policy Ranked First Policy 39 Other Policy Difference Percentage (%) Policy 39 Other Policy Difference Percentage (%) Policy 39	6 40 108.0555 108.509 -0.41798 0.478222 0.376741 26.93669 0.587556	7 27 108.0555 111.7367 -3.29459 0.478222 0.354407 34.93573 0.587556	8 5 108.0555 104.7544 3.151266 0.478222 0.970407 -50.7194 0.587556	9 5 108.0555 104.7544 3.151266 0.478222 0.970407 -50.7194 0.587556
Output Measure Mean Total Cost Mean Schedule Delay Mean Major Field	Preference Profile Policy Ranked First Policy 39 Other Policy Difference Percentage (%) Policy 39 Other Policy Difference Percentage (%) Policy 39 Other Policy	6 40 108.0555 108.509 -0.41798 0.478222 0.376741 26.93669 0.587556 0.615	7 27 108.0555 111.7367 -3.29459 0.478222 0.354407 34.93573 0.587556 0.65863	8 5 108.0555 104.7544 3.151266 0.478222 0.970407 -50.7194 0.587556 0.443222	9 5 108.0555 104.7544 3.151266 0.478222 0.970407 -50.7194 0.587556 0.443222

Table 31 Sensitivity Analysis Regarding the Usage of Policy 39

	Preference Profile	10	12	14	16
Output					
Measure	Policy Ranked First	16	10	34	10
Mean Total Cost	Policy 39	108.0555	108.0555	108.0555	108.0555
	Other Policy	107.7359	105.7883	106.0156	105.7883
	Difference Percentage (%)	0.296619	2.143113	1.924087	2.143113
Mean	Policy 39	0.478222	0.478222	0.478222	0.478222
Schedule	Other Policy	0.633963	0.776519	0.676111	0.776519
Delay	Difference Percentage (%)	-24.5662	-38.4146	-29.2687	-38.4146
Mean Major Field	Policy 39	0.587556	0.587556	0.587556	0.587556
	Other Policy	0.539074	0.49137	0.523	0.49137
Defects	Difference Percentage (%)	8.993473	19.57488	12.34332	19.57488

Table 31 Sensitivity Analysis Regarding the Usage of Policy 39 (cont.)

4.2. Reviewing the Results of Tolerance Analysis

Results of the tolerance analysis given in Section 3.7, provide valuable insights about how a software organization can improve its cost, schedule, and quality performance. The following are the suggestions revealed by this study regarding the most suitable factor levels and related actions that can be taken by the organization.

• The effectiveness of testing activity should be enhanced as much as possible, since as the capability of identifying the defects during testing is increased, the number of major defects propagating to the field decreases along with the total cost incurred for defect correction. This can be accomplished by employing more advanced testing tools, more talented testers, more sophisticated testing techniques, and managing the testing process quantitatively. However, the schedule performance (as it understood in this study) does not get better, because the testing activity's parameters seem irrelevant to the number of reinspections performed.

• Improving the capability of the inspectors should be one of the main goals of the organization, since this influences all of the performance indicators positively, i.e. as more capable inspectors participate in inspections and reinspections, significant reductions are observed in cost, schedule, and quality related measures. Using more experienced employees as inspectors, deploying intelligent tools that help inspectors while scrutinizing the software code, improving the quality of the inspection training, and lessons learned meetings about inspection, can be listed among the possible initiatives for improving the inspector capability.

• Although adding more inspectors means increasing the labor costs devoted to the inspection activity, this in general enables better performance in terms of cost, schedule, and quality. For example, in this study, the total cost, schedule delay, and major field defects measures are brought to their lowest values (when number of inspectors factor considered alone) by assigning 4 inspectors. If the number of inspectors is increased, more defects are found during the inspection, thus (i) more correction cost is saved regarding later phases, (ii) less defects pass to the next phase, hence also to the user, and (iii) the selected reinspection policy less frequently proposes the conduct of the reinspection.

• When the detection probabilities of difficult and easy defects are about 0.5 and close to each other, the cost and quality performances improve, whilst schedule

performance worsens. An organization may decrease the variance of the coding activity (that is where the defects are injected) in order to have uniform defect detection probabilities during inspection, if the cost and defect aspects are deemed critical.

• As the intensity of the defects that are difficult to find during inspection increases, the total cost and the number of major defects reaching to the users also increase. So, the number of difficult defects should be as low as possible for having better cost and quality performance. However, no evident action is available for altering the difficulty level of a defect, since this is related to the defect injection. Nevertheless, performing cause analysis meetings after the defects are captured in the later phases, in order to develop inspection mechanisms that will enable the removal of more difficult defects may be a solution.

• Similar to difficulty aspect of the defects, as the number of major defects gets higher, cost, schedule, and quality indicators are exposed to adverse effects. Consequently, the software project is in better position as less major defects are generated during coding activity. However, unfortunately, one can not manipulate the severity level of a defect, since it depends on the circumstances where the defect is injected.

• If the number of reinspectors factor is increased, this influences major field defects positively, but schedule delay measure negatively, i.e. the number of reinspections increases as the number of reinspectors is changed from 2 to 3. Furthermore, no effect for total cost measure is observed regarding number of reinspectors. Consequently a trade-off situation occurs between schedule delay and major field defects measures, because as more resources are allocated to the reinspection, the estimated number of defects to be identified during reinspection increases, which in turn enhances the quality related benefits, but at the same time increases the number of reinspections that is performed (which means an increase in schedule delay measure). So, if the importance of the schedule perspective is low when compared to quality perspective, the number of reinspectors should be retained at its highest level as long as the timing and budget constraints of the project are not violated.

4.3. Validity of the Study Results

Since the simulation techniques are utilized throughout the study the main threat to the validity comes from the ability of the simulation model and the related factors to represent the environment encountered in real software development projects. In order to avoid the related shortcomings that may expose due to the discrepancy between the study context and the real life, the general approach of determining each component in the study by employing underlying studies and results in the literature is followed. In line with this approach, the undertakings described in the subsequent paragraphs are performed in the study.

The study considers the environment of a typical SW-CMM Maturity Level 3 software development project. Maturity Level 3 of SW-CMM Model requires the conduct of software inspections according to a standard procedure which is constituted with respect to the rules put forward by Peer Review Key Process Area of the model. So, by employing SW-CMM Maturity Level 3 context, the variability among different organizations and projects while conducting software inspections is minimized. The study results are not valid for an organization which has higher or lower maturity than SW-CMM Maturity Level 3. Actually, this study can not be replicated with the aim of making the same analysis for lower maturity organizations, since these organizations' processes are not standardized (i.e. different projects may execute according to different procedures). For higher maturity organizations, again the coding, inspection, testing practices generally differ, since quantitative project management and continuous improvement paradigms are in place. This results in varying degree for software development (high) technology and managing the project according to quantitative analysis among the organizations. So, for such organizations (lower or higher maturity) the study should be repeated by taking into account the specifics regarding defect numbers, rework costs, inspector capability.

While putting forward the reinspection decision policies, all the different objective reinspection decision methods available in the literature are utilized. For observing the results obtained from different threshold levels, each reinspection decision method is adapted several times by varying the related threshold values. Also, the related reinspection decision methods are duplicated for major defects. These make the study confident with respect to the coverage of possible reinspection policies.

The COQUALMO model, which provides the underlying information to predict the number of defects injected into and removed from the software for a software project, is utilized for selecting the various values considered in the study. First, contrary to some simulation studies in the literature where the number of defects present in the inspected artifact is set arbitrarily (See for example, (El Amam and Laitenberger, 2000)), this study determines the defect content of the software code by employing the Defect Introduction submodel of COQUALMO. Further, the inspector's and testing activity's defect detection probabilities are designated according to COQUALMO Defect Removal submodel. While adapting COQUALMO's defect removal submodel the ratings regarding various defect detection activities are selected by taking into account the circumstances of a SW-CMM Level 3 software development project. However, the ratings for 21 factors of Defect Introduction submodel are assumed at their nominal level, since these rating values are dependent to the specific properties and conditions of a project which can not be defined in the SW-CMM model (except Process Maturity factor, whose nominal value corresponds to maturity level 3 of SW-CMM). So, because of this reason a typical project (i.e. a project with nominal rankings) is the subject of the study. In order to increase the reliability of the results the study may be replicated by using the specific ratings corresponding to the project for which the appropriate reinspection policy is desired to be identified. In order to cover the different conditions that may be faced during the software development life cycle, the study takes into account all the relevant factors that affect the number and content of the defects flowing from coding activity to the field use. Namely, seven factors are designated for the purposes of this study. However, since the decision that is dwelled upon in this study is related to the software inspection, the issues regarding this activity are included with more detail with respect to testing. Consequently, the testing activity is treated as a black-box which results in either the detection of a defect or allows the defects to pass to the user. Further, for determining these conditions an experiment is designed by changing the levels of the seven selected factors. The levels of the factors are determined by either using the related guidance from the literature (such as COQUALMO, the information regarding number of inspectors for code inspections) or selecting a representative set of levels (for

instance, for the probability of generating a difficult defect the values corresponding to high, medium, and low probabilities are designated). Another parameter, which needs attention regarding the validity, is size of the inspected code. Because, the defect introduction and removal information supplied by COQUALMO is given for 1000 SLOC of code, in this study the inspected code is assumed to be 1000 SLOC also. This assumption seems reasonable, since there is no guidance in the literature for the typical code size that is subject to inspection. Actually, in practice generally the software unit, whose scope is determined during software design phase, is the inspected artifact. So, the size of the unit may vary greatly. Consequently, future work may address the replication of study with different code sizes in order to reveal the effects regarding changing code size.

The study embraced all the typical activities performed in a software project after the completion of coding phase. By this way, the effects of the reinspection decision on the end-project performance indicators are revealed. Namely, the three aspects; schedule, cost, and quality are examined for various reinspection policies. These are the main issue for whom quantitative objectives are designated and against which software project's actual performance is monitored. Additionally, 16 different preference profiles, which are believed to represent all priority structures (for cost, quality, and schedule) that may be encountered in real software projects, are comprised in the study, thus the outcomes of applying different reinspection policies can be observed for various software development project types with respect to varying degree of importance assigned to three perspectives.

As mentioned previously in the text, all evaluated reinspection policies depend on the estimation of defect number in the inspected artifact. Hence, the selection of the DCET to be used in the study is important for having accurate estimates. With the aim of identifying the appropriate DCET, the DCETs that are available for use in the context of a simulation study are evaluated. This enables the minimization of the adverse consequences that may be resulted from using a DCET which provides inaccurate and misleading estimates. At the end, the main finding regarding the most appropriate technique is validated in the scope and context of the study. Furthermore, the DDCET needed to estimate the number o defects to be found during reinspection is also determined by employing the related guidance available through literature.

However, the related DCETs (namely, subjective and curve-fitting techniques) and DDCETs (namely, reliability growth model) can not be considered in the study, since their incorporation into the reinspection policies is not possible due to feasibility reasons inherent in simulation techniques. So, the question whether these techniques result in different outcomes for the reinspection policies, remains unanswered.

Since one of the output measures considered in the study is related to cost, the determination of cost related parameters also depicts importance. First, the labor cost of performing a reinspection is determined by using the suggested inspection rates in the literature. Further, the study employs the results of National Software Quality Experiment (NSOE) for obtaining the rework costs (in terms of effort) to be spent when a defect is found. Since, NSQE results are extracted from a considerable number of projects, the usage of the cost values provided by NSQE enables the study to represent the real software projects cost structure. Further, as mentioned in the text, one hour is assumed to be the average correction effort when a defect is caught during software inspection phase. At first sight this assumption seems unrealistic. However, if it is changed to another value, for example if it is halved, the total cost values corresponding to all policies will also be halved. Thus, their relative cost values will not change. Consequently, validity of the study remains unthreatened, since it is thought that using unit correction cost as one does not cause any significant change during the standardization of total cost values and also it is suggested as a reasonable value by O'Neill while he is analyzing the software inspection ROI values related to NSQE (O'Neill, 2003). Anyway, when an organization aims to reveal the most appropriate reinspection policy for its environment, it can replicate the study by using the actual value for the average correction cost during inspection in order to obtain the exact total cost values.

CHAPTER 5

CONCLUSION

Software Inspection is a valuable technique for software development organizations which aim to minimize the number of defects propagating to subsequent phases of the software development life cycle, and eventually to the user. By defining a structured procedure that aims the identification and removal of defects just after they are injected into the software work product, software inspection also enables the software organizations to save from the higher rework costs emerging if the defect is captured later. A software development organization can gain more of these and other benefits of software inspection by conducting reinspections when appropriate. Since, performing an additional inspection necessitates the expending of extra resources; it is generally unreasonable to repeat every inspection conducted. Consequently, the reinspection should be carried out if designated criteria are satisfied. The decision that allows selecting among 'Reinspect' and 'Do Not Reinspect' options is called 'Reinspection Decision'. The literature proposes a number of objective methods for concluding reinspection decision. However, the literature does not provide guidance on the appropriateness of different objective reinspection decision methods. With this realization, this study evaluates various reinspection policies for code inspection in the context of a SW-CMM Level 3 organization. These policies are generated by adapting the reinspection decision methods available through literature. The evaluation is conducted by revealing the outcomes obtained at the end of a project due to employment of different reinspection policies. Namely, for each reinspection policy considered, total cost, schedule delay, and major defects found by the users are computed as output measures by employing Monte Carlo simulation. These values are in turn used to

extract the ranking of the policies under different preference profiles regarding cost, quality, and schedule. In the study, various factors affecting the software inspection activity and succeeding reinspection decision are taken into account for constituting an experiment which represent circumstances under software projects are executed. This makes possible the analysis of the changes in output measures due to varying levels of the considered factors along with the increased validity of the results reported by the study.

By providing the effects of various reinspection decision policies on project's cost, schedule and quality related objectives; this study provides valuable insights which will hopefully guide software practitioners in determining a reinspection decision policy. First, the reinspection decision policy, which examines the expected percentage of major defects found when the probable reinspection is conducted and compares it against a moderately high threshold value (i.e. 75%), is suggested by the results of the study. Further, it is seen that using inspection effectiveness measure while making the reinspection decision is much more reasonable when compared to the cases where the defect density and net benefit measures are utilized. The study also reveals that applying default decisions of 'Never Reinspect' and 'Always Reinspect' do not exhibit the most appropriate outcomes regarding cost, schedule, and quality. Another guidance that can be obtained from the study is; regardless of the reinspection decision method in charge, the corresponding threshold should be set aggressively, i.e. by employing threshold values close to the maximum or minimum possible. The study additionally provides information about the actions that may be performed by practitioners for improving software project's performance with respect to cost, quality, and schedule. Accordingly, in general, the related initiatives should be taken to increase testing effectiveness and inspector capability. Further, it is seen that increasing the number of inspectors participating to initial inspection and to reinspection promises better performance, although the corresponding labor costs are raised.

Mainly due to time constraints, the study does not have opportunity for dwelling upon some further issues which may provide additional insights regarding software reinspection decision policies. Nevertheless, the author believes that the study signifies a good initial step towards understanding the software life cycle consequences of applying various reinspection decision methods available in the literature. The following lists some areas that can be addressed by prospective research studies aimed on the same subject:

- The study can be replicated for inspections conducted on other software work products such as requirements specifications, design descriptions, test procedures.
- The study can be repeated by employing data from a real software engineering environment.
- The adaptation of the study for higher and lower maturity organizations (vis-à-vis a Software CMM Maturity Level 3 organization) can be performed.
- A more comprehensive simulation model, which also considers the testing process in more detail, can be constituted.
- The definition of total cost measure can be enhanced by quantifying and incorporating the loss of goodwill due to dissatisfaction of the users.
- The preference profiles for cost, quality, and schedule can be constituted by requesting input from software practitioners.
- More advanced multi-objective decision making techniques can be employed while comparing performance of reinspection decision policies with respect to three output measures.
- The size of the inspected artifact and the correction effort during inspection phase can be varied by generating it from an underlying distribution or by selecting different sizes as the levels of a new factor that will be incorporated into experimental design.
- The benefits and feasibility of using software inspection defect estimation techniques, which can not be included in this study, can be explored more extensively.
- Software inspection experiments that employ real software artifacts and inspectors can be designed in order to scrutinize the outcomes of using different reinspection decision policies.
• The study may be repeated by adjusting the reinspection decision policy thresholds based on the data coming from field experience.

REFERENCES

Ackerman, A.F., Buchwald, L.S., Lewski, F.H., 1989. "Software Inspections: An Effective Verification Process". IEEE Software, Vol. 6, No. 3, pp. 31-36.

Basili, V.R., 1997. "Evolving and Packaging Reading Technologies". Journal of Systems and Software, Vol. 38, No. 1, pp. 3-12.

Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sorumgard, S., Zelkowitz, M.V., 1996. "The Empirical Investigation of Perspective-Based Reading". Empirical Software Engineering: An International Journal, Vol. 1, No. 2, pp. 133-164.

Biffl, S., 2000. "Using Inspection Data for Defect Estimation". IEEE Software, Vol. 17, No. 6, pp. 36-43.

Biffl, S., 2003. "Evaluating Defect Estimation Models with Major Defects". Journal of Systems and Software, Vol. 65, No. 1, pp. 13-29.

Biffl, S., Freimut, B., Laitenberger, O., 2001. "Investigating the Cost-Effectiveness of Reinspections in Software Development". Proceedings of the Twenty-Third International Conference on Software Engineering, pp. 155-164.

Biffl, S., Gutjahr, W.J., 2002. "Using a Reliability Growth Model to Control Software Inspection". Empirical Software Engineering: An International Journal, Vol. 7, No. 3, pp. 257-284.

Biffl, S., Halling, M., 2001. "Investigating Reinspection Decision Accuracy Regarding Product-Quality and Cost-Benefit Estimates". Proceedings of Twenty-Fifth Annual International Computer Software and Applications Conference, pp. 87-96. Boehm, B.W., Horowitz, E., Madachy, R., Reifer, D., Clark, B.K., Steece, B., Brown, A.W., Chulani, S., Abts, C., 2000. *Software Cost Estimation with Cocomo II*. Prentice Hall PTR.

Briand, L., El Amam, K., Freimut, B., 1998b. "A Comparison and Integration of Capture-Recapture Models and the Detection Profile Method". Proceedings of Ninth International Symposium on Software Reliability Engineering, pp. 32-41.

Briand, L., El Amam, K., Freimut, B., Laitenberger, O., 2000. "A Comprehensive Evaluation of Capture-Recapture Models for Estimating Software Defect Content".IEEE Transactions on Software Engineering, Vol. 26, No. 6, pp. 518-540.

Briand, L., El Amam, K., Laitenberger, O., Fussbroich, T., 1998a. "Using Simulation to Build Inspection Efficiency Benchmarks for Development Projects". Proceedings of Ninth International Symposium on Software Reliability Engineering, pp. 340-349.

Burnham, K.P., Overton, W.S., 1978. "Estimation of the Size of a Closed Population when Capture Probabilities Vary among Animals". Biometrica, Vol. 65, No. 3, pp. 625-633.

Chao, A., 1987. "Estimating Population Size for Capture-Recapture Data with Unequal Catchability". Biometrics, Vol. 43, No. 4, pp. 783-791.

Chao, A., 1989. "Estimating Population Size for Sparse Data in Capture-Recapture Experiments". Biometrics, Vol. 45, No. 2, pp. 427-438.

Chao, A., Lee, S.M., Jeng, S.L., 1992. "Estimating Population Size for Capture-Recapture Data When Capture Probabilities Vary by Time and Individual Animal". Biometrics, Vol. 48, No. 1, pp. 201-216.

Cheng, B., Jeffery, R., 1996. "Comparing Inspection Strategies for Software Requirement Specifications". Proceedings of the 1996 Australian Software Engineering Conference, pp. 203-211.

Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., Wong, M.Y, 1992. "Orthogonal Defect Classification-A Concept for In-Process Measurements". IEEE Transactions on Software Engineering, Vol. 18, No. 11, pp. 943-956. CMMI Product Team, 2001. *CMMISM for Systems Engineering, Software Engineering, and Integrated Product and Process Development (CMMI-SE/SW/IPPD, V1.1), Continuous Representation.* Carnegie Mellon University.

Doolan, E.P., 1992. "Experience with Fagan's Inspection Method". Software-Practice and Experience, Vol. 22, No. 2, pp. 173-182.

Dyer, M., 1992. *The Cleanroom Approach to Quality Software Development*. John Wiley & Sons.

Eick, S.G., Loader, C.R., Long, M.D., Votta, L.G., Vander Wiel, S.A., 1992. "Estimating Software Fault Content before Coding". Proceedings of Fourteenth International Conference on Software Engineering, pp. 59-65.

El Amam, K., Laitenberger, O., 2001. "Evaluating Capture-Recapture Models with Two Inspectors". IEEE Transactions on Software Engineering, Vol. 27, No. 9, pp. 851-864.

El Amam, K., Laitenberger, O., Harbich, T., 2000. "The Application of Subjective Estimates of Effectiveness to Controlling Software Inspections". Journal of Systems and Software, Vol. 54, No. 2, pp. 119-136.

Fagan, M.E., 1976. "Design and Code Inspections to Reduce Errors in Program Development". IBM Systems Journal, Vol. 15, No. 3, pp. 182-211.

Florac, W.A., Carleton, A.D., 1999. *Measuring the Software Process: Statistical Process Control for Software Process Improvement*. Addison-Wesley Professional.

Franz, L.A., Shih, J.C., 1994. "Estimating the Value of Inspections and Early Testing for Software Projects". Hewlett-Packard Journal, Vol. 45, No. 6, pp. 60-67.

Freimut, B., 1997. "Capture-Recapture Models to Estimate Software Fault Content". Diploma Thesis, University of Kaiserslautern, Germany.

Freimut, B., Laitenberger, O., Biffl, S., 2001. "Investigating the Impact of Reading Techniques on the Accuracy of Different Defect Content Estimation Techniques". Proceedings of Seventh International Software Metrics Symposium, pp. 51-62.

Gilb, T., Graham, D., 1993. Software Inspection. Addison-Wesley Longman Limited.

Grady, R.B., Van Slack, T., 1994. "Key Lessons in Achieving Widespread Inspection Use. IEEE Software, Vol. 11, No. 4, pp. 46-57.

Humphrey, W.S., 1999. *Introduction to the Team Software Process*. Addison-Wesley Publishing Company.

IEEE STD 1028-1997, 1998. "IEEE Standard for Software Reviews".

ISO/IEC TR 15504-2: 1998(E), 1998. "Information Technology - Software process assessment – Part 2: A reference model for processes and process capability".

Kelly, J.C., Sherif, J.S., Hops, J., 1992. "An analysis of Defect Densities Found During Software Inspections". Journal of Systems and Software, Vol. 17, No. 2, pp. 111-117.

Laitenberger, O., 1998. "Studying the Effects of Code Inspection and Structural Testing on Software Quality". Proceedings of Ninth International Symposium on Software Reliability Engineering, pp. 237-246.

Laitenberger, O., Atkinson, C., Schlich, M., El Amam, K., 2000. "An experimental comparison of reading techniques for defect detection in UML design documents". Journal of Systems and Software, Vol. 53, No. 2, pp. 183-204.

Laitenberger, O., DeBaud, J., 2000. "An Encompassing Life Cycle Centric Survey of Software Inspection". Journal of Systems and Software, Vol. 50, No. 1, pp. 5-31.

Laitenberger, O., El Emam, K., Harbich, T.G., 2001. "An Internally Replicated Quasi-Experimental Comparison of Checklist and Perspective-Based Reading of Code Documents". IEEE Transactions on Software Engineering, Vol. 27, No. 5, pp. 387-421.

Macdonald, F., Miller, J., 1997. "A Software Inspection Process Definition Language and Prototype Support Tool". Software Testing, Verification and Reliability, Vol. 7, No. 2, pp. 99-128.

Mah, M., 2001. "Defect Metrics, Inspections, and Testing: Part II". IT Metrics Strategies, Vol. 7, No. 2, pp. 6-16.

Miller, J., 1999. "Estimating the Number of Remaining Defects after Inspection". Software Testing, Verification, and Reliability, Vol. 9, No. 3, pp. 167-189.

Mills, H.D., 1972. "On the statistical validation of computer programs". Technical Report no. FSC-72-6015, IBM Federal Systems Division.

O'Neill, D., 2002. "Peer Reviews". In: *Encyclopedia of Software Engineering* (2nd edition). John Wiley & Sons.

O'Neill, D., 2003. "Determining Return on Investment Using Software Inspections". Crosstalk: The Journal of Defense Software Engineering, Vol. 16, No. 3, pp. 16-21.

Otis, D.L., Burnham, K.P., White, G.C., Anderson, D.R., 1978. "Statistical Inference from Capture Data on Closed Animal Populations". Wildlife Monographs, Vol. 62, pp. 1–135.

Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V., 1993. *Capability Maturity Model for Software, Version 1.1 (CMU/SEI-93-TR-024, ADA 263403)*. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.

Petersson, H., Thelin, T., Runeson, P., Wohlin, C., 2004. "Capture–Recapture in Software Inspections after 10 Years Research—Theory, Evaluation and Application". Journal of Systems and Software, Vol. 72, No. 2, pp. 249-264.

Porter, A.A. Votta, L.G., Jr. Basili, V.R., 1995. "Comparing Detection Methods for Software Requirements Inspections: A Replicated Experiment. IEEE Transactions on Software Engineering, Vol. 21, No. 6, pp. 563-575.

Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G., 1997. "An experiment to Assess the Cost-Benefits of Code Inspections in Large Scale Software Development". IEEE Transactions on Software Engineering, Vol. 23, No. 6, pp. 329-346.

Radice, R.A., 2002. *High Quality Low Cost Software Inspections*. Paradoxicon Publishing.

Rus, I., Halling, M., Biffl, S., 2003. "Supporting Decision-Making in Software Engineering with Process Simulation and Empirical Studies". International Journal of Software Engineering and Knowledge Engineering (IJSEKE), Vol. 13, No. 5, pp. 531-545.

Russell, G.W., 1991. "Experience with Inspection in Ultralarge-Scale Developments". IEEE Software, Vol. 8, No. 1, pp. 25-31.

Seber, G.A.F, 1982. *The Estimation of Animal Abundance and Related Parameters*, 2nd Edition. Charles Griffin and Co.

Selby, R., Basili, V., 1991. "Analyzing Error-prone System Structure". IEEE Transactions on Software Engineering, Vol. 17, No. 2, pp. 141-152.

Software Engineering Institute, 2004. *Software CMM Process Maturity Profile: 2004 Mid-Year Update*. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University. (URL: <u>http://www.sei.cmu.edu/sema/pdf/SW-CMM/2004aug.pdf</u>, Last Accessed on: 02.01.2005).

Strauss, S.H., Ebenau, R.G., 1993. *Software Inspection Process*. Mcgraw Hill Systems Design and Implementation Series.

Tervonen, I., Iisakka, J., 1997. "Monitoring Software Inspections with Prescriptive Metrics". Software QA, Vol. 4, No. 3, pp. 16-23.

Thelin, T., Petersson, H., Runeson, P., 2002. "Confidence Intervals for Capture-Recapture Estimations in Software Inspections". Information and Software Technology, Vol. 44, No. 12, pp. 683-702.

Thelin, T., Runeson, P., 2000. "Fault Content Estimations Using Extended Curve Fitting Models and Model Selection". Proceedings of the Fourth International Conference on Empirical Assessment and Evaluation in Software Engineering.

Thelin, T., Runeson, P., Regnell, B., 2001. "Usage-Based Reading - An Experiment to Guide Reviewers with Use Cases". Information and Software Technology, Vol. 43, No. 15, pp. 925-938.

Thelin, T., Runeson, P., Wohlin, C., 2003. "An Experimental Comparison of Usagebased and Checklist-based Reading". IEEE Transactions on Software Engineering, Vol. 29, No. 8, pp. 687-704.

Travassos, G., Shull, F., Fredericks, M., Basili, V.R., 1999. "Detecting Defects in Object-Oriented Designs: Using Reading Techniques to Increase Software Quality". Proceedings of Object Oriented Programming Conference (OOPSLA'99), pp. 47-56.

Vander Wiel, S.A., Votta, L.G., 1993. "Assessing Software Designs Using Capture– Recapture Methods". IEEE Transactions on Software Engineering, Vol. 19, No. 11, pp. 1045–1054.

Weller, E.F., 1993. "Lessons from Three Years of Inspection Data". IEEE Software, Vol. 10, No. 5, pp. 38-45.

Wheeler, D.A., Brykczynski, B., Meeson, R.N., 1996. *Software Inspection: An industry Best Practice*. IEEE Computer Society Press.

Wheeler, D.A., Brykczynski, B., Meeson, R.N., 1997. "Software Peer Reviews". In: *Software Engineering Project Management* (2nd edition). John Wiley & Sons- IEEE Computer Society Press.

Wiegers, K.E., 2002. *Peer Reviews in Software: A Practical Guide*. Addison-Wesley Information Technology Series.

Wohlin, C., Runeson, P., 1998. "Defect Content Estimations from Review Data". Proceedings of the Twentieth International Conference on Software Engineering, pp.400-409. APPENDICES

APPENDIX A

SIMULATED DATA FOR FAILURE RATE MEASURE OF ESTIMATORS

Estimator	Treatment	Failure Rate
1	1	0.017
1	2	0.001
1	3	0
1	4	0.149
1	5	0.056
1	6	0.011
1	7	0.311
1	8	0.138
1	9	0.056
1	10	0.002
1	11	0
1	12	0
1	13	0.025
1	14	0
1	15	0
1	16	0.104
1	17	0.05
1	18	0.01
1	19	0
1	20	0
1	21	0
1	22	0.033
1	23	0.005
1	24	0.002
1	25	0
1	26	0
1	27	0
1	28	0.356
1	29	0.207
1	30	0.087
1	31	0.14
1	32	0.034
1	33	0.004
1	34	0.098
1	35	0.021

Table 32 Failure Rate Data of Considered Estimators for All Defects

Estimator	Treatment	Failure Rate
5	1	0.015
5	2	0.002
5	3	0
5	4	0.147
5	5	0.053
5	6	0.014
5	7	0.318
5	8	0.15
5	9	0.059
5	10	0.002
5	11	0
5	12	0
5	13	0.011
5	14	0.003
5	15	0
5	16	0.111
5	17	0.035
5	18	0.011
5	19	0.002
5	20	0
5	21	0
5	22	0.041
5	23	0.012
5	24	0.002
5	25	0
5	26	0
5	27	0
5	28	0.377
5	29	0.246
5	30	0.089
5	31	0.142
5	32	0.039
5	33	0.005
5	34	0.087
5	35	0.018

Estimator	Treatment	Failure Rate	Estimator	Treatment	Failure Rate
1	36	0.001	5	36	0.001
1	37	0.002	5	37	0.004
1	38	0	5	38	0
1	39	0	5	39	0
1	40	0.087	5	40	0.102
1	41	0.022	5	41	0.031
1	42	0.003	5	42	0.005
1	43	0.013	5	43	0.008
1	44	0	5	44	0
1	45	0	5	45	0
1	46	0.001	5	46	0.004
1	47	0	5	47	0
1	48	0	5	48	0
1	49	0	5	49	0
1	50	0	5	50	0
1	51	0	5	51	0
1	52	0.001	5	52	0
1	53	0	5	53	0
1	54	0	5	54	0
2	1	0.024	6	1	0.015
2	2	0	6	2	0.002
2	3	0	6	3	0.502
2	4	0 141	6	4	0 145
2	5	0.049	6	5	0.049
2	6	0.043	6	6	0.045
2	7	0.304	6	7	0.284
2	, 8	0.304	6	8	0.157
2	q	0.155	6	9	0.058
2	10	0.002	6	10	0.000
2	11	0.000	6	11	0.002
2	12	0	6	12	0
2	12	0.017	6	12	0.023
2	14	0.017	6	14	0.023
2	15	0.002	6	15	0.000
2	16	0 109	6	16	0 103
2	17	0.109	6	17	0.103
2	18	0.007	6	18	0.024
2	10	0.013	6	10	0.014
2	20	0	6	20	0.001
2	20	0	6	20	0
2	21	0.03	6	21	0 021
2	23	0.03	6	23	0.021
2	24	0.013	6	20	0.000
2	25	0.000	6	25	0.004
2	26	0	6	26	0
2	27	0	6	20	0
2	28	0.326	6	28	0.38
2	29	0.209	6	29	0.205
2	30	0.104	6	30	0.095
2	31	0 159	6	31	0 141
2	32	0.05	6	32	0.044
2	33	0.007	6	33	0.009
2	34	0.104	6	34	0.074
2	35	0.019	6	35	0.018
2	36	0	6	36	0.001
2	37	0.007	6	37	0.003
2	38	0.007	6	38	0.000
2	30	0	6	30	0
2	40	0.073	6	40	0.091
2	40	0.073	6	40	0.001
2	41	0.027	6	41	0.020
2	42	0.000	6	42	0.002
2	43	0.004	6	43	0.005
2	44	0	6	44	0
2	45	U	6	45	U

Table 32 Failure Rate Data of Considered Estimators for All Defects (cont.)

Estimator	Treatment	Failure Rate		Estimator	Treatment	Failure Rate
2	46	0.004	1	6	46	0.002
2	47	0	1	6	47	0.001
2	48	0	1	6	48	0
2	49	0		6	49	0
2	50	0	1	6	50	0
2	51	0		6	51	0
2	52	0		6	52	0
2	53	0		6	53	0
2	54	0		6	54	0
3	1	0		8	1	0
3	2	0		8	2	0
3	3	0		8	3	0
3	4	0		8	4	0
3	5	0		8	5	0
3	6	0		8	6	0
3	7	0		8	7	0
3	, 8	0		8	8	0
3	q	0		8	9	0
3	10	0		8	10	0
3	11	0	1	8	11	n 0
3	12	0	1	8	12	<u> </u>
3	12	0		2 2	12	0
3	14	0	1	0 0	14	0
3	14	0	1	0 8	14	0
3	10	0		0 8	10	0
3	17	0		0	17	0
3	1/	0		8	17	0
3	10	0		8	10	0
3	19	0		8	19	0
3	20	0		8	20	0
3	21	0		8	21	0
3	22	0		8	22	0
3	23	0		8	23	0
3	24	0		8	24	0
3	25	0		8	25	0
3	26	0		8	26	0
3	27	0		8	27	0
3	28	0		8	28	0
3	29	0		8	29	0
3	30	0		8	30	0
3	31	0		8	31	0
3	32	0		8	32	0
3	33	0		8	33	0
3	34	0		8	34	0
3	35	0	1	8	35	Ű
3	36	U		8	36	0
3	3/	<u> </u>	1	8	3/	0
3	38	0		8	38	0
3	39	0	1	σ	39	0
3	40	U		8	40	0
3	41	0		8	41	0
3	42	<u> </u>	1	8	42	0
3	43	0	1	ð C	43	0
3	44	U		8	44	0
3	45	0	1	8	45	0
3	46	0	1	8	46	Ű
3	47	0		8	47	0
3	48	0		8	48	0
3	49	0		8	49	0
3	50	0	1	8	50	0
3	51	0		8	51	0
3	52	0		8	52	0
3	53	0		8	53	0
3	54	0		8	54	0
4	1	0.01	l	9	1	0

Table 32 Failure	e Rate Data	a of Considered	l Estimators fo	or All Defects	(cont.)
------------------	-------------	-----------------	-----------------	----------------	---------

Estimator	Treatment	Failure Rate	Estimator	Treatment	Failure Rate
4	2	0.003	9	2	0
4	3	0	9	3	0
4	4	0.158	9	4	0
4	5	0.046	9	5	0
4	6	0.011	9	6	0
4	7	0.293	9	7	0
4	8	0.149	9	8	0
4	9	0.061	9	9	0
4	10	0.002	9	10	0
4	11	0	9	11	0
4	12	0	9	12	0
4	13	0.033	9	13	0
4	14	0.002	9	14	0
4	15	0	9	15	0
4	16	0.168	9	16	0
4	17	0.09	9	17	0
4	18	0.074	9	18	0
4	19	0.003	9	19	0
4	20	0	9	20	0
4	21	0	9	21	0
4	22	0.116	9	22	0
4	23	0.11	9	23	0
4	24	0.099	9	24	0
4	25	0	9	25	0
4	26	0.001	9	26	0
4	27	0	9	27	0
4	28	0.361	9	28	0
4	29	0.204	9	29	0
4	30	0.107	9	30	0
4	31	0.141	9	31	0
4	32	0.045	9	32	0
4	33	0.009	9	33	0
4	34	0.073	9	34	0
4	35	0.013	9	35	0
4	36	0.002	9	36	0
4	37	0.015	9	37	0
4	38	0.002	9	38	0
4	39	0.001	9	39	0
4	40	0.126	9	40	0
4	41	0.043	9	41	0
4	42	0.016	9	42	0
4	43	0.013	9	43	0
4	44	0.001	9	44	0
4	45	0	9	45	0
4	46	0.014	9	46	0
4	47	0.004	9	47	0
4	48	0	9	48	0
4	49	0	9	49	0
4	50	0.001	9	50	0
4	51	0	9	51	0
4	52	0.005	9	52	0
4	53	0	9	53	0
4	54	0.003	9	54	0

Table 32 Failure Rate Data of Considered Estimators for All Defects (cont.)

Estimator	Treatment	Ecilura Doto	Estimator	Treatment	Eciluro Dot
Estimator	Treatment		Estimator	Treatment	
1	1	0.663113	5	1	0.659597
1	2	0.535676	5	2	0.490967
	3	0.366273	5	3	0.316348
1	4	0.601602	5	4	0.608609
1	5	0.4//	5	5	0.495
1	6	0.328	5	6	0.327
1	7	0.61	5	7	0.635
1	8	0.488	5	8	0.461
1	9	0.348	5	9	0.332
1	10	0.202202	5	10	0.202405
1	11	0.092	5	11	0.087
1	12	0.051	5	12	0.046092
1	13	0.208	5	13	0.196
1	14	0.077	5	14	0.098
1	15	0.024	5	15	0.023
1	16	0.781148	5	16	0.769892
1	17	0.717063	5	17	0.729412
1	18	0.618844	5	18	0.640043
1	19	0.501587	5	19	0.46044
1	20	0.367412	5	20	0,340812
1	21	0.232238	5	21	0.214665
1	22	0.434434	5	22	0.417
1	23	0.33033	5	23	0.332
1	24	0.253253	5	24	0.352
1	24	0.235235	5	24	0.239
1	20	0.017	5	25	0.013
	26	0.006	5	26	0.003
1	27	0.001	5	27	0
	28	0.673	5	28	0.659
1	29	0.526	5	29	0.539
1	30	0.389	5	30	0.387
1	31	0.821845	5	31	0.810458
1	32	0.723769	5	32	0.734672
1	33	0.629274	5	33	0.612834
1	34	0.56513	5	34	0.530531
1	35	0.355	5	35	0.369
1	36	0.234	5	36	0.248248
1	37	0.134	5	37	0.121
1	38	0.039	5	38	0.041
1	39	0.014	5	39	0.02
1	40	0.771368	5	40	0.763158
1	41	0.688749	5	41	0.690811
1	42	0.601704	5	42	0.600212
1	43	0.315631	5	43	0.32032
1	44	0.178	5	44	0.174524
1	45	0.089	5	45	0.099
1	46	0.266	5	46	0.281
1	47	0.154	5	47	0.144144
. 1	48	0.079	5	48	0 071071
1	40	0.006	5	49	0.071071
1	50	0	5	50	0.000
1	50	0	5	50	0.001
1	51	0.407770	5	51	0 4075
1	52	0.48///9	5	52	0.4375
1	53	0.319654	5	53	0.331887
1	54	0.255365	5	54	0.24866
2	1	0.659188	6	1	0.618182
2	2	0.535865	6	2	0.52234
2	3	0.355603	6	3	0.370095
2	4	0.631632	6	4	0.63
2	5	0.456456	6	5	0.495

Table 33 Failure Rate Data of Considered Estimators for Major Defects

Estimator	Treatment	Failure Rate	Estimator	Treatment	Failure Rate
2	6	0.351	6	6	0.336673
2	7	0.613	6	7	0.611
2	8	0.5	6	8	0.487
2	9	0.328	6	9	0.321
2	10	0.204	6	10	0.196
2	11	0.087087	6	11	0.098098
2	12	0.032032	6	12	0.042042
2	13	0.201	6	13	0.204
2	14	0.095	6	14	0.112
2	15	0.045	6	15	0.021
2	16	0.816435	6	16	0.794243
2	17	0.715344	6	17	0.714898
2	18	0.623391	6	18	0.646432
2	19	0.469762	6	19	0.487674
2	20	0.361588	6	20	0.364316
2	21	0.226115	6	21	0.225772
2	22	0.457457	6	22	0.428
2	23	0.313	6	23	0.348
2	24	0.273	6	24	0.273273
2	25	0.018	6	25	0.009
2	26	0.003	6	26	0.001
2	27	0	6	27	0.001
2	28	0.689	6	28	0.678
2	29	0.527	6	29	0.53
2	30	0.415	6	30	0.379
2	31	0.801927	6	31	0.800843
2	32	0.72043	6	32	0.720213
2	33	0.61242	6	33	0.592119
2	34	0.532533	6	34	0.572573
2	35	0.37	6	35	0.377
2	36	0.235	6	36	0.233233
2	37	0.127	6	37	0.121
2	38	0.032	6	38	0.044
2	39	0.009	6	39	0.019
2	40	0.786022	6	40	0.763713
2	41	0.678919	6	41	0.66525
2	42	0.578834	6	42	0.565032
2	43	0.307307	6	43	0.3
2	44	0.157	6	44	0.166
2	45	0.089089	6	45	0.089089
2	46	0.259	6	46	0.272
2	47	0.149	6	47	0.152
2	48	0.081	6	48	0.075075
2	49	0.004	6	49	0.006
2	50	0	6	50	0.002
2	51	0	6	51	0
2	52	0.478587	6	52	0.483279
2	53	0.337272	6	53	0.348712
2	54	0.23395	6	54	0.26327
3	1	0	8	1	0
3	2	0	8	2	0
3	3	0	8	3	0
3	4	0	8	4	0
3	5	0	8	5	0
3	6	0	8	6	0
3	7	0	8	7	0
3	8	0	8	8	0
3	9	0	8	9	0
3	10	0	8	10	0
3	11	0	8	11	0
3	12	0	8	12	0
3	13	0	8	13	0
3	14	0	8	14	0
3	15	0	8	15	0

Table 33 Failure Rate Data of Considered Estimators for Major Defects (cont.)

Estimator	Treatment	Failure Rate		Estimator	Treatment	Failure Rate
3	16	0		8	16	0
3	17	0		8	17	0
3	18	0		8	18	0
3	19	0		8	19	0
3	20	0		8	20	0
3	21	0		8	21	0
3	22	0		8	22	0
3	23	0		8	23	0
3	24	0		8	24	0
3	25	0		8	25	0
3	26	0	1	8	26	0
3	27	0		8	27	0
3	28	0		8	28	0
3	29	0		8	29	0
3	30	0		8	30	0
3	31	0		8	31	0
3	32	0		8	32	0
3	33	0		8	33	0
3	34	0		8	34	0
3	25	0		0	25	0
3	30	0		0	35	0
3	30	0		0	30	0
3	37	0		8	37	0
3	38	0		8	38	0
3	39	0		8	39	0
3	40	0		8	40	0
3	41	0		8	41	0
3	42	0		8	42	0
3	43	0		8	43	0
3	44	0		8	44	0
3	45	0		8	45	0
3	46	0		8	46	0
3	47	0		8	47	0
3	48	0		8	48	0
3	49	0		8	49	0
3	50	0		8	50	0
3	51	0		8	51	0
3	52	0		8	52	0
3	53	0		8	53	0
3	54	0		8	54	0
4	1	0.646932		9	1	0
4	2	0.506329		9	2	0
4	3	0.357374		9	3	0
4	4	0.597		9	4	0
4	5	0.471		9	5	0
4	6	0.326326		9	6	0
4	7	0.621		9	7	0
4	8	0.489		9	8	0
4	9	0.335		9	9	0
4	10	0.263		9	10	0
4	11	0.134		9	11	0
4	12	0.111111		9	12	0
4	13	0.251		9	13	0
4	14	0.134		9	14	0
4	15	0.05		9	15	0
4	16	0.805794		9	16	0
4	17	0.778378		9	17	0
4	18	0.745474		9	18	0
4	19	0.592077	1	9	19	0
4	20	0.454352]	9	20	0
4	21	0.4037	1	9	21	0
4	22	0.582164	1	9	22	0
4	23	0.552	1	9	23	0
4	24	0.577	1	9	24	ñ
4	25	0.045	1	9	25	0
4	23	0.040	J	3	20	U U

Table 33 Failure Rate Data of Considered Estimators for Major Defects (cont.)

Estimator	Treatment	Failure Rate	Estimator	Treatment	Failure Rate
4	26	0.032	9	26	0
4	27	0.027	9	27	0
4	28	0.67	9	28	0
4	29	0.562	9	29	0
4	30	0.385	9	30	0
4	31	0.804747	9	31	0
4	32	0.719828	9	32	0
4	33	0.619808	9	33	0
4	34	0.54	9	34	0
4	35	0.38038	9	35	0
4	36	0.229229	9	36	0
4	37	0.176	9	37	0
4	38	0.106	9	38	0
4	39	0.081	9	39	0
4	40	0.805223	9	40	0
4	41	0.708021	9	41	0
4	42	0.676344	9	42	0
4	43	0.364364	9	43	0
4	44	0.244244	9	44	0
4	45	0.133	9	45	0
4	46	0.341	9	46	0
4	47	0.216	9	47	0
4	48	0.148	9	48	0
4	49	0.044	9	49	0
4	50	0.047	9	50	0
4	51	0.066	9	51	0
4	52	0.586538	9	52	0
4	53	0.51746	9	53	0
4	54	0.480423	9	54	0

Table 33 Failure Rate Data of Considered Estimators for Major Defects (cont.)

APPENDIX B

SIMULATED DATA FOR RELATIVE ERROR AND ROOT MEAN SQUARE ERROR MEASURES OF ESTIMATORS

Table 34 Relative Error and Root Mean Square Error Data of Estimators 3, 8,and 9 for All Defects

Estimator	Treatment	Mean Relative Error	RMSE	Estimator	Treatment	Mean Relative Error	RMSE
3	1	-0.170518	9.3303	8	28	-0.568038	15.1856
3	2	-0.158997	6.5324	8	29	-0.491981	13.2964
3	3	-0.160115	5.4528	8	30	-0.400981	11.0302
3	4	-0.262659	11.4591	8	31	-0.342692	9.673
3	5	-0.219821	10.319	8	32	-0.216058	6.7825
3	6	-0.207428	8.2442	8	33	-0.112673	4.6262
3	7	-0.219408	12.1363	8	34	-0.470712	12.7772
3	8	-0.132839	11.3554	8	35	-0.389692	10.7333
3	9	-0.059723	10.7285	8	36	-0.344635	9.5645
3	10	-0.078872	7.523	8	37	-0.344885	9.7044
3	11	-0.070376	4.9831	8	38	-0.297577	8.5403
3	12	-0.07252	3.6758	8	39	-0.277	7.9549
3	13	-0.053781	10.0168	8	40	-0.381538	10.6747
3	14	-0.028502	7.6615	8	41	-0.303167	8.8469
3	15	-0.023221	6.1682	8	42	-0.213462	6.7758
3	16	-0.578454	16.0122	8	43	-0.102192	4.7029
3	17	-0.557886	15.4028	8	44	-0.006923	3.6764
3	18	-0.519636	14.4799	8	45	0.066077	3.7772
3	19	-0.019421	8.7882	8	46	-0.082173	4.6732
3	20	-0.033512	5.2772	8	47	0.013654	3.7139

Table 34 Relative Error and Root Mean Square Error Data of Estimators 3, 8,and 9 for All Defects (cont.)

Estimator	Treatment	Mean Relative Frror	RMSF	Fstimator	Treatment	Mean Relative Frror	BMSF
2	21	0.000007	2 05 29	°	49	0.075625	2 0415
3	21	-0.509716	14 7552	8	48	-0.031548	3 3393
	22	0.495710	12 0070	0	49 50	0.026265	0.000
3	23	-0.403/19	10 7710	0	51	-0.030303	2.979
3	25	-0.400147	12.7712	9	52	0.111788	4 8495
	25	0.059542	9.0240	0	52	0.055654	2.0957
3	20	-0.056545	3.6443	0	53	-0.055654	3.9007
3	27	0.417466	12 9207	0		0.007491	6.0004
3	20	-0.417400	10.1062	9	2	0 120700	4 957
3	29	-0.329295	11 5540	9	2	-0.132766	4.607
3	30	-0.258/33	11.5549	9	3	-0.066346	3.0002
3	31	-0.108693	0.0007	9		-0.430173	0.4450
3	32	-0.060656	9.6867	9	5	-0.3325	9.4153
3	33	-0.026251	8.1/24	9	6	-0.232538	7.0627
3	34	-0.416569	12.6753	9	7	-0.460365	12.4823
3	35	-0.391158	11.4017	9	8	-0.352231	9.9313
3	36	-0.384049	10.6809	9	9	-0.24/288	7.4601
3	37	-0.38141	10.9974	9	10	0.030397	4.6456
3	38	-0.362761	10.3582	9	11	0.093821	4.8536
3	39	-0.352108	9.7126	9	12	0.094571	4.4123
3	40	-0.243902	11.7328	9	13	-0.055615	4.9397
3	41	-0.198002	10.4163	9	14	0.034103	4.6119
3	42	-0.174224	9.255	9	15	0.117782	5.0598
3	43	-0.016401	9.7813	9	16	-0.554045	14.9652
3	44	-0.011704	7.1579	9	17	-0.504994	13.7356
3	45	-0.011737	4.8389	9	18	-0.470603	12.885
3	46	-0.042875	8.8952	9	19	0.102974	5.6401
3	47	-0.010262	7.0636	9	20	0.167064	6.5555
3	48	-0.009441	4.7775	9	21	0.175683	6.2477
3	49	-0.1404	5.3287	9	22	-0.462955	12.8562
3	50	-0.140415	4.5379	9	23	-0.410029	11.5547
3	51	-0.128868	3.9568	9	24	-0.352583	10.2459
3	52	-0.138423	8.3336	9	25	0.116673	5.5763
3	53	-0.119246	6.9722	9	26	0.112542	5.1326
3	54	-0.107923	4.9115	9	27	0.074147	4.1439
8	1	-0.235058	7.1914	9	28	-0.570846	15.2486
8	2	-0.134712	4.919	9	29	-0.490269	13.2087
8	3	-0.071904	3.5621	9	30	-0.412692	11.2751
8	4	-0.429519	11.7611	9	31	-0.336827	9.5977
8	5	-0.321962	9.1387	9	32	-0.223442	6.9306
8	6	-0.232058	7.0437	9	33	-0.108712	4.5271
8	7	-0.4595	12.5402	9	34	-0.464327	12.6026
8	8	-0.355558	9.9862	9	35	-0.393635	10.8127

Table 34 Relative Error and Root Mean Square Error Data of Estimators 3, 8,and 9 for All Defects (cont.)

		Mean Belative					Mean Belative	
Estimator	Treatment	Error	RMSE		Estimator	Treatment	Error	RMSE
8	9	-0.252077	7.4994		9	36	-0.334558	9.3528
8	10	-0.077359	4.2392		9	37	-0.274603	8.3673
8	11	0.000526	3.3149		9	38	-0.247526	7.5633
8	12	0.041577	3.1104		9	39	-0.248962	7.4787
8	13	-0.16909	5.9452		9	40	-0.306179	9.2252
8	14	-0.063615	4.2594		9	41	-0.207391	7.1974
8	15	0.017628	3.3406		9	42	-0.118218	5.4446
8	16	-0.598897	15.9451		9	43	0.009218	4.5535
8	17	-0.555231	14.8327		9	44	0.094346	4.9519
8	18	-0.512269	13.77		9	45	0.146423	5.5602
8	19	-0.034375	3.9107		9	46	0.061503	5.4737
8	20	0.047769	3.7935		9	47	0.140663	6.0734
8	21	0.093221	3.8546		9	48	0.185923	6.7739
8	22	-0.5275	14.207		9	49	0.014785	4.5011
8	23	-0.478212	12.9619		9	50	-0.027417	3.8234
8	24	-0.442885	12.1274		9	51	-0.073875	3.4916
8	25	0.018962	3.461		9	52	-0.010728	4.9792
8	26	0.0545	3.2742		9	53	0.032356	4.8022
8	27	0.061019	3.0056]	9	54	0.056808	4.6029

Table 35 Relative Error and Root Mean Square Error Data of Estimators 3, 8,and 9 for Major Defects

		Mean				Mean	
		Relative				Relative	
Estimator	Treatment	Frror	BMSE	Estimator	Treatment	Frror	BMSE
2 Contractor	1 definition	0.271652	1.9760	o	200	0.570142	6 50912
3	2	-0.371652	1.8/69	8	28	-0.579143	5 7692
3	2	-0.303363	1.71324	0	29	-0.493169	5.7003
3	3	-0.213303	1.03794	0	30	-0.422030	1,7000
3	4	-0.459541	3.98666	8	31	-0.331273	1.7000
3	5	-0.357722	3.9011	8	32	-0.209901	1.73656
3	6	-0.289081	3.54186	8	33	-0.105339	1.74316
3	/	-0.429792	5.96946	8	34	-0.478948	3.70829
3	8	-0.304648	5.42674	8	35	-0.410373	3.43375
3	g	-0.20323	5.31631	8	36	-0.344776	3.15978
3	10	-0.167783	3.47843	8	37	-0.32064	4.412/
3	11	-0.11043	3.05165	8	38	-0.294231	4.15108
3	12	-0.089469	2.75356	8	39	-0.278764	4.01223
3	13	-0.153295	5.17997	8	40	-0.395225	1.94278
3	14	-0.085988	4.94615	8	41	-0.298798	1.75411
3	15	-0.040815	4.39081	8	42	-0.204504	1.84108
3	16	-0.715372	2.16315	8	43	-0.106331	2.75233
3	17	-0.644706	2.12417	8	44	-0.010829	2.69168
3	18	-0.632593	2.08685	8	45	0.056689	2.79454
3	19	-0.254854	1.92293	8	46	-0.089387	2.82987
3	20	-0.152016	1.76798	8	47	0.016888	2.84163
3	21	-0.110692	1.74465	8	48	0.071735	2.9521
3	22	-0.612539	4.49137	8	49	-0.023796	3.18731
3	23	-0.564111	4.26103	8	50	-0.039018	2.9798
3	24	-0.528091	4.07621	8	51	-0.055021	2.80334
3	25	-0.090726	3.62797	8	52	-0.111696	1.91047
3	26	-0.07112	3.37683	8	53	-0.053292	1.74014
3	27	-0.049415	2.94447	8	54	-0.000109	1.79426
3	28	-0.569576	6.79597	9	1	-0.215067	1.66836
3	29	-0.479694	6.23228	9	2	-0.113929	1.59122
3	30	-0.371151	5.64374	9	3	-0.063683	1.63364
3	31	-0.48136	2.06801	9	4	-0.426805	3.54738
3	32	-0.36209	1.91565	9	5	-0.317762	3.10385
3	33	-0.275979	1.88058	9	6	-0.229155	2.83215
3	34	-0.523265	4.15182	9	7	-0.450233	5.37261
3	35	-0.452992	3.74887	9	8	-0.365498	4.70206
3	36	-0.41076	3.59561	9	9	-0.248084	3.98969
3	37	-0.39882	5.2391	9	10	0.076533	3.29953
3	38	-0.37999	4.88541	9	11	0.17735	3.50717
3	39	-0.360901	4.67138	9	12	0.227854	3.57845
3	40	-0.561306	2.03639	9	13	-0.004453	3.76151
3	41	-0.470088	2.06981	9	14	0.109305	4.0781
3	42	-0.395571	1.87854	9	15	0.208726	4.46434
3	43	-0.178127	3.77466	9	16	-0.540142	2.10564
3	44	-0.087611	3.52801	9	17	-0.4867	2.10837
3	45	-0.04914	3.2395	9	18	-0.411653	1.96703
3	46	-0.157254	4.13051	9	19	0.250362	2.56139
3	47	-0.09218	3.54221	9	20	0.355274	2.63076
3	48	-0.078026	3.06038	9	21	0.402876	2.60624
3	49	-0.159092	3.59744	9	22	-0.399369	3.75961
3	50	-0.132354	3.18844	9	23	-0.350811	3.54133
3	51	-0.131993	2.8763	9	24	-0.297533	3.40323
3	52	-0.329027	1.69103	9	25	0.30314	5.29435
3	53	-0.246853	1.81373	9	26	0.313848	5.18042
3	54	-0.197498	1.77416	9	27	0.291319	4.84373
8	1	-0.279741	1.75989	9	28	-0.560163	6.26718
8	2	-0.103625	1.6105	9	29	-0.483006	5.60066
8	3	-0.087408	1.66665	9	30	-0.409094	5.07144

Table 35 Relative Error and Root Mean Square Error Data of Estimators 3, 8,and 9 for Major Defects (cont.)

		Mean Bolativo					Mean Bolativo	
Estimator	Treatment	Error	RMSE		Estimator	Treatment	Error	RMSE
8	4	-0.41274	3.48887		9	31	-0.359288	1.83279
8	5	-0.337709	3.20836		9	32	-0.196578	1.72374
8	6	-0.237246	2.83033		9	33	-0.104072	1.66057
8	7	-0.453145	5.4265		9	34	-0.466796	3.73684
8	8	-0.342344	4.62343		9	35	-0.390737	3.39453
8	9	-0.252142	4.05683		9	36	-0.338808	3.11203
8	10	-0.080385	2.8626		9	37	-0.230104	4.08717
8	11	-0.004173	2.73266		9	38	-0.193155	3.86544
8	12	0.052062	2.68858		9	39	-0.171926	3.80532
8	13	-0.17403	3.66891		9	40	-0.281108	2.01524
8	14	-0.058227	3.29225		9	41	-0.160776	2.04061
8	15	0.019683	3.43844		9	42	-0.059939	2.11841
8	16	-0.596197	2.06203		9	43	0.049987	3.30714
8	17	-0.536831	1.92789		9	44	0.169637	3.57356
8	18	-0.484301	1.85555		9	45	0.238918	3.80246
8	19	-0.033315	1.8364		9	46	0.196148	3.76614
8	20	0.048417	1.8977		9	47	0.296478	4.2613
8	21	0.092077	1.79104		9	48	0.336124	4.44001
8	22	-0.546019	4.12637		9	49	0.210535	4.78601
8	23	-0.476784	3.77352		9	50	0.180644	4.30411
8	24	-0.425822	3.55525		9	51	0.078981	3.52252
8	25	0.016226	3.42253		9	52	0.134317	2.30539
8	26	0.062133	3.21983		9	53	0.199079	2.22026
8	27	0.069007	3.18367]	9	54	0.230994	2.30637

APPENDIX C

SIMULATED DATA FOR DECISION ACCURACY AND RELATIVE DECISION ACCURACY MEASURES OF ESTIMATORS

Table 36 Decision Accuracy and Relative Decision Accuracy Data ofEstimators 3, 8, and 9

	Policy	Treat-	Mean	Mean		Policy	Treat-	Mean	Mean
Estimator	No	ment	DA	RDA	Estimator	No	ment	DA	RDA
3	1	54	0.957167	-0.005626	8	24	54	0.578722	-0.018962
3	2	54	0.688185	0.010018	8	25	54	0.627889	-0.018511
3	3	54	0.576852	0.090521	8	26	54	0.488889	-0.330175
3	4	54	0.566556	0.343406	8	27	54	0.588574	-0.177923
3	5	54	0.788926	0.764902	8	28	54	0.666352	-0.117696
3	6	54	0.953185	-0.000055	8	29	54	0.727519	-0.101417
3	7	54	0.737593	-0.011328	8	30	54	0.777704	-0.09451
3	8	54	0.587889	0.005104	8	31	54	0.9645	0
3	9	54	0.500148	0.082608	8	32	54	0.754796	0
3	10	54	0.521296	0.252945	8	33	54	0.67163	-0.001341
3	11	54	0.628852	0.606697	8	34	54	0.521611	-0.099777
3	12	54	0.437407	0.286318	8	35	54	0.432463	-0.343603
3	13	54	0.4445	0.102229	8	36	54	0.958852	0
3	14	54	0.553074	0.011606	8	37	54	0.826648	0
3	15	54	0.699704	-0.029748	8	38	54	0.728926	-0.032382
3	16	54	0.486704	0.240585	8	39	54	0.563796	-0.186406
3	17	54	0.515907	0.094648	8	40	54	0.576944	-0.25191
3	18	54	0.614556	0.030548	8	41	54	0.667259	0.471895
3	19	54	0.712204	0.001912	8	42	54	0.588519	0.095842
3	20	54	0.793	-0.014142	8	43	54	0.722944	-0.011061
3	21	54	0.552278	-0.338758	8	44	54	0.866019	-0.009596
3	22	54	0.602519	-0.127417	8	45	54	0.938204	-0.00107
3	23	54	0.625593	-0.010177	9	1	54	0.962111	0
3	24	54	0.635019	0.010963	9	2	54	0.680111	0.000387
3	25	54	0.655037	0.007883	9	3	54	0.515333	0.028887
3	26	54	0.603722	-0.211128	9	4	54	0.715481	0.496356
3	27	54	0.642685	-0.122354	9	5	54	0.951667	0.894639
3	28	54	0.690463	-0.099646	9	6	54	0.95287	0
3	29	54	0.729611	-0.099962	9	7	54	0.738981	-0.023442

Table 36 Decision Accuracy and Relative Decision Accuracy Data of

Estimators 3, 8, and 9 (cont.)

	Policy	Treat-	Mean	Mean		Policy	Treat-	Mean	Mean
Estimator	No	ment	DA	RDA	Estimator	No	ment	DA	RDA
3	30	54	0.767815	-0.103723	9	8	54	0.573185	-0.045346
3	31	54	0.959426	-0.005257	9	9	54	0.625481	0.137719
3	32	54	0.747574	-0.009013	9	10	54	0.775778	0.344272
3	33	54	0.685574	0.009863	9	11	54	0.894389	0.878607
3	34	54	0.599111	-0.025734	9	12	54	0.479444	0.362224
3	35	54	0.527074	-0.277925	9	13	54	0.305074	-0.007115
3	36	54	0.962185	-0.000165	9	14	54	0.458111	-0.076906
3	37	54	0.811148	-0.014147	9	15	54	0.717241	-0.02305
3	38	54	0.746611	-0.012096	9	16	54	0.699037	0.408655
3	39	54	0.6995	-0.040958	9	17	54	0.564574	0.141463
3	40	54	0.701204	-0.105153	9	18	54	0.578167	0.001351
3	41	54	0.6085	0.352205	9	19	54	0.669833	-0.037754
3	42	54	0.623741	0.107317	9	20	54	0.769611	-0.035717
3	43	54	0.743815	0.003864	9	21	54	0.484481	-0.392259
3	44	54	0.844667	-0.024694	9	22	54	0.505889	-0.247645
3	45	54	0.906685	-0.027255	9	23	54	0.616944	-0.020979
8	1	54	0.963796	0	9	24	54	0.575185	-0.035285
8	2	54	0.677111	0	9	25	54	0.5565	-0.072134
8	3	54	0.487352	0.001223	9	26	54	0.495185	-0.318481
8	4	54	0.687889	0.472516	9	27	54	0.586685	-0.179482
8	5	54	0.962296	0.904695	9	28	54	0.640926	-0.1418
8	6	54	0.955074	0	9	29	54	0.6955	-0.133699
8	7	54	0.756481	0	9	30	54	0.745926	-0.125156
8	8	54	0.59363	-0.004681	9	31	54	0.964741	0
8	9	54	0.616519	0.141538	9	32	54	0.754481	-0.003664
8	10	54	0.781222	0.340649	9	33	54	0.611556	-0.064772
8	11	54	0.885463	0.867327	9	34	54	0.5	-0.130329
8	12	54	0.396537	0.287256	9	35	54	0.502778	-0.229021
8	13	54	0.305352	-0.026731	9	36	54	0.960944	0
8	14	54	0.547704	-0.003234	9	37	54	0.790907	-0.042199
8	15	54	0.738667	-0.000017	9	38	54	0.666037	-0.103427
8	16	54	0.666315	0.402154	9	39	54	0.58137	-0.178256
8	17	54	0.557889	0.145438	9	40	54	0.6165	-0.21425
8	18	54	0.583204	0.006201	9	41	54	0.686111	0.483154
8	19	54	0.697278	-0.009765	9	42	54	0.553759	0.075204
8	20	54	0.801907	-0.004887	9	43	54	0.703481	-0.023506
8	21	54	0.390426	-0.52516	9	44	54	0.836519	-0.036001
8	22	54	0.487593	-0.268267	9	45	54	0.921796	-0.013809
8	23	54	0.661519	0.020159					

APPENDIX D

SIMULATED OUTPUT MEASURES DATA OF REINSPECTION DECISION POLICIES THROUGH ALL TREATMENTS

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
1	1	121.365	0.000	0.466	24	28	187.662	0.000	1.558
1	2	97.158	0.000	0.368	24	29	171.032	0.002	1.422
1	3	75.930	0.000	0.296	24	30	153.993	0.004	1.274
1	4	194.929	0.000	1.544	24	31	103.461	0.026	0.270
1	5	169.795	0.000	1.360	24	32	85.926	0.070	0.220
1	6	145.021	0.000	1.148	24	33	69.053	0.106	0.174
1	7	239.830	0.000	2.554	24	34	143.955	0.002	0.862
1	8	207.280	0.000	2.202	24	35	128.685	0.002	0.772
1	9	176.905	0.000	1.866	24	36	115.671	0.004	0.702
1	10	112.110	0.000	0.878	24	37	141.202	0.250	1.116
1	11	85.320	0.000	0.692	24	38	125.736	0.160	1.016
1	12	61.474	0.000	0.484	24	39	114.879	0.084	0.952
1	13	169.818	0.000	1.772	24	40	117.029	0.472	0.268
1	14	129.510	0.000	1.332	24	41	102.031	0.540	0.208
1	15	96.765	0.000	1.000	24	42	89.537	0.602	0.166
1	16	200.128	0.000	0.826	24	43	81.407	0.832	0.192
1	17	187.998	0.000	0.764	24	44	66.947	0.812	0.132
1	18	177.161	0.000	0.720	24	45	54.873	0.730	0.098
1	19	93.681	0.000	0.360	24	46	86.641	0.362	0.412
1	20	67.371	0.000	0.252	24	47	65.374	0.378	0.266
1	21	45.410	0.000	0.166	24	48	49.091	0.402	0.186

Table 37 Output Measures Data of Reinspection Decision Policies

					1 1					
Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	-	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
1	22	227.052	0.000	1.836		24	49	72.139	0.360	0.482
1	23	212.298	0.000	1.722		24	50	55.879	0.102	0.438
1	24	198.816	0.000	1.600		24	51	46.188	0.010	0.388
1	25	95.760	0.000	0.982		24	52	85.454	0.656	0.166
1	26	68.846	0.000	0.728		24	53	71.392	0.582	0.132
1	27	49.195	0.000	0.528		24	54	59.948	0.460	0.126
1	28	187.662	0.000	1.558		25	1	121.365	0.000	0.466
1	29	171.019	0.000	1.422		25	2	97.158	0.000	0.368
1	30	154.051	0.000	1.276		25	3	75.974	0.002	0.296
1	31	103.188	0.000	0.270		25	4	194.929	0.000	1.544
1	32	85.471	0.000	0.224		25	5	169.795	0.000	1.360
1	33	68.599	0.000	0.182		25	6	145.021	0.000	1.148
1	34	143.955	0.000	0.862		25	7	239.830	0.000	2.554
1	35	128.613	0.000	0.772		25	8	207.280	0.000	2.202
1	36	115.546	0.000	0.702		25	9	176.905	0.000	1.866
1	37	140.295	0.000	1.168		25	10	103.842	0.484	0.700
1	38	124.804	0.000	1.046		25	11	80.573	0.350	0.546
1	39	114.017	0.000	0.964		25	12	61.071	0.182	0.434
1	40	115.420	0.000	0.318		25	13	148.331	0.494	1.330
1	41	101.659	0.000	0.274		25	14	108.936	0.610	0.874
1	42	88.452	0.000	0.240		25	15	84.100	0.534	0.652
1	43	87.545	0.000	0.472		25	16	200.445	0.016	0.824
1	44	65.862	0.000	0.362		25	17	188.122	0.014	0.762
1	45	47.402	0.000	0.272		25	18	177.420	0.014	0.718
1	46	89.673	0.000	0.498		25	19	89.527	0.424	0.286
1	47	67.247	0.000	0.352		25	20	65.892	0.388	0.206
1	48	48.987	0.000	0.254		25	21	46.434	0.330	0.140
1	49	66.426	0.000	0.546		25	22	227.577	0.070	1.822
1	50	53.009	0.000	0.442		25	23	212.821	0.086	1.704
1	51	45.896	0.000	0.388		25	24	199.529	0.102	1.580
1	52	75.198	0.000	0.218		25	25	94.317	0.426	0.752
1	53	60.950	0.000	0.182		25	26	71.369	0.234	0.636
1	54	49.225	0.000	0.158		25	27	51.059	0.074	0.516
2	1	121.365	0.000	0.466		25	28	187.662	0.000	1.558
2	2	97.158	0.000	0.368		25	29	171.019	0.000	1.422
2	3	75.930	0.000	0.296		25	30	154.051	0.000	1.276
2	4	194.929	0.000	1.544		25	31	103.188	0.000	0.270
2	5	169.795	0.000	1.360		25	32	85.471	0.000	0.224
2	6	145.021	0.000	1.148		25	33	68.639	0.002	0.182
2	7	239.830	0.000	2.554		25	34	143.955	0.000	0.862
2	8	207.280	0.000	2.202		25	35	128.613	0.000	0.772
2	9	176.905	0.000	1.866		25	36	115.546	0.000	0.702
2	10	112.110	0.000	0.878]	25	37	140.657	0.080	1.156

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

_

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
2	11	85.320	0.000	0.692		25	38	125.129	0.052	1.038
2	12	61.474	0.000	0.484		25	39	114.168	0.020	0.960
2	13	169.818	0.000	1.772		25	40	115.989	0.152	0.296
2	14	129.510	0.000	1.332		25	41	102.464	0.252	0.236
2	15	96.765	0.000	1.000		25	42	89.490	0.302	0.200
2	16	200.128	0.000	0.826		25	43	84.722	0.590	0.274
2	17	187.998	0.000	0.764		25	44	68.026	0.598	0.208
2	18	177.161	0.000	0.720		25	45	53.559	0.466	0.170
2	19	93.337	0.024	0.356		25	46	88.175	0.400	0.422
2	20	67.355	0.004	0.252		25	47	67.303	0.448	0.288
2	21	45.410	0.000	0.166		25	48	50.382	0.424	0.186
2	22	227.066	0.108	1.802		25	49	69.904	0.180	0.526
2	23	212.183	0.044	1.706		25	50	54.030	0.032	0.442
2	24	198.051	0.030	1.580		25	51	45.966	0.002	0.388
2	25	95.814	0.002	0.982		25	52	82.348	0.428	0.178
2	26	68.846	0.000	0.728		25	53	67.545	0.326	0.158
2	27	49.195	0.000	0.528		25	54	55.280	0.240	0.144
2	28	187.662	0.000	1.558		26	1	109.374	0.518	0.350
2	29	171.019	0.000	1.422		26	2	90.657	0.468	0.290
2	30	154.051	0.000	1.276		26	3	74.295	0.404	0.242
2	31	103.188	0.000	0.270		26	4	160.207	0.712	1.020
2	32	85.471	0.000	0.224		26	5	133.175	0.764	0.816
2	33	68.599	0.000	0.182		26	6	112.508	0.778	0.634
2	34	143.955	0.000	0.862		26	7	160.994	0.880	1.208
2	35	128.613	0.000	0.772		26	8	124.961	0.928	0.804
2	36	115.546	0.000	0.702		26	9	99.596	0.952	0.520
2	37	140.295	0.000	1.168		26	10	106.926	0.186	0.796
2	38	124.804	0.000	1.046		26	11	82.348	0.216	0.622
2	39	114.017	0.000	0.964		26	12	60.914	0.268	0.418
2	40	115.420	0.000	0.318		26	13	157.784	0.196	1.550
2	41	101.659	0.000	0.274		26	14	119.147	0.224	1.134
2	42	88.452	0.000	0.240		26	15	88.914	0.272	0.818
2	43	87.545	0.000	0.472		26	16	202.989	0.812	0.642
2	44	65.862	0.000	0.362		26	17	188.709	0.770	0.578
2	45	47.402	0.000	0.272		26	18	175.711	0.716	0.530
2	46	89.514	0.082	0.492		26	19	89.349	0.406	0.286
2	47	67.290	0.008	0.352		26	20	65.606	0.330	0.200
2	48	48.987	0.000	0.254		26	21	45.810	0.268	0.134
2	49	66.426	0.000	0.546]	26	22	224.610	0.336	1.692
2	50	53.009	0.000	0.442]	26	23	210.530	0.310	1.606
2	51	45.896	0.000	0.388	1	26	24	196.165	0.296	1.488
2	52	75.107	0.008	0.214	1	26	25	91.890	0.324	0.794
2	53	60.950	0.000	0.182		26	26	69.157	0.414	0.520

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
2	54	49.225	0.000	0.158		26	27	56.412	0.428	0.386
3	1	121.365	0.000	0.466		26	28	171.376	0.768	1.228
3	2	97.158	0.000	0.368		26	29	152.169	0.792	1.074
3	3	75.930	0.000	0.296		26	30	132.457	0.822	0.892
3	4	194.929	0.000	1.544		26	31	93.041	0.544	0.174
3	5	169.795	0.000	1.360		26	32	77.452	0.528	0.140
3	6	145.021	0.000	1.148		26	33	63.143	0.534	0.108
3	7	239.830	0.000	2.554		26	34	142.786	0.662	0.644
3	8	207.280	0.000	2.202		26	35	131.226	0.650	0.590
3	9	176.905	0.000	1.866		26	36	120.679	0.588	0.552
3	10	107.671	0.224	0.798		26	37	140.127	0.182	1.124
3	11	84.395	0.044	0.668		26	38	125.408	0.206	1.002
3	12	61.422	0.006	0.482		26	39	114.564	0.284	0.896
3	13	140.220	0.576	1.208		26	40	114.135	0.668	0.232
3	14	113.916	0.356	1.024		26	41	99.727	0.624	0.188
3	15	93.235	0.148	0.904		26	42	87.489	0.560	0.164
3	16	202.071	0.480	0.718		26	43	81.826	0.624	0.266
3	17	188.243	0.300	0.704		26	44	65.720	0.710	0.158
3	18	176.406	0.198	0.670		26	45	54.610	0.718	0.110
3	19	89.090	0.524	0.284		26	46	88.857	0.084	0.478
3	20	66.431	0.216	0.230		26	47	67.052	0.068	0.338
3	21	45.610	0.050	0.160		26	48	49.527	0.102	0.244
3	22	228.032	0.506	1.680		26	49	69.486	0.206	0.514
3	23	211.936	0.414	1.588		26	50	58.853	0.264	0.412
3	24	196.631	0.338	1.468		26	51	51.678	0.270	0.346
3	25	95.453	0.124	0.924		26	52	81.131	0.490	0.166
3	26	68.992	0.020	0.722		26	53	67.672	0.438	0.130
3	27	49.112	0.002	0.526		26	54	56.815	0.406	0.112
3	28	187.662	0.000	1.558		27	1	114.289	0.236	0.396
3	29	171.019	0.000	1.422		27	2	93.111	0.198	0.316
3	30	154.051	0.000	1.276		27	3	74.175	0.166	0.258
3	31	103.188	0.000	0.270		27	4	184.554	0.226	1.388
3	32	85.471	0.000	0.224		27	5	158.445	0.254	1.184
3	33	68.599	0.000	0.182		27	6	136.081	0.260	1.002
3	34	143.955	0.000	0.862		27	7	203.608	0.468	1.926
3	35	128.613	0.000	0.772		27	8	159.060	0.598	1.344
3	36	115.546	0.000	0.702		27	9	124.068	0.702	0.912
3	37	140.237	0.166	1.132	ļ	27	10	105.874	0.324	0.754
3	38	124.775	0.038	1.038		27	11	80.794	0.312	0.570
3	39	114.093	0.004	0.964		27	12	59.843	0.282	0.408
3	40	115.412	0.676	0.248		27	13	142.325	0.482	1.252
3	41	100.581	0.510	0.216		27	14	105.683	0.548	0.854
3	42	88.158	0.350	0.204	l	27	15	78.048	0.618	0.544

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

3 45 8555 0.444 0.808 27 15 20208 0.560 0.6890 3 445 48.033 0.024 0.310 27 17 188.133 0.509 0.6890 3 445 48.323 0.652 0.6280 27 18 175.644 0.442 0.578 3 447 66.711 0.890 0.224 27 20 65.77 0.224 0.214 3 449 66.985 0.028 0.224 27 21 45.412 0.224 0.214 3 50 53.099 0.000 0.442 27 23 211.287 0.310 1.810 3 54 49.964 0.040 0.152 27 25 90.443 0.546 0.674 4 1 105.865 0.700 0.320 27 28 180.283 0.310 1.488 4 2 91.554 0.402 0.288 27 </th <th>Policy No</th> <th>Treat- ment</th> <th>Total Cost</th> <th>Schedule Delay</th> <th>Major Field Defects</th> <th></th> <th>Policy No</th> <th>Treat- ment</th> <th>Total Cost</th> <th>Schedule Delay</th> <th>Major Field Defects</th>	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
3 44 $66,081$ 0.052 0.288 27 17 $188,133$ 0.508 0.636 3 46 $86,711$ 0.654 0.372 27 18 $175,564$ 0.482 0.578 3 47 $66,711$ 0.390 0.292 27 18 $175,564$ 0.482 0.274 3 48 $49,324$ 0.148 0.224 27 20 $65,479$ 0.284 0.214 3 49 $66,966$ 0.028 0.542 27 22 22716 0.322 $11,610$ 3 51 $45,96$ 0.000 0.442 27 22 22716 0.324 1.492 3 53 $63,373$ 0.160 0.170 27 26 $71,161$ 0.516 0.674 4 1 $105,806$ 0.700 0.320 27 28 $83,825$ 0.462 0.362 27 36 0.462 0.366 0.374 27 33 $65,508$ <td>3</td> <td>43</td> <td>83.555</td> <td>0.484</td> <td>0.308</td> <td></td> <td>27</td> <td>16</td> <td>202.028</td> <td>0.560</td> <td>0.690</td>	3	43	83.555	0.484	0.308		27	16	202.028	0.560	0.690
34548.2320.0520.2862716175.5640.4820.57834686.7190.05540.3721989.3440.3340.29434766.7110.3900.282272065.4790.2840.21434849.3240.1480.234272145.4120.2400.14034966.8650.0680.5422723211.2870.3101.16135053.0090.0000.442272590.4430.5160.67435279.9650.3580.182272671.1610.5140.49635449.7940.4000.152272890.4430.5160.67441105.8650.7690.7222730144.1080.4721.99044149.9800.8660.874273280.6940.2200.17646119.4290.6660.7342734143.4310.1740.79641092.6330.9440.510273611.64630.1280.68641092.6330.9460.522274614.4330.1760.28441172.2200.8340.372273611.64630.1280.68641092.6330.9460.52227466.2200	3	44	66.083	0.204	0.310		27	17	188.133	0.508	0.636
346 66.719 0.684 0.372 2719 83.344 0.334 0.294 347 66.711 0.390 0.292 2720 65.479 0.284 0.144 348 49.224 0.148 0.234 2721 45.412 0.240 0.1140 349 66.665 0.028 0.542 2722 227.016 0.322 1.742 350 53.009 0.000 0.442 2723 211.287 0.310 1.610 351 45.968 0.000 0.388 27 24 197.822 0.324 1.492 352 79.905 0.358 0.182 27 25 90.443 0.516 0.674 41 105.806 0.700 0.202 27 28 183.255 0.310 1.458 42 91.544 0.402 0.284 27 31 14.406 0.462 0.382 43 13.516 0.128 0.772 27 31 44.66 0.462 0.322 44 19.429 0.666 0.734 27 31 14.406 0.408 1.282 47 15.276 0.9944 1.684 0.774 27 35 193.282 0.176 410 22.832 0.996 0.734 27 34 14.4331 0.176 411 72.220 0.894 0.579	3	45	48.323	0.052	0.268		27	18	175.564	0.482	0.578
347 66.711 0.390 0.232 2720 65.479 0.284 0.214 348 49.324 0.148 0.234 27 21 45.412 0.240 0.140 350 53.060 0.000 0.442 27 22 227016 0.322 1.742 351 45.896 0.000 0.442 27 22 227016 0.322 1.610 351 45.896 0.000 0.388 27 24 197.822 0.324 1.492 352 79.965 0.358 0.170 27 26 71.161 0.514 0.496 354 49.794 0.040 0.152 27 28 183.253 0.310 1.458 42 91.554 0.402 0.288 27 29 164.660 0.408 1282 43 75.310 0.128 0.272 27 30 144.108 0.472 1.990 44 119.980 0.866 0.734 27 33 65.50 0.224 0.174 45 10.555 0.768 0.784 27 34 143.431 0.174 0.796 411 72.20 0.844 0.570 277 32 19.864 0.226 0.178 411 72.20 0.844 0.570 277 35 19.282 0.142 0.728 411 72.20 <td>3</td> <td>46</td> <td>86.719</td> <td>0.654</td> <td>0.372</td> <td></td> <td>27</td> <td>19</td> <td>89.344</td> <td>0.334</td> <td>0.294</td>	3	46	86.719	0.654	0.372		27	19	89.344	0.334	0.294
34849.324 0.148 0.224 27 21 45.412 0.240 0.140 349 66.965 0.028 0.542 27 22 227.016 0.322 1.742 351 45.866 0.000 0.348 27 22 227.016 0.322 1.742 352 79.905 0.358 0.182 27 24 19.7822 0.224 1.492 353 63.373 0.150 0.170 27 26 71.161 0.514 0.496 354 49.794 0.040 0.152 27 28 182.253 0.310 1.458 42 91.554 0.402 0.288 27 29 16.600 0.462 0.362 43 75.310 0.128 0.272 27 30 144.108 0.472 1.990 44 149.980 0.866 0.738 27 33 65.508 0.220 0.174 45 130.565 0.768 0.762 27 34 144.108 0.174 0.142 47 152.706 0.964 1.064 27 34 142.431 0.174 0.172 44 19.980 0.916 0.738 27 36 152.822 0.142 0.728 49 105.172 0.868 0.600 27 38 152.631 0.314 0.778 411 7	3	47	66.711	0.390	0.292		27	20	65.479	0.284	0.214
34966.965 0.028 0.542 27 22 227.06 0.322 1.742 35053.009 0.000 0.484 2723 211.267 0.310 1.610 35145.896 0.000 0.388 27 24 197.822 0.324 1.490 35279.905 0.358 0.182 27 25 90.448 0.516 0.674 35363.373 0.150 0.170 27 26 71.161 0.514 0.496 41 105.806 0.700 0.320 27 28 183.283 0.310 1.458 42 91.554 0.402 0.2884 27 29 164.060 0.408 1.282 43 75.310 0.128 0.272 27 30 164.080 0.408 1.282 44 149.980 0.666 0.778 27 31 65.508 0.204 0.112 46 119.429 0.606 0.738 27 34 143.431 0.174 0.796 48 12.4908 0.916 0.794 27 35 129.282 0.142 0.728 49 105.172 0.686 0.506 27 38 16.463 0.124 0.794 410 92.633 0.978 0.504 27 38 129.282 0.142 0.794 411 72.220 <t< td=""><td>3</td><td>48</td><td>49.324</td><td>0.148</td><td>0.234</td><td></td><td>27</td><td>21</td><td>45.412</td><td>0.240</td><td>0.140</td></t<>	3	48	49.324	0.148	0.234		27	21	45.412	0.240	0.140
35053.0090.0000.4422723 211.287 0.3101.61035145.8960.0000.3840.1822724197.8220.3241.49235279.9050.3580.182272590.4430.5160.67435449.7940.0400.152272671.1610.5140.49641105.8060.7000.3202728183.2530.3101.4584291.5540.4020.2882729164.0600.4081.2824375.3100.1280.2722730144.1080.4721.09044149.9800.8660.874273196.9200.2780.21446119.4290.6060.738273365.5080.2040.14247152.7060.9641.064273365.5080.2040.14249105.1720.8580.6002734116.5130.1280.66641092.6330.9440.5102734116.5160.2840.69041172.200.8340.3722743182.5710.3140.99041258.7070.5340.380274486.420.4000.176416203.9290.9660.522274	3	49	66.965	0.028	0.542		27	22	227.016	0.322	1.742
35145.896 0.000 0.388 27 24 197.822 0.324 1.492 35279.905 0.358 0.182 27 25 90.443 0.516 0.674 353 63.373 0.150 0.170 27 26 71.161 0.514 0.496 41 105.806 0.700 0.320 27 28 183.253 0.310 1.458 42 91.554 0.402 0.288 27 29 164.060 0.408 1.282 43 75.310 0.128 0.272 27 30 144.108 0.472 1.090 44 149.980 0.866 0.874 27 31 96.920 0.278 0.214 45 130.565 0.768 0.762 27 34 134.311 0.174 0.796 46 119.429 0.606 0.738 27 34 134.31 0.174 0.796 410 92.633 0.944 0.510 27 44 14.331 0.174 0.796 411 72.220 0.834 0.372 27 36 116.463 0.128 0.930 412 58.707 0.534 0.336 27 40 114.396 0.566 0.924 418 176.151 0.906 0.522 27 45 83.749 0.200 0.178 418 203	3	50	53.009	0.000	0.442		27	23	211.287	0.310	1.610
35279.905 0.358 0.182 27 25 90.443 0.516 0.674 3 53 63.373 0.150 0.170 27 26 71.161 0.514 0.496 3 64 49.794 0.040 0.152 27 26 71.161 0.514 0.496 41 105.806 0.700 0.320 27 28 183.253 0.310 1.458 42 91.554 0.402 0.288 27 28 184.606 0.408 1.282 43 75.510 0.128 0.272 27 30 144.108 0.472 1.990 44 14.9980 0.866 0.874 27 33 65.508 0.224 0.178 46 119.429 0.606 0.738 27 33 65.508 0.204 0.1122 47 152.706 0.964 1.064 27 35 129.282 0.142 0.728 410 92.633 0.944 0.372 27 36 116.463 0.128 0.6666 410 92.633 0.978 0.504 27 36 116.463 0.128 0.2666 411 72.837 0.996 0.522 27 44 8.642 0.400 0.178 416 203.929 0.906 0.522 27 44 8.301 0.3600 0.278 412<	3	51	45.896	0.000	0.388		27	24	197.822	0.324	1.492
35363.3730.1500.170272671.1610.5140.49635449.7940.0400.152272756.0880.4620.38241105.8060.7000.3202728183.2530.3101.4584291.5540.4020.2882729164.0600.4081.2824375.3100.1280.2722730144.1080.4721.99044143.9800.8660.87427319.6200.2780.21445130.5650.7660.762273365.5080.2040.14247152.7060.9641.0642734143.310.1740.79648124.9080.9160.7942735129.2820.1420.72841092.6330.9440.5102736116.4630.1820.66641092.6330.9440.5102738125.7310.3140.98041172.2200.8340.3722740114.3950.5060.24841258.7070.5340.334274199.7210.4320.206416203.9290.9060.522274466.2220.66240.1166418176.1510.8000.522274466.	3	52	79.905	0.358	0.182		27	25	90.443	0.516	0.674
35449.7940.0400.152272756.0880.4620.36241105.8060.7000.3202728183.2530.3101.4584291.5540.4020.2882729164.0600.4081.2824375.3100.1280.2722730144.1080.4721.09044149.9800.8660.874273196.9200.2780.21445130.5850.7680.762273280.6840.2200.17646119.4290.6060.738273365.5080.2040.14249105.1720.8680.6002736116.4630.1280.66641092.6330.9440.5102736116.4630.1280.66641172.2200.8340.3722738125.7310.3140.98041258.7070.5340.3342739116.5160.2660.930413117.4340.9900.7902740114.3960.5660.278416203.9290.9060.522274383.0010.6000.278418176.1510.8000.522274466.5220.6240.11841984.0070.9740.206274683	3	53	63.373	0.150	0.170		27	26	71.161	0.514	0.496
41105.806 0.700 0.320 27 28 183.253 0.310 1.458 42 91.554 0.402 0.288 27 29 164.060 0.408 1.282 43 75.310 0.128 0.272 27 30 144.108 0.472 1.900 44 149.980 0.666 0.674 27 31 96.920 0.278 0.214 45 1130.585 0.768 0.762 27 32 80.684 0.220 0.176 46 119.429 0.606 0.738 27 34 143.431 0.174 0.796 48 124.908 0.916 0.794 27 36 116.463 0.128 0.666 410 92.633 0.944 0.510 27 36 116.463 0.128 0.666 411 72.220 0.834 0.372 27 38 125.731 0.314 0.980 412 58.707 0.534 0.334 27 38 125.731 0.314 0.980 414 88.573 0.978 0.504 27 40 114.396 0.506 0.278 417 189.516 0.666 0.556 27 44 66.222 0.624 0.116 418 176.151 0.800 0.522 27 45 83.041 0.562 0.148 421 <t< td=""><td>3</td><td>54</td><td>49.794</td><td>0.040</td><td>0.152</td><td></td><td>27</td><td>27</td><td>56.088</td><td>0.462</td><td>0.362</td></t<>	3	54	49.794	0.040	0.152		27	27	56.088	0.462	0.362
4291.554 0.402 0.288 2729 164.060 0.408 1.282 43 75.310 0.128 0.272 27 30 144.108 0.472 1.090 44 149.980 0.866 0.874 27 31 99.920 0.278 0.214 45 130.585 0.768 0.762 27 32 80.684 0.220 0.176 46 119.429 0.606 0.738 27 33 65.508 0.204 0.142 47 152.706 0.964 1.064 27 34 14.3431 0.174 0.796 49 105.172 0.888 0.600 27 36 116.463 0.128 0.626 410 92.633 0.944 0.510 27 37 140.065 0.284 1.102 411 72.220 0.334 0.372 27 38 125.731 0.314 0.990 412 58.707 0.534 0.334 27 39 116.516 0.266 0.930 415 70.836 0.918 0.360 27 40 114.396 0.506 0.248 417 199.516 0.866 0.556 27 44 66.222 0.624 0.186 418 176.151 0.800 0.522 27 45 53.210 0.562 0.148 422 $22.$	4	1	105.806	0.700	0.320		27	28	183.253	0.310	1.458
4375.310 0.128 0.272 2730 144.108 0.472 1.090 44 149.980 0.866 0.874 27 31 96.920 0.273 0.214 45 130.585 0.768 0.762 27 32 80.684 0.220 0.176 46 119.429 0.606 0.738 27 33 65.508 0.204 0.142 47 152.706 0.964 1.064 27 34 143.431 0.174 0.796 49 105.172 0.888 0.600 27 36 116.463 0.128 0.666 410 92.633 0.944 0.510 27 36 116.463 0.128 0.666 411 72.220 0.834 0.372 27 38 125.731 0.314 0.980 412 58.707 0.534 0.334 27 39 116.516 0.266 0.930 414 88.573 0.978 0.504 27 40 114.396 0.506 0.248 415 70.836 0.918 0.360 27 43 83.001 0.600 0.278 417 19.516 0.866 0.556 27 44 66.222 0.624 0.186 418 176.151 0.800 0.522 27 46 88.749 0.200 0.466 422 28.526	4	2	91.554	0.402	0.288		27	29	164.060	0.408	1.282
4 4 149.980 0.866 0.874 27 31 96.920 0.278 0.214 4 5 130.585 0.768 0.762 27 32 80.684 0.220 0.176 4 6 119.429 0.606 0.738 27 33 65.508 0.204 0.142 4 7 152.706 0.964 1.064 27 34 143.431 0.174 0.796 4 9 105.172 0.868 0.600 27 36 116.463 0.128 0.666 4 10 92.633 0.944 0.510 27 36 116.463 0.128 0.666 4 11 72.220 0.834 0.372 27 38 125.731 0.314 0.980 4 12 58.707 0.534 0.334 27 39 116.516 0.266 0.930 4 13 117.434 0.990 0.790 27 40 114.396 0.566 0.248 4 16 203.929 0.966 0.556 27 44 66.222 0.624 0.166 4 18 176.151 0.800 0.522 27 45 53.210 0.562 0.148 4 22 228.526 0.906 1.560 27 46 88.749 0.200 0.466 4 22 22.526 0.906 1.560 27 59.554 0.292 $0.$	4	3	75.310	0.128	0.272		27	30	144.108	0.472	1.090
4 5 130.585 0.768 0.762 27 32 80.684 0.220 0.176 4 6 119.429 0.606 0.738 27 33 65.508 0.204 0.142 4 7 152.706 0.964 1.064 27 34 143.431 0.174 0.796 4 9 105.172 0.868 0.600 27 35 129.282 0.142 0.728 4 9 105.172 0.868 0.600 27 36 116.463 0.128 0.666 4 10 92.633 0.944 0.510 27 38 125.731 0.314 0.990 4 12 58.707 0.534 0.334 27 39 116.516 0.266 0.930 4 13 117.434 0.990 0.790 27 40 114.396 0.506 0.248 4 14 88.573 0.978 0.504 27 41 99.721 0.432 0.206 4 15 70.836 0.918 0.360 27 42 86.642 0.400 0.176 4 18 176.151 0.800 0.522 27 43 83.001 0.600 0.278 4 29 62.974 0.890 0.130 27 46 88.749 0.200 0.466 4 22 $22.52.56$ 0.906 1.560 27 59 59.554 0.292 <	4	4	149.980	0.866	0.874		27	31	96.920	0.278	0.214
46119.429 0.606 0.738 2733 65.508 0.204 0.142 47152.706 0.964 1.064 27 34 143.431 0.174 0.796 48 124.908 0.916 0.794 27 35 129.282 0.142 0.728 49 105.172 0.868 0.600 27 36 116.463 0.128 0.666 410 92.633 0.944 0.510 27 36 116.463 0.128 0.666 411 72.220 0.834 0.372 27 38 125.731 0.314 0.980 412 58.707 0.534 0.334 27 39 116.516 0.266 0.930 413 117.434 0.990 0.790 27 40 114.396 0.506 0.248 416 203.929 0.906 0.622 27 43 83.001 0.600 0.278 418 176.151 0.800 0.522 27 45 53.210 0.562 0.148 429 62.974 0.990 0.130 27 46 88.749 0.200 0.466 422 228.526 0.906 1.560 27 48 49.269 0.178 0.228 422 228.526 0.906 1.560 27 59.554 0.292 0.408 424 194.96 0.842 <td>4</td> <td>5</td> <td>130.585</td> <td>0.768</td> <td>0.762</td> <td></td> <td>27</td> <td>32</td> <td>80.684</td> <td>0.220</td> <td>0.176</td>	4	5	130.585	0.768	0.762		27	32	80.684	0.220	0.176
47152.706 0.964 1.064 27 34 143.431 0.174 0.796 48 124.908 0.916 0.794 27 35 129.282 0.142 0.728 49 105.172 0.868 0.600 27 36 116.463 0.128 0.666 410 92.633 0.944 0.510 27 37 140.065 0.284 1.102 411 72.220 0.834 0.372 27 38 125.731 0.314 0.980 412 58.707 0.534 0.334 27 39 116.516 0.266 0.930 413 117.434 0.990 0.790 27 40 114.396 0.506 0.248 414 88.573 0.978 0.504 27 41 99.721 0.432 0.206 416 203.929 0.906 0.622 27 43 8.001 0.600 0.278 418 176.151 0.800 0.522 27 44 66.222 0.624 0.148 420 62.974 0.890 0.130 27 46 88.749 0.200 0.466 422 228.526 0.906 1.560 27 48 49.269 0.178 0.228 422 228.526 0.906 1.560 27 59.554 0.292 0.408 424 194.496 0.8	4	6	119.429	0.606	0.738		27	33	65.508	0.204	0.142
48 124.908 0.916 0.794 27 35 129.282 0.142 0.728 49 105.172 0.868 0.600 27 36 116.463 0.128 0.666 410 92.633 0.944 0.510 27 37 140.065 0.284 1.102 411 72.220 0.834 0.372 27 38 125.731 0.314 0.980 412 58.707 0.534 0.334 27 39 116.516 0.266 0.930 413 117.434 0.990 0.790 27 40 114.396 0.506 0.248 414 88.573 0.978 0.504 27 41 99.721 0.432 0.206 415 70.836 0.918 0.360 27 42 86.642 0.400 0.176 416 203.929 0.906 0.622 27 43 83.001 0.600 0.278 418 176.151 0.800 0.522 27 45 53.210 0.562 0.148 420 62.974 0.890 0.130 27 46 88.749 0.200 0.466 421 46.747 0.710 0.994 27 48 49.269 0.178 0.228 422 228.526 0.906 1.560 27 59.554 0.292 0.408 424 194.96 <	4	7	152.706	0.964	1.064		27	34	143.431	0.174	0.796
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	8	124.908	0.916	0.794		27	35	129.282	0.142	0.728
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	9	105.172	0.868	0.600		27	36	116.463	0.128	0.666
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	10	92.633	0.944	0.510		27	37	140.065	0.284	1.102
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	11	72.220	0.834	0.372		27	38	125.731	0.314	0.980
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	12	58.707	0.534	0.334		27	39	116.516	0.266	0.930
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	13	117.434	0.990	0.790		27	40	114.396	0.506	0.248
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	14	88.573	0.978	0.504		27	41	99.721	0.432	0.206
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	15	70.836	0.918	0.360		27	42	86.642	0.400	0.176
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	16	203.929	0.906	0.622		27	43	83.001	0.600	0.278
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	17	189.516	0.866	0.556		27	44	66.222	0.624	0.186
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	18	176.151	0.800	0.522		27	45	53.210	0.562	0.148
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	19	84.007	0.974	0.206		27	46	88.749	0.200	0.466
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	20	62.974	0.890	0.130		27	47	66.579	0.188	0.316
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	21	46.747	0.710	0.094		27	48	49.269	0.178	0.228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	22	228.526	0.906	1.560	1	27	49	71.074	0.318	0.480
4 24 194.496 0.842 1.276 27 51 50.868 0.212 0.362 4 25 87.633 0.832 0.490 27 52 79.842 0.350 0.184 4 26 70.255 0.530 0.462 27 53 65.286 0.280 0.156 4 27 53.342 0.230 0.466 27 54 53.613 0.266 0.124 4 28 168.576 0.910 1.174 28 1 114.983 0.216 0.406 4 29 149.040 0.886 1.004 28 2 93.228 0.174 0.320	4	23	211.173	0.874	1.420		27	50	59.554	0.292	0.408
4 25 87.633 0.832 0.490 27 52 79.842 0.350 0.184 4 26 70.255 0.530 0.462 27 53 65.286 0.280 0.156 4 27 53.342 0.230 0.466 27 54 53.613 0.266 0.124 4 28 168.576 0.910 1.174 28 1 114.983 0.216 0.406 4 29 149.040 0.886 1.004 28 2 93.228 0.174 0.320	4	24	194.496	0.842	1.276		27	51	50.868	0.212	0.362
4 26 70.255 0.530 0.462 27 53 65.286 0.280 0.156 4 27 53.342 0.230 0.466 27 54 53.613 0.266 0.124 4 28 168.576 0.910 1.174 28 1 114.983 0.216 0.406 4 29 149.040 0.886 1.004 28 2 93.228 0.174 0.320	4	25	87.633	0.832	0.490	1	27	52	79.842	0.350	0.184
4 27 53.342 0.230 0.466 27 54 53.613 0.266 0.124 4 28 168.576 0.910 1.174 28 1 114.983 0.216 0.406 4 29 149.040 0.886 1.004 28 2 93.228 0.174 0.320	4	26	70.255	0.530	0.462	1	27	53	65.286	0.280	0.156
4 28 168.576 0.910 1.174 28 1 114.983 0.216 0.406 4 29 149.040 0.886 1.004 28 2 93.228 0.174 0.320	4	27	53.342	0.230	0.466	1	27	54	53.613	0.266	0.124
4 29 149.040 0.886 1.004 28 2 93.228 0.174 0.320	4	28	168 576	0.910	1,174	1	28	1	114 983	0.216	0.406
	4	29	149.040	0,886	1.004	1	28	2	93,228	0.174	0.320
4 30 131,517 0.828 0.870 28 3 74.205 0.144 0.260	4	30	131.517	0.828	0.870	1	28	3	74,205	0.144	0.260
4 31 86,112 0.932 0.114 28 4 190,256 0.078 1.468	4	31	86,112	0.932	0,114	1	28	4	190.256	0.078	1,468

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Policy T No r	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
4 33 61.158 0.714 0.090 28 6 143.505 0.046 1.120 4 34 142.272 0.700 0.638 28 7 230.527 0.138 2.386 4 35 129.891 0.486 0.626 28 8 193.030 0.208 1.938 4 36 117.705 0.238 0.650 28 9 159.555 0.280 1.548 4 37 140.502 0.858 0.972 28 10 106.927 0.260 0.780 4 38 127.343 0.6668 0.914 28 11 81.475 0.226 0.598 4 39 116.504 0.356 0.900 28 12 60.629 0.192 0.426	4	32	71.597	0.858	0.082	28	5	166.630	0.056	1.308
4 34 142.272 0.700 0.638 28 7 230.527 0.138 2.385 4 35 129.891 0.486 0.626 28 8 193.030 0.208 1.936 4 36 117.705 0.238 0.650 28 9 159.555 0.280 1.548 4 37 140.502 0.858 0.972 28 10 106.927 0.260 0.780 4 38 127.343 0.668 0.914 28 11 81.475 0.226 0.598 4 39 116.504 0.356 0.900 28 12 60.629 0.192 0.426	4	33	61.158	0.714	0.090	28	6	143.505	0.046	1.120
4 35 129.891 0.486 0.626 28 8 193.030 0.208 1.938 4 36 117.705 0.238 0.650 28 9 159.555 0.280 1.548 4 37 140.502 0.858 0.972 28 10 106.927 0.260 0.780 4 38 127.343 0.668 0.914 28 11 81.475 0.226 0.598 4 39 116.504 0.356 0.900 28 12 60.629 0.192 0.426	4	34	142.272	0.700	0.638	28	7	230.527	0.138	2.388
4 36 117.705 0.238 0.650 28 9 159.555 0.280 1.548 4 37 140.502 0.858 0.972 28 9 159.555 0.280 1.548 4 38 127.343 0.668 0.914 28 10 106.927 0.260 0.780 4 39 116.504 0.356 0.900 28 12 60.629 0.192 0.426	4	35	129.891	0.486	0.626	28	8	193.030	0.208	1.938
4 37 140.502 0.858 0.972 28 10 106.927 0.260 0.780 4 38 127.343 0.668 0.914 28 11 81.475 0.226 0.598 4 39 116.504 0.356 0.900 28 12 60.629 0.192 0.426	4	36	117.705	0.238	0.650	28	9	159.555	0.280	1.548
4 38 127.343 0.668 0.914 28 11 81.475 0.226 0.598 4 39 116.504 0.356 0.900 28 12 60.629 0.192 0.426	4	37	140.502	0.858	0.972	28	10	106.927	0.260	0.780
4 39 116.504 0.356 0.900 28 12 60.629 0.192 0.426	4	38	127.343	0.668	0.914	28	11	81.475	0.226	0.598
	4	39	116.504	0.356	0.900	28	12	60.629	0.192	0.426
4 40 115.080 0.984 0.206 28 13 142.404 0.568 1.248	4	40	115.080	0.984	0.206	28	13	142.404	0.568	1.248
4 41 100.264 0.976 0.160 28 14 106.225 0.614 0.830	4	41	100.264	0.976	0.160	28	14	106.225	0.614	0.830
4 42 86.230 0.972 0.108 28 15 78.599 0.656 0.534	4	42	86.230	0.972	0.108	28	15	78.599	0.656	0.534
4 43 78.260 0.976 0.130 28 16 201.895 0.490 0.710	4	43	78.260	0.976	0.130	28	16	201.895	0.490	0.710
4 44 64.817 0.954 0.074 28 17 188.156 0.442 0.650	4	44	64.817	0.954	0.074	28	17	188.156	0.442	0.650
4 45 55.166 0.842 0.076 28 18 175.295 0.414 0.592	4	45	55.166	0.842	0.076	28	18	175.295	0.414	0.592
4 46 84.662 0.984 0.290 28 19 90.522 0.208 0.312	4	46	84.662	0.984	0.290	28	19	90.522	0.208	0.312
4 47 65.271 0.954 0.178 28 20 66.481 0.164 0.226	4	47	65.271	0.954	0.178	28	20	66.481	0.164	0.226
4 48 50.550 0.868 0.116 28 21 45.493 0.136 0.148	4	48	50.550	0.868	0.116	28	21	45.493	0.136	0.148
4 49 74.738 0.508 0.464 28 22 227.480 0.220 1.778	4	49	74.738	0.508	0.464	28	22	227.480	0.220	1.778
4 50 57.483 0.178 0.428 28 23 211.888 0.176 1.662	4	50	57.483	0.178	0.428	28	23	211.888	0.176	1.662
4 51 46.350 0.016 0.388 28 24 197.660 0.164 1.538	4	51	46.350	0.016	0.388	28	24	197.660	0.164	1.538
4 52 86.915 0.922 0.120 28 25 90.837 0.534 0.670	4	52	86.915	0.922	0.120	28	25	90.837	0.534	0.670
4 53 74.238 0.812 0.102 28 26 70.989 0.442 0.518	4	53	74.238	0.812	0.102	28	26	70.989	0.442	0.518
4 54 61.863 0.624 0.106 28 27 54.837 0.332 0.430	4	54	61.863	0.624	0.106	28	27	54.837	0.332	0.430
5 1 98.770 1.000 0.266 28 28 186.490 0.088 1.534	5	1	98.770	1.000	0.266	28	28	186.490	0.088	1.534
5 2 83.439 1.000 0.204 28 29 169.363 0.110 1.382	5	2	83.439	1.000	0.204	28	29	169.363	0.110	1.382
5 3 72.611 0.990 0.162 28 30 151.633 0.122 1.224	5	3	72.611	0.990	0.162	28	30	151.633	0.122	1.224
5 4 142.878 1.000 0.774 28 31 97.220 0.264 0.220	5	4	142.878	1.000	0.774	28	31	97.220	0.264	0.220
5 5 120.287 1.000 0.618 28 32 81.352 0.200 0.188	5	5	120.287	1.000	0.618	28	32	81.352	0.200	0.188
5 6 101.253 1.000 0.448 28 33 66.033 0.172 0.152	5	6	101.253	1.000	0.448	28	33	66.033	0.172	0.152
5 7 148.617 1.000 0.998 28 34 143.057 0.082 0.818	5	7	148.617	1.000	0.998	28	34	143.057	0.082	0.818
5 8 116.961 1.000 0.662 28 35 128.572 0.054 0.748	5	8	116.961	1.000	0.662	28	35	128.572	0.054	0.748
5 9 94.832 1.000 0.432 28 36 115.456 0.040 0.682	5	9	94.832	1.000	0.432	28	36	115.456	0.040	0.682
5 10 90.949 1.000 0.482 28 37 140.944 0.256 1.112	5	10	90.949	1.000	0.482	28	37	140.944	0.256	1.112
5 11 70.712 0.994 0.326 28 38 126.205 0.222 1.004	5	11	70.712	0.994	0.326	28	38	126.205	0.222	1.004
5 12 56.774 0.966 0.224 28 39 115.193 0.152 0.940	5	12	56,774	0.966	0.224	28	39	115,193	0.152	0.940
5 13 116.704 1.000 0.776 28 40 113.958 0.396 0.254	5	13	116.704	1.000	0.776	28	40	113.958	0.396	0.254
5 14 87.964 1.000 0.488 28 41 99.417 0.314 0.214	5	14	87.964	1.000	0.488	28	41	99.417	0.314	0.214
5 15 68.324 0.996 0.300 28 42 86.747 0.272 0.190	5	15	68.324	0.996	0.300	28	42	86.747	0.272	0.190
5 16 204.354 0.984 0.606 28 43 86.702 0.360 0.376	5	16	204.354	0.984	0.606	28	43	86.702	0.360	0.378
5 17 189,646 0.984 0.536 28 44 66.797 0.352 0.266	5	17	189,646	0.984	0.536	28	44	66.797	0.352	0.266
5 18 175,792 0.974 0.482 28 45 50.689 0.304 0.200	5	18	175,792	0.974	0.482	28	45	50,689	0.304	0.200
5 19 83.722 1,000 0,200 28 46 88.365 0.240 0.446	5	19	83,722	1.000	0.200	28	46	88.365	0.240	0.446
5 20 62.098 0.996 0.112 28 47 66.588 0.262 0.300	5	20	62,098	0.996	0.112	28	47	66,588	0.262	0.300

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

5 21 47.343 0.980 0.068 28 48 49.628 0.246 0.212 5 22 228.388 0.982 1.534 28 49 71.281 0.316 0.480 5 23 210.746 0.976 1.386 28 50 57.927 0.226 0.410
5 22 228.388 0.982 1.534 28 49 71.281 0.316 0.480 5 23 210.746 0.976 1.386 28 50 57.927 0.226 0.410
5 23 210.746 0.976 1.386 28 50 57.927 0.226 0.410
<u>5</u> 24 193./32 0.984 1.234 28 51 48.167 0.092 0.378
5 25 85.181 0.994 0.376 28 52 77.583 0.230 0.184
5 26 72.171 0.948 0.274 28 53 63.430 0.188 0.156
5 27 61.220 0.782 0.248 28 54 51.796 0.154 0.138
5 28 166.690 1.000 1.138 29 1 114.983 0.216 0.406
5 29 145.863 1.000 0.954 29 2 93.434 0.172 0.324
5 30 127.180 1.000 0.788 29 3 74.205 0.144 0.260
5 31 84.858 1.000 0.104 29 4 190.927 0.058 1.480
5 32 69.081 1.000 0.058 29 5 167.128 0.036 1.316
5 33 57.379 1.000 0.044 29 6 143.868 0.020 1.130
5 34 140.894 1.000 0.544 29 7 236.999 0.036 2.504
5 35 130.881 0.996 0.488 29 8 204.466 0.046 2.150
5 36 122.006 0.988 0.440 29 9 173.396 0.070 1.794
5 37 140.216 0.980 0.938 29 10 109.598 0.132 0.828
5 38 128.124 0.970 0.850 29 11 83.250 0.124 0.638
5 39 118.622 0.914 0.786 29 12 61.192 0.068 0.464
5 40 114.919 1.000 0.204 29 13 148.982 0.440 1.374
5 41 99.961 1.000 0.154 29 14 112.951 0.484 0.968
5 42 86.425 1.000 0.108 29 15 85.116 0.474 0.686
5 43 77.885 1.000 0.124 29 16 201.859 0.486 0.710
5 44 64.772 1.000 0.066 29 17 187.916 0.430 0.650
5 45 56.325 0.994 0.038 29 18 175.493 0.398 0.596
5 46 84.415 1.000 0.284 29 19 90.981 0.164 0.314
<u>5</u> 47 65.480 0.998 0.176 29 20 66.322 0.126 0.230
5 48 51.231 0.992 0.106 29 21 45.044 0.104 0.146
5 49 80.361 0.930 0.374 29 22 226.137 0.132 1.786
5 50 69.171 0.728 0.360 29 23 211.523 0.100 1.684
5 51 56.239 0.442 0.334 29 24 198.382 0.098 1.570
5 52 87.863 0.996 0.116 29 25 92.142 0.436 0.728
5 53 76.567 0.988 0.082 29 26 70.245 0.316 0.568
5 54 67.860 0.956 0.060 29 27 52.566 0.188 0.474
6 1 121.365 0.000 0.466 29 28 187.133 0.040 1.550
6 2 97.158 0.000 0.368 29 29 170.818 0.024 1.416
6 3 75.930 0.000 0.296 29 30 153.717 0.018 1.266
6 4 194.929 0.000 1.544 29 31 97.220 0.264 0.220
6 5 169.795 0.000 1.360 29 32 81.352 0.200 0.188
6 6 145.021 0.000 1.148 29 33 66.305 0.170 0.156
6 7 239.830 0.000 2.554 29 34 143.127 0.072 0.822
6 8 207.280 0.000 2.202 29 35 128.481 0.042 0.752
6 9 176.905 0.000 1.866 29 36 115.371 0.030 0.686

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	-	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
6	10	112.110	0.000	0.878		29	37	140.456	0.158	1.128
6	11	85.320	0.000	0.692		29	38	125.384	0.116	1.026
6	12	61.474	0.000	0.484		29	39	114.275	0.066	0.948
6	13	169.818	0.000	1.772		29	40	114.022	0.352	0.262
6	14	129.510	0.000	1.332		29	41	99.559	0.284	0.222
6	15	96.765	0.000	1.000		29	42	86.721	0.230	0.194
6	16	200.128	0.000	0.826		29	43	87.181	0.196	0.418
6	17	187.998	0.000	0.764		29	44	65.638	0.148	0.308
6	18	177.161	0.000	0.720		29	45	48.248	0.142	0.226
6	19	93.681	0.000	0.360		29	46	89.057	0.132	0.466
6	20	67.371	0.000	0.252		29	47	67.253	0.160	0.326
6	21	45.410	0.000	0.166		29	48	49.826	0.152	0.236
6	22	227.052	0.000	1.836		29	49	70.786	0.244	0.504
6	23	212.298	0.000	1.722		29	50	55.330	0.098	0.430
6	24	198.816	0.000	1.600		29	51	46.599	0.032	0.382
6	25	95.760	0.000	0.982		29	52	77.235	0.194	0.190
6	26	68.846	0.000	0.728		29	53	62.812	0.156	0.160
6	27	49.195	0.000	0.528		29	54	51.153	0.130	0.138
6	28	187.662	0.000	1.558		30	1	114.983	0.216	0.406
6	29	171.019	0.000	1.422		30	2	93.434	0.172	0.324
6	30	154.051	0.000	1.276		30	3	74.205	0.144	0.260
6	31	103.188	0.000	0.270		30	4	190.877	0.054	1.480
6	32	85.471	0.000	0.224		30	5	167.078	0.032	1.316
6	33	68.599	0.000	0.182		30	6	143.804	0.018	1.130
6	34	143.955	0.000	0.862		30	7	237.878	0.018	2.520
6	35	128.613	0.000	0.772		30	8	206.724	0.008	2.190
6	36	115.546	0.000	0.702		30	9	176.102	0.008	1.850
6	37	140.295	0.000	1.168		30	10	111.114	0.048	0.858
6	38	124.804	0.000	1.046		30	11	84.557	0.042	0.672
6	39	114.017	0.000	0.964		30	12	61.393	0.024	0.478
6	40	115.420	0.000	0.318		30	13	157.996	0.270	1.542
6	41	101.659	0.000	0.274		30	14	119.945	0.298	1.118
6	42	88.452	0.000	0.240		30	15	90.537	0.284	0.824
6	43	87.545	0.000	0.472		30	16	201.793	0.482	0.710
6	44	65.862	0.000	0.362		30	17	187.916	0.430	0.650
6	45	47.402	0.000	0.272		30	18	175.421	0.396	0.596
6	46	89.673	0.000	0.498		30	19	90.895	0.162	0.314
6	47	67.247	0.000	0.352		30	20	66.109	0.118	0.226
6	48	48.987	0.000	0.254		30	21	45.016	0.106	0.146
6	49	66.426	0.000	0.546		30	22	226.272	0.124	1.790
6	50	53.009	0.000	0.442		30	23	211.504	0.092	1.686
6	51	45.896	0.000	0.388		30	24	198.353	0.082	1.572
6	52	75.198	0.000	0.218		30	25	94.646	0.256	0.846

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
6	53	60.950	0.000	0.182		30	26	69.615	0.180	0.634
6	54	49.225	0.000	0.158		30	27	50.898	0.072	0.514
7	1	121.365	0.000	0.466		30	28	187.168	0.032	1.552
7	2	97.158	0.000	0.368		30	29	170.853	0.016	1.418
7	3	75.930	0.000	0.296		30	30	154.006	0.004	1.276
7	4	194.929	0.000	1.544		30	31	97.220	0.264	0.220
7	5	169.795	0.000	1.360		30	32	81.352	0.200	0.188
7	6	145.021	0.000	1.148		30	33	66.305	0.170	0.156
7	7	239.830	0.000	2.554		30	34	143.127	0.070	0.822
7	8	207.280	0.000	2.202		30	35	128.481	0.042	0.752
7	9	176.905	0.000	1.866		30	36	115.371	0.030	0.686
7	10	112.110	0.000	0.878		30	37	140.224	0.078	1.146
7	11	85.320	0.000	0.692		30	38	124.751	0.036	1.036
7	12	61.474	0.000	0.484		30	39	114.140	0.016	0.960
7	13	169.818	0.000	1.772		30	40	113.966	0.348	0.262
7	14	129.510	0.000	1.332		30	41	99.517	0.278	0.222
7	15	96.765	0.000	1.000		30	42	86.920	0.220	0.198
7	16	200.128	0.000	0.826		30	43	87.450	0.090	0.450
7	17	187.998	0.000	0.764		30	44	66.140	0.062	0.348
7	18	177.161	0.000	0.720		30	45	47.916	0.064	0.254
7	19	90.588	0.362	0.320		30	46	89.281	0.130	0.476
7	20	66.100	0.280	0.218		30	47	67.567	0.094	0.344
7	21	45.814	0.190	0.152		30	48	49.005	0.072	0.238
7	22	226.340	0.340	1.704		30	49	69.182	0.144	0.528
7	23	210.970	0.276	1.618		30	50	53.633	0.030	0.436
7	24	196.363	0.234	1.494		30	51	46.024	0.004	0.388
7	25	94.937	0.042	0.950		30	52	77.121	0.190	0.190
7	26	68.814	0.010	0.726		30	53	62.773	0.150	0.162
7	27	49.219	0.002	0.528		30	54	51.135	0.128	0.138
7	28	187.662	0.000	1.558		31	1	121.365	0.000	0.466
7	29	171.019	0.000	1.422		31	2	97.158	0.000	0.368
7	30	154.051	0.000	1.276		31	3	75.930	0.000	0.296
7	31	103.188	0.000	0.270		31	4	194.929	0.000	1.544
7	32	85.471	0.000	0.224		31	5	169.795	0.000	1.360
7	33	68.599	0.000	0.182		31	6	145.021	0.000	1.148
7	34	143.955	0.000	0.862		31	7	239.830	0.000	2.554
7	35	128.613	0.000	0.772		31	8	207.280	0.000	2.202
7	36	115.546	0.000	0.702		31	9	176.905	0.000	1.866
7	37	140.295	0.000	1.168		31	10	112.110	0.000	0.878
7	38	124.804	0.000	1.046		31	11	85.320	0.000	0.692
7	39	114.017	0.000	0.964		31	12	61.474	0.000	0.484
7	40	115.420	0.000	0.318		31	13	169.818	0.000	1.772
7	41	101.659	0.000	0.274	J	31	14	129.510	0.000	1.332

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
7	42	88.452	0.000	0.240	31	15	96.765	0.000	1.000
7	43	87.545	0.000	0.472	31	16	200.128	0.000	0.826
7	44	65.862	0.000	0.362	31	17	187.998	0.000	0.764
7	45	47.402	0.000	0.272	31	18	177.161	0.000	0.720
7	46	89.053	0.266	0.458	31	19	93.681	0.000	0.360
7	47	67.411	0.152	0.330	31	20	67.371	0.000	0.252
7	48	48.916	0.074	0.240	31	21	45.410	0.000	0.166
7	49	66.539	0.006	0.546	31	22	227.052	0.000	1.836
7	50	53.073	0.002	0.442	31	23	212.298	0.000	1.722
7	51	45.966	0.002	0.388	31	24	198.816	0.000	1.600
7	52	78.974	0.298	0.190	31	25	95.760	0.000	0.982
7	53	64.394	0.230	0.156	31	26	68.846	0.000	0.728
7	54	52.591	0.164	0.144	31	27	49.195	0.000	0.528
8	1	121.365	0.000	0.466	31	28	187.662	0.000	1.558
8	2	97.158	0.000	0.368	31	29	171.019	0.000	1.422
8	3	75.930	0.000	0.296	31	30	154.051	0.000	1.276
8	4	194.929	0.000	1.544	31	31	103.188	0.000	0.270
8	5	169.795	0.000	1.360	31	32	85.471	0.000	0.224
8	6	145.021	0.000	1.148	31	33	68.599	0.000	0.182
8	7	239.830	0.000	2.554	31	34	143.955	0.000	0.862
8	8	207.280	0.000	2.202	31	35	128.613	0.000	0.772
8	9	176.905	0.000	1.866	31	36	115.546	0.000	0.702
8	10	105.036	0.350	0.746	31	37	140.295	0.000	1.168
8	11	81.844	0.214	0.600	31	38	124.804	0.000	1.046
8	12	60.746	0.106	0.448	31	39	114.017	0.000	0.964
8	13	143.466	0.512	1.280	31	40	115.420	0.000	0.318
8	14	113.770	0.372	1.008	31	41	101.659	0.000	0.274
8	15	90.627	0.204	0.850	31	42	88.452	0.000	0.240
8	16	201.247	0.312	0.760	31	43	87.545	0.000	0.472
8	17	188.550	0.310	0.698	31	44	65.862	0.000	0.362
8	18	177.089	0.266	0.668	31	45	47.402	0.000	0.272
8	19	90.222	0.456	0.308	31	46	89.673	0.000	0.498
8	20	65.666	0.386	0.206	31	47	67.247	0.000	0.352
8	21	45.853	0.272	0.144	31	48	48.987	0.000	0.254
8	22	227.315	0.482	1.680	31	49	66.426	0.000	0.546
8	23	211.475	0.416	1.578	31	50	53.009	0.000	0.442
8	24	196.421	0.398	1.444	31	51	45.896	0.000	0.388
8	25	93.199	0.258	0.824	31	52	75.198	0.000	0.218
8	26	68.557	0.108	0.668	31	53	60.950	0.000	0.182
8	27	49.552	0.024	0.520	31	54	49.225	0.000	0.158
8	28	187.662	0.000	1.558	32	1	121.365	0.000	0.466
8	29	171.019	0.000	1.422	32	2	97.158	0.000	0.368
8	30	154.051	0.000	1.276	32	3	75.930	0.000	0.296

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	-	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
8	31	103.188	0.000	0.270		32	4	194.929	0.000	1.544
8	32	85.471	0.000	0.224		32	5	169.795	0.000	1.360
8	33	68.599	0.000	0.182		32	6	145.021	0.000	1.148
8	34	143.955	0.000	0.862		32	7	239.830	0.000	2.554
8	35	128.613	0.000	0.772		32	8	207.280	0.000	2.202
8	36	115.546	0.000	0.702		32	9	176.905	0.000	1.866
8	37	139.152	0.276	1.080		32	10	112.110	0.000	0.878
8	38	124.678	0.130	1.010		32	11	85.320	0.000	0.692
8	39	114.437	0.048	0.958		32	12	61.474	0.000	0.484
8	40	115.870	0.434	0.276		32	13	169.818	0.000	1.772
8	41	102.353	0.424	0.236		32	14	129.510	0.000	1.332
8	42	88.491	0.408	0.196		32	15	96.765	0.000	1.000
8	43	82.857	0.472	0.302		32	16	200.128	0.000	0.826
8	44	64.896	0.334	0.254		32	17	187.998	0.000	0.764
8	45	49.351	0.226	0.218		32	18	177.161	0.000	0.720
8	46	87.486	0.574	0.388		32	19	93.337	0.024	0.356
8	47	66.720	0.468	0.270		32	20	67.355	0.004	0.252
8	48	50.030	0.340	0.204		32	21	45.410	0.000	0.166
8	49	68.409	0.126	0.524		32	22	227.066	0.108	1.802
8	50	53.452	0.020	0.440		32	23	212.183	0.044	1.706
8	51	46.164	0.008	0.388		32	24	198.051	0.030	1.580
8	52	80.507	0.382	0.186		32	25	95.814	0.002	0.982
8	53	65.543	0.284	0.154		32	26	68.846	0.000	0.728
8	54	53.800	0.222	0.138		32	27	49.195	0.000	0.528
9	1	111.395	0.494	0.376		32	28	187.662	0.000	1.558
9	2	91.652	0.408	0.296		32	29	171.019	0.000	1.422
9	3	75.626	0.286	0.266		32	30	154.051	0.000	1.276
9	4	159.502	0.668	1.014		32	31	103.188	0.000	0.270
9	5	139.673	0.610	0.898		32	32	85.471	0.000	0.224
9	6	122.027	0.516	0.774		32	33	68.599	0.000	0.182
9	7	169.475	0.792	1.344		32	34	143.955	0.000	0.862
9	8	137.632	0.782	0.996		32	35	128.613	0.000	0.772
9	9	115.764	0.744	0.788		32	36	115.546	0.000	0.702
9	10	94.277	0.798	0.534		32	37	140.295	0.000	1.168
9	11	75.401	0.646	0.444		32	38	124.804	0.000	1.046
9	12	59.282	0.512	0.346		32	39	114.017	0.000	0.964
9	13	121.350	0.914	0.860		32	40	115.420	0.000	0.318
9	14	92.603	0.884	0.578		32	41	101.659	0.000	0.274
9	15	72.733	0.806	0.406		32	42	88.452	0.000	0.240
9	16	201.843	0.368	0.754		32	43	87.545	0.000	0.472
9	17	189.375	0.390	0.684		32	44	65.862	0.000	0.362
9	18	177.643	0.372	0.648		32	45	47.402	0.000	0.272
9	19	88.861	0.630	0.280		32	46	89.514	0.082	0.492

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
9	20	65.519	0.580	0.190		32	47	67.290	0.008	0.352
9	21	46.512	0.480	0.124		32	48	48.987	0.000	0.254
9	22	228.190	0.662	1.636		32	49	66.426	0.000	0.546
9	23	212.041	0.650	1.514		32	50	53.009	0.000	0.442
9	24	196.643	0.654	1.384		32	51	45.896	0.000	0.388
9	25	88.218	0.726	0.554		32	52	75.107	0.008	0.214
9	26	70.514	0.514	0.474		32	53	60.950	0.000	0.182
9	27	54.168	0.326	0.422		32	54	49.225	0.000	0.158
9	28	171.200	0.774	1.216		33	1	121.365	0.000	0.466
9	29	153.473	0.736	1.086		33	2	97.158	0.000	0.368
9	30	136.634	0.670	0.956		33	3	75.930	0.000	0.296
9	31	93.554	0.560	0.178		33	4	194.929	0.000	1.544
9	32	76.485	0.554	0.122		33	5	169.795	0.000	1.360
9	33	63.001	0.500	0.102		33	6	145.021	0.000	1.148
9	34	142.789	0.554	0.702		33	7	239.830	0.000	2.554
9	35	129.462	0.456	0.638		33	8	207.280	0.000	2.202
9	36	116.553	0.306	0.604		33	9	176.905	0.000	1.866
9	37	139.716	0.722	0.988		33	10	107.671	0.224	0.798
9	38	126.815	0.574	0.928		33	11	84.395	0.044	0.668
9	39	116.437	0.390	0.892		33	12	61.422	0.006	0.482
9	40	116.909	0.550	0.274		33	13	140.220	0.576	1.208
9	41	103.080	0.572	0.224		33	14	113.916	0.356	1.024
9	42	88.931	0.572	0.180		33	15	93.235	0.148	0.904
9	43	79.517	0.854	0.170		33	16	202.071	0.480	0.718
9	44	65.398	0.802	0.122		33	17	188.243	0.300	0.704
9	45	53.251	0.676	0.110		33	18	176.406	0.198	0.670
9	46	85.341	0.828	0.320		33	19	89.181	0.518	0.284
9	47	65.744	0.794	0.214		33	20	66.418	0.214	0.230
9	48	50.760	0.686	0.150		33	21	45.610	0.050	0.160
9	49	74.226	0.510	0.450		33	22	228.032	0.506	1.680
9	50	59.142	0.284	0.404		33	23	211.936	0.414	1.588
9	51	48.769	0.118	0.374		33	24	196.631	0.338	1.468
9	52	82.926	0.546	0.174		33	25	95.453	0.124	0.924
9	53	69.541	0.488	0.136		33	26	68.992	0.020	0.722
9	54	58.113	0.420	0.126		33	27	49.112	0.002	0.526
10	1	107.652	0.682	0.344		33	28	187.662	0.000	1.558
10	2	88.595	0.682	0.266		33	29	171.019	0.000	1.422
10	3	75.024	0.612	0.234		33	30	154.051	0.000	1.276
10	4	149.016	0.902	0.868		33	31	103.188	0.000	0.270
10	5	124.731	0.932	0.692		33	32	85.471	0.000	0.224
10	6	105.061	0.940	0.510		33	33	68.599	0.000	0.182
10	7	151.963	0.968	1.054		33	34	143.955	0.000	0.862
10	8	117.843	0.990	0.680	l	33	35	128.613	0.000	0.772

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)
10 9 95.283 0.944 0.440 10 11 72.283 0.980 0.508 10 11 72.283 0.886 0.508 10 12 57.722 0.830 0.266 10 12 57.722 0.830 0.266 10 14 88.41 0.982 0.490 10 14 88.41 0.982 0.490 10 15 68.71 0.972 0.33 40 1152.2 0.248 10 16 201.939 0.376 0.754 33 43 8555 0.484 0.306 10 17 189.399 0.402 0.884 33 44 66.83 0.224 0.331 10 18 86.11 0.686 0.7676 33 44 84.323 0.052 0.268 10 22 12.63.55 0.752 1.186 33 50 50.076 0.269 0.284	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
10 11 27.77 0.980 0.988 0.33 37 440.27 0.166 1132 10 112 57.72 0.830 0.288 0.33 33 140.37 0.038 1038 10 12 57.72 0.830 0.288 0.33 33 34 14.033 0.040 0.984 10 14 8.814 0.982 0.490 33 44 10.581 0.216 0.224 10 16 20.599 0.376 0.574 33 43 8355 0.484 0.398 10 17 189.399 0.402 0.684 33 45 48.323 0.624 0.328 10 20 65.324 0.550 0.118 33 44 66.983 0.224 0.324 0.522 10 24 17.718 0.575 0.118 33 51 45.896 0.028 0.542 10 22 120.57 0.57	10	9	95.293	0.994	0.440		33	36	115.546	0.000	0.702
10 11 72.83 0.886 0.562 33 39 14.083 0.004 0.084 10 112 57.782 0.830 0.286 33 39 114.083 0.004 0.044 10 14 88.141 0.982 0.490 33 40 115.12 0.676 0.248 10 15 6.671 0.972 0.12 33 44 105.50 0.240 0.310 10 18 177.570 0.390 0.644 33 44 65.03 0.052 0.268 10 18 177.570 0.390 0.644 33 45 45.32 0.052 0.268 10 22 228.34 0.550 0.160 33 45 45.39 0.052 0.268 10 24 145.36 0.754 1.454 33 53 53.09 0.000 0.442 10 24 76.50 0.576 0.326 1.53<	10	10	92.717	0.920	0.508		33	37	140.237	0.166	1.132
10 12 5.7.82 0.830 0.288 10 13 117.656 0.986 0.792 10 15 68.791 0.972 0.312 10 15 68.791 0.972 0.312 10 16 20139 0.376 0.744 10 17 189.390 0.492 0.684 10 17 189.390 0.492 0.684 10 19 88.611 0.668 0.276 10 20 65.24 0.650 0.180 10 21 47.18 0.576 0.181 10 23 212.07 0.752 1.480 10 24 196.536 0.754 1.541 10 24 196.536 0.754 1.541 10 25 86.677 0.924 0.420 10 26 70.610 0.889 0.366 10 27 59.87 0.670	10	11	72.283	0.886	0.362		33	38	124.775	0.038	1.038
10 13 117.686 0.986 0.782 10 14 88.141 0.982 0.490 10 16 20159 0.571 0.972 0.312 10 16 20159 0.574 0.33 41 10.681 0.560 0.204 10 17 189.399 0.402 0.844 33 44 6.033 0.224 0.308 10 18 177.57 0.390 0.644 33 44 6.033 0.224 0.308 10 20 6.524 0.650 0.180 33 447 6.717 0.388 0.224 10 21 47.18 0.576 0.118 33 446 49.24 0.148 0.232 10 22 28.34 0.736 1.614 33 50 53.009 0.000 0.422 10 25 85.67 0.524 0.420 33 54 49.74 0.401 0.521	10	12	57.782	0.830	0.268		33	39	114.093	0.004	0.964
10 14 88.141 0.982 0.490 33 41 100.811 0.510 0.216 10 15 68.791 0.972 0.312 33 42 88.188 0.350 0.204 10 16 201.939 0.402 0.6844 33 44 6.033 0.204 0.310 10 18 177.570 0.390 0.6844 33 44 6.033 0.204 0.301 10 19 88.611 0.668 0.276 33 44 6.033 0.204 0.310 10 21 47.18 0.576 0.118 33 44 6.032 0.224 0.281 10 22 28.34 0.756 0.118 33 44 6.027 0.148 0.232 10 24 196.536 0.754 1.354 33 51 4.5896 0.000 0.388 10 27 58.677 0.622 0.669 33	10	13	117.656	0.986	0.792		33	40	115.412	0.676	0.248
10 15 88.791 0.972 0.312 10 16 201939 0.576 0.754 10 17 189.399 0.402 0.684 10 18 177.570 0.390 0.644 10 20 65.324 0.650 0.180 10 21 47.118 0.576 0.180 10 22 22.834 0.756 0.180 10 23 120.75 0.752 1.480 10 23 120.75 0.752 1.480 10 23 120.75 0.752 1.480 10 24 196.535 0.754 1.354 10 25 8.677 0.828 0.316 10 28 167.94 0.338 1.166 10 31 91.877 0.662 0.662 10 32 76.545 0.714 0.074 10 33 60.977 0.768 <td< td=""><td>10</td><td>14</td><td>88.141</td><td>0.982</td><td>0.490</td><td></td><td>33</td><td>41</td><td>100.581</td><td>0.510</td><td>0.216</td></td<>	10	14	88.141	0.982	0.490		33	41	100.581	0.510	0.216
10 16 201939 0.376 0.754 33 43 83555 0.484 0.308 10 17 169.399 0.402 0.6644 33 44 66.083 0.204 0.310 10 18 177.570 0.330 0.6644 33 44 66.083 0.204 0.310 10 20 65.324 0.650 0.180 33 46 87.018 0.634 0.376 10 22 228.334 0.736 1.614 33 48 49.324 0.148 0.238 10 24 196.566 0.752 1.480 33 551 45.896 0.028 0.512 10 25 86.67 0.924 0.420 33 551 45.896 0.000 0.412 10 28 167.994 0.938 1.166 33 53 63.373 0.150 0.170 10 33 69.977 0.744 0.1064	10	15	68.791	0.972	0.312		33	42	88.158	0.350	0.204
1017188 399 0.402 0.684 3344 66.083 0.204 0.310 1019 88.611 0.668 0.276 33 45 43.23 0.652 0.286 1020 65.324 0.650 0.180 33 46 67.118 0.654 0.276 1021 47.118 0.576 0.118 33 44 46.923 0.442 0.324 1022 228.334 0.736 1.614 33 49 66.965 0.028 0.542 1024 196.536 0.754 1.354 33 50 53.009 0.000 0.442 1025 70.610 0.328 0.316 33 51 45.896 0.000 0.388 1026 70.610 0.328 0.366 33 55 79.905 0.550 0.172 1028 167.994 0.9362 0.968 34 1 105.06 0.700 0.320 1031 91.877 0.662 0.166 34 4 149.900 0.866 0.672 1034 142.109 0.654 0.612 34 4 149.900 0.966 0.738 1034 142.109 0.666 0.574 34 4 149.900 0.966 0.784 1035 131.303 0.897 0.744 0.940 116 4 106.42 73.42 111 72.576	10	16	201.939	0.376	0.754		33	43	83.555	0.484	0.308
10 18 177.570 0.390 0.644 10 19 88.611 0.668 0.276 10 20 65.324 0.650 0.180 10 21 47.118 0.576 0.118 10 22 22.333 0.752 1.480 10 23 212.075 0.752 1.480 10 24 196.536 0.754 1.354 10 25 85.677 0.924 0.420 10 26 70.610 0.828 0.314 10 27 59.875 0.670 0.306 10 28 167.994 0.393 1.156 10 29 146.797 0.962 0.968 10 30 127.899 0.976 0.800 10 31 91.877 0.662 0.160 33 54 43.73 10.152 0.222 10 32 60.977 0.662	10	17	189.399	0.402	0.684		33	44	66.083	0.204	0.310
10 19 88.611 0.668 0.276 10 20 65.524 0.650 0.180 10 21 47.118 0.576 0.118 10 22 228.334 0.736 1.614 10 22 228.334 0.736 1.614 10 24 196.56 0.752 1.480 10 24 196.56 0.752 1.480 10 24 196.56 0.752 1.480 10 25 85.677 0.924 0.420 33 51 45.896 0.000 0.388 10 25 85.677 0.924 0.420 33 51 45.896 0.000 0.388 10 27 59.875 0.670 0.306 10 31 91.877 0.662 0.160 34 1 105.80 0.784 10 32 74.545 0.714 0.074	10	18	177.570	0.390	0.644		33	45	48.323	0.052	0.268
10 20 65.324 0.650 0.180 33 47 66.717 0.388 0.292 10 21 47.118 0.576 0.118 33 49 66.965 0.028 0.542 10 22 228.334 0.752 1.480 33 50 53.009 0.000 0.442 10 24 196.536 0.754 1.354 33 51 45.896 0.000 0.442 10 25 85.677 0.924 0.420 33 52 7.905 0.338 0.162 10 26 70.610 0.828 0.314 33 53 63.373 0.150 0.170 10 27 59.875 0.670 0.306 34 1 105.806 0.700 0.320 10 29 146.797 0.962 0.968 34 2 91.554 0.040 0.152 10 31 91.877 0.662 0.160 34 4 14.980 0.866 0.872 10 34 142.109 0.854 0.612 34 4 14.980 0.966 0.738 10 35 131.303 0.860 0.520 34 11 72.54 0.806 0.724 10 34 142.109 0.822 0.484 34 11 72.54 0.806 0.738 10 34 16.666 0.724 34 11 72.54 0.806 0.6	10	19	88.611	0.668	0.276		33	46	87.018	0.634	0.376
10 21 47.118 0.576 0.118 33 48 49.324 0.148 0.234 10 22 228.334 0.736 1.614 33 49 66.965 0.028 0.542 10 23 212.075 0.752 1.480 33 50 53.009 0.000 0.442 10 24 196.536 0.754 1.354 33 51 45.996 0.000 0.388 10 25 85.677 0.924 0.420 33 52 79.905 0.570 0.358 10 27 59.875 0.670 0.306 33 54 49.794 0.040 0.152 10 28 167.994 0.9962 0.968 34 2 91.554 0.402 0.228 10 30 127.999 0.976 0.800 34 4 149.990 0.666 0.874 10 32 74.545 0.714 0.104 34 4 149.980 0.866 0.874 10 34 142.109 0.854 0.612 34 7 152.706 0.9964 1.064 10 37 140.007 0.912 0.950 34 11 72.898 0.600 334 10 37 140.007 0.912 0.950 34 11 72.754 0.800 0.794 10 34 12.799 0.822 0.494 119.499 0.966 0.79	10	20	65.324	0.650	0.180		33	47	66.717	0.388	0.292
10 22 228.34 0.736 1.614 33 49 66.965 0.028 0.542 10 23 212.075 0.752 1.480 33 50 53.009 0.000 0.442 10 24 196.536 0.754 1.354 33 51 45.986 0.000 0.388 10 25 85.677 0.924 0.420 33 51 45.986 0.000 0.388 10 26 70.610 0.828 0.314 33 53 63.373 0.150 0.170 10 28 167.994 0.938 1.166 33 54 49.794 0.0400 0.152 10 29 146.797 0.962 0.968 34 1 105.806 0.700 0.320 10 31 91.877 0.662 0.160 34 4 149.980 0.866 0.874 10 35 131.303 0.860 0.540 34 7 152.706 0.964 1.064 10 36 127.73 0.822 0.444 9 105.172 0.888 0.600 10 37 140.007 0.912 0.950 34 11 72.754 0.810 0.384 10 44 64.842 0.938 0.782 34 11 72.754 0.860 0.562 10 44 64.862 0.922 0.584 34 13 17.434 0.990 </td <td>10</td> <td>21</td> <td>47.118</td> <td>0.576</td> <td>0.118</td> <td></td> <td>33</td> <td>48</td> <td>49.324</td> <td>0.148</td> <td>0.234</td>	10	21	47.118	0.576	0.118		33	48	49.324	0.148	0.234
1023212.075 0.752 1.480 33 50 53.099 0.000 0.442 1024 196.536 0.754 1.354 33 51 45.896 0.000 0.388 1025 85.677 0.924 0.420 33 52 79.905 0.358 0.172 1026 70.610 0.228 0.314 33 54 49.794 0.040 0.152 1028 167.994 0.938 1.156 34 4 19.554 0.402 0.228 1029 146.797 0.962 0.968 34 3 75.310 0.402 0.228 1030 127.989 0.976 0.800 34 3 75.310 0.402 0.228 1031 91.877 0.662 0.160 34 3 75.310 0.462 0.784 1032 74.545 0.714 0.074 34 6 119.429 0.666 0.774 1033 60.977 0.744 0.616 344 4 149.980 0.866 0.784 1035 131.303 0.860 0.574 344 7 152.706 0.964 1.064 1037 140.007 0.912 0.950 344 11 72.574 0.810 0.334 1039 117.846 0.794 0.220 344 14 85.577 0.534 0.334 10 <td< td=""><td>10</td><td>22</td><td>228.334</td><td>0.736</td><td>1.614</td><td></td><td>33</td><td>49</td><td>66.965</td><td>0.028</td><td>0.542</td></td<>	10	22	228.334	0.736	1.614		33	49	66.965	0.028	0.542
1024196.536 0.754 1.354 33 51 45.896 0.000 0.388 1025 85.677 0.924 0.420 33 52 79.905 0.358 0.162 1026 70.610 0.828 0.314 33 53 63.373 0.150 0.170 1027 59.875 0.670 0.306 33 54 49.794 0.040 0.152 1028 167.994 0.938 1.156 34 1 105.006 0.700 0.320 1030 127.989 0.976 0.800 34 4 149.960 0.666 0.674 1031 91.877 0.662 0.160 34 4 149.960 0.866 0.674 1032 74.545 0.714 0.007 34 4 149.960 0.666 0.738 1035 131.303 0.860 0.540 34 5 130.585 0.768 0.762 1036 121.739 0.822 0.494 34 9 10.5172 0.868 0.600 1037 140.007 0.912 0.950 34 11 72.54 0.810 0.384 1039 117.84 0.966 0.738 34 12 56.77 0.534 0.334 1044 6.8123 0.566 0.268 34 13 117.44 0.990 0.790 1043<	10	23	212.075	0.752	1.480		33	50	53.009	0.000	0.442
10 25 85.677 0.924 0.420 33 52 79.905 0.358 0.162 10 26 70.610 0.828 0.314 33 53 63.373 0.150 0.170 10 27 59.875 0.670 0.306 33 54 49.794 0.040 0.152 10 29 146.797 0.962 0.968 34 1 105.806 0.700 0.320 10 30 127.989 0.976 0.800 34 4 149.980 0.866 0.874 10 31 91.877 0.662 0.160 34 4 149.980 0.866 0.874 10 32 74.545 0.714 0.100 34 4 149.980 0.866 0.874 10 33 60.977 0.744 0.074 34 6 119.429 0.606 0.738 10 35 131.303 0.860 0.540 34 8 124.98 0.916 0.794 10 35 131.303 0.860 0.872 34 11 72.574 0.810 0.384 10 39 117.846 0.784 0.808 344 12 58.77 0.594 10 44 6.8342 0.938 0.078 34 11 72.574 0.866 0.556 10 44 6.842 0.938 0.078 34 15 70.836 0.912	10	24	196.536	0.754	1.354		33	51	45.896	0.000	0.388
10 26 70.610 0.828 0.314 33 53 63.373 0.150 0.170 10 27 59.875 0.670 0.306 33 54 49.794 0.040 0.152 10 29 146.797 0.962 0.968 34 1 105.806 0.700 0.320 10 29 146.797 0.962 0.968 34 2 91.554 0.402 0.288 10 30 127.989 0.976 0.800 34 2 91.554 0.402 0.288 10 31 91.877 0.662 0.160 34 4 149.980 0.866 0.874 10 32 74.545 0.714 0.074 34 5 130.585 0.768 0.762 10 34 142.109 0.854 0.612 34 6 119.429 0.606 0.738 10 36 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 37 140.007 0.912 0.950 34 11 72.754 0.810 0.384 10 43 78.503 0.942 0.140 34 12 58.707 0.534 0.334 10 44 64.842 0.938 0.078 34 11 72.754 0.810 0.360 10 44 64.842 0.938 0.078 34 16 203.929 <t< td=""><td>10</td><td>25</td><td>85.677</td><td>0.924</td><td>0.420</td><td></td><td>33</td><td>52</td><td>79.905</td><td>0.358</td><td>0.182</td></t<>	10	25	85.677	0.924	0.420		33	52	79.905	0.358	0.182
10 27 59.875 0.670 0.306 33 54 49.794 0.040 0.152 10 28 167.994 0.938 1.156 34 1 105.806 0.700 0.320 10 29 146.797 0.962 0.968 34 2 91.554 0.402 0.288 10 30 127.989 0.976 0.800 34 3 75.310 0.128 0.272 10 31 91.877 0.662 0.160 34 4 149.980 0.866 0.874 10 32 74.545 0.714 0.074 34 4 19.980 0.866 0.782 10 34 142.109 0.854 0.612 34 4 19.980 0.966 0.738 10 34 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 37 140.007 0.912 0.950 34 10 95.507 0.790 0.560 10 38 127.674 0.860 0.872 34 11 72.754 0.810 0.384 10 42 89.136 0.616 0.172 34 11 72.754 0.810 0.384 10 44 64.842 0.938 0.078 34 12 85.77 0.534 0.394 10 44 64.842 0.938 0.078 34 14 85.73 0	10	26	70.610	0.828	0.314		33	53	63.373	0.150	0.170
10 28 167.994 0.938 1.156 34 1 105.806 0.700 0.320 10 29 146.797 0.962 0.968 34 2 91.554 0.402 0.288 10 30 127.989 0.976 0.800 34 3 75.310 0.128 0.272 10 31 91.877 0.662 0.160 34 4 149.980 0.866 0.874 10 32 74.545 0.714 0.074 34 6 119.429 0.606 0.738 10 34 142.109 0.854 0.612 34 7 152.706 0.964 1.064 10 35 131.303 0.860 0.540 34 8 124.908 0.916 0.794 10 36 127.79 0.950 34 10 95.507 0.790 0.560 10 37 140.007 0.912 0.950 34 11 72.754 0.810 0.384 10 39 117.846 0.794 0.808 34 12 58.707 0.534 0.394 10 44 10.3293 0.558 0.220 34 114 88.573 0.978 0.560 10 44 85.035 0.922 0.058 34 18 176.151 0.800 0.522 10 45 85.035 0.922 0.0384 34 22 227.858 0.526 </td <td>10</td> <td>27</td> <td>59.875</td> <td>0.670</td> <td>0.306</td> <td></td> <td>33</td> <td>54</td> <td>49.794</td> <td>0.040</td> <td>0.152</td>	10	27	59.875	0.670	0.306		33	54	49.794	0.040	0.152
10 29 146.797 0.962 0.968 34 2 91.554 0.402 0.288 10 30 127.999 0.976 0.800 34 3 75.310 0.128 0.272 10 31 91.877 0.662 0.160 34 44 149.980 0.866 0.874 10 32 74.545 0.714 0.074 34 5 130.585 0.768 0.762 10 33 60.977 0.744 0.074 34 6 119.429 0.606 0.738 10 34 142.199 0.854 0.612 34 7 152.706 0.964 1.064 10 35 131.303 0.860 0.540 34 8 124.908 0.916 0.794 10 36 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 37 140.007 0.912 0.950 34 10 95.507 0.790 0.560 10 43 176.88 0.566 0.268 34 11 72.754 0.810 0.384 10 44 64.842 0.938 0.078 34 12 58.707 0.534 0.360 10 44 64.842 0.938 0.078 34 14 88.573 0.978 0.566 10 44 64.842 0.932 0.568 34 16 203.929 <	10	28	167.994	0.938	1.156		34	1	105.806	0.700	0.320
10 30 127.999 0.976 0.800 34 3 75.310 0.128 0.272 10 31 91.877 0.662 0.160 34 4 149.980 0.866 0.874 10 32 74.545 0.714 0.074 34 4 149.980 0.866 0.782 10 34 142.109 0.854 0.612 34 6 119.429 0.606 0.738 10 35 131.303 0.860 0.540 34 8 124.908 0.916 0.794 10 36 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 37 140.007 0.912 0.950 34 10 95.507 0.790 0.560 10 38 127.674 0.860 0.872 34 11 72.754 0.810 0.384 10 40 116.888 0.566 0.268 34 13 117.434 0.990 0.790 10 41 103.293 0.598 0.220 34 14 88.573 0.978 0.504 10 44 64.842 0.9326 0.302 34 16 203.929 0.906 0.622 10 44 65.536 0.922 0.556 34 18 176.151 0.800 0.522 10 46 85.035 0.926 0.326 34 19 90.923 <	10	29	146.797	0.962	0.968		34	2	91.554	0.402	0.288
10 31 91.877 0.662 0.160 34 4 149.980 0.866 0.874 10 32 74.545 0.714 0.100 34 5 130.585 0.768 0.762 10 33 60.977 0.744 0.074 34 6 119.429 0.606 0.738 10 34 142.109 0.854 0.612 34 6 119.429 0.606 0.738 10 35 131.303 0.860 0.540 34 8 124.908 0.916 0.794 10 36 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 38 127.674 0.860 0.872 34 10 95.507 0.790 0.560 10 39 117.946 0.784 0.808 34 12 58.707 0.534 0.384 10 40 116.888 0.566 0.268 34 13 117.434 0.990 0.790 10 41 103.293 0.598 0.220 34 14 88.573 0.978 0.504 10 43 78.503 0.926 0.302 34 16 203.929 0.906 0.622 10 46 85.035 0.926 0.302 34 18 176.151 0.800 0.522 10 46 85.035 0.926 0.302 34 21 45.911 </td <td>10</td> <td>30</td> <td>127.989</td> <td>0.976</td> <td>0.800</td> <td></td> <td>34</td> <td>3</td> <td>75.310</td> <td>0.128</td> <td>0.272</td>	10	30	127.989	0.976	0.800		34	3	75.310	0.128	0.272
10 32 74.545 0.714 0.100 34 5 130.585 0.768 0.762 10 33 60.977 0.744 0.074 34 6 119.429 0.606 0.738 10 34 142.109 0.854 0.612 34 7 152.706 0.964 1.064 10 35 131.303 0.860 0.540 34 8 124.908 0.916 0.794 10 36 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 37 140.007 0.912 0.950 34 10 95.507 0.790 0.560 10 38 127.674 0.860 0.872 34 11 72.754 0.810 0.384 10 39 117.846 0.784 0.808 34 12 58.707 0.534 0.334 10 40 116.888 0.566 0.268 34 13 117.434 0.990 0.790 10 41 103.293 0.598 0.220 34 16 203.929 0.906 0.622 10 44 64.842 0.938 0.078 34 16 203.929 0.906 0.622 10 46 85.035 0.926 0.302 34 18 176.151 0.800 0.526 10 48 51.332 0.672 0.394 34 22 227.858	10	31	91.877	0.662	0.160		34	4	149.980	0.866	0.874
10 33 60.977 0.744 0.074 34 6 119.429 0.606 0.738 10 34 142.109 0.854 0.612 34 7 152.706 0.964 1.064 10 35 131.303 0.860 0.540 34 8 124.908 0.916 0.794 10 36 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 37 140.007 0.912 0.950 34 10 95.507 0.790 0.560 10 38 127.674 0.860 0.872 34 11 72.754 0.810 0.384 10 39 117.846 0.784 0.808 34 12 58.707 0.534 0.334 10 40 116.888 0.566 0.268 34 13 117.434 0.990 0.790 10 41 103.293 0.598 0.220 34 14 88.573 0.978 0.504 10 44 64.842 0.938 0.078 34 16 203.929 0.906 0.622 10 44 64.842 0.938 0.078 34 18 176.151 0.806 0.526 10 45 55.860 0.922 0.568 34 18 176.151 0.806 0.526 10 46 85.035 0.926 0.302 34 20 64.550	10	32	74.545	0.714	0.100		34	5	130.585	0.768	0.762
10 34 142.109 0.854 0.612 34 7 152.706 0.964 1.064 10 35 131.303 0.860 0.540 34 8 124.908 0.916 0.794 10 36 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 37 140.007 0.912 0.950 34 10 95.507 0.790 0.560 10 38 127.674 0.860 0.872 34 11 72.754 0.810 0.384 10 40 116.888 0.566 0.268 34 12 58.707 0.534 0.384 10 41 103.293 0.598 0.220 34 11 72.754 0.978 0.504 10 42 89.136 0.616 0.172 34 15 70.836 0.918 0.360 10 43 78.503 0.942 0.140 34 16 203.929 0.906 0.622 10 44 64.842 0.938 0.078 34 17 189.516 0.866 0.556 10 46 85.035 0.926 0.302 34 19 90.923 0.254 0.320 10 48 51.332 0.872 0.394 34 22 27.858 0.526 1.674 10 49 78.142 0.782 0.394 34 22 27.858 <td>10</td> <td>33</td> <td>60.977</td> <td>0.744</td> <td>0.074</td> <td></td> <td>34</td> <td>6</td> <td>119.429</td> <td>0.606</td> <td>0.738</td>	10	33	60.977	0.744	0.074		34	6	119.429	0.606	0.738
10 35 131.303 0.860 0.540 34 8 124.908 0.916 0.794 10 36 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 37 140.007 0.912 0.950 34 10 95.507 0.790 0.560 10 38 127.674 0.860 0.872 34 11 72.754 0.810 0.384 10 39 117.846 0.784 0.808 34 12 58.707 0.534 0.334 10 40 116.888 0.566 0.268 34 13 117.434 0.990 0.790 10 41 103.293 0.598 0.220 34 14 88.573 0.978 0.504 10 42 89.136 0.616 0.172 34 15 70.836 0.918 0.360 10 43 78.503 0.942 0.140 34 16 203.929 0.906 0.622 10 44 64.842 0.938 0.078 34 18 176.151 0.800 0.522 10 46 85.035 0.926 0.302 34 19 90.923 0.254 0.320 10 48 51.332 0.872 0.130 34 22 227.858 0.526 1.674 10 49 78.142 0.782 0.324 34 23 211.661	10	34	142.109	0.854	0.612		34	7	152.706	0.964	1.064
10 36 121.739 0.822 0.494 34 9 105.172 0.868 0.600 10 37 140.007 0.912 0.950 34 10 95.507 0.790 0.560 10 38 127.674 0.860 0.872 34 11 72.754 0.810 0.384 10 39 117.846 0.784 0.808 34 12 58.707 0.534 0.334 10 40 116.888 0.566 0.268 34 13 117.434 0.990 0.790 10 41 103.293 0.598 0.220 34 14 88.573 0.978 0.504 10 42 89.136 0.616 0.172 34 15 70.836 0.918 0.360 10 43 78.503 0.942 0.140 34 16 203.929 0.906 0.622 10 44 64.842 0.938 0.078 34 17 189.516 0.866 0.556 10 45 55.860 0.922 0.058 34 18 176.151 0.800 0.522 10 46 85.035 0.926 0.302 34 19 90.923 0.254 0.320 10 47 65.630 0.904 0.194 34 20 64.550 0.490 0.180 10 49 78.142 0.782 0.324 34 22 227.858 <	10	35	131.303	0.860	0.540		34	8	124.908	0.916	0.794
10 37 140.007 0.912 0.950 34 10 95.507 0.790 0.560 10 38 127.674 0.860 0.872 34 11 72.754 0.810 0.384 10 39 117.846 0.784 0.808 34 12 58.707 0.534 0.334 10 40 116.888 0.566 0.268 34 13 117.434 0.990 0.790 10 41 103.293 0.598 0.220 34 14 88.573 0.978 0.504 10 42 89.136 0.616 0.172 34 15 70.836 0.918 0.360 10 43 78.503 0.942 0.140 34 16 203.929 0.906 0.622 10 44 64.842 0.938 0.078 34 17 189.516 0.866 0.556 10 45 55.860 0.922 0.058 34 18 176.151 0.800 0.522 10 46 85.035 0.926 0.302 34 19 90.923 0.254 0.320 10 48 51.332 0.872 0.130 34 22 227.858 0.526 1.674 10 49 78.142 0.782 0.324 34 23 211.661 0.606 1.508 10 49 78.142 0.782 0.326 34 24 196.413	10	36	121.739	0.822	0.494		34	9	105.172	0.868	0.600
10 38 127.674 0.860 0.872 34 11 72.754 0.810 0.384 10 39 117.846 0.784 0.808 34 12 58.707 0.534 0.334 10 40 116.888 0.566 0.268 34 13 117.434 0.990 0.790 10 41 103.293 0.598 0.220 34 14 88.573 0.978 0.504 10 42 89.136 0.616 0.172 34 15 70.836 0.918 0.360 10 43 78.503 0.942 0.140 34 16 203.929 0.906 0.622 10 44 64.842 0.938 0.078 34 17 189.516 0.866 0.556 10 45 55.860 0.922 0.058 34 18 176.151 0.800 0.522 10 46 85.035 0.926 0.302 34 19 90.923 0.254 0.320 10 47 65.630 0.904 0.194 34 20 64.550 0.490 0.180 10 49 78.142 0.782 0.394 34 22 227.858 0.526 1.674 10 50 66.858 0.642 0.354 34 23 211.661 0.606 1.508 10 51 56.227 0.456 0.326 34 24 196.413 <	10	37	140.007	0.912	0.950		34	10	95.507	0.790	0.560
10 39 117.846 0.784 0.808 34 12 58.707 0.534 0.334 10 40 116.888 0.566 0.268 34 13 117.434 0.990 0.790 10 41 103.293 0.598 0.220 34 14 88.573 0.978 0.504 10 42 89.136 0.616 0.172 34 15 70.836 0.918 0.360 10 43 78.503 0.942 0.140 34 16 203.929 0.906 0.622 10 44 64.842 0.938 0.078 34 16 203.929 0.906 0.622 10 45 55.860 0.922 0.058 34 18 176.151 0.800 0.522 10 46 85.035 0.926 0.302 34 19 90.923 0.254 0.320 10 47 65.630 0.904 0.194 34 20 64.550 0.490 0.180 10 49 78.142 0.782 0.394 34 22 227.858 0.526 1.674 10 50 66.858 0.642 0.354 34 23 211.661 0.606 1.508 10 51 56.227 0.456 0.326 34 24 196.413 0.630 1.366	10	38	127.674	0.860	0.872		34	11	72.754	0.810	0.384
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	39	117.846	0.784	0.808		34	12	58.707	0.534	0.334
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	40	116.888	0.566	0.268		34	13	117.434	0.990	0.790
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	41	103.293	0.598	0.220		34	14	88.573	0.978	0.504
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	42	89.136	0.616	0.172		34	15	70.836	0.918	0.360
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	43	78.503	0.942	0.140		34	16	203.929	0.906	0.622
10 45 55.860 0.922 0.058 10 46 85.035 0.926 0.302 10 46 85.035 0.926 0.302 10 47 65.630 0.904 0.194 10 48 51.332 0.872 0.130 10 49 78.142 0.782 0.394 10 50 66.858 0.642 0.354 10 51 56.227 0.456 0.326	10	44	64.842	0.938	0.078		34	17	189.516	0.866	0.556
10 46 85.035 0.926 0.302 10 47 65.630 0.904 0.194 10 47 65.630 0.904 0.194 10 48 51.332 0.872 0.130 10 49 78.142 0.782 0.394 10 50 66.858 0.642 0.354 10 51 56.227 0.456 0.326	10	45	55.860	0.922	0.058		34	18	176.151	0.800	0.522
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	46	85.035	0.926	0.302	1	34	19	90.923	0.254	0.320
10 48 51.332 0.872 0.130 34 21 45.911 0.526 0.108 10 49 78.142 0.782 0.394 34 22 227.858 0.526 1.674 10 50 66.858 0.642 0.354 34 23 211.661 0.606 1.508 10 51 56.227 0.456 0.326 34 24 196.413 0.630 1.366	10	47	65.630	0.904	0.194	1	34	20	64.550	0.490	0.180
10 49 78.142 0.782 0.394 34 22 227.858 0.526 1.674 10 50 66.858 0.642 0.354 34 23 211.661 0.606 1.508 10 51 56.227 0.456 0.326 34 24 196.413 0.630 1.366	10	48	51,332	0.872	0.130	1	34	21	45,911	0.526	0.108
10 50 66.858 0.642 0.354 34 23 211.661 0.606 1.508 10 51 56.227 0.456 0.326 34 24 196.413 0.630 1.366	10	49	78,142	0.782	0.394	1	34	22	227.858	0.526	1.674
10 51 56,227 0,456 0,326 34 24 196,413 0,630 1,366	10	50	66.858	0.642	0.354	1	34	23	211.661	0.606	1,508
	10	51	56.227	0.456	0.326	1	34	24	196 413	0.630	1,366

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	-	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
10	52	83.847	0.594	0.168		34	25	87.580	0.830	0.490
10	53	70.930	0.572	0.126		34	26	70.255	0.530	0.462
10	54	59.572	0.510	0.106		34	27	53.342	0.230	0.466
11	1	99.392	0.986	0.270		34	28	168.576	0.910	1.174
11	2	83.834	0.980	0.208		34	29	149.040	0.886	1.004
11	3	72.815	0.966	0.166		34	30	131.517	0.828	0.870
11	4	149.101	0.904	0.856		34	31	86.112	0.932	0.114
11	5	122.191	0.972	0.642		34	32	71.597	0.858	0.082
11	6	102.871	0.972	0.470		34	33	61.158	0.714	0.090
11	7	160.207	0.908	1.176		34	34	142.272	0.700	0.638
11	8	120.130	0.978	0.710		34	35	129.891	0.486	0.626
11	9	96.513	0.986	0.456		34	36	117.705	0.238	0.650
11	10	91.049	0.996	0.484		34	37	140.507	0.732	0.998
11	11	70.672	0.990	0.326		34	38	127.406	0.648	0.920
11	12	56.855	0.954	0.228		34	39	116.428	0.352	0.900
11	13	117.430	0.996	0.788		34	40	115.080	0.984	0.206
11	14	87.964	1.000	0.488		34	41	100.264	0.976	0.160
11	15	68.693	0.990	0.306		34	42	86.230	0.972	0.108
11	16	205.016	0.770	0.668		34	43	78.260	0.976	0.130
11	17	190.964	0.764	0.608		34	44	64.817	0.954	0.074
11	18	176.920	0.776	0.538		34	45	55.166	0.842	0.076
11	19	83.834	0.996	0.202		34	46	88.733	0.174	0.454
11	20	62.066	0.988	0.112		34	47	65.577	0.346	0.270
11	21	47.277	0.966	0.070		34	48	49.445	0.520	0.166
11	22	229.231	0.852	1.586		34	49	74.772	0.506	0.466
11	23	211.868	0.870	1.430		34	50	57.483	0.178	0.428
11	24	195.406	0.872	1.284		34	51	46.350	0.016	0.388
11	25	85.840	0.980	0.394		34	52	87.006	0.914	0.124
11	26	71.963	0.912	0.288		34	53	74.238	0.812	0.102
11	27	61.213	0.738	0.276		34	54	61.863	0.624	0.106
11	28	174.911	0.710	1.274		35	1	99.651	0.962	0.276
11	29	151.365	0.860	1.042		35	2	83.577	0.992	0.206
11	30	130.544	0.930	0.844		35	3	72.611	0.990	0.162
11	31	85.733	0.978	0.114		35	4	142.878	1.000	0.774
11	32	69.151	0.996	0.058		35	5	120.287	1.000	0.618
11	33	57.411	0.998	0.044		35	6	101.253	1.000	0.448
11	34	143.332	0.776	0.626		35	7	148.617	1.000	0.998
11	35	131.309	0.842	0.542		35	8	116.961	1.000	0.662
11	36	122.313	0.806	0.510		35	9	94.832	1.000	0.432
11	37	140.469	0.928	0.954		35	10	111.487	0.016	0.868
11	38	127.642	0.874	0.866		35	11	84.094	0.074	0.662
11	39	118.781	0.736	0.832		35	12	60.633	0.204	0.432
11	40	115.285	0.974	0.210	J	35	13	166.059	0.070	1.704

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
11	41	100.251	0.984	0.156	35	14	123.058	0.160	1.198
11	42	86.685	0.996	0.110	35	15	87.333	0.306	0.772
11	43	77.914	0.998	0.124	35	16	202.541	0.638	0.674
11	44	64.772	1.000	0.066	35	17	189.779	0.798	0.572
11	45	56.325	0.994	0.038	35	18	176.399	0.870	0.510
11	46	84.428	0.996	0.284	35	19	93.561	0.008	0.358
11	47	65.418	0.990	0.176	35	20	67.259	0.028	0.248
11	48	51.195	0.986	0.106	35	21	45.722	0.058	0.160
11	49	80.005	0.884	0.388	35	22	226.882	0.072	1.810
11	50	68.117	0.664	0.374	35	23	211.729	0.090	1.690
11	51	55.065	0.390	0.340	35	24	198.086	0.112	1.568
11	52	87.683	0.978	0.116	35	25	90.338	0.410	0.714
11	53	76.417	0.958	0.086	35	26	71.245	0.706	0.394
11	54	67.397	0.922	0.068	35	27	60.240	0.738	0.256
12	1	116.748	0.374	0.406	35	28	174.493	0.668	1.288
12	2	94.514	0.402	0.312	35	29	151.223	0.828	1.046
12	3	76.746	0.278	0.266	35	30	129.719	0.908	0.826
12	4	189.405	0.160	1.434	35	31	84.858	1.000	0.104
12	5	159.767	0.256	1.176	35	32	69.081	1.000	0.058
12	6	135.781	0.316	0.972	35	33	57.379	1.000	0.044
12	7	232.123	0.136	2.400	35	34	140.894	1.000	0.544
12	8	189.244	0.284	1.844	35	35	130.881	0.996	0.488
12	9	150.599	0.442	1.346	35	36	122.006	0.988	0.440
12	10	94.498	0.908	0.536	35	37	140.176	0.064	1.152
12	11	72.469	0.864	0.364	35	38	125.391	0.154	1.016
12	12	58.748	0.728	0.290	35	39	114.869	0.352	0.886
12	13	122.098	0.934	0.868	35	40	114.837	0.050	0.306
12	14	90.494	0.950	0.534	35	41	101.711	0.086	0.266
12	15	71.593	0.930	0.360	35	42	87.833	0.156	0.212
12	16	202.489	0.254	0.774	35	43	79.635	0.726	0.208
12	17	189.648	0.272	0.704	35	44	64.475	0.936	0.082
12	18	178.218	0.266	0.662	35	45	56.110	0.984	0.038
12	19	84.630	0.952	0.214	35	46	89.659	0.004	0.498
12	20	63.264	0.916	0.132	35	47	67.367	0.012	0.352
12	21	47.469	0.828	0.082	35	48	48.999	0.022	0.252
12	22	229.487	0.408	1.736	35	49	71.020	0.358	0.464
12	23	213.648	0.432	1.594	35	50	63.271	0.492	0.378
12	24	197.600	0.466	1.432	35	51	55.632	0.418	0.336
12	25	87.874	0.876	0.464	35	52	77.792	0.246	0.184
12	26	71.677	0.670	0.410	35	53	67.712	0.442	0.138
12	27	56.772	0.392	0.418	35	54	60.844	0.626	0.090
12	28	187.642	0.032	1.554	36	1	121.365	0.000	0.466
12	29	169.571	0.080	1.388	36	2	97.158	0.000	0.368

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
12	30	151.601	0.138	1.222	36	3	75.930	0.000	0.296
12	31	101.295	0.310	0.236	36	4	194.929	0.000	1.544
12	32	80.791	0.510	0.146	36	5	169.795	0.000	1.360
12	33	64.472	0.656	0.098	36	6	145.021	0.000	1.148
12	34	144.484	0.054	0.850	36	7	239.830	0.000	2.554
12	35	129.714	0.068	0.762	36	8	207.280	0.000	2.202
12	36	116.657	0.062	0.690	36	9	176.905	0.000	1.866
12	37	141.201	0.592	1.040	36	10	112.110	0.000	0.878
12	38	126.981	0.458	0.964	36	11	85.320	0.000	0.692
12	39	116.415	0.254	0.928	36	12	61.474	0.000	0.484
12	40	116.792	0.748	0.234	36	13	169.818	0.000	1.772
12	41	101.410	0.822	0.180	36	14	129.510	0.000	1.332
12	42	87.857	0.846	0.138	36	15	96.765	0.000	1.000
12	43	78.834	0.946	0.142	36	16	200.128	0.000	0.826
12	44	65.640	0.944	0.084	36	17	187.998	0.000	0.764
12	45	56.597	0.924	0.058	36	18	177.161	0.000	0.720
12	46	85.111	0.954	0.302	36	19	93.681	0.000	0.360
12	47	65.212	0.946	0.178	36	20	67.371	0.000	0.252
12	48	50.985	0.918	0.110	36	21	45.410	0.000	0.166
12	49	76.511	0.576	0.460	36	22	227.052	0.000	1.836
12	50	60.309	0.278	0.426	36	23	212.298	0.000	1.722
12	51	47.437	0.054	0.386	36	24	198.816	0.000	1.600
12	52	86.977	0.858	0.134	36	25	95.760	0.000	0.982
12	53	74.480	0.798	0.104	36	26	68.846	0.000	0.728
12	54	63.217	0.678	0.092	36	27	49.195	0.000	0.528
13	1	121.388	0.004	0.466	36	28	187.662	0.000	1.558
13	2	97.229	0.006	0.368	36	29	171.019	0.000	1.422
13	3	76.018	0.004	0.296	36	30	154.051	0.000	1.276
13	4	194.929	0.000	1.544	36	31	103.188	0.000	0.270
13	5	169.829	0.002	1.360	36	32	85.471	0.000	0.224
13	6	145.061	0.002	1.148	36	33	68.599	0.000	0.182
13	7	239.830	0.000	2.554	36	34	143.955	0.000	0.862
13	8	207.280	0.000	2.202	36	35	128.613	0.000	0.772
13	9	177.041	0.006	1.866	36	36	115.546	0.000	0.702
13	10	101.619	0.638	0.662	36	37	140.295	0.000	1.168
13	11	78.243	0.494	0.494	36	38	124.804	0.000	1.046
13	12	60.327	0.316	0.392	36	39	114.017	0.000	0.964
13	13	138.669	0.662	1.160	36	40	115.420	0.000	0.318
13	14	102.314	0.728	0.758	36	41	101.659	0.000	0.274
13	15	80.392	0.668	0.558	36	42	88.452	0.000	0.240
13	16	200.748	0.032	0.824	36	43	87.545	0.000	0.472
13	17	188.082	0.042	0.748	36	44	65.862	0.000	0.362
13	18	177.509	0.036	0.714	36	45	47.402	0.000	0.272

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
13	19	86.892	0.772	0.238	36	46	89.673	0.000	0.498
13	20	65.830	0.662	0.174	36	47	67.247	0.000	0.352
13	21	46.908	0.532	0.118	36	48	48.987	0.000	0.254
13	22	228.391	0.124	1.814	36	49	66.426	0.000	0.546
13	23	213.298	0.150	1.688	36	50	53.009	0.000	0.442
13	24	198.984	0.166	1.546	36	51	45.896	0.000	0.388
13	25	91.721	0.556	0.660	36	52	75.198	0.000	0.218
13	26	70.764	0.306	0.582	36	53	60.950	0.000	0.182
13	27	52.426	0.116	0.516	36	54	49.225	0.000	0.158
13	28	187.662	0.000	1.558	37	1	121.365	0.000	0.466
13	29	171.019	0.000	1.422	37	2	97.158	0.000	0.368
13	30	154.083	0.002	1.276	37	3	75.930	0.000	0.296
13	31	103.186	0.002	0.270	37	4	194.929	0.000	1.544
13	32	85.545	0.004	0.224	37	5	169.795	0.000	1.360
13	33	68.894	0.020	0.182	37	6	145.021	0.000	1.148
13	34	143.955	0.000	0.862	37	7	239.830	0.000	2.554
13	35	128.613	0.000	0.772	37	8	207.280	0.000	2.202
13	36	115.546	0.000	0.702	37	9	176.905	0.000	1.866
13	37	140.526	0.134	1.138	37	10	112.110	0.000	0.878
13	38	125.750	0.110	1.032	37	11	85.320	0.000	0.692
13	39	114.370	0.040	0.956	37	12	61.474	0.000	0.484
13	40	116.205	0.300	0.278	37	13	169.818	0.000	1.772
13	41	102.455	0.382	0.226	37	14	129.510	0.000	1.332
13	42	89.803	0.448	0.184	37	15	96.765	0.000	1.000
13	43	82.539	0.732	0.218	37	16	200.128	0.000	0.826
13	44	67.349	0.710	0.166	37	17	187.998	0.000	0.764
13	45	54.623	0.604	0.132	37	18	177.161	0.000	0.720
13	46	87.001	0.776	0.354	37	19	90.588	0.362	0.320
13	47	67.481	0.758	0.240	37	20	66.100	0.280	0.218
13	48	51.116	0.642	0.162	37	21	45.814	0.190	0.152
13	49	70.797	0.248	0.510	37	22	226.340	0.340	1.704
13	50	54.403	0.048	0.440	37	23	210.970	0.276	1.618
13	51	45.966	0.002	0.388	37	24	196.363	0.234	1.494
13	52	83.945	0.552	0.168	37	25	94.937	0.042	0.950
13	53	69.067	0.466	0.136	37	26	68.814	0.010	0.726
13	54	57.716	0.358	0.134	37	27	49.219	0.002	0.528
14	1	121.365	0.000	0.466	37	28	187.662	0.000	1.558
14	2	97.158	0.000	0.368	37	29	171.019	0.000	1.422
14	3	75.930	0.000	0.296	37	30	154.051	0.000	1.276
14	4	194.929	0.000	1.544	37	31	103.188	0.000	0.270
14	5	169.795	0.000	1.360	37	32	85.471	0.000	0.224
14	6	145.021	0.000	1.148	37	33	68.599	0.000	0.182
14	7	239.830	0.000	2.554	37	34	143.955	0.000	0.862

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
14	8	207.280	0.000	2.202		37	35	128.613	0.000	0.772
14	9	176.905	0.000	1.866		37	36	115.546	0.000	0.702
14	10	109.701	0.214	0.812		37	37	140.295	0.000	1.168
14	11	83.945	0.142	0.638		37	38	124.804	0.000	1.046
14	12	61.877	0.048	0.476		37	39	114.017	0.000	0.964
14	13	162.267	0.226	1.598		37	40	115.420	0.000	0.318
14	14	120.298	0.302	1.114		37	41	101.659	0.000	0.274
14	15	91.550	0.290	0.826		37	42	88.452	0.000	0.240
14	16	200.128	0.000	0.826		37	43	87.545	0.000	0.472
14	17	188.021	0.002	0.764		37	44	65.862	0.000	0.362
14	18	177.161	0.000	0.720		37	45	47.402	0.000	0.272
14	19	91.902	0.436	0.312		37	46	89.053	0.266	0.458
14	20	67.141	0.332	0.220		37	47	67.411	0.152	0.330
14	21	47.207	0.234	0.152		37	48	48.916	0.074	0.240
14	22	227.132	0.016	1.832		37	49	66.539	0.006	0.546
14	23	212.741	0.026	1.720		37	50	53.073	0.002	0.442
14	24	199.035	0.014	1.600		37	51	45.966	0.002	0.388
14	25	96.527	0.232	0.886		37	52	78.974	0.298	0.190
14	26	69.877	0.098	0.690		37	53	64.394	0.230	0.156
14	27	49.640	0.018	0.526		37	54	52.591	0.164	0.144
14	28	187.662	0.000	1.558		38	1	121.365	0.000	0.466
14	29	171.019	0.000	1.422		38	2	97.158	0.000	0.368
14	30	154.051	0.000	1.276		38	3	75.930	0.000	0.296
14	31	103.188	0.000	0.270		38	4	194.929	0.000	1.544
14	32	85.471	0.000	0.224		38	5	169.795	0.000	1.360
14	33	68.599	0.000	0.182		38	6	145.021	0.000	1.148
14	34	143.955	0.000	0.862		38	7	239.830	0.000	2.554
14	35	128.613	0.000	0.772		38	8	207.280	0.000	2.202
14	36	115.546	0.000	0.702		38	9	176.905	0.000	1.866
14	37	140.341	0.016	1.166		38	10	105.036	0.350	0.746
14	38	124.908	0.014	1.044		38	11	81.844	0.214	0.600
14	39	114.018	0.006	0.962		38	12	60.746	0.106	0.448
14	40	115.727	0.060	0.312		38	13	143.466	0.512	1.280
14	41	101.820	0.076	0.258		38	14	113.770	0.372	1.008
14	42	88.914	0.102	0.224		38	15	90.627	0.204	0.850
14	43	88.008	0.300	0.390		38	16	201.247	0.312	0.760
14	44	68.826	0.308	0.304		38	17	188.550	0.310	0.698
14	45	50.229	0.202	0.218		38	18	177.089	0.266	0.668
14	46	89.728	0.462	0.432		38	19	93.315	0.094	0.348
14	47	68.055	0.406	0.296		38	20	66.750	0.108	0.236
14	48	50.867	0.326	0.210		38	21	45.449	0.082	0.158
14	49	67.505	0.060	0.532		38	22	227.315	0.482	1.680
14	50	53.399	0.012	0.442]	38	23	211.475	0.416	1.578

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	-	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
14	51	45.966	0.002	0.388		38	24	196.421	0.398	1.444
14	52	78.568	0.210	0.196		38	25	93.199	0.258	0.824
14	53	64.701	0.168	0.168		38	26	68.557	0.108	0.668
14	54	52.248	0.108	0.150		38	27	49.552	0.024	0.520
15	1	121.365	0.000	0.466		38	28	187.662	0.000	1.558
15	2	97.158	0.000	0.368		38	29	171.019	0.000	1.422
15	3	75.930	0.000	0.296		38	30	154.051	0.000	1.276
15	4	194.929	0.000	1.544		38	31	103.188	0.000	0.270
15	5	169.795	0.000	1.360		38	32	85.471	0.000	0.224
15	6	145.021	0.000	1.148		38	33	68.599	0.000	0.182
15	7	239.830	0.000	2.554		38	34	143.955	0.000	0.862
15	8	207.280	0.000	2.202		38	35	128.613	0.000	0.772
15	9	176.905	0.000	1.866		38	36	115.546	0.000	0.702
15	10	112.063	0.028	0.872		38	37	139.152	0.276	1.080
15	11	85.278	0.014	0.686		38	38	124.678	0.130	1.010
15	12	61.540	0.006	0.484		38	39	114.437	0.048	0.958
15	13	169.380	0.024	1.754		38	40	115.870	0.434	0.276
15	14	128.987	0.032	1.314		38	41	102.353	0.424	0.236
15	15	96.808	0.048	0.982		38	42	88.491	0.408	0.196
15	16	200.128	0.000	0.826		38	43	82.857	0.472	0.302
15	17	187.998	0.000	0.764		38	44	64.896	0.334	0.254
15	18	177.161	0.000	0.720		38	45	49.351	0.226	0.218
15	19	93.639	0.134	0.348		38	46	88.261	0.338	0.424
15	20	67.588	0.106	0.244		38	47	66.684	0.340	0.290
15	21	45.850	0.046	0.164		38	48	50.139	0.274	0.218
15	22	227.097	0.002	1.836		38	49	68.409	0.126	0.524
15	23	212.338	0.002	1.722		38	50	53.452	0.020	0.440
15	24	198.816	0.000	1.600		38	51	46.164	0.008	0.388
15	25	96.542	0.046	0.970		38	52	80.507	0.382	0.186
15	26	69.128	0.016	0.724		38	53	65.543	0.284	0.154
15	27	49.285	0.002	0.528		38	54	53.800	0.222	0.138
15	28	187.662	0.000	1.558		39	1	111.395	0.494	0.376
15	29	171.019	0.000	1.422		39	2	91.652	0.408	0.296
15	30	154.051	0.000	1.276		39	3	75.626	0.286	0.266
15	31	103.188	0.000	0.270		39	4	159.502	0.668	1.014
15	32	85.471	0.000	0.224		39	5	139.673	0.610	0.898
15	33	68.599	0.000	0.182		39	6	122.027	0.516	0.774
15	34	143.955	0.000	0.862		39	7	169.475	0.792	1.344
15	35	128.613	0.000	0.772		39	8	137.632	0.782	0.996
15	36	115.546	0.000	0.702		39	9	115.764	0.744	0.788
15	37	140.369	0.004	1.168		39	10	101.188	0.454	0.662
15	38	124.804	0.000	1.046		39	11	78.732	0.438	0.534
15	39	114.017	0.000	0.964	J	39	12	59.946	0.410	0.380

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	-	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
15	40	115.382	0.002	0.316		39	13	121.350	0.914	0.860
15	41	101.646	0.010	0.272		39	14	92.603	0.884	0.578
15	42	88.522	0.008	0.240		39	15	72.733	0.806	0.406
15	43	88.017	0.038	0.466		39	16	201.843	0.368	0.754
15	44	66.422	0.050	0.348		39	17	189.375	0.390	0.684
15	45	48.459	0.036	0.270		39	18	177.643	0.372	0.648
15	46	90.308	0.154	0.480		39	19	92.779	0.142	0.342
15	47	67.755	0.124	0.336		39	20	67.229	0.156	0.240
15	48	49.785	0.072	0.250		39	21	45.714	0.160	0.148
15	49	66.566	0.004	0.546		39	22	228.008	0.238	1.780
15	50	53.009	0.000	0.442		39	23	212.952	0.294	1.640
15	51	45.896	0.000	0.388		39	24	198.670	0.298	1.520
15	52	76.318	0.044	0.216		39	25	89.041	0.684	0.586
15	53	61.982	0.036	0.180		39	26	70.546	0.504	0.476
15	54	49.764	0.018	0.158		39	27	54.144	0.324	0.422
16	1	115.756	0.302	0.410		39	28	171.200	0.774	1.216
16	2	94.175	0.298	0.330		39	29	153.473	0.736	1.086
16	3	76.020	0.260	0.278		39	30	136.634	0.670	0.956
16	4	164.259	0.658	1.084		39	31	93.554	0.560	0.178
16	5	135.893	0.732	0.860		39	32	76.485	0.554	0.122
16	6	113.725	0.760	0.652		39	33	63.001	0.500	0.102
16	7	162.864	0.864	1.240		39	34	142.789	0.554	0.702
16	8	125.411	0.924	0.814		39	35	129.462	0.456	0.638
16	9	99.596	0.952	0.520		39	36	116.553	0.306	0.604
16	10	95.409	0.814	0.558		39	37	140.670	0.454	1.070
16	11	74.413	0.774	0.410		39	38	127.013	0.456	0.962
16	12	58.733	0.710	0.298		39	39	116.042	0.344	0.898
16	13	120.076	0.946	0.836		39	40	116.909	0.550	0.274
16	14	90.855	0.940	0.544		39	41	103.080	0.572	0.224
16	15	69.951	0.944	0.334		39	42	88.931	0.572	0.180
16	16	201.426	0.338	0.758		39	43	79.517	0.854	0.170
16	17	188.958	0.350	0.692		39	44	65.398	0.802	0.122
16	18	177.325	0.338	0.650		39	45	53.251	0.676	0.110
16	19	89.298	0.520	0.290		39	46	87.656	0.202	0.438
16	20	65.341	0.470	0.194		39	47	65.878	0.236	0.304
16	21	46.215	0.390	0.134		39	48	49.295	0.270	0.210
16	22	227.447	0.564	1.662		39	49	73.384	0.440	0.466
16	23	211.820	0.582	1.536		39	50	58.944	0.274	0.406
16	24	196.487	0.634	1.388		39	51	48.641	0.114	0.374
16	25	86.930	0.896	0.454		39	52	79.149	0.248	0.202
16	26	70.874	0.806	0.330		39	53	66.097	0.258	0.162
16	27	60.175	0.658	0.318		39	54	54.747	0.256	0.140
16	28	171.432	0.784	1.220		40	1	116.944	0.222	0.428

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

16 20 15.26 0.842 0.864 40 2 93.29 0.366 0.324 16 30 190.882 0.884 0.854 40 3 75.38 0.350 0.282 16 32 85.72 0.328 0.764 40 4 145.015 0.382 0.682 16 33 65.47 0.328 0.176 40 5 124.731 0.982 0.682 16 35 131.959 0.608 0.610 40 8 117.843 0.988 0.550 16 35 127.283 0.762 0.888 40 10 111.00 0.886 0.650 16 41 102.17 0.506 0.184 40 11 111.00 0.886 1.052 16 42 85.71 0.825 0.880 40 11 111.00 0.845 0.650 16 44 65.18 0.842 0.224 40	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
16 30 10.882 0.884 0.854 16 31 99.09 0.280 0.224 16 32 81.57 0.384 0.176 16 33 165.437 0.384 0.134 16 34 145.13 0.582 0.684 16 36 120.854 0.558 0.684 16 36 120.854 0.558 0.585 16 36 120.854 0.558 0.585 16 38 127.289 0.762 0.888 16 39 117.601 0.862 0.838 16 40 150.07 0.804 0.224 16 41 102.179 0.504 0.224 16 42 8.71 0.508 0.184 16 43 80.733 0.825 0.020 16 45 55.549 0.826 0.020 16 45 55.64 0.826 <td< td=""><td>16</td><td>29</td><td>151.256</td><td>0.842</td><td>1.050</td><td></td><td>40</td><td>2</td><td>93.720</td><td>0.306</td><td>0.334</td></td<>	16	29	151.256	0.842	1.050		40	2	93.720	0.306	0.334
16 31 90.09 0.280 0.224 16 32 81.572 0.328 0.176 16 32 81.572 0.328 0.176 16 34 143.613 0.592 0.884 16 34 143.613 0.592 0.884 16 35 131.359 0.608 0.610 16 36 120.954 0.558 0.588 16 37 140.057 0.808 0.572 16 38 127.290 0.762 0.884 16 39 117.601 0.662 0.838 16 40 116 83.99 0.128 0.660 16 41 16.002 0.476 0.274 16 42 87.51 0.588 0.184 16 43 80.743 0.832 0.200 16 44 65.39 0.752 0.322 0.752 16 45 5	16	30	130.882	0.888	0.854		40	3	75.438	0.350	0.262
16 32 81.572 0.328 0.176 16 33 65.477 0.364 0.134 16 34 143.613 0.592 0.684 16 35 131.350 0.608 0.610 16 36 120.854 0.558 0.568 16 37 140.057 0.008 0.972 16 38 177.289 0.762 0.888 16 39 177.60 0.662 0.888 16 40 16.002 0.476 0.274 40 12 6.661 0.190 0.438 16 41 10.217 0.504 0.224 16 43 80.731 0.508 0.024 16 44 65.418 0.844 0.110 16 45 85.89 0.886 0.400 16 44 85.18 0.846 0.080 16 45 85.89 0.886	16	31	99.009	0.280	0.224		40	4	149.016	0.902	0.868
16 33 6.437 0.384 0.184 40 6 105.061 0.940 0.510 16 35 131.359 0.698 0.110 40 7 151.963 0.986 1.054 16 36 120.854 0.558 0.558 40 9 95.233 0.994 0.440 16 37 140.057 0.808 0.972 40 10 111.090 0.994 0.860 16 39 117.501 0.562 0.838 40 11 80.901 0.438 16 41 102.179 0.504 0.224 40 14 117.59 0.282 1.100 16 42 89.751 0.508 0.184 40 16 20.919 0.048 0.820 16 44 65.418 0.824 0.010 40 16 176.42 0.124 0.680 16 45 55.549 0.826 0.020 0.324 <	16	32	81.572	0.328	0.176		40	5	124.731	0.932	0.692
16 34 143.613 0.592 0.684 40 7 151.663 0.968 1.054 16 35 13.356 0.698 0.619 40 8 17.443 0.990 0.680 16 37 140.657 0.888 0.572 0.888 40 9 9.5233 0.994 0.680 16 38 127.289 0.762 0.888 40 11 83.909 0.128 0.680 16 39 117.601 0.662 0.888 40 11 83.909 0.128 0.680 16 40 16.002 0.478 0.274 40 11 83.909 0.128 0.680 16 41 16.002 0.478 0.274 40 14 17.759 0.322 1.00 16 42 87.51 0.586 0.144 40 16 20.819 0.064 0.820 16 43 87.55 0.832 0.	16	33	65.437	0.364	0.134		40	6	105.061	0.940	0.510
163513.389 0.608 0.610 408 17.843 0.980 0.680 1636 122.854 0.558 0.568 40 9 95.293 0.9944 0.440 1637 140.057 0.808 0.972 40 10 111.090 0.0844 0.8650 1639 117.601 0.662 0.888 40 111 83.990 0.128 0.5651 1640 116.002 0.476 0.2244 40 13 150.861 0.555 1.666 1642 88.751 0.564 0.2244 40 15 87.515 0.3322 0.750 1643 80.73 0.632 0.200 40 18 177.643 0.124 0.966 1644 65.418 0.944 0.110 40 17 188.907 0.096 0.750 1645 55.549 0.226 0.180 40 18 177.643 0.124 0.966 1648 51.388 0.768 0.146 40 21 45.89 0.505 0.164 1653 60.618 0.460 0.180 40 22 27.196 0.074 1.814 1653 60.694 0.372 40 23 216.291 0.996 1.690 171 120.671 0.020 0.456 40 22 27.196 0.450 1.284 171 $120.$	16	34	143.613	0.592	0.684		40	7	151.963	0.968	1.054
16 38 12.0854 0.558 0.568 40 9 95.233 0.994 0.440 16 37 140.057 0.008 0.972 40 10 111.080 0.084 0.680 16 39 117.601 0.662 0.838 40 11 83.909 0.128 0.661 16 41 102.179 0.504 0.224 40 11 117.799 0.262 1100 16 42 88.751 0.508 0.184 40 15 87.515 0.332 0.782 16 44 65.418 0.3844 0.110 40 17 18.907 0.096 0.750 16 44 65.418 0.382 0.000 40 18 17.783 0.242 0.661 16 45 55.549 0.282 0.160 40 18 17.783 0.242 0.668 16 47 66.038 0.792 0.214 40 20 67.235 0.036 0.246 16 51 55.40 0.640 0.372 40 23 212.291 0.991 1.590 16 51 55.40 0.640 0.372 40 23 212.291 0.920 0.554 16 52 81.56 0.460 0.180 40 24 196.66 0.922 1.572 16 52 81.56 0.222 1.284 40 27 57.797	16	35	131.359	0.608	0.610		40	8	117.843	0.990	0.680
16 37 140.087 0.808 0.972 40 10 111.000 0.084 0.880 16 38 127.299 0.762 0.888 40 11 83.909 0.128 0.650 16 40 116.002 0.476 0.224 40 11 102.179 0.504 0.224 16 41 102.179 0.504 0.224 40 14 117.799 0.262 1100 16 42 88.751 0.508 0.184 40 16 20.819 0.644 0.820 16 43 80.733 0.332 0.200 40 18 17.643 0.124 0.966 16 45 55.549 0.282 0.194 0.322 40 18 17.643 0.124 0.664 16 47 66.038 0.792 0.214 40 16 20.819 0.064 0.820 16 47 66.038 0.792 0.214 40 20 67.235 0.036 0.246 16 49 77.779 0.742 0.466 40 22 22.186 0.092 1.572 16 52 81.62 0.460 0.180 40 23 212.291 0.098 1.690 16 52 81.62 0.022 0.224 40 26 70.075 0.502 0.384 16 53 68.018 0.404 0.142 40 28 <td< td=""><td>16</td><td>36</td><td>120.854</td><td>0.558</td><td>0.568</td><td></td><td>40</td><td>9</td><td>95.293</td><td>0.994</td><td>0.440</td></td<>	16	36	120.854	0.558	0.568		40	9	95.293	0.994	0.440
16 38 127.289 0.762 0.888 16 39 117.601 0.662 0.838 16 40 116.002 0.476 0.274 16 41 102.173 0.504 0.224 16 42 88.751 0.500 0.184 16 43 80.743 0.832 0.200 16 44 65.418 0.844 0.110 16 45 55.549 0.826 0.090 16 45 55.549 0.826 0.090 16 45 55.549 0.826 0.090 16 45 55.549 0.322 0.140 18 177.643 0.124 0.696 16 51 55.401 0.424 0.322 400 21 67.235 0.036 0.164 16 51 55.401 0.424 0.322 400 22 22.7196 0.072 1.572 16 51	16	37	140.057	0.808	0.972		40	10	111.090	0.084	0.860
16 39 117.601 0.662 0.838 40 12 60.661 0.190 0.438 16 40 116.002 0.476 0.274 40 13 100.861 0.156 1.606 16 41 102.173 0.508 0.184 40 13 100.861 0.156 1.606 16 44 65.418 0.832 0.200 40 15 87.515 0.322 0.782 16 44 65.418 0.844 0.110 40 18 177.43 0.124 0.696 0.750 16 45 55.549 0.826 0.000 40 18 177.43 0.124 0.696 0.750 16 47 66.038 0.792 0.214 40 20 67.235 0.036 0.224 16 52 81.626 0.424 0.328 40 22 27.196 0.074 1.814 16 52 86.018	16	38	127.289	0.762	0.888		40	11	83.909	0.128	0.650
16 40 116.002 0.476 0.274 16 41 102.179 0.504 0.224 16 42 88.751 0.508 0.144 16 43 80.743 0.832 0.200 16 44 55.418 0.832 0.200 16 45 55.549 0.822 0.794 16 46 85.932 0.794 0.332 16 47 66.038 0.792 0.214 16 48 51.358 0.768 0.146 16 49 77.779 0.742 0.406 16 51 55.401 0.424 0.332 16 52 81.626 0.460 0.184 16 53 68.018 0.404 0.142 16 54 56.807 0.366 0.164 17 1 120.671 0.020 0.456 17 1 120.671 0.222 <td< td=""><td>16</td><td>39</td><td>117.601</td><td>0.662</td><td>0.838</td><td></td><td>40</td><td>12</td><td>60.661</td><td>0.190</td><td>0.438</td></td<>	16	39	117.601	0.662	0.838		40	12	60.661	0.190	0.438
16 41 102.179 0.504 0.224 40 14 117.759 0.262 1.100 16 42 88.751 0.508 0.184 40 15 87.515 0.332 0.782 16 44 65.418 0.844 0.110 40 16 200.819 0.064 0.820 16 445 55.549 0.826 0.000 40 18 17.643 0.124 0.696 16 47 66.038 0.792 0.214 40 20 67.235 0.036 0.246 16 48 51.358 0.768 0.146 40 22 22.7196 0.074 1.814 16 50 66.345 0.594 0.372 400 23 212.291 0.098 1.690 16 51 55.401 0.424 0.328 400 24 198.626 0.092 1.572 16 52 81.626 0.460 0.180 40 25 90.724 0.420 0.724 17 1 120.671 0.026 0.366 400 28 182.167 0.312 1.446 17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 4 188.607 0.172 1.452 40 33 60.977 0.744 0.662 17 7 205.478 0.452 1.958 40 34 142.109	16	40	116.002	0.476	0.274		40	13	160.861	0.156	1.606
16 42 88.751 0.508 0.184 40 15 87.515 0.332 0.782 16 43 80.743 0.832 0.200 40 16 200.819 0.064 0.820 16 44 65.418 0.844 0.110 40 17 188.907 0.096 0.750 16 46 85.932 0.794 0.332 40 19 93.465 0.018 0.388 16 48 51.388 0.768 0.146 40 21 45.899 0.050 0.164 16 49 77.779 0.742 0.406 40 22 22.7196 0.074 1.814 16 50 66.345 0.594 0.372 400 22 22.7196 0.074 1.814 16 51 55.401 0.424 0.328 400 22 22.7196 0.074 1.814 16 55 81.626 0.490 0.160 40 22 27.196 0.074 1.814 16 53 68.018 0.404 0.142 40 26 70.075 0.502 0.488 17 1 120.671 0.022 0.294 40 28 182.167 0.312 1.446 17 7 26.478 0.452 1.288 40 31 91.877 0.662 0.160 17 7 26.478 0.452 1.958 40 34 142.109	16	41	102.179	0.504	0.224		40	14	117.759	0.262	1.100
16 43 80.743 0.832 0.200 16 44 65.418 0.844 0.110 16 45 55.549 0.826 0.080 16 46 85.932 0.794 0.332 16 47 66.038 0.792 0.214 16 48 51.355 0.768 0.116 16 49 77.779 0.742 0.406 16 50 66.345 0.594 0.372 16 51 55.401 0.424 0.328 16 52 81.626 0.460 0.180 16 52 81.628 0.460 0.180 16 54 56.807 0.366 0.126 17 1 120.671 0.022 0.244 16 54 56.807 0.366 0.126 17 3 75.900 0.022 0.294 17 4 188.607 0.172 1.	16	42	88.751	0.508	0.184		40	15	87.515	0.332	0.782
16 44 65.418 0.844 0.110 40 17 188.907 0.096 0.750 16 45 55.549 0.826 0.080 40 18 177.643 0.124 0.696 16 47 66.038 0.792 0.214 40 19 93.465 0.018 0.358 16 49 77.79 0.742 0.406 40 21 46.699 0.050 0.164 16 49 77.79 0.742 0.406 40 22 27.196 0.074 1.814 16 50 66.345 0.594 0.372 40 23 212.291 0.998 1.690 16 51 55.401 0.424 0.328 40 24 198.628 0.092 1.572 16 52 81.626 0.460 0.1160 40 25 90.724 0.420 0.724 16 53 68.018 0.404 0.142 40 26 70.075 0.502 0.488 17 1 120.671 0.022 0.224 1002 18.296 0.504 1.218 17 4 188.607 0.172 1.452 40 30 18.296 0.714 0.102 17 7 20.5478 0.622 1.228 400 31 91.877 0.662 0.160 17 7 20.5478 0.530 0.480 40 33 10.977 0.744 <td>16</td> <td>43</td> <td>80.743</td> <td>0.832</td> <td>0.200</td> <td></td> <td>40</td> <td>16</td> <td>200.819</td> <td>0.064</td> <td>0.820</td>	16	43	80.743	0.832	0.200		40	16	200.819	0.064	0.820
16 45 55.549 0.826 0.080 40 18 177.643 0.124 0.696 16 46 85.932 0.794 0.332 40 19 93.465 0.018 0.358 16 47 66.038 0.792 0.214 40 20 67.235 0.036 0.246 16 49 77.779 0.742 0.406 40 22 227.196 0.074 1.814 16 50 66.345 0.594 0.372 40 23 212.291 0.098 1.690 16 51 55.401 0.424 0.228 400 22 90.724 0.420 0.724 16 52 81.626 0.460 0.180 40 22 90.724 0.420 0.724 16 53 66.018 0.404 0.142 400 26 70.075 0.502 0.488 17 1 120.671 0.022 0.224 1.466 400 22 160.316 0.450 1.218 17 4 188.607 0.172 1.452 1.420 400 32 74.545 0.714 0.100 17 4 188.607 0.172 1.452 1.958 400 33 60.977 0.744 0.674 17 7 205.478 0.452 1.958 400 32 74.545 0.714 0.100 17 7 151.162 0.222 1.2	16	44	65.418	0.844	0.110		40	17	188.907	0.096	0.750
16 46 85.932 0.794 0.332 40 19 93.465 0.018 0.358 16 47 66.038 0.792 0.214 40 20 67.235 0.036 0.246 16 49 77.779 0.742 0.406 40 21 45.689 0.050 0.164 16 50 66.345 0.594 0.372 40 22 227.196 0.074 1.814 16 55 81.626 0.460 0.180 40 22 227.196 0.074 1.814 16 52 81.626 0.460 0.180 40 22 227.196 0.074 1.814 16 53 68.018 0.404 0.142 40 23 212.291 0.098 1.690 17 1 120.671 0.020 0.456 40 22 90.724 0.420 0.724 17 1 120.671 0.020 0.456 40 22 160.316 0.450 1.218 17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 4 18.607 0.172 1.452 40 31 91.877 0.662 0.160 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 7 $12.4.068$ 0.702 0.912 40 36 121.739	16	45	55.549	0.826	0.080		40	18	177.643	0.124	0.696
16 47 66.038 0.792 0.214 40 20 67.235 0.036 0.246 16 48 51.358 0.768 0.146 40 21 45.689 0.050 0.164 16 49 77.779 0.742 0.406 40 22 227.196 0.074 1.814 16 50 66.345 0.594 0.372 40 23 212.291 0.098 1.690 16 51 55.401 0.424 0.328 40 24 198.626 0.092 1.572 16 52 81.626 0.460 0.180 40 25 90.724 0.420 0.724 16 53 68.018 0.404 0.142 40 26 70.075 0.502 0.488 16 54 56.807 0.366 0.126 40 27 57.797 0.520 0.354 17 1 120.671 0.020 0.456 40 28 182.167 0.312 1.446 17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 7 205.478 0.452 1.958 40 34 142.109 0.844 0.612 17 1 101.288 0.590 0.584 1.354 40 38 <td< td=""><td>16</td><td>46</td><td>85.932</td><td>0.794</td><td>0.332</td><td></td><td>40</td><td>19</td><td>93.465</td><td>0.018</td><td>0.358</td></td<>	16	46	85.932	0.794	0.332		40	19	93.465	0.018	0.358
16 48 51.358 0.768 0.146 40 21 45.689 0.050 0.164 16 49 77.779 0.742 0.406 40 22 227.196 0.074 1.814 16 50 66.345 0.594 0.372 40 23 212.291 0.098 1.690 16 51 55.401 0.424 0.328 40 24 198.626 0.092 1.572 16 52 81.626 0.460 0.180 40 25 90.724 0.420 0.724 16 53 66.018 0.404 0.142 40 26 70.075 0.502 0.488 16 54 56.807 0.020 0.456 40 28 182.167 0.312 1.446 17 1 120.671 0.020 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.074 17 4 188.607 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.958 40 34 142.109 0.864 0.612 17 18 159.510 0.594 0.366 121.739 0.822 0.4	16	47	66.038	0.792	0.214		40	20	67.235	0.036	0.246
16 49 $7.7.79$ 0.742 0.406 40 22 227.196 0.074 1.814 16 50 66.345 0.594 0.372 40 23 212.291 0.098 1.690 16 51 55.401 0.424 0.328 40 24 198.626 0.092 1.572 16 52 81.626 0.460 0.180 40 24 198.626 0.092 0.724 16 53 68.018 0.404 0.142 40 26 70.075 0.502 0.488 17 1 120.671 0.020 0.456 40 28 182.167 0.312 1.446 17 2 96.835 0.022 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.074 17 7 205.478 0.452 1.958 40 33 60.977 0.744 0.074 17 7 205.478 0.590 0.6658 40 33 114.219 0.822 0.494 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.1618 17 11 77.482 0.530 0.6658 40 39 114.924 <	16	48	51.358	0.768	0.146		40	21	45.689	0.050	0.164
16 50 66.345 0.594 0.372 40 23 212.291 0.098 1.690 16 51 55.401 0.424 0.328 40 24 198.626 0.092 1.572 16 53 68.018 0.404 0.142 40 25 90.724 0.420 0.724 16 54 56.807 0.366 0.126 40 26 70.075 0.502 0.488 17 1 120.671 0.020 0.456 40 28 182.167 0.312 1.446 17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 3 75.900 0.022 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 18 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 10 101.268 0.580 0.658 40 38 125.176 0.146 1.018 17 11 77.482 0.870 0.616 40 39 114.924 <td>16</td> <td>49</td> <td>77.779</td> <td>0.742</td> <td>0.406</td> <td></td> <td>40</td> <td>22</td> <td>227.196</td> <td>0.074</td> <td>1.814</td>	16	49	77.779	0.742	0.406		40	22	227.196	0.074	1.814
16 51 55.401 0.424 0.328 40 24 198.626 0.092 1.572 16 52 81.626 0.460 0.180 40 25 90.724 0.420 0.724 16 53 68.018 0.404 0.142 40 26 70.075 0.502 0.488 16 54 56.807 0.366 0.126 40 27 57.797 0.520 0.354 17 1 120.671 0.020 0.456 40 28 182.167 0.312 1.446 17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 3 75.900 0.022 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 10 101.268 0.580 0.658 40 38 125.176 0.146 1.018 17 11 77.482 0.870 0.616 40 39 114.924	16	50	66.345	0.594	0.372		40	23	212.291	0.098	1.690
16 52 81.626 0.460 0.180 40 25 90.724 0.420 0.724 16 53 68.018 0.404 0.142 40 26 70.075 0.502 0.488 16 54 56.807 0.366 0.126 40 27 57.797 0.520 0.354 17 1 120.671 0.020 0.456 40 28 182.167 0.312 1.446 17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 3 75.900 0.022 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 9 124.068 0.702 0.912 40 38 122.173 0.822 0.494 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.018 17 13 126.626 0.842 0.952 40 40 116.414	16	51	55.401	0.424	0.328		40	24	198.626	0.092	1.572
16 53 68.018 0.404 0.142 40 26 70.075 0.502 0.488 16 54 56.807 0.366 0.126 40 27 57.797 0.520 0.354 17 1 120.671 0.020 0.456 40 28 182.167 0.312 1.446 17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 3 75.900 0.022 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 31 91.877 0.662 0.160 17 6 137.298 0.242 1.020 40 33 60.977 0.744 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 9 124.068 0.702 0.912 40 35 131.303 0.860 0.540 17 9 124.068 0.580 0.658 40 37 140.053 0.996 1.142 17 11 7.7482 0.530 0.480 40 38 125.176 0.146 1.018 17 12 59.289 0.428 0.952 40 40 116.414 <	16	52	81.626	0.460	0.180		40	25	90.724	0.420	0.724
16 54 56.807 0.366 0.126 40 27 57.797 0.520 0.354 17 1 120.671 0.020 0.456 40 28 182.167 0.312 1.446 17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 3 75.900 0.022 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 6 137.298 0.242 1.020 40 33 60.977 0.744 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 9 124.068 0.702 0.912 40 36 121.739 0.822 0.494 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.018 17 14 94.962 0.870 0.616 40 40 116.414 0.096 0.312 17 14 94.962 0.870 0.616 40 41 102.987 0.108 0.270 17 14 94.962 0.078 0.806 0.386 40 42 <	16	53	68.018	0.404	0.142		40	26	70.075	0.502	0.488
171 120.671 0.020 0.456 40 28 182.167 0.312 1.446 17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 3 75.900 0.022 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.074 17 6 137.298 0.242 1.020 40 33 60.977 0.744 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 9 124.068 0.702 0.912 40 36 121.739 0.822 0.494 17 10 101.268 0.580 0.658 40 37 140.053 0.096 1.142 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.018 17 13 126.626 0.842 0.952 40 40 116.414 0.096 0.312 17 14 94.962 0.870 0.386 40 41 102.987 0.108 $0.$	16	54	56.807	0.366	0.126		40	27	57.797	0.520	0.354
17 2 96.835 0.026 0.360 40 29 160.316 0.450 1.218 17 3 75.900 0.022 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.100 17 6 137.298 0.242 1.020 40 33 60.977 0.744 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 9 124.068 0.702 0.912 40 36 121.739 0.822 0.494 17 10 101.268 0.580 0.658 40 37 140.053 0.096 1.142 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.018 17 12 59.289 0.428 0.366 40 39 114.924 0.244 0.912 17 14 94.962 0.870 0.616 40 41 102.987 0.108 0.270 17 15 72.392 0.860 0.386 40 42 89.014 <td>17</td> <td>1</td> <td>120.671</td> <td>0.020</td> <td>0.456</td> <td></td> <td>40</td> <td>28</td> <td>182.167</td> <td>0.312</td> <td>1.446</td>	17	1	120.671	0.020	0.456		40	28	182.167	0.312	1.446
17 3 75.900 0.022 0.294 40 30 138.296 0.594 0.982 17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.100 17 6 137.298 0.242 1.020 40 33 60.977 0.744 0.074 17 6 137.298 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 9 124.068 0.702 0.912 40 36 121.739 0.822 0.494 17 10 101.268 0.580 0.658 40 37 140.053 0.096 1.142 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.018 17 12 59.289 0.428 0.366 40 39 114.924 0.244 0.912 17 14 94.962 0.870 0.616 40 41 102.987 0.108 0.270 17 15 72.392 0.860 0.386 40 43 81.988 0.580 0.272 17 16 200.362 0.078 0.806 40 43 81.988 <td>17</td> <td>2</td> <td>96.835</td> <td>0.026</td> <td>0.360</td> <td></td> <td>40</td> <td>29</td> <td>160.316</td> <td>0.450</td> <td>1.218</td>	17	2	96.835	0.026	0.360		40	29	160.316	0.450	1.218
17 4 188.607 0.172 1.452 40 31 91.877 0.662 0.160 17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.100 17 6 137.298 0.242 1.020 40 33 60.977 0.744 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 9 124.068 0.702 0.912 40 36 121.739 0.822 0.494 17 10 101.268 0.580 0.658 40 37 140.053 0.096 1.142 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.018 17 12 59.289 0.428 0.366 40 39 114.924 0.244 0.912 17 13 126.626 0.842 0.952 40 40 116.114 0.096 0.312 17 14 94.962 0.870 0.616 40 41 102.987 0.108 0.270 17 15 72.392 0.860 0.386 40 43 81.988 0.580 0.272 17 16 200.362 0.078 0.806 40 43 81.988 <	17	3	75.900	0.022	0.294		40	30	138.296	0.594	0.982
17 5 161.162 0.222 1.228 40 32 74.545 0.714 0.100 17 6 137.298 0.242 1.020 40 33 60.977 0.744 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 9 124.068 0.702 0.912 40 36 121.739 0.822 0.494 17 10 101.268 0.580 0.658 40 37 140.053 0.096 1.142 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.018 17 12 59.289 0.428 0.366 40 39 114.924 0.244 0.912 17 13 126.626 0.842 0.952 40 40 116.414 0.096 0.312 17 14 94.962 0.870 0.616 40 41 102.987 0.108 0.270 17 16 200.362 0.078 0.806 40 43 81.988 0.580 0.272	17	4	188.607	0.172	1.452		40	31	91.877	0.662	0.160
17 6 137.298 0.242 1.020 40 33 60.977 0.744 0.074 17 7 205.478 0.452 1.958 40 34 142.109 0.854 0.612 17 8 159.510 0.594 1.354 40 35 131.303 0.860 0.540 17 9 124.068 0.702 0.912 40 36 121.739 0.822 0.494 17 10 101.268 0.580 0.658 40 37 140.053 0.096 1.142 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.018 17 12 59.289 0.428 0.366 40 39 114.924 0.244 0.912 17 13 126.626 0.842 0.952 40 40 116.414 0.096 0.312 17 14 94.962 0.870 0.616 40 41 102.987 0.108 0.270 17 15 72.392 0.860 0.386 40 43 81.988 0.580 0.272 17 16 200.362 0.078 0.806 40 43 81.988 0.580 0.272	17	5	161.162	0.222	1.228		40	32	74.545	0.714	0.100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	6	137.298	0.242	1.020		40	33	60.977	0.744	0.074
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	7	205.478	0.452	1.958		40	34	142.109	0.854	0.612
17 9 124.068 0.702 0.912 40 36 121.739 0.822 0.494 17 10 101.268 0.580 0.658 40 37 140.053 0.096 1.142 17 11 77.482 0.530 0.480 40 38 125.176 0.146 1.018 17 12 59.289 0.428 0.366 40 39 114.924 0.244 0.912 17 13 126.626 0.842 0.952 40 40 116.414 0.096 0.312 17 14 94.962 0.870 0.616 40 41 102.987 0.108 0.270 17 15 72.392 0.860 0.386 40 42 89.014 0.124 0.226 17 16 200.362 0.078 0.806 40 43 81.988 0.580 0.272	17	8	159.510	0.594	1.354		40	35	131.303	0.860	0.540
17 10 101.268 0.580 0.658 17 11 77.482 0.530 0.480 17 11 77.482 0.530 0.480 17 12 59.289 0.428 0.366 17 13 126.626 0.842 0.952 17 14 94.962 0.870 0.616 17 15 72.392 0.860 0.386 17 16 200.362 0.078 0.806	17	9	124.068	0.702	0.912		40	36	121.739	0.822	0.494
17 11 77.482 0.530 0.480 17 11 77.482 0.530 0.480 17 12 59.289 0.428 0.366 17 13 126.626 0.842 0.952 17 14 94.962 0.870 0.616 17 15 72.392 0.860 0.386 17 16 200.362 0.078 0.806	17	10	101.268	0.580	0.658		40	37	140.053	0.096	1.142
17 12 59.289 0.428 0.366 17 13 126.626 0.842 0.952 17 13 126.626 0.842 0.952 17 14 94.962 0.870 0.616 17 15 72.392 0.860 0.386 17 16 200.362 0.078 0.806 17 16 200.362 0.078 0.806	17	11	77.482	0.530	0.480	1	40	38	125.176	0.146	1.018
17 13 126.626 0.842 0.952 40 40 116.414 0.096 0.312 17 14 94.962 0.870 0.616 40 41 102.987 0.108 0.270 17 15 72.392 0.860 0.386 40 42 89.014 0.124 0.226 17 16 200.362 0.078 0.806 40 43 81.988 0.580 0.272	17	12	59.289	0.428	0.366]	40	39	114.924	0.244	0.912
17 14 94.962 0.870 0.616 40 41 102.987 0.108 0.270 17 15 72.392 0.860 0.386 40 42 89.014 0.124 0.226 17 16 200.362 0.078 0.806 40 43 81.988 0.580 0.272	17	13	126.626	0.842	0.952	1	40	40	116.414	0.096	0.312
17 15 72.392 0.860 0.386 40 42 89.014 0.124 0.226 17 16 200.362 0.078 0.806 40 43 81.988 0.580 0.272	17	14	94.962	0.870	0.616]	40	41	102.987	0.108	0.270
17 16 200.362 0.078 0.806 40 43 81.988 0.580 0.272	17	15	72.392	0.860	0.386	1	40	42	89.014	0.124	0.226
	17	16	200.362	0.078	0.806	1	40	43	81,988	0.580	0.272
	17	17	188.214	0.078	0.750	1	40	44	65,139	0.688	0.156

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

17 18 17.305 0.086 0.702 40 45 54.366 0.724 0.092 17 19 91.233 0.254 0.326 40 45 54.366 0.484 17 21 45.596 0.198 0.152 40 47 7.152 0.066 0.342 17 22 220.093 0.344 1.764 40 48 49.360 0.092 0.252 0.496 17 22 120.677 0.344 1.618 40 52 77.839 0.155 0.204 17 24 198.272 0.528 0.354 40 55 5.650 0.180 0.134 17 29 164.161 0.394 1.284 41 1 10.192 0.948 0.282 177 31 102.888 0.014 0.854 41 4 150.01 0.888 0.874 177 33 67.903 0.634 0.166 <t< th=""><th>Policy No</th><th>Treat- ment</th><th>Total Cost</th><th>Schedule Delay</th><th>Major Field Defects</th><th></th><th>Policy No</th><th>Treat- ment</th><th>Total Cost</th><th>Schedule Delay</th><th>Major Field Defects</th></t<>	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
17 19 91.293 0.242 0.282 40 46 89.291 0.058 0.344 17 20 66.244 0.194 0.152 40 44 43.00 0.032 0.242 17 22 220.039 0.334 1.764 40 48 49.300 0.022 0.242 17 22 220.039 0.334 1.764 40 49 70.783 0.252 0.494 17 24 198.202 0.394 1.474 40 52 7.739 0.166 0.204 17 26 7.122 0.508 0.544 40 52 7.739 0.166 0.204 17 28 183.748 0.724 1.2244 40 53 64655 0.200 0.114 17 31 144.154 0.468 1090 41 1 101.192 0.948 0.322 17 33 6.7633 0.044 0.586 0	17	18	177.305	0.086	0.702		40	45	54.366	0.764	0.092
17 20 66.294 0.242 0.282 40 47 67.152 0.086 0.342 17 21 45.596 0.198 0.152 40 48 49.360 0.092 0.242 17 22 225.09 0.344 1.618 40 49 49.360 0.092 0.342 17 22 198.022 0.344 1.618 40 40 50 60.045 0.332 0.344 17 25 7.123 0.560 0.524 40 51 52.754 0.310 0.341 17 26 7.123 0.560 0.544 40 54 52.65 0.164 0.242 17 28 183.748 0.272 1.644 40 54 52.65 0.164 0.342 17 30 144.154 0.344 1.684 41 1 10.102 0.948 0.874 17 33 128.416 0.390 0.228	17	19	91.293	0.254	0.326		40	46	89.291	0.058	0.484
17 21 45.566 0.188 0.152 17 22 229.039 0.334 1.764 17 22 229.039 0.334 1.764 17 224 196.202 0.344 1.618 17 24 196.202 0.394 1.474 40 50 60.045 0.332 0.394 17 26 71.253 0.660 0.412 40 52 77.89 0.156 0.224 17 28 183.748 0.278 1.484 40 52 77.89 0.156 0.222 17 29 14.161 0.394 1.284 41 1 10.1912 0.952 0.170 17 30 14.256 0.020 0.212 41 16 10.252 0.970 0.470 17 34 14.256 0.102 0.584 411 16 10.252 0.970 0.482 17 35 12.844 <td>17</td> <td>20</td> <td>66.294</td> <td>0.242</td> <td>0.228</td> <td></td> <td>40</td> <td>47</td> <td>67.152</td> <td>0.056</td> <td>0.342</td>	17	20	66.294	0.242	0.228		40	47	67.152	0.056	0.342
17 22 22.93.93 0.334 1.764 40 49 70.78 0.252 0.496 17 23 212.677 0.344 1.618 40 50 60.045 0.332 0.394 177 24 198.022 0.394 1.774 6 6.204 0.344 177 25 8.729 0.784 0.524 40 53 64.655 0.200 0.164 177 26 71.250 0.680 0.354 40 54 52.650 0.180 0.134 177 28 183.748 0.278 1.444 1 1 10.192 0.942 0.282 0.201 177 30 144.154 0.468 1.020 0.414 1 1 10.192 0.962 0.170 177 31 102.88 0.014 0.264 41 41 4 19.001 0.470 177 33 128.414 0.100 0.784	17	21	45.596	0.198	0.152		40	48	49.360	0.092	0.242
17 23 212677 0.344 1.618 17 24 198.002 0.394 1.474 17 25 98.729 0.784 0.524 17 26 71.25 0.660 0.514 17 26 71.25 0.508 0.354 17 27 57.122 0.508 0.354 17 29 164.161 0.394 1.284 17 30 144.154 0.468 1.090 17 31 10.288 0.014 0.264 17 31 12.84 0.104 0.684 17 33 67.803 0.020 0.212 17 34 14.259 0.104 0.864 17 35 123.44 0.100 0.748 17 36 116.63 0.862 411 4 150.60 0.482 17 37 140.414 0.500 1.028 411 18 1	17	22	229.039	0.334	1.764		40	49	70.078	0.252	0.496
17 24 192.02 0.334 1.474 17 25 88.73 0.764 0.524 17 26 7123 0.660 0.412 17 28 18.748 0.278 1.464 17 29 164.161 0.394 1.284 17 30 144.154 0.468 1.004 17 31 102.888 0.014 0.284 17 31 122.888 0.020 0.212 17 33 67.803 0.034 0.168 17 33 102.846 0.950 0.170 17 34 144.259 0.104 0.856 17 35 129.414 0.100 0.748 17 36 116.638 0.922 0.940 17 37 140.414 0.560 1.028 17 38 126.788 0.522 0.940 17 39 115.966 0.422 <	17	23	212.677	0.344	1.618		40	50	60.045	0.332	0.394
17 25 88.729 0.784 0.524 40 52 77.839 0.156 0.204 17 26 71.23 0.660 0.412 40 53 64.655 0.200 0.164 17 29 164.161 0.394 1.284 41 1 101.192 0.942 0.228 17 29 164.161 0.394 1.284 41 2 64.09 0.972 0.208 17 30 144.154 0.468 1.090 411 3 73.129 0.952 0.170 17 33 67.803 0.020 0.214 41 5 128.46 0.966 0.664 177 33 116.638 0.098 0.682 411 6 128.46 0.976 1.300 177 36 116.638 0.098 0.682 411 10 91.52 0.990 0.490 177 37 140.414 0.180 0.288	17	24	198.202	0.394	1.474		40	51	52.754	0.310	0.344
17 26 71253 0.660 0.412 17 27 57.122 0.508 0.354 17 28 183.748 0.278 1.464 17 29 164.161 0.394 1.284 17 30 144.154 0.468 1.090 17 31 102.888 0.014 0.264 17 32 84.803 0.020 0.212 17 33 67.803 0.034 0.168 17 34 144.259 0.104 0.896 177 35 129.414 0.100 0.784 177 36 116.588 0.098 0.682 177 39 116.964 0.380 0.902 177 40 115.966 0.162 0.344 17 43 83.500 0.682 0.274 177 43 115.966 0.422 0.432 177 43 83.500 0.6862 <td>17</td> <td>25</td> <td>88.729</td> <td>0.784</td> <td>0.524</td> <td></td> <td>40</td> <td>52</td> <td>77.839</td> <td>0.156</td> <td>0.204</td>	17	25	88.729	0.784	0.524		40	52	77.839	0.156	0.204
17 27 57.122 0.508 0.354 17 28 183.748 0.278 1.464 17 29 184.161 0.394 1.244 17 30 144.154 0.468 1.090 17 31 102.88 0.014 0.244 17 32 84.803 0.020 0.212 17 33 67.803 0.034 0.168 17 34 144.259 0.104 0.836 17 35 129.414 0.100 0.748 17 36 16.638 0.098 0.682 17 36 16.638 0.098 0.682 17 39 16.638 0.989 0.480 17 39 16.944 0.380 0.902 17 40 15.906 0.162 0.304 17 42 81.90 0.164 0.285 17 44 66.242 0.624 <	17	26	71.253	0.660	0.412		40	53	64.655	0.200	0.164
17 28 18.3748 0.278 1.464 17 29 164.161 0.394 1.284 17 30 144.152 0.468 1.000 17 31 102.888 0.014 0.264 17 32 84.803 0.020 0.212 17 33 67.803 0.020 0.212 17 33 67.803 0.020 0.212 17 33 16.388 0.082 0.41 41 5 10.2682 0.970 0.470 17 36 116.638 0.098 0.682 41 6 12.845 0.976 0.482 17 36 116.38 0.980 0.926 41 10 91.527 0.980 0.490 17 39 16.864 0.850 1.028 41 11 11.1 11.31 116.82 0.996 0.778 17 40 115.968 0.969 0.228 41 <td>17</td> <td>27</td> <td>57.122</td> <td>0.508</td> <td>0.354</td> <td></td> <td>40</td> <td>54</td> <td>52.650</td> <td>0.180</td> <td>0.134</td>	17	27	57.122	0.508	0.354		40	54	52.650	0.180	0.134
17 29 164.161 0.394 1.284 17 30 144.154 0.468 1.090 17 31 102.888 0.014 0.284 17 32 84.03 0.020 0.212 17 33 67.803 0.020 0.212 17 34 144.259 0.104 0.886 17 35 129.414 0.100 0.748 17 36 116.688 0.098 0.682 17 36 116.580 1.028 411 61 0.9245 0.990 0.490 17 38 126.786 0.522 0.940 411 10 91.527 0.990 0.490 17 38 126.786 0.522 0.940 411 11 71.315 0.978 0.332 17 40 115.906 0.624 0.300 411 12 57.047 0.932 0.228 17 44 68.24	17	28	183.748	0.278	1.464		41	1	101.192	0.948	0.282
17 30 144.154 0.468 1.090 41 3 73.129 0.952 0.170 17 31 102.888 0.014 0.264 41 4 150.501 0.888 0.374 17 32 64.803 0.020 0.212 41 5 123.646 0.956 0.664 17 33 67.803 0.034 0.168 41 6 102.882 0.970 0.470 17 35 123.414 0.100 0.788 41 9 97.944 0.976 0.482 17 36 116.968 0.522 0.940 411 10 91.527 0.990 0.490 17 38 126.788 0.522 0.940 411 11 71.315 0.978 0.338 17 40 115.966 0.162 0.304 116 126.57 0.334 0.660 17 44 66.242 0.654 0.184 41	17	29	164.161	0.394	1.284		41	2	84.109	0.972	0.208
17 31 102.888 0.014 0.264 41 4 150.501 0.888 0.874 17 32 94.803 0.020 0.212 41 5 123.646 0.956 0.664 17 34 144.29 0.104 0.836 41 6 102.852 0.970 0.470 17 35 129.414 0.100 0.748 41 6 102.852 0.970 0.470 17 35 129.414 0.100 0.748 41 8 123.46 0.946 0.768 17 35 129.414 0.500 1.028 41 9 97.944 0.976 0.482 17 39 116.964 0.522 0.940 411 10 91.527 0.990 0.490 17 40 115.906 0.162 0.304 411 11 11.30 10.828 0.288 17 40 115.906 0.162 0.244 1141 11 11.862 0.996 0.778 17 44 66.24 0.662 0.238 411 116 80.491 0.994 0.302 17 44 87.662 0.658 0.360 411 18 18.866 0.910 0.226 17 44 87.662 0.590 0.432 411 11 18.866 0.994 0.152 17 45 53.43 0.590 0.432 411 22 22.622	17	30	144.154	0.468	1.090		41	3	73.129	0.952	0.170
17 32 84.803 0.020 0.212 41 5 123.646 0.956 0.664 17 33 67.803 0.034 0.168 41 6 102.852 0.970 0.470 17 34 144.259 0.104 0.836 41 7 167.009 0.850 1.300 17 35 129.414 0.100 0.748 41 8 123.416 0.946 0.682 17 37 140.414 0.550 1.028 41 9 97.944 0.976 0.482 17 39 116.964 0.380 0.902 41 10 91.527 0.990 0.490 17 40 115.506 0.162 0.304 41 11 71.315 0.978 0.338 17 41 101.921 0.164 0.258 41 11 11 87.642 0.228 17 43 83.050 0.668 0.274 41 11 11 87.642 0.622 0.638 17 44 66.242 0.624 0.186 411 11 17 90.924 0.302 17 46 87.662 0.558 0.380 411 18 178.966 0.422 0.638 17 47 66.494 0.662 0.238 411 12 27.48 0.908 0.226 17 51 51.680 0.590 0.432 411 22 $26.$	17	31	102.888	0.014	0.264		41	4	150.501	0.888	0.874
173367.803 0.034 0.168 411 6 102.852 0.970 0.470 1734 144.259 0.104 0.836 411 7 167.009 0.850 1.300 1735 129.414 0.100 0.748 411 8 123.416 0.946 0.768 1736 116.638 0.098 0.682 411 9 97.944 0.976 0.482 1737 140.414 0.580 1.028 411 10 91.527 0.990 0.490 1738 126.788 0.522 0.940 411 11 97.944 0.976 0.482 1740 115.966 0.522 0.940 411 11 97.944 0.976 0.338 1740 115.966 0.162 0.304 411 11 11 71.315 0.978 0.338 1741 101.921 0.168 0.274 411 114 87.964 1.000 0.488 1743 83.050 0.608 0.274 411 116 202.515 0.324 0.762 1744 66.242 0.662 0.238 411 11 18 8.9663 0.910 0.226 1748 50.643 0.560 0.432 411 12 47.547 0.796 0.666 1749 75.604 0.590 0.432 411 22 29.622 0.432 1	17	32	84.803	0.020	0.212		41	5	123.646	0.956	0.664
17 34 $144,259$ 0.104 0.836 41 7 167.099 0.850 1.300 17 35 129.414 0.100 0.748 41 8 123.416 0.946 0.768 17 36 116.638 0.098 0.682 41 9 97.944 0.976 0.482 17 37 140.414 0.580 1.028 41 10 91.527 0.990 0.490 17 38 126.788 0.522 0.940 41 11 71.315 0.978 0.338 17 40 115.906 0.162 0.304 41 11 11 71.315 0.978 0.338 17 44 83.050 0.608 0.274 41 11 11 87.964 1.000 0.488 17 44 66.242 0.624 0.184 41 116 202515 0.324 0.762 17 44 66.242 0.658 0.380 411 116 120.515 0.324 0.762 17 46 87.662 0.658 0.380 411 19 85.663 0.910 0.226 17 48 50.643 0.590 0.432 411 22 229.622 0.432 1.732 17 48 50.643 0.590 0.432 411 22 129.623 1.430 17 45 52.069 0.152 0.144 41 22	17	33	67.803	0.034	0.168		41	6	102.852	0.970	0.470
17 35 129414 0.100 0.748 41 8 123416 0.946 0.768 17 36 116.638 0.098 0.682 41 9 97.944 0.976 0.462 17 38 126.788 0.522 0.940 41 10 91.527 0.990 0.490 17 39 116.964 0.380 0.902 41 11 91.527 0.990 0.490 17 40 115.906 0.162 0.304 41 11 91.527 0.996 0.778 17 41 10.921 0.164 0.258 41 11 11.8622 0.996 0.778 17 43 83.050 0.608 0.274 41 11 11.8622 0.996 0.778 17 43 83.050 0.608 0.274 41 11 11.90733 0.384 0.669 17 44 66.242 0.624 0.184 41 11 11 91.527 0.996 0.762 17 47 66.844 0.662 0.238 41 14 18 178.96 0.422 0.638 17 48 50.643 0.590 0.432 411 18 178.96 0.946 0.590 17 49 75.604 0.590 0.432 411 22 29.622 0.432 1.732 17 51 51.860 0.240 0.366 411 <t< td=""><td>17</td><td>34</td><td>144.259</td><td>0.104</td><td>0.836</td><td></td><td>41</td><td>7</td><td>167.009</td><td>0.850</td><td>1.300</td></t<>	17	34	144.259	0.104	0.836		41	7	167.009	0.850	1.300
17 36 116.638 0.098 0.682 41 9 97.944 0.976 0.482 17 37 140.414 0.580 1.028 41 10 91.527 0.990 0.490 17 39 116.964 0.380 0.902 41 11 71.315 0.978 0.338 17 40 115.906 0.162 0.304 41 11 71.315 0.978 0.338 17 40 115.906 0.162 0.304 41 11 116.862 0.996 0.778 17 41 101.921 0.164 0.258 41 13 116.862 0.996 0.778 17 43 83.050 0.608 0.274 41 116 202.515 0.324 0.762 17 44 66.242 0.624 0.148 41 116 202.515 0.324 0.762 17 45 53.343 0.570 0.148 41 18 178.896 0.422 0.638 17 48 50.643 0.586 0.380 41 19 85.663 0.910 0.226 17 49 75.604 0.590 0.432 411 22 229.622 0.432 1.732 17 59 61.826 0.390 0.396 411 22 229.622 0.432 1.732 17 59 61.826 0.390 0.396 411 22 22	17	35	129.414	0.100	0.748		41	8	123.416	0.946	0.768
17 37 140.414 0.580 1.028 41 10 91.527 0.990 0.490 17 38 126.788 0.522 0.940 41 11 71.315 0.978 0.338 17 40 115.906 0.162 0.304 41 11 11 71.315 0.978 0.338 17 40 115.906 0.162 0.304 41 11 12 57.047 0.932 0.228 17 41 101.921 0.164 0.258 411 13 116.862 0.996 0.778 17 42 88.190 0.188 0.218 411 15 68.491 0.994 0.302 17 43 83.050 0.608 0.274 411 16 202.515 0.324 0.762 17 44 66.242 0.624 0.144 411 17 190.733 0.384 0.690 17 45 53.343 0.570 0.148 411 18 178.896 0.422 0.638 17 46 87.662 0.658 0.380 411 20 63.399 0.884 0.132 17 45 56.63 0.390 0.396 411 22 29.622 0.432 1.732 17 51 51.680 0.240 0.360 411 22 29.622 0.432 1.732 17 52 76.299 0.202 0.226 411	17	36	116.638	0.098	0.682		41	9	97.944	0.976	0.482
17 38 126.788 0.522 0.940 41 11 71.315 0.978 0.338 17 39 116.964 0.380 0.902 41 12 57.047 0.932 0.228 17 40 115.906 0.162 0.304 41 113 116.862 0.996 0.778 17 41 101.921 0.164 0.258 41 114 87.964 1.000 0.488 17 42 88.190 0.188 0.218 41 116 202.515 0.324 0.762 17 44 66.242 0.624 0.184 41 116 202.515 0.324 0.762 17 44 66.242 0.624 0.184 41 116 202.515 0.324 0.762 17 44 66.242 0.624 0.184 41 116 202.515 0.324 0.762 17 46 87.662 0.658 0.380 41 116 178.986 0.422 0.638 17 48 50.643 0.590 0.432 41 21 47.547 0.796 0.086 17 51 51.860 0.240 0.360 41 22 29.622 0.432 1.430 17 52 78.29 0.202 0.202 0.202 41 24 198.21 0.532 1.430 17 54 52.069 0.152 0.144 41	17	37	140.414	0.580	1.028		41	10	91.527	0.990	0.490
17 39 116.964 0.380 0.902 41 12 57.047 0.932 0.228 17 40 115.96 0.162 0.304 41 13 116.862 0.996 0.776 17 41 101.921 0.164 0.258 41 11 87.964 1.000 0.488 17 42 88.190 0.188 0.218 41 116 202.515 0.324 0.302 17 43 83.050 0.608 0.274 41 16 202.515 0.324 0.762 17 44 66.242 0.624 0.184 41 17 190.733 0.384 0.690 17 45 53.343 0.570 0.148 41 18 178.996 0.422 0.638 17 46 87.662 0.658 0.380 41 19 85.663 0.910 0.226 17 47 66.484 0.662 0.238 41 20 63.369 0.844 0.132 17 48 50.643 0.590 0.432 41 22 29.622 0.432 1.732 17 51 51.890 0.202 0.202 41 23 214.488 0.490 1.596 17 52 78.209 0.202 0.202 41 24 198.221 0.532 1.430 17 54 52.069 0.152 0.144 41 26 72.248 </td <td>17</td> <td>38</td> <td>126.788</td> <td>0.522</td> <td>0.940</td> <td></td> <td>41</td> <td>11</td> <td>71.315</td> <td>0.978</td> <td>0.338</td>	17	38	126.788	0.522	0.940		41	11	71.315	0.978	0.338
17 40 115.906 0.162 0.304 41 13 116.862 0.996 0.778 17 41 101.921 0.164 0.258 41 14 87.964 1.000 0.488 17 43 83.050 0.608 0.274 41 15 68.491 0.994 0.302 17 44 66.242 0.624 0.184 41 16 202.515 0.324 0.762 17 44 66.242 0.624 0.184 41 17 190.733 0.384 0.690 17 45 53.343 0.570 0.148 41 18 178.966 0.422 0.638 17 46 87.662 0.658 0.380 41 19 85.663 0.910 0.226 17 48 50.643 0.586 0.166 41 21 47.547 0.796 0.086 17 49 75.604 0.590 0.432 41 22 229.622 0.432 1.732 17 51 51.680 0.240 0.360 41 23 214.488 0.490 1.596 17 52 78.209 0.202 0.202 411 25 86.319 0.974 0.404 17 52 78.209 0.024 0.364 411 27 60.767 0.720 0.280 18 1 121.365 0.000 0.466 411 28 171.721	17	39	116.964	0.380	0.902		41	12	57.047	0.932	0.228
17 41 101.921 0.164 0.258 41 14 87.964 1.000 0.488 17 42 88.190 0.188 0.218 41 15 68.491 0.994 0.302 17 43 83.050 0.608 0.274 41 16 202.515 0.324 0.762 17 44 66.242 0.624 0.184 41 17 190.733 0.384 0.690 17 45 53.343 0.570 0.148 41 18 178.896 0.422 0.638 17 46 87.662 0.658 0.380 41 19 85.663 0.910 0.226 17 47 66.484 0.662 0.238 41 20 63.369 0.884 0.132 17 48 50.643 0.586 0.166 41 22 229.622 0.432 1.732 17 50 61.826 0.390 0.396 41 23 214.488 0.490 1.596 17 51 51.680 0.240 0.360 41 24 198.221 0.532 1.430 17 52 78.209 0.202 0.202 41 25 86.319 0.974 0.404 17 54 52.069 0.152 0.144 41 28 17.721 0.812 1.224 18 1 121.365 0.000 0.296 41 28 17.721	17	40	115.906	0.162	0.304		41	13	116.862	0.996	0.778
17 42 88.190 0.188 0.218 41 15 68.491 0.994 0.302 17 43 83.050 0.608 0.274 41 16 202.515 0.324 0.762 17 44 66.242 0.624 0.184 41 17 190.733 0.384 0.690 17 45 53.343 0.570 0.148 41 18 178.896 0.422 0.638 17 46 87.662 0.658 0.380 41 19 85.663 0.910 0.226 17 47 66.484 0.662 0.238 41 20 63.369 0.884 0.132 17 48 50.643 0.590 0.432 41 21 47.547 0.796 0.086 17 49 75.604 0.590 0.432 41 22 229.622 0.432 1.732 17 50 61.826 0.390 0.396 41 23 214.488 0.490 1.596 17 51 51.680 0.240 0.360 41 24 198.221 0.532 1.430 17 52 78.209 0.202 0.202 41 25 86.319 0.974 0.404 17 53 63.943 0.160 0.172 41 26 72.248 0.908 0.298 17 54 52.069 0.152 0.144 41 29 149.766	17	41	101.921	0.164	0.258		41	14	87.964	1.000	0.488
17 43 83.050 0.608 0.274 41 16 202.515 0.324 0.762 17 44 66.242 0.624 0.184 41 17 190.733 0.384 0.690 17 45 53.343 0.570 0.148 41 18 178.896 0.422 0.638 17 46 87.662 0.658 0.380 41 19 85.663 0.910 0.226 17 47 66.484 0.662 0.238 41 20 63.369 0.884 0.132 17 48 50.643 0.590 0.432 41 22 229.622 0.432 1.732 17 50 61.826 0.390 0.396 41 23 214.488 0.490 1.596 17 51 51.680 0.240 0.360 41 24 198.221 0.532 1.430 17 52 78.209 0.202 0.202 411 25 86.319 0.974 0.404 17 53 63.943 0.160 0.172 411 26 72.248 0.908 0.298 17 54 52.069 0.152 0.144 411 29 149.766 0.904 1.018 18 1 121.365 0.000 0.296 411 28 171.721 0.812 1.224 18 4 194.308 0.024 1.532 411 30 128.60	17	42	88.190	0.188	0.218		41	15	68.491	0.994	0.302
17 44 66.242 0.624 0.184 41 17 190.733 0.384 0.690 17 45 53.343 0.570 0.148 41 18 178.896 0.422 0.638 17 46 87.662 0.658 0.380 41 19 85.663 0.910 0.226 17 47 66.484 0.662 0.238 41 20 63.369 0.884 0.132 17 48 50.643 0.586 0.166 41 21 47.547 0.796 0.086 17 49 75.604 0.590 0.432 41 22 229.622 0.432 1.732 17 50 61.826 0.390 0.396 41 23 214.488 0.490 1.596 17 51 51.680 0.240 0.360 41 24 198.221 0.532 1.430 17 52 78.209 0.202 0.202 411 25 86.319 0.974 0.404 17 53 63.943 0.160 0.172 411 26 72.248 0.908 0.298 17 54 52.069 0.152 0.144 41 29 149.766 0.904 1.018 18 1 121.365 0.000 0.296 41 29 149.766 0.904 1.018 18 4 194.308 0.024 1.532 41 30 128.602 </td <td>17</td> <td>43</td> <td>83.050</td> <td>0.608</td> <td>0.274</td> <td></td> <td>41</td> <td>16</td> <td>202.515</td> <td>0.324</td> <td>0.762</td>	17	43	83.050	0.608	0.274		41	16	202.515	0.324	0.762
17 45 53.343 0.570 0.148 41 18 178.896 0.422 0.638 17 46 87.662 0.658 0.380 41 19 85.663 0.910 0.226 17 47 66.484 0.662 0.238 41 20 63.369 0.884 0.132 17 48 50.643 0.586 0.166 41 21 47.547 0.796 0.086 17 49 75.604 0.590 0.432 41 22 229.622 0.432 1.732 17 50 61.826 0.390 0.396 41 23 214.488 0.490 1.596 17 51 51.680 0.240 0.360 41 24 198.221 0.532 1.430 17 52 78.209 0.202 0.202 0.202 411 26 72.248 0.908 0.298 17 53 63.943 0.160 0.172 411 26 72.248 0.908 0.298 17 54 52.069 0.152 0.144 411 27 60.767 0.720 0.280 18 1 121.365 0.000 0.296 411 29 149.766 0.904 1.018 18 4 194.308 0.024 1.532 411 31 87.287 0.914 0.118 18 6 144.722 0.028 1.138 411 33 </td <td>17</td> <td>44</td> <td>66.242</td> <td>0.624</td> <td>0.184</td> <td></td> <td>41</td> <td>17</td> <td>190.733</td> <td>0.384</td> <td>0.690</td>	17	44	66.242	0.624	0.184		41	17	190.733	0.384	0.690
17 46 87.662 0.658 0.380 41 19 85.663 0.910 0.226 17 47 66.484 0.662 0.238 41 20 63.369 0.884 0.132 17 48 50.643 0.586 0.166 41 21 47.547 0.796 0.086 17 49 75.604 0.590 0.432 41 22 229.622 0.432 1.732 17 50 61.826 0.390 0.396 41 23 214.488 0.490 1.596 17 51 51.680 0.240 0.360 41 24 198.221 0.532 1.430 17 52 78.209 0.202 0.202 41 26 72.248 0.908 0.298 17 54 52.069 0.152 0.144 41 27 60.767 0.720 0.280 18 1 121.365 0.000 0.466 41 28 171.721 0.812 1.224 18 2 96.951 0.002 0.364 41 29 149.766 0.904 1.018 18 4 194.308 0.024 1.532 41 31 87.287 0.914 0.118 18 6 144.722 0.028 1.138 41 33 57.659 0.988 0.044	17	45	53.343	0.570	0.148		41	18	178.896	0.422	0.638
17 47 66.484 0.662 0.238 41 20 63.369 0.884 0.132 17 48 50.643 0.586 0.166 41 21 47.547 0.796 0.086 17 49 75.604 0.590 0.432 41 22 229.622 0.432 1.732 17 50 61.826 0.390 0.396 41 23 214.488 0.490 1.596 17 51 51.680 0.240 0.360 41 23 214.488 0.490 1.596 17 52 78.209 0.202 0.202 0.202 41 25 86.319 0.974 0.404 17 53 63.943 0.160 0.172 41 26 72.248 0.908 0.298 17 54 52.069 0.152 0.144 41 27 60.767 0.720 0.280 18 1 121.365 0.000 0.466 41 28 171.721 0.812 1.224 18 2 96.951 0.002 0.364 41 29 149.766 0.904 1.018 18 4 194.308 0.024 1.532 41 31 87.287 0.914 0.118 18 6 144.722 0.028 1.138 41 33 57.659 0.988 0.044	17	46	87.662	0.658	0.380		41	19	85.663	0.910	0.226
17 48 50.643 0.586 0.166 17 49 75.604 0.590 0.432 17 50 61.826 0.390 0.396 17 50 61.826 0.390 0.396 17 51 51.680 0.240 0.360 17 51 51.680 0.240 0.360 17 52 78.209 0.202 0.202 17 53 63.943 0.160 0.172 17 54 52.069 0.152 0.144 18 1 121.365 0.000 0.466 18 4 194.308 0.024 1.532 18 1 194.308 0.024 1.532 18 5 169.347 0.024 1.352 18 6 144.722 0.028 1138	17	47	66.484	0.662	0.238		41	20	63.369	0.884	0.132
17 49 75.604 0.590 0.432 41 22 229.622 0.432 1.732 17 50 61.826 0.390 0.396 41 23 214.488 0.490 1.596 17 51 51.680 0.240 0.360 41 24 198.221 0.532 1.430 17 52 78.209 0.202 0.202 41 25 86.319 0.974 0.404 17 53 63.943 0.160 0.172 41 26 72.248 0.908 0.298 17 54 52.069 0.152 0.144 41 27 60.767 0.720 0.280 18 1 121.365 0.000 0.466 41 28 171.721 0.812 1.224 18 2 96.951 0.002 0.364 41 29 149.766 0.904 1.018 18 4 194.308 0.024 1.532 41 30 128.602 0.970 0.810 18 6 144.722 0.028 1.138 41 32 69.708 0.982 0.060	17	48	50.643	0.586	0.166		41	21	47.547	0.796	0.086
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	49	75.604	0.590	0.432		41	22	229.622	0.432	1.732
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	50	61.826	0.390	0.396		41	23	214.488	0.490	1.596
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	51	51.680	0.240	0.360		41	24	198.221	0.532	1.430
17 53 63.943 0.160 0.172 17 54 52.069 0.152 0.144 18 1 121.365 0.000 0.466 18 2 96.951 0.002 0.364 18 3 75.930 0.000 0.296 18 4 194.308 0.024 1.532 18 5 169.347 0.024 1.352 18 6 144.722 0.028 1138	17	52	78.209	0.202	0.202		41	25	86.319	0.974	0.404
17 54 52.069 0.152 0.144 18 1 121.365 0.000 0.466 18 1 121.365 0.000 0.466 18 2 96.951 0.002 0.364 18 3 75.930 0.000 0.296 18 4 194.308 0.024 1.532 18 5 169.347 0.024 1.352 18 6 144.722 0.028 1138	17	53	63.943	0.160	0.172		41	26	72.248	0.908	0.298
18 1 121.365 0.000 0.466 18 2 96.951 0.002 0.364 18 2 96.951 0.002 0.364 18 3 75.930 0.000 0.296 18 4 194.308 0.024 1.532 18 5 169.347 0.024 1.352 18 6 144.722 0.028 1.138	17	54	52.069	0.152	0.144		41	27	60.767	0.720	0.280
18 2 96.951 0.002 0.364 41 29 149.766 0.904 1.018 18 3 75.930 0.000 0.296 41 30 128.602 0.970 0.810 18 4 194.308 0.024 1.532 41 31 87.287 0.914 0.118 18 5 169.347 0.024 1.352 41 32 69.708 0.982 0.060 18 6 144.722 0.028 1.138 41 33 57.659 0.988 0.044	18	1	121.365	0.000	0.466	1	41	28	171.721	0.812	1.224
18 3 75.930 0.000 0.296 41 30 128.602 0.970 0.810 18 4 194.308 0.024 1.532 41 31 87.287 0.914 0.118 18 5 169.347 0.024 1.352 41 32 69.708 0.982 0.060 18 6 144.722 0.028 1.138 41 33 57.659 0.988 0.044	18	2	96.951	0.002	0.364	1	41	29	149.766	0.904	1.018
18 4 194.308 0.024 1.532 41 31 87.287 0.914 0.118 18 5 169.347 0.024 1.352 41 32 69.708 0.982 0.060 18 6 144.722 0.028 1.138 41 33 57.659 0.988 0.044	18	3	75,930	0.000	0.296	1	41	30	128 602	0.970	0.810
18 5 169.347 0.024 1.352 41 32 69.708 0.982 0.060 18 6 144.722 0.028 1.138 41 33 57.659 0.988 0.044	18	4	194.308	0.024	1.532	1	41	31	87,287	0.914	0.118
18 6 144.722 0.028 1 138 41 33 57 659 0.988 0.044	18	5	169.347	0.024	1,352	1	41	32	69,708	0.982	0.060
	18	6	144.722	0.028	1,138	1	41	33	57,659	0.988	0.044

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
18	7	232.397	0.122	2.420	41	34	144.489	0.558	0.698
18	8	193.480	0.204	1.948	41	35	133.046	0.656	0.620
18	9	159.555	0.280	1.548	41	36	121.541	0.584	0.574
18	10	106.455	0.304	0.764	41	37	140.860	0.908	0.966
18	11	81.248	0.262	0.584	41	38	127.778	0.872	0.866
18	12	60.703	0.210	0.422	41	39	118.777	0.754	0.828
18	13	138.536	0.674	1.172	41	40	116.524	0.798	0.234
18	14	103.644	0.698	0.776	41	41	101.613	0.896	0.176
18	15	77.496	0.712	0.500	41	42	87.641	0.938	0.132
18	16	200.230	0.008	0.826	41	43	77.969	0.992	0.124
18	17	188.237	0.012	0.764	41	44	64.842	0.996	0.066
18	18	177.035	0.018	0.716	41	45	56.324	0.992	0.038
18	19	93.029	0.072	0.350	41	46	85.185	0.960	0.302
18	20	67.208	0.070	0.244	41	47	65.427	0.962	0.182
18	21	45.360	0.054	0.160	41	48	51.306	0.952	0.110
18	22	228.402	0.132	1.816	41	49	79.254	0.846	0.392
18	23	212.946	0.124	1.694	41	50	66.706	0.592	0.382
18	24	198.514	0.140	1.554	41	51	53.058	0.304	0.354
18	25	90.331	0.630	0.612	41	52	87.215	0.842	0.140
18	26	71.139	0.476	0.504	41	53	74.555	0.808	0.100
18	27	55.037	0.340	0.428	41	54	64.239	0.730	0.086
18	28	186.984	0.056	1.540	42	1	118.029	0.228	0.424
18	29	169.464	0.096	1.384	42	2	95.554	0.272	0.332
18	30	151.678	0.118	1.224	42	3	76.500	0.234	0.272
18	31	103.188	0.000	0.270	42	4	176.146	0.454	1.254
18	32	85.471	0.000	0.224	42	5	144.509	0.604	0.964
18	33	68.328	0.002	0.178	42	6	122.052	0.656	0.758
18	34	143.885	0.012	0.858	42	7	205.036	0.468	1.936
18	35	128.705	0.012	0.768	42	8	153.192	0.680	1.232
18	36	115.631	0.010	0.698	42	9	116.354	0.808	0.770
18	37	140.826	0.356	1.084	42	10	101.607	0.670	0.646
18	38	126.239	0.276	0.992	42	11	77.317	0.614	0.456
18	39	115.347	0.170	0.936	42	12	59.529	0.490	0.346
18	40	115.411	0.048	0.310	42	13	124.253	0.924	0.910
18	41	101.566	0.038	0.266	42	14	90.494	0.958	0.540
18	42	88.278	0.052	0.232	42	15	70.278	0.962	0.334
18	43	86.716	0.352	0.378	42	16	200.792	0.060	0.816
18	44	66.764	0.346	0.266	42	17	188.657	0.062	0.752
18	45	50.665	0.302	0.200	42	18	177.629	0.092	0.700
18	46	88.445	0.464	0.410	42	19	94.029	0.066	0.356
18	47	67.146	0.478	0.274	42	20	67.666	0.066	0.250
18	48	50.369	0.410	0.192	42	21	45.778	0.058	0.158
18	49	72.976	0.420	0.462	42	22	227.444	0.040	1.830

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
18	50	58.390	0.244	0.408		42	23	212.605	0.046	1.714
18	51	48.295	0.096	0.378		42	24	198.715	0.072	1.574
18	52	75.717	0.050	0.208		42	25	88.057	0.870	0.470
18	53	61.649	0.040	0.176		42	26	71.885	0.698	0.394
18	54	49.886	0.026	0.158		42	27	57.191	0.448	0.386
19	1	121.365	0.000	0.466		42	28	185.134	0.222	1.490
19	2	97.158	0.000	0.368		42	29	163.855	0.394	1.268
19	3	75.930	0.000	0.296		42	30	143.627	0.502	1.070
19	4	194.979	0.004	1.544		42	31	99.521	0.386	0.220
19	5	169.845	0.004	1.360		42	32	79.977	0.552	0.142
19	6	145.085	0.002	1.148		42	33	63.823	0.678	0.098
19	7	238.869	0.020	2.536		42	34	144.993	0.152	0.824
19	8	204.916	0.042	2.160		42	35	130.255	0.164	0.736
19	9	173.396	0.070	1.794		42	36	117.978	0.168	0.670
19	10	109.918	0.126	0.830		42	37	140.805	0.340	1.090
19	11	83.515	0.126	0.640		42	38	126.436	0.294	0.992
19	12	61.265	0.070	0.464		42	39	115.769	0.182	0.938
19	13	148.435	0.460	1.362		42	40	116.740	0.216	0.296
19	14	112.054	0.498	0.950		42	41	103.137	0.320	0.236
19	15	85.097	0.486	0.682		42	42	89.860	0.400	0.188
19	16	200.194	0.004	0.826		42	43	80.084	0.934	0.160
19	17	187.998	0.000	0.764		42	44	65.689	0.960	0.084
19	18	177.233	0.002	0.720		42	45	56.274	0.938	0.048
19	19	93.586	0.016	0.356		42	46	90.279	0.306	0.460
19	20	67.121	0.018	0.248		42	47	67.830	0.360	0.296
19	21	45.042	0.014	0.160		42	48	50.657	0.320	0.210
19	22	227.080	0.030	1.828		42	49	74.540	0.476	0.470
19	23	212.560	0.034	1.718		42	50	58.067	0.192	0.430
19	24	199.128	0.048	1.592		42	51	47.170	0.040	0.388
19	25	92.341	0.466	0.716		42	52	81.107	0.332	0.190
19	26	70.320	0.326	0.566		42	53	67.718	0.324	0.158
19	27	52.566	0.188	0.474		42	54	55.933	0.266	0.140
19	28	187.627	0.008	1.556		43	1	121.397	0.002	0.466
19	29	170.920	0.010	1.418		43	2	97.142	0.002	0.368
19	30	153.763	0.014	1.266		43	3	75.980	0.002	0.296
19	31	103.188	0.000	0.270		43	4	191.516	0.114	1.478
19	32	85.471	0.000	0.224		43	5	163.992	0.170	1.262
19	33	68.599	0.000	0.182		43	6	139.896	0.206	1.054
19	34	143.955	0.002	0.862		43	7	230.185	0.154	2.370
19	35	128.613	0.000	0.772		43	8	186.874	0.304	1.810
19	36	115.546	0.000	0.702		43	9	153.029	0.408	1.408
19	37	140.373	0.178	1.120		43	10	111.409	0.068	0.858
19	38	125.359	0.122	1.024	J	43	11	84.761	0.064	0.668

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
19	39	114.244	0.070	0.946		43	12	61.443	0.040	0.474
19	40	115.476	0.004	0.318		43	13	141.823	0.644	1.216
19	41	101.709	0.008	0.274		43	14	100.709	0.780	0.716
19	42	88.253	0.010	0.236		43	15	75.515	0.822	0.442
19	43	87.195	0.188	0.418		43	16	200.158	0.002	0.826
19	44	65.605	0.142	0.308		43	17	188.044	0.008	0.762
19	45	48.224	0.140	0.226		43	18	177.275	0.010	0.718
19	46	89.622	0.242	0.458		43	19	93.681	0.000	0.360
19	47	67.776	0.250	0.320		43	20	67.371	0.000	0.252
19	48	50.003	0.216	0.226		43	21	45.410	0.000	0.166
19	49	71.075	0.280	0.494		43	22	227.062	0.002	1.836
19	50	55.509	0.104	0.430		43	23	212.348	0.004	1.722
19	51	46.669	0.034	0.382		43	24	198.826	0.002	1.600
19	52	75.403	0.012	0.216		43	25	92.657	0.588	0.660
19	53	61.031	0.008	0.180		43	26	72.077	0.388	0.558
19	54	49.243	0.002	0.158		43	27	54.524	0.218	0.490
20	1	121.365	0.000	0.466		43	28	187.595	0.006	1.556
20	2	97.158	0.000	0.368		43	29	170.650	0.038	1.410
20	3	75.930	0.000	0.296		43	30	153.161	0.052	1.256
20	4	194.929	0.000	1.544		43	31	103.048	0.032	0.266
20	5	169.795	0.000	1.360		43	32	84.812	0.092	0.206
20	6	145.021	0.000	1.148		43	33	68.147	0.146	0.156
20	7	239.748	0.002	2.552		43	34	144.108	0.016	0.860
20	8	207.174	0.004	2.200		43	35	128.836	0.018	0.768
20	9	176.102	0.008	1.850		43	36	115.775	0.018	0.698
20	10	111.492	0.038	0.862		43	37	140.443	0.028	1.164
20	11	84.832	0.034	0.676		43	38	125.120	0.024	1.044
20	12	61.511	0.022	0.480		43	39	114.089	0.014	0.960
20	13	157.918	0.272	1.540		43	40	115.581	0.016	0.316
20	14	119.945	0.298	1.118		43	41	101.864	0.026	0.272
20	15	90.537	0.284	0.824		43	42	88.668	0.044	0.234
20	16	200.128	0.000	0.826		43	43	83.696	0.752	0.240
20	17	187.998	0.000	0.764		43	44	67.507	0.796	0.140
20	18	177.161	0.000	0.720		43	45	55.995	0.772	0.094
20	19	93.496	0.010	0.356		43	46	89.779	0.012	0.496
20	20	67.094	0.008	0.248		43	47	67.373	0.006	0.352
20	21	45.064	0.012	0.160		43	48	49.031	0.002	0.254
20	22	227.123	0.018	1.832		43	49	69.060	0.130	0.532
20	23	212.449	0.022	1.720]	43	50	53.850	0.028	0.442
20	24	199.035	0.030	1.594]	43	51	45.966	0.002	0.388
20	25	94.831	0.262	0.846	1	43	52	76.341	0.042	0.218
20	26	69.663	0.182	0.634	1	43	53	61.831	0.034	0.178
20	27	50.898	0.072	0.514]	43	54	50.307	0.032	0.158

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

20 21 176 0.000 1.550 20 29 170.955 0.002 1.420 20 31 103.18 0.000 0.276 20 32 95.41 0.000 0.276 20 33 68.59 0.000 0.826 20 33 135.95 0.000 0.826 20 34 132.95 0.000 0.826 20 35 128.61 0.000 0.772 44 5 149.59 0.006 2.530 20 36 115.46 0.000 0.772 44 1 112.10 0.006 0.682 20 37 140.254 0.000 0.712 44 10 112.10 0.000 0.682 20 41 115.80 0.000 0.318 44 11 112.10 0.000 0.682 20 41 154.82 0.000 0.328 1.574 <t< th=""><th>Policy No</th><th>Treat- ment</th><th>Total Cost</th><th>Schedule Delay</th><th>Major Field Defects</th><th></th><th>Policy No</th><th>Treat- ment</th><th>Total Cost</th><th>Schedule Delay</th><th>Major Field Defects</th></t<>	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
20 29 17.955 0.002 1.420 20 30 154.051 0.000 1.276 20 32 85.471 0.000 0.227 20 33 65.99 0.000 0.282 20 34 143.955 0.000 0.682 20 34 128.613 0.000 0.772 44 6 144.699 0.026 2130 20 34 128.813 0.000 0.772 44 9 122.03 0.118 1.766 20 37 140.254 0.890 1.146 44 12 61.74 0.900 0.886 20 38 114.17 0.169 0.772 44 16.67 0.022 2.744 14 11 16.920 0.692 20 44 66.107 0.656 0.242 144 13 166.788 0.722 20 44 69.975 <	20	28	187.662	0.000	1.558		44	1	121.365	0.000	0.466
20 30 15.051 0.000 1.276 44 3 75.93 0.000 0.296 20 31 103.188 0.000 0.270 44 4 194.84 0.014 15.40 20 33 68.599 0.000 0.6224 44 5 164.70 0.020 1.344 20 34 143.955 0.000 0.772 444 6 144.699 0.024 1.134 20 35 140.254 0.080 1.146 44 10 172203 0.018 1.756 20 35 140.254 0.080 0.172 444 10 11210 0.006 0.878 20 33 140.854 0.080 0.172 444 11 85.20 0.000 0.682 20 40 15.440 0.682 0.456 0.444 11 15.789 0.000 0.682 20 44 66107 0.562 0.546	20	29	170.955	0.002	1.420		44	2	97.158	0.000	0.368
20 31 103.188 0.000 0.270 44 4 19.4940 0.014 1.540 20 32 86.471 0.000 0.224 44 5 169.770 0.020 1.334 20 34 143.955 0.000 0.822 44 5 169.770 0.026 2.530 20 35 128.613 0.000 0.772 444 8 203.74 0.066 2.124 20 38 124.83 0.040 1.136 444 9 17.223 0.018 1.766 20 38 124.83 0.040 1.036 444 10 112.101 0.000 0.682 20 42 84.52 0.000 0.318 444 11 115.851 0.426 0.760 20 44 61.07 0.062 0.456 444 11 117.571 0.426 0.760 20 45 7.785 0.156 0.524	20	30	154.051	0.000	1.276		44	3	75.930	0.000	0.296
20 32 68.471 0.000 0.224 44 5 169.770 0.020 1.354 20 33 68.599 0.000 0.852 44 6 14.699 0.026 2.530 20 35 128.515 0.000 0.772 44 8 203.74 0.066 2.124 20 36 115.546 0.000 0.772 44 9 172.203 0.118 1.766 20 37 140.254 0.000 1.146 44 11 15.506 0.000 0.682 20 38 124.833 0.040 1.036 44 12 61.74 0.000 0.682 20 41 101.667 0.002 0.274 44 14 117 1.916 0.764 20 45 47.892 0.062 0.254 44 16 20.128 0.000 0.826 20 45 47.892 0.062 0.234 44	20	31	103.188	0.000	0.270		44	4	194.840	0.014	1.540
20 33 66.599 0.000 0.182 44 6 14.699 0.024 1.134 20 35 128.613 0.000 0.722 44 8 203.274 0.066 2.124 20 35 116.546 0.000 0.702 44 8 203.274 0.066 2.124 20 38 124.833 0.040 1.036 44 9 17.230 0.0118 1.766 20 39 114.17 0.018 0.960 44 11 85.20 0.000 0.682 20 40 15.402 0.000 0.2274 44 14 117.878 0.252 1.574 20 41 16.107 0.062 0.274 44 14 117.878 0.252 1.574 20 44 86.107 0.062 0.454 44 16 200.212 0.000 0.764 20 45 47.882 0.166 0.522	20	32	85.471	0.000	0.224		44	5	169.770	0.020	1.354
20 34 143.985 0.000 0.882 20 35 126.613 0.000 0.772 20 36 115.546 0.000 0.772 20 37 140.254 0.000 0.772 20 38 12.4833 0.040 1.0364 20 39 11.171 0.018 0.960 20 40 15.426 0.000 0.318 20 41 10.1687 0.002 0.2274 44 11 165.20 0.000 0.682 20 41 10.1667 0.002 0.274 44 13 160.78 0.252 1.574 20 44 66.107 0.056 0.348 44 16 201.28 0.000 0.282 20 47 67.935 0.134 0.342 20 47 67.935 0.134 0.342 20 52 52.89 0.000	20	33	68.599	0.000	0.182		44	6	144.699	0.024	1.134
20 35 128.613 0.000 0.772 44 8 203.274 0.066 2.124 20 36 115.546 0.000 0.702 44 9 172.203 0.118 1.766 20 39 141.71 0.018 0.960 44 10 112.110 0.000 0.6782 20 39 114.71 0.018 0.960 44 12 61.474 0.000 0.6892 20 40 115.420 0.000 0.274 44 13 160.788 0.252 1.574 20 43 87.464 0.022 0.274 44 16 200.128 0.000 0.862 20 43 87.64 0.022 0.450 44 17 167.998 0.000 0.764 20 45 47.892 0.062 0.254 44 18 177.29 0.002 0.720 20 44 96.233 0.166 0.522	20	34	143.955	0.000	0.862		44	7	238.599	0.026	2.530
20 36 115.546 0.000 0.702 20 37 140.254 0.080 1.146 20 38 124.833 0.040 1096 20 39 114.171 0.018 0.969 20 40 115.240 0.000 0.318 20 41 101.667 0.002 0.274 44 12 61.474 0.000 0.488 20 42 88.452 0.000 0.240 44 14 117.571 0.412 1.046 20 43 87.464 0.082 0.254 44 16 200.128 0.000 0.762 20 45 47.892 0.062 0.254 44 18 177.239 0.002 0.722 20 45 63.633 0.030 0.464 20 53 60.92 0.522 20 51 46.024 0.002 0.182 </td <td>20</td> <td>35</td> <td>128.613</td> <td>0.000</td> <td>0.772</td> <td></td> <td>44</td> <td>8</td> <td>203.274</td> <td>0.066</td> <td>2.124</td>	20	35	128.613	0.000	0.772		44	8	203.274	0.066	2.124
20 37 140.254 0.080 1.146 20 38 124.833 0.040 1.036 20 39 114.17 0.018 0.960 20 40 115.420 0.000 0.318 20 40 115.420 0.000 0.318 20 41 101.667 0.002 0.274 44 14 115 89.259 0.425 1.574 20 42 88.452 0.000 0.240 44 16 11.577 0.412 1.946 20 43 87.464 0.082 0.450 44 16 20.128 0.000 0.382 20 45 47.992 0.062 0.254 44 16 17.239 0.002 0.720 20 48 49.206 0.100 0.238 44 21 45.410 0.000 0.185 20 50 53.633 0.030 0.486 22 27.052 </td <td>20</td> <td>36</td> <td>115.546</td> <td>0.000</td> <td>0.702</td> <td></td> <td>44</td> <td>9</td> <td>172.203</td> <td>0.118</td> <td>1.766</td>	20	36	115.546	0.000	0.702		44	9	172.203	0.118	1.766
20 38 124.833 0.040 1.036 20 39 114.171 0.018 0.960 20 40 115.420 0.000 0.318 20 41 101.667 0.002 0.274 20 42 88.452 0.000 0.244 20 42 88.452 0.000 0.244 20 44 66.107 0.056 0.348 20 44 66.107 0.056 0.348 20 45 47.892 0.062 0.254 20 45 47.892 0.052 0.254 20 45 9.7595 0.134 0.342 44 18 177.239 0.002 0.720 20 46 89.717 0.160 0.474 44 18 177.239 0.000 0.186 20 51 46.024 0.001 0.386 20 52 75.289 0.002	20	37	140.254	0.080	1.146		44	10	112.110	0.000	0.878
20 39 114,171 0.018 0.960 44 12 61,474 0.000 0.484 20 40 115,420 0.000 0.318 44 13 160,788 0.252 1,574 20 42 88,452 0.000 0.244 44 14 117,571 0.412 1,046 20 43 87,464 0.082 0.450 444 15 89,259 0.026 0.760 20 45 47,892 0.062 0.254 44 18 177,239 0.002 0.762 20 45 47,892 0.160 0.474 44 18 177,239 0.002 0.762 20 44 49,206 0.100 0.282 44 21 45,410 0.000 0.168 20 51 46,024 0.004 0.388 44 22 27,052 0.000 1,722 20 54 49,225 0.000 0.158	20	38	124.833	0.040	1.036		44	11	85.320	0.000	0.692
20 40 115.420 0.000 0.318 20 41 101.667 0.002 0.274 20 42 88.452 0.000 0.240 20 43 87.464 0.082 0.450 20 44 66.107 0.056 0.348 20 45 47.892 0.062 0.254 20 46 89.77 0.160 0.474 20 47 67.935 0.134 0.342 20 47 67.935 0.134 0.342 20 47 67.935 0.134 0.342 20 49 69.233 0.156 0.522 20 51 46.024 0.004 0.388 20 51 46.024 0.002 0.182 21 1 100.217 0.890 0.226 21 3 72.273 0.996 0.674 21 1 100.217 0.898 0	20	39	114.171	0.018	0.960		44	12	61.474	0.000	0.484
20 41 101.667 0.002 0.274 44 14 117.571 0.412 1.046 20 42 88.452 0.000 0.240 44 15 89.259 0.426 0.760 20 44 66.107 0.066 0.348 44 16 200.128 0.000 0.282 20 45 47.892 0.062 0.254 44 16 200.128 0.000 0.764 20 46 89.717 0.160 0.474 44 19 9.861 0.000 0.360 20 47 67.935 0.134 0.342 44 20 67.31 0.000 0.166 20 49 69.233 0.156 0.522 444 22 227.052 0.000 1.836 20 51 46.024 0.004 0.388 444 22 227.052 0.000 1.836 20 52 75.289 0.002 0.182 444 226 70.983 0.160 0.670 20 54 49.225 0.000 0.182 444 26 70.983 0.000 1.588 21 1 100.217 0.890 0.282 444 28 187.682 0.000 1.422 21 4 49.225 0.992 0.786 444 28 187.99 0.004 1.274 21 1 10.147 0.998 0.6456 444 36 115.87	20	40	115.420	0.000	0.318		44	13	160.788	0.252	1.574
20 42 88.452 0.000 0.240 44 15 89.259 0.426 0.760 20 43 87.464 0.082 0.450 44 16 20.128 0.000 0.826 20 44 66.107 0.056 0.348 44 16 20.128 0.000 0.764 20 45 47.892 0.662 0.254 44 18 17.239 0.002 0.720 20 46 89.717 0.160 0.474 44 19 9.681 0.000 0.360 20 47 67.935 0.1134 0.342 444 20 67.371 0.000 0.252 20 48 49.266 0.100 0.238 444 21 45.10 0.000 1.722 20 56 56.33 0.030 0.436 444 23 212.298 0.000 1.722 20 55 60.992 0.002 0.182 444 24 198.816 0.000 1.600 20 55 60.992 0.002 0.182 444 24 198.816 0.000 1.528 21 1 100.217 0.990 0.282 444 24 198.816 0.000 1.422 21 4 143.355 0.092 0.662 444 26 70.983 0.160 1.422 21 1 101.447 0.998 0.450 444 36 155.99 </td <td>20</td> <td>41</td> <td>101.667</td> <td>0.002</td> <td>0.274</td> <td></td> <td>44</td> <td>14</td> <td>117.571</td> <td>0.412</td> <td>1.046</td>	20	41	101.667	0.002	0.274		44	14	117.571	0.412	1.046
20 43 87.464 0.062 0.450 20 44 66.107 0.056 0.348 20 45 47.892 0.062 0.254 20 46 89.717 0.160 0.474 20 46 89.717 0.160 0.474 20 47 67.935 0.134 0.342 20 48 49.206 0.100 0.238 20 49 69.233 0.156 0.522 20 50 53.633 0.000 0.436 20 51 46.024 0.004 0.388 20 52 75.289 0.008 0.216 21 1 100.217 0.890 0.282 21 1 100.217 0.890 0.282 21 1 100.217 0.890 0.282 21 3 72.273 0.968 0.166 21 1 100.217 0.899 0.	20	42	88.452	0.000	0.240		44	15	89.259	0.426	0.760
20 44 66.107 0.056 0.348 44 17 187.998 0.000 0.764 20 45 47.892 0.062 0.254 44 18 177.239 0.002 0.720 20 46 89.717 0.160 0.474 44 19 93.681 0.000 0.360 20 47 67.395 0.134 0.342 44 20 67.371 0.000 0.252 20 48 49.206 0.100 0.238 44 21 45.410 0.000 0.166 20 49 69.233 0.156 0.522 44 22 227.052 0.000 1.836 20 53 60.992 0.002 0.182 44 22 27.052 0.000 1.600 20 52 75.289 0.0002 0.182 44 22 96.972 0.238 0.884 20 53 60.992 0.002 0.182 44 22 70.933 0.1600 1.600 21 1 100.217 0.890 0.282 44 29 17.1019 0.000 1.422 21 4 143.559 0.992 0.786 44 32 85.599 0.004 0.224 21 13 16.874 0.998 0.434 44 33 18.599 0.000 1.168 21 7 15.0837 0.986 0.456 44 33 18.6599	20	43	87.464	0.082	0.450		44	16	200.128	0.000	0.826
20 45 47.892 0.062 0.254 44 18 177.239 0.002 0.720 20 46 89.717 0.160 0.474 44 19 93.681 0.000 0.360 20 47 67.935 0.134 0.342 44 20 67.371 0.000 0.252 20 49 69.233 0.156 0.522 44 21 45.410 0.000 0.166 20 50 53.633 0.030 0.436 44 22 227.052 0.000 1.836 20 51 46.024 0.004 0.388 44 22 227.052 0.000 1.836 20 52 75.289 0.002 0.182 44 22 96.972 0.238 0.884 20 53 60.992 0.022 0.182 44 26 70.983 0.160 1.600 20 54 49.225 0.000 0.158 44 27 50.583 0.048 0.524 21 1 100.217 0.890 0.282 44 28 187.662 0.000 1.422 21 4 143.559 0.992 0.786 44 31 103.188 0.000 0.270 21 7 150.837 0.996 0.674 44 32 85.599 0.000 0.182 21 7 150.837 0.996 0.674 44 33 115.617 <	20	44	66.107	0.056	0.348		44	17	187.998	0.000	0.764
204689.7170.1600.4741993.6810.0000.360 20 4767.9350.1340.342442067.3710.0000.252 20 4849.2060.1000.238442145.4100.0000.166 20 4969.2330.1560.52244422227.0520.0001.836 20 5053.6330.0300.4364423212.2980.0001.722 20 5146.0240.0040.3884424198.8160.0001.600 20 5275.2890.0020.182442596.9720.2380.884 20 5360.9920.0020.182442670.9830.1600.670 20 5449.2250.0000.1584428187.6620.0001.558 21 1100.2170.8900.2824428187.6620.0001.422 21 372.2730.9680.1664430153.9930.0041.274 21 4143.5590.9920.766443368.5990.0000.182 21 7150.8370.9980.6434434143.9550.0020.772 21 994.9840.9980.4344438124.8040.0001.046 21 1184.5480.0781.866<	20	45	47.892	0.062	0.254		44	18	177.239	0.002	0.720
20 47 67.935 0.134 0.342 44 20 67.371 0.000 0.252 20 48 49.206 0.100 0.238 44 21 45.410 0.000 0.166 20 49 69.233 0.156 0.522 444 22 227.052 0.000 1.836 20 551 46.024 0.004 0.388 444 22 227.052 0.000 1.600 20 52 75.289 0.008 0.216 44 22 96.972 0.238 0.884 20 53 60.992 0.002 0.1122 444 226 79.983 0.160 0.670 20 54 49.225 0.000 0.158 444 22 170.93 0.048 0.524 21 1 100.217 0.890 0.282 444 228 187.662 0.000 1.422 21 3 72.273 0.968 0.166 444 30 153.993 0.004 0.224 21 7 150.837 0.998 0.645 444 33 68.599 0.000 0.182 21 14 142.864 0.010 0.870 444 35 128.031 0.002 0.772 21 14 124.864 0.0078 1.666 444 39 114.017 0.000 0.964 21 14 124.864 0.0134 0.676 44 433	20	46	89.717	0.160	0.474		44	19	93.681	0.000	0.360
20 48 49.206 0.100 0.238 44 21 45.410 0.000 0.166 20 49 69.233 0.156 0.522 44 22 27.052 0.000 1.836 20 50 53.633 0.030 0.436 44 23 212.288 0.000 1.722 20 51 46.024 0.004 0.388 44 24 198.816 0.000 1.600 20 52 75.289 0.002 0.182 44 26 70.983 0.160 0.670 20 54 49.225 0.000 0.158 44 26 70.983 0.160 0.670 21 1 100.217 0.890 0.282 44 28 187.662 0.000 1.422 21 3 72.273 0.968 0.166 44 29 171.019 0.000 1.422 21 4 143.559 0.992 0.786 44 30 153.933 0.004 0.224 21 7 150.837 0.988 1.034 44 34 133.955 0.002 0.862 21 10 111.64 0.010 0.870 44 36 115.617 0.002 0.772 21 13 163.874 0.078 1.666 44 40 115.420 0.000 0.318 21 14 124.864 0.012 1.240 44 43 $81.24.804$	20	47	67.935	0.134	0.342		44	20	67.371	0.000	0.252
20 49 69.233 0.156 0.522 44 22 227.052 0.000 1.836 20 50 53.633 0.030 0.436 44 23 212.288 0.000 1.722 20 52 75.289 0.004 0.388 44 24 198.816 0.000 1.600 20 53 60.992 0.002 0.182 44 25 96.972 0.238 0.884 20 53 60.992 0.002 0.182 44 26 70.983 0.160 0.670 20 54 49.225 0.000 0.158 44 27 50.583 0.048 0.524 21 1 100.217 0.890 0.282 44 28 187.662 0.000 1.422 21 3 72.273 0.968 0.166 44 29 171.019 0.004 1.274 21 4 143.559 0.992 0.622 44 32 85.599 0.004 0.224 21 6 101.477 0.998 0.674 44 33 68.599 0.000 0.182 21 10 111.664 0.010 0.870 44 35 128.631 0.002 0.772 21 13 163.874 0.078 1.666 44 39 114.017 0.000 0.964 21 14 124.844 0.102 1.240 44 43 87.528 <td>20</td> <td>48</td> <td>49.206</td> <td>0.100</td> <td>0.238</td> <td></td> <td>44</td> <td>21</td> <td>45.410</td> <td>0.000</td> <td>0.166</td>	20	48	49.206	0.100	0.238		44	21	45.410	0.000	0.166
20 50 53.633 0.030 0.436 20 51 46.024 0.004 0.388 20 52 75.289 0.008 0.216 20 53 60.992 0.002 0.182 20 54 49.225 0.000 0.158 21 1 100.217 0.890 0.282 21 2 83.992 0.918 0.218 21 3 72.273 0.968 0.166 21 4 143.559 0.992 0.786 44 20 171.019 0.000 1.422 21 5 120.686 0.992 0.786 44 30 153.993 0.004 1.274 21 5 120.686 0.992 0.622 21 7 150.837 0.988 1.034 21 7 150.837 0.988 1.034 21 9 94.984 0.998 0.	20	49	69.233	0.156	0.522		44	22	227.052	0.000	1.836
20 51 46.024 0.004 0.388 44 24 198.816 0.000 1.600 20 52 75.289 0.008 0.216 44 25 96.972 0.238 0.884 20 53 60.992 0.002 0.182 44 26 70.983 0.160 0.670 20 54 49.225 0.000 0.158 44 28 70.983 0.048 0.524 21 1 100.217 0.890 0.282 44 28 187.662 0.000 1.558 21 2 83.992 0.918 0.218 44 29 171.019 0.000 1.422 21 3 72.273 0.968 0.166 44 30 153.993 0.004 0.270 21 5 120.686 0.992 0.622 44 32 85.509 0.004 0.224 21 7 150.837 0.988 1.034 44 34 143.955 0.002 0.862 21 7 150.837 0.996 0.674 44 36 115.617 0.002 0.772 21 9 94.984 0.098 0.434 44 38 124.804 0.000 1.466 21 13 163.874 0.078 1.666 44 39 114.017 0.002 0.274 21 14 124.864 0.102 1.240 44 42 88.452	20	50	53.633	0.030	0.436		44	23	212.298	0.000	1.722
20 52 75.289 0.008 0.216 44 25 96.972 0.238 0.884 20 53 60.992 0.002 0.182 44 26 70.983 0.160 0.670 20 54 49.225 0.000 0.158 44 27 50.583 0.048 0.524 21 1 100.217 0.890 0.282 44 28 187.662 0.000 1.558 21 2 83.992 0.918 0.218 44 29 171.019 0.000 1.422 21 3 72.273 0.968 0.166 44 30 153.993 0.004 1.274 21 4 143.559 0.992 0.786 44 31 103.188 0.000 0.224 21 6 101.447 0.998 0.450 44 33 68.599 0.004 0.224 21 7 150.837 0.988 1.034 44 34 143.955 0.002 0.772 21 9 94.984 0.998 0.434 44 36 115.617 0.002 0.772 21 10 111.664 0.010 0.870 44 38 124.804 0.000 1.466 21 12 60.483 0.086 0.456 44 39 114.017 0.002 0.274 21 13 163.874 0.078 1.666 44 40 115.420 <td>20</td> <td>51</td> <td>46.024</td> <td>0.004</td> <td>0.388</td> <td></td> <td>44</td> <td>24</td> <td>198.816</td> <td>0.000</td> <td>1.600</td>	20	51	46.024	0.004	0.388		44	24	198.816	0.000	1.600
20 53 60.992 0.002 0.182 44 26 70.983 0.160 0.670 20 54 49.225 0.000 0.158 44 27 50.583 0.048 0.524 21 1 100.217 0.890 0.282 44 28 187.662 0.000 1.558 21 2 83.992 0.918 0.218 44 29 171.019 0.000 1.422 21 3 72.273 0.968 0.166 44 30 153.993 0.004 1.274 21 4 143.559 0.992 0.786 44 31 103.188 0.000 0.270 21 5 120.686 0.992 0.622 44 32 85.509 0.004 0.224 21 6 101.447 0.998 0.450 44 33 68.599 0.000 0.182 21 8 117.670 0.996 0.674 44 35 128.631 0.002 0.772 21 9 94.984 0.998 0.434 44 36 115.617 0.002 0.702 21 11 84.548 0.078 1.666 44 39 114.017 0.000 0.964 21 14 124.864 0.102 1.240 44 41 101.667 0.002 0.274 21 15 91.738 0.134 0.892 444 42 88.452	20	52	75.289	0.008	0.216		44	25	96.972	0.238	0.884
20 54 49.225 0.000 0.158 44 27 50.583 0.048 0.524 21 1 100.217 0.890 0.282 44 28 187.662 0.000 1.558 21 2 83.992 0.918 0.218 44 29 171.019 0.000 1.422 21 3 72.273 0.968 0.166 44 30 153.993 0.004 1.274 21 4 143.559 0.992 0.786 44 31 103.188 0.000 0.270 21 5 120.686 0.992 0.622 44 32 85.599 0.004 0.224 21 6 101.447 0.998 0.450 44 33 68.599 0.000 0.182 21 7 150.837 0.988 1.034 44 34 143.955 0.002 0.862 21 8 117.670 0.996 0.674 44 35 128.631 0.002 0.772 21 9 94.984 0.998 0.434 44 36 115.617 0.002 0.702 21 11 84.548 0.048 0.676 44 39 114.017 0.000 0.964 21 11 124.864 0.102 1.240 44 43 87.528 0.000 0.240 21 16 203.038 0.788 0.644 44 44 43	20	53	60.992	0.002	0.182		44	26	70.983	0.160	0.670
211 100.217 0.890 0.282 44 28 187.662 0.000 1.558 21 2 83.992 0.918 0.218 44 29 171.019 0.000 1.422 21 3 72.273 0.968 0.166 44 30 153.993 0.004 1.274 21 4 143.559 0.992 0.786 44 31 103.188 0.000 0.270 21 5 120.686 0.992 0.622 44 32 85.509 0.004 0.224 21 6 101.447 0.998 0.450 44 33 68.599 0.000 0.182 21 7 150.837 0.988 1.034 44 34 143.955 0.002 0.862 21 8 117.670 0.996 0.674 44 35 128.631 0.002 0.772 21 9 94.984 0.998 0.434 44 36 115.617 0.002 0.702 21 10 111.664 0.010 0.870 444 38 124.804 0.000 1.046 21 11 84.548 0.078 1.666 44 39 114.017 0.002 0.274 21 14 124.864 0.134 0.892 44 42 88.452 0.000 0.240 21 16 203.038 0.788 0.644 44 43 87.528 0.366 $0.$	20	54	49.225	0.000	0.158		44	27	50.583	0.048	0.524
21 2 83.992 0.918 0.218 44 29 171.019 0.000 1.422 21 3 72.273 0.968 0.166 44 30 153.993 0.004 1.274 21 4 143.559 0.992 0.786 44 31 103.188 0.000 0.270 21 5 120.686 0.992 0.622 44 32 85.509 0.004 0.224 21 6 101.447 0.998 0.450 44 33 68.599 0.000 0.182 21 7 150.837 0.988 1.034 44 34 143.955 0.002 0.862 21 8 117.670 0.996 0.674 44 35 128.631 0.002 0.772 21 9 94.984 0.998 0.434 44 36 115.617 0.002 0.702 21 10 111.664 0.010 0.870 444 37 140.295 0.000 1.168 21 11 84.548 0.086 0.456 44 39 114.017 0.000 0.964 21 14 124.864 0.102 1.240 44 41 101.667 0.002 0.274 21 15 91.738 0.134 0.892 44 42 88.452 0.000 0.240 21 16 203.038 0.788 0.644 44 43 87.528 </td <td>21</td> <td>1</td> <td>100.217</td> <td>0.890</td> <td>0.282</td> <td></td> <td>44</td> <td>28</td> <td>187.662</td> <td>0.000</td> <td>1.558</td>	21	1	100.217	0.890	0.282		44	28	187.662	0.000	1.558
213 72.273 0.968 0.166 44 30 153.993 0.004 1.274 21 4 143.559 0.992 0.786 44 31 103.188 0.000 0.270 21 5 120.686 0.992 0.622 44 32 85.509 0.004 0.224 21 6 101.447 0.998 0.450 44 33 68.599 0.000 0.182 21 7 150.837 0.998 0.674 44 34 143.955 0.002 0.862 21 8 117.670 0.996 0.674 44 35 128.631 0.002 0.772 21 9 94.984 0.998 0.434 44 36 115.617 0.002 0.702 21 10 111.664 0.010 0.870 444 38 124.804 0.000 1.168 21 11 84.548 0.048 0.676 44 38 124.804 0.000 1.046 21 113 163.874 0.078 1.666 44 40 115.420 0.000 0.318 21 14 124.864 0.134 0.892 44 42 88.452 0.000 0.240 21 16 203.038 0.788 0.644 44 43 87.528 0.366 0.378	21	2	83.992	0.918	0.218		44	29	171.019	0.000	1.422
214 143.559 0.992 0.786 44 31 103.188 0.000 0.270 21 5 120.686 0.992 0.622 44 32 85.509 0.004 0.224 21 6 101.447 0.998 0.450 44 33 68.599 0.000 0.182 21 7 150.837 0.988 1.034 44 34 143.955 0.002 0.862 21 8 117.670 0.996 0.674 44 35 128.631 0.002 0.772 21 9 94.984 0.998 0.434 44 36 115.617 0.002 0.702 21 10 111.664 0.010 0.870 44 37 140.295 0.000 1.168 21 11 84.548 0.048 0.676 44 38 124.804 0.000 1.046 21 12 60.483 0.078 1.666 44 40 115.420 0.000 0.318 21 14 124.864 0.102 1.240 44 41 101.667 0.002 0.274 21 15 91.738 0.134 0.892 44 43 87.528 0.366 0.378	21	3	72.273	0.968	0.166		44	30	153.993	0.004	1.274
21 5 120.686 0.992 0.622 21 6 101.447 0.998 0.450 21 7 150.837 0.988 1.034 21 8 117.670 0.996 0.674 21 9 94.984 0.998 0.434 21 10 111.664 0.010 0.870 21 11 84.548 0.048 0.676 21 12 60.483 0.086 0.434 21 11 84.548 0.048 0.676 21 12 60.483 0.086 0.456 21 12 60.483 0.078 1.666 21 13 163.874 0.078 1.666 21 14 124.864 0.102 1.240 21 15 91.738 0.134 0.892 21 16 203.038 0.788 0.644	21	4	143.559	0.992	0.786		44	31	103.188	0.000	0.270
216101.4470.9980.450443368.5990.0000.182 21 7150.8370.9881.0344434143.9550.0020.862 21 8117.6700.9960.6744435128.6310.0020.772 21 994.9840.9980.4344436115.6170.0020.702 21 10111.6640.0100.8704436115.6170.0020.702 21 1184.5480.0480.6764438124.8040.0001.046 21 1260.4830.0860.4564439114.0170.0000.964 21 13163.8740.0781.6664440115.4200.0000.318 21 14124.8640.1021.2404441101.6670.0020.274 21 16203.0380.7880.644444387.5280.3660.378	21	5	120.686	0.992	0.622		44	32	85.509	0.004	0.224
21 7 150.837 0.988 1.034 21 8 117.670 0.996 0.674 21 9 94.984 0.998 0.434 21 10 111.664 0.010 0.870 21 10 111.664 0.010 0.870 21 11 84.548 0.048 0.676 21 12 60.483 0.086 0.456 21 13 163.874 0.078 1.666 21 14 124.864 0.102 1.240 21 15 91.738 0.134 0.892 24 44 38 124.804 0.000 1.046 21 13 163.874 0.078 1.666 44 39 114.017 0.000 0.318 21 14 124.864 0.102 1.240 44 41 101.667 0.002 0.274 21 16 203.038 0.788 0.644	21	6	101.447	0.998	0.450		44	33	68.599	0.000	0.182
21 8 117.670 0.996 0.674 21 9 94.984 0.998 0.434 21 9 94.984 0.998 0.434 21 10 111.664 0.010 0.870 21 10 111.664 0.010 0.870 21 11 84.548 0.048 0.676 21 12 60.483 0.086 0.456 21 13 163.874 0.078 1.666 21 14 124.864 0.102 1.240 21 15 91.738 0.134 0.892 21 16 203.038 0.788 0.644	21	7	150.837	0.988	1.034		44	34	143.955	0.002	0.862
21 9 94.984 0.998 0.434 21 10 111.664 0.010 0.870 21 10 111.664 0.010 0.870 21 11 84.548 0.048 0.676 21 12 60.483 0.086 0.456 21 13 163.874 0.078 1.666 21 14 124.864 0.102 1.240 21 15 91.738 0.134 0.892 24 44 43 87.528 0.366 0.378	21	8	117.670	0.996	0.674		44	35	128.631	0.002	0.772
21 10 111.664 0.010 0.870 21 11 84.548 0.048 0.676 21 11 84.548 0.048 0.676 21 12 60.483 0.086 0.456 21 13 163.874 0.078 1.666 21 14 124.804 0.000 1.046 21 13 163.874 0.078 1.666 21 14 124.804 0.000 0.318 21 14 124.804 0.102 1.240 44 40 115.420 0.000 0.318 21 15 91.738 0.134 0.892 44 42 88.452 0.000 0.240 21 16 203.038 0.788 0.644 44 43 87.528 0.366 0.378	21	9	94.984	0.998	0.434		44	36	115.617	0.002	0.702
21 11 84.548 0.048 0.676 21 12 60.483 0.086 0.456 21 12 60.483 0.086 0.456 21 13 163.874 0.078 1.666 21 14 124.864 0.102 1.240 21 15 91.738 0.134 0.892 21 16 203.038 0.788 0.644	21	10	111.664	0.010	0.870		44	37	140.295	0.000	1.168
21 12 60.483 0.086 0.456 21 13 163.874 0.078 1.666 21 14 124.864 0.102 1.240 21 15 91.738 0.134 0.892 21 16 203.038 0.788 0.644	21	11	84.548	0.048	0.676	1	44	38	124.804	0.000	1.046
21 13 163.874 0.078 1.666 44 40 115.420 0.000 0.318 21 14 124.864 0.102 1.240 44 41 101.667 0.002 0.274 21 15 91.738 0.134 0.892 44 42 88.452 0.000 0.240 21 16 203.038 0.788 0.644 44 43 87.528 0.366 0.378	21	12	60.483	0.086	0.456	1	44	39	114.017	0.000	0.964
21 14 124.864 0.102 1.240 44 41 101.667 0.002 0.274 21 15 91.738 0.134 0.892 44 42 88.452 0.000 0.240 21 16 203.038 0.788 0.644 44 43 87.528 0.366 0.378	21	13	163.874	0.078	1,666	1	44	40	115.420	0.000	0.318
21 15 91.738 0.134 0.892 44 42 88.452 0.000 0.240 21 16 203.038 0.788 0.644 44 43 87.528 0.366 0.378	21	14	124 864	0.102	1.240	1	44	41	101 667	0.002	0.274
21 16 203.038 0.788 0.644 44 43 87.528 0.366 0.378	21	15	91,738	0.134	0.892	1	44	42	88,452	0.000	0.240
	21	16	203.038	0.788	0.644	1	44	43	87,528	0,366	0.378

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

21 17 18.324 0.850 0.572 21 18 175.945 0.085 0.512 21 19 9.555 0.085 0.512 21 20 67.319 0.018 0.250 21 22 67.319 0.018 0.250 21 22 226.207 0.160 1.772 44 44 49 66.937 0.000 0.254 211 22 226.207 0.160 1.772 44 44 49 66.937 0.000 0.388 211 226 196.506 0.224 0.824 44 51 45.996 0.000 0.181 21 28 168.430 0.966 1.166 44 53 19.020 0.181 21 30 128.532 0.940 0.844 455 1 12.935 0.000 1.544 21 33 17.393 1.000 0.0564 455 1.99.79	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
11 17 17 9 9555 0.088 0.058 0.44 45 52.95 0.428 0.188 211 121 45.34 0.018 0.256 44 47 67.247 0.000 0.352 211 221 25.8207 0.160 1.772 44 48 489.97 0.000 0.254 211 223 211.658 0.182 1.664 44 45 59.97 0.002 0.428 211 225 91.766 0.224 0.024 444 52 75.198 0.000 0.382 211 227 57.855 0.0266 1.084 444 52 75.198 0.000 0.182 211 237 17.99 0.926 0.166 445 1 12.925 0.000 0.486 211 33 57.379 1.000 0.046 45 46 19.493 0.002 1.380 211 34 141.955	21	17	189.334	0.830	0.572		44	44	69.164	0.432	0.266
11 19 95.855 0.098 0.358 44 46 95.73 0.000 0.498 21 20 67.319 0.018 0.250 4.44 47 67.277 0.0000 0.254 21 22 226.207 0.160 1.772 444 49.97 0.0000 0.254 21 22 226.07 0.160 1.772 444 49.97 0.0000 0.254 21 22 91.766 0.224 0.6224 0.444 51 45.98 0.000 0.218 21 22 164.80 0.966 1.166 44 53 61.04 0.002 0.158 21 23 126.626 0.940 0.166 455 61.037 0.000 0.284 21 23 126.626 0.940 0.664 455 61.037 0.000 0.284 21 33 127.57 1.000 0.058 455 11 121.80 0.000	21	18	175.945	0.850	0.512		44	45	52.959	0.428	0.168
21 20 67.319 0.018 0.250 21 21 45.348 0.032 0.160 1.72 11 22 228.207 0.160 1.72 121 23 211.668 0.182 1.664 211 24 195.506 0.206 1.508 211 25 91.766 0.224 0.822 211 27 57.865 0.626 0.284 211 27 57.865 0.626 0.284 211 27 57.865 0.626 0.284 211 23 147.49 0.400 0.980 211 31 85.08 0.996 0.166 211 33 17.72 1.000 0.054 211 35 131.055 0.968 0.466 211 35 131.656 0.968 0.466 211 35 134.656 0.968 0.466 211 35 147.90 <td>21</td> <td>19</td> <td>93.555</td> <td>0.008</td> <td>0.358</td> <td></td> <td>44</td> <td>46</td> <td>89.673</td> <td>0.000</td> <td>0.498</td>	21	19	93.555	0.008	0.358		44	46	89.673	0.000	0.498
21 21 45.348 0.052 0.160 1.772 21 22 226.07 0.160 1.772 21 23 211.664 0.182 1.664 21 24 196.506 0.206 1.508 21 25 91.706 0.224 0.822 21 25 91.706 0.224 0.822 21 26 69.030 0.480 0.488 21 27 57.865 0.626 0.284 21 29 147.499 0.940 0.980 21 30 128.332 0.940 0.814 21 30 128.332 0.940 0.814 21 33 57.379 1.000 0.044 45 4 194.933 0.002 1.544 21 34 141.595 0.954 0.554 21 35 131.66 0.968 445 45 0.000 1.544	21	20	67.319	0.018	0.250		44	47	67.247	0.000	0.352
21 22 228.07 0.160 1.772 44 49 65.92 0.008 0.544 21 24 196.505 0.206 1.508 444 50 53.079 0.002 0.442 21 25 91.706 0.224 0.822 444 51 45.968 0.000 0.218 211 26 69.903 0.440 0.949 0.824 444 52 75.198 0.000 0.418 211 28 168.409 0.940 0.844 444 54 49.225 0.000 0.466 211 30 128.52 0.940 0.844 45 3 75.93 0.000 0.286 211 30 128.536 0.996 0.066 455 16 19.799 0.002 1.544 211 35 131.056 0.998 0.466 45 8 207.17 0.004 2.200 211 35 144.06 0.192	21	21	45.348	0.032	0.160		44	48	48.987	0.000	0.254
21 23 211 688 0.182 1.684 21 24 196.56 0.206 1.508 21 26 69.903 0.400 0.822 21 26 69.903 0.400 0.498 21 26 69.903 0.400 0.498 21 27 57.865 0.626 0.284 21 28 168.40 0.906 1.166 21 30 128.62 0.940 0.980 21 30 128.62 0.940 0.986 21 31 85.056 0.996 0.166 45 3 75.39 0.000 0.286 21 33 57.37 1.000 0.058 45 6 145.021 0.002 1.544 21 36 12.986 0.968 0.466 45 8 27.197 0.002 2.552 21 36 12.866 0.198 0.968 45 <td< td=""><td>21</td><td>22</td><td>226.207</td><td>0.160</td><td>1.772</td><td></td><td>44</td><td>49</td><td>66.592</td><td>0.008</td><td>0.544</td></td<>	21	22	226.207	0.160	1.772		44	49	66.592	0.008	0.544
21 24 196.506 0.206 1.508 21 25 91.706 0.224 0.822 21 26 69.903 0.440 0.482 21 26 69.903 0.460 0.482 21 28 164.40 0.006 1.166 21 29 147.499 0.940 0.980 21 30 126.832 0.940 0.814 21 32 69.081 1.000 0.058 21 33 57.379 1.000 0.064 45 5 169.799 0.002 1.544 21 35 131.056 0.968 0.466 45 5 169.799 0.002 1.544 21 35 130.56 0.968 0.466 21 36 12.348 0.966 0.452 21 36 14.2020 0.0162 1.144 45 10 112.10 0.0000	21	23	211.668	0.182	1.664		44	50	53.079	0.002	0.442
21 25 91.706 0.224 0.822 44 52 75.198 0.000 0.218 21 26 68.903 0.480 0.496 44 53 61.034 0.002 0.182 21 28 168.480 0.906 1.166 45 1 121.385 0.000 0.468 21 29 147.499 0.940 0.980 45 2 71.518 0.000 0.268 21 30 128.632 0.940 0.814 45 3 75.930 0.000 0.296 21 33 67.379 1.000 0.068 45 4 194.933 0.002 1.544 21 34 141.595 0.956 0.568 455 4 194.933 0.002 1.544 21 35 131.066 0.968 455 8 27.197 0.002 2.552 21 35 122.348 0.960 0.452 455 10 112.10 0.000 0.878 21 39 114.700 0.448 0.366 455 10 112.10 0.000 0.881 21 44 63.052 0.650 0.148 455 11 85.302 0.022 1.276 21 44 63.052 0.650 0.148 455 16 200.128 0.000 0.882 21 44 63.052 0.650 0.148 455 16 200.128 0.000	21	24	196.506	0.206	1.508		44	51	45.896	0.000	0.388
21 26 69.903 0.480 0.498 21 27 57.865 0.628 0.284 21 28 168.480 0.906 1.166 21 29 147.499 0.940 0.980 21 30 128.632 0.940 0.980 21 31 85.036 0.996 0.166 21 32 69.081 1.000 0.058 21 33 57.379 1.000 0.044 45 4 194.933 0.002 1.544 21 34 141.595 0.954 0.564 21 35 13.256 0.968 0.496 21 35 132.58 0.969 0.452 21 37 140.200 0.102 1.144 45 9 176.147 0.004 2.200 21 42 87.306 0.170 0.210 21 43 81.083 0.482	21	25	91.706	0.224	0.822		44	52	75.198	0.000	0.218
21 27 57.865 0.626 0.284 21 28 168.460 0.906 1.166 21 29 147.499 0.940 0.980 21 30 128.632 0.940 0.814 21 30 128.632 0.940 0.814 21 32 69.081 1.000 0.058 21 32 69.081 1.000 0.054 21 33 57.379 1.000 0.044 45 4 194.933 0.002 1.544 21 34 141.595 0.954 0.564 45 6 145.021 0.000 1.148 21 35 131.056 0.968 0.496 45 10 112.110 0.000 0.687 21 35 142.80 0.960 0.452 45 11 85.320 0.000 0.682 21 40 114.81 0.166 0.000 1.453 11 <td>21</td> <td>26</td> <td>69.903</td> <td>0.480</td> <td>0.498</td> <td></td> <td>44</td> <td>53</td> <td>61.034</td> <td>0.002</td> <td>0.182</td>	21	26	69.903	0.480	0.498		44	53	61.034	0.002	0.182
21 28 188.480 0.906 1.166 21 29 147.499 0.940 0.980 21 30 128.632 0.940 0.814 21 30 128.632 0.940 0.814 21 30 128.632 0.940 0.106 21 31 85.036 0.996 0.106 21 32 69.081 1.000 0.054 21 33 57.379 1.000 0.044 21 34 141.555 0.954 0.564 45 5 169.799 0.002 1.544 21 35 131.056 0.968 0.496 21 36 122.346 0.960 0.452 21 36 124.806 0.198 0.998 21 40 114.841 0.166 0.300 21 44 10.097 0.148 0.452 21 45 5.289 0.818	21	27	57.865	0.626	0.284		44	54	49.225	0.000	0.158
21 29 147.499 0.940 0.980 45 2 97.158 0.000 0.368 21 30 128.632 0.940 0.814 45 3 75.930 0.000 0.296 21 32 69.081 1.000 0.058 45 4 194.933 0.002 1.544 21 33 57.379 1.000 0.044 45 6 145.029 0.002 1.360 21 35 131.066 0.968 0.466 455 8 207.197 0.004 2.200 21 36 122.348 0.960 0.452 455 8 207.197 0.004 2.200 21 37 140.200 0.102 1.144 455 8 207.197 0.004 2.200 21 39 114.790 0.348 0.894 455 10 112.110 0.000 0.878 21 40 114.841 0.166 0.300 455 11 155.320 0.000 0.826 21 44 63.052 0.650 0.148 455 16 102.128 0.000 0.764 21 44 63.052 0.650 0.148 455 16 177.161 0.000 0.720 21 46 89.578 0.010 0.496 455 16 127.998 0.000 0.764 21 46 89.578 0.012 0.328 455 22	21	28	168.480	0.906	1.166		45	1	121.365	0.000	0.466
21 30 128.632 0.940 0.814 45 3 75.930 0.000 0.296 21 31 85.036 0.996 0.106 45 4 194.933 0.002 1.544 21 33 57.379 1.000 0.044 45 5 168.799 0.002 1.360 21 33 11.555 0.954 0.564 45 6 145.021 0.000 2.252 21 36 122.348 0.960 0.452 45 8 207.197 0.004 2200 21 38 124.806 0.198 0.998 45 8 207.197 0.004 2200 21 38 124.806 0.198 0.998 45 10 112.110 0.000 0.682 21 39 114.790 0.348 0.884 45 12 61.474 0.000 0.682 21 40 114.811 0.166 0.300 45 13 188.154 0.058 1.730 21 44 63.052 0.660 0.148 0.462 15 15 95.302 0.000 0.626 21 44 83.052 0.012 0.326 45 18 177.161 0.000 0.720 21 45 54.289 0.012 0.326 45 12 45.11 15.986 0.000 1.666 21 49 69.024 0.220 0.490 45 <td>21</td> <td>29</td> <td>147.499</td> <td>0.940</td> <td>0.980</td> <td></td> <td>45</td> <td>2</td> <td>97.158</td> <td>0.000</td> <td>0.368</td>	21	29	147.499	0.940	0.980		45	2	97.158	0.000	0.368
21 31 85.036 0.996 0.106 45 4 194.933 0.002 1.544 21 32 69.081 1.000 0.058 45 5 169.799 0.002 1.360 21 33 57.379 1.000 0.044 45 6 145.221 0.000 1.148 21 34 141.595 0.966 0.496 45 8 207.197 0.004 2.200 21 36 122.348 0.960 0.452 45 8 207.197 0.004 2.200 21 38 124.806 0.198 0.998 45 11 85.320 0.002 4.52 21 39 114.790 0.348 0.884 45 12 61.474 0.000 0.878 21 40 114.841 0.166 0.300 455 13 168.154 0.058 1.730 21 44 63.052 0.650 0.148 45 14 127.236 0.002 0.286 21 44 89.578 0.010 0.496 45 19 93.681 0.000 0.764 21 44 89.578 0.012 0.352 45 21 45.11 0.000 0.262 21 46 89.578 0.012 0.352 45 21 45.11 0.000 0.720 21 46 89.578 0.012 0.352 45 21 45.12 <td< td=""><td>21</td><td>30</td><td>128.632</td><td>0.940</td><td>0.814</td><td></td><td>45</td><td>3</td><td>75.930</td><td>0.000</td><td>0.296</td></td<>	21	30	128.632	0.940	0.814		45	3	75.930	0.000	0.296
21 32 69.081 1.000 0.058 45 5 169.799 0.002 1.360 21 33 57.379 1.000 0.044 45 6 145.021 0.000 1.148 21 34 141.595 0.954 0.564 45 8 207.197 0.004 2.200 21 36 122.348 0.960 0.452 45 8 207.197 0.004 2.200 21 37 140.200 0.102 1.144 45 10 112.10 0.000 0.878 21 39 114.790 0.348 0.884 45 11 85.320 0.000 0.692 21 40 114.841 0.166 0.300 455 13 168.154 0.058 1.730 21 44 80.52 0.650 0.118 0.256 455 14 127.236 0.062 1.276 21 44 63.052 0.650 0.148 455 15 93.02 0.126 0.938 21 44 63.052 0.650 0.148 455 18 177.161 0.000 0.720 21 44 63.052 0.650 0.148 455 19 93.681 0.000 0.720 21 44 63.022 0.412 0.332 455 22 27.052 0.000 1.836 21 45 96.244 0.220 0.490 455 23	21	31	85.036	0.996	0.106		45	4	194.933	0.002	1.544
21 33 57.379 1.000 0.044 45 6 145.021 0.000 1.148 21 34 141.595 0.954 0.564 455 7 239.766 0.002 2.552 21 35 131.056 0.968 0.496 455 8 207.197 0.004 2.200 21 38 122.348 0.960 0.452 455 9 176.147 0.016 1.852 21 37 140.200 0.102 1.144 455 10 112.110 0.000 0.878 21 40 114.841 0.166 0.300 455 11 85.320 0.000 0.692 21 44 87.306 0.170 0.210 455 14 127.236 0.082 1.276 21 44 83.052 0.650 0.148 0.366 455 16 200.128 0.000 0.826 21 44 83.578 0.010 0.496 455 16 200.128 0.000 0.764 45 18 9.7361 0.000 0.764 455 18 177.187 0.000 0.252 21 44 89.578 0.012 0.352 455 21 45.410 0.000 1.600 21 45 66.576 0.176 0.194 455 22 227.052 0.000 1.836 21 55 65.576 0.450 0.996 455 <td>21</td> <td>32</td> <td>69.081</td> <td>1.000</td> <td>0.058</td> <td></td> <td>45</td> <td>5</td> <td>169.799</td> <td>0.002</td> <td>1.360</td>	21	32	69.081	1.000	0.058		45	5	169.799	0.002	1.360
21 34 141.595 0.954 0.564 45 7 239.766 0.002 2.552 21 35 131.056 0.968 0.496 455 8 207.197 0.004 2.200 21 36 122.348 0.960 0.452 455 9 176.147 0.016 1.852 21 37 140.200 0.102 1.144 455 10 112.110 0.000 0.878 21 39 114.790 0.348 0.884 455 11 85.320 0.000 0.682 21 40 114.841 0.166 0.300 455 13 168.154 0.058 1.730 21 44 83.052 0.650 0.148 455 14 127.236 0.082 1.276 21 44 63.052 0.650 0.148 455 16 200.128 0.000 0.826 21 44 63.052 0.650 0.148 455 16 200.128 0.000 0.720 21 44 63.052 0.650 0.148 455 17 187.998 0.000 0.720 21 44 69.024 0.220 0.490 455 21 45.410 0.000 0.522 21 44 69.024 0.220 0.490 455 22 27.652 0.000 1.836 21 45 55.534 0.424 0.334 455 22	21	33	57.379	1.000	0.044		45	6	145.021	0.000	1.148
21 35 131.056 0.968 0.496 45 8 207.197 0.004 2.200 21 36 122.348 0.960 0.452 45 9 176.147 0.016 1.852 21 37 140.200 0.102 1.144 45 10 112.110 0.000 0.6878 21 39 114.790 0.348 0.884 45 11 85.320 0.000 0.692 21 40 114.841 0.166 0.300 45 11 85.320 0.000 0.484 21 42 87.306 0.170 0.210 45 14 127.236 0.082 1.276 21 44 63.052 0.650 0.148 45 15 95.302 0.126 0.938 21 44 63.052 0.650 0.148 45 16 200.128 0.000 0.826 21 44 63.052 0.650 0.148 45 18 177.161 0.000 0.720 21 44 63.052 0.650 0.148 45 18 177.161 0.000 0.252 21 44 89.977 0.010 0.496 45 19 93.681 0.000 0.262 21 44 89.978 0.012 0.352 45 21 45.10 0.000 1.722 21 44 89.977 0.176 0.194 45 22 27.62 <td>21</td> <td>34</td> <td>141.595</td> <td>0.954</td> <td>0.564</td> <td></td> <td>45</td> <td>7</td> <td>239.766</td> <td>0.002</td> <td>2.552</td>	21	34	141.595	0.954	0.564		45	7	239.766	0.002	2.552
21 36 122.348 0.960 0.452 45 9 176.147 0.016 1.852 21 37 140.200 0.102 1.144 45 10 112.10 0.000 0.678 21 38 124.806 0.198 0.998 45 11 85.320 0.000 0.692 21 39 114.790 0.348 0.884 45 12 61.474 0.000 0.484 21 40 114.841 0.166 0.300 45 13 168.154 0.058 1.730 21 44 81.083 0.482 0.302 45 14 127.236 0.082 1.276 21 44 63.052 0.650 0.148 0.452 45 16 200.128 0.000 0.826 21 44 63.052 0.650 0.148 45 15 95.302 0.126 0.938 21 44 63.052 0.650 0.148 45 16 200.128 0.000 0.720 21 45 54.289 0.010 0.496 45 18 177.161 0.000 0.252 21 44 49.917 0.018 0.252 45 22 227.052 0.000 1.836 21 45 69.428 0.424 0.334 45 24 198.816 0.004 0.528 21 55.576 0.450 0.298 0.144 45 2	21	35	131.056	0.968	0.496		45	8	207.197	0.004	2.200
21 37 140.200 0.102 1.144 45 10 112.110 0.000 0.6878 21 38 124.806 0.198 0.998 45 11 85.320 0.000 0.692 21 39 114.790 0.348 0.884 45 11 85.320 0.000 0.6878 21 40 114.811 0.166 0.300 45 12 61.474 0.000 0.484 21 42 87.306 0.170 0.210 45 14 127.236 0.082 1.730 21 44 63.052 0.650 0.148 45 15 95.302 0.126 0.938 21 44 63.052 0.650 0.148 45 16 200.128 0.000 0.6262 21 44 63.052 0.650 0.148 45 16 200.128 0.000 0.720 21 45 54.289 0.818 0.086 45 18 177.161 0.000 0.252 21 48 48.917 0.018 0.252 455 21 45.410 0.000 1.600 21 55 64.280 0.228 0.144 455 22 227.052 0.000 1.836 22 1 103.788 0.874 0.302 455 226 69.479 0.026 0.722 21 55 56.576 0.450 0.996 455 226	21	36	122.348	0.960	0.452		45	9	176.147	0.016	1.852
21 38 124.806 0.198 0.998 45 11 85.320 0.000 0.692 21 39 114.790 0.348 0.884 45 12 61.474 0.000 0.484 21 40 114.841 0.166 0.300 45 13 168.154 0.058 1.730 21 42 87.306 0.170 0.210 45 14 127.236 0.082 1.276 21 42 87.306 0.170 0.210 45 16 200.128 0.000 0.826 21 43 81.083 0.482 0.302 45 16 200.128 0.000 0.826 21 44 63.052 0.650 0.148 45 17 187.998 0.000 0.764 21 45 54.289 0.818 0.066 45 18 177.161 0.000 0.252 21 46 89.578 0.010 0.496 45 20 67.371 0.000 0.252 21 48 48.917 0.018 0.252 455 21 45.410 0.000 1.660 21 55 64.280 0.288 0.144 45 22 27.052 0.000 1.836 21 55 64.280 0.288 0.144 45 26 69.479 0.026 0.722 21 55 56.576 0.450 0.096 45 27 49.356 </td <td>21</td> <td>37</td> <td>140.200</td> <td>0.102</td> <td>1.144</td> <td></td> <td>45</td> <td>10</td> <td>112.110</td> <td>0.000</td> <td>0.878</td>	21	37	140.200	0.102	1.144		45	10	112.110	0.000	0.878
21 39 114.790 0.348 0.884 45 12 61.474 0.000 0.484 21 40 114.841 0.166 0.300 45 13 168.154 0.058 1.730 21 42 87.306 0.170 0.210 45 14 127.236 0.082 1.276 21 43 81.083 0.482 0.302 45 16 200.128 0.000 0.826 21 44 63.052 0.650 0.148 45 16 200.128 0.000 0.826 21 45 54.289 0.818 0.086 45 18 177.161 0.000 0.764 21 46 89.578 0.010 0.496 45 18 177.161 0.000 0.720 21 47 67.316 0.012 0.352 45 20 67.371 0.000 0.252 21 48 48.917 0.018 0.252 45 21 45.10 0.000 0.166 21 49 69.024 0.220 0.490 45 22 227.052 0.000 1.836 21 51 55.534 0.424 0.334 45 24 198.816 0.000 1.600 21 52 76.597 0.176 0.194 45 26 69.479 0.026 0.722 21 54 56.576 0.450 0.096 45 27 49.356 <td>21</td> <td>38</td> <td>124.806</td> <td>0.198</td> <td>0.998</td> <td></td> <td>45</td> <td>11</td> <td>85.320</td> <td>0.000</td> <td>0.692</td>	21	38	124.806	0.198	0.998		45	11	85.320	0.000	0.692
21 40 114.841 0.166 0.300 45 13 168.154 0.058 1.730 21 41 100.997 0.148 0.256 45 14 127.236 0.082 1.276 21 42 87.306 0.170 0.210 45 15 95.302 0.126 0.938 21 43 81.083 0.482 0.302 45 16 200.128 0.000 0.826 21 44 63.052 0.650 0.148 45 17 187.998 0.000 0.764 21 45 54.289 0.818 0.066 45 18 177.161 0.000 0.720 21 46 89.578 0.010 0.496 45 19 93.681 0.000 0.360 21 47 67.316 0.012 0.352 45 20 67.371 0.000 0.252 21 48 48.917 0.018 0.252 45 21 45.410 0.000 1.666 21 49 69.024 0.220 0.490 45 22 227.052 0.000 1.836 21 55 56.576 0.450 0.096 45 23 212.298 0.000 1.722 21 54 56.576 0.450 0.096 45 27 49.356 0.004 0.528 21 54 56.576 0.450 0.096 45 28 187.662 </td <td>21</td> <td>39</td> <td>114.790</td> <td>0.348</td> <td>0.884</td> <td></td> <td>45</td> <td>12</td> <td>61.474</td> <td>0.000</td> <td>0.484</td>	21	39	114.790	0.348	0.884		45	12	61.474	0.000	0.484
21 41 100.997 0.148 0.256 45 14 127.236 0.082 1.276 21 42 87.306 0.170 0.210 45 15 95.302 0.126 0.938 21 43 81.083 0.482 0.302 45 16 200.128 0.000 0.826 21 44 63.052 0.650 0.148 45 16 200.128 0.000 0.764 21 45 54.289 0.818 0.086 45 18 177.161 0.000 0.720 21 46 89.578 0.010 0.496 45 19 93.681 0.000 0.360 21 47 67.316 0.012 0.352 45 20 67.371 0.000 0.252 21 48 48.917 0.018 0.252 45 21 45.410 0.000 0.166 21 49 69.024 0.220 0.490 45 22 227.052 0.000 1.836 21 50 61.182 0.412 0.334 45 24 198.816 0.000 1.600 21 52 76.597 0.176 0.194 45 25 96.284 0.046 0.968 21 53 64.280 0.288 0.144 45 26 69.479 0.026 0.722 21 54 56.576 0.450 0.096 45 27 49.356	21	40	114.841	0.166	0.300		45	13	168.154	0.058	1.730
21 42 87.306 0.170 0.210 45 15 95.302 0.126 0.938 21 43 81.083 0.482 0.302 45 16 200.128 0.000 0.826 21 44 63.052 0.650 0.148 45 17 187.998 0.000 0.764 21 45 54.289 0.818 0.086 45 18 177.161 0.000 0.720 21 46 89.578 0.010 0.496 45 19 93.681 0.000 0.360 21 47 67.316 0.012 0.352 45 20 67.371 0.000 0.252 21 48 48.917 0.018 0.252 45 21 45.410 0.000 0.166 21 49 69.024 0.220 0.490 45 22 227.052 0.000 1.836 21 50 61.182 0.412 0.334 45 23 212.298 0.000 1.722 21 51 55.534 0.424 0.334 45 24 198.816 0.000 1.600 21 54 56.576 0.450 0.096 45 27 49.356 0.004 0.528 22 1 103.798 0.874 0.302 45 28 187.662 0.000 1.558 22 2 85.353 0.898 0.214 45 31 103.188	21	41	100.997	0.148	0.256		45	14	127.236	0.082	1.276
21 43 81.083 0.482 0.302 45 16 200.128 0.000 0.826 21 44 63.052 0.650 0.148 45 17 187.998 0.000 0.764 21 45 54.289 0.818 0.086 45 18 177.161 0.000 0.720 21 46 89.578 0.010 0.496 45 19 93.681 0.000 0.360 21 47 67.316 0.012 0.352 45 20 67.371 0.000 0.252 21 48 48.917 0.018 0.252 45 21 45.410 0.000 0.166 21 49 69.024 0.220 0.490 45 22 227.052 0.000 1.836 21 50 61.182 0.412 0.386 45 23 212.298 0.000 1.722 21 51 55.534 0.424 0.334 45 24 198.816 0.000 1.600 21 52 76.597 0.176 0.194 45 26 69.479 0.026 0.722 21 54 56.576 0.450 0.096 45 27 49.356 0.004 0.528 22 1 103.798 0.874 0.302 45 28 187.662 0.000 1.558 22 2 8.5353 0.898 0.214 45 29 171.019	21	42	87.306	0.170	0.210		45	15	95.302	0.126	0.938
21 44 63.052 0.650 0.148 45 17 187.998 0.000 0.764 21 45 54.289 0.818 0.086 45 18 177.161 0.000 0.720 21 46 89.578 0.010 0.496 45 19 93.681 0.000 0.360 21 47 67.316 0.012 0.352 45 20 67.371 0.000 0.252 21 48 48.917 0.018 0.252 45 21 45.410 0.000 0.166 21 49 69.024 0.220 0.490 45 22 227.052 0.000 1.836 21 50 61.182 0.412 0.386 45 23 212.298 0.000 1.722 21 51 55.534 0.424 0.334 45 24 198.816 0.000 1.600 21 52 76.597 0.176 0.194 45 25 96.284 0.046 0.968 21 53 64.280 0.288 0.144 45 26 69.479 0.026 0.722 21 54 56.576 0.450 0.096 45 27 49.356 0.004 0.528 22 1 103.798 0.874 0.302 45 28 187.662 0.000 1.422 22 3 73.822 0.832 0.186 45 31 103.188 <	21	43	81.083	0.482	0.302		45	16	200.128	0.000	0.826
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	44	63.052	0.650	0.148		45	17	187.998	0.000	0.764
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	45	54.289	0.818	0.086		45	18	177.161	0.000	0.720
21 47 67.316 0.012 0.352 45 20 67.371 0.000 0.252 21 48 48.917 0.018 0.252 45 21 45.410 0.000 0.166 21 49 69.024 0.220 0.490 45 22 227.052 0.000 1.836 21 50 61.182 0.412 0.386 45 23 212.298 0.000 1.722 21 51 55.534 0.424 0.334 45 24 198.816 0.000 1.600 21 52 76.597 0.176 0.194 45 25 96.284 0.046 0.968 21 53 64.280 0.288 0.144 45 26 69.479 0.026 0.722 21 54 56.576 0.450 0.096 45 27 49.356 0.004 0.528 22 1 103.798 0.874 0.302 45 28 187.662 0.000 1.422 22 3 73.822 0.832 0.186 45 30 154.051 0.000 1.276 22 4 162.939 0.688 1.038 45 32 85.471 0.000 0.270	21	46	89.578	0.010	0.496		45	19	93.681	0.000	0.360
21 48 48.917 0.018 0.252 45 21 45.410 0.000 0.166 21 49 69.024 0.220 0.490 45 22 227.052 0.000 1.836 21 50 61.182 0.412 0.386 45 23 212.298 0.000 1.722 21 51 55.534 0.424 0.334 45 24 198.816 0.000 1.600 21 52 76.597 0.176 0.194 45 25 96.284 0.046 0.968 21 53 64.280 0.288 0.144 45 26 69.479 0.026 0.722 21 54 56.576 0.450 0.096 45 27 49.356 0.004 0.528 22 1 103.798 0.874 0.302 45 28 187.662 0.000 1.558 22 2 85.353 0.898 0.214 45 29 171.019 0.000 1.276 22 4 162.939 0.688 1.038 45 31 103.188 0.000 0.270 22 5 132.889 0.816 0.788 45 32 85.471 0.000 0.224	21	47	67.316	0.012	0.352		45	20	67.371	0.000	0.252
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	48	48.917	0.018	0.252		45	21	45.410	0.000	0.166
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	49	69.024	0.220	0.490		45	22	227.052	0.000	1.836
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	50	61.182	0.412	0.386		45	23	212.298	0.000	1.722
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	51	55.534	0.424	0.334		45	24	198.816	0.000	1.600
21 53 64.280 0.288 0.144 21 54 56.576 0.450 0.096 22 1 103.798 0.874 0.302 22 2 85.353 0.898 0.214 22 3 73.822 0.832 0.186 22 4 162.939 0.6688 1.038 45 31 103.188 0.000 0.270	21	52	76.597	0.176	0.194		45	25	96.284	0.046	0.968
21 54 56.576 0.450 0.096 22 1 103.798 0.874 0.302 22 1 103.798 0.874 0.302 22 2 85.353 0.898 0.214 22 3 73.822 0.832 0.186 22 4 162.939 0.688 1.038 45 31 103.188 0.000 0.270 22 5 132.889 0.816 0.788 45 32 85.471 0.000 0.224	21	53	64,280	0.288	0.144		45	26	69.479	0.026	0.722
22 1 103.798 0.874 0.302 45 28 187.662 0.000 1.558 22 2 85.353 0.898 0.214 45 29 171.019 0.000 1.422 22 3 73.822 0.832 0.186 45 30 154.051 0.000 1.276 22 4 162.939 0.688 1.038 45 31 103.188 0.000 0.270 22 5 132.889 0.816 0.788 45 32 85.471 0.000 0.224	21	54	56.576	0.450	0.096	1	45	27	49.356	0.004	0.528
22 2 85.353 0.898 0.214 45 29 171.019 0.000 1.422 22 3 73.822 0.832 0.186 45 30 154.051 0.000 1.422 22 4 162.939 0.668 1.038 45 31 103.188 0.000 0.270 22 5 132.889 0.816 0.788 45 32 85.471 0.000 0.224	22	1	103.798	0.874	0.302	1	45	28	187.662	0.000	1.558
22 3 73.822 0.832 0.186 45 30 154.051 0.000 1.422 22 4 162.939 0.688 1.038 45 31 103.188 0.000 0.270 22 5 132.889 0.816 0.788 45 32 85.471 0.000 0.224	22	2	85,353	0.898	0.214	1	45	29	171 019	0.000	1,422
22 4 162.939 0.688 1.038 45 31 103.188 0.000 0.270 22 5 132.889 0.816 0.788 45 32 85.471 0.000 0.224	22	3	73.822	0.832	0.186	1	45	30	154 051	0.000	1.276
22 5 132,889 0.816 0.788 45 32 85,471 0.000 0.224	22	4	162 939	0.688	1.038	1	45	31	103 188	0.000	0.270
	22	5	132 889	0.816	0.788	1	45	32	85.471	0.000	0.224

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

22 6 105.50 0.884 0.552 22 7 182.477 0.893 1.556 22 9 101.997 0.938 0.540 45 38 143.955 0.000 0.772 22 10 105.77 0.122 0.786 45 38 115.546 0.000 0.772 22 112 59.688 0.440 0.822 45 39 14.037 0.000 0.964 22 12 59.688 0.440 0.822 45 40 115.40 0.000 0.964 22 13 149.063 0.444 0.824 45 40 115.40 0.000 0.241 22 16 203.602 0.573 0.710 45 42 88.452 0.000 0.242 22 17 190.58 0.602 0.584 45 46 48.573 0.000 0.382 22 18 77.83 0.564 0.	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects		Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
22 7 182.477 0.886 1.556 22 8 132.170 0.866 0.898 22 9 101.937 0.192 0.736 22 10 166.777 0.192 0.736 22 11 106.777 0.192 0.736 22 12 50.888 0.440 0.822 13 143.866 0.644 1312 22 14 108.403 0.464 0.924 22 15 77.838 0.582 0.564 22 16 203.02 0.578 0.710 45 44 101.59 0.000 0.240 22 16 203.02 0.578 0.571 22 18 178.233 0.596 1584 45 46 9.8773 0.000 0.242 22 14 4583 1597 0.468 1.458 22 12 14583 0.400 <td< td=""><td>22</td><td>6</td><td>108.550</td><td>0.884</td><td>0.552</td><td></td><td>45</td><td>33</td><td>68.599</td><td>0.000</td><td>0.182</td></td<>	22	6	108.550	0.884	0.552		45	33	68.599	0.000	0.182
22 8 132.170 0.886 0.889 45 35 138.13 0.000 0.772 22 9 101.997 0.192 0.798 45 36 115.546 0.000 0.772 22 11 82.092 0.274 0.616 37 140.295 0.000 1.168 22 12 59.680 0.440 0.322 45 38 124.864 0.000 0.964 22 15 7.783 0.562 0.554 45 42 84.52 0.000 0.274 22 16 203.802 0.578 0.710 45 43 83.272 0.124 0.444 22 17 190.536 0.602 0.580 45 45 50.022 0.166 0.328 22 18 178.233 0.599 0.584 45 45 50.022 0.144 0.444 22 24 16.536 0.472 0.232 455	22	7	182.477	0.698	1.556		45	34	143.955	0.000	0.862
22 9 101.997 0.938 0.540 22 10 106.777 0.192 0.792 22 11 82.092 0.274 0.792 22 12 59.68 0.440 0.382 22 13 143.966 0.454 1.312 22 14 104.03 0.464 0.924 22 16 20.302 0.578 0.710 45 44 115.49 0.000 0.274 22 16 20.302 0.578 0.710 45 42 88.452 0.000 0.274 22 17 190.536 0.692 0.659 45 44 67.500 0.166 0.328 22 18 178.233 0.598 0.588 45 44 67.500 0.166 0.328 22 14 15.366 0.772 0.232 45 45 50 53.009 0.000 0.488 22	22	8	132.170	0.866	0.898		45	35	128.613	0.000	0.772
10 106.777 0.192 0.78 45 37 140.285 0.000 1.188 22 11 82.02 0.274 0.616 45 38 124.804 0.000 0.984 22 13 143.966 0.440 0.382 39 114.017 0.000 0.994 22 14 108.403 0.444 0.924 45 39 114.017 0.000 0.274 22 16 203.902 0.578 0.710 45 45 42 88.452 0.000 0.240 22 16 178.33 0.586 0.566 45 45 465 46 89.673 0.000 0.240 22 18 178.336 0.586 0.566 45 45 46 89.673 0.000 0.548 22 20 66.285 0.072 0.232 45 45 50 53.09 0.000 0.548 22 23 19.8	22	9	101.997	0.938	0.540		45	36	115.546	0.000	0.702
22 11 82.082 0.274 0.616 22 12 59.888 0.440 0.382 22 13 143.966 0.454 1.312 22 15 77.838 0.562 0.924 22 15 77.838 0.562 0.564 22 16 203.902 0.578 0.710 45 445 445 430 88.272 0.124 0.444 22 17 190.536 0.602 0.650 455 445 440 67.500 0.166 0.328 22 18 178.233 0.598 0.584 455 445 450 0.000 0.452 22 21 45.346 0.150 0.156 455 465 9.042 0.000 0.524 22 22 22.66 0.456 1.536 455 51 459 0.000 0.548 22 24 198.536 0.440 0.562 <td>22</td> <td>10</td> <td>106.777</td> <td>0.192</td> <td>0.798</td> <td></td> <td>45</td> <td>37</td> <td>140.295</td> <td>0.000</td> <td>1.168</td>	22	10	106.777	0.192	0.798		45	37	140.295	0.000	1.168
22 12 59.88 0.440 0.382 45 39 114.017 0.000 0.994 22 13 143.966 0.454 1.312 45 40 115.420 0.000 0.274 22 16 203.802 0.574 0.710 45 41 101.659 0.000 0.274 22 16 203.802 0.574 0.710 45 43 88.272 0.124 0.444 22 17 190.536 0.602 0.584 45 44 67.500 0.168 0.328 22 18 172.233 0.698 0.584 45 46 89.673 0.000 0.454 22 20 66.285 0.072 0.222 45 47 67.247 0.000 0.352 22 22 228 20.6825 0.072 0.224 45 46 89.673 0.000 0.352 22 22 228 10.987 0.460 0.562 455 55 75.198 0.000 0.344 22 22 70.685 0.726 0.372 45 54 49.225 0.000 0.182 22 22 18.979 0.860 1.196 46 1 12.196 0.000 1.382 22 23 70.502 0.954 0.064 46 1 12.196 0.000 1.544 22 33 18.937 0.862 0.714 46 <t< td=""><td>22</td><td>11</td><td>82.092</td><td>0.274</td><td>0.616</td><td></td><td>45</td><td>38</td><td>124.804</td><td>0.000</td><td>1.046</td></t<>	22	11	82.092	0.274	0.616		45	38	124.804	0.000	1.046
2213143.966 0.454 1.312 45 40 115.420 0.000 0.318 22 15 77.838 0.562 0.564 45 41 101.659 0.000 0.274 22 16 203.802 0.578 0.710 45 43 88.272 0.126 0.444 22 17 190.556 0.662 0.6560 45 44 67.50 0.166 0.328 22 18 178.233 0.599 0.588 45 45 50.422 0.146 0.248 22 20 66.285 0.072 0.222 45 46 99.673 0.000 0.254 22 22 220.900 0.454 1.704 45 49 66.426 0.000 0.544 22 23 210.927 0.458 1.560 455 45 50 53.000 0.000 0.544 22 24 196.836 0.400 1.436 455 51 45.896 0.000 0.182 22 25 86.799 0.640 0.562 455 54 49.225 0.000 0.182 22 26 70.685 0.726 0.372 465 54 49.225 0.000 1.184 22 23 19.299 0.366 1.422 46 1 12.365 0.000 1.544 22 36 12.291 0.594 0.974 0.976 466 159.795 <td< td=""><td>22</td><td>12</td><td>59.688</td><td>0.440</td><td>0.382</td><td></td><td>45</td><td>39</td><td>114.017</td><td>0.000</td><td>0.964</td></td<>	22	12	59.688	0.440	0.382		45	39	114.017	0.000	0.964
2214108.403 0.464 0.924 45 41101.659 0.000 0.274 22 15 77.838 0.562 0.564 45 42 88.452 0.000 0.240 22 16 203.002 0.578 0.710 45 43 88.272 0.124 0.444 22 17 190.536 0.692 0.656 45 44 67.500 0.166 0.444 22 19 92.820 0.044 0.344 45 46 89.673 0.000 0.498 22 20 66.285 0.072 0.224 45 47 67.247 0.000 0.552 22 22 228 20.977 0.458 1.560 45 50 53.090 0.000 0.442 22 22 23 10.927 0.458 1.560 45 55 53.990 0.000 0.442 22 22 86.759 0.640 0.562 45 55 550 53.090 0.000 0.182 22 22 86.759 0.644 1.426 45 56.950 0.000 0.182 22 23 19.290 0.664 1.964 12 45 54 49.225 0.000 0.182 22 29 15.400 0.664 1.422 46 1 12.135 0.000 1.544 22 33 18.932 0.674 0.976 46 4 <	22	13	143.966	0.454	1.312		45	40	115.420	0.000	0.318
22 15 77.838 0.582 0.564 45 42 88.452 0.000 0.240 22 16 203.802 0.578 0.710 45 43 88.272 0.124 0.444 22 17 190.536 0.602 0.650 45 44 67.500 0.166 0.328 22 18 178.233 0.598 0.588 45 45 46 89.673 0.000 0.488 22 20 66.285 0.072 0.222 45 46 89.673 0.000 0.498 22 22 22.86.66 0.454 1.704 45 49 66.426 0.000 0.584 22 24 196.836 0.440 1.436 45 51 45.896 0.000 0.488 22 24 196.835 0.524 0.372 45 53 6.950 0.000 0.184 22 29 195.445 0.54 <t< td=""><td>22</td><td>14</td><td>108.403</td><td>0.464</td><td>0.924</td><td></td><td>45</td><td>41</td><td>101.659</td><td>0.000</td><td>0.274</td></t<>	22	14	108.403	0.464	0.924		45	41	101.659	0.000	0.274
2216203.8020.5780.710454388.2720.1240.444 22 17190.5360.6020.650454467.5000.1660.328 22 18178.2330.5980.588454550.420.1460.248 22 1992.8200.0440.344454689.6730.0000.498 22 2066.2650.0720.232454767.2470.0000.352 22 22228.0600.4541.704454966.4260.0000.254 22 23210.9270.4581.550454966.4260.0000.284 22 24196.8360.4401.436455145.8960.0000.388 22 2586.7590.6400.562455275.1980.0000.182 22 2819.4400.5641.186461121.3650.0000.188 22 2919.4400.5641.186461121.3650.0001.380 22 30138.3920.6740.976461141.3260.0001.380 22 3358.0320.9720.066461141.3260.0001.380 22 35132.6700.5780.584461112.1100.0001.380 22 36126.930.528 <td>22</td> <td>15</td> <td>77.838</td> <td>0.582</td> <td>0.564</td> <td></td> <td>45</td> <td>42</td> <td>88.452</td> <td>0.000</td> <td>0.240</td>	22	15	77.838	0.582	0.564		45	42	88.452	0.000	0.240
2217190.5360.6020.650454467.5000.1660.328 22 1992.8200.0440.344454550.0420.1460.248 22 2066.2850.0720.23245454689.6730.0000.352 22 2145.3460.1500.156454848.6260.0000.546 22 2222.60600.4541.704454848.6260.0000.546 22 2310.6370.6300.552455145.8960.0000.388 22 24196.8360.4401.436455145.8960.0000.442 22 2586.7590.6400.562455275.1980.0000.158 22 2870.6850.7260.372455449.2250.0000.168 22 2919.4800.5641.18646297.1580.0000.388 22 3018.8920.6740.97646375.9300.0001.544 22 3358.0320.9720.046466145.0210.0001.544 22 34144.1980.5280.9424610112.100.0002.202 22 3513.26700.5780.584461185.3200.0001.564 22 36120.2910	22	16	203.802	0.578	0.710		45	43	88.272	0.124	0.444
2218178.2330.5980.588454550.0420.1460.248 22 1992.8200.0440.344454689.6730.0000.498 22 2066.2850.0720.232454767.2470.0000.352 22 2145.3460.1500.156454848.9870.0000.254 22 2222.80.600.4541.704454966.4260.0000.348 22 24196.8360.4401.436455053.090.0000.442 22 24196.8360.7260.372455360.9500.0000.318 22 2670.6850.7260.372455449.2250.0000.118 22 2758.6230.6300.302455449.2250.0000.168 22 28181.9290.3861.422461121.3650.0000.368 22 30138.3920.6740.976465169.7950.0001.154 22 3358.0220.9720.064466145.0210.0001.144 22 34144.1980.6420.71446723.9300.0002.202 22 35132.6700.5780.6344610112.1100.0001.368 22 36120.2910.508 </td <td>22</td> <td>17</td> <td>190.536</td> <td>0.602</td> <td>0.650</td> <td></td> <td>45</td> <td>44</td> <td>67.500</td> <td>0.166</td> <td>0.328</td>	22	17	190.536	0.602	0.650		45	44	67.500	0.166	0.328
2219 92.820 0.044 0.344 45 46 89.673 0.000 0.498 22 20 66.285 0.072 0.232 45 47 67.247 0.000 0.352 22 21 45.346 0.150 0.156 45 48 48.887 0.000 0.254 22 22 $22.28.060$ 0.454 1.704 45 48 48.887 0.000 0.254 22 22 $22.026.060$ 0.454 1.704 45 49 66.426 0.000 0.442 22 22.5 86.759 0.400 0.562 45 53 60.950 0.000 0.388 22 26 70.685 0.726 0.372 45 53 60.950 0.000 0.182 22 27 58.623 0.630 0.302 45 54 49.225 0.000 0.182 22 28 181.929 0.386 1.422 46 1 121.365 0.000 0.368 22 30 138.392 0.674 0.976 466 3 75.930 0.000 1.544 22 34 144.198 0.462 0.714 466 7 239.830 0.000 2.554 22 36 122.91 0.508 0.584 466 10 112.110 0.000 1.366 22 36 122.91 0.508 0.524 466 146 11 <	22	18	178.233	0.598	0.588		45	45	50.042	0.146	0.248
22 20 66.285 0.072 0.232 45 47 67.247 0.000 0.352 22 21 45.346 0.150 0.156 45 48 48.987 0.000 0.254 22 22 228.060 0.454 1.704 45 49 66.426 0.000 0.546 22 24 196.838 0.440 1.436 45 51 45.896 0.000 0.442 22 25 86.759 0.640 0.562 45 52 75.198 0.000 0.218 22 26 70.685 0.726 0.372 45 54 49.225 0.000 0.182 22 27 58.823 0.664 1.186 46 1 121.865 0.000 0.668 22 30 138.392 0.674 0.976 466 4 194.925 0.000 0.568 22 33 58.032 0.972 0.046 466 4 194.925 0.000 1.584 22 33 58.032 0.972 0.046 466 4 194.929 0.000 1.544 22 33 126.903 0.528 0.924 466 46 194.929 0.000 1.586 22 37 139.603 0.424 0.926 466 11 85.320 0.000 1.382 22 38 126.903 0.528 0.926 466 112 61.47	22	19	92.820	0.044	0.344		45	46	89.673	0.000	0.498
22 21 45.346 0.150 0.156 45 48 48.987 0.000 0.254 22 22 228.060 0.454 1.704 45 49 66.426 0.000 0.546 22 23 210.927 0.458 1.550 45 50 53.099 0.000 0.442 22 24 196.836 0.440 1.436 45 50 53.099 0.000 0.442 22 26 70.685 0.726 0.372 45 51 45.896 0.000 0.182 22 27 58.823 0.630 0.302 45 54 49.225 0.000 0.168 22 29 159.460 0.564 1.186 46 1 121.365 0.000 0.466 22 30 138.392 0.674 0.976 46 1 149.929 0.000 1.584 22 31 88.737 0.850 0.124 46 4 194.929 0.000 1.544 22 33 58.032 0.972 0.064 46 4 194.929 0.000 1.544 22 35 132.670 0.578 0.634 46 4 194.929 0.000 1.544 22 36 120.291 0.508 0.584 46 6 145.01 0.000 1.564 22 36 122.693 0.528 0.942 46 11 85.320	22	20	66.285	0.072	0.232		45	47	67.247	0.000	0.352
22 22 228 228 0.454 1.704 45 49 66.426 0.000 0.546 22 23 210.927 0.458 1.550 455 53.09 0.000 0.442 22 24 196.836 0.440 1.436 455 51 45.896 0.000 0.388 22 25 86.759 0.640 0.562 455 51 45.896 0.000 0.218 22 26 70.685 0.726 0.372 455 54 49.225 0.000 0.182 22 27 58.823 0.630 0.302 455 54 49.225 0.000 0.666 22 29 159.480 0.564 1.186 46 2 97.158 0.000 0.368 22 30 138.392 0.674 0.976 466 3 75.930 0.000 1.544 22 31 86.737 0.850 0.124 466 4 194.292 0.000 1.544 22 34 144.198 0.462 0.714 466 4 194.292 0.000 1.586 22 35 132.670 0.578 0.634 466 9 176.995 0.000 1.686 22 36 120.291 0.508 0.584 466 11 85.320 0.000 1.686 22 39 17.196 0.630 0.254 466 114 129.1	22	21	45.346	0.150	0.156		45	48	48.987	0.000	0.254
22 23 210927 0.458 1.550 45 50 53.09 0.000 0.442 22 24 196.836 0.440 1.436 45 51 45.96 0.000 0.388 22 25 86.759 0.640 0.562 45 52 75.198 0.000 0.218 22 26 70.685 0.726 0.372 45 53 60.950 0.000 0.162 22 27 58.823 0.630 0.302 45 54 49.225 0.000 0.168 22 29 159.480 0.564 1.186 46 1 121.365 0.000 0.466 22 30 138.392 0.674 0.976 466 1 121.365 0.000 0.296 22 31 88.737 0.850 0.124 466 4 194.929 0.000 1.544 22 32 70.502 0.954 0.064 466 145.021 0.000 1.360 22 33 132.670 0.578 0.634 466 122 61.474 0.000 2.202 22 36 120.291 0.508 0.372 466 11 85.320 0.000 1.542 22 39 17.190 0.486 0.876 466 12 61.474 0.000 1.332 22 41 100.033 0.632 0.206 466 14 129.510	22	22	228.060	0.454	1.704		45	49	66.426	0.000	0.546
22 24 196.836 0.440 1.436 45 51 45.896 0.000 0.388 22 25 86.759 0.640 0.562 45 52 75.198 0.000 0.218 22 26 70.685 0.726 0.372 45 53 60.950 0.000 0.182 22 27 58.823 0.630 0.302 45 54 49.225 0.000 0.168 22 29 159.480 0.564 1.186 46 2 97.158 0.000 0.368 22 30 138.392 0.674 0.976 46 3 75.930 0.000 0.296 22 31 88.737 0.850 0.124 46 4 194.929 0.000 1.544 22 32 70.502 0.954 0.064 46 5 169.795 0.000 1.360 22 35 132.670 0.578 0.634 46 7 239.830 0.000 2.202 22 36 120.291 0.508 0.584 46 9 176.905 0.000 1.866 22 38 126.903 0.528 0.942 46 11 85.320 0.000 1.772 22 41 100.033 0.632 0.206 46 14 129.510 0.000 1.332 22 42 86.122 0.652 0.152 46 16 200.128	22	23	210.927	0.458	1.550		45	50	53.009	0.000	0.442
22 25 86.759 0.640 0.562 45 52 75.198 0.000 0.218 22 26 70.685 0.726 0.372 45 53 60.950 0.000 0.182 22 27 58.823 0.630 0.302 45 54 49.225 0.000 0.168 22 28 181.929 0.386 1.422 46 1 121.365 0.000 0.466 22 29 159.480 0.564 1.186 46 2 97.158 0.000 0.368 22 30 138.392 0.674 0.976 46 3 75.930 0.000 0.296 22 31 88.737 0.850 0.124 46 4 194.929 0.000 1.544 22 32 70.502 0.954 0.064 46 5 169.795 0.000 1.360 22 33 58.032 0.972 0.046 46 6 145.021 0.000 1.148 22 34 144.198 0.634 46 8 207.280 0.000 2.202 22 36 120.291 0.508 0.584 46 10 112.110 0.000 0.878 22 39 117.190 0.486 0.876 46 11 85.320 0.000 1.322 22 40 115.102 0.652 0.152 466 12 61.474 0.000	22	24	196.836	0.440	1.436		45	51	45.896	0.000	0.388
22 26 70.685 0.726 0.372 45 53 60.950 0.000 0.182 22 27 58.823 0.630 0.302 45 54 49.225 0.000 0.158 22 28 181.929 0.386 1.422 46 1 121.365 0.000 0.466 22 29 159.480 0.564 1.186 46 2 97.158 0.000 0.296 22 30 138.392 0.674 0.976 46 3 75.390 0.000 1.544 22 32 70.502 0.954 0.064 46 4 194.929 0.000 1.544 22 33 58.032 0.972 0.046 46 4 194.929 0.000 1.544 22 34 144.198 0.462 0.714 46 4 194.929 0.000 1.544 22 35 132.670 0.578 0.634 46 6 145.021 0.000 1.148 22 36 120.291 0.508 0.584 46 9 176.905 0.000 1.866 22 37 139.609 0.464 1.054 46 11 85.320 0.000 0.878 22 39 117.190 0.486 0.876 46 12 61.474 0.000 0.886 22 40 115.102 0.652 0.152 46 14 129.510 <td>22</td> <td>25</td> <td>86.759</td> <td>0.640</td> <td>0.562</td> <td></td> <td>45</td> <td>52</td> <td>75.198</td> <td>0.000</td> <td>0.218</td>	22	25	86.759	0.640	0.562		45	52	75.198	0.000	0.218
22 27 58.823 0.630 0.302 45 54 49.25 0.000 0.158 22 28 181.929 0.366 1.422 46 1 121.365 0.000 0.466 22 30 138.392 0.674 0.976 46 3 75.930 0.000 0.296 22 31 88.737 0.850 0.124 46 4 194.929 0.000 1.544 22 32 70.502 0.954 0.064 46 5 169.795 0.000 1.544 22 33 58.032 0.972 0.046 46 6 145.021 0.000 1.148 22 34 144.198 0.462 0.714 46 7 239.830 0.000 2.554 22 36 120.291 0.508 0.584 46 9 176.905 0.000 1.866 22 37 139.609 0.464 1.054 46 10 112.110 0.000 0.878 22 39 117.190 0.486 0.876 46 13 169.818 0.000 1.332 22 41 100.033 0.632 0.206 46 14 129.510 0.000 1.332 22 42 86.122 0.652 0.152 46 15 96.765 0.000 1.000 22 43 78.072 0.978 0.042 46 18 177.161 <td>22</td> <td>26</td> <td>70.685</td> <td>0.726</td> <td>0.372</td> <td></td> <td>45</td> <td>53</td> <td>60.950</td> <td>0.000</td> <td>0.182</td>	22	26	70.685	0.726	0.372		45	53	60.950	0.000	0.182
22 28 181.929 0.386 1.422 46 1 121.365 0.000 0.466 22 29 159.480 0.564 1.186 46 2 97.158 0.000 0.388 22 30 138.392 0.674 0.976 46 3 75.930 0.000 0.296 22 31 88.737 0.850 0.124 46 4 194.929 0.000 1.544 22 32 70.502 0.954 0.064 46 5 169.795 0.000 1.360 22 33 58.032 0.972 0.046 46 6 145.021 0.000 1.148 22 34 144.198 0.462 0.714 46 8 207.280 0.000 2.554 22 36 120.291 0.508 0.584 46 9 176.905 0.000 1.866 22 37 139.609 0.464 1.054 46 10 112.110 0.000 0.878 22 38 126.903 0.528 0.942 46 11 85.320 0.000 0.682 22 40 115.102 0.630 0.254 46 14 129.510 0.000 1.332 22 41 100.033 0.632 0.026 46 14 129.510 0.000 0.826 22 43 78.072 0.978 0.042 46 16 200.128 <	22	27	58.823	0.630	0.302		45	54	49.225	0.000	0.158
22 29 159.480 0.564 1.186 46 2 97.158 0.000 0.368 22 30 138.392 0.674 0.976 46 3 75.930 0.000 0.296 22 31 88.737 0.850 0.124 46 4 194.929 0.000 1.544 22 32 70.502 0.954 0.064 46 5 169.795 0.000 1.360 22 33 58.032 0.972 0.046 46 6 145.021 0.000 1.148 22 34 144.198 0.462 0.714 46 7 239.830 0.000 2.554 22 35 132.670 0.578 0.634 46 8 207.280 0.000 2.202 22 36 120.291 0.508 0.584 46 9 176.905 0.000 1.866 22 37 139.609 0.464 1.054 46 11 85.320 0.000 0.692 22 39 117.190 0.486 0.876 46 11 169.818 0.000 1.772 22 41 100.033 0.632 0.206 46 14 129.510 0.000 1.332 22 42 86.122 0.652 0.152 46 15 96.765 0.000 1.000 22 43 78.072 0.944 0.138 46 16 20.128 <td>22</td> <td>28</td> <td>181.929</td> <td>0.386</td> <td>1.422</td> <td></td> <td>46</td> <td>1</td> <td>121.365</td> <td>0.000</td> <td>0.466</td>	22	28	181.929	0.386	1.422		46	1	121.365	0.000	0.466
22 30 138.392 0.674 0.976 46 3 75.930 0.000 0.296 22 31 88.737 0.850 0.124 46 4 194.929 0.000 1.544 22 32 70.502 0.954 0.064 46 5 169.795 0.000 1.360 22 33 58.032 0.972 0.046 46 6 145.021 0.000 1.148 22 34 144.198 0.462 0.714 46 7 239.830 0.000 2.554 22 35 132.670 0.578 0.634 46 8 207.280 0.000 2.202 22 36 120.291 0.508 0.584 46 9 176.905 0.000 1.866 22 37 139.609 0.464 1.054 46 10 112.110 0.000 0.878 22 39 117.190 0.486 0.876 46 11 85.320 0.000 0.692 22 41 100.033 0.632 0.206 46 14 129.510 0.000 1.332 22 42 86.122 0.652 0.152 46 15 96.765 0.000 1.000 22 43 78.072 0.944 0.138 46 16 200.128 0.000 0.720 22 44 64.733 0.970 0.076 46 18 177.161 </td <td>22</td> <td>29</td> <td>159.480</td> <td>0.564</td> <td>1.186</td> <td></td> <td>46</td> <td>2</td> <td>97.158</td> <td>0.000</td> <td>0.368</td>	22	29	159.480	0.564	1.186		46	2	97.158	0.000	0.368
22 31 88.737 0.850 0.124 46 4 194.929 0.000 1.544 22 32 70.502 0.954 0.064 46 5 169.795 0.000 1.360 22 33 58.032 0.972 0.046 46 6 145.021 0.000 1.148 22 34 144.198 0.462 0.714 46 7 239.830 0.000 2.554 22 35 132.670 0.578 0.634 46 8 207.280 0.000 2.202 22 36 120.291 0.508 0.584 46 9 176.905 0.000 1.866 22 37 139.609 0.464 1.054 46 10 112.110 0.000 0.878 22 39 117.190 0.486 0.876 46 11 85.320 0.000 0.692 22 40 115.102 0.630 0.254 46 13 169.818 0.000 1.332 22 41 100.033 0.632 0.206 46 14 129.510 0.000 1.332 22 44 64.733 0.970 0.076 46 16 200.128 0.000 0.826 22 44 64.733 0.978 0.042 46 18 177.161 0.000 0.720 22 46 89.077 0.038 0.482 46 19 93.681	22	30	138.392	0.674	0.976		46	3	75.930	0.000	0.296
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	31	88.737	0.850	0.124		46	4	194.929	0.000	1.544
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	32	70.502	0.954	0.064		46	5	169.795	0.000	1.360
22 34 144.198 0.462 0.714 46 7 239.830 0.000 2.554 22 35 132.670 0.578 0.634 46 8 207.280 0.000 2.202 22 36 120.291 0.508 0.584 46 8 207.280 0.000 2.202 22 36 120.291 0.508 0.584 46 9 176.905 0.000 1.866 22 37 139.609 0.464 1.054 46 10 112.110 0.000 0.878 22 38 126.903 0.528 0.942 46 11 85.320 0.000 0.692 22 39 117.190 0.486 0.876 46 12 61.474 0.000 0.484 22 40 115.102 0.630 0.254 46 13 169.818 0.000 1.772 22 41 100.033 0.632 0.206 46 14 129.510 0.000 1.332 22 42 86.122 0.652 0.152 46 15 96.765 0.000 1.000 22 43 78.072 0.944 0.138 46 16 200.128 0.000 0.764 22 45 56.293 0.978 0.042 46 18 177.161 0.000 0.720 22 46 89.077 0.038 0.482 46 19 93.68	22	33	58.032	0.972	0.046		46	6	145.021	0.000	1.148
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	34	144.198	0.462	0.714		46	7	239.830	0.000	2.554
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	35	132.670	0.578	0.634		46	8	207.280	0.000	2.202
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	36	120.291	0.508	0.584		46	9	176.905	0.000	1.866
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	37	139.609	0.464	1.054		46	10	112.110	0.000	0.878
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	38	126.903	0.528	0.942		46	11	85.320	0.000	0.692
22 40 115.102 0.630 0.254 46 13 169.818 0.000 1.772 22 41 100.033 0.632 0.206 46 14 129.510 0.000 1.332 22 42 86.122 0.652 0.152 46 15 96.765 0.000 1.000 22 43 78.072 0.944 0.138 46 16 200.128 0.000 0.826 22 44 64.733 0.970 0.076 46 17 187.998 0.000 0.764 22 45 56.293 0.978 0.042 46 18 177.161 0.000 0.720 22 46 89.077 0.038 0.482 46 19 93.681 0.000 0.360 22 47 67.095 0.050 0.342 46 20 67.371 0.000 0.252	22	39	117.190	0.486	0.876		46	12	61.474	0.000	0.484
22 41 100.033 0.632 0.206 22 42 86.122 0.652 0.152 22 43 78.072 0.944 0.138 22 43 78.072 0.944 0.138 22 44 64.733 0.970 0.076 22 45 56.293 0.978 0.042 22 46 89.077 0.038 0.482 46 19 93.681 0.000 0.252 22 47 67.095 0.050 0.342 46 20 67.371 0.000 0.252	22	40	115.102	0.630	0.254		46	13	169.818	0.000	1.772
22 42 86.122 0.652 0.152 22 43 78.072 0.944 0.138 22 43 78.072 0.944 0.138 22 44 64.733 0.970 0.076 22 45 56.293 0.978 0.042 22 46 89.077 0.038 0.482 22 47 67.095 0.050 0.342	22	41	100.033	0.632	0.206		46	14	129.510	0.000	1.332
22 43 78.072 0.944 0.138 46 16 200.128 0.000 0.826 22 44 64.733 0.970 0.076 46 17 187.998 0.000 0.764 22 45 56.293 0.978 0.042 46 18 177.161 0.000 0.720 22 46 89.077 0.038 0.482 46 19 93.681 0.000 0.360 22 47 67.095 0.050 0.342 46 20 67.371 0.000 0.252	22	42	86.122	0.652	0.152		46	15	96.765	0.000	1.000
22 44 64.733 0.970 0.076 46 17 187.998 0.000 0.764 22 45 56.293 0.978 0.042 46 18 177.161 0.000 0.720 22 46 89.077 0.038 0.482 46 19 93.681 0.000 0.360 22 47 67.095 0.050 0.342 46 20 67.371 0.000 0.252	22	43	78.072	0.944	0.138]	46	16	200.128	0.000	0.826
22 45 56.293 0.978 0.042 46 18 177.161 0.000 0.720 22 46 89.077 0.038 0.482 46 19 93.681 0.000 0.360 22 47 67.095 0.050 0.342 46 20 67.371 0.000 0.252	22	44	64.733	0.970	0.076	1	46	17	187.998	0.000	0.764
22 46 89.077 0.038 0.482 46 19 93.681 0.000 0.360 22 47 67.095 0.050 0.342 46 20 67.371 0.000 0.252	22	45	56.293	0.978	0.042]	46	18	177.161	0.000	0.720
22 47 67.095 0.050 0.342 46 20 67.371 0.000 0.252	22	46	89.077	0.038	0.482	1	46	19	93.681	0.000	0.360
	22	47	67.095	0.050	0.342	1	46	20	67.371	0.000	0.252
	22	48	49,160	0.068	0.248	1	46	21	45,410	0.000	0,166

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
22	49	73.496	0.470	0.462	46	22	227.052	0.000	1.836
22	50	63.393	0.462	0.388	46	23	212.298	0.000	1.722
22	51	51.226	0.222	0.364	46	24	198.816	0.000	1.600
22	52	81.013	0.544	0.154	46	25	95.760	0.000	0.982
22	53	71.107	0.662	0.112	46	26	68.846	0.000	0.728
22	54	62.824	0.722	0.082	46	27	49.195	0.000	0.528
23	1	116.748	0.374	0.406	46	28	187.662	0.000	1.558
23	2	94.514	0.402	0.312	46	29	171.019	0.000	1.422
23	3	76.746	0.278	0.266	46	30	154.051	0.000	1.276
23	4	189.405	0.160	1.434	46	31	103.188	0.000	0.270
23	5	159.767	0.256	1.176	46	32	85.471	0.000	0.224
23	6	135.781	0.316	0.972	46	33	68.599	0.000	0.182
23	7	232.123	0.136	2.400	46	34	143.955	0.000	0.862
23	8	189.244	0.284	1.844	46	35	128.613	0.000	0.772
23	9	150.599	0.442	1.346	46	36	115.546	0.000	0.702
23	10	102.415	0.462	0.708	46	37	140.295	0.000	1.168
23	11	76.162	0.614	0.480	46	38	124.804	0.000	1.046
23	12	59.424	0.626	0.326	46	39	114.017	0.000	0.964
23	13	125.654	0.832	0.950	46	40	115.420	0.000	0.318
23	14	92.460	0.866	0.584	46	41	101.659	0.000	0.274
23	15	72.160	0.862	0.390	46	42	88.452	0.000	0.240
23	16	202.489	0.254	0.774	46	43	87.545	0.000	0.472
23	17	189.648	0.272	0.704	46	44	65.862	0.000	0.362
23	18	178.218	0.266	0.662	46	45	47.402	0.000	0.272
23	19	91.555	0.174	0.338	46	46	89.673	0.000	0.498
23	20	65.010	0.260	0.210	46	47	67.247	0.000	0.352
23	21	46.175	0.322	0.128	46	48	48.987	0.000	0.254
23	22	229.013	0.334	1.752	46	49	66.426	0.000	0.546
23	23	213.070	0.352	1.608	46	50	53.009	0.000	0.442
23	24	197.234	0.386	1.450	46	51	45.896	0.000	0.388
23	25	87.619	0.804	0.492	46	52	75.198	0.000	0.218
23	26	71.353	0.650	0.414	46	53	60.950	0.000	0.182
23	27	56.772	0.392	0.418	46	54	49.225	0.000	0.158
23	28	187.642	0.032	1.554	47	1	98.770	1.000	0.266
23	29	169.571	0.080	1.388	47	2	83.439	1.000	0.204
23	30	151.601	0.138	1.222	47	3	72.558	1.000	0.162
23	31	101.295	0.310	0.236	47	4	142.878	1.000	0.774
23	32	80.791	0.510	0.146	47	5	120.287	1.000	0.618
23	33	64.472	0.656	0.098	47	6	101.253	1.000	0.448
23	34	144.484	0.054	0.850	47	7	148.617	1.000	0.998
23	35	129.714	0.068	0.762	47	8	116.961	1.000	0.662
23	36	116.657	0.062	0.690	47	9	94.832	1.000	0.432
23	37	140.961	0.504	1.056	47	10	90.949	1.000	0.482

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects	-	Policy No	Treat- ment	Total Cost	Schedule Delay	Major Field Defects
23	38	126.676	0.416	0.970		47	11	70.553	1.000	0.324
23	39	116.294	0.242	0.930		47	12	56.426	1.000	0.218
23	40	116.674	0.714	0.238		47	13	116.704	1.000	0.776
23	41	101.477	0.776	0.192		47	14	87.964	1.000	0.488
23	42	87.643	0.816	0.140		47	15	68.174	1.000	0.296
23	43	78.750	0.944	0.142		47	16	204.320	1.000	0.602
23	44	65.658	0.942	0.086		47	17	189.635	1.000	0.534
23	45	56.597	0.924	0.058		47	18	175.500	1.000	0.472
23	46	87.886	0.170	0.448		47	19	83.722	1.000	0.200
23	47	65.258	0.180	0.292		47	20	62.168	1.000	0.112
23	48	48.801	0.278	0.200		47	21	47.310	1.000	0.066
23	49	75.111	0.492	0.476		47	22	228.192	1.000	1.526
23	50	59.989	0.268	0.426		47	23	210.472	1.000	1.374
23	51	47.367	0.052	0.386		47	24	193.759	1.000	1.232
23	52	85.063	0.740	0.146		47	25	85.204	1.000	0.374
23	53	73.065	0.738	0.110		47	26	72.085	1.000	0.252
23	54	62.672	0.656	0.092		47	27	63.281	1.000	0.162
24	1	121.226	0.030	0.462		47	28	166.690	1.000	1.138
24	2	97.244	0.030	0.366		47	29	145.863	1.000	0.954
24	3	76.306	0.022	0.296		47	30	127.180	1.000	0.788
24	4	194.918	0.008	1.542		47	31	84.858	1.000	0.104
24	5	169.604	0.014	1.354		47	32	69.081	1.000	0.058
24	6	144.656	0.026	1.138		47	33	57.379	1.000	0.044
24	7	239.712	0.004	2.550		47	34	140.894	1.000	0.544
24	8	206.944	0.016	2.190		47	35	130.877	1.000	0.488
24	9	175.986	0.044	1.842		47	36	122.104	1.000	0.438
24	10	98.273	0.662	0.612		47	37	140.200	1.000	0.934
24	11	76.071	0.582	0.452		47	38	128.018	1.000	0.840
24	12	59.430	0.438	0.352		47	39	119.312	1.000	0.774
24	13	131.285	0.788	1.034		47	40	114.919	1.000	0.204
24	14	97.972	0.812	0.680		47	41	99.961	1.000	0.154
24	15	77.053	0.784	0.478		47	42	86.425	1.000	0.108
24	16	201.028	0.072	0.814		47	43	77.885	1.000	0.124
24	17	188.547	0.082	0.744		47	44	64.772	1.000	0.066
24	18	177.836	0.080	0.702		47	45	56.264	1.000	0.034
24	19	88.883	0.360	0.292		47	46	84.415	1.000	0.284
24	20	64.915	0.420	0.188		47	47	65.518	1.000	0.176
24	21	45.374	0.394	0.118		47	48	51.193	1.000	0.104
24	22	228.367	0.200	1.788		47	49	80.774	1.000	0.350
24	23	213.271	0.218	1.660		47	50	73.810	1.000	0.302
24	24	198.534	0.256	1.512		47	51	69.228	1.000	0.270
24	25	90.479	0.684	0.592		47	52	87.971	1.000	0.116
24	26	71.149	0.446	0.514		47	53	76.867	1.000	0.082

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

Major Field Major Field Policy Treat-Total Schedule Policy Treat-Total Schedule No ment Cost Delay Defects No ment Cost Delay Defects 54.081 0.204 0.492 68.443 1.000 0.054 24 27 47 54

Table 37 Output Measures Data of Reinspection Decision Policies (cont.)

APPENDIX E

REINSPECTION DECISION POLICIES' AGGREGATE STANDARDIZED MEAN SQUARED VALUES FOR ALL PREFERENCE PROFILES

Policy	$W_C Z_i^C$	$W_S Z_i^S$	$w_D z_i^D$	z_i^A	Rank	$W_C Z_i^C$	$w_s z_i^s$	$w_D z_i^D$
			Profile 1					Profile 2
2	0.357	-0.308	0.409	0.458	39	0.858	-0.092	0.123
3	0.285	-0.226	0.276	0.335	30	0.685	-0.068	0.083
4	-0.468	0.455	-0.467	-0.481	9	-1.124	0.136	-0.140
5	-0.542	0.839	-0.566	-0.268	15	-1.300	0.252	-0.170
7	0.353	-0.292	0.380	0.441	37	0.847	-0.088	0.114
8	0.284	-0.221	0.257	0.321	28	0.683	-0.066	0.077
9	-0.335	0.145	-0.352	-0.543	3	-0.804	0.043	-0.106
10	-0.481	0.457	-0.492	-0.517	7	-1.154	0.137	-0.148
11	-0.465	0.712	-0.503	-0.257	16	-1.116	0.214	-0.151
12	0.104	0.164	-0.005	0.263	24	0.250	0.049	-0.002
13	0.280	-0.126	0.243	0.397	35	0.671	-0.038	0.073
14	0.344	-0.274	0.355	0.425	36	0.826	-0.082	0.107
15	0.364	-0.307	0.409	0.466	40	0.873	-0.092	0.123
16	-0.364	0.230	-0.402	-0.535	6	-0.873	0.069	-0.120
17	-0.039	-0.077	-0.104	-0.220	17	-0.094	-0.023	-0.031
18	0.200	-0.218	0.163	0.146	22	0.480	-0.065	0.049
19	0.289	-0.275	0.290	0.304	25	0.693	-0.083	0.087
20	0.326	-0.299	0.352	0.379	34	0.783	-0.090	0.106
21	-0.406	0.184	-0.284	-0.506	8	-0.975	0.055	-0.085
22	-0.265	0.166	-0.271	-0.370	11	-0.636	0.050	-0.081
23	0.120	-0.001	0.025	0.143	21	0.287	0.000	0.007
24	0.261	-0.115	0.205	0.351	31	0.627	-0.035	0.062
25	0.304	-0.219	0.286	0.371	33	0.729	-0.066	0.086

 Table 38 Reinspection Decision Policies' Aggregate Standardized Mean Squared

 Values for All Preference Profiles

 z_i^A

0.888

0.700

-1.128

-1.218

0.873

0.694

-0.867

-1.165

-1.053

0.298

0.706

0.850

0.903

-0.925

-0.148

0.464

0.698

0.799

-1.005

-0.667

0.294

0.654 0.749 Rank

39

30

4

1

37

27

11

3

6

20

32

36

41

10

18

23

28

35

8

15

19 25

33

r	-				1	r —	-				
Policy	$W_C Z_i^C$	$W_S z_i^S$	$W_D Z_i^D$	z_i^A	Rank		$W_C z_i^C$	$W_S z_i^S$	$W_D Z_i^D$	z_i^A	Rank
26	-0.318	0.039	-0.260	-0.539	4		-0.763	0.012	-0.078	-0.829	13
27	-0.057	-0.131	-0.083	-0.272	14	1	-0.137	-0.039	-0.025	-0.202	17
28	0.156	-0.211	0.132	0.077	19		0.373	-0.063	0.040	0.350	21
29	0.237	-0.252	0.245	0.230	23		0.569	-0.076	0.073	0.567	24
30	0.273	-0.272	0.302	0.304	26		0.655	-0.082	0.091	0.665	26
33	0.286	-0.227	0.276	0.335	29		0.686	-0.068	0.083	0.700	31
34	-0.453	0.327	-0.434	-0.560	2		-1.088	0.098	-0.130	-1.120	5
35	-0.384	0.224	-0.279	-0.439	10		-0.922	0.067	-0.084	-0.938	9
38	0.288	-0.238	0.259	0.310	27	1	0.692	-0.071	0.078	0.698	29
39	-0.322	0.022	-0.296	-0.595	1	1	-0.772	0.007	-0.089	-0.854	12
40	-0.306	-0.019	-0.213	-0.537	5		-0.733	-0.006	-0.064	-0.803	14
41	-0.438	0.563	-0.440	-0.315	12	1	-1.052	0.169	-0.132	-1.015	7
42	-0.128	-0.011	-0.142	-0.281	13		-0.308	-0.003	-0.043	-0.354	16
43	0.161	-0.209	0.154	0.106	20	1	0.387	-0.063	0.046	0.371	22
44	0.315	-0.286	0.332	0.361	32	1	0.756	-0.086	0.100	0.770	34
45	0.355	-0.307	0.400	0.448	38		0.852	-0.092	0.120	0.880	38
46	0.359	-0.309	0.416	0.466	41		0.862	-0.093	0.125	0.895	40
47	-0.530	0.901	-0.573	-0.203	18	1	-1.272	0.270	-0.172	-1.174	2
			Profile 3						Profile 4		
2	0.643	-0.277	0.123	0.488	39		0.643	-0.092	0.368	0.919	39
3	0.514	-0.204	0.083	0.393	30	1	0.514	-0.068	0.249	0.694	30
4	-0.843	0.409	-0.140	-0.574	8	1	-0.843	0.136	-0.420	-1.127	4
5	-0.975	0.756	-0.170	-0.389	13		-0.975	0.252	-0.509	-1.233	1
7	0.635	-0.263	0.114	0.486	38		0.635	-0.088	0.342	0.889	37
8	0.512	-0.199	0.077	0.390	28		0.512	-0.066	0.231	0.677	26
9	-0.603	0.130	-0.106	-0.579	7		-0.603	0.043	-0.317	-0.877	10
10	-0.866	0.411	-0.148	-0.602	6		-0.866	0.137	-0.443	-1.172	3
11	-0.837	0.641	-0.151	-0.347	14		-0.837	0.214	-0.453	-1.076	6
12	0.188	0.148	-0.002	0.334	24		0.188	0.049	-0.005	0.232	19
13	0.504	-0.114	0.073	0.463	35		0.504	-0.038	0.219	0.685	29
14	0.620	-0.247	0.107	0.479	36		0.620	-0.082	0.320	0.857	36
15	0.655	-0.276	0.123	0.501	41		0.655	-0.092	0.368	0.930	41
16	-0.655	0.207	-0.120	-0.568	10		-0.655	0.069	-0.361	-0.947	8
17	-0.071	-0.069	-0.031	-0.171	18		-0.071	-0.023	-0.093	-0.187	18
18	0.360	-0.196	0.049	0.213	21		0.360	-0.065	0.147	0.442	23
19	0.520	-0.248	0.087	0.359	26		0.520	-0.083	0.261	0.699	32
20	0.587	-0.269	0.106	0.424	32		0.587	-0.090	0.317	0.814	35
21	-0.731	0.165	-0.085	-0.651	2		-0.731	0.055	-0.256	-0.932	9
22	-0.477	0.149	-0.081	-0.409	12		-0.477	0.050	-0.244	-0.671	15
23	0.215	-0.001	0.007	0.222	22		0.215	0.000	0.022	0.237	20
24	0.470	-0.104	0.062	0.428	33		0.470	-0.035	0.185	0.621	25
25	0.547	-0.197	0.086	0.436	34	1	0.547	-0.066	0.257	0.738	33
26	-0.572	0.036	-0.078	-0.615	5		-0.572	0.012	-0.234	-0.794	13
27	-0.103	-0.118	-0.025	-0.246	17	1	-0.103	-0.039	-0.075	-0.218	17
28	0.280	-0.190	0.040	0.130	19	1	0.280	-0.063	0.119	0.336	21
29	0.427	-0.227	0.073	0.273	23	1	0.427	-0.076	0.220	0.571	24
30	0.492	-0.245	0.091	0.338	25		0.492	-0.082	0.272	0.682	28
33	0.514	-0.205	0.083	0.393	29		0.514	-0.068	0.249	0.695	31
34	-0.816	0.205	-0 130	-0.652	1		-0.816	0.008	-0.300	-1 108	5

 Table 38 Reinspection Decision Policies' Aggregate Standardized Mean Squared

 Values for All Preference Profiles (cont.)

 Table 38 Reinspection Decision Policies' Aggregate Standardized Mean Squared

 Values for All Preference Profiles (cont.)

Policy	$W_C z_i^C$	$W_S z_i^S$	$W_D Z_i^D$	z_i^A	Rank		$W_C Z_i^C$	$W_S z_i^S$	$W_D Z_i^D$	z_i^A	Rank
35	-0.691	0.201	-0.084	-0.574	9		-0.691	0.067	-0.251	-0.875	11
38	0.519	-0.214	0.078	0.383	27	1	0.519	-0.071	0.233	0.681	27
39	-0.579	0.020	-0.089	-0.647	3	1	-0.579	0.007	-0.266	-0.838	12
40	-0.550	-0.017	-0.064	-0.631	4		-0.550	-0.006	-0.192	-0.747	14
41	-0.789	0.507	-0.132	-0.414	11		-0.789	0.169	-0.396	-1.016	7
42	-0.231	-0.010	-0.043	-0.283	16	1	-0.231	-0.003	-0.128	-0.362	16
43	0.290	-0.188	0.046	0.149	20		0.290	-0.063	0.138	0.366	22
44	0.567	-0.257	0.100	0.409	31	1	0.567	-0.086	0.299	0.780	34
45	0.639	-0.276	0.120	0.483	37	1	0.639	-0.092	0.360	0.907	38
46	0.647	-0.278	0.125	0.494	40	1	0.647	-0.093	0.374	0.928	40
47	-0.954	0.811	-0.172	-0.315	15	1	-0.954	0.270	-0.516	-1.200	2
			Profile 5						Profile 6		
2	0.107	-0.740	0.123	-0.510	2		0.322	-0.555	0.123	-0.111	18
3	0.086	-0.544	0.083	-0.375	17		0.257	-0.408	0.083	-0.068	25
4	-0.141	1.091	-0.140	0.811	37		-0.422	0.819	-0.140	0.257	36
5	-0.162	2.015	-0.170	1.682	40		-0.487	1.511	-0.170	0.854	40
7	0.106	-0.700	0.114	-0.480	8		0.317	-0.525	0.114	-0.094	21
8	0.085	-0.530	0.077	-0.367	18		0.256	-0.397	0.077	-0.064	26
9	-0 101	0.347	-0.106	0 141	29		-0.302	0.260	-0.106	-0 147	13
10	-0 144	1.096	-0 148	0.804	36		-0.433	0.822	-0 148	0.241	35
11	-0 139	1.000	-0.151	1 418	39		-0.418	1 281	-0 151	0.241	39
12	0.031	0.394	-0.002	0.424	34		0.94	0.296	-0.002	0.388	37
13	0.001	-0.303	0.002	-0.1/6	23		0.004	-0.227	0.002	0.000	33
14	0.004	-0.505	0.073	-0.140	11		0.232	-0.227	0.073	-0.078	23
15	0.100	-0 736	0.107	-0 504	5		0.327	-0.552	0.107	-0.102	20
16	-0.100	0.700	-0.120	0.004	32		-0.327	0.002	-0.120	-0.033	28
17	-0.103	-0 185	-0.120	-0.228	21		-0.027	-0 139	-0.120	-0.000	5
18	0.060	-0.103	0.001	-0.220	13		0.000	-0.100	0.001	-0.163	10
10	0.000	-0.525	0.043	-0.487	7		0.100	-0.002	0.043	-0.100	12
20	0.007	-0.001	0.007	-0.513	1		0.200	-0.537	0.007	-0.138	1/
20	-0.122	0.717	-0.085	0.234	30		-0.366	0.331	-0.085	-0.130	16
21	-0.122	0.308	-0.000	0.237	31		-0.300	0.001	-0.000	-0.120	30
22	0.075	-0.002	0.007	0.237	28		0.108	-0.002	0.007	0.113	34
20	0.000	-0.002	0.007	-0.137	24		0.100	-0.207	0.007	0.110	32
24	0.078	-0.277	0.002	-0.137	24		0.233	-0.207	0.002	-0.034	27
26	-0.095	0.020	-0.078	-0.040	20		-0.286	0.071	-0.078	-0.004	1
20	-0.033	-0.315	-0.070	-0.357	10		-0.200	-0.236	-0.070	-0.233	т 3
28	0.047	-0.515	0.020	-0.337	12		0.140	-0.230	0.020	-0.313	6
20	0.071	-0.505	0.073	-0.460	10		0.140	-0.453	0.073	-0.167	9
20	0.071	-0.003	0.073	-0.480	10 0		0.215	-0.433	0.073	-0.107	11
33	0.002	-0.545	0.001	-0.377	16		0.240	-0.409	0.001	-0.100	24
24	0.000	0.796	0.003	-0.377	25		0.257	-0.409	0.003	-0.009	24
35	-0.130	0.700	-0.130	0.020	30		-0.400	0.009	-0.130	-0.001	20
38	0.00	-0 571	0.004	-0.007	14		0.340	-0.400	0.004	-0.020	20
20	0.000	-0.371	0.070	-0.407	25		0.209	-0.420	0.070	-0.091	22
39	-0.090	0.004	-0.089	-0.131	20		-0.289	0.040	-0.089	-0.338	∠ 1
40	-0.092	-0.045	-0.064	-0.200	22		-0.2/5	-0.034	-0.064	-0.3/2	1
41	-0.131	1.352	-0.132	0.107	38		-0.394	0.010	-0.132	0.488	ుర
42	-0.038	-0.026	-0.043	-0.107	20		-0.115	-0.019	-0.043	-0.1//	8 7
43	0.048	-0.500	0.046	-0.406	15	J	0.145	-0.375	0.046	-0.184	/

		~				1					
Policy	$W_C z_i^C$	$W_S z_i^S$	$W_D z_i^D$	z_i^A	Rank		$W_C z_i^C$	$w_s z_i^s$	$w_D z_i^D$	z_i^A	Rank
44	0.094	-0.686	0.100	-0.492	6		0.283	-0.515	0.100	-0.131	15
45	0.106	-0.736	0.120	-0.510	3		0.319	-0.552	0.120	-0.113	17
46	0.108	-0.741	0.125	-0.509	4		0.323	-0.556	0.125	-0.108	19
47	-0.159	2.162	-0.172	1.831	41		-0.477	1.622	-0.172	0.972	41
			Profile 7						Profile 8		
2	0.107	-0.555	0.368	-0.080	19		0.107	-0.092	0.982	0.996	39
3	0.086	-0.408	0.249	-0.073	24		0.086	-0.068	0.663	0.680	29
4	-0.141	0.819	-0.420	0.258	36		-0.141	0.136	-1.121	-1.125	5
5	-0.162	1.511	-0.509	0.839	40		-0.162	0.252	-1.359	-1.269	1
7	0.106	-0.525	0.342	-0.078	20		0.106	-0.088	0.911	0.930	37
8	0.085	-0.397	0.231	-0.081	18		0.085	-0.066	0.616	0.636	27
9	-0.101	0.260	-0.317	-0.157	11		-0.101	0.043	-0.845	-0.902	9
10	-0.144	0.822	-0.443	0.235	35		-0.144	0.137	-1.181	-1.188	3
11	-0.139	1.281	-0.453	0.689	39		-0.139	0.214	-1.208	-1.134	4
12	0.031	0.296	-0.005	0.322	37		0.031	0.049	-0.013	0.068	19
13	0.084	-0.227	0.219	0.075	34		0.084	-0.038	0.584	0.630	26
14	0.103	-0.494	0.320	-0.071	25		0.103	-0.082	0.852	0.873	36
15	0.109	-0.552	0.368	-0.075	21		0.109	-0.092	0.981	0.998	40
16	-0.109	0.415	-0.361	-0.056	26		-0.109	0.069	-0.964	-1.004	8
17	-0.012	-0.139	-0.093	-0.244	5		-0.012	-0.023	-0.249	-0.283	17
18	0.060	-0.392	0.147	-0.185	9		0.060	-0.065	0.392	0.387	23
19	0.087	-0.496	0.261	-0.148	12		0.087	-0.083	0.696	0.700	31
20	0.098	-0.537	0.317	-0.123	14		0.098	-0.090	0.844	0.853	35
21	-0.122	0.331	-0.256	-0.047	27		-0.122	0.055	-0.682	-0.748	11
22	-0.079	0.298	-0.244	-0.025	29		-0.079	0.050	-0.651	-0.681	14
23	0.036	-0.002	0.022	0.056	32		0.036	0.000	0.059	0.095	20
24	0.078	-0.207	0.185	0.056	31		0.078	-0.035	0.493	0.537	24
25	0.091	-0.393	0.257	-0.045	28		0.091	-0.066	0.686	0.711	32
26	-0.095	0.071	-0.234	-0.259	4		-0.095	0.012	-0.625	-0.708	13
27	-0.017	-0.236	-0.075	-0.329	1		-0.017	-0.039	-0.200	-0.257	18
28	0.047	-0.379	0.119	-0.213	6		0.047	-0.063	0.317	0.301	21
29	0.071	-0.453	0.220	-0.162	10		0.071	-0.076	0.587	0.582	25
30	0.082	-0.489	0.272	-0.135	13		0.082	-0.082	0.726	0.726	33
33	0.086	-0.409	0.249	-0.075	22		0.086	-0.068	0.663	0.681	30
34	-0.136	0.589	-0.390	0.063	33		-0.136	0.098	-1.040	-1.078	6
35	-0.115	0.403	-0.251	0.037	30		-0.115	0.067	-0.669	-0.717	12
38	0.086	-0.428	0.233	-0.108	16		0.086	-0.071	0.622	0.637	28
39	-0.096	0.040	-0.266	-0.322	2		-0.096	0.007	-0.710	-0.800	10
40	-0.092	-0.034	-0.192	-0.317	3		-0.092	-0.006	-0.512	-0.609	15
41	-0.131	1.014	-0.396	0.487	38		-0.131	0.169	-1.055	-1.018	7
42	-0.038	-0.019	-0.128	-0.186	8		-0.038	-0.003	-0.341	-0.383	16
43	0.048	-0.375	0.138	-0.189	7		0.048	-0.063	0.369	0.355	22
44	0.094	-0.515	0.299	-0.121	15		0.094	-0.086	0.797	0.806	34
45	0.106	-0.552	0.360	-0.085	17		0.106	-0.092	0.960	0.975	38
46	0.108	-0.556	0.374	-0.074	23		0.108	-0.093	0.998	1.013	41
47	-0.159	1.622	-0.516	0.946	41		-0.159	0.270	-1.376	-1.265	2
		1	Profile 9	I	1			1	Profile 10	1	1
2	0.322	-0.092	0.736	0.965	39		0.107	-0.277	0.736	0.566	39
3	0.257	-0.068	0.497	0.686	29		0.086	-0.204	0.497	0.379	30

 Table 38 Reinspection Decision Policies' Aggregate Standardized Mean Squared

 Values for All Preference Profiles (cont.)

Policy	$W_C z_i^C$	$W_S z_i^S$	$W_D z_i^D$	z_i^A	Bank	$w_C z_i^C$	$W_S z_i^S$	$w_D z_i^D$	z_i^A	Bank
4	-0.422	0.136	-0.841	-1.126	4	-0.141	0.409	-0.841	-0.572	6
5	-0.487	0.252	-1.019	-1.255	1	-0.162	0.756	-1.019	-0.426	10
7	0.317	-0.088	0.684	0.914	37	0.106	-0.263	0.684	0.527	37
8	0.256	-0.066	0.462	0.652	27	0.085	-0.199	0.462	0.349	27
9	-0.302	0.043	-0.634	-0.892	9	-0 101	0 130	-0.634	-0.604	5
10	-0.433	0.137	-0.886	-1.182	3	-0.144	0.411	-0.886	-0.619	3
11	-0.418	0.214	-0.906	-1.111	5	-0.139	0.641	-0.906	-0.405	14
12	0.094	0.049	-0.010	0.133	19	0.031	0.148	-0.010	0.169	23
13	0.252	-0.038	0.438	0.652	26	0.084	-0.114	0.438	0.408	32
14	0.310	-0.082	0.639	0.867	36	0.103	-0.247	0.639	0.496	36
15	0.327	-0.092	0.736	0.971	40	0.109	-0.276	0.736	0.569	40
16	-0.327	0.069	-0.723	-0.981	8	-0.109	0.207	-0.723	-0.625	1
17	-0.035	-0.023	-0.186	-0.245	17	-0.012	-0.069	-0.186	-0.268	18
18	0.180	-0.065	0.294	0.409	23	0.060	-0.196	0.294	0.158	22
19	0.260	-0.083	0.522	0.700	31	0.087	-0.248	0.522	0.361	28
20	0.294	-0.090	0.633	0.837	35	0.098	-0.269	0.633	0.462	35
21	-0.366	0.055	-0.511	-0.822	10	-0.122	0.165	-0.511	-0.468	9
22	-0.238	0.050	-0.488	-0.677	14	-0.079	0.149	-0.488	-0.419	11
23	0.108	0.000	0.044	0.152	20	0.036	-0.001	0.044	0.079	19
24	0.235	-0.035	0.370	0.570	24	0.078	-0.104	0.370	0.344	26
25	0.273	-0.066	0.514	0.722	33	0.091	-0.197	0.514	0.409	33
26	-0.286	0.012	-0.469	-0.743	13	-0.095	0.036	-0.469	-0.528	7
27	-0.052	-0.039	-0.150	-0.241	18	-0.017	-0.118	-0.150	-0.286	17
28	0.140	-0.063	0.238	0.315	21	0.047	-0.190	0.238	0.095	20
29	0.213	-0.076	0.440	0.578	25	0.071	-0.227	0.440	0.285	24
30	0.246	-0.082	0.544	0.709	32	0.082	-0.245	0.544	0.382	31
33	0.257	-0.068	0.497	0.686	30	0.086	-0.205	0.497	0.378	29
34	-0.408	0.098	-0.780	-1.090	6	-0.136	0.295	-0.780	-0.622	2
35	-0.346	0.067	-0.501	-0.780	12	-0.115	0.201	-0.501	-0.415	13
38	0.259	-0.071	0.467	0.655	28	0.086	-0.214	0.467	0.339	25
39	-0.289	0.007	-0.532	-0.815	11	-0.096	0.020	-0.532	-0.609	4
40	-0.275	-0.006	-0.384	-0.664	15	-0.092	-0.017	-0.384	-0.492	8
41	-0.394	0.169	-0.792	-1.017	7	-0.131	0.507	-0.792	-0.416	12
42	-0.115	-0.003	-0.256	-0.374	16	-0.038	-0.010	-0.256	-0.304	16
43	0.145	-0.063	0.277	0.359	22	0.048	-0.188	0.277	0.137	21
44	0.283	-0.086	0.598	0.796	34	0.094	-0.257	0.598	0.435	34
45	0.319	-0.092	0.720	0.948	38	0.106	-0.276	0.720	0.551	38
46	0.323	-0.093	0.748	0.979	41	0.108	-0.278	0.748	0.578	41
47	-0.477	0.270	-1.032	-1.239	2	-0.159	0.811	-1.032	-0.380	15
		F	Profile 11					Profile 12		
2	0.429	-0.370	0.245	0.304	37	0.429	-0.185	0.491	0.735	39
3	0.342	-0.272	0.166	0.236	30	0.342	-0.136	0.331	0.538	30
4	-0.562	0.546	-0.280	-0.297	10	-0.562	0.273	-0.560	-0.850	3
5	-0.650	1.007	-0.340	0.018	18	-0.650	0.504	-0.679	-0.826	4
7	0.423	-0.350	0.228	0.301	36	0.423	-0.175	0.456	0.704	37
8	0.341	-0.265	0.154	0.231	27	0.341	-0.132	0.308	0.517	27
9	-0.402	0.173	-0.211	-0.440	4	-0.402	0.087	-0.423	-0.738	7
10	-0.577	0.548	-0.295	-0.325	9	-0.577	0.274	-0.591	-0.894	1
11	-0.558	0.854	-0.302	-0.006	16	-0.558	0.427	-0.604	-0.735	8

 Table 38 Reinspection Decision Policies' Aggregate Standardized Mean Squared

 Values for All Preference Profiles (cont.)

 Table 38 Reinspection Decision Policies' Aggregate Standardized Mean Squared

 Values for All Preference Profiles (cont.)

Dellass	W_{CZ}^{C}	$W_{\alpha}Z_{\cdot}^{S}$	$W_{\rm D} Z_{\rm c}^{D}$	Z^A	Develo		W_{CZ}^{C}	$W_{c} Z^{S}$	$W_{\rm D} Z_{\rm c}^{D}$	Z^A	Develo
Policy	0.405	0.407	D ≈1	0.010	Rank		0.405	- 3 ~i		0.017	капк
12	0.125	0.197	-0.003	0.319	40		0.125	0.099	-0.006	0.217	20
13	0.336	-0.152	0.146	0.330	41		0.336	-0.076	0.292	0.552	32
14	0.413	-0.329	0.213	0.297	33		0.413	-0.165	0.426	0.675	36
15	0.436	-0.368	0.245	0.314	39		0.436	-0.184	0.491	0.743	40
16	-0.437	0.277	-0.241	-0.401	/		-0.437	0.138	-0.482	-0.780	6
1/	-0.047	-0.093	-0.062	-0.202	14		-0.047	-0.046	-0.124	-0.218	18
18	0.240	-0.262	0.098	0.077	20		0.240	-0.131	0.196	0.305	23
19	0.347	-0.331	0.1/4	0.190	25		0.347	-0.165	0.348	0.530	29
20	0.391	-0.358	0.211	0.244	31		0.391	-0.179	0.422	0.634	35
21	-0.487	0.221	-0.1/0	-0.437	5		-0.487	0.110	-0.341	-0./18	10
22	-0.318	0.199	-0.163	-0.282	11		-0.318	0.099	-0.326	-0.544	15
23	0.143	-0.001	0.015	0.157	23		0.143	-0.001	0.030	0.172	19
24	0.314	-0.138	0.123	0.299	35		0.314	-0.069	0.246	0.491	25
25	0.364	-0.262	0.171	0.274	32		0.364	-0.131	0.343	0.576	33
26	-0.381	0.047	-0.156	-0.490	3		-0.381	0.024	-0.312	-0.670	12
27	-0.069	-0.158	-0.050	-0.276	12		-0.069	-0.079	-0.100	-0.248	17
28	0.187	-0.253	0.079	0.013	17		0.187	-0.126	0.159	0.219	21
29	0.284	-0.302	0.147	0.129	22		0.284	-0.151	0.293	0.427	24
30	0.328	-0.326	0.181	0.183	24		0.328	-0.163	0.363	0.528	28
33	0.343	-0.273	0.166	0.236	29		0.343	-0.136	0.332	0.538	31
34	-0.544	0.393	-0.260	-0.411	6		-0.544	0.196	-0.520	-0.868	2
35	-0.461	0.269	-0.167	-0.359	8		-0.461	0.134	-0.334	-0.661	13
38	0.346	-0.285	0.156	0.216	26		0.346	-0.143	0.311	0.514	26
39	-0.386	0.027	-0.177	-0.536	1		-0.386	0.013	-0.355	-0.727	9
40	-0.367	-0.022	-0.128	-0.517	2		-0.367	-0.011	-0.256	-0.634	14
41	-0.526	0.676	-0.264	-0.114	15		-0.526	0.338	-0.528	-0.716	11
42	-0.154	-0.013	-0.085	-0.252	13		-0.154	-0.006	-0.171	-0.331	16
43	0.194	-0.250	0.092	0.036	19		0.194	-0.125	0.184	0.253	22
44	0.378	-0.343	0.199	0.234	28		0.378	-0.172	0.399	0.605	34
45	0.426	-0.368	0.240	0.298	34		0.426	-0.184	0.480	0.722	38
46	0.431	-0.371	0.249	0.310	38		0.431	-0.185	0.499	0.745	41
47	-0.636	1.081	-0.344	0.101	21		-0.636	0.541	-0.688	-0.784	5
		F	Profile 13						Profile 14		
2	0.214	-0.370	0.491	0.335	39	1	0.536	-0.231	0.307	0.611	39
3	0.171	-0.272	0.331	0.231	29		0.428	-0.170	0.207	0.465	31
4	-0.281	0.546	-0.560	-0.296	10		-0.703	0.341	-0.350	-0.712	3
5	-0.325	1.007	-0.679	0.003	18		-0.812	0.630	-0.425	-0.607	11
7	0.212	-0.350	0.456	0.317	37		0.529	-0.219	0.285	0.595	37
8	0.171	-0.265	0.308	0.214	27	1	0.427	-0.166	0.193	0.454	28
9	-0.201	0.173	-0.423	-0.450	4	1	-0.503	0.108	-0.264	-0.658	7
10	-0.289	0.548	-0.591	-0.331	8		-0.722	0.342	-0.369	-0.748	2
11	-0.279	0.854	-0.604	-0.029	16		-0.697	0.534	-0.377	-0.541	14
12	0.063	0.197	-0.006	0.253	31	1	0.156	0.123	-0.004	0.275	23
13	0.168	-0.152	0.292	0.308	36	1	0.420	-0.095	0.183	0.507	34
14	0.207	-0.329	0.426	0.303	35	1	0.516	-0.206	0.266	0.577	36
15	0.218	-0.368	0.491	0.341	40	1	0.545	-0.230	0.307	0.622	41
16	-0.218	0.277	-0.482	-0.424	5		-0.546	0.173	-0.301	-0.674	6
17	-0.024	-0.093	-0.124	-0.240	14	1	-0.059	-0.058	-0.078	-0.194	18
18	0.120	-0.262	0.196	0.055	20	1	0.300	-0.163	0.123	0.259	22

 Table 38 Reinspection Decision Policies' Aggregate Standardized Mean Squared

 Values for All Preference Profiles (cont.)

Policy	$W_C z_i^C$	$W_S z_i^S$	$W_D Z_i^D$	z_i^A	Rank		$W_C Z_i^C$	$W_S z_i^S$	$W_D Z_i^D$	z_i^A	Rank
19	0.173	-0.331	0.348	0.191	24		0.433	-0.207	0.218	0.444	26
20	0.196	-0.358	0.422	0.260	32	1	0.489	-0.224	0.264	0.529	35
21	-0.244	0.221	-0.341	-0.364	7	1	-0.609	0.138	-0.213	-0.684	5
22	-0.159	0.199	-0.326	-0.286	12		-0.397	0.124	-0.203	-0.477	15
23	0.072	-0.001	0.030	0.100	22		0.179	-0.001	0.018	0.197	20
24	0.157	-0.138	0.246	0.265	34		0.392	-0.086	0.154	0.460	29
25	0.182	-0.262	0.343	0.263	33		0.456	-0.164	0.214	0.506	32
26	-0.191	0.047	-0.312	-0.456	3		-0.477	0.030	-0.195	-0.642	8
27	-0.034	-0.158	-0.100	-0.292	11		-0.086	-0.099	-0.063	-0.247	17
28	0.093	-0.253	0.159	-0.001	17	1	0.233	-0.158	0.099	0.174	19
29	0.142	-0.302	0.293	0.133	23	1	0.356	-0.189	0.183	0.350	24
30	0.164	-0.326	0.363	0.201	26		0.410	-0.204	0.227	0.433	25
33	0.171	-0.273	0.332	0.230	28		0.429	-0.170	0.207	0.465	30
34	-0.272	0.393	-0.520	-0.399	6	1	-0.680	0.246	-0.325	-0.760	1
35	-0.230	0.269	-0.334	-0.296	9	1	-0.576	0.168	-0.209	-0.617	10
38	0.173	-0.285	0.311	0.199	25		0.432	-0.178	0.194	0.448	27
39	-0.193	0.027	-0.355	-0.521	1	1	-0.482	0.017	-0.222	-0.687	4
40	-0.183	-0.022	-0.256	-0.461	2	1	-0.458	-0.014	-0.160	-0.632	9
41	-0.263	0.676	-0.528	-0.115	15		-0.657	0.423	-0.330	-0.565	12
42	-0.077	-0.013	-0.171	-0.260	13		-0.192	-0.008	-0.107	-0.307	16
43	0.097	-0.250	0.184	0.031	19		0.242	-0.156	0.115	0.201	21
44	0.189	-0.343	0.399	0.245	30		0.472	-0.214	0.249	0.507	33
45	0.213	-0.368	0.480	0.325	38		0.532	-0.230	0.300	0.603	38
46	0.216	-0.371	0.499	0.344	41		0.539	-0.232	0.312	0.619	40
47	-0.318	1.081	-0.688	0.075	21		-0.795	0.676	-0.430	-0.550	13
		F	Profile 15						Profile 16		
2	0.268	-0.462	0.307	0.112	30		0.268	-0.231	0.613	0.650	39
3	0.214	-0.340	0.207	0.081	26		0.214	-0.170	0.414	0.458	31
4	-0.351	0.682	-0.350	-0.020	17		-0.351	0.341	-0.701	-0.711	3
5	-0.406	1.259	-0.425	0.428	40		-0.406	0.630	-0.849	-0.626	7
7	0.265	-0.438	0.285	0.112	29		0.265	-0.219	0.570	0.615	37
8	0.213	-0.331	0 193	0.075	24		0.213	-0.166	0.385	0 433	27
9	-0.251	0.217	-0.264	-0.299	5		-0.251	0.108	-0.528	-0.671	5
10	-0.361	0.685	-0.369	-0.045	16		-0.361	0.342	-0 738	-0.756	1
11	-0.349	1.068	-0.377	0.341	39		-0.349	0.534	-0.755	-0.570	11
12	0.078	0.246	-0.004	0.320	38		0.078	0.123	-0.008	0.193	21
13	0.210	-0.190	0.183	0.203	37		0.210	-0.095	0.365	0.480	32
14	0.258	-0.412	0.266	0.113	31		0.258	-0.206	0.533	0.585	36
15	0.273	-0.460	0.307	0.119	34		0.273	-0.230	0.613	0.656	40
16	-0.273	0.346	-0.301	-0.228	7		-0.273	0.173	-0.602	-0 703	4
17	-0.029	-0.116	-0.078	-0.223	8		-0.029	-0.058	-0.155	-0.243	18
18	0.150	-0.327	0.123	-0.054	15		0.150	-0 163	0.245	0.232	23
19	0.217	-0.413	0.218	0.021	19	1	0.217	-0.207	0.435	0.445	28
20	0.245	-0 448	0.264	0.061	23		0.245	-0.224	0.528	0.548	35
21	-0.305	0.276	-0.213	-0.242	6		-0.305	0.138	-0.426	-0.593	9
22	-0.199	0.249	-0.203	-0.154	12	1	-0.199	0.124	-0.407	-0.481	15
23	0.090	-0.001	0.018	0.107	28	1	0.090	-0.001	0.037	0.126	19
24	0.196	-0.173	0.154	0.177	35	1	0.196	-0.086	0.308	0.418	25
25	0.228	-0.328	0.214	0.114	32	1	0.228	-0.164	0.429	0.492	33
	J	0.000	· · - · ·				J	0.101		0.100	

Policy	$W_C z_i^C$	$w_s z_i^s$	$W_D Z_i^D$	z_i^A	Rank	$W_C z_i^C$	$W_S z_i^S$	$W_D z_i^D$	z_i^A	Rank
26	-0.238	0.059	-0.195	-0.374	3	-0.238	0.030	-0.390	-0.599	8
27	-0.043	-0.197	-0.063	-0.303	4	-0.043	-0.099	-0.125	-0.267	17
28	0.117	-0.316	0.099	-0.100	13	0.117	-0.158	0.198	0.157	20
29	0.178	-0.378	0.183	-0.017	18	0.178	-0.189	0.367	0.356	24
30	0.205	-0.408	0.227	0.024	20	0.205	-0.204	0.454	0.455	29
33	0.214	-0.341	0.207	0.081	25	0.214	-0.170	0.414	0.458	30
34	-0.340	0.491	-0.325	-0.174	10	-0.340	0.246	-0.650	-0.745	2
35	-0.288	0.336	-0.209	-0.161	11	-0.288	0.168	-0.418	-0.538	14
38	0.216	-0.357	0.194	0.054	21	0.216	-0.178	0.389	0.427	26
39	-0.241	0.034	-0.222	-0.429	1	-0.241	0.017	-0.444	-0.668	6
40	-0.229	-0.028	-0.160	-0.417	2	-0.229	-0.014	-0.320	-0.563	13
41	-0.329	0.845	-0.330	0.187	36	-0.329	0.423	-0.660	-0.566	12
42	-0.096	-0.016	-0.107	-0.219	9	-0.096	-0.008	-0.213	-0.317	16
43	0.121	-0.313	0.115	-0.077	14	0.121	-0.156	0.231	0.195	22
44	0.236	-0.429	0.249	0.057	22	0.236	-0.214	0.498	0.520	34
45	0.266	-0.460	0.300	0.106	27	0.266	-0.230	0.600	0.636	38
46	0.270	-0.463	0.312	0.118	33	0.270	-0.232	0.624	0.662	41
47	-0.398	1.351	-0.430	0.524	41	-0.398	0.676	-0.860	-0.582	10

 Table 38 Reinspection Decision Policies' Aggregate Standardized Mean Squared

 Values for All Preference Profiles (cont.)

APPENDIX F

ANALYSIS OF VARIANCE DETAILS REGARDING OUTPUT MEASURES OF RECOMMENDED POLICY

I. Normal Plot of Residuals, Residuals versus Fits Plot and Tukey Comparisons of Final Analysis of Variance Performed for Policy 39 Total Cost Measures

Figure 18 Normal Probability Plot for Policy 39 Total Cost Measures

Figure 19 Residual versus Fits Plot for Policy 39 Total Cost Measures

Explanations of notations used in MINITAB Tukey Comparison Outputs in this Appendix;

- pt: Testing detection probability of a defect
- pd: Probability that a given defect is difficult
- pm: Probability that a given defect is major
- pj: Inspector capability of a particular inspector (pj)
- p1, p2: Inspection detection probabilities of difficult and easy defects (p1, p2)
- k: Number of inspectors
- k`: Number of reinspectors

Tukey 95.0% Simultaneous Confidence Intervals Response Variable Total Cost pt = 1 subtracted from: Level Difference SE of Adjusted of Means Difference pt T-Value P-Value 2 -26.65 1.723 -15.46 0.0000 pd = 1 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value pd P-Value 45.442.98515.2267.722.98522.69 0.0000 2 3 0.0000 pd = 2 subtracted from: Level Difference SE of Adjusted pd of Means Difference T-Value P-Value 22.28 2.985 7.463 0.0000 3 pm = 1 subtracted from: Level Difference SE of Adjusted of Means Difference pm T-Value P-Value 2.985 6.260 18.69 0.0000 2 3 26.19 2.985 8.773 0.0000 pm = 2 subtracted from: Level Difference SE of Adjusted of Means Difference 7.502 2.985 P-Value pm T-Value 0.0428 2.513 3 qj = 1 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value P-Value qj 0.0000 -18.51 2.111 -8.77 2 3 -33.89 -16.06 0.0000 2.111 qj = 2 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value P-Value qi -15.38 2.111 -7.287 0.0000 3 p1,p2 = 1 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value -14.76 2.585 -5.71 P-Value p1,p2 0.0000 2 0.0000 2.585 3 -49.38 -19.10 p1, p2 = 2 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value -34.62 2.585 -13.39 P-Value p1,p2 0.0000 3 k = 1 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value P-Value k -5.78 0.0000 -12.20 2.111 2 3 -31.28 2.111 -14.82 0.0000 k = 2 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value k P-Value 3 -19.08 2.111 -9.037 0.0000

Figure 20 MINITAB Output for Significant Factors' Tukey Comparisons of Policy 39 Total Cost Measures

II. Normal Plot of Residuals, Residuals versus Fits Plot and Tukey Comparisons of Final Analysis of Variance Performed for Policy 39 Schedule Delay Measures

Figure 21 Normal Probability Plot for Policy 39 Schedule Delay Measures

Figure 22 Residual versus Fits Plot for Policy 39 Schedule Delay Measures

Tukey 95.0% Simult	aneous Confi	dence Inte	rvals	
Response Variable	Schedule Del	ay		
-				
pm = 1 subtracted	from:			
Level Difference	SE of		Adjusted	
pm of Means	Difference	T-Value	P-Value	
2 0.07978	0.02954	2.700	0.0262	
3 0.21389	0.02954	7.240	0.0000	
pm = 2 subtracted	from:			
Level Difference	SE of		Adjusted	
pm of Means	Difference	T-Value	P-Value	
3 0.1341	0.02954	4.540	0.0001	
	£			
q] = 1 subtracted	ITOM:		Addivide ad	
Level Difference	Difference	T Malue	Adjusted D Malwa	
Q 0 03222	0 02954	_1_001	0 5249	
2 -0.03222	0.02954	-1.091	0.0249	
-0.09011	0.02934	-3.321	0.0051	
Level Difference	SF of		Adjusted	
di of Means	Difference	T-Value	P-Value	
3 -0.06589	0.02954	-2.230	0.0774	
p1, p2 = 1 subtract	ed from:			
Level Differer	nce SE	of	Adjusted	
p1,p2 of Mea	ans Differen	ice T-Val	ue P-Value	
2 0.14	199 0.029	54 5.0	74 0.0000	
3 0.19	938 0.029	54 6.5	59 0.0000	
p1, p2 = 2 subtract	ed from:			
Level Differer	nce SE	of	Adjusted	
p1,p2 of Mea	ans Differen	ice T-Val	ue P-Value	
3 0.043	389 0.029	54 1.4	86 0.3078	
	_			
k = 1 subtracted i	from:			
Level Difference	SE OI		Adjusted	
K OI Means	Difference	T-Value	P-value	
2 -0.0052	0.02954	-0.1//	0.9829	
3 -0.2951	0.02954 From:	-9.989	0.0000	
K = 2 Subtracted I	SE of		Adjusted	
k of Means	Difference	T-Value	P-Value	
3 -0 2899	0 02954	_9 813	0 0000	
0.2000	0.02901	9.010	0.0000	
k = 1 subtracted	from:			
Level Difference	SE of		Adjusted	
k` of Means	Difference	T-Value	P-Value	
2 0.1263	0.02954	4.276	0.0003	
3 0.1267	0.02954	4.288	0.0003	
k` = 2 subtracted	from:			
Level Difference	SE of		Adjusted	
k` of Means	Difference	T-Value	P-Value	
3 0.000333	0 02954	0.01128	0.9999	

Figure 23 MINITAB Output for Significant Factors' Tukey Comparisons of Policy 39 Schedule Delay Measures

III. Normal Plot of Residuals, Residuals versus Fits Plot and Tukey Comparisons of Final Analysis of Variance Performed for Policy 39 Major Field Defects Measures

Figure 24 Normal Probability Plot for Policy 39 Major Field Defects Measures

Figure 25 Residual versus Fits Plot for Policy 39 Major Field Defects Measures

Tukey 95.0% Simultaneous Confidence Intervals Response Variable SQRT Major Field Defects pt = 1 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value pt P-Value -0.1858 0.006419 -28.95 0.0000 2 pd = 1 subtracted from: Level Difference SE of Adjusted pd of Means Difference T-Value P-Value 0.0000 0.01112 19.49 0.2167 2 3 0.3017 0.01112 27.14 0.0000 pd = 2 subtracted from: Level Difference SE of Adjusted of Means Difference P-Value pd T-Value 0.0000 3 0.08504 0.01112 7.649 pm = 1 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value pm P-Value 0.2652 23.85 0.0000 2 0.01112 3 0.3876 0.01112 34.87 0.0000 pm = 2 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value P-Value pm 0.1224 0.01112 11.01 0.0000 3 qj = 1 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value P-Value qj -0.0748 0.007861 -9.52 0.0000 2 3 -0.1316 0.007861 -16.74 0.0000 qj = 2 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value P-Value qj 3 -0.05677 0.007861 -7.222 0.0000 p1, p2 = 1 subtracted from: Level Difference SE of Adjusted of Means Difference T-Value P-Value p1,p2 0.0147 0.01112 1.32 0.3943 0.0000 -0.1807 0.01112 -16.25 3 p1, p2 = 2 subtracted from: SE of Adjusted Level Difference of Means Difference T-Value P-Value p1,p2 -0.1954 0.01112 -17.58 0.0000 3 k = 1 subtracted from: SE of Adjusted Level Difference of Means Difference T-Value P-Value k -0.0953 -12.13 2 0.007861 0.0000 -0.10770.007861 -13.70 0.0000 3 k = 2 subtracted from: Level Difference Adjusted SE of of Means Difference T-Value P-Value k -0.01234 0.007861 -1.569 0.2754 3 k` = 1 subtracted from: Level Difference SE of Adjusted k` of Means Difference T-Value P-Value 2. -0.0518 0.01112 -4.66 0.0002 -0.1884 0.01112 -16.94 0.0000 3 k = 2 subtracted from: Level Difference SE of Adjusted k` of Means Difference T-Value P-Value 3 -0.1365 0.01112 -12.28 0.0000

Figure 26 MINITAB Output for Significant Factors' Tukey Comparisons of Policy 39 Major Field Defects Measures