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ABSTRACT 

 

 

THE IMPLEMENTATION COMPLEXITY OF FINITE IMPULSE   
 

RESPONSE DIGITAL FILTERS UNDER DIFFERENT COEFFICIENT  
 

QUANTIZATION SCHEMES AND REALIZATION STRUCTURES 

 

 

AKYÜREK, Sefa 

M.S., The Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Tolga ÇİLOĞLU 

December 2004, 86 Pages  

 

 

 

It has been aimed to investigate the complexity of discrete-coefficient FIR 

filters when they are implemented in transposed form and the coefficient redundancy 

is removed by the n-Dimensional Reduced Adder Graph (RAG-n) approach. Filters 

with coefficients represented by different quantization schemes have been designed 

or selected from the literture; their transposed form implemetations after RAG-n 

process have been compared in terms of complexity. A Genetic Algorithm (GA) 

based design algorithm has been implemented and used for the design of integer 

coefficient filters. Algorithms for the realization of filter coefficients in Canonic 

Signed Digit (CSD) form and realization of n-Dimensional Reduced Adder Graph 

(RAG-n) have also been implemented. Filter performance is measured as Normalized 

Peak Ripple Magnitude and implementation complexity as the number of adders 

used to implement filter coefficients. Number of adders used to implement filter 

coefficients is calculated by using two different methods: CSD and RAG-n.  RAG-n 

method has been applied to FIR digital filter design methods that don’t



 v 

consider reduction of implementation complexity via RAG-n with transposed direct 

form filter structure. For implementation complexity, it is concluded that 

“RAG-n algorithm with transposed direct form filter structure” provides better 

results over the “CSD, SPT coefficient design followed by transposed direct form 

filter structure” in terms of number of adders used in the implementation.  

Keywords: Discrete Coefficient Filter, Powers-of-two coefficient, Filter 

Optimization, FIR Digital Filter, Genetic Algorithm, Quantization. 
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ÖZ 
 

SONLU DÜRTÜ YANITLI SAYISAL SÜZGEÇLERİN FARKLI KATSAYI 
 

 NİCEMLEMELERİ VE SÜZGEÇ YAPILARI İLE GERÇEKLEŞTİRİM  
 

KARMAŞIKLIĞI 
 
 

 

AKYÜREK, Sefa 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Tolga ÇİLOĞLU 

Aralık 2004, 86 Sayfa  

 

 

Ayrık katsayılı, sonlu dürtü yanıtlı sayısal süzgeçlerin gerçekleştirim 

karmaşıklığının, çevrilmiş süzgeç yapısı kullanıldığında ve katsayı fazlalığı n-

Boyutlu İndirgenmiş Toplayıcı Çizgesi (RAG-n) yaklaşımı kullanılarak 

azaltıldığında incelenmesi amaçlanmıştır. Katsayıları farklı nicemleme yöntemleri 

ile gösterilen süzgeçler tasarlanmış veya literatürden alınmış; RAG-n işleminden 

sonraki çevrilmiş süzgeç yapıları gerçekleştirim karmaşıklığı açısından 

karşılaştırılmıştır. Genetik algoritma (GA) tabanlı tasarım algoritması geliştirilmiş 

ve katsayıları tam sayı olan süzgeçlerin tasarımında kullanılmıştır. Süzgeç 

katsayılarının Kurallı İşaretli Sayı (CSD) formu ve RAG-n ile gerçekleştirilmesi 

için gerekli algoritmalar da geliştirilmiştir. Süzgeç başarımı normalize edilmiş 

tepecik büyüklüğü olarak ve gerçekleştirim karmaşıklığı süzgeç katsayılarını 

oluşturmak için gerekli toplayıcı sayısı olarak alınmıştır. Süzgeç katsayılarını 

oluşturmak için gerekli toplayıcı sayısı CSD ve RAG-n yöntemleri kullanılarak 

bulunmuştur. Ayrıca süzgeç gerçekleştirim karmaşıklığını indirgemede çevrilmiş 

süzgeç yapısını kullanan ve RAG-n yöntemini dikkate almayan ayrık katsayılı 

sonlu dürtü yanıtlı sayısal süzgeç gerçekleştirim yöntemlerine de bu yöntem 

uygulanmıştır. Çevrilmiş süzgeç yapısını kullanan RAG-n yöntemi, süzgeç
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 katsayılarını oluşturmak için gerekli toplayıcı sayısı açısından, çevrilmiş direk 

süzgeç yapısını kullanan CSD ve işaretli ikinin kuvveti yöntemlerinden daha iyi 

sonuçlar vermiştir. 

Anahtar Sözcükler: Ayrık katsayılı süzgeç, ikinin kuvveti katsayı, süzgeç 

eniyileme, FIR sayısal süzgeç, genetik algoritma, katsayı nicemleme.  
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CHAPTER 1 

 

INTRODUCTION 
 
 

Finite Impulse Response (FIR) digital filters are frequently used in digital 

signal processing because of their inherent stability and the possibility of perfect 

linear phase. Designing FIR digital filters has received a great interest because of 

their wide usage in consumer and military DSP applications such as video and image 

processing, target tracking, radar processing. However, Digital Signal Processing 

(DSP) cores are not always suitable for DSP applications requiring high processing 

performance and low power consumption such as coding, image and video 

processing that require high performance filters operating at high data rates. 

Application specific FIR digital filters are frequently designed to meet the 

constraints of processing performance and power consumption of such DSP 

applications. FIR digital filter implementation may also suffer from a large number 

of multiplications, leading to excessive chip area and power consumption in 

Application Specific Integrated Circuits (ASIC). 

Fast fixed-point arithmetic is required for realization of low-cost and high-

speed DSP hardware. Because of this requirement, designing FIR digital filters with 

very coarsely quantized coefficient values are valuable. Design of FIR digital filters 

with discrete valued coefficients has been a research area where considerable effort 

has been spent. The reasons for necessity of quantization of filter coefficients are as 

follows: 

• Finite wordlength constraint in microprocessors 

• Demand for multiplier-less/efficient/low cost VLSI implementation 

and/or high speed processing 

A major problem in discrete coefficient FIR digital filter design is the 

determination of the optimal quantized coefficient values that satisfy the given filter 

design specifications. Multimodal behavior of cost function over a discrete domain 
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has been a fundamental difficulty in the development of efficient methods for 

discrete coefficient FIR digital filter design. Various FIR digital filter design 

methods have been proposed to solve this problem and to guarantee the optimal 

discrete coefficient solution for linear phase FIR digital filters such as Mixed Integer 

Linear Programming (MILP) [3], [6], [11], and [16], Simulated Annealing (SA) [5], 

[14], and [23], Genetic Algorithms (GA) [2], [15], [17], [19], [21], and [24] and 

Local Search [1], [18], and [25] and Free Allocation algorithms [4], [7], [20], and 

[22].  

Beside the filter coefficient quantization problem, implementation of 

quantized filter coefficients is also an important task in FIR digital filter design for 

low cost and high performance filtering. Complexity of FIR digital filters is 

determined by the number of multiplications in filters. Many researches have studied 

the minimization the complexity of multiplier blocks required in filtering. 

Multiplications can be eliminated by decomposing them into simple operations such 

as addition, subtraction and shifting. For a filter with constant coefficients, the 

decomposition into addition, subtraction and shifting is more efficient than 

employing multipliers. The complexity of FIR digital filters in this case is dominated 

by the number of adders/subtractors used to implement the coefficient 

multiplications. To reduce the complexity, the coefficients can be restricted, for 

example, to two signed-powers-of-two (SPT) or expressed in Canonic Signed Digit 

(CSD) code [1], [3], [4], [6], [7], [11], [13], [14], [16], [18], [20], [22]. CSD 

representation is the unique minimum representation for which no two SPT terms are 

adjacent. CSD representation produces better results than SPT representation in 

terms of number of adders used. CSD and SPT approaches deal with each coefficient 

individually while realizing the filter coefficients. 

Another way to reduce filter complexity is the graph representation [8], [9], 

[12], [19], [21]. Graph representation approach arises in the context of transposed 

direct form (Fig. 1.1) and considers all filter coefficients a whole. As shown in 

Figure 1.2, the hardware block called a multiplier block is used to implement all 

coefficient multiplications. The multiplier block is significant in terms of area and 

power because some adders and shifters can be shared among different 

multiplications. RAG-n algorithm [8] is one of the methods that reduces complexity  
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of this multiplier block by exploiting the redundancy in filter coefficients. 

Transposed direct form filter structure is a necessity to use RAG-n in the 

implementation of FIR digital filters since all filter coefficients are multiplied with 

the input signal at the beginning and delayed later. So there is a possibility to 

synthesize all filter coefficients before multiplication and delay. 

 

 

 
 
 
 
      
 
 
 

                       
  

Figure 1.1 Transposed Direct Form 

 
 
 
 

 
 
 
      
 
 
 
 
  

 
Figure 1.2 Multiplier Block  

1.1. Coefficient Quantization Methods 

Coefficient Quantization methods can be classified as follows:  

Uniform Quantization: The filter coefficients are represented by b-bit binary 

numbers including the sign bit. Figure 1.3 shows a uniform quantization grid for 

two coefficients. Design of filters with uniform quantization has been considered 

in [3] by MILP, in [23] by simulated annealing, in [2], [19], [21] by GAs. 
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Figure 1.3 Uniform Quantization 

Non-Uniform Quantization: Distribution of values of filter coefficients is 

nonuniform. For example, if two SPT are assigned per filter coefficient, then this 

is a nonuniform quantization. In this case domain of filter coefficients is as 

follows: 









== ∑
=

−
2

1
2:

k

g
k

kcD αα      (1.1) 

{ }1,0,1−∈kc  and { }Bgk ,,.........3,2,1,0∈     (1.2) 

B is an integer that represents maximum number of shifts that can be performed 

on the filter input signal. 

Figure 1.4 shows nonuniform quantization grid for two coefficients for B=3. 

Design of filters with nonuniform quantization has been considered in [5], [14] 

by SA, in [11] by MILP 
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Figure 1.4 Nonuniform Quantization 

 
Free allocation: In this method, total number of SPT terms is fixed. These SPT 

terms are distributed to filter coefficients via an optimization technique. 

Actually, this method is also a nonuniform quantization. Figure 1.5 shows free 

allocation quantization grid for two coefficients with 02 , 12 as SPT terms and a 

total of two SPT terms. Design of filters with free allocation has been considered 

in [7] by a rounding algorithm, in [4] by a trellis search algorithm and in [20] by 

a local search algorithm. 

 

Figure 1.5 Free Allocation  
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1.2. The Aim and Organization of the Thesis 

This thesis aims to compare FIR digital filter design methods that use 

different quantization techniques for filter coefficients. Comparisons have been made 

in terms of both filter performance and implementation complexity. For filter design, 

different filter design methods have been studied and specifically a filter design 

method based on genetic algorithm has been implemented. For filter implementation, 

transposed direct form filter structure and an algorithm [8] that reduces the number 

of adders required in this structure (implementation complexity) have been studied. 

This structure and algorithm [8] have been applied to filter design methods [1-7], 

[11], [13-16], [22] to reduce the implementation complexity since this has not been 

studied before in literature. Results drawn from the comparisons are dramatic in 

terms of number of adders required in the implementation. It has been seen that 

implementation complexity has been reduced approximately 50% by using this 

structure and algorithm [8] in filter design methods [1]-[7], [11], [13]-[16], [22]. It is 

concluded that filters with integer or SPT coefficients implemented by RAG-n with 

transposed direct form filter structure are less complex than a CSD implementation. 

Thesis is organized in the following manner: Chapter 2 deals with the basic 

concepts of discrete coefficient FIR digital filter design methods. Three major 

approaches to the discrete coefficient FIR digital filter design problem are given. 

Chapter 3 is based on the details of the discrete coefficient FIR digital filter design 

method implemented in this thesis. Chapter 4 is based on the details of realization 

algorithm for filter coefficients namely RAG-n [8] implemented in this thesis and 

gives the results drawn from the research and finally in Chapter 5, conclusion and 

possible directions for future work are given. 
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CHAPTER 2 

 
A SURVEY ON DISCRETE COEFFICIENT  

FIR  

DIGITAL FILTER DESIGN METHODS 

2.1. Introduction 
 

The filter design problem can be stated as follows: obtain a set of filter 

coefficients such that )( fH (designed filter frequency response) is the best 

approximation to some desired function )( fD (desired filter frequency response), 

over a given frequency range, with respect to some optimality criterion. Filter design 

methods commonly optimize the following cost function:  

( ) max{ ( ) ( ) ( )}E x W f H f D f= −
r     (2.1) 

where )( fW is a positive error weighting function and xr  is the vector of filter 

coefficients. This kind of optimization is a difficult combinatorial problem. A 

variety of algorithms are available for designing filters with discrete coefficient 

values and to guarantee the optimal discrete coefficient solution for FIR digital 

filters. 

MILP [3], [6], [11], [13], [16] has been applied to design FIR digital filters 

according to ( )E xr . One of the drawbacks of MILP is that computation time for long 

filters is very high and also large amount of memory is needed. Computational load 

is exponentially dependent on the filter length. The optimum finite word length 

solution obtained by MILP saves only a few bits in coefficient word length when 

compared to the simple coefficient rounding.  

GAs have been used for the problem of discrete coefficient FIR digital filter 

design [2], [19], [21], [24]. GAs are search algorithms based on genetic and natural 

selection paradigm and can be successfully employed for minimizing a cost function 
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such as the difference between the desired filter frequency response and the 

designed filter frequency response. They can handle arbitrary constraints on 

coefficient values and filter specifications. High computation time because of many 

functions evaluations, the need for multiple trials to get satisfactory solutions 

because of random selections made inside the algorithm, and the need for experience 

to adjust the algorithm parameters are drawbacks of GAs. 

SA is a very powerful optimization method that has been applied to solve the 

problem of discrete coefficient FIR digital filter design [5], [14], [23]. There are no 

limitations on the cost function and constraints of the problem. These features make 

SA a valuable tool in filter design problem. Like GAs, high computation time 

because of many functions evaluations, the need for multiple trials to get satisfactory 

solutions because of random selections made inside the algorithm, and the need for 

experience to adjust the algorithm parameters are drawbacks of SA. 

Local search techniques have been employed to solve the problem of discrete 

coefficient FIR digital filter design [1], [18], [25]. Local search techniques take the 

rounded solution of infinite precision design as a start point and look for improved 

solutions by partially examining some neighborhood of the best discrete solution. 

Multiple trials with different sequence or contents of coefficient groups are needed 

to get the best solution. This increases the computation time spent by the algorithm. 

Some methods focus on the number of SPT terms since they determine filter 

hardware complexity. Free allocation methods [4], [7], [20], [22] allocate SPT terms 

to most deserving filter coefficients but they fix the number of SPT terms at the 

beginning. The coefficients are found by minimizing the distance between the 

coefficients of infinite wordlength design and those of the sum of the SPT terms. 

Initially all quantized coefficient values are set to zero. Choosing one SPT term at a 

time and allocating it to the most deserving filter coefficient minimize the distance 

mentioned above. 

2.2. Optimization Methods for FIR Digital Filter Design 
 

The methods that have been used to design FIR digital filters under uniform 

and nonuniform quantization are MILP, SA, GA and local search methods. They are 

going to be described briefly in this section. 
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2.2.1 Mixed Integer Linear Programming 
 

MILP technique can be used in discrete coefficient FIR digital filter design 

[3], [6], [11], [16]. This technique can be used to minimize the ripple subject to 

hardware specifications (wordlength and filter order) or to minimize the hardware 

cost (number of SPT terms). The equation in 2.1 can be used as a cost function and 

evaluating this cost function on a dense frequency grid allows the optimization to be 

formulated as a linear programming problem. The optimization reduces to 

determining the set of integer values for filter coefficients which satisfy the 

following conditions 

( ) ( ) ( )W f H f D f δ− ≤      (2.2) 

( ) ( ) ( )W f H f D f δ− ≥ −      (2.3) 

with a minimum value of δ . This is an integer linear programming when the 

coefficients are restricted to integer values. 

MILP with a suitable branch-and-bound algorithm enables to design filters 

with any discrete coefficient value. Branch-and-bound algorithm starts with 

obtaining a continuous coefficient value (i.e., infinite precision coefficient value). 

Let this problem be 0P . The next step is to select a coefficient whose value is not a 

desired value. Let this coefficient be )(nh . If  )(nh  and  )(nh  two consecutive 

discrete levels such that 

   )()()( nhnhnh ≤≤      (2.4) 

then, since the discrete value of )(nh can not fall between  )(nh  and  )(nh , two 

mathematical programming problems 1P  and 2P  are generated by adding the 

constraints.  

 )()( nhnh ≤       (2.5) 

 )()( nhnh ≥       (2.6) 

1P  and 2P  are solved individually. Further branching may be performed on 1P  and 

2P  to produce the subproblems 6543 ,,, PPPP . If it is predicted that an improved 

solution cannot be obtained for a branch then this branch can be removed to reduce 

number of branchings. 
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Figure 2.1 A Branch and Bound Tree   

There are several branch-and-bound algorithms. Two of them are as follows: 

1. Depth-first branch-and-bound: The algorithm is as follows: after 

solving 0P , speculate on 1P  and 2P . If a decision is made to solve 1P , then 

2P  is saved for later solution. After solving 1P , speculate on 3P  and 4P ; 

solve one of them and save the other. This procedure continues until a 

suboptimum discrete solution is obtained.  After obtaining a discrete 

solution, reinitiate the depth-first search process from an unsolved 

problem. This process continues until the entire problem is solved. 

2. Isocost branch-and-bound: The algorithm is as follows: after solving 1P  

and 2P  , they are compared and the better one is selected for branching. If  

1P  is better one, then after solving for 3P  and 4P ; 43 , PP  and 2P  are 

compared and the best one is selected. The procedure continues by always 

selecting the best subproblem for further branching. 

2.2.2 Simulated Annealing  
 
  One of the well-known powerful global optimization algorithms is SA that is 

introduced in combinatorial optimization and used in discrete coefficient FIR digital 

filter design [5], [14], [23]. In simulated annealing, a trial solution is chosen and the 

effects of taking a small random step from this position are tested. If the step results 

in a reduction in the cost function, it replaces the previous solution as the current 

0P  

1P  2P  

3P  
4P  5P  6P  
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trial solution. If it does not result in a cost saving, the solution still has a probability 

P of being accepted as the new trial solution given by: 

exp ( / )P E T= −∆      (2.7) 

Here, E∆ is the increase in the cost function that would result from the step. The 

temperature T is simply a numerical value that determines the stability of a trial 

solution. If T is high, new trial solutions will be generated continually. If T is low, 

the trial solution will move to a local or global cost minimum — if it is not there 

already — and will remain there. The value of T is initially set high and is 

periodically reduced according to a cooling schedule. A commonly used simple 

cooling schedule is: 

1t tT Tα+ =       (2.8) 

where tT is the temperature at step number t and α  is a constant close to, but below, 

1. When T is high, the optimization routine is free to accept many varied solutions, 

but as it drops, this freedom diminishes.  

The success of the technique is dependent upon values chosen for starting 

temperature, the size and frequency of the temperature decrement, and the size of 

perturbations applied to the trial solutions.  

In the design of FIR digital filters, the minimax objective function in 

equation 2.1 can be used. The starting point of the algorithm is the rounded infinite 

precision optimum solution. The random moves are made in the neighborhood of 

this infinite precision solution with proper step sizes. This is followed by a decision 

mechanism and cooling schedule is applied for the new move and solution is 

accepted if it is better from the previous and algorithm reinitiates from this new 

point. 

2.2.3 Genetic Algorithms 
 

The basic principle of a genetic algorithm is to randomly generate an initial 

population (consists of a collection of chromosomes) of solutions, each solution 

having an objective value or ‘fitness’. Pairs of individual solutions are then 

combined in an attempt to produce better (fitter) solutions. After each round of 

combinations, the least fit individuals are excluded from further combination to keep 

the number of individuals in the ‘breeding’ pool constant. In this way it is hoped 
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that, after many breeding cycles, the pool will contain a population of solutions with 

much improved objective values from which the best can be chosen. This class of 

techniques is appealing since it mimics the natural selection process that drives 

evolution. 

GA based design techniques are widely proposed for discrete coefficient 

filter designs [2], [15], [17], [19], [21], [24]. In GA, chromosomes consisting of 

integer genes can be used to represent the filter coefficients. The fitness function 

that can be used in selection process may be Mean Squared Error (MSE), Least-

Mean Squared Error (LMS), Normalized Peak Ripple Magnitude (NPRM), number 

of adders used in the implementation (adder cost) or may consist of a combination 

of NPRM and adder cost. The starting point of the algorithm is the rounded infinite 

precision optimum solution. New populations (new set of filter coefficients) are 

generated with mutation and crossover operations and a fitness function is evaluated 

for this population and better ones are selected for next GA cycle. 

2.2.4 Local Search Methods 
 

Local search type algorithms [1], [18], [25] start from the rounded and scaled 

solution of the infinite precision solution and seek for improved solutions by 

partially examining some neighborhood of the best discrete solution at the instant. 

Equation 2.1 can be used as a cost function. The starting solution can be 

]2[' 1
i

b
i hh −= ,   i =0,1,2…N-1     (2.9) 

where ih is the infinite precision coefficient and the brackets denote rounding to the 

nearest integer. Coefficients are represented by b bits and N is filter length. The 

simplest neighborhood of a solution is defined by examining the perturbations of 

each coefficient, taken one-at-a-time, by 1± . This set is called as “1-change” 

neighborhood. “2-change” neighborhood is defined as union of “1-changes” and the 

set of perturbations of two coefficients at a time. There are two main strategies for 

searching the neighborhood. The first one accepts the first improved solution found. 

The second one searches the entire neighborhood and selects the best. 

2.3. Free Allocation Methods 

Some of the FIR digital filter design methods that use free allocation method 
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are [4], [7], [20], and [25]. The total number of SPT terms determines the realization 

cost (adder cost) of a digital filter. Distribution of SPT terms among the filter 

coefficients does not affect the realization cost. Therefore, the number of SPT terms 

for each coefficient is not necessarily limited to a fixed number. Instead, they should 

be allowed to vary subject to a given number of total SPT terms for the filter. This 

provides the possibility of finding a better set of coefficients. 

2.4.1 Polynomial Time Algorithm [7] 
 

This algorithm designs digital filters with SPT coefficients subject to a 

prescribed total number of SPT terms. The algorithm finds the coefficients by 

minimizing the ∞L  norm of the difference between the coefficients of infinite 

wordlength and those of sums of SPT terms.  

Basic polynomial algorithm outline is as follows: 

Step 1. Start with initializing all the quantized coefficient values to zero.  

Step 2. Choose one SPT term at a time and allocate it to the currently most 

deserving coefficient to minimize the ∞L  distance between the SPT 

coefficients and their corresponding infinite wordlength values. This process 

of allocating the SPT terms for the filter is equal to a prescribed number.  

2.4.2 Trellis Search Algorithm [4] 
 

Trellis search algorithm also uses free allocation method for discrete 

coefficient filter design. FIR digital filters with coefficients implemented as sums of 

signed-powers-of-two terms can be designed with this algorithm in two stages: 

Stage 1: Using a fast time domain approximation, a prototype filter is 

designed. 

Stage 2: Formulating the design problem as a dynamic-programming-like 

recursive optimization problem, filters are designed by performing a trellis 

search that is similar to the viterbi algorithm. Inherent in the proposed trellis 

search algorithm is an iterative procedure that designs filters with gradually 

growing number of SPT terms, providing a means to control the filter’s 

implementation complexity. 
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CHAPTER 3 

DESIGN OF INTEGER COEFFICIENT FILTERS  

 BY GENETIC ALGORITHM  

 

The aim of this chapter is to introduce the genetic algorithm that is developed 

for the discrete coefficient FIR digital filter design in this thesis. The chapter is 

organized as follows: 

• Basics of genetic algorithms  

• GA for the design of the integer coefficient filters. 

3.1. Genetic Algorithms 

3.1.1 Introduction 
 
 GA is a tool for searching and optimizing methodology. GAs have been 

inspired by natural evolution, the process by which successive generations of animals 

and plants are modified so as to approach an optimum form. Each offspring has 

different features from its parents, i.e., it is not a perfect copy of parents. If the new 

characteristics are favorable, the offspring is more likely to flourish and pass its 

characteristics to the next generation. However, an offspring with unfavorable 

characteristics is likely to die without reproducing. It works on the Darwinian 

principle of natural selection where stronger individuals are likely the winners in a 

competing environment. These ideas have been applied to mathematical 

optimization, where a population of candidate solutions “evolves” toward an 

optimum. Each cell of a living organism contains a set of chromosomes that define 

the organism’s characteristics. The chromosomes are made up of genes, where each 

gene determines a particular trait such as eye color. The complete set of genetic 

material is referred to as the genome, and a particular set of gene values constitutes a 

genotype. The resulting set of traits is described as the phenotype. Each individual in 
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the population of candidate solutions is graded according to its fitness. The higher 

the fitness of a candidate solution, the greater are its chances of reproducing and 

passing its characteristics to the next generation. In order to implement a GA, the 

following design decisions need to be made: 

•  how to use sequences of numbers, known as chromosomes, to represent the 

candidate solutions; 

•  the size of the population; 

•  how to evaluate the fitness of each member of the population; 

•  how to select individuals for reproduction using fitness information 

(conversely, how to determine which less-fit individuals will not reproduce); 

• how to reproduce candidates, i.e., how to create a new generation of 

candidate solutions from the existing population; 

•  when to stop the evolutionary process. 

3.1.2. Basic Genetic Algorithm 
 
GA uses a direct analogy of such natural evolution. Solution of any problem 

can be represented by a set of parameters. According to the GA, the solution is 

viewed as a chromosome and the corresponding parameters are regarded as the genes 

of that chromosome. Also the effect of the environment substitutes with a fitness 

(objective) function, which is used to reflect the degree of “goodness” of the 

chromosome. Throughout a genetic evolution, the fitter chromosome has a tendency 

to yield good quality offspring, which means a better solution to any problem. In a 

GA application, a population pool, whose size varies from one problem to another, of 

chromosomes has to be initialized randomly. In each cycle of genetic operation, 

termed as an evolving process, a subsequent generation is created from the current 

chromosomes in the population.  

3.1.2.1 Chromosomes 
 

Each point in the search space can be represented as a unique chromosome, 

made up of genes. Suppose, for example, it is aimed to find the maximum value of a 

fitness function, f(x, y). In this example, the search space variables, x and y, are 

constrained to the 16 integer values in the range 0–15. A chromosome corresponding 
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to any point in the search space can be represented by two genes: 

  

 

Figure 3.1 GA Chromosome 

Thus the point (2, 6) in search space would be represented by the following 

chromosome: 

 

2 6 

 

The possible values for the genes are called alleles, so there are 16 alleles for each 

gene in this example. Each position along the chromosome is known as a locus; there 

are two loci in the above example. The loci are usually constrained to hold only 

binary values. (The term evolutionary algorithm describes the more general case 

where this constraint is relaxed.) The chromosome could therefore be represented by 

eight loci comprising the binary numbers 0010 and 0110, which represent the two 

genes: 

0 0 1 0 0 1 1 0 
 

Although there are still 16 alleles for the genes, there are now only two possible 

values (0 and 1) for the loci. The chromosome can be made as long as necessary for 

problems involving many variables, or where many loci are required for a single 

gene. In general, there are N2  alleles for a binary-encoded gene that is N bits wide. 

3.1.2.2 Basic GA Structure 
 

A flow chart for the basic GA is shown in Figure 3.2. In the basic algorithm, 

the following assumptions have been made: 

• The initial population is randomly generated. 

• Individuals are evaluated according to the fitness function. 

• Individuals are selected for reproduction on the basis of fitness; the fitter an 

individual, the more likely it is to be selected 

x y 
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• Reproduction of chromosomes to produce the next generation is achieved 

by “breeding” between pairs of chromosomes using the crossover operator 

and then applying a mutation operator to each of the offspring.  

Initial population consists of a collection of chromosomes that represent a set of 

solutions for the problem. The chromosome producing the minimum error function 

value represents the best solution to the given problem. The chromosomes that give 

better fitness function value are selected and sent to the crossover operator. Two new 

chromosomes are created from the two selected chromosomes existing in the 

population by choosing a common point in the selected chromosomes and swapping 

their corresponding digits. In the mutation operation, values of the chromosomes 

mutate randomly. These GA operators are explained in detail below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

Figure 3.2 Basic GA Cycle 
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Reproduction 
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Mutation 
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3.1.2.3 Crossover  
 

Child chromosomes are produced by aligning two parents, picking a random 

position along their length, and swapping the tails, known as the crossover 

probability. An example for an eight-loci chromosome, where the mother and father 

genes are represented by im  and if  respectively, would be: 

 
 

 
Figure 3.3 GA Single-point Crossover 

This is known as single-point crossover, as only one position is specified for 

separating the swapped and unswapped loci. In fact this is a misnomer, as a second 

crossover position is always required. In single-point crossover the second crossover 

position is assumed to be the end of the chromosome. This can be made clearer by 

considering two-point crossover, where the chromosomes are treated as though they 

were circular, i.e., 1m  and 8m  are neighboring loci: 

 

  
   

     
Figure 3.4 GA Two-point Crossover 

In general, multipoint crossover is also possible, provided there are an even number 

of crossover points: 

 

  
 

 
Figure 3.5 GA Multi-point Crossover 

1m  2m  3m  4m  5m  6m  7m  8m  1m  2m  3m  4m  5m  6f  7f  8f  

1f  2f  3f  4f  5f  6m  7m  8m  1f  2f  3f  4f  5f  6f  7f  8f  

1m  2m  3m  4m  5m  6m  7m  8m  1m  2f  3f  4f  5f  6m  7m  8m  

1f  2f  3f  4f  5f  6f  7f  8f  
1f  2m  3m  4m  5m  6f  7f  8f  

1m  2m  3m  4m  5m  6m  7m  8m  1m  2f  3f  4m  5m  6f  7f  8m  

1f  2f  3f  4f  5f  6f  7f  8f  1f  2m  3m  4f  5f  6m  7m  8f  
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In the extreme case, each locus is considered for crossover, independently of the rest. 

This is known as uniform crossover. 

3.1.2.4 Mutation 
 

Unlike crossover, mutation involves altering the values of one or more loci. 

This creates new possibilities for gene combinations that can be generated by 

crossover. Mutation can be carried out in either of two ways: 

• The value of a randomly selected gene can be replaced by a randomly 

generated allele. This works for both binary and nonbinary chromosomes. 

• In a binary chromosome, randomly selected loci can be toggled, i.e., 1 

becomes 0 and 0 becomes 1. 

Individuals are selected randomly for mutation. The main advantage of mutation is 

that it puts variety into the gene pool, enabling the GA to explore potentially 

beneficial regions of the search space that might otherwise be missed.  

3.1.3. Selection 
 

It has already been stated that individuals are selected for reproduction on the 

basis of their fitness, i.e., the fittest chromosomes have the highest likelihood of 

reproducing. Selection determines not only which individuals will reproduce, but 

how many offspring they will have. The selection method can have an important 

impact on the effectiveness of a GA. 

Selection is said to be strong if the fittest individuals have a much greater 

probability of reproducing than less fit ones. Selection is said to be weak if the fittest 

individuals have only a slightly greater probability of reproducing than the less fit 

ones. If the selection method is too strong, the genes of the fittest individuals may 

dominate the next generation population even though they may be suboptimal. This 

is known as premature convergence, i.e., the exploitation of a small region of the 

search space before a thorough exploration of the whole space has been achieved. On 

the other hand, if the selection method is too weak, less fit individuals are given too 

much opportunity to reproduce and evolution may become too slow. This can be a 

particular problem during the latter stages of evolution, when the whole population 

may have congregated within a smooth and fairly flat region of the search space. All 
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individuals in such a region would have similar, relatively high fitnesses and, thus, it 

may be difficult to select among them. This can result in stalled evolution, i.e., there 

is insufficient variance in fitness across the population to drive further evolution.  

3.2. Genetic Algorithm in the Design of FIR Filters 

3.2.1 Genetic Algorithm and Operators 
 

A GA has been implemented for the design of discrete coefficient FIR filter 

design in this thesis. GA consists of basic genetic operators such as mutation, 

crossover and evaluation. Each filter is represented as a set of integer filter 

coefficients { 1h , 2h , 3h , .... nh }. Filter performance is measured using Normalized 

Peak Ripple Magnitude (NPRM). Filter complexity that is number of adders required 

to implement filter coefficients is measured using RAG-n and CSD algorithm. The 

advantage of using integer coefficient representation is that it is a more natural way 

in which to describe filters. Chromosomes consisting of integer genes have been used 

in GA to represent the filter coefficients rather than a binary coding. This provides a 

more natural implementation, which facilitates the use of customized genetic 

operators. Generation of the initial population and the genetic operators that have 

been used in GA in this thesis are as follows: 

Initial Population: The set of infinite precision filter coefficients is determined by 

using the Park-McClellan algorithm. These coefficients are rounded to the nearest 

finite wordlength number. An initial population that consists of a set of filter 

coefficients is created by randomly adding an integer between 2±  to each rounded 

filter coefficient. 

Crossover: The crossover operator in GA consists of uniform and single-point 

crossover on the integer genes, such that two new chromosomes generated have a 

mixture of coefficients from each parent. 
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Figure 3.6 GA Single-point Crossover 

 

Mutation 1: Addition/subtraction of a small random power-of-two value to the filter 

coefficients is the main mutation technique.  

 

 

 
 

 
 

 
 

 
 
 
 

Figure 3.7 GA Mutation 1 

 

Mutation2: Scaling (and quantizing) all the filter coefficients within a chromosome is 

the second mutation technique that is used. This allows a change to the overall gain 

of the filter with little change to the filter performance. 
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Figure 3.8 GA Mutation 2 

3.2.2 Fitness Function in GA  
 

The fitness function used in GA is the NPRM [10].  NPRM has been a 

convenient design criterion for discrete coefficient FIR filters. For many filter 

implementations the absolute value of the passband gain is of less importance. 

Instead the relative attenuation between the passband and stopband is of interest. 

This is referred to as NPRM.  

Let ih , i = 0,1,2, .......,M,  denote the impulse response sequence of a linear 

phase FIR filter. The amplitude of the frequency response of the designed filter is 

expressed as 

 

(3.1) 

 

 

1
2
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MN  if M is even     (3.2) 

2
1−

=
MN  if M is odd     (3.3) 

where ia ’s are related to ih ’s and T(w,i)’s are sinusoidal functions. T(w,i) can be 

cos(wi), cos(w(i+0.5)), sin(wi) or sin(w(i+0.5)) depending on the type of the 

symmetry of the impulse response and, the type of M as even or odd. Let W(w) be a 

positive weighting function and )(wH d be the amplitude of the frequency response 

of the desired filter. Then, NPRM is defined as g/δ , such that 
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where )(wE , the error function is given by 

))()()(()( wHwgHwWwE d −=     (3.5) 

and g is the “passband gain” or “filter gain”. The minimization of NPRM is to be 

carried out with respect to ih ’s and g subject to ih ’s take quantized values. 

According to this problem definition, filter gain has the maximum value that 

minimizes NPRM for a given set of filter coefficients. An explicit expression for g 

has not been provided in the literature in this sense. In particular, g has been set as 

2
minmax PP

g
+

=      (3.6) 

where maxP and minP are the maximum and minimum values, respectively of )(wH in 

the passband. The above g definition is not general since it attempts to minimize the 

maximum passband deviation without considering the stopband deviation. 

Let maxS denote the maximum value of )(wH in the stopband. Then, for a 

given set of filter coefficients the filter gain that minimizes g/δ  is given by 

 

2
minmax PP

g
+

=     if  max
minmax

2
S

PP
>

−
   (3.7) 

 

maxmin SPg +=   if   max
minmax

2
S

PP
<

−
   (3.8) 

In setting this equality, the following assumptions have been made: 

• Band specifications of the desired amplitude response, )(wH d , are given as 
constant levels. 

• Without loss of generality, 1)( =wH d  in the passband and 0)( =wH d  in the 

stopband. 
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3.2.4 GA Algorithm Flowchart 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 GA Flowchart 

 

 

 

 
• Evaluate NPRM for each candidate filter in 

the population. 
• Drop the worst M+K filter candidates. 
• Send the remaining N-K into the mutation 

operation. 

 
• Initial Filter Coefficient : Design using Park-

McClellan Algorithm. 
• Gain adjustment 
• Round the nearest finite wordlength. 
• By adding an integer between ± 2 to each 

rounded coefficient, 
 
Create a population of N elements. 
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filters. 
• Evaluate NPRM and take the K from this 

population. 
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CHAPTER 4 

COMPARISON OF FILTER DESIGN METHODS 

 IN TERMS OF FILTER PERFORMANCE AND  

COMPLEXITY 
 

First, an algorithm that reduces the number of adders used in the multiplier 

block of FIR digital filters namely RAG-n [8] is explained. Then, different filters 

designed under uniform and nonuniform quantization constraints are implemented in 

transposed direct form. In these implementations, implementation complexity is 

reduced by using RAG-n algorithm. The results are compared in terms of 

performance and implementation complexity. Implementation complexity is the 

number of adders required to implement the filter coefficients and calculated via 

RAG-n [8] and CSD algorithm. It has been seen from the results that RAG-n [8] has 

provided 50% cost saving over the CSD and SPT design. 

4.1. Digital FIR Filter Implementation  

4.1.1 Introduction 
  

It has been shown that implementation complexity of FIR digital filters with 

integer coefficients can be reduced by using multiplier blocks to exploit redundancy 

across the coefficients [8]. This approach uses the transposed form FIR filter 

structure (See Figure 1.1) and the redundancy in the multiplication process. It 

replaces multiplications by decomposing them into simple operations such as 

additions, subtractions and shift and tries to reduce the number of simple operations. 

The multiplier block (See Figure 1.2) in the transposed form FIR filter structure is 

significant since some adders and shifters in this multiplier block can be shared 

among different multiplications. RAG-n algorithm [8] focuses on this multiplier 

block and tries to make it as simple as possible using less adders and subtractors.
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The filter design methods [1]-[7], [11], [13]-[16], [18], [20], [22]-[23] that 

use different quantization techniques mentioned in Chapter 1 and constrain the filter 

coefficients to SPT terms have never been thought using RAG-n after designing filter 

to reduce the implementation complexity. This algorithm has been applied to these 

filter design methods and significant cost savings have been achieved in filter 

implementation. 

4.1.3 Graph Representation for Multiplier Block  
 

The graph representation technique is based on the concept of replacing the 

discrete multipliers in the multiplier block of the transposed form FIR filter structure 

with a graph which exactly preserves the input-output transfer function for all 

signals. It is a graphical method to represent multiplication by a constant integer, 

where each vertex except the initial and terminal vertices means an adder, and each 

edge is associated with a value to be multiplied with the left vertex of the edge. The 

value is a positive or negative constant of a power of two. The initial vertex is 

assigned to 1 and the result of the multiplication is obtained from the terminal vertex. 

Graph representation utilizes redundancy in the coefficient set in the design of FIR 

digital filters. An example of multiplier graph is shown Figure 4.1, where the number 

45 is synthesized using CSD and the technique in RAG-n. Each vertex of the graph 

represents an adder, and each edge represents multiplication by a power of two, 

which can be executed with minimal complexity; in hardware it is wired as a simple 

shift. 
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(b) 
 

Figure 4.1 (a) CSD Representation (b) Represented with fewer Adders than CSD 

Number of adders used to implement the filter coefficients determines the 

complexity of the graph that replaces the multiplier block. Binary shifts incur no 

cost. For fixed-point filter coefficients with least significant bit M−2 , scaling by M2  

produces integer coefficients. The required output can be regained at zero cost by 

rescaling by M−2 . Therefore fixed-point coefficient problem can be considered to be 

an integer coefficient problem. The followings are definitions for terms used in the 

RAG-n [8] algorithm. 

Adder Cost: Number of adders and subtractors required to implement filter 

coefficients in the multiplier block. 

Fundamentals: The values assigned to vertices in the graphs used to represent 

multiplications. 

Equivalent Graphs: The graphs that have the same topology, and can be derived one 

from the other by scaling inputs to a vertex by x2 , and the fundamental at that vertex 
x2 , and output edges from that vertex by x−2 . 

Odd Fundamental Graph: The unique graph among equivalent graphs that has only 

odd fundamentals. 

4.1.4 The n-Dimensional Reduced Adder Graph (RAG-n) Algorithm [8] 

A flowchart of the n-Dimensional Reduced Adder Graph algorithm is shown 

in Figure 4.6 (a) and (b). The two parts of the algorithm is as follows:  
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• Optimal Part: Filter coefficients that are cost-1 (i.e. implementing this filter 

coefficient requires 1 adder) or producible by other cost-1 coefficients are 

realized by this part of the algorithm. Minimum adder cost is assured if the 

set of filter coefficients is completely realized by this part of the algorithm. 

•  Heuristic Part: Filter coefficients that are not realized in the optimal part are 

realized in this part of the algorithm. This part of the algorithm uses the filter 

coefficients realized in the optimal part to implement the higher cost filter 

coefficients. Minimum adder cost is not assured if this part of the algorithm 

executes. 
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Figure 4.2 (a) Flowchart of the Optimal Part of the RAG-n Algorithm 
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Figure 4.2 (b) Flowchart of the Heuristic Part of the RAG-n Algorithm 
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The algorithm is explained in detail below: 

a. Remove the sign of the filter coefficients. 

b. Remove all of the filter coefficients that are a power-of-two since they 

incur no cost other than a hardwired data shift. 

c. Reduce all of the filter coefficients to odd fundamentals by dividing 2 

until they become odd. Create a set named as “unrealized filter coefficient 

set” and store the odd valued filter coefficients into this set. 

d. Determine the cost for each entry in the unrealized filter coefficient set 

by using the cost lookup table. This cost gives the number of adders 

required to implement each filter coefficient reduced to odd value in the 

“unrealized filter coefficient set”. 

e. Create the “realized filter coefficient set” for the storage of realized 

filter coefficients. Into this set, enter all cost-1 filter coefficients and 

remove these from the “unrealized filter coefficient set”. 

f. Examine pairwise sums of filter coefficients in the “realized filter 

coefficient set” with power-of-two multiples of these same filter 

coefficients. If any of the filter coefficients in the “unrealized filter 

coefficient set” is produced, remove them from the “unrealized filter 

coefficient set” and put them in the “realized filter coefficient set”. 

g. Repeat f until no more filter coefficients are added to the “realized filter 

coefficient set”. 

If at any time, all of the filter coefficients are realized, the RAG-n algorithm 

terminates. After g, if multiplier block in the transposed form FIR filter structure is 

completely implemented, then this multiplier block is guaranteed to be optimal that 

means minimum number of adders and subtractors used in the implementation. The 

following theorems explain optimality criteria. 

Theorem 1. [8] A set of n nonrepeated cost-1 or more odd filter coefficients 

can not be realized using fewer than n adders. 

Theorem 2. [8] For a set described in theorem 1 to incur an adder cost of n, at 

least one cost-1 must appear in the set. 

Steps a to g form the optimal part of the RAG-n algorithm. After the 

execution of the optimal part, if any entry exists in the “unrealized filter coefficient 

set” then execution of the heuristic part of the RAG-n algorithm begins. “Adder 
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distance” definition is used in the heuristic part of the RAG-n algorithm. The adder 

distance of a new vertex from an exiting graph is the number of extra adders that are 

needed to reach new vertex. The aim of the heuristic part of the algorithm is to find 

the minimum adder distance between the graph created by the optimal part of the 

algorithm and the remaining terminating vertices, which corresponds to the 

coefficients not yet realized.  

The heuristic part of the algorithm continues as follows: 

h. Check each of the “unrealized filter coefficient set” for two different 

instances of distance 2 vertices: 

o The case where the cost of the difference between the filter 

coefficient of interest in the “unrealized filter coefficient set” 

and any realized filter coefficient in the “realized filter 

coefficient set” is 1. 

o The case where the cost of the difference between the filter 

coefficient of interest in the “unrealized filter coefficient set” 

and the sum of any two realized filter coefficients in the 

“realized filter coefficient set” is 0. 

In both cases, two new fundamentals will be created, the new 

realized filter coefficient and one other. In the first case, this latter 

fundamental is the cost-1 difference which was calculated. In the 

second case it is the sum of the two realized filter coefficients. If 

such a case is found, add the two fundamentals to the “realized 

filter coefficient set”, and remove the realized filter coefficient 

from the “unrealized filter coefficient set”. 

i. Repeat g and h until no new distance 1 or 2 fundamentals are found. 

j. If this point is reached, there are filter coefficients that are at a greater 

distance than 2 from the existing graph, or at a distance 2 with a topology 

which is not covered by the two examples in h. Therefore an arbitrary 

choice of fundamentals to add to the “realized filter coefficient set” must 

be made. Of the “unrealized filter coefficient set”, select the minimum 

fundamental of lowest single-coefficient cost. Realize it by selecting the 

set of fundamentals which has the lowest numerical sum. Add these 
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fundamentals to the “realized filter coefficient set” and remove the filter 

coefficient from the “unrealized filter coefficient set”. 

k. Repeat steps g to j until all filter coefficients are realized. 

4.1.5 Example Filter Implementations with RAG-n 

Example filters will be implemented with RAG-n.  

EXAMPLE 1 

Filter coefficients are as follows: 

7)0( =h , 9)1( =h , 14)2( =h , 21)3( =h , 33)4( =h , 36)5( =h , 44)6( =h . 

 

a. No sign in filter coefficients. 7)0( =h , 9)1( =h , 14)2( =h , 21)3( =h , 

33)4( =h , 36)5( =h , 44)6( =h . 

b. No power-of-two coefficients. 

c. Unrealized filter coefficient set = [ 7)0( =h , 9)1( =h , 7)2( =h , 

21)3( =h , 33)4( =h , 9)5( =h , 11)6( =h ] (Filter coefficients divided by 

2 until odd) 

d. Cost( 7)0( =h ) = 1, Cost( 9)1( =h ) = 1, Cost( 7)2( =h ) = 1, 

Cost( 21)3( =h ) = 2, Cost( 33)4( =h ) = 1, Cost( 9)5( =h ) = 1, 

Cost( 11)6( =h ) = 2. 

e. Realized filter coefficient set = [ 7)0( =h , 9)1( =h , 7)2( =h , 33)4( =h , 

9)5( =h ] 

Unrealized filter coefficient set = [ 21)3( =h , 11)6( =h ] 

f. )0()0(*2)3( hhh += (Realized) 

2)1()6( += hh (Realized) 

g. Unrealized filter coefficient set = [ ] so terminate. 

Implemented filter coefficients are shown in Figure 4.7.  
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Figure 4.3 RAG-n Implementation of Example Filter 1 

 
Total number of adders used to implement filter coefficients is 5 (adder cost). 

If CSD algorithm is used for implementation then  

csdh 11007)0( == , csdh 10019)1( == , csdh 0110014)2( == , csdh 1010121)3( == , 

csdh 10000133)4( == , csdh 10010036)5( == , csdh 001011044)6( == . 

187)0( −==h , 189)1( +==h , 21614)2( −==h , 141621)3( ++==h , 

13233)4( +==h , 43236)5( +==h , 4166444)6( −−==h . 

Total adder cost is 9 adders when CSD is used for filter implementation. 

 
EXAMPLE 2 

Filter coefficients are as follows: 

9)0( =h , 44)1( −=h , 208)2( =h , 346)3( =h . 

 

-1 
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32 
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a. Remove sign in filter coefficients. 9)0( =h , 44)1( =h , 208)2( =h , 

346)3( =h . 

b. No power-of-two coefficients. 

c. Unrealized filter coefficient set =[ 9)0( =h , 11)1( =h , 13)2( =h , 

173)3( =h ] (Filter coefficients divided by 2 until odd) 

d. Cost ( 9)0( =h ) = 1, Cost ( 11)1( =h ) = 2, Cost ( 13)2( =h ) = 2, Cost 

( 173)3( =h ) = 3. 

e. Realized filter coefficient set = [ 9)0( =h ] 

Unrealized filter coefficient set = [ 11)1( =h , 13)2( =h , 173)3( =h ] 

f. 2)0()1( += hh (Realized) 

4)0()2( += hh (Realized) 

 g. Realized filter coefficient set = [ 9 11 13 ] Unrealized filter coefficient 

set = [ 173 ] not empty so go to heuristic part. 

h. 45128173)3( +==h  

)0()0(*445 hh += Cost-1 so create 45. 

i. )0()0(*445)( hhnalnewfundameh +==  

)(128173)3( nalnewfundamehh +==  

Unrealized filter coefficient set = [ ] so terminate. 

Implemented filter coefficients are shown in Figure 4.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 36 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 

 

Figure 4.4 RAG-n Implementation of Example Filter 2 

Total number of adders used to implement filter coefficients is 5 when RAG-

n is used. If CSD algorithm is used for implementation then  

csdh 10019)0( == , csdh 010100144)1( =−= , csdh 010000110208)2( == , 

csdh 0101010110346)3( == . 

189)0( +==h , 4166444)1( ++=−=h , 1664256208)2( +−==h , 

2832128512346)3( +−−−==h . 

Total adder cost is 9 adders when CSD is used for filter implementation. As it 

is seen RAG-n provides near %45  reduction in the number of adders used to 

implement filter coefficients than CSD. This reduction enables to design low cost 

and high performance digital FIR filters in ASICs. 
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4.2 Experimental Results  

Test Case 1 

The two example filters of “An Improved Search Algorithm for the Design of 

Multiplierless FIR filters with Powers-of-Two Coefficients [1]” by H. Samueli are 

used for this test case. 

Filter (1) Requirements are as follows: 

(a) Symmetrical Impulse Response; Low pass 

(b) Passband edges at 0.0 and 0.15 sampling frequency 

(c) Stopband edges at 0.25and 0.50 sampling frequency 

(d) Weights in passband and stopband 1. 

(e) Wordlength 9 bit. 

 

Table 4.1 Summary of Filter (1) Design in Test Case 1 

Filter Length N = 25 

Infinite Wordlength NPRM = -46.03 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

Samueli [1]  2-3 SPT -42.18 11 6 

GA Integer -43.74 14 8 

GA Integer -43.93 13 6 

 

Table 4.1 summarizes the results for the given filter specifications. As it is 

seen from the results, the filter designed by GA has slightly improved attenuation 

than the filter designed by Samueli’s [1] local search method. For the implementation 

of the filter, it is very clear that a RAG-n [8] design of filter uses less number of 

adders than a CSD design for the same attenuation by exploiting the redundancy in 

the filter coefficient set and use of transposed form filter structure. Multiple runs of 

GA have found filters with improved or degraded attenuations. Adder cost also 

changes with multiple runs of GA. This shows the need for the multiple trials to get 

improved attenuations and reduced adder cost since random selections are made 
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inside algorithm. This is a disadvantage of GA. Figure 4.5 and 4.6 show frequency 

responses of filters designed by GA (red) and Parks-McClellan (black) algorithm for 

the first filter in test case 1.  

 

 

Figure 4.5 Frequency Response (-
43.74 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (1) in Test Case 
1) 

 

 

Figure 4.6 Frequency Response (-
43.93 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (1) in Test Case 
1) 
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Filter (2) Requirements are as follows: 

(a) Symmetrical Impulse Response; Low pass 

(b) Passband edges at 0.0 and 0.021 sampling frequency 

(c) Stopband edges at 0.07and 0.50 sampling frequency 

(d) Weights in passband and stopband 1. 

(e) Wordlength 14 bit. 

 
Table 4.2 Summary of Filter (2) Design in Test Case 1 

Filter Length N = 60 

Infinite Wordlength NPRM = -55.47 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

Samueli [1] 3-4 

SPT 

-38.75 57 25 

GA Integer -54.91 61 28 

 

Table 4.2 summarizes the results for the given filter specifications. NPRM of 

the filter designed by GA is much better than the filter designed by Samueli’s [1] 

local search method. For the implementation of the filter, it is clear that RAG-n [8] 

design uses less number of adders than CSD design for the same NPRM value. RAG-

n [8] provides approximately 55% cost saving in the implementation over the CSD 

resulting in low cost ASICs implementations. Since most of the coefficients of the 

given filter are cost-1, cost-2 and producible from each other, RAG-n implements the 

filter with the optimal adder cost than CSD. Figure 4.7 shows frequency responses of 

filters designed by GA (red) and Parks-McClellan (black) algorithm for the second 

filter in test case 1. 
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Figure 4.7 Frequency Response (Red: 

GA Implementation; 
Black: Remez 
Implementation for the 
Filter (2) in Test Case 1) 

 
Test Case 2 

The example filter of “Design of Optimal Paralel Filter Using a Parallel Genetic 

Algorithm [2]” by D. J. Xu and M. L. Daley is used for the test case. 

Filter Requirements are as follows: 

(a) Symmetrical Impulse Response; Low pass 

(b) Passband edges at 0.0 and 0.20 sampling frequency 

(c) Stopband edges at 0.25and 0.50 sampling frequency 

(d) Weights in passband and stopband 1. 

(e) Wordlength 10 bit. 

 

Table 4.3 Summary of Filter Design in Test Case 2 

Filter Length N = 40 

Infinite Wordlength NPRM = -39.38 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

D.J. Xu 

M.L. Daley 

[2] 

Integer -35.89 17 8 
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Table 4.3 Summary of Filter Design in Test Case 2 (Con’t) 

GA Integer -36.81 18 9 

GA Integer -37.82 24 12 

GA Integer -38.58 24 12 

 

Table 4.3 summarizes the results for the given filter specifications. The filters 

designed by GA have slightly better attenuation values than the filter designed by 

[2]’s but with increased adder cost when RAG-n [8] is used realize filter coefficients. 

For the implementation of the filter, RAG-n design uses less number of adders than 

CSD design for the same NPRM value. RAG-n adder cost is approximately 50% of 

the CSD adder cost. Figure 4.8, 4.9, and 4.10 show frequency responses of filters 

designed by GA (red) and Parks-McClellan (black) algorithm. 

 

 
Figure 4.8 Frequency Response (-

36.81 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter in Test Case 2) 
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Figure 4.9 Frequency Response (-
37.82 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter in Test Case 2) 

 

 

Figure 4.10 Frequency Response (-
38.58 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter in Test Case 2) 

 

Test Case 3 

The example filter of “Design of Optimal Finite Wordlength FIR Digital 

Filters Using Integer Programming Techniques [3]” by D. M. Kodek is used for the 

test case. 

Filter Requirements are as follows: 
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(a) Symmetrical Impulse Response; Low pass 

(b) Passband edges at 0.0 and 0.20 sampling frequency 

(c) Stopband edges at 0.25and 0.50 sampling frequency 

(d) Weights in passband and stopband 1. 

 

Table 4.4 Summary of Filter Design in Test Case 3 

Filter Length N = 21 

Wordlength = 7 

Infinite Wordlength NPRM = -25.21 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

Kodek [3] Integer -23.86 6 3 

GA Integer -23.86 6 3 

GA Integer -24.06 9 4 

GA Integer -24.38 11 6 

 

Table 4.5 Summary of Filter Design in Test Case 3 

Filter Length N = 40 

Wordlength = 10 

Infinite Wordlength NPRM = -39.38 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

Kodek [3] Integer -36.07 18 9 

GA Integer -36.81 18 9 

GA Integer -37.82 24 12 

GA Integer -38.58 24 12 

 

Table 4.4 and 4.5 summarizes the results for the given filter specifications. 

GA designed the same or improved performance filters with multiple runs with 

increased adder cost than [3]’s integer programming method [3]. For the 
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implementation of the filter, RAG-n [8] design uses less number of adders than CSD 

design for the same NPRM value. RAG-n adder cost is approximately 50% of the 

CSD adder cost. Figure 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16 show frequency 

responses of filters designed by GA (red) and Parks-McClellan (black) algorithm.  

 
 

 
Figure 4.11 Frequency Response (-

23.86 dB)(Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
21, Wordlength 7 Bit) in 
Test Case 3) 

 

 
Figure 4.12 Frequency Response (-

24.06 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
21, Wordlength 7 Bit) in 
Test Case 3) 
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Figure 4.13 Frequency Response (-
24.38 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
21, Wordlength 7 Bit) in 
Test Case 3) 

 

 
Figure 4.14 Frequency Response (-

36.81 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
40, Wordlength 10 Bit) in 
Test Case 3) 
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Figure 4.15 Frequency Response (-
37.82 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
40, Wordlength 10 Bit) in 
Test Case 3) 

 

 

Figure 4.16 Frequency Response (-
38.58 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
40, Wordlength 10 Bit) in 
Test Case 3) 
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Test Case 4 

The example filter of “A Trellis Search Algorithm for the Design of FIR 

filters with Signed-Powers-of-Two Coefficients [4]” by C. L. Chen and A. N. 

Willson is used for the test case. 

Filter Requirements are as follows: 

(a) Symmetrical Impulse Response; Low pass 

(b) Passband edges at 0.0 and 0.15 sampling frequency 

(c) Stopband edges at 0.25and 0.50 sampling frequency 

(d) Weights in passband and stopband 1. 

(e) Wordlength 12 bit. 

 

Table 4.6 Summary of Filter Design in Test Case 4 

Filter Length N = 28 

Infinite Wordlength NPRM = -51.42 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

Trellis 

Search 

[4] 

Free 

Allocation 

-50.07 17 9 

GA Integer -50.85 24 12 

 

Table 4.6 summarizes the results for the given filter specifications. The filter 

designed by GA has a slightly improved attenuation than Trellis Search’s filter with 

increased adder cost in terms of RAG-n implementation. Trellis Search uses free 

allocation method for filter coefficient quantization and designs filter with 

coefficients expressible as Signed-Power-of-Two (SPT) terms to reduce 

implementation complexity. The filter designed by GA and implemented with RAG-

n uses less number of adders than the one designed by Trellis Search and 

implemented by CSD. Results show considerable reduction in number of adders 

required for the implementation when RAG-n is used. Figure 4.17 shows frequency 

responses of filters designed by GA (red) and Parks-McClellan (black) algorithm. 
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Figure 4.17 Frequency Response (Red: 
GA Implementation; 
Black: Remez 
Implementation for the 
Filter in Test Case 4) 

 

Test Case 5 

The example filter of “A new approach to Discrete Coefficient FIR Digital 

Filter Design by Simulated Annealing [5]” by T. Çiloğlu and Z. Ünver is used for the 

test case. 

Filter Requirements are as follows: 

(a) Symmetrical Impulse Response; Low pass 

(b) Passband edges at 0.0 and 0.20 sampling frequency 

(c) Stopband edges at 0.25 and 0.50 sampling frequency 

(d) Weight in passband 1. 
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Table 4.7 Summary of Filter Design in Test Case 5 

Filter Length N = 15 

Wordlength = 5 

Stopband Weight = 1 

Infinite Wordlength NPRM = -18.46 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

SA [5] 2 SPT -17.64 4 3 

GA Integer -16.66 3 3 

GA Integer -17.80 5 3 

Filter Length N = 25 

Wordlength = 5 

Stopband Weight = 1 

Infinite Wordlength NPRM = -28.04 dB 

SA [5] 2 SPT -23.41 2 2 

GA Integer -23.41 2 2 

Filter Length N = 15 

Wordlength = 7 

Stopband Weight = 10 

Infinite Wordlength NPRM = -11.09 dB 

SA [5] 2 SPT -10.37 7 3 

GA Integer -10.48 9 4 

Filter Length N = 25 

Wordlength = 7 

Stopband Weight = 10 

Infinite Wordlength NPRM = -18.21 dB 

SA [5] 2 SPT -16.14 9 3 

GA Integer -15.85 8 5 

GA Integer -16.14 9 3 
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Table 4.7 Summary of Filter Design in Test Case 5 (Con’t) 

Filter Length N = 35 

Wordlength = 7 

Stopband Weight = 10 

Infinite Wordlength NPRM = -25.57 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

SA [5] 2 SPT -17.58 8 3 

GA Integer -17.58 8 3 

GA Integer -17.59 8 5 

 

Filter Requirements are as follows: 

(a) Symmetrical Impulse Response; Low pass 

(b) Passband edges at 0.0 and 0.1 sampling frequency 

(c) Stopband edges at 0.14 and 0.50 sampling frequency 

(d) Weights in passband and stopband 1. 

(e) Wordlength 13 bit. 

 

Table 4.8 Summary of Filter Design in Test Case 5 

Filter Length N = 63 

Infinite Wordlength NPRM = -48.05 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

SA [5] 2 SPT -39.52 27 7 

GA Integer -47.63 61 25 

 

Table 4.7 and 4.8 summarize the results for the given filter specifications. The 

filter designed by GA has nearly same (for table 4.6) and better (for table 4.7) 

attenuation than SA’s [5] filters with same or increased adder cost in terms of RAG-
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n. The filters designed by GA and implemented with RAG-n uses less number of 

adders than the one designed by SA and implemented with CSD. The need for 

multiple trials for GA and SA to get the satisfactory results and the need for the 

experience to adjust the algorithm parameters are the major disadvantages GA and 

SA. Figure 4.18-26 show frequency responses of filters designed by GA (red) and 

Parks-McClellan (black) algorithm. 

 

 

 

Figure 4.18 Frequency Response (-
16.66 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
15, Wordlength 5 Bit) in 
Test Case 5) 
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Figure 4.19 Frequency Response (-

17.80 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
15, Wordlength 5 Bit) in 
Test Case 5) 

 

 

 

 

 

Figure 4.20 Frequency Response (Red: 
GA Implementation; 
Black: Remez 
Implementation for the 
Filter (Filter Length 25, 
Wordlength 5 Bit) in Test 
Case 5) 
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Figure 4.21 Frequency Response (Red: 
GA Implementation; 
Black: Remez 
Implementation for the 
Filter (Filter Length 15, 
Wordlength 7 Bit, 
Stopband Weight 10) in 
Test Case 5) 

 
 

  
 
 

 
 

Figure 4.22 Frequency Response (-
15.85 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
25, Wordlength 7 Bit, 
Stopband Weight 10) in 
Test Case 5) 



 54 

 
Figure 4.23 Frequency Response (-

16.14 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
25, Wordlength 7 Bit, 
Stopband Weight 10) in 
Test Case 5) 

 

 

 

 
 

Figure 4.24 Frequency Response (-
17.59 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
35, Wordlength 7 Bit, 
Stopband Weight 10) in 
Test Case 5) 
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Figure 4.25 Frequency Response (-
17.58 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter (Filter Length 
35, Wordlength 7 Bit, 
Stopband Weight 10) in 
Test Case 5) 

 
 
 
 
 

 
 

Figure 4.26 Frequency Response (Red: 
GA Implementation; 
Black: Remez 
Implementation for the 
Filter (Filter Length 63, 
Wordlength 13 Bit) in Test 
Case 5)  
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Test Case 6 

The example filter of “Design of Discrete-Coefficient-Value Linear Phase 

FIR Filters with Optimum Normalized Peak Ripple Magnitude [6]” by Y.C. Lim is 

used for the test case. 

Filter Requirements are as follows: 

(a) Symmetrical Impulse Response; Low pass 

(b) Passband edges at 0.0 and 0.15 sampling frequency 

(c) Stopband edges at 0.25 and 0.50 sampling frequency 

(d) Weight in passband and stopband 1. 

(e) Worlength 9 bit. 

 

Table 4.9 Summary of Filter Design in Test Case 6 

Filter Length N = 35 

Infinite Wordlength NPRM = - 61.38 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

MILP [6] 2 SPT -39.12 12 5 

GA Integer -48.34 17 8 

 

 
Table 4.9 summarizes the results for the given filter. The filter designed by 

GA has a better attenuation than MILP’s [6] filter with increased adder cost in terms 

of RAG-n. The filter designed by GA and implemented with RAG-n uses less 

number of adders than the one designed by MILP and implemented with CSD. 

Results show considerable reduction in the number of adders required for 

implementation when RAG-n is used. Figure 4.27 shows frequency responses of 

filters designed by GA (red) and Parks-McClellan (black) algorithm. 
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Figure 4.27 Frequency Response (Red: 
GA Implementation; 
Black: Remez 
Implementation for the 
Filter (in Test Case 6)  

 

Test Case 7 

The example filter of “An Improved Polynomial Time Algorithm for 

Designing Digital Filters with Power-of-Two Coefficients [7]” by C.L. Chen, K.Y. 

Khoo and A.N. Willson is used for the test case. 

Filter Requirements are as follows: 

(a) Symmetrical Impulse Response; Low pass 

(b) Passband edges at 0.0 and 0.15 sampling frequency 

(c) Stopband edges at 0.25 and 0.50 sampling frequency 

(d) Weight in passband and stopband 1. 

(e) Worlength 9 bit. 
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 Table 4.10 Summary of Filter Design in Test Case 7 

Filter Length N = 25 

Infinite Wordlength NPRM = -46.03 dB 

Filter 

Design 

Method 

Quant. 

Type 

NPRM 

(dB) 

Complexity 

(CSD) 

(Adders) 

Complexity 

 (RAG-n) 

(Adders) 

PTA[7] Free 

Allocation 

-43.97 13 8 

GA Integer -43.93 13 6 

GA Integer -44.20 15 9 

 

Table 4.10 summarizes the results for the given filter. The filter designed by 

GA has slightly better attenuation than PTA’s filter with increased adder cost in 

terms of RAG-n implementation. PTA is a filter design method that uses free 

allocation for coefficient quantization and expresses filter coefficients as SPT terms 

to reduce implementation complexity. All the filters designed by GA and 

implemented by RAG-n uses less number of adders than the filter designed by PTA 

with CSD implementation. The implementation complexity of PTA with RAG-n is 

less than the complexity with CSD. Better results are obtained by applying RAG-n to 

PTA instead of CSD implementation. Figure 4.28-29 show frequency responses of 

filters designed by GA (red) and Parks-McClellan (black) algorithm 
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Figure 4.28 Frequency Response (-
43.93 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter in Test Case 7) 

 
 
 
 

 
 

Figure 4.29 Frequency Response (-
44.20 dB) (Red: GA 
Implementation; Black: 
Remez Implementation for 
the Filter in Test Case 7) 
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CHAPTER 5 

CONCLUSION 
 

The work in this thesis is composed of two stages namely filter design stage 

and filter implementation stage. In the filter design stage, a survey has been made on 

discrete coefficient FIR digital filters design methods that use different quantization 

techniques for filter coefficients in literature and comparisons have been made with 

the filter design method based on genetic algorithm that is implemented for this 

thesis in terms of filter performance. The main focus of the thesis is the filter 

implementation stage. In this stage, algorithms and filter structures that reduce 

implementation complexity have been searched, implemented and applied to these 

filter design methods and comparisons have been made in terms of filter 

implementation complexity of architectures based on the use of CSD and RAG-n. 

Mixed integer linear programming [3], [6], [11], [16], simulated annealing 

[5], [14], and [23], genetic algorithms [2], [15], [17], [19], [21], and [24], local 

search [1], [18] and [25], and free allocation algorithms [4], [7], [20], and [22] have 

been used for the design of discrete coefficient FIR digital filters in this thesis.  

As a conclusion for filter design methods, test results have showed that there 

is no best method for discrete coefficient filter design. Filter designer should use all 

the methods if possible in the design process. 

Implementation complexity of the filters, that is number of adders required to 

implement filter coefficients, is as important as filter design. Some of the algorithms 

mentioned above have focused on designing filters with coefficients expressible as 

SPT terms in order to reduce this complexity and but it can be said that filter 

implementation complexity is not taken into consideration completely. In this thesis, 

implementation complexity is also considered and these design methods have been 

compared. SPT or CSD and RAG-n algorithms have been used for the realization of 

the filter coefficients since they reduce the required number of adders. RAG-n 

algorithm has been used in filter design methods that limit the filter coefficients to 

SPT terms [1], [4]-[7], [11], [14], [16], [22]. For RAG-n algorithm, transposed form 
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FIR filter structure has been used since it allows multiple uses of the repeated and 

producible coefficients. Test results have showed that filter implementations that use 

RAG-n have used nearly %50 adders less than a CSD design even if filter is designed 

with coefficients expressible as SPT terms since RAG-n algorithm exploits the 

redundancy in the filter coefficient set by use of the transposed form filter structure. 

It can be concluded that constraining the filter coefficients to SPT terms does not 

produce less complex implementations. Instead filter coefficients can be designed 

using integer values instead of SPT terms, other algorithms can be used to reduce the 

implementation complexity. 

As a future work, the improvement of the above algorithms with the inclusion 

of implementation complexity in the cost function in addition to filter performance 

can be considered so that optimization of both performance and implementation 

complexity can be achieved. 
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APPENDIX  

FILTER COEFFICIENTS FOR TEST CASES 

Test Case 1 

Filter (1) Coefficients for H. Samueli [1]:  

2)0( =h , 6)1( =h , 2)2( −=h , 16)3( −=h , 14)4( −=h , 20)5( =h , 40)6( =h , 

2)7( −=h , 80)8( −=h , 68)9( −=h , 112)10( =h , 368)11( =h , 492)12( =h  

Filter (1) Coefficients for GA (43.74 dB):  

1)0( =h , 4)1( =h , 0)2( =h , 8)3( −=h , 7)4( −=h , 10)5( =h , 21)6( =h , 0)7( =h , 

39)8( −=h , 35)9( −=h , 55)10( =h , 184)11( =h , 245)12( =h  

Filter (1) Coefficients for GA (43.93 dB):  

1)0( =h , 4)1( =h , 0)2( =h , 8)3( −=h , 7)4( −=h , 10)5( =h , 21)6( =h , 0)7( =h , 

40)8( −=h , 35)9( −=h , 56)10( =h , 186)11( =h , 249)12( =h  

Filter (2) Coefficients for H. Samueli [1]:  

62)0( =h , 56)1( =h , 58)2( =h , 44)3( =h , 16)4( =h , 34)5( −=h , 118)6( −=h , 

232)7( −=h , 376)8( −=h , 536)9( −=h , 704)10( −=h , 864)11( −=h , 

1000)12( −=h , 1064)13( −=h , 1058)14( −=h , 928)15( −=h , 672)16( −=h , 

258)17( −=h , 316)18( =h , 1052)19( =h , 1928)20( =h , 2944)21( =h , 

4016)22( =h , 5152)23( =h , 6272)24( =h , 7296)25( =h , 8220)26( =h , 

8956)27( =h , 9474)28( =h , 9736)29( =h  

Filter (2) Coefficients for GA: 

22)0( =h , 21)1( =h , 28)2( =h , 33)3( =h , 36)4( =h , 34)5( =h , 26)6( =h , 

12)7( =h , 10)8( −=h , 39)9( −=h , 73)10( −=h , 110)11( −=h , 145)12( −=h , 

174)13( −=h , 193)14( −=h , 194)15( −=h , 174)16( −=h , 128)17( −=h , 

53)18( −=h , 51)19( −=h , 183)20( =h , 339)21( =h , 514)22( =h , 699)23( =h , 

884)24( =h , 1060)25( =h , 1216)26( =h , 1343)27( =h , 1432)28( =h , 

1478)29( =h  
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Test Case 2 

Filter Coefficients for D.J. Xu and M. L. Daley [2]:  

2)0( =h , 3)1( =h , 1)2( −=h , 4)3( −=h , 1)4( =h , 6)5( =h , 1)6( =h , 7)7( −=h , 

5)8( −=h , 9)9( =h , 10)10( =h , 8)11( −=h , 16)12( −=h , 5)13( =h , 27)14( =h , 

2)15( =h , 44)16( −=h , 24)17( −=h , 92)18( =h , 211)19( =h  

Filter Coefficients for GA (-36.81dB):  

1)0( =h , 4)1( =h , 2)2( −=h , 4)3( −=h , 0)4( =h , 6)5( =h , 2)6( =h , 7)7( −=h , 

5)8( −=h , 8)9( =h , 10)10( =h , 8)11( −=h , 17)12( −=h , 5)13( =h , 27)14( =h , 

3)15( =h , 44)16( −=h , 25)17( −=h , 92)18( =h , 212)19( =h  

Filter Coefficients for GA (-37.82dB):  

3)0( =h , 8)1( =h , 4)2( −=h , 7)3( −=h , 1)4( =h , 11)5( =h , 3)6( =h , 15)7( −=h , 

10)8( −=h , 17)9( =h , 20)10( =h , 16)11( −=h , 34)12( −=h , 10)13( =h , 

54)14( =h , 5)15( =h , 87)16( −=h , 49)17( −=h , 184)18( =h , 423)19( =h  

Filter Coefficients for GA (-38.58dB):  

3)0( =h , 9)1( =h , 4)2( −=h , 9)3( −=h , 1)4( =h , 13)5( =h , 4)6( =h , 

17)7( −=h , 11)8( −=h , 20)9( =h , 23)10( =h , 19)11( −=h , 40)12( −=h , 

12)13( =h , 64)14( =h , 6)15( =h , 103)16( −=h , 58)17( −=h , 217)18( =h , 

499)19( =h  

Test Case 3 

Filter (Filter Length 21, Wordlength 7 Bit) Coefficients for Kodek [3]:  

2)0( =h , 0)1( =h , 2)2( −=h , 1)3( −=h , 2)4( =h , 3)5( =h , 3)6( −=h , 6)7( −=h , 

3)8( =h , 20)9( =h , 28)10( =h  

Filter (Filter Length 21, Wordlength 7 Bit) Coefficients for GA (-23.86 dB):  

2)0( =h , 0)1( =h , 2)2( −=h , 1)3( −=h , 2)4( =h , 3)5( =h , 3)6( −=h , 6)7( −=h , 

3)8( =h , 20)9( =h , 28)10( =h  

Filter (Filter Length 21, Wordlength 7 Bit) Coefficients for GA (-24.06 dB):  

5)0( =h , 0)1( =h , 4)2( −=h , 2)3( −=h , 5)4( =h , 5)5( =h , 6)6( −=h , 

12)7( −=h , 6)8( =h , 40)9( =h , 57)10( =h  

Filter (Filter Length 21, Wordlength 7 Bit) Coefficients for GA (-24.38 dB):  
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6)0( =h , 0)1( =h , 5)2( −=h , 3)3( −=h , 6)4( =h , 7)5( =h , 7)6( −=h , 

15)7( −=h , 8)8( =h , 52)9( =h , 74)10( =h  

Filter (Filter Length 40, Wordlength 10 Bit) Coefficients for Kodek [3]:  

2)0( =h , 2)1( =h , 1)2( −=h , 4)3( −=h , 0)4( =h , 6)5( =h , 1)6( =h , 8)7( −=h , 

5)8( −=h , 8)9( =h , 10)10( =h , 9)11( −=h , 17)12( −=h , 5)13( =h , 27)14( =h , 

2)15( =h , 43)16( −=h , 25)17( −=h , 92)18( =h , 211)19( =h  

Filter Coefficients for GA (-36.81dB):  

1)0( =h , 4)1( =h , 2)2( −=h , 4)3( −=h , 0)4( =h , 6)5( =h , 2)6( =h , 7)7( −=h , 

5)8( −=h , 8)9( =h , 10)10( =h , 8)11( −=h , 17)12( −=h , 5)13( =h , 27)14( =h , 

3)15( =h , 44)16( −=h , 25)17( −=h , 92)18( =h , 212)19( =h  

Filter Coefficients for GA (-37.82dB):  

3)0( =h , 8)1( =h , 4)2( −=h , 7)3( −=h , 1)4( =h , 11)5( =h , 3)6( =h , 15)7( −=h , 

10)8( −=h , 17)9( =h , 20)10( =h , 16)11( −=h , 34)12( −=h , 10)13( =h , 

54)14( =h , 5)15( =h , 87)16( −=h , 49)17( −=h , 184)18( =h , 423)19( =h  

Filter Coefficients for GA (-38.58dB):  

3)0( =h , 9)1( =h , 4)2( −=h , 9)3( −=h , 1)4( =h , 13)5( =h , 4)6( =h , 

17)7( −=h , 11)8( −=h , 20)9( =h , 23)10( =h , 19)11( −=h , 40)12( −=h , 

12)13( =h , 64)14( =h , 6)15( =h , 103)16( −=h , 58)17( −=h , 217)18( =h , 

499)19( =h  

Test Case 4 

Filter Coefficients for Trellis Search:  

14)0( −=h , 0)1( =h , 36)2( =h , 32)3( =h , 42)4( −=h , 97)5( −=h , 0)6( =h , 

172)7( =h , 144)8( =h , 192)9( −=h , 432)10( −=h , 1)11( −=h , 1104)12( =h , 

2088)13( =h  

Filter Coefficients for GA:  

12)0( −=h , 1)1( =h , 29)2( =h , 27)3( =h , 34)4( −=h , 78)5( −=h , 1)6( −=h , 

140)7( =h , 117)8( =h , 154)9( −=h , 350)10( −=h , 2)11( −=h , 895)12( =h , 

1693)13( =h  
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Test Case 5 

Filter (Filter Length 15, Wordlength 5 Bit, Stopband Weight 1) Coefficients for SA 

[5]:  

1)0( −=h , 3)1( =h , 2)2( =h , 2)3( −=h , 5)4( −=h , 2)5( =h , 14)6( =h , 

20)7( =h  

Filter (Filter Length 15, Wordlength 5 Bit, Stopband Weight 1) Coefficients for GA 

(-16.66 dB):  

1)0( −=h , 2)1( =h , 2)2( =h , 1)3( −=h , 3)4( −=h , 2)5( =h , 10)6( =h , 15)7( =h  

Filter (Filter Length 15, Wordlength 5 Bit, Stopband Weight 1) Coefficients for GA 

(-17.80 dB):  

1)0( −=h , 3)1( =h , 2)2( =h , 2)3( −=h , 4)4( −=h , 2)5( =h , 13)6( =h , 19)7( =h  

Filter (Filter Length 25, Wordlength 5 Bit, Stopband Weight 1) Coefficients for SA 

[5]:  

1)0( −=h ,  0)1( =h , 1)2( =h , 0)3( =h , 1)4( −=h , 1)5( −=h , 2)6( =h , 2)7( =h , 

2)8( −=h , 4)9( −=h , 2)10( =h , 14)11( =h , 20)12( =h  

Filter (Filter Length 25, Wordlength 5 Bit, Stopband Weight 1) Coefficients for GA:  

1)0( −=h , 0)1( =h , 1)2( =h , 0)3( =h , 1)4( −=h , 1)5( −=h , 2)6( =h , 2)7( =h , 

2)8( −=h , 4)9( −=h , 2)10( =h , 14)11( =h , 20)12( =h  

Filter (Filter Length 15, Wordlength 7 Bit, Stopband Weight 10) Coefficients for SA 

[5]:  

6)0( =h , 10)1( =h , 4)2( =h , 10)3( −=h , 14)4( −=h , 6)5( =h , 40)6( =h , 

56)7( =h  

Filter (Filter Length 15, Wordlength 7 Bit, Stopband Weight 10) Coefficients for 

GA:  

9)0( =h , 15)1( =h , 8)2( =h , 9)3( −=h , 15)4( −=h , 10)5( =h , 51)6( =h , 

72)7( =h  

Filter (Filter Length 25, Wordlength 7 Bit, Stopband Weight 10) Coefficients for SA 

[5]:  

1)0( =h , 3)1( =h , 2)2( =h , 3)3( −=h , 6)4( −=h , 2)5( −=h , 5)6( =h , 3)7( =h , 

8)8( −=h , 12)9( −=h , 7)10( =h , 40)11( =h , 56)12( =h  
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Filter (Filter Length 25, Wordlength 7 Bit, Stopband Weight 10) Coefficients for GA 

(-15.85 dB):  

1)0( =h , 4)1( =h , 4)2( =h , 0)3( =h , 4)4( −=h , 1)5( −=h , 5)6( =h , 4)7( =h , 

6)8( −=h , 10)9( −=h , 7)10( =h , 37)11( =h , 52)12( =h  

Filter (Filter Length 25, Wordlength 7 Bit, Stopband Weight 10) Coefficients for GA 

(-16.14 dB):  

1)0( =h , 3)1( =h , 2)2( =h , 3)3( −=h , 6)4( −=h , 2)5( −=h , 5)6( =h , 3)7( =h , 

8)8( −=h , 12)9( −=h , 7)10( =h , 40)11( =h , 56)12( =h  

Filter (Filter Length 35, Wordlength 7 Bit, Stopband Weight 10) Coefficients for SA 

[5]:  

0)0( =h , 0)1( =h , 0)2( =h , 1)3( −=h , 2)4( −=h , 1)5( −=h , 2)6( =h , 2)7( =h , 

2)8( −=h , 5)9( −=h , 1)10( −=h , 6)11( =h , 5)12( =h , 5)13( −=h , 10)14( −=h , 

6)15( =h , 34)16( =h , 48)17( =h  

Filter (Filter Length 35, Wordlength 7 Bit, Stopband Weight 10) Coefficients for GA 

(-17.59 dB):  

0)0( =h , 1)1( =h , 2)2( =h , 1)3( =h , 2)4( −=h , 2)5( −=h , 1)6( =h , 3)7( =h , 

0)8( =h , 4)9( −=h , 1)10( −=h , 6)11( =h , 5)12( =h , 7)13( −=h , 12)14( −=h , 

8)15( =h , 44)16( =h , 62)17( =h  

Filter (Filter Length 35, Wordlength 7 Bit, Stopband Weight 10) Coefficients for GA 

(-17.58 dB):  

0)0( =h , 0)1( =h , 0)2( =h , 1)3( −=h , 2)4( −=h , 1)5( −=h , 2)6( =h , 2)7( =h , 

2)8( −=h , 5)9( −=h , 1)10( −=h , 6)11( =h , 5)12( =h , 5)13( −=h , 10)14( −=h , 

6)15( =h , 34)16( =h , 48)17( =h  

Filter (2) Coefficients for SA [5]:  

6)0( −=h , 4)1( −=h , 1)2( =h , 7)3( =h , 8)4( =h , 10)5( =h , 0)6( =h , 9)7( −=h , 

24)8( −=h , 20)9( −=h , 4)10( −=h , 24)11( =h , 40)12( =h , 40)13( =h , 9)14( =h , 

28)15( −=h , 68)16( −=h , 72)17( −=h , 30)18( −=h , 34)19( =h , 96)20( =h , 

120)21( =h , 72)22( =h , 36)23( −=h , 160)24( −=h , 240)25( −=h , 160)26( −=h , 

48)27( =h , 384)28( =h , 768)29( =h , 1040)30( =h , 1152)31( =h  
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Filter (2) Coefficients for GA:  

23)0( −=h , 7)1( −=h , 6)2( =h , 22)3( =h , 32)4( =h , 26)5( =h , 2)6( =h , 

30)7( −=h , 52)8( −=h , 46)9( −=h , 8)10( −=h , 46)11( =h , 87)12( =h , 

85)13( =h , 29)14( =h , 60)15( −=h , 135)16( −=h , 145)17( −=h , 67)18( −=h , 

75)19( =h , 209)20( =h , 251)21( =h , 146)22( =h , 86)23( −=h , 345)24( −=h , 

479)25( −=h , 350)26( −=h , 94)27( =h , 783)28( =h , 1535)29( =h , 

2116)30( =h , 2334)31( =h  

Test Case 6 

Filter Coefficients for MILP [6] (-33.09 dB):  

1)0( −=h , 2)1( =h , 3)2( =h , 0)3( =h , 6)4( −=h , 4)5( −=h , 8)6( =h , 10)7( =h , 

5)8( −=h , 18)9( −=h , 2)10( −=h , 24)11( =h , 18)12( =h , 28)13( −=h , 

48)14( −=h , 32)15( =h , 160)16( =h , 224)17( =h  

Filter Coefficients for MILP [6] (-39.09 dB):  

1)0( =h , 1)1( =h , 1)2( −=h , 3)3( −=h , 0)4( =h , 4)5( =h , 4)6( =h , 3)7( −=h , 

9)8( −=h , 3)9( −=h , 12)10( =h , 14)11( =h , 6)12( −=h , 28)13( −=h , 

17)14( −=h , 40)15( =h , 112)16( =h , 144)17( =h  

Filter Coefficients for GA:  

0)0( =h , 1)1( =h , 0)2( =h , 2)3( −=h , 2)4( −=h , 3)5( =h , 6)6( =h , 0)7( =h , 

11)8( −=h , 9)9( −=h , 12)10( =h , 25)11( =h , 0)12( =h , 44)13( −=h , 

38)14( −=h , 60)15( =h , 198)16( =h , 264)17( =h  

Test Case 7 

Filter Coefficients for PTA:  

2)0( =h , 8)1( =h , 0)2( =h , 18)3( −=h , 14)4( −=h , 20)5( =h , 44)6( =h , 

0)7( =h , 82)8( −=h , 72)9( −=h , 116)10( =h , 386)11( =h , 514)12( =h  
Filter Coefficients for GA (-43.93dB):  

1)0( =h , 4)1( =h , 0)2( =h , 8)3( −=h , 7)4( −=h , 10)5( =h , 21)6( =h , 0)7( =h , 

40)8( −=h , 35)9( −=h , 56)10( =h , 186)11( =h , 249)12( =h  

Filter Coefficients for GA (-44.20dB):  

1)0( =h , 3)1( =h , 0)2( =h , 7)3( −=h , 6)4( −=h , 8)5( =h , 17)6( =h , 0)7( =h , 

33)8( −=h , 29)9( −=h , 46)10( =h , 153)11( =h , 205)12( =h  


