

REAL-TIME VIDEO ENCODER ON TMSC6000 PLATFORM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BARAN ERDOĞAN

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NOVEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. İsmet Erkmen
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Gözde Bozdağı Akar
 Supervisor

Examining Committee Members

Prof. Dr. Hasan Güran (METU,EE) _____________________

Assoc. Prof. Dr. Gözde Bozdağı Akar (METU,EE) _____________________

Assoc. Prof. Dr. Aydın Alatan (METU,EE) _____________________

Asst. Prof. Dr. Cüneyt Bazlamaççı (METU,EE) _____________________

Alpaslan Lorasdağı (ASELSAN) _____________________

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Baran Erdoğan

Signature :

 iii

ABSTRACT

REAL-TIME VIDEO ENCODER ON TMSC6000 PLATFORM

Erdoğan, Baran

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Gözde Bozdağı Akar

November 2004, 77 pages

Technology is integrated into daily life more than before as it evolves through

communication area. In the past, it started with audio devices that help us to

communicate while far between two ends of communication line. Nowadays

visual communication comes in front considering the communication technology.

This became possible with the improvement in the compression techniques of

visual data and increasing speed, optimized architecture of the new family

processors. These type processors are named as Digital Signal Processors

(DSP’s). Texas Instruments TMS320C6000 Digital Signal Processor family offers

one of the fastest DSP core in the market. TMS320C64x sub-family processors

are newly developed under the TMS320C6000 family to overcome disadvantages

of its predecessor family TMS320C62x. TMS320C64x family has optimized

architecture for packed data processing, improved data paths and functional units,

 iv

improved memory architecture and increased speed. These capabilities make this

family of processors good candidate for real-time video processing applications.

Advantages of this core are used for implementing newly established H.264

Recommendation. Highly optimizing C Compiler of TMS320C64x enabled fast

running implementation of encoder blocks that bring heavy computational load to

encoder. Such as fast implementation of Motion Estimation, Transform, Entropy

Coding became possible. Simplified Densely Centered Uniform-P Search

algorithm is used for fast estimation of motion vectors. Time taking parts

enhanced to improve the performance of the encoder.

Keywords: H.26L, H.264, Video Compression, Real-time, Digital Signal

Processor

 v

ÖZ

GERÇEK ZAMANLI VIDEO KODLAYICISININ TMSC6000
PLATFORMUNDA GERÇEKLENMESİ

Erdoğan, Baran

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Gözde Bozdağı Akar

Kasım 2004, 77 sayfa

Günümüzde teknoloji, iletişim teknolojileri alanında daha fazla ilerledikçe, günlük

hayata daha da fazla girmektedir. Geçmişte bu durum uzak noktalar arasında sesli

iletişimi sağlayan iletişim araçlarıyla başladı. Bugünlerde ise, iletişim teknolojisi

alanında görüntülü iletişim ön plana çıkmaktadır. Bu, sıkıştırma yöntemlerindeki

gelişmeyle ve hızı artan, mimarisi bu tür işler için tasarlanan işlemci ailelerinin

gelişmesi ile mümkün olmuştur. Bu tip işlemciler Sayısal Sinyal İşlemciler (SSİ)

olarak adlandırılmaktadır. Texas Instruments TMS320C6000 Sayısal Sinyal

İşleyici ailesi şu anda geliştirilen en hızlı SSİ çekirdeklerinden birine sahip

bulunmaktadır. Bu işlemci ailesi içinde bulunan TMS320C64x işlemci alt ailesi,

kendinden once geliştirilen, TMS320C62x işlemci alt ailesinin olumsuz yönlerini

gidermek üzere geliştirilmiştir. TMS320C64x ailesi işlemcilerin paketlenmiş veri

 vi

işlenmesi için geliştirilmiş mimarisi, genişletilmiş veriyolları ve işlevsel üniteleri,

geliştirilmiş hafıza mimarisi bulunmaktadır ve daha hızlıdırlar. Bu yetenekleri,

TMS320C64x işlemci ailesini, gerçek zamanlı görüntü işleme uygulamaları için

iyi bir seçenek yapmaktadır. Bu mimarinin artıları yeni geliştirilen H.264

standardını gerçeklemek için kullanılmıştır. TMS320C64x in C de yazılmış

kodları işlemci mimarisine en uygun şekilde derleyen derleyicisiyle, fazla sayıda

hesaplama gerektiren kodlayıcı bloklarının hızlı çalışacak bir şekilde

gerçeklenmesi mümkün olmuştur. Hareket kestiriminde kullanılmak üzere

basitleştirilmiş “Yoğun Kümelenmiş Düzgün-P Arama” algoritması kullanılmıştır.

Zaman alan kısımlar daha hızlı çalışacak şekilde yeniden düzenlenmiştir.

Anahtar Kelimeler: H.26L, H.264, Görüntü Sıkıştırma, Gerçek Zamanlı,

Sayısal Sinyal İşlemci.

 vii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Gözde Bozdağı Akar for her

valuable guidance, advice and encouragements.

I would like to thank ASELSAN for technical support.

I am grateful to my family for everything.

 viii

TABLE OF CONTENTS

PLAGIARISM…………………………………………………………… iii

ABSTRACT………..…….……………………………………………… iv

ÖZ…………………………..……………..……………………………... vi

ACKNOWLEDGEMENTS……………..……………………………..... viii

TABLE OF CONTENTS………………………………………………... ix

LIST OF TABLES……………………………………………................. xiii

LIST OF FIGURES……………………………………………............... xiv

LIST OF ABBREVIATIONS…………………………………................ xvi

CHAPTER

1. INTRODUCTION………………………………………………….... 1

1.1 Problem Definition and Motivation……………………………... 1

1.2 Scope of the Thesis…………………..………………………..… 2

1.3 Outline of Dissertation…………………………………………... 2

2. OVERVIEW OF VIDEO CODING STANDARDS………………… 4

2.1 ITU-T Standards………………………………………………..... 4

2.1.1 H.261………………………………………………………… 4

2.1.2 H.263…………………………..…………………..……….... 5

2.1.3 H.263+……………………………….……………..………... 5

2.2 ISO/IEC Standards……………….. 5

2.2.1 MPEG-1….. 6

2.2.2 MPEG-2…………………….. 6

3. THE H.264 RECOMMENDATION………………………………… 7

3.1 Overview…………………………………………………………. 7

3.2 Comparison of H.264 with Other Standards..…............................. 7

3.3 Description of H.264 Recommendation…..…………………….... 10

3.3.1 Video Input and Video Frame Structure……………………... 10

 ix

3.3.2 Network Adaptation Layer………….………………………... 12

3.3.3 Video Coding Layer……………………. ……………………. 12

3.3.3.1 Intra (Spatial) Prediction.……….. 13

3.3.3.1.1 Intra Prediction Modes……..……………………….... 13

3.3.3.1.1.1 Luma Prediction Modes………………………….. 13

3.3.3.1.1.1.1 Prediction Modes for 16x16 Blocks………….. 14

3.3.3.1.1.1.2 Prediction Modes for 4x4 Blocks…..……...…. 14

3.3.3.1.1.1.3 Chroma Prediction Mode…………………….. 14

3.3.3.2 Inter (Temporal) Prediction…………………………... 15

3.3.3.2.1 Motion Vector Data…………...………………….. 15

3.3.3.2.2 Prediction of Luma Motion Vector

Components……………………………………… 16

3.3.3.2.2.1 Directional Segmentation Prediction…….…... 17

3.3.3.2.2.2 Median Prediction……………….…................ 17

3.3.3.2.2.3 Chrominance Vector Prediction…......………. 17

3.3.3.2.3 Reference Frame Selection………………………. 18

3.3.3.2.4 Fractional Sample Interpolation…………………. 18

3.3.3.3 Coded Block Pattern……... 18

3.3.3.4 Transform and Quantization..……............................... 18

3.3.3.4.1 Integer Transform……... 19

3.3.3.4.2 Quantization………………………..…….............. 21

3.3.3.5 Scanning………………………………….….............. 21

3.3.3.6 Deblocking Filter………………….…………………. 22

3.3.3.7 Entropy Coding…………………………………..…... 22

3.3.3.7.1 Context Adaptive Binary Arithmetic Coding

(CABAC) …………………………...……............ 23

3.3.3.7.2 Variable Length Coding (VLC)………………….. 24

4. TEXAS INSTRUMENTS TMS320C64X DIGITAL SIGNAL

PROCESSOR………………………………………………………. 25

4.1 Architecture…………………………………………..................... 26

4.2 Code Generation on TI TMS320C64x Platform….……………… 30

 x

5. SYSTEM IMPLEMENTATION…………………….………………. 31

5.1 Virtual System Architecture……………………………………... 31

5.2 Encoder Architecture………………………………….................. 32

5.3 Encoder Specific Algorithms….……………………..................... 32

5.3.1 Sum of Absolute Differences…………………........................ 33

5.3.2 Densely Centered Uniform-P Search……………………….... 33

5.4 Software Architecture…………………………………................. 34

5.4.1 Encoder Flowcharts………………………………………...... 34

5.4.1.1 Main Loop……………………………………….............. 34

5.4.1.2 Intra Encoder…………………………………….............. 36

5.4.1.3 Inter Encoder…………………………………….............. 38

5.4.1.4 Transform and Quantization Block……………………… 41

5.4.1.5 Motion Compensation Block…………………….............. 42

5.4.1.5.1 Luma Motion Compensation…………………............. 42

5.4.1.5.2 Chroma Motion Compensation………………............. 42

5.4.2 CABAC……………………………………………................. 42

5.4.3 Data Input/Output…………………………………................. 43

5.5 Optimizations……………….……………………………………. 43

5.5.1 Optimizations Regarding Software Architecture…………….. 44

5.5.2 Optimizations Regarding Compiler………………………….. 46

5.5.3 Used Optimization Methods…………………………………. 47

5.5.3.1 Loop Unrolling…………………………………................ 47

5.5.3.2 Use of Intrinsic Operators………………………………... 48

5.5.3.3 Use of Assembly Optimized TMS320C64x

Libraries………………………………………………….. 50

5.6 Encoder Conformance…………………………………………… 51

6 PERFORMANCE EVALUATION …………………………………. 52

7 CONCLUSIONS…………………………………………….............. 57

REFERENCES………………………………………………………….... 60

APPENDICES

A. TMS320C64x Functional Unit Operations…………………………... 65

 xi

B. Code Composer Studio Project Description…………………………. 67

B.1 Project View……………………………………………............... 67

B.2 Encoder Global Data Fields……………………………............... 74

B.2.1 “cabac.c” Global Data Fields………………………………... 74

B.2.2 “encode.c” Global Data Fields…………………..................... 74

B.2.3 “framestore.c” Global Data Fields…………………………... 75

B.2.4 “inter_encoder.c” Global Data Fields………………………... 75

B.2.5 “intra_encoder.c” Global Data Fields………………………... 75

B.2.6 “main.c” Global Data Fields……………………..................... 75

B.2.7 “motest_functions.c” Global Data Fields……………………. 76

B.2.8 “motion_estimation.c” Global Data Fields………………….. 76

B.2.9 “outpstream.c ”Global Data Fields………….………….......... 76

B.2.10 “syntax.c” Global Data Fields………………………….......... 76

B.2.11 “tables.c” Global Data Fields………….……………….......... 76

B.2.12 “transform.c” Global Data Fields………………………......... 77

 xii

LIST OF TABLES

TABLE

1 Loop unrolling statistics …………………………………………….. 48

2 Intrinsic optimization statistics………………………………………. 50

3 Assembly optimization statistics…………………………………….. 50

4 Profile results for Foreman Sequence (Number of cycles)………….. 53

5 Profile results for Container Sequence (Number of cycles)……........ 53

6 Profile results for Carphone Sequence (Number of cycles)……........ 53

7 Evaluation results with QP=20………………………………………. 54

8 Evaluation results with QP=28………………………………………. 54

9 Evaluation results with QP=36……………………………………….. 55

10 Evaluation results with QP=44……………………………………….. 55

 xiii

LIST OF FIGURES

FIGURE

1 Progression of ITU-T recommendations and MPEG standards……. 8

2 Advantage of H.264 compression………………………………….. 9

3 H.264 Encoder block diagram ……………………………………... 10

4 Sample QCIF frame with two slices showing single

luminance macroblock……………………………………………... 11

5 Available macroblock partitions for H.264………………………... 15

6 Appropriate selection of partitions………………………………… 16

7 Integer transform and inverse transform matrices.………................ 20

8 Luminance DC transform and DC inverse transform matrices......... 20

9 Chrominance DC transform and DC inverse transform matrices...... 21

10 Coefficient scan patterns for Zig-zag Scan and Field Scan…........... 22

11 TMS320C64x CPU Core…………………………………............... 27

12 C64x data cross paths………………………………………………. 28

13 C64x memory load and store paths…………………....................... 28

14 C64x internal memory architecture……………………................... 29

15 Virtual system architecture………………………………………… 31

16 H.264 encoder block diagram…………………………................... 32

17 Main Loop flow chart……………………………………………… 34

18 Encode One Frame flow chart……………………………………... 35

19 Inter-Intra Encode One Frame flow chart………………................. 36

20 Intra Encode One Macroblock flow chart……..…………………… 37

21 Inter Encode One Macroblock flow chart……………….................. 38

 xiv

22 Find Best Motion Vector flow chart……………………................. 39

23 Find Best MB Mode Motion Vector flow chart…………………… 40

24 Code development cycle for TMS320C64x……………………...... 45

25 Loop Unrolling Optimization………………………….................... 48

26 Straightforward code……………………………………................. 49

27 Intrinsic optimized code.………………………………………....... 49

28 Straightforward SAD code………………………………………… 50

29 TMS320C64x functional unit operations……………….................. 65

30 TMS320C64x functional unit operations (ctd)……………………. 66

31 CCStudio project window………………………………................. 67

32 CCStudio Linker Command File………………………………….. 68

33 CCS Libraries view……………………………………................... 71

34 Source folder view…………………………………………............ 72

 xv

LIST OF ABBREVIATIONS

CABAC : Context Adaptive Binary Arithmetic Coding

CAVLC : Context Adaptive Variable Length Coding

CBP : Coded Block Pattern

CCIR : International Radio Consultative Committee

CCITT : International telephone and Telegraph Consultative Committee

CCS : Code Composer Studio

CIF : Common Interface Format

CPU : Central Processing Unit

DCT : Discrete Cosine Transform

DCUPS : Densely Centered Uniform-p Search

DMA : Direct memory Access

DSP : Digital Signal Processor

DVD : Digital Video Disc

EMIF : External Memory Interface

FIR : Finite Impulse Response

GEL : Graphical Extension Language

HDTV : High Definition TV

HPI : Host Port Interface

I/O : Input/Output

IDE : Integrated Development Environment

IDR : Instantaneous Decoding Refresh

ISDN : Integrated Services Digital Network

ISO : International Organization for Standardization

ITU : International Telecommunication Union

JVT : Joint Video Team

MAC : Multiply And Accumulate

 xvi

MB : Macro Block

MCBSP : Multi Channel Buffered Serial Port

MIPS : Million Instructions Per Second

MPEG : Moving Picture Experts Group

NAL : Network Adaptation Layer

PC : Personal Computer

PCI : Peripheral Component Interconnect

PSTN : Public Switching Telephone Networks

QCIF : Quarter Common Interface Format

RAM : Random Access Memory

SAD : Sum of Absolute Difference

SDRAM : Synchronous Dynamic Random Access Memory

SQCIF : Sub-Quarter Common Interface Format

VLIW : Very Long Instruction Word

VCL : Video Coding Layer

VLC : Variable Length Coding

 xvii

CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Motivation

Communication has become an important part of our life. Innovations in

technology have given a way to commercial use of real-time audiovisual

communication applications, which require high bandwidth and have real-time

characteristics. Without video compression, it is not possible to meet

requirements of widely used visual services such as, Video Conferencing,

Videophone, Video E-mail, and Video Streaming over Internet, High Definition

TV (HDTV), and Digital Video Disc (DVD) due to large bandwidth needs [1].

For this reason, there has been great effort to develop new video compression

methods.

Up to this time, several video compression standards were developed. ITU-T

standards H.261 [2], H.263 [3] and ISO/IEC standards MPEG-1 [4], MPEG-2 [5]

are examples to these standards. Brief descriptions of these standards are given in

the following chapters. Joint Video Team (JVT) [6], which is a committee

formed by both ITU-T and MPEG members, have released H.264

Recommendation [7], which uses latest innovations in video compression

technology, supporting wide range of frame sizes, aiming all bit-rate applications.

Real-time implementation of video compression standards mentioned above

requires high processing power due to complexity of the video processing

 1

operations. It may not be possible to meet real-time requirements of these

standards on a desktop PC with commercial operating system. Video processing

dedicated kernel and hardware may be required to fulfill real-time timing

constraints. If portability is needed, Digital Signal Processors (DSP’s) are

considered as an alternative to commercial processors due to their low power

consumption and signal processing optimized hardware. Comparing with its

predecessors, in order to meet increased computational complexity requirements

and real-time timing constraints of H.264 Recommendation, Texas Instruments

TMS320C64x [8] Family DSP’s, which is a processor family under TMSC6000

Platform, have been selected among different DSP alternatives. Texas

Instruments TMS320C64x DSP Family is designed to meet real-time

performance requirements of imaging and video applications for both fixed and

portable devices. TMS320C64x Family DSP’ s have come in front with their

high processing capability, large internal memory, and large external memory

support and low power consumption [6]. As a result, TMS320C64x Family

DSP’s are chosen for real-time implementation of H.264 Encoder.

1.2 Scope of the Thesis

In this thesis, we have implemented H.264 Recommendation on TM320C64x

Digital Signal Processor for QCIF frame size fitting real-time timing constraints.

In the implementation, we try to enhance performance with TMS320C64x

specific optimization methods and regular software development techniques. In

addition to these methods, we try to improve encoder performance and reduce

computational power by using Densely Centered Uniform-P Search for motion

estimation and Sum of Absolute Differences for matching criterion.

1.3 Outline of Dissertation

Chapter 2 Predecessor video compression standards are explained briefly.

Chapter 3 Brief functional description of the H.264 standard, which mainly

forms the core of the standard is stated. Some critical information about intra and

 2

inter coding stages is explained. Enhancements achieved in H.264

Recommendation are pointed out.

Chapter 4 Hardware architecture and capabilities of TMS320C64x processor

family is explained.

Chapter 5 Software architecture is explained, encoder flowcharts are given,

Used algorithms that are not in the scope of the recommendation are explained.

Code optimization methods are explained.

Chapter 6 Performance evaluation is made, results are presented

Chapter 7 Conclusions are stated.

 3

CHAPTER 2

OVERVIEW OF VIDEO CODING STANDARDS

2.1 ITU-T Standards

International Telecommunication Union (ITU) was established in 1934. Two

different committees inside ITU, which were CCITT (International Telephone

and Telegraph Consultative Committee) and CCIR (International Radio

Consultative Committee) joined in 1992 under the roof of CCITT. They formed

ITU-T and ITU-R. ITU-T released H.26x Recommendations for video

compression, which is mentioned briefly in the following chapters.

2.1.1 H.261

H.261 [2] is an international standard for Integrated Services Digital

Network(ISDN) picture phones and video conferencing systems. ITU-T released

H.261 in 1990. Typical image formats supported are QCIF (176x144) and CIF

(352x288) at a frame rate between 7.5-30 frames per second. Aimed bit rate is

multiple of 64 kbps, which is a bit rate of single ISDN channel.

H.261 standard uses 16x16 pixel macroblocks. For sampling of luminance and

chrominance components, 4:2:0 sampling format is used.

For inter prediction, Integer pixel accuracy is accepted in recommendation. For

single macroblock, single displacement vector exists. Adaptive loop filter is used

for reducing blocking artifacts between macroblocks after reconstruction. Motion

vectors are differentially encoded for inter frames.
 4

For coding of the residuals, 8x8 DCT is used as a transform method.

Quantization is performed in two steps for intra macroblock residuals. DC

coefficients are quantized with uniform quantizer. AC residual coefficients of

intra macroblocks and all residual coefficients of inter macroblocks is quantized

using uniform threshold quantizer. Quantized coefficients are zig-zag scanned.

Run-level coding is used for the entropy coding stage.

2.1.2 H.263

H.263 [3] is published by ITU-T in 1995 for picture phones over analog

subscriber lines. Typical image formats supported are sub-QCIF, QCIF and CIF.

Frame rate is below 10 frames per second. Targeted bit rate is about 20 kbps for

Public Switching Telephone Networks (PSTN). This standard offers picture

quality same as H.261 with half bit rate. H.263 is used for network video

streaming. This standard is also core for H.263+ and H.264 standards.

In H.263, motion compensation accuracy is improved from integer pixel to half

pixel accuracy. For DCT coefficients, 3-D Variable Length Coding (VLC) is

used as an entropy coding method. Streaming overhead is reduced when

compared with H.261. Number of picture formats supported is increased in

H.263. Unrestricted motion vectors are used for motion vector compensation.

Advanced prediction mode is added. Overlapped block motion compensation is

supported.

2.1.3 H.263+

H.263+ [9] is the extended version of H.263. This standard can be thought to be

between H.263 and H.264. Most of the improvements in H.264 are based on

H.263+ enhancements.

2.2 ISO/IEC Standards

ISO (International Organization for Standardization) was established in1947. The

mission of the organization is “to facilitate the international coordination and
 5

unification of industrial standards”. IEC (International Electro-technical

Commission) was founded in 1956 for establishing international standards for all

electrical technologies. Joint ISO/IEC Technical Committee has released MPEG-

1 and MPEG-2 standards for video content storage.

2.2.1 MPEG-1

ISO/IEC Joint Technical Committee released MPEG-1 [4] standard in 1991 for

video storage on CD-ROM media. Targeted bit rate was about 1.5 Mbps.

Standards Typical image format was CIF with a frame rate of 30 fps. Standard

does not support compression for interlaced frames.

2.2.2 MPEG-2

MPEG-2 [5] standard is released ISO/IEC in 1994. This standard is an extension

of MPEG-1 for interlaced frames and optimized for resolution of 704x480 pixels,

which is the resolution of NTSC TV standard. MPEG-2 is used for High

Definition TV. Comparing with the MPEG-1, this standard supports efficient

compression of interlaced digital video data at broadcast quality, which is not

present in MPEG-1. New prediction modes are added for I frames. Additional

scan pattern for DCT coefficients is used for scanning. For inter frames, new

motion compensation scheme with 16x8 size blocks is introduced. Quantization

scheme is also different from MPEG-1’s, which increases coding efficiency.

VLC tables have been improved and different scalability modes have been added.

 6

CHAPTER 3

THE H.264 RECOMMENDATION

3.1 Overview

ITU-T and ISO/IEC are the two independent standardization organizations

working independently. ITU-T video coding standards are named with H.26x

(H.261, H.262, H.263 etc.) ISO/IEC standards are named with MPEG-x (MPEG-

1, MPEG-2 etc. These two committees were working independently except the

development of H.262/MPEG-2, which was released in 1990. Recently, these

two committees have joined together and form Joint Video Team for the

development of new video standard called H.264 [7] (H.26L, MPEG4-Part 10

Advanced Video Coding). H.264 Recommendation introduces latest innovations

in video compression technology and represents great improvement when

compared with the other standards in terms of performance and quality. H.264

standard aims all range of video applications from low bit rate applications to

HDTV and high resolution DVD content. Development flow chart of the

standards that are introduced by these two committees are shown in Figure 1 [6].

3.2 Comparison of H.264 with Other Standards

New compression techniques bring great compression efficiency to H.264

standard. H.264 standard offers up to 2x compression compared with MPEG-4

simple profile H.263, H.263+ and improvement in perception for almost all bit

rates.

 7

 Figure 1 - Progression of ITU-T recommendations and MPEG standards [6].

H.264 gives great error resilience due to introduced VCL and NAL layer

enhancements [10],[12],[13].

H.264 supports 28 different video input formats supporting interlaced scanned

pictures in field mode [7].

H.264 has adapted for network transmission by adding one layer called Network

Adaptation Layer (NAL) over Video Coding Layer (VCL) [10],[6],[11].

VCL enables efficient transmission of video data on network by representing

video content in integer number of bytes units.

H.264 is highly adaptive for different applications, which require different type

of delay characteristics. It may operate with low delay constraints for real-time

applications or higher delay constraints for applications requiring more

processing power, such as video content storage [10],[12].

Introduction of SP and SI frames enables fast random access for video decoders.

These frames are switching frames. For example, these types of frames may be

used for switching from low bit rate to high bit rate in the same video stream by

monitoring the available bandwidth [12].

Considering the functional building blocks of the encoder, H.264 is similar as

previous standards. It has, transform, quantization, motion estimation and motion

 8

compensation, entropy coding blocks. In order to reduce blocking artifacts,

loopfilter [14].block is introduced in H.264.

Multiple reference frame selection feature allows motion to be estimated from

five different past reference frames. This option brings the maximum

compression efficiency for periodic motion. Advantage of multiple reference

frame selection is shown in Figure 2 [15].

Figure 2 - Advantage of H.264 compression [15].

Reduced size of motion blocks supplies strong motion isolation from neighboring

blocks compared with other standards [15].

The major enhancements are inside functional blocks. Considering intra

prediction, H.264 uses 16x16 block sizes or 4x4 block sizes optionally. New

prediction modes for intra prediction have been added to improve performance.

For the inter prediction, motion estimation is done with motion blocks of

different shapes, that are not used in predecessor standards. Fractional sample

resolution is ¼ pixel for luminance, 1/8 pixel for chrominance vector component.

This increases precision of motion vectors. Considering transform coding block,

newly developed integer based transform is used and this increases real-time

performance. For the entropy coding block, Context Adaptive Variable Length

 9

Coding (CAVLC) [16] and Context Based Adaptive Arithmetic Coding

(CABAC) [17] is developed.

3.3 Description of H.264 Recommendation

H.264 Encoder diagram is given in Figure 3 [11]. Following chapters takes

encoder diagram shown in the Figure 3 [11]. as a reference.

 Figure 3 - H.264 Encoder block diagram [11]

3.3.1 Video Input and Video Frame Structure

Example QCIF picture consists of two slices is given in Figure 4. Each slice is

represented by two different colors. Slice is the largest building block of H.264

frame. All the parameters of decoder are refreshed at slice boundaries. Picture

may consist of one or more slices. Incrementing the number of slices in single

picture improves error resilience but reduces coding efficiency [10].

Each slice consists of regions called macroblocks shown with squares. For

luminance and chrominance size of the macroblocks are different. Each

 10

macroblock consists of 16x16 luminance pixels, two 8x8 chrominance pixels.

Sampling format is chosen as 4:2:0. Chrominance samples are down-sampled

because chrominance component of pixel does not effect perception as much as

luminance component. Human eye is more sensitive to luminance component.

Sample QCIF picture of H.264 is shown in Figure 4.

16 Pixels

16 Pixels

Slice 2

Slice 1

Figure 4 - Sample QCIF frame with two slices showing single luminance
macroblock

This example of QCIF picture consists of two slices as shown in figure by two

different colors. Slice is the largest building block of H.264 frame. All the

parameters of decoder are refreshed at slice boundaries. Picture may consist of

one or more slices. Incrementing the number of slices in single picture improves

error resilience but reduces coding efficiency.

 11

Each slice consists of regions called macroblocks shown with squares in Figure

4. For luminance and chrominance data, size of the macroblocks is different due

to sub-sampling of chrominance components.

Each macroblock consists of 16x16 luminance pixels, two 8x8 chrominance

pixels for U and V component. Sampling format is chosen as 4:2:0. Chrominance

samples are down-sampled because chrominance component of pixel does not

effect perception as much as luminance component. Human eye is more sensitive

to luminance component than chrominance component.

If the current picture is in field mode (interlaced scan), slices contain integer

number of macroblock pairs that, each macroblock pair contains two

macroblocks.

3.3.2 Network Adaptation Layer

Predecessor standards have some disadvantages due to representation of

compressed video stream while transmitting or storing video content. H.264

introduced new approach for representation of video data, which is called as

Network Adaptation Layer (NAL). This concept separates Video Coding Layer,

where compressed video data is efficiently represented, from the transport layer

or storage media. NAL enables easier packetization of VCL data. Every unit in

NAL contains integer number of bytes. This reduces overhead of processing for

communication and content storage or data retrieval. NAL unit standardizes an

interface for packet oriented and bit-stream systems.

3.3.3 Video Coding Layer

Video Coding Layer (VCL) of H.264 bit-stream represents compressed visual

data without any packetization overheads introduced with the NAL. Description

of the following parts belongs to VCL data processing.

 12

3.3.3.1 Intra (Spatial) Prediction

Intra prediction exploits spatial redundancies in a frame. Considering a single

macroblock in a frame, neighboring macroblocks usually have correlated pixel

values. If neighboring blocks in the same frame are used for predicting current

block pixel values, which are being constructed at the decoder side, this type of

prediction is called intra prediction. Intra predicted frames have greater PSNR

than inter encoded frames, but they contain more information than inter encoded

frames, which reduces compression ratio. This type of pictures is sent less

frequently, compared with inter encoded pictures, due to their bandwidth cost.

These pictures are used for refreshing the screen and diminishing propagation

errors that came from adjacent decoding of inter encoded frames. Error

propagation occurs due to error on the channel in which video stream is being

transmitted or due to encoding inefficiency resulting from compression. Intra

encoded frames diminish propagation errors from inter encoded pictures due to

their spatial compression nature. For this reason, intra encoded pictures are called

as Instantaneous Decoding Refresh (IDR) pictures in the recommendation.

Error propagation in the inter frames was also problem for the preceding

standards. H.264 also offers new macroblock based solution for erroneous

transmission of inter frames. If the distortion of the video transmission channel

can be monitored in real-time, using intra prediction, intra encoded macroblocks

can be sent inside inter frames between inter encoded macroblocks. In order to

optimize the number of intra encoded macroblocks in an inter frame, rate-

distortion optimization method can be used [13].

3.3.3.1.1 Intra Prediction Modes

3.3.3.1.1.1 Luma Prediction modes

Intra prediction modes represent linear combination of neighboring macroblocks

or partitions’ pixel values with some predefined scaling factors. According to the

 13

prediction direction, weights of the scaling coefficients change.

3.3.3.1.1.1.1 Prediction Modes for 16x16 Blocks

There are four modes, meaning four prediction directions of spatial prediction for

16x16 block size. Up and left neighboring 16x16 macroblocks’ samples are used

for predicting the current macroblock’s pixel values.

Samples of current 16x16 block is predicted from linear combinations of

neighboring 16x16 blocks’ samples changing according to type of the prediction

mode. Details can be found in [7].

3.3.3.1.1.1.2 Prediction Modes for 4x4 Blocks

There are nine intra prediction modes, meaning nine prediction directions, for the

prediction of current 4x4 block pixel values from the neighboring blocks

Samples of 4x4 block is predicted from linear combinations of neighboring 4x4

blocks’ samples changing according to type of the prediction mode. Details can

be found in [7].

3.3.3.1.1.1.3 Chroma Prediction Modes

Prediction of chrominance samples is the same for both 16x16 and 4x4

luminance predicted macroblocks. There are four modes for intra chrominance

prediction

Chrominance samples are predicted by using neighboring blocks’ coefficients

with one of these four prediction modes. Predicted pixel values are calculated by

using linear combinations of neighboring pixels with linear combination

coefficients changing according to the prediction mode (direction). Details can be

found in [7].

 14

3.3.3.2 Inter (Temporal) Prediction

Inter prediction exploits temporal redundancies in video stream. Temporal means

related with time. This type of prediction uses similarity of one or more video

frames in the time order. Motion vectors belonging some specific block of a

frame are used for representing the single motion of a motion block in the

picture. Main elements of this type of prediction are motion vector data and

residual data after motion estimation.

3.3.3.2.1 Motion Vector Data

H.264 introduces different motion block sizes for motion estimation with

resolution of ¼ for luminance motion vectors, 1/8 for chrominance motion

vectors. Smallest size of blocks for motion block is 4x4. For a single macroblock,

up to sixteen, motion vector data may have to be sent. If this data is sent directly,

it may cost large amount of bits for transmission of motion vector data [18].

Motion vectors are highly correlated to their neighboring motion vectors

meaning, prediction residuals are usually small. So that motion vector data is

differentially coded, which means, it is predicted and prediction residuals are sent

to decoder.

0

Sub-macroblock
partitions

0

1

0 1

0 1

2 3

0
0

1

0 1

0

2

1

3

1 macroblock partition of
16*16 luma samples and

associated chroma samples

M acroblock
partitions

2 macroblock partitions of
16*8 luma samples and

associated chroma samples

4 sub-macroblocks of
8*8 luma samples and

associated chroma samples

2 macroblock partitions of
8*16 luma samples and

associated chroma samples

1 sub-macroblock partition
of 8*8 luma samples and

associated chroma samples

2 sub-macroblock partitions
of 8*4 luma samples and

associated chroma samples

4 sub-macroblock partitions
of 4*4 luma samples and

associated chroma samples

2 sub-macroblock partitions
 of 4*8 luma samples and

associated chroma samples

Figure 5 – Available macroblock partitions for H.264 [7].

 15

Macroblock partitions for estimation of the motion vector components are given

in Figure 5 [7]. Optimization of macroblock partition sizes become challenging

issue for encoder. For the regions where there is a small motion, larger

macroblock partitions have to be chosen.

For detailed surfaces, smaller macroblock partitions must be chosen for

prediction. This affects encoder efficiency and performance. Sample of optimized

selection of motion vector blocks is shown in Figure 6 [19].

Motion vector data composed of, motion vector component in the horizontal

direction, motion vector component on the vertical direction and the reference

index for the source frame. This data is used for reconstruction of current picture

from the previously reconstructed frames at the decoder side.

Figure 6 – Appropriate selection of partitions [19].

3.3.3.2.2 Prediction of Luma Motion Vector Components

Luminance motion vectors are predicted to send motion vector data differentially

thus reduce bandwidth used for sending motion vector data. Two types of

 16

prediction methods are used for motion vector prediction these are Directional

Segmentation Prediction and Median Prediction.

3.3.3.2.2.1 Directional Segmentation Prediction

Directional segmentation prediction is only used for motion block types of 8x16

and 16x8. Prediction rule is given below.

If macroblock partition width is 16 and macroblock partition height is 8 and if

this is the partition on top, predicted motion vector this macroblock partition is

the same as motion vector above. If this is the partition below, Predicted motion

vector is the same as motion vector on the left of this partition.

If macroblock partition width is 8 and macroblock partition height is 8 and this is

the macroblock partition on the left, predicted motion vector data for this

partition is the same as motion vector on the left of this partition. If this is the

macroblock partition on the right, predicted motion vector is the same as the

motion vector, which belongs to the block on the corner of this macroblock

partition.

Further details can be found in [7].

3.3.3.2.2.2 Median Prediction

For this type of prediction, motion vector components are preprocessed according

to their availability status and median of neighboring motion vector components

are used for prediction current motion vector block’s motion vector components.

Details can be found in [7].

3.3.3.2.2.3 Chrominance Vector Prediction

Chrominance motion vectors are derived from the luminance motion vectors.

These vectors have higher resolution than luminance vectors. Chrominance

vectors are exactly the half of the luminance vectors. As a result, maximum

 17

resolution of chrominance motion vectors is increased to 1/8 pixel.

3.3.3.2.3 Reference Frame Selection

For each macroblock, there can be at most four different reference frames for

inter prediction for H.264 recommendation. Each reference frame belongs to each

8x8 sub-partition of a luminance macroblock, thus 4x4 sub partition of

chrominance macroblock.

3.3.3.2.4 Fractional Sample Interpolation

In order to construct macroblock partition from reference picture data and

fractional motion vector data, some processing is needed. To find the pixel values

with the resolution of ½ pixels, Six-tap Finite Impulse Response Filtering (FIR)

of pixel values on integer locations are needed.

Pixels values at ¼ pixel resolution is found with bilinear interpolation of pixel

values at half or integer resolution positions.

To find chrominance samples at fractional pixel positions, simple linear

interpolation of pixel values at integer locations are used.

Details of fractional sample interpolation can be found in [7].

3.3.3.3 Coded Block Pattern (CBP)

Coded bock pattern is information sent to decoder increase decoding speed. This

information is not sent for Intra 16x16 coded macroblocks. Coded Block Pattern

shows, which of the 8x8 blocks out of 4 for luminance and which of the 4x4

blocks out of 4 for chrominance contain non-zero transform coefficients.

3.3.3.4 Transform and Quantization

Prediction residuals from intra or inter estimation are transformed from spatial

 18

domain to frequency domain. This is achieved in transform block of the encoder.

Transformed residuals are called transform coefficients. Number of nonzero

coefficients are reduced and gathered together in the scan order, which is given in

following chapters. After quantization, number of non-zero coefficients reduces.

Quantization of transformed residuals reduces the number of bits to represent

transformed nonzero values, which results in compression. De-quantization stage

recovers quantized data with some inverse quantization mismatch; this error is

called as quantization error. This mismatch is kept at optimum by changing the

quantization parameter on each macroblock differentially.

3.3.3.4.1 Integer Transform

H.264 standard introduces new transform method called Integer Transform. This

transform is also called Simplified Discrete Cosine Transform (Simplified

DCT)[20]. Transform block size is reduced from 8x8 of DCT to 4x4 of Integer

Transform. Reduced size of transform block reduces blocking and ringing

artifacts caused by inverse transform and quantization.

Integer Transform is derived from DCT by approximating transform coefficients

on transform matrix of DCT to fractional numbers, which changes the form of

DCT. Resulting new transform requires no multiplications, only additions and

shifts. Integer transform requires at most 16 bits to complete all arithmetic

procedures with so little PSNR performance decrease from DCT. Implementation

of Integer Transform with 16-bit arithmetic with shifts and additions makes it

widely usable for conventional processor types with higher performance than

DCT. Inverse transform mismatch problem of DCT diminishes on Integer

transform because there are no rounding errors resulting from division and

multiplication of DCT coefficients. As a result, transform method without inverse

mismatch problem gives ride to fast implementations on large variety of

processor families [20].

Different matrices are used for transformation and inverse transformation. For

 19

4x4 luminance and chrominance coefficient transformation and inverse

transformation, matrices in Figure 7 [20] are used.

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1 1 1 1 1 2 1 1
2 1 1 2 1 1 1 2
1 1 1 1 1 1 1 2
1 2 2 1 1 2 1 1

x x x x
x x x x

Y
x x x x
x x x x

⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢− − − −⎢ ⎥⎢ ⎥ ⎢=
⎢ ⎥⎢ ⎥ ⎢− − − −
⎢ ⎥⎢ ⎥ ⎢

− − − −⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎥⎦

1⎡ ⎤2 00 01 02 03
1 11
2 210 11 12 132

1
20 21 22 232

1 11 30 31 32 33 2 22

1 1 1 1 1 1 1
1 11 1 1
1 1 1 11 1 1

1 11 1 1

y y y y
y y y y

X
y y y y
y y y y

⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ − −− −⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ − −− −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ − −⎢ ⎥ ⎢ ⎥− − ⎣ ⎦ ⎣ ⎦⎣ ⎦

Figure 7 - Integer transform and inverse transform matrices [20]

H.264 performs additional transform for DC coefficients of luminance blocks and

chrominance blocks. 4x4 Luminance DC coefficient matrix is formed from DC

coefficient of each 4x4 transformation block. These DC coefficients are further

transformed with matrix given in Figure 8 [20].

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

// 2
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

D D D D

D D D D
D

D D D D

D D D D

x x x x
x x x x

Y
x x x x
x x x x

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

QD QD QD QD

QD QD QD QD
QD

QD QD QD QD

QD QD QD QD

y y y y
y y y y

X
y y y y
y y y y

⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢− − − −⎢ ⎥⎢ ⎥ ⎢=
⎢ ⎥⎢ ⎥ ⎢− − − −
⎢ ⎥⎢ ⎥ ⎢

− − − −⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎥⎦

Figure 8 - Luminance DC transform and DC inverse transform matrices [20]

The same process as luminance DC coefficients is applied to chrominance

coefficients too. 2x2 Chrominance coefficient matrix is formed with DC

 20

coefficients of each 4x4 chrominance transform blocks. This 2x2 matrix is

transformed with the matrices given in Figure 9 [20].

00 01

10 111 1 1 1
D D

D
D D

Y
x x

1 1 1 1x x⎡ ⎤⎡ ⎤ ⎡
= ⎢ ⎥

⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣⎣ ⎦ ⎦

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=
11

11
11

11

1110

0100

QDQD

QDQD
QD YY

YY
X

Figure 9 - Chrominance DC transform and DC inverse transform matrices [20]

3.3.3.4.2 Quantization

Transformed coefficients are quantized with newly developed H.264 quantization

scheme ([20],[21]). This method eliminates redundant precision on high

frequency coefficients, supplying the same perceptual quality as original frame

by eliminating high frequency components. For a single macroblock, total of 52

quantization parameters can be chosen adaptively and may be sent differentially

for each macroblock. These step sizes increase about 12.5% rate, instead of

increasing constantly. This introduces better quantization steps because higher

transform coefficient levels are quantized with higher step sizes.

3.3.3.5 Scanning

Two scan patterns are used for H.264 transform coefficients. One is zig-zag scan,

and the other is field scan. Zig-zag scan is used for frame macroblocks, field scan

is used for field macroblocks

Scanning is used for ordering transformed coefficients in the frequency order.

Coefficients are scanned in the order shown in Figure 10 [7].

Scanning stage prepares transformed and quantized residuals for entropy coding

stage.

 21

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

a b

1 5 9

3 6 10

4 7 11

0 2 8 12

13

14

15

Figure 10 - Coefficient scan patterns for Zig-zag Scan and Field Scan [7]

3.3.3.6 Deblocking Filter

Video coding using block-based methods introduces artifacts caused by the

method. These artifacts are visible at the edges of compression blocks due to

different compression characteristics of coded blocks from the neighboring

blocks in terms of transform, quantization etc. Deblocking filtering reduces

blocking artifacts at the edges of compression blocks and increases visual quality.

H.264 uses in-loop deblocking filtering method to overcome blocking effects

[14]. Deblocking filter is used before motion compensated prediction stage. This

increases compression efficiency as well. Deblocking filter is used adaptively by

using some compression parameters of corresponding blocks [7].

3.3.3.7 Entropy Coding

Entropy coding stage is used for representing generated compressed data stream

with lesser bits that as it is. Entropy coding stage compresses stream by

representing higher frequency symbols with less bits than lower frequency

symbols. Entropy coding compression is perfectly reconstructable; there is no

inverse mismatch problem. Compressed stream is get exactly as it was before

compression. H.264 introduces two new entropy coding compression methods for

entropy coding stage of decoder. These methods are Context Adaptive Binary

 22

Arithmetic Coding (CABAC) and Context Adaptive Variable Length Coding

(CAVLC) [7].

3.3.3.7.1 Context Adaptive Binary Arithmetic Coding (CABAC)

One of the most important enhancements that H.264 introduces is new entropy

coding method named Context Adaptive Binary Arithmetic Coding

(CABAC)[22].

CABAC ’ s extended name specifies characteristics of this method. It makes use

of Arithmetic Coding [23] with finite binary alphabet. Arithmetic coding

implementations can be made with larger alphabet sizes [24], [25], but this

increases complexity of the implementation. Due to reduction of alphabet size to

binary, arithmetic coding implementation in microprocessors is simplified. As it

can be understood from the binary alphabet, all the symbols are first binarized

according to their type then they are arithmetic coded. Depending on the symbol

type, probability variables used by arithmetic coding are initialized with some

initial values, and then they are updated according to distribution of symbol

values, to increase efficiency of arithmetic coding.

CABAC is actually composed of three main stages;

Binarization is applied to symbols that have non-binary values. All non-binary

symbols are binarized using four different binarization methods, which exploit

coding efficiency by using symbols’ binary bit distribution. Details of these can

be found in [7]. Binary valued symbols are directly coded with bypass mode of

arithmetic coding engine.

Context model selection is applied some specific bins of symbol. “Bin” means bit

position in symbol. For all bins of specific symbol type, there are different

probability models used for initializing binary arithmetic coding engine

parameters, called context models. Context model parameters show probability of

each bin being “1” or “0”.

 23

After context model decision, Adaptive Binary Arithmetic Coding is used for

binarized symbol. Probability parameters needed for arithmetic coding is taken

from context model. After encoding a symbol, context model, which keeps the

probability statistics, is updated.

3.3.3.7.2 Variable Length Coding (VLC)

If entropy coding mode for stream is not CABAC, Variable Length Coding is

used as an alternative entropy coding method. VLC simply uses the principle of

assigning shorter code words to frequently observed symbols, longer code words

to rarely observed symbols to reduce overall entropy of the stream. Details of this

well known method can be found in [1]. H.264 uses Context Adaptive Variable

Length Coding (CAVLC) for coding of residual data. Other syntax elements are

Exp-Golomb coded. CAVLC is a new concept brought by H.264

 24

CHAPTER 4

TEXAS INSTRUMENTS TMS320C64X DIGITAL
SIGNAL PROCESSOR

Innovation in technology resulted in need for higher processing capabilities than

before. One of these innovation areas is a signal processing area. Commercial

Signal processing applications are used widely today. As the throughput needed

for signal processing applications increased, commercial processors were unable

to handle real-time processing power requirements. Digital Signal Processors

(DSP’ s) are designed to meet the digital signal processing requirements. They

were designed to be faster than commercial while computing signal processing

operations by taking advantage of their architectures. Main advantage of a DSP

is, its ability to perform one or more Multiply And Accumulate (MAC)

instructions in a single machine cycle, which is not supported by commercial

processors. DSP architectures have begun to evolve for their efficient use in

signal processing area.

Texas Instruments TM320C64x DSP family is specifically designed for signal

processing applications that require high processing power, such as video

processing, speech processing and communication applications. Reduced power

consumption of this processor family is one of the most important feature

considering embedded designs. Texas Instruments 32-bit TMS320C64x [8] core

is designed by using second-generation VelociTI™ Very Long Instruction Word

(VLIW) architecture by Texas Instruments. This architecture allows fetching of

 25

multiple instructions in a single machine cycle. 600 MHz TMS320C64x DSP

offers 4800 MIPS (Million Instructions Per Second), with the increasing clock

rate, 1.1 GHz or over, TMS320C64x can process 8800 MIPS or more. C64x

processors have three external bus interfaces for peripheral accesses, bus clock

speed of one of these buses may be increased to 133 MHz for use of new fast

memories, A-D converters etc. Another bus provides interface for slow

peripherals. Third type of bus is used for communicating with industrial standard

buses like PCI. Three Multi Channel Buffered Serial Ports (MCBSP) supplies

connectivity to serial peripherals with up to 100 Mbits/sec[8] transfer rate.

C64x’s instruction set and pipeline allows multiple instructions to be scheduled

in parallel. Due to these reasons, this processor family is chosen for the

implementation of the H.264 encoder.

4.1 Architecture

TMS320C64x architecture is an extension of VelociTI™ architecture developed

by Texas Instruments in 1997. This architecture first applied to C62x and C67x

family DSP families. TMS320C64x architecture formed of multiple execution

blocks (multiplier, added etc.) working in parallel. C64x architecture is extended

version of the C62x architecture. So that all C64x family processors are code

compatible with C62x family processors. Increased orthogonality and parallelism

of instruction set, extended data load and store paths, increased number of

register files, packed data processing, increased clock speed are main

enhancements from the C62x family of processors.

TMS320C64x CPU core is shown in Figure 11 [8],core is composed of two

register files, eight functional units, instruction fetch, instruction dispatch units

with advanced instruction packing capability, instruction decode unit, control

register and Interrupt control logic.

TMS320C64x CPU Core consists of two register files, Register File A and

Register File B. Each of these register files have thirty-two 32-bit general-

purpose registers, total of sixty-four 32-bit registers. These registers may be used

 26

for arithmetic or conditional operations. Registers A0, A1, A2, B0, B1, B2 may

be used for conditional operations. Registers A4-A7 and B4-B7 can be used for

circular addressing registers. These register files support data sizes 8-bits, 16-bits,

32-bits, 40-bits, 64-bits data sizes for processing. Packed data types can store

four 8-bit or two 16-bit data in a single 32-bit register or four 16-bit data in two

32-bit registers.

 Figure 11- TMS320C64x CPU Core [8]

Eight functional units can be divided into two groups. Each group has the same

functionality. There are four different types of functional groups. Names of these

functional units are L, S, M, D, which are shown in Figure 11 [8].

 27

Operations that can be performed in these functional units are given in Appendix

A.

There are two register cross paths between two groups of functional registers,

allowing that, functional from a data path 1 or 2 can access 32 bit operand from

the opposite path as shown in Figure 13. This increases orthogonality, thus

compiler efficiency.

C64x allows 32 bit load and store operations. Here are total of four, two load,

two store paths to registers. These load and store paths are shown in Figure 12-13

[8]. C64x has one major enhancement compared with C62x architecture, which

is, it can access any word or double word at byte boundaries without alignment.

It can use non-aligned load or store operations.

Figure 12 – C64x data cross paths [8]

Figure 13 - C64x memory load and store paths [8]
 28

C64x can operate on packed data types. As an example, four 8-bit operands may

be subtracted with other four operands without requirement of being on different

32-bit words. This is called data packing. C64x instructions support 8-bit, 16-bit

operations. Data packing reduces number of machine cycle and memory needed

to perform instructions with 8-bit or 16-bit operands.

C64x family processors have programmable two level cache. 16 Kbytes of Level

1 program and data cache running at full CPU speed is present in the core. There

is 1024 Kbytes of on chip RAM on C64x processors. Level 2 Cache may be

mapped over this memory by configuring the related registers. Size of the cache

Level 2 cache can extend from 32 Kbytes up to maximum of 256 Kbytes.

Structure of these memories are shown in Figure 14 [8].

Figure 14 – C64x internal memory architecture [8]

 29

There is Enhanced DMA Controller on C4x family and it can support up to 64

independent channel transfers

C64x processors have three external buses for communication with parallel

peripherals. Two External Memory Interfaces (EMIFA, EMIFB) and one Host

Ports Interface (HPI) exist. EMIFA is 64-bit transfer bus and may be used

connection to higher speed memories such as fast SRAM s. EMIFB is 16-bits

wide and may be used for any peripheral supporting this bus width. 32-bit HPI

supports communication interface between other processors of industrial type. In

some models of C64x, HPI is replaced by PCI interface. PCI bus supplies

interface for PCI devices.

4.2. Code Generation on TI TMS320C64x Platform

Texas Instruments TMS320C64x family Digital Signal Processors use Code

Composer Studio Integrated Development Environment (CCS IDE) for all stages

of code generation. CCS is an integrated tool that, code generation, linking and

compiling is performed on the same platform. It uses built-in compiler, linker and

assembler for the code generation without the need for manual manipulation such

as command line entries. Project environment details are given in Appendix B.

 30

CHAPTER 5

SYSTEM IMPLEMENTATION

5.1 Virtual System Architecture

Texas Instruments TMS320C64x Cycle Accurate Simulator is used for

implementing the proposed system and measuring the system performance.

Virtual system architecture is designed and according to this virtual architecture,

system memory map is formed. Video source supplies QCIF frames to external

fast SDRAM. The same memory is used for storage of rarely accessed space

consuming data (Frame store data, final compressed stream etc.).Virtual system

architecture is shown in Figure 15.

Project based implementation details are explained in Appendix B.

Digital

Video Source

TMS320

C64x

SDRAM

 Figure 15 – Virtual system architecture

Network
Or

Video Content Storage

 31

5.2 Encoder Architecture

H.264 encoder block diagram is given in. Figure 16.

Coding Control

Integer
Transform

Quant

⎯

Frame Store

De-quant
Entropy
Coder

Output
Stream

Inverse
Integer
Transform

Entropy
Coder

 Figure 16 - H.264 Encoder block diagram

Visual
Data

As it can be seen, building block operations run sequentially, so that,

performance of an encoder can be calculated as sum of individual performances

of building blocks of an encoder.

Encoder blocks are implemented considering sequential structure of the encoder

architecture. Each building block is built up individually and integrated together.

5.2 Encoder Specific Algorithms

H.264 Recommendation only specifies the decoder of the standard. H.264

encoder also consists of decoder block for feedback part of an encoder, which

includes motion compensation block. Some parts of an encoder is not specified in

the recommendation. As an example, best matching criterion for motion

estimation and intra prediction is not specified in the recommendation.

Implementation of some parts of an encoder left to the one who implements the

 32

encoder. Decoder only specifies how to reconstruct coded video sequence with

the format given in the recommendation.

In order to find best matching prediction, some comparison between predicted

and original block should be made. For this implementation Sum of Absolute

Differences (SAD) method is used for best matching criterion.

For motion estimation, Densely Centered Uniform-P Search algorithm is used.

5.2.1 Sum of Absolute Differences

While predicting pixel values of a macroblock or a sub block, there should be

criterion in order to find best matching prediction. Sum of Absolute Differences

is used for this aim in this implementation.

While calculating SAD, absolute difference of predicted and original target block

if found for each entry. Then sum of these absolute differences is calculated.

Result is Sum of Absolute Differences for corresponding macroblock or sub

block.

Smaller SAD value represents better prediction for corresponding block.

5.2.2 Densely Centered Uniform-P Search

Densely Centered Uniform-P Search algorithm [26] is a fast search algorithm

using the strategy of sampling the search area with some predefined motion

vectors and making comparison among that motion vector positions.

Observations on block matching algorithms in [26] showed that motion vectors

tend to congregate at the origin of the search area. It is found that [26] in

cheerleaders video sequence, %50 of the motion vectors have the length zero or

one. So that, scan starts at positions (0,0), (0,1), (0,-1), (1,0), (-1,0). Weighting

function (SAD) is used for that target points and best weighting motion vector is

kept as best vector. Other levels of DCUPS are applied for some encoder specific

 33

conditions that are explained in following chapters.

5.4 Software Architecture

In this section, functionality of the implemented encoder sections and flowcharts

that are specific to the implementation are given and explained.

5.4.1 Encoder Flowcharts

Flow diagrams of the encoder implementation and encoder specific

implementation details are given in the following chapters.

5.4.1.1 Main Loop

H.264 Entry point is the starting point of the software, which performs encoding

and prepares bit-stream. Before that point, some environmental initializations,

necessary for TMS320C64x platform is completed by the compiler initialization

routines. These platform initialization routines are embedded in the “rts6400.lib“

software library created by Texas Instruments and automatically used by the C

Compiler. After platform initialization, main loop runs. Main loop of the encoder

is given in Figure 17.

Initialize H.264 Streaming Parameters
Initialize Encoder Functional Parameters

While
Frame To
Encode

Encode One Frame

YES

NO

H.264 Encoder Entry

Figure 17 - Main loop flowchart

 34

Necessary NAL units and global parameter sets, such as sequence parameter sets

and picture parameter sets are inserted into stream at this stage.

Frame decoding that are common for inter and intra blocks are given in Figure

18.

Current frame
Type=INTRA?

Write NAL Parameter Sets
Initialize Intra Parameters
Get picture from memory

Write NAL Parameter Sets
Initialize Inter Parameters
Get picture from Frame
Store

YES NO

Inter Encode One Frame Intra Encode One Frame

Single Frame is Encoded

Encode One Frame

Figure 18 - Encode One Frame flow chart

Basic implementation steps of encoding single frame are the same for intra and

inter encoding stages. For this reason their single frame encoding flowcharts are

the same and shown in Figure 19.

 35

Last Macroblock
of the Frame?

Get Original Macroblock

Encode One Macroblock

NO
Enhance to
next
macroblock

Single Frame is Encoded

Inter-Intra Encode One Frame

YES

Figure 19 - Inter-Intra Encode One Frame flow chart

5.4.1.2 Intra Encoder

For decision of Intra prediction modes, variance of the processed macroblock is

calculated. If variance is larger than predefined threshold value, 4x4 intra mode is

used for intra prediction. For smoother surfaces, 16x16 intra modes are used. In

order to find best 16x16 or 4x4 intra prediction mode, all prediction modes for

target macroblock or sub blocks are applied and the mode, which gives lowest

SAD value, is chosen as best intra prediction mode.

For both Intra4x4 prediction and Intra 16x16 prediction same algorithm is used

for prediction. Before prediction of the samples, availability of the neighboring

pixels and pixel values are decided. After this process, prediction is performed

for each mode. Best result is stored in global storage.

Intra encoding flowchart for a single intra macroblock is given in Figure 20.

 36

Intra 16x16 mode is decided
Get 16x16 neighbors

Find Best 16x16 Prediction Mode

Calculate Variance for Mode Selection

Variance <
TRESHOLD

YES NO

Encode Macroblock Finished

Write Macroblock Syntax

Transform One Macroblock Luma
Make Chroma Prediction

Transform One Macroblock Chroma

Intra 4x4 mode is decided
Loop through all 4x4 sub blocks

Get 4x4 Neighbors
Find Best 4x4 Prediction Mode

Intra Encode One Macroblock

Figure 20 - Intra Encode One Macroblock flow cart

 37

5.4.1.3 Inter Encoder

Send Zero Motion For Edge Macroblocks

If Macroblock is an
Edge Macroblock

Find Best Motion Vector

Intra SAD<Inter SAD

NO

YES

Predict Motion Vectors

Transform One Macroblock Luma
Find Inter Chroma Residual

Transform One Macroblock Chroma

Transform One Macroblock Luma
Make Chroma Prediction

Transform One Macroblock Chroma

Write Macroblock Syntax

Encode One Macroblock Finished

Find Best Intra Prediction mode

NO YES

Inter Encode One Macroblock

Figure 21 - Inter Encode One Macroblock flow chart

Although number of intra coded macroblocks in an inter coded picture is decided

by channel bit error rate for real world system[13], for this implementation,

compared SAD values between intra and inter decisions are accepted as criterion

 38

for sending intra macroblock instead of inter encoded macroblock inside an inter

frame. Decision scheme is given in Figure 21.

If Best Motion
Vector is 8x8

Find Best Sub Mode Motion Vector

Find Half and Quarter Pixel
Accuracy Motion Vectors

YES

NO

Best Motion Vector is Found

Find Best MB Mode Motion Vector

Find Best Motion Vector

Figure 22 - Find Best Motion Vector flow chart

Best motion vector decision scheme is given in Figure 22

Macroblocks at picture boundaries are directly sent with zero motion assumption.

Their reference motion blocks are assumed as 16x16 blocks, reference motion

block is taken from the previous picture in time order. For each macroblock not

being at picture boundaries, up to five available reference frames are scanned

from the frame store to find the best motion vector.

Motion estimation process starts with search window construction from the

current reference frame. After search window is constructed, integer pixel

 39

accuracy motion vector search algorithm starts. Integer pixel accuracy motion

vector that gives best SAD is found. Then half and quarter pixel motion

estimation starts and result is placed in global storage.

Find 16x16 Motion Vector LEVEL 0

If SAD found <
LEVEL_0 _TRESHOLD

NO

Find 16x16 Motion Vector Level1
Find 16x8 Motion Vector Level1
Find 8x16 Motion Vector Level1
Find 8x8 Motion Vector Level1

New Treshold = SAD Found

If SAD found < New
Treshold

NO

Find 16x16 Motion Vector Level2
Find 16x8 Motion Vector Level2
Find 8x16 Motion Vector Level2
Find 8x8 Motion Vector Level2

YES

YES

Best MB Mode Motion Vector Found

Find Best MB Mode Motion Vector

Figure 23 - Find Best MB Mode Motion Vector flow chart

Best motion vector is decided with two steps decision scheme shown in Figure

23. In the first step, for each reference frame in frame store, motion vector modes

 40

of 16x16, 16x8, 8x16 and 8x8 for different search positions specified with

DCUPS search algorithm. These positions are gathered into groups by

considering distance from the origin. These groups are named under search

LEVEL. There are three search levels. Each level is distinguished by its search

positions. Best match search positions used for each level is given below with

(x,y) locations in a plane.

• LEVEL0, (0,0) location

• LEVEL1, (1,0),(0,1),(-1,0),(0,-1) locations

• LEVEL2, (3,2),(-3,2,),(3,-2),(-3,-2),(6,5),(-6,5),(6,-5),(-6,-5) locations

Search modes that use block sizes of 16x16, 16x8, 8x16 and 8x8 modes are

called MB modes in the encoder software. If the best MB mode motion vector

has 8x8 block size, sub block modes of 8x8 block, which are 8x4, 4x8, 4x4 block

modes are used to find best integer pixel motion vector. After finding best integer

pixel motion vector, half and quarter pixel motion vectors are decided by using

filtering and interpolation [7].

5.4.1.4 Transform and Quantization Block

This block is one of the common blocks for inter and intra prediction in the

encoder. Because of this reason, function of this block is explained only in intra

encoder sub-topic. Prediction residuals from the difference of predicted and

original values of each macroblock are processed in this functional block.

Besides transform and quantization, inverse transform and inverse quantization

are also performed in this stage. Transformed and quantized residuals are put into

global storage for entropy coding module. Inverse-quantized and inverse

transformed coefficients are put into frame store.

 41

5.4.1.5 Motion Compensation Block

Motion compensation block is not a separate functional block from the other

functional blocks. Motion compensation for H.264 is done by using motion

vectors found and reference frames in frame store to find the predicted frame at

the decoder side. After predicted frame is found, prediction residuals can be

found.

5.4.1.5.1 Luma Motion Compensation

Considering the motion estimation stage, predicted pixel values and prediction

residuals must be calculated to find best motion vector. Meaning that, during

motion estimation stage, all motion compensation values are already calculated.

These values are used for motion compensation.

5.4.1.5.2 Chroma Motion Compensation

Motion estimation uses luminance pixel values, while detecting the motion,

because only luminance component of the frame is a reference for the motion

estimation. Chrominance components decide the colors. Chrominance blocks

should also move along the luminance motion path. Motion vectors for

chrominance components are calculated from luminance motion vectors for

H.264 Recommendation.

Unlike luminance component, motion compensation for chrominance

components of picture should be performed separately due to the reason

explained above.

5.4.2 CABAC

Entropy coding stage is the output stage of the encoder. All bits generated from

the encoder must pass through from this stage. After this stage, parsing stage for

the encoder starts. Parsing is specified in detail in H.264 recommendation.

 42

Context Adaptive Binary Arithmetic Coding is chosen as entropy coding method.

Binary encoding, context initialization and CABAC routines in the JVT encoder

are ported. Some simplifications are made for compatibility.

5.4.3 Data Input/Output

This implementation assumes virtual visual source for raw video stream. Due to

this reason, some specific file format for Texas Instruments IDE must be

prepared [30] from the raw byte stream. After loading that special file to the IDE,

visual data can be processed from the memory.

5.5. Optimizations

Real-time systems have to complete some their tasks in some specific timing

constraints required for the application.

Desktop platform implementation of real-time systems is very commonly used

implementation method for real-time systems. When mobility is required,

embedded systems are considered for implementation. Embedded systems

introduce a drawback for implementation of real-time systems. They have limited

processing resources, such as memory and processing power, compared with

desktop systems.

This issue leads to software and hardware architecture differences between

desktop and embedded systems. Someone who deals with an embedded system

has to be more careful while using available memory and processing power.

In this work software architecture is designed in a way that, memory and

processing power consumption does not prevent further development steps for

future enhancements of the H.264 encoder.

Both Intra and Inter prediction have some special functional stages for

compression. Some of these functional blocks are common for two of the

 43

prediction methods. Excluding these common functional blocks, Intra and Inter

encoder stages can be implemented completely independent.

Using advantage of independent implementation, first intra encoder block is

implemented. Each functional block of intra encoder is sequentially connected to

each other. Functional blocks are implemented with module based architecture.

Modularity increased debugging speed for the encoder implementation. Common

blocks with inter encoder have also been implemented wile developing intra

encoder. Afterwards, inter encoder functional blocks are implemented.

Modularity of inter encoder blocks are also taken into consideration while

designing the software. In the last phase, entropy coding stage is implemented.

By this way, all of the modules are implemented and tested independently.

5.5.1 Optimizations Regarding Software Architecture

Modularity of the software architecture made works easier to optimize the H.264

encoder source code. By this way, each module can be optimized independently

without affecting function of the other modules. Functional blocks of the code are

implemented in more than one way. Then profiling tool of Code Composer

Studio is used for profiling code size and execution time. Fastest implementation

of the code is chosen for the final version.

Most of the code is written in C language. This way is chosen due to efficiently

optimizing compiler used by Code Composer Studio IDE and to reduce

implementation time. Some basic and frequently used codes are written with

intrinsic codes. In some parts of the code, assembler optimized signal processing

libraries of Texas Instruments are used. Optimization at this level is expected to

fulfill performance requirements of the encoder.

Regarding the capability of the TMS320C64x family Digital Signal Processors,

code development flow chart is given as shown in Figure 24 [27].

 44

 45

Figure 24 – Code development cycle for TMS320C64x [27]

5.5.2 Optimizations Regarding Compiler

Software implementations using C language require two kinds of ability to

enhance C code. The first one is to know programming skills for all

programming languages. This allows you to write better code for any

programming language, not only for C. For example using global variables for

data exchange between functions allows you to get rid of unnecessary stack

allocations, when this parameter has to be used by the functions called inside

functions in which parameter is passed. At the same time stack overflow

probability is reduced. These types of optimizations are compiler and platform

independent optimizations. The second is to think like a compiler to reduce load

on the compiler in order to generate better output when writing source codes.

Texas Instruments C6000 compiler enables software designer to improve code

efficiency by putting compiler into more precise state of generating code by

providing feedback to the compiler.

Time-consuming parts of software are inside loops. Therefore, loop optimization

becomes important issue. To optimize the loop, number of instruction cycles

spent in loop must be reduced. Method that can be used is “Loop Unrolling [27]”

for the loop optimization. If the inside loop can be unrolled efficiently, compiler

performs optimization on unrolled inner part. For this implementation, loop

unrolling is used where it is possible.

Performance of C code, which assumes “long” and “int” types as the same bit-

length reduces. Because “long” type is 40-bit length for TMS320C6000 compiler

and it uses additional data unit for loading and saving values of these variables.

This reduces performance, generates extra code for handling of “long”

operations.

Using 32-bit “int” variables for loop counters generates more efficient code,

when compared with the code using “short” variables for loop counters.

 46

Another important issue for a compiler is to handle memory independencies

present. As number of parallel instructions increases, code performance increases

at the same time. It is important for a compiler to schedule instructions in parallel

not to waste processing power. Sometimes feedback is needed for the compiler to

understand independent instructions. Dependency is a case where one instruction

must occur before another one. This type of dependent instructions cannot be

scheduled in parallel. In order to give information about independencies to

compiler, there are some methods, which are also used in this implementation.

For example, one of them is using “restrict” keyword for current scope of the

variable. This keyword shows that, pointer object that is declared with “restrict”

keyword is used for only one object inside the current scope. By this way,

compiler can assume that this pointer location is not changing in the current

scope and increase parallelism.

There are more issues about compiler optimization. All the details can be found

in [27].

5.5.3 Used Optimization Methods

In this chapter used optimization types will be explained. Performance

enhancements will be shown.

5.5.3.1 Loop Unrolling

Loop unrolling is actually optimization technique to make job of the compiler

easier. This reduces code size and also number of cycles required for completion

of the same job.

In the first example there are two forms of the same code. In the first code, two

loops is used for completing the job completed in second code with only single

loop and unrolled inner loop.

 47

for (j=0;j<4;j++)
{
 m[0]=y[0][j]+y[2][j];
 m[1]=y[0][j]+y[2][j];
 m[2]=y[1][j]+y[3][j];
 m[3]=y[1][j]+y[3][j];
}

 for (j=0;j<4;j++)
{
 for(i=0;i<2;i++)
 {
 m[2*i]=y[i][j]+y[i+2][j];
 m[2*i+1]=y[i][j]+y[i+2][j];
 }
}

(a) (b)

Figure 25 – Loop Unrolling optimization
a) Straightforward code b) Loop unrolled code

Statistics for the code in Figure 25 a) and b) are given below

Original Code

Code Size

108

136 76

240

Number of Cycles

Loop unrolled code

Table 1 - Loop unrolling statistics

As it can be seen from the Table 1, code size of the original code is larger than

loop unrolled code size. This means, loop unrolling also reduces generated code

size for loops. Considering the performance, original code is executed at 240

CPU cycles. Whereas loop unrolled code takes only 136 cycles to perform the

same job. This shows that loop unrolling enhances code performance. Loop

unrolling method is used in the H.264 encoder implementation where it is

possible, in order to take advantages of reduced code space and increased

execution performance.

5.5.3.2 Use of Intrinsic Operators

After C optimization step in the code development flow, use of the intrinsic

operators comes for further optimization. Code lines below belongs the part of
 48

unutilized code.

for(i=0;i<16;i++)
 for(j=0;j<16;j++)
 {
 sum_of_squares+=mb[i][j]*mb[i][j];
 sum+=mb[i][j];
 }

 Figure 26 – Straightforward code

In the Figure 26, there is a program code, which finds sum of squares and sum of

each entry separately. Considering this part of the code, variable “mb[i][j]” is an

8 bit entry and “mb” is 16x16 two dimensional array. Each entry is treated as 8-

bit entities for the calculation.

In the optimized code of Figure 27, allocation of the “mb” array in the memory is

taken into consideration. Variable named “var” is a pointer for unsigned integer,

which is 32 bits for TMS320C64x processor. For each line of “mb” array,

beginning address of the corresponding line is assigned to “var”. Packed

instruction “_dotpu4” is used for calculation of both sum of squares and sum.

This instruction takes two 32-bit arguments, separates each argument into four

bytes(which are actual entry values of “mb” array) and takes dot product of each

byte from two of the arguments. Finally, instruction returns sum of dot products.

 for(i=0;i<16;i++)//sweep all lines of the mb array
{

var=(unsigned int *)&mb[i][0];//assign beginning address of line to var
 sum_of_squares+=_dotpu4(var[0],var[0]);//sum of squares for first 4 bytes
 sum_of_squares+=_dotpu4(var[1],var[1]);// sum of squares for second 4 bytes
 sum_of_squares+=_dotpu4(var[2],var[2]);// sum of squares for third 4 bytes
 sum_of_squares+=_dotpu4(var[3],var[3]);// sum of squares for fourth 4 bytes
 sum+=_dotpu4(0x01010101,var[0]);//sum for first 4 bytes
 sum+=_dotpu4(0x01010101,var[1]); //sum for second 4 bytes
 sum+=_dotpu4(0x01010101,var[2]); //sum for third 4 bytes
 sum+=_dotpu4(0x01010101,var[3]); //sum for fourth 4 bytes
}

Figure 27 – Intrinsic optimized code

 49

Comparing the statistics in the Table 2, even though code size increases,

execution time reduces drastically. Intrinsic operators enable programmer to use

TMS320C64x specific assembler instructions under C programming language.

This brings great flexibility while optimizing code, without rewriting assembly.

Original Code

Code Size

248

2634 452

13706

Number of Cycles

Intrinsic Optimized
Code

 Table 2 –Intrinsic optimization statistics

5.5.3.3 Use of Assembly Optimized TMS320C64x Libraries

Texas Instruments offer libraries for programmers [28] dealing with image or

video processing. These libraries contain assembly optimized routines. For this

implementation, functions from these libraries are used where it is possible. For

example, 16x16 SAD is calculated by using this library function. Before using

the library function, lines in Figure 28 were being used for SAD calculation,

where “_abs” intrinsic operator was used for absolute value calculation.

 50

for(i=0;i<16;i++)
 for(j=0;j<16;j++)
 sad+=_abs(mb[i][j]-mb2[i][j]);

Figure 28 - Straightforward SAD code

Statistics for the library function and the straightforward calculation of SAD with

C routine in Figure 27 are given in Table 3.

Original Code

Code Size

32

67 168

2180

Number of Cycles

Library Function

Table 3 – Assembly optimization statistics

As it can be seen from the Table 3, execution time decreases drastically with the

usage of the library function. Even if its code length is larger than original code,

its performance is a lot better than original codes.

5.6 Encoder Conformance

H.264 Recommendation specifies some predefined profile levels. In order to

achieve interoperability, there are three profile levels for H.264 decoder. These

profiles are named as Basic Profile, Main Profile and Extended Profile. If the

decoder supports one of these profile levels, it can decode streams generated with

up to same profile level. For example, Main profile can decode streams prepared

with Basic or Main Profile levels. Extended Profile Decoder can decode Basic,

Main and Extended profile streams.

This implementation of H.264 encoder can generate H.264 Main Profile Level

output streams. Basic Profile is a base for this work. However, CABAC entropy

coding scheme implemented for entropy coding stage, which is supported starting

from the Main Profile decoders.

 51

CHAPTER 6

PERFORMANCE EVALUATION

The proposed real-time H.264 Video Encoder processes colored frames with 144

lines x 160 pixels dimension, which is known as QCIF frame resolution.

While evaluating the performance of the encoder, execution time and PSNR

results are taken from CCS IDE. Execution time results are measured with

Profiler Tool of CCS IDE. PSNR results are calculated on simulator.

We have used three YUV video sequences that are used for compression

evaluation are chosen as test sequences. In addition, four different quantization

parameters are used in the test. Results are collected and compared with the

results presented in the previous works.

Development and evaluation environment for the proposed system is given

below.

Code Generation Environment : TI Code Composer Studio for C6000 Family.

Execution Time Analysis Tool : TI CCStudio Profiler.

Platform : TMS320C64x Cycle Accurate Simulator.

CPU Clock : 800MHz.

 52

Gathered profiling results are represented in the following tables.

32330613 35155552 40741236 49353703 Intra

79170510 78144253 74674142 72965755 Inter

Table 4 – Profile results for Foreman sequence
(Number of cycles)

QP=36QP=28QP=20 QP=44Frame Type

71121933 68910747 48172325 45801810 Inter

31672727 34119128 39738933 47983922 Intra

QP=36QP=28QP=20 QP=44Frame Type

Table 5 – Profile results for Container sequence
(Number of cycles)

75737128

31300781

74662078

33837658

67032258

38715393

69391931

46184506

Inter

Intra

QP=36QP=28QP=20 QP=44Frame Type

Table 6 – Profile results for Carphone sequence
(Number of cycles)

Profile results for the evaluated sequences are given above. Number of cycles

required for encoding single intra or inter frame is written in the corresponding

entries. Number of cycles gives execution time of the specific encoding task,

when the clock frequency of the processor is specified.

 53

Evaluation results are given in the tables from 7 to 10.

Sequence

Name

Frame

Type

Frame

Size

Frames/S

ec

Bit-rate

(Kbits/sec)

Average

PSNR(dB)

Foreman color QCIF 10 500.992 42.7

Container color QCIF 16 390.256 43.3

Carphone color QCIF 11 480.720 42.9

Sequence

Name

Frame

Type

Frame

Size

Frames/S

ec

Bit-rate

(Kbits/sec)

Average

PSNR(dB)

Foreman color QCIF 10 292.440 36.5

Container color QCIF 16 252 36.7

Carphone color QCIF 11 259.768 37.2

 Table 7 – Evaluation results with QP=20

 Table 8 – Evaluation results with QP=28

 54

Sequence

Name

Frame

Type

Frame

Size

Frames/S

ec

Bit-rate

(Kbits/sec)

Average

PSNR(dB)

Foreman color QCIF 10 129.304 30,6

Container color QCIF 11 169.336 30.45

Carphone color QCIF 10 132.056 31.5

Sequence

Name

Frame

Type

Frame

Size

Frames/S

ec

Bit-rate

(Kbits/sec)

Average

PSNR(dB)

Foreman color QCIF 10 100.032 26.5

Container color QCIF 10 119.208 25.4

Carphone color QCIF 10 102.816 27.1

 Table 9 – Evaluation results with QP=36

 Table 10 – Evaluation results with QP=44

Quantization parameters used for evaluation purpose are chosen intentionally to

compare the results with the ones in [28] and [29].

PSNR performance of the encoded regarding quantization parameter is similar to

the results [28] with the same quantization parameters.

 55

For this implementation, by using different search strategies, better PSNR results

can be obtained. This may increase execution time and reduce the performance of

the encoder. However, there is another tradeoff at this point. Although execution

time increases, picture quality of the reconstructed frame on the frame store will

increase with increasing efficiency of the search algorithm. This may result in

degradation in output bit stream length due to smaller residuals. There is an

optimum point for this decision, which is not in the context of this work.

In this work, only I and P frames are implemented. B frames are not present in

the stream, which significantly improve encoder performance. Using B frames

with better search strategies will lead to results close to given in [29].

It is observed from the tables that, increasing quantization parameter reduces

frames/second rate of the encoder. This is due to decreased quality of picture in

the frame store for motion estimation. Time needed for motion estimation

increases with reduced picture quality, which is dependent on quantization

parameter.

Sending zero motion for edge macroblocks increased the system execution time

performance. For the proposed system, nearly %30 of the macroblocks are sent

with zero motion assumption. Considering larger picture sizes, system

performance will decrease under linear performance degradation curve.

Prediction mode decision for inter macroblocks is made with SAD comparison

between inter and intra coding results in the proposed system. In the real life, this

will not be the case. For the proposed system, considering single inter

macroblock, both intra and inter prediction is performed excluding edge

macroblocks. This situation results in performance degradation for inter encoded

macroblocks that are not at the edge of the picture. Changing this strategy will

introduce significant performance increase to the proposed system.

 56

CHAPTER 7

CONCLUSIONS

In this thesis work, we aimed to implement real-time H.264 Encoder on TI

TMS32C64x Digital Signal Processor. Performance evaluation results are

presented in the previous chapter. Gathered results showed that, this

implementation of H.264 Encoder meets real-time requirements with satisfying

picture quality.

While implementing the encoder, modularity was an important issue. Flexible

encoder architecture is created. This will enable easy further manipulations of the

code and encoder structure.

It is observed that, encoder performance depends on several critical global

parameters, such as quantization parameter, mode decision thresholds. These

parameters are not decided after large number of trials. In addition, these critical

parameters are fixed in this implementation All performance evaluation results

may change by changing these critical parameters. Obviously optimum value for

these parameters will result in better encoder performance. Further improvement

can be achieved by changing these parameters according to channel parameters.

As an alternative, optimum values for these parameters can be decided after

number of trials.

Motion search algorithm significantly affects the encoder performance. DCUPS

algorithm has given moderate results in this work. Different search algorithms

 57

such as three step search or exhaustive search may be used as an alternative

motion search algorithms.

In this work, every motion block size can used for motion estimation. Finding

best motion block size by considering all block sizes takes great time of the

encoder. By limiting the motion vector block sizes, better performance results

can be obtained.

Another issue we address in this thesis is the real-time implementation of

CABAC entropy coding scheme. Due to CABAC ‘s computational complexity,

in order to achieve real-time performance, it may be implemented with hardware.

It is shown that, for the proposed system, software CABAC implementation

works with real-time timing constraints on TMS320C64x DSP.

Proposed H.264 encoder does not implement the full recommendation. Main

building blocks are implemented in this work for only QCIF frame size.

Conforming stream syntax requirements is another issue that is to be

accomplished with full attention. In order to generate output stream with correct

syntax, one hundred percent compatible decoder should be present. Even JVT

decoder has some bugs and it is being updated. For full compatibility, decoder

may be explicitly implemented.

Unutilized portions of the code may be revised for better performance. Giving

support for different frame sizes may be implemented in the future work.

Almost hundred percent of the code is written in the C programming language.

Considering the code development flowchart in the Figure 24, all development

stages may be applied to the code. This will introduce significant improvement to

performance of the encoder.

Rate-distortion optimization method can be further added to the implementation

and performance of the encoder can be monitored afterwards.

 58

Additional features, such as support for field pictures, generation of B, SP, SI

frames, Rate-Distortion Optimization proposed in [13] can be implemented in the

future work.

 59

REFERENCES

[1] B. Bhatt, D. Birks and D. Hermreck, “About Digital Video

Compression”,IEEE Spectrum Magazine, vol. 36, no.8, pp20-28, October 1997.

[2] ITU-T Recommendation H.261, “Video Codec for Audivisual Services at

px64 kbit/s”, 1993.

[3] ITU-T Recommendation H.263, “Video Coding for very Low Bit rate

Communication”, 1996.

[4] ISO/IEC International Standard 11172; "Coding of moving pictures and

associated audio for digital storage media up to about 1,5 Mbits/s", November

1993.

[5] ISO/IEC International Standard 13818; "Generic coding of moving pictures

and associated audio information", November 1994.

[6] UB Video Inc., “Emerging H.26L Standard: Overview and TMS320C64x

Digital Media Platform Implementation”, White Paper, 2002.

[7] International Telecommunication Union, “Advanced video coding for generic

audiovisual services” 2003.

[8] Texas Instruments, “TMS320C64x Technical Overview, Literature Number:

SPRU395B”, January 2001.

[9] ITU-T Recommendation H.263 Version 2, “Video Coding for very Low Bit

rate Communication”, September1997.

 60

[10] T. Wiegand, G. Sullivian, G. Bjontegaard, A. Luthra, “Overview of the

H.264/ AVC Video Coding Standard”, IEEE Transactions On Circuits And

Systems For Video Technology, July 2003.

[11] R. Schafer, T. Wiegand, H. Schwarz, “The Emerging H.264/AVC

Standard”, EBU Technical Review, January 2003.

[12] T. Stockhammer, T. Wiegand, “H.264/AVC for Wireless Applications”,

2003.

[13] T. Stockhammer, D. Kontopodis, T. Wiegand, “Rate- Distortion

Optimization For JVT/ H.26L Video Coding In Packet Loss Environment”.

[14] Iain E.G. Richardson ,”H.264/ MPEG-4 Part 10: Intra Prediction White

Paper, “Reconstruction Filter”, April 2003

[15] LSI Logic Cooperation, “H.264 /MPEG 4 AVC Video Compression

Tutorial”.

[16] Iain E.G. Richardson , H.264/ MPEG-4 Part 10: Variable Length Coding

White Paper, “Variable-Length Coding”.April 2003

[17] D. Marpe, H. Schwarz, T. Wiegand, “Context Based Adaptive Binary

Arithmetic Coding in the H.264/ AVC Video Compression Standard” IEEE

Transactions On Circuits And Systems For Video Technology, Vol.13, No.7,

July 2003

[18] T. Wiegand. ITU- Telecommunications Standardization Sector Study Group

16, “H.26L Test Model Long Term Number 8 (TML-8) draft0”, May 2001.

[19] Iain E.G. Richardson , H.264/ MPEG-4 Part 10: Inter Prediction White

Paper, “Prediction of Inter Macroblocks in P-Slices”, April 2003.

[20] Antti Hallapuro, Marta Karczewicz,” Low Complexity Transform and

Quantization – Part I: Basic Implementation”, jvtb038.doc, January 2002

 61

[21] Iain E.G. Richardson , H.264/ MPEG-4 Part 10: Transform and Quantization

White Paper, “Transform and Quantization”., April 2003

[22] D. Marpe, G. Blattermann, G. Heising, T. Wiegand, “Video Compression

Using Context- Based Adaptive Arithmetic Coding ” ICIP, Thessaloniki, Greece,

2001.

[23] A. Moffat, R. M. Neal, and I. H.Witten, “Arithmetic coding revisited,”

inProc. IEEE Data Compression Conf., Snowbird, UT, 1996, pp. 202–211.

[24] P. G. Howard, J. S. Vitter, “Practical Implementations of Arithmetic

Coding”, Brown University Depertment of Computer Science, Techinical Report

No.92-18, Revised Version April 1992.

 [25] A. Said, “Comparative Analysisof Arithmetic CodingComputational

Complexity”, HP Laboratories Palo Alto HPL-2004-25, April 2004.

[26] Raymond Westwater, Borko Furht, Joshua Greenburg, “Motion Estimation

Algorithms for Video Compression”, Kluwer Academic Publishers, 1997

[27] Texas Instruments, “TMS320C6000Optimizing Compiler User’s Guide ,

Literature Number: SPRU187K”, October 2002.

[28] Till Halbach, Mathias Wien, “ Concepts and Performance of Next

Generation Video Compression Standardization”

[29] “MPEG-4 Video and Image Coding Tools”, MPEG-4 Industry Forum

Presentation.

[30] Texas Instruments, “TMS320C62x Image/Video Processing Library

Programmer’s Reference, Literature Number: SPRU400”, March 2000.

[31] Texas Instruments, “TMS320C64x DSP Library Programmer’s Reference ,

Literature Number: SPRU565B”, October 2003.

 62

[32] H. Sabikhi, “Example of GEL Usage With File I/O for Code Composer

Studio v2.1”, Code Composer Studio, Applications Engineering Application

Report, SPRA381, April 2002.

 63

APPENDICES

 64

APPENDIX A

TMS320C64x Functional Unit Operations

 Figure 29 – TMS320C64x functional unit operations [8]

 65

 Figure 30 – TMS320C64x functional unit operations (ctd) [8]

 66

APPENDIX B

Code Composer Studio Project Description

B.1 Project View

Project folder appearance is given in Figure 31.

Figure 31 - CCStudio project window

GEL Folder consists Code Composer Studio Graphical Extension Language

functions. GEL file is used to initialize Code Composer Studio IDE, and makes it

compatible with the target board configuration. For this purpose, default gel file

“init64xxsim.gel” that comes with the CCS IDE is used. Gel file mainly

initializes some internal registers of the processor.

Projects folder contains some subfolders, which may be used for project

generation. Only “Include”, “Libraries” and “Source” folders contain items in

themselves. File named ”lnk.cmd” contains linker commands that are given as an

order to linker executable file which resolves linking issues and allocates

program and data into specified memory regions. Linker Command file is given

in Figure 32

 67

Linker command file starts with two assignments for system heap length and

system stack length used by the functions. Heap is used for dynamically allocated

objects. Regarding this implementation, dynamically allocated objects are not

used. For this reason heap size is chosen as 256 bytes, which is represented by

“0x100” hexadecimal notation.

-heap 0x100
-stack 0x4000
MEMORY
{
PAGE 0:
L2_PROG_RAM(RW): origin =0x0 , length=0x60000
L2_DATA_RAM(RW): origin =0x60000 , length=0xB0000
FRAME_STORE: origin =0x80000000 , length=0x60000
TABLES : origin =0x800D0000 , length=0x40000
OUTSTREAM: origin =0x80110000 , length=0x10000/* output stream*/
}

SECTIONS
{
.text > L2_PROG_RAM
.stack > L2_DATA_RAM
.bss > L2_DATA_RAM
.cinit > L2_DATA_RAM
.cio > L2_DATA_RAM
.const > L2_DATA_RAM
.data > L2_DATA_RAM
.switch > L2_DATA_RAM
.sysmem > L2_DATA_RAM
.far > L2_DATA_RAM
.framestore : {framestore.obj(.bss)} >FRAME_STORE
.tables: {tables.obj(.bss)} >TABLES
.outstream: {outstream.obj(.bss)} >OUTSTREAM
}

Figure 32 -. CCStudio Linker Command File

Someone, who uses heap, must allocate more heap area than specified here.

System stack length is specified as “0x4000” bytes. Depending on the

implementation, stack size may be specified larger than here. Usage of global

variables reduced the need for the stack. This was another issue for this

implementation. Using less stack area allows encoder use more data memory for

H.264 functional objects for future enhancements.

 68

Linker command file is mainly composed of two sections, “MEMORY” and

“SECTIONS” part.

Section called “MEMORY” defines the hardware configuration of the platform

for linker.

“MEMORY” section has subsections, which are different regions of platform

memory used for linking. These memory regions are defined by their starting

point “origin” and their “length” in byte. On the TMS320C64x platform, these

regions cannot be overlapped. Regions and their explanations are given below

• “L2_PROG_RAM”, this memory is used as program memory for storing

generated program code. This is an internal memory of TMS320C64x

processor.

• “L2_DATA_RAM”, this memory is used as data memory for storing used

data structures, variables etc. This is an internal memory of TMS320C64x

processor.

• “FRAME_STORE”, this memory is used for frame storage of H.264

Encoder. This memory is an external memory.

• “TABLES”, this memory is used for storing initialization tables. This

memory is an external memory.

• “OUTSTREAM”, this memory is used for storing output stream generated

by the encoder.

While arranging memory regions, access speed requirements of memory regions

come into work. Frequently accessed structures, variables etc. are put into fast

internal memory. Less accessed memory regions, tables used for initialization are

put in slower external memory region.

 69

“SECTIONS” section of linker command file explains linker to put which

program segment to which physical memory region defined by “MEMORY”

section.

• “.text” section is the program code generated by the compiler and must be

put into the physical memory region allocated for program which is

L2_PROG_RAM.

• ”stack”, ”.bss”, “.cinit”, “cio”, “.const”, “.data”, “.switch”, “.sysmem”,

“.far” sections are data sections generated by compiler and must be put in

data memory, which is L2_DATA_RAM. Detailed description of sections

generated by compiler can be found in [27].

• “.framestore” section is created for putting video data that belongs to frame

store into physical memory section called FRAME_STORE.

• “.tables” section is created for putting initialization tables and frame

residuals into physical memory region called TABLES.

• “.outstream” section is created for put output stream into physical memory

region called OUTSTREAM.

“Include” folder of project folder contains C header files used by the source files.

“Libraries” folder contains used run time support libraries as shown in Figure 33.

• “dsp64x.lib” contains optimized digital signal processing routines that are

used in the encoder. Detailed functional description of this library can be

found in [31].

• “img64x.lib” contains optimized image processing functions that are used

in the encoder. Detailed functional description of this library can be found

in [30].

 70

• “rts6400.lib” contains run-time support functions that are used for

standard ANSI-C syntax.

Figure 33 - CCS Libraries view

 “Source” folder contains source files created for H.264 encoder as seen in Figure

34.

Description of contents for these source files are given below,

• “basic.c”, this file contains basic encoder routines.

• “binariencode.c”, this file contains functions that manipulate arithmetic

encoding environment.

• “buffer_pointers.c”, this file contains declaration pointers needed to

manipulate buffers and assignments of them to related structures.

• “cabac.c”, this file contains Context Adaptive Binary Arithmetic Coding

routines used for entropy coding section.

• “context_init.c”, this file contains initialization functions for context models

used for entropy coding.

• “encode.c”, this file contains basic initialization functions for H.264

streaming headers.

 71

 Figure 34 - Source folder view

• “fast_code.c”, this file contains six-tap filtering function used for motion

estimation. Further optimized routines may be put under this file.

• “fileio.c”, this file contains file-IO routines used for taking video stream

data from hard disk of computer to internal memory of the TMS320C64x

platform.

• “framestore.c”, this file contains frame store manipulating functions.

 72

• “half_el_est.c”, this file contains half and quarter pixel motion estimation

functions used for inter prediction.

• “initializations.c”, this file contains initialization functions for H.264

encoder data structures.

• “inter_encoder.c”, this file contains necessary function calls for inter

encoding and syntax preparation.

• “intra_encoder.c”, this file contains necessary functions for intra coding of

a frame.

• “main.c”, this file contains entry point of the encoder, necessary function

calls for initialization of streaming and H.264 data types and stream

manipulating functions.

• “mb_access.c”, this file contains macroblock access functions used in

various parts of the code.

• “motest_functions.c”, this file contains functions used for motion

estimation.

• “motion_compensation.c”, this file contains motion compensation routines.

• “motion_estimation.c”, this file contains manipulation routines for motion

estimation functions.

• “motvec_prediction.c”, this file contains routines for motion vector

prediction.

• “outstream.c”, this file only contains the declaration for output stream

buffer.

• “psnr.c”, this file contains Peak Signal over Noise Ratio function.

 73

• “satd.c”, this file contains Sum of Absolute Difference routines with

Haddamard transform.

• “syntax.c”, this file contains syntax preparation functions.

• “tables.c”, this file contains initialization tables for CABAC and residual

buffer declarations.

• “transform.c”, this file contains transform coding routines.

• “version_info.c”, this file contains version and update information for the

encoder. Nothing executable is put here.

• “vlc.c”, this file contains VLC coding functions that are needed for some

syntax elements, even if CABAC is used as an entropy coding scheme.

B.2 Encoder Global Data Fields

In this chapter, description of data fields that are used globally is given. These

fields are explained by considering the source file they are declared.

B.2.1 “cabac.c” Global Data Fields

• “motinfo_ctx”, this field keeps the current state of the motion info contexts

for CABAC.

• “textinfo_ctx”, this field keeps the current state of the texture info contexts

for CABAC.

B.2.2 “encode.c” Global Data Fields

• “pred_frame”, this field keeps predicted macroblock data.

 74

B.2.3 “framestore.c” Global Data Fields

• “frame_store_buffer”, this field is used for keeping reconstructed past five

frame data used for inter prediction.

B.2.4 “inter_encoder.c” Global Data Fields

• “s_win”, this field is used for keeping luminance data search window for

motion vector search

• “win_chroma_u”, this field is used for chroma motion compensation for U

data.

• “win_chroma_v”, this field is used for chroma motion compensation for V

data.

B.2.5 “intra_encoder.c” Global Data Fields

• “img_UV”, this field keeps chroma pixel values for U and V data for

encoding of intra macroblocks.

• “chipred_mode”, this field keeps chroma intra prediction modes for each

macroblock.

• “img_cbp”, this field keeps the coded block pattern data for current

encoded image.

• “Intra4x4_pred_mode”, this field keeps intra 4x4 prediction mode for intra

4x4 predicted macroblocks of the current frame.

B.2.6 “main.c” Global Data Fields

• “current_mb”, this field keeps encoding parameters, residuals, predicted

values for only current macroblock.

 75

B.2.7 “motest_functions.c” Global Data Fields

• “motvec_comp_buf”, this field keeps necessary motion vector data for

motion vector comparison. For current macroblock

• “sad_comp_buf”, this field keeps evaluated SAD data for current

macroblock.

• “reframe_array”, this field keeps reference frame indices for inter encoded

macroblocks of the frame.

• “mvd_array”, this field keeps motion vector data for inter encoded

macroblocks of the current frame

• “mvd_res_array”, this field keeps motion vector residuals remaining after

motion vector prediction.

B.2.8 “motion_estimation.c” Global Data Fields

• “motion_vector_buffer”, this field keeps found motion vectors after motion

estimation stage.

B.2.9 “outpstream.c ”Global Data Fields

• “output_stream”, this field is used for keeping generated final output stream

for a single frame.

B.2.10 “syntax.c” Global Data Fields

• “curr_strm”, This field keeps the current bit pointer of the generated stream

used for writing output after CABAC stage of the encoder.

B.2.11 “tables.c” Global Data Fields

• “frame_residual_u”, this field keeps residual chrominance u data of the

 76

current frame after prediction

• “frame_residual_v”, this field keeps residual chrominance v data of the

current frame after prediction

All of the remaining global arrays declared are used for initialization of context

models used for CABAC Encoding.

B.2.12 “transform.c” Global Data Fields

• “quantMat”, this field is used for storing table needed for quantization.

• “dequantMat”, this field is used for storing table needed for de-

quantization.

• “QPC”, this field is used for keeping values needed for chrominance

quantization parameter determination.

 77

