
THE IMPLEMENTATION COMPLEXITY OF FINITE IMPULSE

RESPONSE DIGITAL FILTERS UNDER DIFFERENT COEFFICIENT

QUANTIZATION SCHEMES AND REALIZATION STRUCTURES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

SEFA AKYÜREK

IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. İsmet ERKMEN

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Tolga ÇİLOĞLU

 Supervisor

Examining Committee Members (first name belongs to the chairperson of the
jury and the second name belongs to supervisor)

Prof. Dr. Zafer ÜNVER (METU, EE)

Assoc. Prof. Dr. Tolga ÇİLOĞLU (METU, EE)

Assoc. Prof. Dr. Engin TUNCER (METU, EE)

Alper ÜLKÜ (ASELSAN)

A. Umut CİNİVİZ (ASELSAN)

 iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name:

Signature:

 iv

ABSTRACT

THE IMPLEMENTATION COMPLEXITY OF FINITE IMPULSE

RESPONSE DIGITAL FILTERS UNDER DIFFERENT COEFFICIENT

QUANTIZATION SCHEMES AND REALIZATION STRUCTURES

AKYÜREK, Sefa

M.S., The Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Tolga ÇİLOĞLU

December 2004, 86 Pages

It has been aimed to investigate the complexity of discrete-coefficient FIR

filters when they are implemented in transposed form and the coefficient redundancy

is removed by the n-Dimensional Reduced Adder Graph (RAG-n) approach. Filters

with coefficients represented by different quantization schemes have been designed

or selected from the literture; their transposed form implemetations after RAG-n

process have been compared in terms of complexity. A Genetic Algorithm (GA)

based design algorithm has been implemented and used for the design of integer

coefficient filters. Algorithms for the realization of filter coefficients in Canonic

Signed Digit (CSD) form and realization of n-Dimensional Reduced Adder Graph

(RAG-n) have also been implemented. Filter performance is measured as Normalized

Peak Ripple Magnitude and implementation complexity as the number of adders

used to implement filter coefficients. Number of adders used to implement filter

coefficients is calculated by using two different methods: CSD and RAG-n. RAG-n

method has been applied to FIR digital filter design methods that don’t

 v

consider reduction of implementation complexity via RAG-n with transposed direct

form filter structure. For implementation complexity, it is concluded that

“RAG-n algorithm with transposed direct form filter structure” provides better

results over the “CSD, SPT coefficient design followed by transposed direct form

filter structure” in terms of number of adders used in the implementation.

Keywords: Discrete Coefficient Filter, Powers-of-two coefficient, Filter

Optimization, FIR Digital Filter, Genetic Algorithm, Quantization.

 vi

ÖZ

SONLU DÜRTÜ YANITLI SAYISAL SÜZGEÇLERİN FARKLI KATSAYI

 NİCEMLEMELERİ VE SÜZGEÇ YAPILARI İLE GERÇEKLEŞTİRİM

KARMAŞIKLIĞI

AKYÜREK, Sefa

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Tolga ÇİLOĞLU

Aralık 2004, 86 Sayfa

Ayrık katsayılı, sonlu dürtü yanıtlı sayısal süzgeçlerin gerçekleştirim

karmaşıklığının, çevrilmiş süzgeç yapısı kullanıldığında ve katsayı fazlalığı n-

Boyutlu İndirgenmiş Toplayıcı Çizgesi (RAG-n) yaklaşımı kullanılarak

azaltıldığında incelenmesi amaçlanmıştır. Katsayıları farklı nicemleme yöntemleri

ile gösterilen süzgeçler tasarlanmış veya literatürden alınmış; RAG-n işleminden

sonraki çevrilmiş süzgeç yapıları gerçekleştirim karmaşıklığı açısından

karşılaştırılmıştır. Genetik algoritma (GA) tabanlı tasarım algoritması geliştirilmiş

ve katsayıları tam sayı olan süzgeçlerin tasarımında kullanılmıştır. Süzgeç

katsayılarının Kurallı İşaretli Sayı (CSD) formu ve RAG-n ile gerçekleştirilmesi

için gerekli algoritmalar da geliştirilmiştir. Süzgeç başarımı normalize edilmiş

tepecik büyüklüğü olarak ve gerçekleştirim karmaşıklığı süzgeç katsayılarını

oluşturmak için gerekli toplayıcı sayısı olarak alınmıştır. Süzgeç katsayılarını

oluşturmak için gerekli toplayıcı sayısı CSD ve RAG-n yöntemleri kullanılarak

bulunmuştur. Ayrıca süzgeç gerçekleştirim karmaşıklığını indirgemede çevrilmiş

süzgeç yapısını kullanan ve RAG-n yöntemini dikkate almayan ayrık katsayılı

sonlu dürtü yanıtlı sayısal süzgeç gerçekleştirim yöntemlerine de bu yöntem

uygulanmıştır. Çevrilmiş süzgeç yapısını kullanan RAG-n yöntemi, süzgeç

 vii

 katsayılarını oluşturmak için gerekli toplayıcı sayısı açısından, çevrilmiş direk

süzgeç yapısını kullanan CSD ve işaretli ikinin kuvveti yöntemlerinden daha iyi

sonuçlar vermiştir.

Anahtar Sözcükler: Ayrık katsayılı süzgeç, ikinin kuvveti katsayı, süzgeç

eniyileme, FIR sayısal süzgeç, genetik algoritma, katsayı nicemleme.

 viii

To My Family!

 ix

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr.

Tolga ÇİLOĞLU his guidance, advice, criticism, encouragements and insight

throughout my research.

 x

TABLE OF CONTENTS

PLAGIARISM .. iii

ABSTRACT...iv

ÖZ ..vi

ACKNOWLEDGEMENTS ...ix

TABLE OF CONTENTS..x

LIST OF FIGURES.. xii

LIST OF TABLES ..xv

LIST OF ACRONYMS..xvi

LIST OF ACRONYMS..xvi

CHAPTER 1 INTRODUCTION ..1

1.1. Coefficient Quantization Methods ..3

1.2. The Aim and Organization of the Thesis ..6

CHAPTER 2 A SURVEY ON DISCRETE COEFFICIENT FIR DIGITAL FILTER

DESIGN METHODS..7

2.1. Introduction ...7

2.2. Optimization Methods for FIR Digital Filter Design......................................8

2.2.1 Mixed Integer Linear Programming...9

2.2.2 Simulated Annealing ..10

2.2.3 Genetic Algorithms ..11

2.2.4 Local Search Methods..12

2.3. Free Allocation Methods ...12

2.4.1 Polynomial Time Algorithm [7]...13

2.4.2 Trellis Search Algorithm [4] ..13

CHAPTER 3 DESIGN OF INTEGER COEFFICIENT FILTERS BY GENETIC

ALGORITHM...14

3.1. Genetic Algorithms ...14

3.1.1 Introduction ..14

3.1.2. Basic Genetic Algorithm...15

3.1.2.1 Chromosomes...15

 xi

3.1.2.2 Basic GA Structure...16

3.1.2.3 Crossover..18

3.1.2.4 Mutation ...19

3.1.3. Selection..19

3.2. Genetic Algorithm in the Design of FIR Filters..20

3.2.1 Genetic Algorithm and Operators ..20

3.2.2 Fitness Function in GA ..22

3.2.4 GA Algorithm Flowchart ...24

CHAPTER 4 COMPARISON OF FILTER DESIGN METHODS IN TERMS OF

FILTER PERFORMANCE AND COMPLEXITY ..25

4.1. Digital FIR Filter Implementation...25

4.1.1 Introduction ..25

4.1.3 Graph Representation for Multiplier Block ...26

4.1.4 The n-Dimensional Reduced Adder Graph (RAG-n) Algorithm [8]27

4.1.5 Example Filter Implementations with RAG-n ...33

4.2 Experimental Results..37

CHAPTER 5 CONCLUSION...60

REFERENCES..62

APPENDIX ...65

FILTER COEFFICIENTS FOR TEST CASES..65

 xii

LIST OF FIGURES
FIGURE

1.1 Transposed Direct Form..3

1.2 Multiplier Block ..3

1.3 Uniform Quantization ...4

1.4 Nonuniform Quantization ...5

1.5 Free Allocation..5

2.1 A branch and bound tree ...10

3.1 GA Chromosome...16

3.2 Basic GA Cycle...17

3.3 GA single-point crossover...18

3.4 GA two-point crossover ..18

3.5 GA multi-point crossover..18

3.6 GA single-point crossover...21

3.7 GA Mutation 1 ..21

3.8 GA Mutation 2 ..22

3.9 GA Flowchart..24

4.1 (a) CSD representation (b) Represented with fewer Adders than CSD27

4.2 (a) Flowchart of the Optimal Part of the RAG-n Algorithm.............................29

4.2 (b) Flowchart of the Heuristic Part of the RAG-n Algorithm30

4.3 RAG-n Implementation of Example Filter 1...34

4.4 RAG-n Implementation of Example Filter 2...36

4.5 Frequency Response (-43.74 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (1) in Test Case 1)..38

4.6 Frequency Response (-43.93 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (1) in Test Case 1)..38

4.7 Frequency Response (Red: GA Implementation; Black: Remez Implementation

for the Filter (2) in Test Case 1) ..40

4.8 Frequency Response (-36.81 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter in Test Case 2) ...41

 xiii

4.9 Frequency Response (-37.82 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter in Test Case 2) ...42

4.10 Frequency Response (-38.58 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter in Test Case 2) ...42

4.11 Frequency Response (-23.86 dB)(Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 21, Wordlength 7 Bit) in Test Case

3) ...44

4.12 Frequency Response (-24.06 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 21, Wordlength 7 Bit) in Test Case

3) ...44

4.13 Frequency Response (-24.38 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 21, Wordlength 7 Bit) in Test Case

3) ...45

4.14 Frequency Response (-36.81 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 40, Wordlength 10 Bit) in Test

Case 3)...45

4.15 Frequency Response (-37.82 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 40, Wordlength 10 Bit) in Test

Case 3)...46

4.16 Frequency Response (-38.58 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 40, Wordlength 10 Bit) in Test

Case 3)...46

4.17 Frequency Response (Red: GA Implementation; Black: Remez Implementation

for the Filter in Test Case 4)..48

4.18 Frequency Response (-16.66 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 15, Wordlength 5 Bit) in Test Case

5) ...51

4.19 Frequency Response (-17.80 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 15, Wordlength 5 Bit) in Test Case

5) ...52

4.20 Frequency Response (Red: GA Implementation; Black: Remez Implementation

for the Filter (Filter Length 25, Wordlength 5 Bit) in Test Case 5)52

 xiv

4.21 Frequency Response (Red: GA Implementation; Black: Remez Implementation

for the Filter (Filter Length 15, Wordlength 7 Bit, Stopband Weight 10) in Test

Case 5)...53

4.22 Frequency Response (-15.85 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 25, Wordlength 7 Bit, Stopband

Weight 10) in Test Case 5)..53

4.23 Frequency Response (-16.14 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 25, Wordlength 7 Bit, Stopband

Weight 10) in Test Case 5)..54

4.24 Frequency Response (-17.59 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 35, Wordlength 7 Bit, Stopband

Weight 10) in Test Case 5)..54

4.25 Frequency Response (-17.58 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter (Filter Length 35, Wordlength 7 Bit, Stopband

Weight 10) in Test Case 5)..55

4.26 Frequency Response (Red: GA Implementation; Black: Remez Implementation

for the Filter (Filter Length 63, Wordlength 13 Bit) in Test Case 5)55

4.27 Frequency Response (Red: GA Implementation; Black: Remez Implementation

for the Filter (in Test Case 6) ..57

4.28 Frequency Response (-43.93 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter in Test Case 7) ...59

4.29 Frequency Response (-44.20 dB) (Red: GA Implementation; Black: Remez

Implementation for the Filter in Test Case 7) ...59

 xv

LIST OF TABLES
TABLE

4.1 Summary of Filter (1) Design in Test Case 1...37

4.2 Summary of Filter (2) Design in Test Case 1...39

4.3 Summary of Filter Design in Test Case 2 ..40

4.4 Summary of Filter Design in Test Case 3 ..43

4.5 Summary of Filter Design in Test Case 3 ..43

4.6 Summary of Filter Design in Test Case 4 ..47

4.7 Summary of Filter Design in Test Case 5 ..49

4.8 Summary of Filter Design in Test Case 5 ..50

4.9 Summary of Filter Design in Test Case 6 ..56

4.10 Summary of Filter Design in Test Case 7 ..58

 xvi

LIST OF ACRONYMS

ASIC: Application Specific Integrated Circuit

CSD: Canonic Signed Digit

DSP: Digital Signal Processing

FIR: Finite Impulse Response

GA: Genetic Algorithm

LMS: Least-Mean Squared Error

MAX: Maximum

MILP: Mixed Integer Linear Programming

MIN: Minimum

MSE: Mean Squared Error

NPRM: Normalized Peak Ripple Magnitude

PTA: Polynomial Time Algorithm

RAG-n: n-Dimensional Reduced Adder Graph

SA: Simulated Annealing

SPT: Signed Powers-of-Two

 1

CHAPTER 1

INTRODUCTION

Finite Impulse Response (FIR) digital filters are frequently used in digital

signal processing because of their inherent stability and the possibility of perfect

linear phase. Designing FIR digital filters has received a great interest because of

their wide usage in consumer and military DSP applications such as video and image

processing, target tracking, radar processing. However, Digital Signal Processing

(DSP) cores are not always suitable for DSP applications requiring high processing

performance and low power consumption such as coding, image and video

processing that require high performance filters operating at high data rates.

Application specific FIR digital filters are frequently designed to meet the

constraints of processing performance and power consumption of such DSP

applications. FIR digital filter implementation may also suffer from a large number

of multiplications, leading to excessive chip area and power consumption in

Application Specific Integrated Circuits (ASIC).

Fast fixed-point arithmetic is required for realization of low-cost and high-

speed DSP hardware. Because of this requirement, designing FIR digital filters with

very coarsely quantized coefficient values are valuable. Design of FIR digital filters

with discrete valued coefficients has been a research area where considerable effort

has been spent. The reasons for necessity of quantization of filter coefficients are as

follows:

• Finite wordlength constraint in microprocessors

• Demand for multiplier-less/efficient/low cost VLSI implementation

and/or high speed processing

A major problem in discrete coefficient FIR digital filter design is the

determination of the optimal quantized coefficient values that satisfy the given filter

design specifications. Multimodal behavior of cost function over a discrete domain

 2

has been a fundamental difficulty in the development of efficient methods for

discrete coefficient FIR digital filter design. Various FIR digital filter design

methods have been proposed to solve this problem and to guarantee the optimal

discrete coefficient solution for linear phase FIR digital filters such as Mixed Integer

Linear Programming (MILP) [3], [6], [11], and [16], Simulated Annealing (SA) [5],

[14], and [23], Genetic Algorithms (GA) [2], [15], [17], [19], [21], and [24] and

Local Search [1], [18], and [25] and Free Allocation algorithms [4], [7], [20], and

[22].

Beside the filter coefficient quantization problem, implementation of

quantized filter coefficients is also an important task in FIR digital filter design for

low cost and high performance filtering. Complexity of FIR digital filters is

determined by the number of multiplications in filters. Many researches have studied

the minimization the complexity of multiplier blocks required in filtering.

Multiplications can be eliminated by decomposing them into simple operations such

as addition, subtraction and shifting. For a filter with constant coefficients, the

decomposition into addition, subtraction and shifting is more efficient than

employing multipliers. The complexity of FIR digital filters in this case is dominated

by the number of adders/subtractors used to implement the coefficient

multiplications. To reduce the complexity, the coefficients can be restricted, for

example, to two signed-powers-of-two (SPT) or expressed in Canonic Signed Digit

(CSD) code [1], [3], [4], [6], [7], [11], [13], [14], [16], [18], [20], [22]. CSD

representation is the unique minimum representation for which no two SPT terms are

adjacent. CSD representation produces better results than SPT representation in

terms of number of adders used. CSD and SPT approaches deal with each coefficient

individually while realizing the filter coefficients.

Another way to reduce filter complexity is the graph representation [8], [9],

[12], [19], [21]. Graph representation approach arises in the context of transposed

direct form (Fig. 1.1) and considers all filter coefficients a whole. As shown in

Figure 1.2, the hardware block called a multiplier block is used to implement all

coefficient multiplications. The multiplier block is significant in terms of area and

power because some adders and shifters can be shared among different

multiplications. RAG-n algorithm [8] is one of the methods that reduces complexity

 3

of this multiplier block by exploiting the redundancy in filter coefficients.

Transposed direct form filter structure is a necessity to use RAG-n in the

implementation of FIR digital filters since all filter coefficients are multiplied with

the input signal at the beginning and delayed later. So there is a possibility to

synthesize all filter coefficients before multiplication and delay.

Figure 1.1 Transposed Direct Form

Figure 1.2 Multiplier Block

1.1. Coefficient Quantization Methods

Coefficient Quantization methods can be classified as follows:

Uniform Quantization: The filter coefficients are represented by b-bit binary

numbers including the sign bit. Figure 1.3 shows a uniform quantization grid for

two coefficients. Design of filters with uniform quantization has been considered

in [3] by MILP, in [23] by simulated annealing, in [2], [19], [21] by GAs.

1−Z 1−Z

Nh 1Nh − 2Nh − 0h

[]y n

[]x n

1−Z1−Z

 Multiplier Block

1−Z 1−Z 1−Z

Nh 1Nh − 2Nh − 0h

[]y n

[]x n

1−Z

 4

Figure 1.3 Uniform Quantization

Non-Uniform Quantization: Distribution of values of filter coefficients is

nonuniform. For example, if two SPT are assigned per filter coefficient, then this

is a nonuniform quantization. In this case domain of filter coefficients is as

follows:

== ∑
=

−
2

1
2:

k

g
k

kcD αα (1.1)

{ }1,0,1−∈kc and { }Bgk ,,.........3,2,1,0∈ (1.2)

B is an integer that represents maximum number of shifts that can be performed

on the filter input signal.

Figure 1.4 shows nonuniform quantization grid for two coefficients for B=3.

Design of filters with nonuniform quantization has been considered in [5], [14]

by SA, in [11] by MILP

 5

Figure 1.4 Nonuniform Quantization

Free allocation: In this method, total number of SPT terms is fixed. These SPT

terms are distributed to filter coefficients via an optimization technique.

Actually, this method is also a nonuniform quantization. Figure 1.5 shows free

allocation quantization grid for two coefficients with 02 , 12 as SPT terms and a

total of two SPT terms. Design of filters with free allocation has been considered

in [7] by a rounding algorithm, in [4] by a trellis search algorithm and in [20] by

a local search algorithm.

Figure 1.5 Free Allocation

 6

1.2. The Aim and Organization of the Thesis

This thesis aims to compare FIR digital filter design methods that use

different quantization techniques for filter coefficients. Comparisons have been made

in terms of both filter performance and implementation complexity. For filter design,

different filter design methods have been studied and specifically a filter design

method based on genetic algorithm has been implemented. For filter implementation,

transposed direct form filter structure and an algorithm [8] that reduces the number

of adders required in this structure (implementation complexity) have been studied.

This structure and algorithm [8] have been applied to filter design methods [1-7],

[11], [13-16], [22] to reduce the implementation complexity since this has not been

studied before in literature. Results drawn from the comparisons are dramatic in

terms of number of adders required in the implementation. It has been seen that

implementation complexity has been reduced approximately 50% by using this

structure and algorithm [8] in filter design methods [1]-[7], [11], [13]-[16], [22]. It is

concluded that filters with integer or SPT coefficients implemented by RAG-n with

transposed direct form filter structure are less complex than a CSD implementation.

Thesis is organized in the following manner: Chapter 2 deals with the basic

concepts of discrete coefficient FIR digital filter design methods. Three major

approaches to the discrete coefficient FIR digital filter design problem are given.

Chapter 3 is based on the details of the discrete coefficient FIR digital filter design

method implemented in this thesis. Chapter 4 is based on the details of realization

algorithm for filter coefficients namely RAG-n [8] implemented in this thesis and

gives the results drawn from the research and finally in Chapter 5, conclusion and

possible directions for future work are given.

 7

CHAPTER 2

A SURVEY ON DISCRETE COEFFICIENT

FIR

DIGITAL FILTER DESIGN METHODS

2.1. Introduction

The filter design problem can be stated as follows: obtain a set of filter

coefficients such that)(fH (designed filter frequency response) is the best

approximation to some desired function)(fD (desired filter frequency response),

over a given frequency range, with respect to some optimality criterion. Filter design

methods commonly optimize the following cost function:

() max{ () () ()}E x W f H f D f= −
r (2.1)

where)(fW is a positive error weighting function and xr is the vector of filter

coefficients. This kind of optimization is a difficult combinatorial problem. A

variety of algorithms are available for designing filters with discrete coefficient

values and to guarantee the optimal discrete coefficient solution for FIR digital

filters.

MILP [3], [6], [11], [13], [16] has been applied to design FIR digital filters

according to ()E xr . One of the drawbacks of MILP is that computation time for long

filters is very high and also large amount of memory is needed. Computational load

is exponentially dependent on the filter length. The optimum finite word length

solution obtained by MILP saves only a few bits in coefficient word length when

compared to the simple coefficient rounding.

GAs have been used for the problem of discrete coefficient FIR digital filter

design [2], [19], [21], [24]. GAs are search algorithms based on genetic and natural

selection paradigm and can be successfully employed for minimizing a cost function

 8

such as the difference between the desired filter frequency response and the

designed filter frequency response. They can handle arbitrary constraints on

coefficient values and filter specifications. High computation time because of many

functions evaluations, the need for multiple trials to get satisfactory solutions

because of random selections made inside the algorithm, and the need for experience

to adjust the algorithm parameters are drawbacks of GAs.

SA is a very powerful optimization method that has been applied to solve the

problem of discrete coefficient FIR digital filter design [5], [14], [23]. There are no

limitations on the cost function and constraints of the problem. These features make

SA a valuable tool in filter design problem. Like GAs, high computation time

because of many functions evaluations, the need for multiple trials to get satisfactory

solutions because of random selections made inside the algorithm, and the need for

experience to adjust the algorithm parameters are drawbacks of SA.

Local search techniques have been employed to solve the problem of discrete

coefficient FIR digital filter design [1], [18], [25]. Local search techniques take the

rounded solution of infinite precision design as a start point and look for improved

solutions by partially examining some neighborhood of the best discrete solution.

Multiple trials with different sequence or contents of coefficient groups are needed

to get the best solution. This increases the computation time spent by the algorithm.

Some methods focus on the number of SPT terms since they determine filter

hardware complexity. Free allocation methods [4], [7], [20], [22] allocate SPT terms

to most deserving filter coefficients but they fix the number of SPT terms at the

beginning. The coefficients are found by minimizing the distance between the

coefficients of infinite wordlength design and those of the sum of the SPT terms.

Initially all quantized coefficient values are set to zero. Choosing one SPT term at a

time and allocating it to the most deserving filter coefficient minimize the distance

mentioned above.

2.2. Optimization Methods for FIR Digital Filter Design

The methods that have been used to design FIR digital filters under uniform

and nonuniform quantization are MILP, SA, GA and local search methods. They are

going to be described briefly in this section.

 9

2.2.1 Mixed Integer Linear Programming

MILP technique can be used in discrete coefficient FIR digital filter design

[3], [6], [11], [16]. This technique can be used to minimize the ripple subject to

hardware specifications (wordlength and filter order) or to minimize the hardware

cost (number of SPT terms). The equation in 2.1 can be used as a cost function and

evaluating this cost function on a dense frequency grid allows the optimization to be

formulated as a linear programming problem. The optimization reduces to

determining the set of integer values for filter coefficients which satisfy the

following conditions

() () ()W f H f D f δ− ≤ (2.2)

() () ()W f H f D f δ− ≥ − (2.3)

with a minimum value of δ . This is an integer linear programming when the

coefficients are restricted to integer values.

MILP with a suitable branch-and-bound algorithm enables to design filters

with any discrete coefficient value. Branch-and-bound algorithm starts with

obtaining a continuous coefficient value (i.e., infinite precision coefficient value).

Let this problem be 0P . The next step is to select a coefficient whose value is not a

desired value. Let this coefficient be)(nh . If)(nh and)(nh two consecutive

discrete levels such that

)()()(nhnhnh ≤≤ (2.4)

then, since the discrete value of)(nh can not fall between)(nh and)(nh , two

mathematical programming problems 1P and 2P are generated by adding the

constraints.

)()(nhnh ≤ (2.5)

)()(nhnh ≥ (2.6)

1P and 2P are solved individually. Further branching may be performed on 1P and

2P to produce the subproblems 6543 ,,, PPPP . If it is predicted that an improved

solution cannot be obtained for a branch then this branch can be removed to reduce

number of branchings.

 10

Figure 2.1 A Branch and Bound Tree

There are several branch-and-bound algorithms. Two of them are as follows:

1. Depth-first branch-and-bound: The algorithm is as follows: after

solving 0P , speculate on 1P and 2P . If a decision is made to solve 1P , then

2P is saved for later solution. After solving 1P , speculate on 3P and 4P ;

solve one of them and save the other. This procedure continues until a

suboptimum discrete solution is obtained. After obtaining a discrete

solution, reinitiate the depth-first search process from an unsolved

problem. This process continues until the entire problem is solved.

2. Isocost branch-and-bound: The algorithm is as follows: after solving 1P

and 2P , they are compared and the better one is selected for branching. If

1P is better one, then after solving for 3P and 4P ; 43 , PP and 2P are

compared and the best one is selected. The procedure continues by always

selecting the best subproblem for further branching.

2.2.2 Simulated Annealing

 One of the well-known powerful global optimization algorithms is SA that is

introduced in combinatorial optimization and used in discrete coefficient FIR digital

filter design [5], [14], [23]. In simulated annealing, a trial solution is chosen and the

effects of taking a small random step from this position are tested. If the step results

in a reduction in the cost function, it replaces the previous solution as the current

0P

1P 2P

3P
4P 5P 6P

 11

trial solution. If it does not result in a cost saving, the solution still has a probability

P of being accepted as the new trial solution given by:

exp (/)P E T= −∆ (2.7)

Here, E∆ is the increase in the cost function that would result from the step. The

temperature T is simply a numerical value that determines the stability of a trial

solution. If T is high, new trial solutions will be generated continually. If T is low,

the trial solution will move to a local or global cost minimum — if it is not there

already — and will remain there. The value of T is initially set high and is

periodically reduced according to a cooling schedule. A commonly used simple

cooling schedule is:

1t tT Tα+ = (2.8)

where tT is the temperature at step number t and α is a constant close to, but below,

1. When T is high, the optimization routine is free to accept many varied solutions,

but as it drops, this freedom diminishes.

The success of the technique is dependent upon values chosen for starting

temperature, the size and frequency of the temperature decrement, and the size of

perturbations applied to the trial solutions.

In the design of FIR digital filters, the minimax objective function in

equation 2.1 can be used. The starting point of the algorithm is the rounded infinite

precision optimum solution. The random moves are made in the neighborhood of

this infinite precision solution with proper step sizes. This is followed by a decision

mechanism and cooling schedule is applied for the new move and solution is

accepted if it is better from the previous and algorithm reinitiates from this new

point.

2.2.3 Genetic Algorithms

The basic principle of a genetic algorithm is to randomly generate an initial

population (consists of a collection of chromosomes) of solutions, each solution

having an objective value or ‘fitness’. Pairs of individual solutions are then

combined in an attempt to produce better (fitter) solutions. After each round of

combinations, the least fit individuals are excluded from further combination to keep

the number of individuals in the ‘breeding’ pool constant. In this way it is hoped

 12

that, after many breeding cycles, the pool will contain a population of solutions with

much improved objective values from which the best can be chosen. This class of

techniques is appealing since it mimics the natural selection process that drives

evolution.

GA based design techniques are widely proposed for discrete coefficient

filter designs [2], [15], [17], [19], [21], [24]. In GA, chromosomes consisting of

integer genes can be used to represent the filter coefficients. The fitness function

that can be used in selection process may be Mean Squared Error (MSE), Least-

Mean Squared Error (LMS), Normalized Peak Ripple Magnitude (NPRM), number

of adders used in the implementation (adder cost) or may consist of a combination

of NPRM and adder cost. The starting point of the algorithm is the rounded infinite

precision optimum solution. New populations (new set of filter coefficients) are

generated with mutation and crossover operations and a fitness function is evaluated

for this population and better ones are selected for next GA cycle.

2.2.4 Local Search Methods

Local search type algorithms [1], [18], [25] start from the rounded and scaled

solution of the infinite precision solution and seek for improved solutions by

partially examining some neighborhood of the best discrete solution at the instant.

Equation 2.1 can be used as a cost function. The starting solution can be

]2[' 1
i

b
i hh −= , i =0,1,2…N-1 (2.9)

where ih is the infinite precision coefficient and the brackets denote rounding to the

nearest integer. Coefficients are represented by b bits and N is filter length. The

simplest neighborhood of a solution is defined by examining the perturbations of

each coefficient, taken one-at-a-time, by 1± . This set is called as “1-change”

neighborhood. “2-change” neighborhood is defined as union of “1-changes” and the

set of perturbations of two coefficients at a time. There are two main strategies for

searching the neighborhood. The first one accepts the first improved solution found.

The second one searches the entire neighborhood and selects the best.

2.3. Free Allocation Methods

Some of the FIR digital filter design methods that use free allocation method

 13

are [4], [7], [20], and [25]. The total number of SPT terms determines the realization

cost (adder cost) of a digital filter. Distribution of SPT terms among the filter

coefficients does not affect the realization cost. Therefore, the number of SPT terms

for each coefficient is not necessarily limited to a fixed number. Instead, they should

be allowed to vary subject to a given number of total SPT terms for the filter. This

provides the possibility of finding a better set of coefficients.

2.4.1 Polynomial Time Algorithm [7]

This algorithm designs digital filters with SPT coefficients subject to a

prescribed total number of SPT terms. The algorithm finds the coefficients by

minimizing the ∞L norm of the difference between the coefficients of infinite

wordlength and those of sums of SPT terms.

Basic polynomial algorithm outline is as follows:

Step 1. Start with initializing all the quantized coefficient values to zero.

Step 2. Choose one SPT term at a time and allocate it to the currently most

deserving coefficient to minimize the ∞L distance between the SPT

coefficients and their corresponding infinite wordlength values. This process

of allocating the SPT terms for the filter is equal to a prescribed number.

2.4.2 Trellis Search Algorithm [4]

Trellis search algorithm also uses free allocation method for discrete

coefficient filter design. FIR digital filters with coefficients implemented as sums of

signed-powers-of-two terms can be designed with this algorithm in two stages:

Stage 1: Using a fast time domain approximation, a prototype filter is

designed.

Stage 2: Formulating the design problem as a dynamic-programming-like

recursive optimization problem, filters are designed by performing a trellis

search that is similar to the viterbi algorithm. Inherent in the proposed trellis

search algorithm is an iterative procedure that designs filters with gradually

growing number of SPT terms, providing a means to control the filter’s

implementation complexity.

 14

CHAPTER 3

DESIGN OF INTEGER COEFFICIENT FILTERS

 BY GENETIC ALGORITHM

The aim of this chapter is to introduce the genetic algorithm that is developed

for the discrete coefficient FIR digital filter design in this thesis. The chapter is

organized as follows:

• Basics of genetic algorithms

• GA for the design of the integer coefficient filters.

3.1. Genetic Algorithms

3.1.1 Introduction

 GA is a tool for searching and optimizing methodology. GAs have been

inspired by natural evolution, the process by which successive generations of animals

and plants are modified so as to approach an optimum form. Each offspring has

different features from its parents, i.e., it is not a perfect copy of parents. If the new

characteristics are favorable, the offspring is more likely to flourish and pass its

characteristics to the next generation. However, an offspring with unfavorable

characteristics is likely to die without reproducing. It works on the Darwinian

principle of natural selection where stronger individuals are likely the winners in a

competing environment. These ideas have been applied to mathematical

optimization, where a population of candidate solutions “evolves” toward an

optimum. Each cell of a living organism contains a set of chromosomes that define

the organism’s characteristics. The chromosomes are made up of genes, where each

gene determines a particular trait such as eye color. The complete set of genetic

material is referred to as the genome, and a particular set of gene values constitutes a

genotype. The resulting set of traits is described as the phenotype. Each individual in

 15

the population of candidate solutions is graded according to its fitness. The higher

the fitness of a candidate solution, the greater are its chances of reproducing and

passing its characteristics to the next generation. In order to implement a GA, the

following design decisions need to be made:

• how to use sequences of numbers, known as chromosomes, to represent the

candidate solutions;

• the size of the population;

• how to evaluate the fitness of each member of the population;

• how to select individuals for reproduction using fitness information

(conversely, how to determine which less-fit individuals will not reproduce);

• how to reproduce candidates, i.e., how to create a new generation of

candidate solutions from the existing population;

• when to stop the evolutionary process.

3.1.2. Basic Genetic Algorithm

GA uses a direct analogy of such natural evolution. Solution of any problem

can be represented by a set of parameters. According to the GA, the solution is

viewed as a chromosome and the corresponding parameters are regarded as the genes

of that chromosome. Also the effect of the environment substitutes with a fitness

(objective) function, which is used to reflect the degree of “goodness” of the

chromosome. Throughout a genetic evolution, the fitter chromosome has a tendency

to yield good quality offspring, which means a better solution to any problem. In a

GA application, a population pool, whose size varies from one problem to another, of

chromosomes has to be initialized randomly. In each cycle of genetic operation,

termed as an evolving process, a subsequent generation is created from the current

chromosomes in the population.

3.1.2.1 Chromosomes

Each point in the search space can be represented as a unique chromosome,

made up of genes. Suppose, for example, it is aimed to find the maximum value of a

fitness function, f(x, y). In this example, the search space variables, x and y, are

constrained to the 16 integer values in the range 0–15. A chromosome corresponding

 16

to any point in the search space can be represented by two genes:

Figure 3.1 GA Chromosome

Thus the point (2, 6) in search space would be represented by the following

chromosome:

2 6

The possible values for the genes are called alleles, so there are 16 alleles for each

gene in this example. Each position along the chromosome is known as a locus; there

are two loci in the above example. The loci are usually constrained to hold only

binary values. (The term evolutionary algorithm describes the more general case

where this constraint is relaxed.) The chromosome could therefore be represented by

eight loci comprising the binary numbers 0010 and 0110, which represent the two

genes:

0 0 1 0 0 1 1 0

Although there are still 16 alleles for the genes, there are now only two possible

values (0 and 1) for the loci. The chromosome can be made as long as necessary for

problems involving many variables, or where many loci are required for a single

gene. In general, there are N2 alleles for a binary-encoded gene that is N bits wide.

3.1.2.2 Basic GA Structure

A flow chart for the basic GA is shown in Figure 3.2. In the basic algorithm,

the following assumptions have been made:

• The initial population is randomly generated.

• Individuals are evaluated according to the fitness function.

• Individuals are selected for reproduction on the basis of fitness; the fitter an

individual, the more likely it is to be selected

x y

 17

• Reproduction of chromosomes to produce the next generation is achieved

by “breeding” between pairs of chromosomes using the crossover operator

and then applying a mutation operator to each of the offspring.

Initial population consists of a collection of chromosomes that represent a set of

solutions for the problem. The chromosome producing the minimum error function

value represents the best solution to the given problem. The chromosomes that give

better fitness function value are selected and sent to the crossover operator. Two new

chromosomes are created from the two selected chromosomes existing in the

population by choosing a common point in the selected chromosomes and swapping

their corresponding digits. In the mutation operation, values of the chromosomes

mutate randomly. These GA operators are explained in detail below.

Figure 3.2 Basic GA Cycle

Initial Population

Evaluation

Reproduction

Crossover

Mutation

 18

3.1.2.3 Crossover

Child chromosomes are produced by aligning two parents, picking a random

position along their length, and swapping the tails, known as the crossover

probability. An example for an eight-loci chromosome, where the mother and father

genes are represented by im and if respectively, would be:

Figure 3.3 GA Single-point Crossover

This is known as single-point crossover, as only one position is specified for

separating the swapped and unswapped loci. In fact this is a misnomer, as a second

crossover position is always required. In single-point crossover the second crossover

position is assumed to be the end of the chromosome. This can be made clearer by

considering two-point crossover, where the chromosomes are treated as though they

were circular, i.e., 1m and 8m are neighboring loci:

Figure 3.4 GA Two-point Crossover

In general, multipoint crossover is also possible, provided there are an even number

of crossover points:

Figure 3.5 GA Multi-point Crossover

1m 2m 3m 4m 5m 6m 7m 8m 1m 2m 3m 4m 5m 6f 7f 8f

1f 2f 3f 4f 5f 6m 7m 8m 1f 2f 3f 4f 5f 6f 7f 8f

1m 2m 3m 4m 5m 6m 7m 8m 1m 2f 3f 4f 5f 6m 7m 8m

1f 2f 3f 4f 5f 6f 7f 8f
1f 2m 3m 4m 5m 6f 7f 8f

1m 2m 3m 4m 5m 6m 7m 8m 1m 2f 3f 4m 5m 6f 7f 8m

1f 2f 3f 4f 5f 6f 7f 8f 1f 2m 3m 4f 5f 6m 7m 8f

 19

In the extreme case, each locus is considered for crossover, independently of the rest.

This is known as uniform crossover.

3.1.2.4 Mutation

Unlike crossover, mutation involves altering the values of one or more loci.

This creates new possibilities for gene combinations that can be generated by

crossover. Mutation can be carried out in either of two ways:

• The value of a randomly selected gene can be replaced by a randomly

generated allele. This works for both binary and nonbinary chromosomes.

• In a binary chromosome, randomly selected loci can be toggled, i.e., 1

becomes 0 and 0 becomes 1.

Individuals are selected randomly for mutation. The main advantage of mutation is

that it puts variety into the gene pool, enabling the GA to explore potentially

beneficial regions of the search space that might otherwise be missed.

3.1.3. Selection

It has already been stated that individuals are selected for reproduction on the

basis of their fitness, i.e., the fittest chromosomes have the highest likelihood of

reproducing. Selection determines not only which individuals will reproduce, but

how many offspring they will have. The selection method can have an important

impact on the effectiveness of a GA.

Selection is said to be strong if the fittest individuals have a much greater

probability of reproducing than less fit ones. Selection is said to be weak if the fittest

individuals have only a slightly greater probability of reproducing than the less fit

ones. If the selection method is too strong, the genes of the fittest individuals may

dominate the next generation population even though they may be suboptimal. This

is known as premature convergence, i.e., the exploitation of a small region of the

search space before a thorough exploration of the whole space has been achieved. On

the other hand, if the selection method is too weak, less fit individuals are given too

much opportunity to reproduce and evolution may become too slow. This can be a

particular problem during the latter stages of evolution, when the whole population

may have congregated within a smooth and fairly flat region of the search space. All

 20

individuals in such a region would have similar, relatively high fitnesses and, thus, it

may be difficult to select among them. This can result in stalled evolution, i.e., there

is insufficient variance in fitness across the population to drive further evolution.

3.2. Genetic Algorithm in the Design of FIR Filters

3.2.1 Genetic Algorithm and Operators

A GA has been implemented for the design of discrete coefficient FIR filter

design in this thesis. GA consists of basic genetic operators such as mutation,

crossover and evaluation. Each filter is represented as a set of integer filter

coefficients { 1h , 2h , 3h , nh }. Filter performance is measured using Normalized

Peak Ripple Magnitude (NPRM). Filter complexity that is number of adders required

to implement filter coefficients is measured using RAG-n and CSD algorithm. The

advantage of using integer coefficient representation is that it is a more natural way

in which to describe filters. Chromosomes consisting of integer genes have been used

in GA to represent the filter coefficients rather than a binary coding. This provides a

more natural implementation, which facilitates the use of customized genetic

operators. Generation of the initial population and the genetic operators that have

been used in GA in this thesis are as follows:

Initial Population: The set of infinite precision filter coefficients is determined by

using the Park-McClellan algorithm. These coefficients are rounded to the nearest

finite wordlength number. An initial population that consists of a set of filter

coefficients is created by randomly adding an integer between 2± to each rounded

filter coefficient.

Crossover: The crossover operator in GA consists of uniform and single-point

crossover on the integer genes, such that two new chromosomes generated have a

mixture of coefficients from each parent.

 21

Figure 3.6 GA Single-point Crossover

Mutation 1: Addition/subtraction of a small random power-of-two value to the filter

coefficients is the main mutation technique.

Figure 3.7 GA Mutation 1

Mutation2: Scaling (and quantizing) all the filter coefficients within a chromosome is

the second mutation technique that is used. This allows a change to the overall gain

of the filter with little change to the filter performance.

1 5 7 9 11 13 16 33 1 5 7 9 11 14 17 32

0 6 7 10 11 14 17 32 0 6 7 10 11 13 16 33

1 5 7 9 11 13 16 33

1 6 8 10 13 14 18 37
0 1 1 1 2 1 2 4

Filter
coefficients
Parent A

Filter
coefficients
Parent B

New Filter
coefficients
Child A and B

Mutation
Factors

Filter
coefficients
before Mutation

New Filter
coefficients
after Mutation

 22

Figure 3.8 GA Mutation 2

3.2.2 Fitness Function in GA

The fitness function used in GA is the NPRM [10]. NPRM has been a

convenient design criterion for discrete coefficient FIR filters. For many filter

implementations the absolute value of the passband gain is of less importance.

Instead the relative attenuation between the passband and stopband is of interest.

This is referred to as NPRM.

Let ih , i = 0,1,2,,M, denote the impulse response sequence of a linear

phase FIR filter. The amplitude of the frequency response of the designed filter is

expressed as

(3.1)

1
2
−=

MN if M is even (3.2)

2
1−

=
MN if M is odd (3.3)

where ia ’s are related to ih ’s and T(w,i)’s are sinusoidal functions. T(w,i) can be

cos(wi), cos(w(i+0.5)), sin(wi) or sin(w(i+0.5)) depending on the type of the

symmetry of the impulse response and, the type of M as even or odd. Let W(w) be a

positive weighting function and)(wH d be the amplitude of the frequency response

of the desired filter. Then, NPRM is defined as g/δ , such that

[] { }{ }bandstransitionwwF

wEwE

−∈=

==
∞

π

δ

,0

)()(max
 (3.4)

1 6 8 11 13 16 19 40 1 5 7 9 11 13 16 33

),()(
0

iwTawH
M

i
i∑

=

=

Scale Factor = 1.21*Filter Coefficients

Filter
coefficients
before Mutation

New Filter
coefficients
after Mutation

 23

where)(wE , the error function is given by

))()()(()(wHwgHwWwE d −= (3.5)

and g is the “passband gain” or “filter gain”. The minimization of NPRM is to be

carried out with respect to ih ’s and g subject to ih ’s take quantized values.

According to this problem definition, filter gain has the maximum value that

minimizes NPRM for a given set of filter coefficients. An explicit expression for g

has not been provided in the literature in this sense. In particular, g has been set as

2
minmax PP

g
+

= (3.6)

where maxP and minP are the maximum and minimum values, respectively of)(wH in

the passband. The above g definition is not general since it attempts to minimize the

maximum passband deviation without considering the stopband deviation.

Let maxS denote the maximum value of)(wH in the stopband. Then, for a

given set of filter coefficients the filter gain that minimizes g/δ is given by

2
minmax PP

g
+

= if max
minmax

2
S

PP
>

−
 (3.7)

maxmin SPg += if max
minmax

2
S

PP
<

−
 (3.8)

In setting this equality, the following assumptions have been made:

• Band specifications of the desired amplitude response,)(wH d , are given as
constant levels.

• Without loss of generality, 1)(=wH d in the passband and 0)(=wH d in the

stopband.

 24

3.2.4 GA Algorithm Flowchart

Figure 3.9 GA Flowchart

• Evaluate NPRM for each candidate filter in

the population.
• Drop the worst M+K filter candidates.
• Send the remaining N-K into the mutation

operation.

• Initial Filter Coefficient : Design using Park-

McClellan Algorithm.
• Gain adjustment
• Round the nearest finite wordlength.
• By adding an integer between ± 2 to each

rounded coefficient,

Create a population of N elements.

Create a population of M elements with crossover
operator.

• Perform mutation operation on candidate

filters.
• Evaluate NPRM and take the K from this

population.

 25

CHAPTER 4

COMPARISON OF FILTER DESIGN METHODS

 IN TERMS OF FILTER PERFORMANCE AND

COMPLEXITY

First, an algorithm that reduces the number of adders used in the multiplier

block of FIR digital filters namely RAG-n [8] is explained. Then, different filters

designed under uniform and nonuniform quantization constraints are implemented in

transposed direct form. In these implementations, implementation complexity is

reduced by using RAG-n algorithm. The results are compared in terms of

performance and implementation complexity. Implementation complexity is the

number of adders required to implement the filter coefficients and calculated via

RAG-n [8] and CSD algorithm. It has been seen from the results that RAG-n [8] has

provided 50% cost saving over the CSD and SPT design.

4.1. Digital FIR Filter Implementation

4.1.1 Introduction

It has been shown that implementation complexity of FIR digital filters with

integer coefficients can be reduced by using multiplier blocks to exploit redundancy

across the coefficients [8]. This approach uses the transposed form FIR filter

structure (See Figure 1.1) and the redundancy in the multiplication process. It

replaces multiplications by decomposing them into simple operations such as

additions, subtractions and shift and tries to reduce the number of simple operations.

The multiplier block (See Figure 1.2) in the transposed form FIR filter structure is

significant since some adders and shifters in this multiplier block can be shared

among different multiplications. RAG-n algorithm [8] focuses on this multiplier

block and tries to make it as simple as possible using less adders and subtractors.

 26

The filter design methods [1]-[7], [11], [13]-[16], [18], [20], [22]-[23] that

use different quantization techniques mentioned in Chapter 1 and constrain the filter

coefficients to SPT terms have never been thought using RAG-n after designing filter

to reduce the implementation complexity. This algorithm has been applied to these

filter design methods and significant cost savings have been achieved in filter

implementation.

4.1.3 Graph Representation for Multiplier Block

The graph representation technique is based on the concept of replacing the

discrete multipliers in the multiplier block of the transposed form FIR filter structure

with a graph which exactly preserves the input-output transfer function for all

signals. It is a graphical method to represent multiplication by a constant integer,

where each vertex except the initial and terminal vertices means an adder, and each

edge is associated with a value to be multiplied with the left vertex of the edge. The

value is a positive or negative constant of a power of two. The initial vertex is

assigned to 1 and the result of the multiplication is obtained from the terminal vertex.

Graph representation utilizes redundancy in the coefficient set in the design of FIR

digital filters. An example of multiplier graph is shown Figure 4.1, where the number

45 is synthesized using CSD and the technique in RAG-n. Each vertex of the graph

represents an adder, and each edge represents multiplication by a power of two,

which can be executed with minimal complexity; in hardware it is wired as a simple

shift.

(a)

-4

1
3

-16

-19

1

64

45

 27

(b)

Figure 4.1 (a) CSD Representation (b) Represented with fewer Adders than CSD

Number of adders used to implement the filter coefficients determines the

complexity of the graph that replaces the multiplier block. Binary shifts incur no

cost. For fixed-point filter coefficients with least significant bit M−2 , scaling by M2

produces integer coefficients. The required output can be regained at zero cost by

rescaling by M−2 . Therefore fixed-point coefficient problem can be considered to be

an integer coefficient problem. The followings are definitions for terms used in the

RAG-n [8] algorithm.

Adder Cost: Number of adders and subtractors required to implement filter

coefficients in the multiplier block.

Fundamentals: The values assigned to vertices in the graphs used to represent

multiplications.

Equivalent Graphs: The graphs that have the same topology, and can be derived one

from the other by scaling inputs to a vertex by x2 , and the fundamental at that vertex
x2 , and output edges from that vertex by x−2 .

Odd Fundamental Graph: The unique graph among equivalent graphs that has only

odd fundamentals.

4.1.4 The n-Dimensional Reduced Adder Graph (RAG-n) Algorithm [8]

A flowchart of the n-Dimensional Reduced Adder Graph algorithm is shown

in Figure 4.6 (a) and (b). The two parts of the algorithm is as follows:

4

1
5

1
8

45

8

1
9

1
4

45

 28

• Optimal Part: Filter coefficients that are cost-1 (i.e. implementing this filter

coefficient requires 1 adder) or producible by other cost-1 coefficients are

realized by this part of the algorithm. Minimum adder cost is assured if the

set of filter coefficients is completely realized by this part of the algorithm.

• Heuristic Part: Filter coefficients that are not realized in the optimal part are

realized in this part of the algorithm. This part of the algorithm uses the filter

coefficients realized in the optimal part to implement the higher cost filter

coefficients. Minimum adder cost is not assured if this part of the algorithm

executes.

 29

Figure 4.2 (a) Flowchart of the Optimal Part of the RAG-n Algorithm

STEP 1

STEP 2

STEP3

STEP 4

STEP 5

STEP 6

 NO YES

 (a)

Remove the sign of filter coefficients

Remove all filter coefficients that

are a power of two

Reduce all filter coefficients to odd
fundamentals by dividing even

coefficients by 2 until odd

Evaluate single coefficient cost for
filter coefficients by using the cost

look-up table

Realize cost-1 filter coefficients

Calculate pairwise sums of cost-1
coefficients and power-of-two

multiples of them and check any
filter coefficient that is not cost-1 is
produced for all filter coefficients

Terminate
Optimal

Part

Go to Heuristic
Part

All filter
coefficients

realized?

 30

Figure 4.2 (b) Flowchart of the Heuristic Part of the RAG-n Algorithm

STEP 7

 YES

 NO

STEP 8

 NO YES YES

(b)

All filter
coefficients

realized?

For unrealized filter coefficients
check two case

Case 1: The cost of the difference
between the filter coefficient and
any realized filter coefficient is 1

Case 2: The cost of the difference
between the filter coefficient and

sum of any two realized filter
coefficient is 0

Go to STEP 6
and realize all

filter
coefficients
that fall into

these two
cases

Select minimum lowest cost filter
coefficient and realize it by selecting

set of fundamentals of lowest
numeric sum go to STEP 6.

Terminate
Heuristic
Part

Go to
STEP 6

Such cases
found?

 31

The algorithm is explained in detail below:

a. Remove the sign of the filter coefficients.

b. Remove all of the filter coefficients that are a power-of-two since they

incur no cost other than a hardwired data shift.

c. Reduce all of the filter coefficients to odd fundamentals by dividing 2

until they become odd. Create a set named as “unrealized filter coefficient

set” and store the odd valued filter coefficients into this set.

d. Determine the cost for each entry in the unrealized filter coefficient set

by using the cost lookup table. This cost gives the number of adders

required to implement each filter coefficient reduced to odd value in the

“unrealized filter coefficient set”.

e. Create the “realized filter coefficient set” for the storage of realized

filter coefficients. Into this set, enter all cost-1 filter coefficients and

remove these from the “unrealized filter coefficient set”.

f. Examine pairwise sums of filter coefficients in the “realized filter

coefficient set” with power-of-two multiples of these same filter

coefficients. If any of the filter coefficients in the “unrealized filter

coefficient set” is produced, remove them from the “unrealized filter

coefficient set” and put them in the “realized filter coefficient set”.

g. Repeat f until no more filter coefficients are added to the “realized filter

coefficient set”.

If at any time, all of the filter coefficients are realized, the RAG-n algorithm

terminates. After g, if multiplier block in the transposed form FIR filter structure is

completely implemented, then this multiplier block is guaranteed to be optimal that

means minimum number of adders and subtractors used in the implementation. The

following theorems explain optimality criteria.

Theorem 1. [8] A set of n nonrepeated cost-1 or more odd filter coefficients

can not be realized using fewer than n adders.

Theorem 2. [8] For a set described in theorem 1 to incur an adder cost of n, at

least one cost-1 must appear in the set.

Steps a to g form the optimal part of the RAG-n algorithm. After the

execution of the optimal part, if any entry exists in the “unrealized filter coefficient

set” then execution of the heuristic part of the RAG-n algorithm begins. “Adder

 32

distance” definition is used in the heuristic part of the RAG-n algorithm. The adder

distance of a new vertex from an exiting graph is the number of extra adders that are

needed to reach new vertex. The aim of the heuristic part of the algorithm is to find

the minimum adder distance between the graph created by the optimal part of the

algorithm and the remaining terminating vertices, which corresponds to the

coefficients not yet realized.

The heuristic part of the algorithm continues as follows:

h. Check each of the “unrealized filter coefficient set” for two different

instances of distance 2 vertices:

o The case where the cost of the difference between the filter

coefficient of interest in the “unrealized filter coefficient set”

and any realized filter coefficient in the “realized filter

coefficient set” is 1.

o The case where the cost of the difference between the filter

coefficient of interest in the “unrealized filter coefficient set”

and the sum of any two realized filter coefficients in the

“realized filter coefficient set” is 0.

In both cases, two new fundamentals will be created, the new

realized filter coefficient and one other. In the first case, this latter

fundamental is the cost-1 difference which was calculated. In the

second case it is the sum of the two realized filter coefficients. If

such a case is found, add the two fundamentals to the “realized

filter coefficient set”, and remove the realized filter coefficient

from the “unrealized filter coefficient set”.

i. Repeat g and h until no new distance 1 or 2 fundamentals are found.

j. If this point is reached, there are filter coefficients that are at a greater

distance than 2 from the existing graph, or at a distance 2 with a topology

which is not covered by the two examples in h. Therefore an arbitrary

choice of fundamentals to add to the “realized filter coefficient set” must

be made. Of the “unrealized filter coefficient set”, select the minimum

fundamental of lowest single-coefficient cost. Realize it by selecting the

set of fundamentals which has the lowest numerical sum. Add these

 33

fundamentals to the “realized filter coefficient set” and remove the filter

coefficient from the “unrealized filter coefficient set”.

k. Repeat steps g to j until all filter coefficients are realized.

4.1.5 Example Filter Implementations with RAG-n

Example filters will be implemented with RAG-n.

EXAMPLE 1

Filter coefficients are as follows:

7)0(=h , 9)1(=h , 14)2(=h , 21)3(=h , 33)4(=h , 36)5(=h , 44)6(=h .

a. No sign in filter coefficients. 7)0(=h , 9)1(=h , 14)2(=h , 21)3(=h ,

33)4(=h , 36)5(=h , 44)6(=h .

b. No power-of-two coefficients.

c. Unrealized filter coefficient set = [7)0(=h , 9)1(=h , 7)2(=h ,

21)3(=h , 33)4(=h , 9)5(=h , 11)6(=h] (Filter coefficients divided by

2 until odd)

d. Cost(7)0(=h) = 1, Cost(9)1(=h) = 1, Cost(7)2(=h) = 1,

Cost(21)3(=h) = 2, Cost(33)4(=h) = 1, Cost(9)5(=h) = 1,

Cost(11)6(=h) = 2.

e. Realized filter coefficient set = [7)0(=h , 9)1(=h , 7)2(=h , 33)4(=h ,

9)5(=h]

Unrealized filter coefficient set = [21)3(=h , 11)6(=h]

f.)0()0(*2)3(hhh += (Realized)

2)1()6(+= hh (Realized)

g. Unrealized filter coefficient set = [] so terminate.

Implemented filter coefficients are shown in Figure 4.7.

 34

Figure 4.3 RAG-n Implementation of Example Filter 1

Total number of adders used to implement filter coefficients is 5 (adder cost).

If CSD algorithm is used for implementation then

csdh 11007)0(== , csdh 10019)1(== , csdh 0110014)2(== , csdh 1010121)3(== ,

csdh 10000133)4(== , csdh 10010036)5(== , csdh 001011044)6(== .

187)0(−==h , 189)1(+==h , 21614)2(−==h , 141621)3(++==h ,

13233)4(+==h , 43236)5(+==h , 4166444)6(−−==h .

Total adder cost is 9 adders when CSD is used for filter implementation.

EXAMPLE 2

Filter coefficients are as follows:

9)0(=h , 44)1(−=h , 208)2(=h , 346)3(=h .

-1

8
h(0)=7x[n
] 2

h(2)=14x[n]

h(3)=21x[n]

1

8
h(1)=9x[n]

2

11x[n]

1

32
h(4)=33x[n]

4

h(6)=44x[n]

4

h(5)=36x[n]

x[n]

 35

a. Remove sign in filter coefficients. 9)0(=h , 44)1(=h , 208)2(=h ,

346)3(=h .

b. No power-of-two coefficients.

c. Unrealized filter coefficient set =[9)0(=h , 11)1(=h , 13)2(=h ,

173)3(=h] (Filter coefficients divided by 2 until odd)

d. Cost (9)0(=h) = 1, Cost (11)1(=h) = 2, Cost (13)2(=h) = 2, Cost

(173)3(=h) = 3.

e. Realized filter coefficient set = [9)0(=h]

Unrealized filter coefficient set = [11)1(=h , 13)2(=h , 173)3(=h]

f. 2)0()1(+= hh (Realized)

4)0()2(+= hh (Realized)

 g. Realized filter coefficient set = [9 11 13] Unrealized filter coefficient

set = [173] not empty so go to heuristic part.

h. 45128173)3(+==h

)0()0(*445 hh += Cost-1 so create 45.

i.)0()0(*445)(hhnalnewfundameh +==

)(128173)3(nalnewfundamehh +==

Unrealized filter coefficient set = [] so terminate.

Implemented filter coefficients are shown in Figure 4.8.

 36

Figure 4.4 RAG-n Implementation of Example Filter 2

Total number of adders used to implement filter coefficients is 5 when RAG-

n is used. If CSD algorithm is used for implementation then

csdh 10019)0(== , csdh 010100144)1(=−= , csdh 010000110208)2(== ,

csdh 0101010110346)3(== .

189)0(+==h , 4166444)1(++=−=h , 1664256208)2(+−==h ,

2832128512346)3(+−−−==h .

Total adder cost is 9 adders when CSD is used for filter implementation. As it

is seen RAG-n provides near %45 reduction in the number of adders used to

implement filter coefficients than CSD. This reduction enables to design low cost

and high performance digital FIR filters in ASICs.

4
13x[n]

16
h(2)=208x[n]

1

8
h(0)=9x[n]

2

11x[n]
-4

h(1)=-44x[n]

x[n]

45x[n]

2

173x[n] h(3)=346x[n]

4

128

 37

4.2 Experimental Results

Test Case 1

The two example filters of “An Improved Search Algorithm for the Design of

Multiplierless FIR filters with Powers-of-Two Coefficients [1]” by H. Samueli are

used for this test case.

Filter (1) Requirements are as follows:

(a) Symmetrical Impulse Response; Low pass

(b) Passband edges at 0.0 and 0.15 sampling frequency

(c) Stopband edges at 0.25and 0.50 sampling frequency

(d) Weights in passband and stopband 1.

(e) Wordlength 9 bit.

Table 4.1 Summary of Filter (1) Design in Test Case 1

Filter Length N = 25

Infinite Wordlength NPRM = -46.03 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

Samueli [1] 2-3 SPT -42.18 11 6

GA Integer -43.74 14 8

GA Integer -43.93 13 6

Table 4.1 summarizes the results for the given filter specifications. As it is

seen from the results, the filter designed by GA has slightly improved attenuation

than the filter designed by Samueli’s [1] local search method. For the implementation

of the filter, it is very clear that a RAG-n [8] design of filter uses less number of

adders than a CSD design for the same attenuation by exploiting the redundancy in

the filter coefficient set and use of transposed form filter structure. Multiple runs of

GA have found filters with improved or degraded attenuations. Adder cost also

changes with multiple runs of GA. This shows the need for the multiple trials to get

improved attenuations and reduced adder cost since random selections are made

 38

inside algorithm. This is a disadvantage of GA. Figure 4.5 and 4.6 show frequency

responses of filters designed by GA (red) and Parks-McClellan (black) algorithm for

the first filter in test case 1.

Figure 4.5 Frequency Response (-
43.74 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (1) in Test Case
1)

Figure 4.6 Frequency Response (-
43.93 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (1) in Test Case
1)

 39

Filter (2) Requirements are as follows:

(a) Symmetrical Impulse Response; Low pass

(b) Passband edges at 0.0 and 0.021 sampling frequency

(c) Stopband edges at 0.07and 0.50 sampling frequency

(d) Weights in passband and stopband 1.

(e) Wordlength 14 bit.

Table 4.2 Summary of Filter (2) Design in Test Case 1

Filter Length N = 60

Infinite Wordlength NPRM = -55.47 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

Samueli [1] 3-4

SPT

-38.75 57 25

GA Integer -54.91 61 28

Table 4.2 summarizes the results for the given filter specifications. NPRM of

the filter designed by GA is much better than the filter designed by Samueli’s [1]

local search method. For the implementation of the filter, it is clear that RAG-n [8]

design uses less number of adders than CSD design for the same NPRM value. RAG-

n [8] provides approximately 55% cost saving in the implementation over the CSD

resulting in low cost ASICs implementations. Since most of the coefficients of the

given filter are cost-1, cost-2 and producible from each other, RAG-n implements the

filter with the optimal adder cost than CSD. Figure 4.7 shows frequency responses of

filters designed by GA (red) and Parks-McClellan (black) algorithm for the second

filter in test case 1.

 40

Figure 4.7 Frequency Response (Red:

GA Implementation;
Black: Remez
Implementation for the
Filter (2) in Test Case 1)

Test Case 2

The example filter of “Design of Optimal Paralel Filter Using a Parallel Genetic

Algorithm [2]” by D. J. Xu and M. L. Daley is used for the test case.

Filter Requirements are as follows:

(a) Symmetrical Impulse Response; Low pass

(b) Passband edges at 0.0 and 0.20 sampling frequency

(c) Stopband edges at 0.25and 0.50 sampling frequency

(d) Weights in passband and stopband 1.

(e) Wordlength 10 bit.

Table 4.3 Summary of Filter Design in Test Case 2

Filter Length N = 40

Infinite Wordlength NPRM = -39.38 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

D.J. Xu

M.L. Daley

[2]

Integer -35.89 17 8

 41

Table 4.3 Summary of Filter Design in Test Case 2 (Con’t)

GA Integer -36.81 18 9

GA Integer -37.82 24 12

GA Integer -38.58 24 12

Table 4.3 summarizes the results for the given filter specifications. The filters

designed by GA have slightly better attenuation values than the filter designed by

[2]’s but with increased adder cost when RAG-n [8] is used realize filter coefficients.

For the implementation of the filter, RAG-n design uses less number of adders than

CSD design for the same NPRM value. RAG-n adder cost is approximately 50% of

the CSD adder cost. Figure 4.8, 4.9, and 4.10 show frequency responses of filters

designed by GA (red) and Parks-McClellan (black) algorithm.

Figure 4.8 Frequency Response (-

36.81 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter in Test Case 2)

 42

Figure 4.9 Frequency Response (-
37.82 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter in Test Case 2)

Figure 4.10 Frequency Response (-
38.58 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter in Test Case 2)

Test Case 3

The example filter of “Design of Optimal Finite Wordlength FIR Digital

Filters Using Integer Programming Techniques [3]” by D. M. Kodek is used for the

test case.

Filter Requirements are as follows:

 43

(a) Symmetrical Impulse Response; Low pass

(b) Passband edges at 0.0 and 0.20 sampling frequency

(c) Stopband edges at 0.25and 0.50 sampling frequency

(d) Weights in passband and stopband 1.

Table 4.4 Summary of Filter Design in Test Case 3

Filter Length N = 21

Wordlength = 7

Infinite Wordlength NPRM = -25.21 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

Kodek [3] Integer -23.86 6 3

GA Integer -23.86 6 3

GA Integer -24.06 9 4

GA Integer -24.38 11 6

Table 4.5 Summary of Filter Design in Test Case 3

Filter Length N = 40

Wordlength = 10

Infinite Wordlength NPRM = -39.38 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

Kodek [3] Integer -36.07 18 9

GA Integer -36.81 18 9

GA Integer -37.82 24 12

GA Integer -38.58 24 12

Table 4.4 and 4.5 summarizes the results for the given filter specifications.

GA designed the same or improved performance filters with multiple runs with

increased adder cost than [3]’s integer programming method [3]. For the

 44

implementation of the filter, RAG-n [8] design uses less number of adders than CSD

design for the same NPRM value. RAG-n adder cost is approximately 50% of the

CSD adder cost. Figure 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16 show frequency

responses of filters designed by GA (red) and Parks-McClellan (black) algorithm.

Figure 4.11 Frequency Response (-

23.86 dB)(Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
21, Wordlength 7 Bit) in
Test Case 3)

Figure 4.12 Frequency Response (-

24.06 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
21, Wordlength 7 Bit) in
Test Case 3)

 45

Figure 4.13 Frequency Response (-
24.38 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
21, Wordlength 7 Bit) in
Test Case 3)

Figure 4.14 Frequency Response (-

36.81 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
40, Wordlength 10 Bit) in
Test Case 3)

 46

Figure 4.15 Frequency Response (-
37.82 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
40, Wordlength 10 Bit) in
Test Case 3)

Figure 4.16 Frequency Response (-
38.58 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
40, Wordlength 10 Bit) in
Test Case 3)

 47

Test Case 4

The example filter of “A Trellis Search Algorithm for the Design of FIR

filters with Signed-Powers-of-Two Coefficients [4]” by C. L. Chen and A. N.

Willson is used for the test case.

Filter Requirements are as follows:

(a) Symmetrical Impulse Response; Low pass

(b) Passband edges at 0.0 and 0.15 sampling frequency

(c) Stopband edges at 0.25and 0.50 sampling frequency

(d) Weights in passband and stopband 1.

(e) Wordlength 12 bit.

Table 4.6 Summary of Filter Design in Test Case 4

Filter Length N = 28

Infinite Wordlength NPRM = -51.42 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

Trellis

Search

[4]

Free

Allocation

-50.07 17 9

GA Integer -50.85 24 12

Table 4.6 summarizes the results for the given filter specifications. The filter

designed by GA has a slightly improved attenuation than Trellis Search’s filter with

increased adder cost in terms of RAG-n implementation. Trellis Search uses free

allocation method for filter coefficient quantization and designs filter with

coefficients expressible as Signed-Power-of-Two (SPT) terms to reduce

implementation complexity. The filter designed by GA and implemented with RAG-

n uses less number of adders than the one designed by Trellis Search and

implemented by CSD. Results show considerable reduction in number of adders

required for the implementation when RAG-n is used. Figure 4.17 shows frequency

responses of filters designed by GA (red) and Parks-McClellan (black) algorithm.

 48

Figure 4.17 Frequency Response (Red:
GA Implementation;
Black: Remez
Implementation for the
Filter in Test Case 4)

Test Case 5

The example filter of “A new approach to Discrete Coefficient FIR Digital

Filter Design by Simulated Annealing [5]” by T. Çiloğlu and Z. Ünver is used for the

test case.

Filter Requirements are as follows:

(a) Symmetrical Impulse Response; Low pass

(b) Passband edges at 0.0 and 0.20 sampling frequency

(c) Stopband edges at 0.25 and 0.50 sampling frequency

(d) Weight in passband 1.

 49

Table 4.7 Summary of Filter Design in Test Case 5

Filter Length N = 15

Wordlength = 5

Stopband Weight = 1

Infinite Wordlength NPRM = -18.46 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

SA [5] 2 SPT -17.64 4 3

GA Integer -16.66 3 3

GA Integer -17.80 5 3

Filter Length N = 25

Wordlength = 5

Stopband Weight = 1

Infinite Wordlength NPRM = -28.04 dB

SA [5] 2 SPT -23.41 2 2

GA Integer -23.41 2 2

Filter Length N = 15

Wordlength = 7

Stopband Weight = 10

Infinite Wordlength NPRM = -11.09 dB

SA [5] 2 SPT -10.37 7 3

GA Integer -10.48 9 4

Filter Length N = 25

Wordlength = 7

Stopband Weight = 10

Infinite Wordlength NPRM = -18.21 dB

SA [5] 2 SPT -16.14 9 3

GA Integer -15.85 8 5

GA Integer -16.14 9 3

 50

Table 4.7 Summary of Filter Design in Test Case 5 (Con’t)

Filter Length N = 35

Wordlength = 7

Stopband Weight = 10

Infinite Wordlength NPRM = -25.57 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

SA [5] 2 SPT -17.58 8 3

GA Integer -17.58 8 3

GA Integer -17.59 8 5

Filter Requirements are as follows:

(a) Symmetrical Impulse Response; Low pass

(b) Passband edges at 0.0 and 0.1 sampling frequency

(c) Stopband edges at 0.14 and 0.50 sampling frequency

(d) Weights in passband and stopband 1.

(e) Wordlength 13 bit.

Table 4.8 Summary of Filter Design in Test Case 5

Filter Length N = 63

Infinite Wordlength NPRM = -48.05 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

SA [5] 2 SPT -39.52 27 7

GA Integer -47.63 61 25

Table 4.7 and 4.8 summarize the results for the given filter specifications. The

filter designed by GA has nearly same (for table 4.6) and better (for table 4.7)

attenuation than SA’s [5] filters with same or increased adder cost in terms of RAG-

 51

n. The filters designed by GA and implemented with RAG-n uses less number of

adders than the one designed by SA and implemented with CSD. The need for

multiple trials for GA and SA to get the satisfactory results and the need for the

experience to adjust the algorithm parameters are the major disadvantages GA and

SA. Figure 4.18-26 show frequency responses of filters designed by GA (red) and

Parks-McClellan (black) algorithm.

Figure 4.18 Frequency Response (-
16.66 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
15, Wordlength 5 Bit) in
Test Case 5)

 52

Figure 4.19 Frequency Response (-

17.80 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
15, Wordlength 5 Bit) in
Test Case 5)

Figure 4.20 Frequency Response (Red:
GA Implementation;
Black: Remez
Implementation for the
Filter (Filter Length 25,
Wordlength 5 Bit) in Test
Case 5)

 53

Figure 4.21 Frequency Response (Red:
GA Implementation;
Black: Remez
Implementation for the
Filter (Filter Length 15,
Wordlength 7 Bit,
Stopband Weight 10) in
Test Case 5)

Figure 4.22 Frequency Response (-
15.85 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
25, Wordlength 7 Bit,
Stopband Weight 10) in
Test Case 5)

 54

Figure 4.23 Frequency Response (-

16.14 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
25, Wordlength 7 Bit,
Stopband Weight 10) in
Test Case 5)

Figure 4.24 Frequency Response (-
17.59 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
35, Wordlength 7 Bit,
Stopband Weight 10) in
Test Case 5)

 55

Figure 4.25 Frequency Response (-
17.58 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter (Filter Length
35, Wordlength 7 Bit,
Stopband Weight 10) in
Test Case 5)

Figure 4.26 Frequency Response (Red:
GA Implementation;
Black: Remez
Implementation for the
Filter (Filter Length 63,
Wordlength 13 Bit) in Test
Case 5)

 56

Test Case 6

The example filter of “Design of Discrete-Coefficient-Value Linear Phase

FIR Filters with Optimum Normalized Peak Ripple Magnitude [6]” by Y.C. Lim is

used for the test case.

Filter Requirements are as follows:

(a) Symmetrical Impulse Response; Low pass

(b) Passband edges at 0.0 and 0.15 sampling frequency

(c) Stopband edges at 0.25 and 0.50 sampling frequency

(d) Weight in passband and stopband 1.

(e) Worlength 9 bit.

Table 4.9 Summary of Filter Design in Test Case 6

Filter Length N = 35

Infinite Wordlength NPRM = - 61.38 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

MILP [6] 2 SPT -39.12 12 5

GA Integer -48.34 17 8

Table 4.9 summarizes the results for the given filter. The filter designed by

GA has a better attenuation than MILP’s [6] filter with increased adder cost in terms

of RAG-n. The filter designed by GA and implemented with RAG-n uses less

number of adders than the one designed by MILP and implemented with CSD.

Results show considerable reduction in the number of adders required for

implementation when RAG-n is used. Figure 4.27 shows frequency responses of

filters designed by GA (red) and Parks-McClellan (black) algorithm.

 57

Figure 4.27 Frequency Response (Red:
GA Implementation;
Black: Remez
Implementation for the
Filter (in Test Case 6)

Test Case 7

The example filter of “An Improved Polynomial Time Algorithm for

Designing Digital Filters with Power-of-Two Coefficients [7]” by C.L. Chen, K.Y.

Khoo and A.N. Willson is used for the test case.

Filter Requirements are as follows:

(a) Symmetrical Impulse Response; Low pass

(b) Passband edges at 0.0 and 0.15 sampling frequency

(c) Stopband edges at 0.25 and 0.50 sampling frequency

(d) Weight in passband and stopband 1.

(e) Worlength 9 bit.

 58

 Table 4.10 Summary of Filter Design in Test Case 7

Filter Length N = 25

Infinite Wordlength NPRM = -46.03 dB

Filter

Design

Method

Quant.

Type

NPRM

(dB)

Complexity

(CSD)

(Adders)

Complexity

 (RAG-n)

(Adders)

PTA[7] Free

Allocation

-43.97 13 8

GA Integer -43.93 13 6

GA Integer -44.20 15 9

Table 4.10 summarizes the results for the given filter. The filter designed by

GA has slightly better attenuation than PTA’s filter with increased adder cost in

terms of RAG-n implementation. PTA is a filter design method that uses free

allocation for coefficient quantization and expresses filter coefficients as SPT terms

to reduce implementation complexity. All the filters designed by GA and

implemented by RAG-n uses less number of adders than the filter designed by PTA

with CSD implementation. The implementation complexity of PTA with RAG-n is

less than the complexity with CSD. Better results are obtained by applying RAG-n to

PTA instead of CSD implementation. Figure 4.28-29 show frequency responses of

filters designed by GA (red) and Parks-McClellan (black) algorithm

 59

Figure 4.28 Frequency Response (-
43.93 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter in Test Case 7)

Figure 4.29 Frequency Response (-
44.20 dB) (Red: GA
Implementation; Black:
Remez Implementation for
the Filter in Test Case 7)

 60

CHAPTER 5

CONCLUSION

The work in this thesis is composed of two stages namely filter design stage

and filter implementation stage. In the filter design stage, a survey has been made on

discrete coefficient FIR digital filters design methods that use different quantization

techniques for filter coefficients in literature and comparisons have been made with

the filter design method based on genetic algorithm that is implemented for this

thesis in terms of filter performance. The main focus of the thesis is the filter

implementation stage. In this stage, algorithms and filter structures that reduce

implementation complexity have been searched, implemented and applied to these

filter design methods and comparisons have been made in terms of filter

implementation complexity of architectures based on the use of CSD and RAG-n.

Mixed integer linear programming [3], [6], [11], [16], simulated annealing

[5], [14], and [23], genetic algorithms [2], [15], [17], [19], [21], and [24], local

search [1], [18] and [25], and free allocation algorithms [4], [7], [20], and [22] have

been used for the design of discrete coefficient FIR digital filters in this thesis.

As a conclusion for filter design methods, test results have showed that there

is no best method for discrete coefficient filter design. Filter designer should use all

the methods if possible in the design process.

Implementation complexity of the filters, that is number of adders required to

implement filter coefficients, is as important as filter design. Some of the algorithms

mentioned above have focused on designing filters with coefficients expressible as

SPT terms in order to reduce this complexity and but it can be said that filter

implementation complexity is not taken into consideration completely. In this thesis,

implementation complexity is also considered and these design methods have been

compared. SPT or CSD and RAG-n algorithms have been used for the realization of

the filter coefficients since they reduce the required number of adders. RAG-n

algorithm has been used in filter design methods that limit the filter coefficients to

SPT terms [1], [4]-[7], [11], [14], [16], [22]. For RAG-n algorithm, transposed form

 61

FIR filter structure has been used since it allows multiple uses of the repeated and

producible coefficients. Test results have showed that filter implementations that use

RAG-n have used nearly %50 adders less than a CSD design even if filter is designed

with coefficients expressible as SPT terms since RAG-n algorithm exploits the

redundancy in the filter coefficient set by use of the transposed form filter structure.

It can be concluded that constraining the filter coefficients to SPT terms does not

produce less complex implementations. Instead filter coefficients can be designed

using integer values instead of SPT terms, other algorithms can be used to reduce the

implementation complexity.

As a future work, the improvement of the above algorithms with the inclusion

of implementation complexity in the cost function in addition to filter performance

can be considered so that optimization of both performance and implementation

complexity can be achieved.

 62

REFERENCES

[1] H. Samueli, “An Improved Search Algorithm for the Design of Multiplierless

FIR filters with Powers-of-Two Coefficients,” IEEE Trans. Circuits Syst., vol.

36, pp. 1044-1047, July 1989.

[2] D. J. Xu and M. L. Daley, “Design of Optimal Paralel Filter Using a Parallel

Genetic Algorithm,” IEEE Trans. Circuits Syst., vol. 42, pp. 673-675, October

1995.

[3] D.M. Kodek, “Design of Optimal Finite Wordlength FIR Digital Filters Using

Integer Programming Techniques,” IEEE Trans. Acoustics, Speech, Signal

Processing, vol. ASSP-28, pp. 304-308, June 1980.

[4] C. L. Chen and A. N. Willson, “A Trellis Search Algorithm for the Design of

FIR filters with Signed-Powers-of-Two Coefficients,” IEEE Trans. Circuits

Syst., vol. 46, pp. 29-39, January 1999.

[5] T. Çiloğlu and Z. Ünver, “A new approach to Discrete Coefficient FIR Digital

Filter Design by Simulated Annealing,” Proc. Of IEEE Int. Con. On Acoustics,

Speech and Sig. Proc., Minneapolis, pp.101-104, 1993.

[6] Y. C. Lim and S. R. Parker, “Design of Discrete-Coefficient-Value Linear

Phase FIR Filters with Optimum Normalized Peak Ripple Magnitude,” IEEE

Trans. Circuits Syst., vol. 37, pp. 1480-1486, Dec. 1990.

[7] C. L. Chen, K. Y. Khoo and A.N. Willson Jr., “An Improved Polynomial Time

Algorithm for Designing Digital Filters with Power-of-Two Coefficients,” in

Proc. IEEE Int. Symp. Circuits Systems, Seattle, WA, May 1995, vol. 1, pp.

223-226.

[8] A.G. Dempster and M.D. Macleod, “Use Of Minimum-Adder Multiplier

Blocks In FIR Digital Filters,” IEEE Trans. Circuits Syst., vol. 42, pp. 569-577,

Sep. 1995.

[9] A.G. Dempster and M.D. Macleod, “Constant Integer Multiplication Using

Minimum Adders,” IEE Proc. –Circuits, Devices, Syts., vol. 141, pp. 407-413,

Oct.1994.

 63

[10] T. Çiloğlu, “Normalized Peak Ripple Magnitude as an Objective Function in

Discrete Coefficient FIR Filter Design,” IEEE Midwest Symposium on Circuits

and Systems, August 2001, Dayton, Ohio, USA.

[11] Y. C. Lim and S. R. Parker, “FIR Filter Design over A Discrete Powers-Of-

Two Coefficient Space,” IEEE Trans. Acoust., Speech, Signal Processing, vol.

ASSP-31, pp. 583-591, June 1983.

[12] D. R. Bull and D. H. Horrocks, “Primitive Operator Digital Filters,” IEE Proc.

G, vol. 138, pp. 401-412, June 1991.

[13] D.M. Kodek and K. Steiglitz, “Comparison of Optimal and Local Search

Methods for Designing Finite Wordlength FIR Digital Filters,” IEEE Trans.

Circuits Syst., vol. 28, pp. 28-32, Jan. 1981.

[14] N. Benvenuto, M. Marchesi, and A. Uncini, “Applications of Simulated

Annealing for the Design of Special Digital Filters,” IEEE Trans. Signal

Process. vol. 40, pp. 323-332, Feb. 1992.

[15] A. Lee, M. Ahmadi, G.A. Jullien, and R. S. Lashkari, W.C. Miller “Design of

1-D FIR Filters with Genetic Algorithms,” Proceedings of 1999 IEEE Int.

Symp. On Circuits and Systems, vol. 3, Orlando, USA, pp. 295-298, 1999.

[16] Y. C. Lim and S. R. Parker, “Discrete Coefficient FIR Digital Filter Design

Based Upon an LMS Criteria,” IEEE Trans. Circuits Syst., vol. CAS-30, pp.

723-739, Oct. 1983.

[17] G. Wade, A. Roberts and G. Williams, “Multiplier-less FIR filter design using

a genetic algorithm,” IEE Proc., Vision, Image Signal Process., 81, pp.175-180,

141 (3) June 1994.

[18] Q. Zhao and Y. Tadokoro, “A Simple Design of FIR Filters with Power-of-

Two Coefficients,” IEEE Trans. Circuits Syst., vol. 35, pp. 566-570, May.

1988.

[19] D.W. Redmill and D.R. Bull, “Automated Design of Low Complexity FIR

Filters,” Proceedings of 1998 IEEE Int. Symp. On Circuits and Systems, 1998.

[20] T. Çiloğlu, “Design of FIR Filters for low implementation complexity,”

Electronics Letters, vol.35, No.7, pp.529-530, April 1999.

[21] D.W. Redmill, D.R. Bull, and E. Dagless, “Genetic synthesis of reduced

complexity filters and filter banks using primitive operator directed graphs,”

 64

IEE Circuits, Devices and Systems, IEE Proceedings, Volume: 147 , Issue: 5 ,

pp.303 – 310, Oct. 2000.

[22] D. Li, Y. C. Lim, Y. Lian, and J. Song, “A Polynomial-Time Algorithm for

Designing FIR Filters with Power-of-Two Coefficients,” Signal Processing,

IEEE Transactions on Acoustics, Speech, and Signal Processing, IEEE

Transactions on] , Vol. 50 , Issue: 8,

pp.1935 – 1941, Aug. 2002

[23] N. Benvenuto and M. Marchesi, “Digital Filters Design by Simulated

Annealing,” IEEE Transactions on Circuits and Systems, Vol. 36, No. 3, pp.

459-460, March 1989.

[24] D. Suckley, “Genetic Algorithm in the design of FIR filters,” IEE Proc. G.,

Vol. 138, pp. 234-238, April 1991.

[25] T. Çiloğlu, “An efficient local search method guided by gradient information

for discrete coefficient filter design”, Signal Processing, vol. 82, no.10, pp.

1337-1350, Oct. 2002.

 65

APPENDIX

FILTER COEFFICIENTS FOR TEST CASES

Test Case 1

Filter (1) Coefficients for H. Samueli [1]:

2)0(=h , 6)1(=h , 2)2(−=h , 16)3(−=h , 14)4(−=h , 20)5(=h , 40)6(=h ,

2)7(−=h , 80)8(−=h , 68)9(−=h , 112)10(=h , 368)11(=h , 492)12(=h

Filter (1) Coefficients for GA (43.74 dB):

1)0(=h , 4)1(=h , 0)2(=h , 8)3(−=h , 7)4(−=h , 10)5(=h , 21)6(=h , 0)7(=h ,

39)8(−=h , 35)9(−=h , 55)10(=h , 184)11(=h , 245)12(=h

Filter (1) Coefficients for GA (43.93 dB):

1)0(=h , 4)1(=h , 0)2(=h , 8)3(−=h , 7)4(−=h , 10)5(=h , 21)6(=h , 0)7(=h ,

40)8(−=h , 35)9(−=h , 56)10(=h , 186)11(=h , 249)12(=h

Filter (2) Coefficients for H. Samueli [1]:

62)0(=h , 56)1(=h , 58)2(=h , 44)3(=h , 16)4(=h , 34)5(−=h , 118)6(−=h ,

232)7(−=h , 376)8(−=h , 536)9(−=h , 704)10(−=h , 864)11(−=h ,

1000)12(−=h , 1064)13(−=h , 1058)14(−=h , 928)15(−=h , 672)16(−=h ,

258)17(−=h , 316)18(=h , 1052)19(=h , 1928)20(=h , 2944)21(=h ,

4016)22(=h , 5152)23(=h , 6272)24(=h , 7296)25(=h , 8220)26(=h ,

8956)27(=h , 9474)28(=h , 9736)29(=h

Filter (2) Coefficients for GA:

22)0(=h , 21)1(=h , 28)2(=h , 33)3(=h , 36)4(=h , 34)5(=h , 26)6(=h ,

12)7(=h , 10)8(−=h , 39)9(−=h , 73)10(−=h , 110)11(−=h , 145)12(−=h ,

174)13(−=h , 193)14(−=h , 194)15(−=h , 174)16(−=h , 128)17(−=h ,

53)18(−=h , 51)19(−=h , 183)20(=h , 339)21(=h , 514)22(=h , 699)23(=h ,

884)24(=h , 1060)25(=h , 1216)26(=h , 1343)27(=h , 1432)28(=h ,

1478)29(=h

 66

Test Case 2

Filter Coefficients for D.J. Xu and M. L. Daley [2]:

2)0(=h , 3)1(=h , 1)2(−=h , 4)3(−=h , 1)4(=h , 6)5(=h , 1)6(=h , 7)7(−=h ,

5)8(−=h , 9)9(=h , 10)10(=h , 8)11(−=h , 16)12(−=h , 5)13(=h , 27)14(=h ,

2)15(=h , 44)16(−=h , 24)17(−=h , 92)18(=h , 211)19(=h

Filter Coefficients for GA (-36.81dB):

1)0(=h , 4)1(=h , 2)2(−=h , 4)3(−=h , 0)4(=h , 6)5(=h , 2)6(=h , 7)7(−=h ,

5)8(−=h , 8)9(=h , 10)10(=h , 8)11(−=h , 17)12(−=h , 5)13(=h , 27)14(=h ,

3)15(=h , 44)16(−=h , 25)17(−=h , 92)18(=h , 212)19(=h

Filter Coefficients for GA (-37.82dB):

3)0(=h , 8)1(=h , 4)2(−=h , 7)3(−=h , 1)4(=h , 11)5(=h , 3)6(=h , 15)7(−=h ,

10)8(−=h , 17)9(=h , 20)10(=h , 16)11(−=h , 34)12(−=h , 10)13(=h ,

54)14(=h , 5)15(=h , 87)16(−=h , 49)17(−=h , 184)18(=h , 423)19(=h

Filter Coefficients for GA (-38.58dB):

3)0(=h , 9)1(=h , 4)2(−=h , 9)3(−=h , 1)4(=h , 13)5(=h , 4)6(=h ,

17)7(−=h , 11)8(−=h , 20)9(=h , 23)10(=h , 19)11(−=h , 40)12(−=h ,

12)13(=h , 64)14(=h , 6)15(=h , 103)16(−=h , 58)17(−=h , 217)18(=h ,

499)19(=h

Test Case 3

Filter (Filter Length 21, Wordlength 7 Bit) Coefficients for Kodek [3]:

2)0(=h , 0)1(=h , 2)2(−=h , 1)3(−=h , 2)4(=h , 3)5(=h , 3)6(−=h , 6)7(−=h ,

3)8(=h , 20)9(=h , 28)10(=h

Filter (Filter Length 21, Wordlength 7 Bit) Coefficients for GA (-23.86 dB):

2)0(=h , 0)1(=h , 2)2(−=h , 1)3(−=h , 2)4(=h , 3)5(=h , 3)6(−=h , 6)7(−=h ,

3)8(=h , 20)9(=h , 28)10(=h

Filter (Filter Length 21, Wordlength 7 Bit) Coefficients for GA (-24.06 dB):

5)0(=h , 0)1(=h , 4)2(−=h , 2)3(−=h , 5)4(=h , 5)5(=h , 6)6(−=h ,

12)7(−=h , 6)8(=h , 40)9(=h , 57)10(=h

Filter (Filter Length 21, Wordlength 7 Bit) Coefficients for GA (-24.38 dB):

 67

6)0(=h , 0)1(=h , 5)2(−=h , 3)3(−=h , 6)4(=h , 7)5(=h , 7)6(−=h ,

15)7(−=h , 8)8(=h , 52)9(=h , 74)10(=h

Filter (Filter Length 40, Wordlength 10 Bit) Coefficients for Kodek [3]:

2)0(=h , 2)1(=h , 1)2(−=h , 4)3(−=h , 0)4(=h , 6)5(=h , 1)6(=h , 8)7(−=h ,

5)8(−=h , 8)9(=h , 10)10(=h , 9)11(−=h , 17)12(−=h , 5)13(=h , 27)14(=h ,

2)15(=h , 43)16(−=h , 25)17(−=h , 92)18(=h , 211)19(=h

Filter Coefficients for GA (-36.81dB):

1)0(=h , 4)1(=h , 2)2(−=h , 4)3(−=h , 0)4(=h , 6)5(=h , 2)6(=h , 7)7(−=h ,

5)8(−=h , 8)9(=h , 10)10(=h , 8)11(−=h , 17)12(−=h , 5)13(=h , 27)14(=h ,

3)15(=h , 44)16(−=h , 25)17(−=h , 92)18(=h , 212)19(=h

Filter Coefficients for GA (-37.82dB):

3)0(=h , 8)1(=h , 4)2(−=h , 7)3(−=h , 1)4(=h , 11)5(=h , 3)6(=h , 15)7(−=h ,

10)8(−=h , 17)9(=h , 20)10(=h , 16)11(−=h , 34)12(−=h , 10)13(=h ,

54)14(=h , 5)15(=h , 87)16(−=h , 49)17(−=h , 184)18(=h , 423)19(=h

Filter Coefficients for GA (-38.58dB):

3)0(=h , 9)1(=h , 4)2(−=h , 9)3(−=h , 1)4(=h , 13)5(=h , 4)6(=h ,

17)7(−=h , 11)8(−=h , 20)9(=h , 23)10(=h , 19)11(−=h , 40)12(−=h ,

12)13(=h , 64)14(=h , 6)15(=h , 103)16(−=h , 58)17(−=h , 217)18(=h ,

499)19(=h

Test Case 4

Filter Coefficients for Trellis Search:

14)0(−=h , 0)1(=h , 36)2(=h , 32)3(=h , 42)4(−=h , 97)5(−=h , 0)6(=h ,

172)7(=h , 144)8(=h , 192)9(−=h , 432)10(−=h , 1)11(−=h , 1104)12(=h ,

2088)13(=h

Filter Coefficients for GA:

12)0(−=h , 1)1(=h , 29)2(=h , 27)3(=h , 34)4(−=h , 78)5(−=h , 1)6(−=h ,

140)7(=h , 117)8(=h , 154)9(−=h , 350)10(−=h , 2)11(−=h , 895)12(=h ,

1693)13(=h

 68

Test Case 5

Filter (Filter Length 15, Wordlength 5 Bit, Stopband Weight 1) Coefficients for SA

[5]:

1)0(−=h , 3)1(=h , 2)2(=h , 2)3(−=h , 5)4(−=h , 2)5(=h , 14)6(=h ,

20)7(=h

Filter (Filter Length 15, Wordlength 5 Bit, Stopband Weight 1) Coefficients for GA

(-16.66 dB):

1)0(−=h , 2)1(=h , 2)2(=h , 1)3(−=h , 3)4(−=h , 2)5(=h , 10)6(=h , 15)7(=h

Filter (Filter Length 15, Wordlength 5 Bit, Stopband Weight 1) Coefficients for GA

(-17.80 dB):

1)0(−=h , 3)1(=h , 2)2(=h , 2)3(−=h , 4)4(−=h , 2)5(=h , 13)6(=h , 19)7(=h

Filter (Filter Length 25, Wordlength 5 Bit, Stopband Weight 1) Coefficients for SA

[5]:

1)0(−=h , 0)1(=h , 1)2(=h , 0)3(=h , 1)4(−=h , 1)5(−=h , 2)6(=h , 2)7(=h ,

2)8(−=h , 4)9(−=h , 2)10(=h , 14)11(=h , 20)12(=h

Filter (Filter Length 25, Wordlength 5 Bit, Stopband Weight 1) Coefficients for GA:

1)0(−=h , 0)1(=h , 1)2(=h , 0)3(=h , 1)4(−=h , 1)5(−=h , 2)6(=h , 2)7(=h ,

2)8(−=h , 4)9(−=h , 2)10(=h , 14)11(=h , 20)12(=h

Filter (Filter Length 15, Wordlength 7 Bit, Stopband Weight 10) Coefficients for SA

[5]:

6)0(=h , 10)1(=h , 4)2(=h , 10)3(−=h , 14)4(−=h , 6)5(=h , 40)6(=h ,

56)7(=h

Filter (Filter Length 15, Wordlength 7 Bit, Stopband Weight 10) Coefficients for

GA:

9)0(=h , 15)1(=h , 8)2(=h , 9)3(−=h , 15)4(−=h , 10)5(=h , 51)6(=h ,

72)7(=h

Filter (Filter Length 25, Wordlength 7 Bit, Stopband Weight 10) Coefficients for SA

[5]:

1)0(=h , 3)1(=h , 2)2(=h , 3)3(−=h , 6)4(−=h , 2)5(−=h , 5)6(=h , 3)7(=h ,

8)8(−=h , 12)9(−=h , 7)10(=h , 40)11(=h , 56)12(=h

 69

Filter (Filter Length 25, Wordlength 7 Bit, Stopband Weight 10) Coefficients for GA

(-15.85 dB):

1)0(=h , 4)1(=h , 4)2(=h , 0)3(=h , 4)4(−=h , 1)5(−=h , 5)6(=h , 4)7(=h ,

6)8(−=h , 10)9(−=h , 7)10(=h , 37)11(=h , 52)12(=h

Filter (Filter Length 25, Wordlength 7 Bit, Stopband Weight 10) Coefficients for GA

(-16.14 dB):

1)0(=h , 3)1(=h , 2)2(=h , 3)3(−=h , 6)4(−=h , 2)5(−=h , 5)6(=h , 3)7(=h ,

8)8(−=h , 12)9(−=h , 7)10(=h , 40)11(=h , 56)12(=h

Filter (Filter Length 35, Wordlength 7 Bit, Stopband Weight 10) Coefficients for SA

[5]:

0)0(=h , 0)1(=h , 0)2(=h , 1)3(−=h , 2)4(−=h , 1)5(−=h , 2)6(=h , 2)7(=h ,

2)8(−=h , 5)9(−=h , 1)10(−=h , 6)11(=h , 5)12(=h , 5)13(−=h , 10)14(−=h ,

6)15(=h , 34)16(=h , 48)17(=h

Filter (Filter Length 35, Wordlength 7 Bit, Stopband Weight 10) Coefficients for GA

(-17.59 dB):

0)0(=h , 1)1(=h , 2)2(=h , 1)3(=h , 2)4(−=h , 2)5(−=h , 1)6(=h , 3)7(=h ,

0)8(=h , 4)9(−=h , 1)10(−=h , 6)11(=h , 5)12(=h , 7)13(−=h , 12)14(−=h ,

8)15(=h , 44)16(=h , 62)17(=h

Filter (Filter Length 35, Wordlength 7 Bit, Stopband Weight 10) Coefficients for GA

(-17.58 dB):

0)0(=h , 0)1(=h , 0)2(=h , 1)3(−=h , 2)4(−=h , 1)5(−=h , 2)6(=h , 2)7(=h ,

2)8(−=h , 5)9(−=h , 1)10(−=h , 6)11(=h , 5)12(=h , 5)13(−=h , 10)14(−=h ,

6)15(=h , 34)16(=h , 48)17(=h

Filter (2) Coefficients for SA [5]:

6)0(−=h , 4)1(−=h , 1)2(=h , 7)3(=h , 8)4(=h , 10)5(=h , 0)6(=h , 9)7(−=h ,

24)8(−=h , 20)9(−=h , 4)10(−=h , 24)11(=h , 40)12(=h , 40)13(=h , 9)14(=h ,

28)15(−=h , 68)16(−=h , 72)17(−=h , 30)18(−=h , 34)19(=h , 96)20(=h ,

120)21(=h , 72)22(=h , 36)23(−=h , 160)24(−=h , 240)25(−=h , 160)26(−=h ,

48)27(=h , 384)28(=h , 768)29(=h , 1040)30(=h , 1152)31(=h

 70

Filter (2) Coefficients for GA:

23)0(−=h , 7)1(−=h , 6)2(=h , 22)3(=h , 32)4(=h , 26)5(=h , 2)6(=h ,

30)7(−=h , 52)8(−=h , 46)9(−=h , 8)10(−=h , 46)11(=h , 87)12(=h ,

85)13(=h , 29)14(=h , 60)15(−=h , 135)16(−=h , 145)17(−=h , 67)18(−=h ,

75)19(=h , 209)20(=h , 251)21(=h , 146)22(=h , 86)23(−=h , 345)24(−=h ,

479)25(−=h , 350)26(−=h , 94)27(=h , 783)28(=h , 1535)29(=h ,

2116)30(=h , 2334)31(=h

Test Case 6

Filter Coefficients for MILP [6] (-33.09 dB):

1)0(−=h , 2)1(=h , 3)2(=h , 0)3(=h , 6)4(−=h , 4)5(−=h , 8)6(=h , 10)7(=h ,

5)8(−=h , 18)9(−=h , 2)10(−=h , 24)11(=h , 18)12(=h , 28)13(−=h ,

48)14(−=h , 32)15(=h , 160)16(=h , 224)17(=h

Filter Coefficients for MILP [6] (-39.09 dB):

1)0(=h , 1)1(=h , 1)2(−=h , 3)3(−=h , 0)4(=h , 4)5(=h , 4)6(=h , 3)7(−=h ,

9)8(−=h , 3)9(−=h , 12)10(=h , 14)11(=h , 6)12(−=h , 28)13(−=h ,

17)14(−=h , 40)15(=h , 112)16(=h , 144)17(=h

Filter Coefficients for GA:

0)0(=h , 1)1(=h , 0)2(=h , 2)3(−=h , 2)4(−=h , 3)5(=h , 6)6(=h , 0)7(=h ,

11)8(−=h , 9)9(−=h , 12)10(=h , 25)11(=h , 0)12(=h , 44)13(−=h ,

38)14(−=h , 60)15(=h , 198)16(=h , 264)17(=h

Test Case 7

Filter Coefficients for PTA:

2)0(=h , 8)1(=h , 0)2(=h , 18)3(−=h , 14)4(−=h , 20)5(=h , 44)6(=h ,

0)7(=h , 82)8(−=h , 72)9(−=h , 116)10(=h , 386)11(=h , 514)12(=h
Filter Coefficients for GA (-43.93dB):

1)0(=h , 4)1(=h , 0)2(=h , 8)3(−=h , 7)4(−=h , 10)5(=h , 21)6(=h , 0)7(=h ,

40)8(−=h , 35)9(−=h , 56)10(=h , 186)11(=h , 249)12(=h

Filter Coefficients for GA (-44.20dB):

1)0(=h , 3)1(=h , 0)2(=h , 7)3(−=h , 6)4(−=h , 8)5(=h , 17)6(=h , 0)7(=h ,

33)8(−=h , 29)9(−=h , 46)10(=h , 153)11(=h , 205)12(=h

