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ABSTRACT 
 

ANALYSIS OF SINGLE PHASE CONVECTIVE HEAT TRANSFER IN 

MICROTUBES AND MICROCHANNELS 

 

Çetin, Barbaros 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Hafit Yüncü 

Co-Supervisor: Prof. Dr. Sadık Kakaç 

 

January 2005, 120 Pages 

 

Heat transfer analysis of two-dimensional, incompressible, constant property, 

hydrodynamically developed, thermally developing, single phase laminar flow in 

microtubes and microchannels between parallel plates with negligible axial 

conduction is performed for constant wall temperature and constant wall heat flux 

thermal boundary conditions for slip flow regime. Fully developed velocity profile is 

determined analytically, and energy equation is solved by using finite difference 

method for both of the geometries. The rarefaction effect which is important for flow 

in low pressures or flow in microchannels is imposed to the boundary conditions of 

the momentum and energy equations. The viscous dissipation term which is 

important for high speed flows or flows in long pipelines is included in the energy 

equation. The effects of rarefaction and viscous heating on temperature profile and 

local Nusselt number are discussed. The results of the numerical method are verified 

with the well-known analytical results of the flow in macrochannels (i.e. Kn =0,     

Br =0) and with the available analytical results of flow in microchannels for 

simplified cases. The results show significant deviations from the flow in 

macrochannels. 
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Keywords: Microchannel Heat Transfer, Slip Flow, Heat Transfer in Ducts, 

Rarefaction Effect, Viscous Dissipation 
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ÖZ 
 

MİKROTÜPLERDE VE MİKROKANALLARDA TEK FAZLI AKIŞKANLARDA 

KONVEKSİYONLA ISI TRANSFERİ 

 

Çetin, Barbaros 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Hafit Yüncü 

Ortak Tez Yöneticisi: Prof. Dr. Sdık Kakaç 

 

Ocak 2005, 120 Sayfa 

 

Mikrotüplerde ve mikrokanallardaki iki boyutlu, hidrodinamik olarak gelişmiş, ısıl 

olarak gelişmekte olan tek fazlı laminar akışın ısı transferi analizi sayısal olarak 

incelendi. Analiz kaygan akış rejiminde, sabit duvar sıcaklığı ve sabit duvar ısı akısı 

ısıl sınır koşulları için gerçekleştirildi. Akışkan sıkıştırılamaz, sabit termofiziksel 

özellikli kabul edildi. Eksen boyunca ısı iletimi ihmal edildi. Tam gelişmiş hız 

dağılımı analitik olarak belirlendi. Sıcaklık dağılımı her iki geometri için enerji 

denklemden, sonlu farklar yöntemi kullanılarak çözüldü. Basıncın düşük olduğu 

veya mikrokanallardaki akışlarda önemli olan seyrelme etkisi, momentum ve enerji 

denklemlerinde sınır koşulları olarak yüklendi. Hızın yüksek olduğu veya boyu uzun 

kanalardaki akışlarda önemli olan sürtünme kaybı terimi, enerji denklemine dahil 

edildi. Seyrelme ve sürtünme ısınmasının sıcaklık dağılımı ve yerel Nusselt sayısı 

üzerindeki etkisi incelendi. Elde edilen sayısal sonuçlar literatürdeki bilinen analitik 

ve sayısal sonuçlarla karşılaştırıldı. Mikrokanallardaki sonuçlar makrokanallardaki 

akıştan önemli sapmalar gösterdi.  
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Anahtar Kelimeler: Mikrokanallarda Isı Transferi, Kaygan Akış, Kanallarda Isı 

Transferi, Seyrelme Etkisi, Sürtünme Kaybı 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

The miniaturization trend of the electronic components since 1970’ s and the 

development of the microfabrication and nanotechnology since 1980’ s, led to the 

usage of the devices having the dimensions of microns in many  fields such as 

biomedical applications, space industry and MicroElectroMechanicalSystems 

(MEMS), has significantly increased the problems associated with the overheating of 

these microcomponents and microdevices. The effective usage of these 

microcomponents and microdevices strongly depends on the removing of the heat 

dissipated by them, since their reliability is mainly influenced by their temperature. 

Because of their small dimensions, removing the heat dissipated by means of 

classical components, through natural and forced convection air cooling cannot solve 

the overheating problem, satisfactorily. Therefore, microchannel heat sinks have 

come into picture as the ultimate solution for removing the heat dissipated from a 

relatively small surface area, due to their large heat transfer area per unit volume. 

 

For an effective and economical design of a microchannel heat sink, the key design 

parameters, such as; 

• pressure required for pumping the cooling fluid, 

• flow rate of the cooling fluid, 

• hydraulic diameter of the channel, 

• temperature of the fluid and the channel wall, 

• number of channels, 
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have to be considered and optimized. In order to understand the importance of these 

parameters, the dynamic behavior of the fluid motion in such an extremely small 

channel should be understood. 

 

Experimental studies in the literature have shown that many microchannel flow and 

heat transfer phenomena cannot be explained by conventional theories of transport 

phenomena, such as; the early transition from laminar flow to turbulent flow, and the 

several times higher friction factor of a liquid flowing through microchannel than 

that in conventional theories. 

 

These special characteristics of flow and heat transfer are the results of the 

microscale channel size, surface roughness effect, the interfacial electrokinetic 

effects near the solid-fluid interface for liquid flow and rarefaction effect for gaseous 

flow. 

 

Many analytical and experimental studies have been performed to have a better 

understanding of heat transfer at microscale, both for liquids and gases, as discussed 

in the next chapter. But, none of them has been able to come to a general conclusion 

up to now. 

 

1.1. Fluid and Heat Transfer Modelling 

 

In the literature, there are basically two ways of modeling for a flow field, as shown 

in  Figure 1.1. Either the fluid is considered as a collection of molecules or is 

considered as a continuum where the matter is assumed to be continous and 

indefinitely   divisible [1].  

 

For macroscale, continuum model is being used. The velocity, density, pressure etc. 

are defined at every point in space and time. Conservation of mass, momentum and 

 2



energy lead to a set of nonlinear partial differential equations, which are the Navier-

Stokes and energy equations. These equations are being solved for macro flow. But, 

Navier-Stokes and energy equations are inappropriate because of failure of the 

continuum assumption for micro flow. 

 

 

 

Figure 1.1. Flow Modeling Classification 

Fluid  Modeling 

Molecular Models Continuum Models 

 

 

The continuum assumption fails as the characteristic length of the flow (L) 

approaches to the average distance traveled by the molecules without colliding with 

each other, which is known as  the mean free path (λ). The ratio of the mean free 

path to the characteristic length, a dimensionless quantity, is known as Knudsen 

number. As Knudsen number increases, fluid modeling is moving from continuum 

models to molecular models. 

 

Kn
L
λ

=  (1.1) 

 

For small values of Kn (<0.01), the flow is considered as continuum flow and for 

large values of Kn (>10), the flow is considered as free-molecular flow. For values 
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0.01<Kn<0.1, the flow is in the slip-flow regime, and for values 0.1<Kn<10, the 

flow is in the transition flow regime. The flow regimes are tabulated in Table 1.1. 

 

In continuum flow, the intermolecular collisions are dominant and the Navier-Stokes 

Equations are valid with the appropriate boundary conditions, which are; (i) the 

velocity of the fluid particle adjacent to the solid interface is equal to the zero 

relative to the surface (no-slip boundary condition), and (ii) the temperature of the 

fluid particle near the solid interface is equal to the temperature of the solid surface 

(no temperature-jump boundary condition). 

 

 

Table 1.1. Flow Regimes for Different Kn Numbers 

 

Knudsen number (Kn=λ/L) Regime 

Kn<0.01 “Continuum” Regime 

0.01<Kn<0.1 “Slip-flow” Regime 

0.1<Kn<3 “Transition” Regime 

Kn>3 “Free-molecular” Regime 

 

 

 

In free-molecular flow, the interaction of the molecules with the surface is of 

importance and the molecule to molecule collisions are neglected. The tool for 

dealing with this type of flow is the kinetic theory of gases [2]. 

 

In slip-flow regime, which is the main interest of this study, the Kn number is small, 

but not small enough to neglect the rarefaction effect. In this regime, the collision 

frequency of the fluid particles and the solid surface are not high enough to ensure 

the thermodynamic equilibrium between fluid particles and the solid surface. 
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Therefore, the fluid particles adjacent to the solid surface no longer attain  the 

velocity and the temperature of the solid surface. The fluid particle has a tangential 

velocity at  the surface (slip-velocity) and a finite temperature difference at the solid 

surface (temperature-jump). These slip velocity and temperature jump effects are 

related to the Knudsen number, some thermophysical properties of the fluid (specific 

heat ratio, Prandtl number), and the accommodation coefficients that are described 

by the molecule-surface interaction statistically[2]. By imposing these two effects 

into the boundary conditions, the Navier-Stokes Equations become applicable for 

this flow regime. 

 

In transition flow regime, the flow field is neither dominated by the molecule to 

surface interaction, as in free-molecular flow nor by the intermolecular collisions, as 

in continuum flow. Therefore, it is difficult to solve the flow field in transition 

regime with theoretical consideration only. 

 

For moderate pressures and dimensions, the flow is always in continuum regime. 

Only,  flow in low density such as rarified gas dynamics applications and flow in 

small dimensions such as micro and nanoscales, the flow becomes slip-flow, 

transition flow or free-moleular flow. For gas flows in micro dimensions, generally, 

the regime is slip-flow regime; and for liquid flows, it is still in continuum regime. 

Therefore; in the solution of the gas flows in microchannels, the modification of the 

boundary conditions should be imposed into the equations to introduce the 

rarefaction effect. For liquid flow in micro dimensions, the interfacial electrokinetic 

effects near the solid-liquid interface should be imposed to the equation. 

 

1.1.1. Slip Velocity Boundary Condition 

 

By using the kinetic theory of gases and neglecting the intermolecular collisions 

within the immediate vicinity of the surface, the slip velocity can be obtained, 
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for the Cartesian coordinate system[2], and 
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F

du TU
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T λλ π
= =
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ℜ (1.3) 

 

for the cylindrical coordinate system[3], where λ is the mean free path,  is the gas 

constant and F

ℜ

M is the momentum accommodation factor which represents the 

fraction of the molecules undergoing diffuse reflection. For idealized smooth surface, 

FM is equal to zero, which means specular reflection. For diffuse reflection, FM is 

equal to one, which means the tangential momentum lost at the wall. Its value 

depends on the gas, solid, surface finish and surface contamination and has been 

determined experimentally and varies between 0.5 and 1.0. For most of the gas solid 

couples used in  engineering applications, this parameter is close to the unity[2]. 

Therefore; for this study, FM in this Eqs. (1.2) and (1.3), is also taken as unity. 

 

The second term on the right hand sides of Eqs (1.2) and (1.3) is known as thermal 

creep, which accounts for the fluid flow induced by the temperature gradient. By 

using the kinetic theory of gases and some mathematical manipulations, it can be 

shown that this term is second order in Knudsen number[3]. Therefore; for moderate 

temperature gradients, the second term is negligible compared with the first term for 

low Knudsen numbers, which is the case in slip-flow regime. 

 

1.1.2. Temperature Jump Boundary Condition 

 

With the similar considerations in slip velocity, temperature jump at the wall can be 

obtained as [1], 
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for the cylindrical coordinate [3], where γ is the specific heat ratio, λ is the mean free 

path, Pr is the Prandtl number of the fluid and FT is the thermal accommodation 

factor which represents the fraction of the molecules reflected diffusively by the wall 

and accommodated their energy to the wall temperature. Its value depends on the 

type of gas, type of solid, surface roughness, gas temperature, gas pressure and the 

temperature difference between solid surface and the gas and has also been 

determined experimentally. FT varies between 0 and 1.0, and it can take any arbitrary 

value, unlike momentum accomodation factor [2]. 

 

This study considers the two-dimensional, incompressible, constant property, 

hydrodynamically developed, thermally developing, single phase laminar flow in 

microtubes and microchannels between parallel plates with negligible axial 

conduction for both uniform wall temperature and uniform wall heat flux thermal 

boundary conditions by imposing the rarefaction effects into the boundary 

conditions, including the viscous dissipation term. The fully developed velocity 

profiles for both of the geometries are determined by solving momentum equations, 

analytically. By substituting the fully developed velocity profile, the energy equation 

is solved by using numerical methods to determine the temperature distribution 

within the solution domain and obtain the Nusselt number. The numerical method is 

verified by comparing the present numerical results with the analytical results that 

are available for simplified cases in literature. The numerical code is written using 

Pascal computer programming language. 
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CHAPTER 2 
 

 

LITERATURE SURVEY 

 

 

For the last two decades, there has been an increasing interest in the area of 

microchannel flow and heat transfer. In the literature, there are numbers of 

publications on single-phase and two-phase flows in microchannels. In this chapter, 

only the works on single-phase microchannel flow including the experimental, 

analytical and numerical studies, are reviewed. 

 

Tuckerman and Pease [4] demonstrated that electronic chips can effectively be 

cooled by means of water flow through microchannel heat sinks without a phase 

change. They reported that convective heat transfer coefficient for laminar flow 

through microchannels might be higher than that of for turbulent flow through 

conventionally sized channels. This conclusion accelerated the research on the topic 

of convection through microchannels. 

 

Peng and Peterson [5] examined the single-phase convective heat transfer by 

conducting a series of experiments with several different microchannels to determine 

the influence of the liquid flow, thermal conditions and microchannel size using 

water as the working fluid. They indicated that laminar flow exists for Reynolds 

number less than 400, a transition regime in the regime where Reynolds number is 

between 400 and1000, and a fully developed turbulent regime in the region where 

Reynolds number is larger than 1000. They also indicated that the range of the 

transition zone and the heat transfer characteristics of both the transition and laminar 

flow regimes are strongly affected by the liquid temperature, liquid velocity and 
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microchannel size; and hence, are not only determined by Reynolds number. In 

addition, they showed that there is an optimum channel size in terms of the forced 

convective flow heat transfer for a single-phase liquid flowing in a rectangular 

microchannel. 

 

Peng and Peterson [6] experimentally investigated the forced convective heat transfer 

and flow characteristics of water flowing through microchannel plates with 

extremely small rectangular channels having hydraulic diameters of 0.133-0.367 

mm. and different geometric configurations to determine the effect of the geometric 

configuration on the flow and heat transfer, and they proposed heat transfer and flow 

friction correlations, which would be readily applicable to engineering design and 

practical applications. 

 

Mala and Li [7] studied flow characteristics of water flowing through cylindrical 

microtubes of stainless steel and fused silica with the diameters range from 50 to 254 

µm. They observed that for a fixed volumetric flow rate, the pressure gradient 

required to force the liquid through microtube was in a rough agreement with the 

conventional theory for small flow rates, i.e. small Reynolds number. However, as 

the Reynolds number increased, they observed a significant deviation from the 

conventional theory, and the deviation increased as the diameter of the microtubes 

decreased. They concluded that there might be an early transition from laminar to 

turbulent flow mode at Re>300-900, and the flow changes to fully developed 

turbulent flow at Re>1000-1500. In addition, they observed that the flow behavior 

also depend on the material of the microtubes. They discussed two possible reasons 

for higher flow resistance one of which is the early transition from laminar to 

turbulent, and the other is the effect of the surface roughness. To include the effect of 

the surface roughness, they proposed the use of the roughness-viscosity model 

(RVM) by introducing a roughness viscosity function. 
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Rahman [8] investigated the integrated microchannel heat sinks for the cooling of 

high power and high reliability electronic devices experimentally using water as the 

working fluid. Tests were performed with devices fabricated using standard Silicon 

100 wafers. Two different channel patterns; parallel and series pattern, were 

designed to see the effects of flow branching, channel length and fluid velocity. He 

studied channels of different aspect ratios. He measured the fluid flow rate as well as 

the pressure and temperature of the fluid at the inlet and outlet of the device, and 

temperature at several locations to calculate local and average heat transfer 

coefficients, and pressure drop in the device for different flow rate, channel size and 

channel configuration. His results showed that the measured values of average 

Nusselt number were usually larger than those predicted by correlations for larger 

size channels. He concluded that the larger heat transfer was caused by the breakage 

of velocity boundary layer by surface roughness associated with etched channel 

structure, and the transition from laminar to turbulent was somewhat gradual because 

of small channel dimension. 

 

Harms et al. [9] investigated the hydrodynamic and thermal performance of two deep 

microchannel configurations; a single channel system and a multiple channel system, 

both theoretically and experimentally using the deionized water as the working fluid. 

They observed that for fully developed laminar flow, the thermal resistance was 

independent of the pressure drop; however an inverse relationship between pressure 

drop and thermal resistance was observed for the developing laminar flow. The 

analysis showed that decreasing the channel width and increasing the channel depth 

provided better flow and heat transfer performance. For multiple channel design, the 

experimental friction factor agreed with the theoretical values reasonably well in 

both laminar and turbulent regime, and a critical Reynolds number of 1500 was 

indicated in the plot of the experimental friction factor. For the single channel 

design, the experimental Nusselt number was higher than predicted at all flow rates, 

which was addressed to the effect of the inlet bent. For multiple channel design, 

 10



experimental Nusselt number results agreed with the theory reasonably well at high 

flow rates, but deviated significantly from theory at low flow rates. They noted that 

the thermal resistance of the multiple channels was always lower than that of the 

single channel design for a given level of pressure drop, and they concluded that for 

their systems developing laminar flow provided better overall performance than 

turbulent flow. 

 

Wu and Cheng [10] investigated the effect of geometric parameters, the surface 

roughness and surface interfacial properties on pressure drop and heat transfer in 13 

different trapezoidal silicon microchannels, using the deionized water as the working 

fluid. They fabricated the silicon microchannels by etching. They obtained different 

geometries depending on the etching method and etching time, various surface 

roughness depending on the concentration and temperature of the etching solutions, 

and different surface interfacial properties depending on the thickness of the oxide 

layer on a silicon layer. They founded that the values of Nusselt number and 

apparent friction factor depend greatly on different geometric parameters, and 

laminar Nusselt number and the apparent friction factor increase with the increase of 

surface roughness and surface interfacial property. 

 

Tso and Mahulikar [11, 12, 13] proposed the use of Brinkman number to explain the 

unusual behavior of laminar liquid flow in micro channels and experimentally 

verified that Brinkman number correlates the convection in microchannels in spite of 

its relatively low values, and also Brinkman number decides the fundamental limit 

for the reduction of the microchannel dimensions (optimum design) and is more 

important in the laminar regime compared to the transition and turbulent regime. 

Furthermore, Brinkman number plays a role in determining the flow transition points 

even when experimental data is obtained locally along the flow for the constant wall 

heat flux boundary condition. 
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Wang and Peng [14] investigated the heat transfer characteristics and cooling 

performance of rectangular shaped microgrooves machined into stainless steel plates, 

using methanol as the cooling fluid. They analyzed the influence of liquid velocity, 

subcooling, property variations and microchannel geometry configuration on the heat 

transfer behavior, cooling performance, and liquid flow mode transition 

experimentally. Measurements made to clarify the flow nucleate boiling attributes 

indicated an increased heat transfer rate and a behavior that was quite different from 

what typically occurs in longer tubes or channels due to the relatively large portion 

of the surface area associated with the thin film region. Furthermore, their results 

showed that the liquid velocity, liquid subcooling, liquid properties and geometry of 

the microchannels have significant influence on the heat transfer performance, 

cooling characteristics and liquid flow mode transition. They concluded that, if 

selected properly, the correct combination of these parameters can provide 

significant improvements in the thermal performance and heat removal rate for a 

wide variety of applications, particularly those where space is limited such as 

electronic circuits and devices. 

 

Chen et al. [15] investigated the fluid flow and heat transfer in microchannels with 

different hydraulic diameters ranging from 57-267 µm experimentally, using 

methanol as the working fluid. Their experimental results indicated that the flow 

behavior was in the laminar regime when Reynolds number was between 50 and 850, 

and the surface roughness, viscosity and channel geometry had great effects on flow 

characteristics in microchannels. Furthermore, their results indicted that forced 

convection in microchannel heat sink exhibited excellent cooling performance, 

especially in the phase change regime. 

 

Pfahler et al. [16] have experimentally investigated the fluid flow in rectangular 

microchannels with cross-section ranging in area from 80 to 7200 µm2. Their 

objective was to determine the length scales at which the continuum assumptions 
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break down, and to estimate the adequacy of the Navier-Stokes equations for 

predicting the fluid flow behavior. They found that in the relatively large flow 

channels, their observations were in agreement with the predictions of the Navier-

Stokes equations. However, in the smallest of their channels, a significant deviation 

from the Navier-Stokes predictions was observed. 

 

Pfahler et al. [17, 18] measured the friction factor for liquids and gases in 

microchannels. Nitrogen gas and alcohol were used in channels with depths changing 

from 0.5 to 50 µm. They determined a lower friction factor which increased with 

Reynolds number for small Reynolds numbers and became independent of Reynolds 

number for large Reynolds numbers. In another analysis, they used nitrogen, helium, 

and isopropyl liquid and silicone oil to determine the flow characteristics in channels 

with hydraulic diameters varying from 0.5 to 50 µm. For both gases and liquids, they 

obtained smaller friction factor values than the conventional sizes. Isopropyl results 

showed a dependency on the channel size. Silicone oil results, on the other hand 

showed a Reynolds number dependency. They concluded that the small friction 

factor values for liquids are due to the reduction of viscosity with decreasing size, 

and for gases due to the rarefaction effects. Pfahler et al. [19] also reported after a 

study of liquid flow in microchannels that there is a critical dimension below which 

the Navier-Stokes equations cannot be used to obtain the characteristic flow 

properties. 

 

Wu and Little [20] designed a microminiature Joule-Thompson refrigerator and 

investigated pressure drop for gas flow in microchannels. They found that the 

measured friction factor is much higher than the one expected from the classical 

theory. They found that transition Reynolds number was between 400 and 900 for 

various tested configurations. In their next study, Wu and Little [21] investigated the 

heat transfer for gas flow in microchannels. They observed a Reynolds number 

dependence for fully developed flow in laminar regime. Heat transfer coefficients 
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were found to be higher than expected from the classical theory, like friction 

coefficient. They concluded that deviations from the theory might be due the 

asymmetric wall roughness and non-uniform wall heating conditions.  

 

Choi et al. [22] studied the convective heat transfer of dry nitrogen flow in circular 

microtubes, where the diameter ranged from 3 to 81 µm for laminar and turbulent 

regime. They avoided entrance effects by using long channels. Heat transfer was 

found to be a function of Reynolds number in the laminar regime and as much as 

seven times larger than the ones for turbulent flow regime. In laminar regime friction 

constant was found to be lower than predicted, while turbulent flow regime results 

were fairly scattered. They also investigated the roughness effect, and concluded that 

roughness does not affect the friction factor in laminar flow regime. 

 

Arkilic et al. [23] investigated gaseous flow with slight rarefaction through long 

microchannels both analytically and experimentally. They demonstrated both 

compressibility and non-continuum effects by analyzing the two-dimensional 

Navier-Stokes equations with first order slip velocity boundary condition. They 

showed that experimental results obtained with the described mass flow 

measurement technique for stream wise helium mass flow through microchannels 

52.25 µm wide, 1.33 µm deep and 7500 µm long for pressure range of 1.2 to 2.5 

atmospheres (outlet pressures at atmospheric), agreed with the analytical analysis. 

 

Xin and Zhang [24] investigated the flow characteristics of water and air flowing in 

the rectangular microchannels with 0.23-1.1 mm in the hydraulic diameter. They 

founded that critical and transition Reynolds numbers are lower than that of 

macrochannels for both water and air flow, and hydraulic diameter has some 

influences on them. They concluded that for water flow, friction factors for transition 

and turbulent flow cannot be predicted by the friction factor correlation for the 

macrochannel. They observed that air flow in microchannel consists of four flow 
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regimes; laminar flow, transition flow, turbulent flow and accelerating turbulent 

flow; and when hydraulic diameter is equal to and less than 0.225 mm, the transition 

and turbulent flow regime disappear. 

 

Telles et al. [25] solved the laminar forced convection heat transfer problems inside 

ducts, with axial conduction at the wall, subjected to the three main types of 

boundary conditions exactly. The general method of solution involved the change of 

the dependent variable leading to square integrable function in real line. The form of 

solutions was presented for the flows inside circular pipes, annular space between 

pipes and between parallel plates. 

 

Beskok and Karniadis [26] have developed a numerical model based on spectral 

element method to simulate unsteady two and three-dimensional incompressible flow 

in complex microdomains (e.g. microblades, microbearings, micromotors). Their 

method is valid for slip-flow regime (i.e. Kn <0.1). They proposed the use of higher 

order velocity slip condition including the thermal creep effect which accounts for 

the induced flow due to the temperature gradient along the channel (from cold side to 

hot side) due to the micronsized channel size. They verified their method by 

comparing it to the analytical solutions for simple prototype flows. They noted the 

importance of the thermal creep on pressure distribution, and the importance of the 

accommodation coefficient. They explained the drag reduction phenomena apparent 

in microchannels by the slip-flow theory. They addressed the effect of 

compressibility for severe pressure drops. Later, they extended their analysis to 

combined effect of compressibility and rarefaction in gas flows [27]. Their analysis 

considers the flow regime up to Kn =0.3. They compared their results for flat channel 

with available experimental results. They concluded that compressibility is important 

for pressure driven flows and rarefaction is important for shear driven flows. They 

observed that viscous heating is an important mechanism in microscale. 

Additionally, they proposed benchmark experiments to systematically study 
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compressibility, rarefaction and viscous heating in microscales in order to provide 

validation to numerical models and the slip-flow theory. 

 

In another study, Beskok and Karniadis [28] developed a simple physics-based 

unified model that predicts the velocity distribution, the volumetric and mass flow 

rates, as well as the pressure distribution in channel, pipe and duct flows of general 

aspect ratio for the entire flow regime (i.e. 0<Kn<∞). They proposed a general slip 

boundary condition which is second order in slip-flow regime, and which is used to 

represent the velocity distribution with a reasonable accuracy for the entire flow 

regime. Their model gave small deviations only in transition regime which they 

addressed to the growth of the Knudsen layer within the channel. They validated 

their model with comparisons against direct simulation Monte Carlo, linearized 

Boltzmann solutions and experimental data. They performed all of their simulations 

based on diffuse reflection (i.e. momentum accommodation coefficient is equal to 1), 

and they proposed to study unified model for non-diffuse reflection in foregoing 

studies. 

 

Mikhailov and Cotta [29] developed a Mathematica package that computes the 

eigenvalues, the eigen functions, eigen integrals, the dimensionless temperature, the 

average dimensionless temperature and the Nuselt number for steady state and 

periodic heat transfer in microparallel plate channel and microtube taking into 

account the velocity slip and the temperature jump. They solved the steady state heat 

transfer in thermally developing, hydrodynamically developed forced laminar flow 

inside microconduits with uniform and periodic inlet temperature, and the steady-

state heat transfer in thermally and hyrodynamically developed electro-osmotic flow 

inside microconduits with uniform wall heat flux and inlet temperature. 

 

Barron et al [30] extended the original Graetz problem for thermally developing heat 

transfer in laminar flow through circular tube to include the effects of slip-flow. They 
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developed a new technique to evaluate the eigenvalues for the problem, which they 

were able to calculate only first four eigenvalues. Although they explicitly mentioned 

the temperature jump in the specification of boundary condition, they ignored this 

boundary condition in the calculation of the eigenvalues. Due to the misapplication 

of the temperature jump boundary condition, they found that Nusselt number 

increases with increasing Knudsen number, and suggested that slip-flow is one of the 

mechanisms being responsible for the enhancement of the heat transfer in gaseous 

convection in microtubes. 

 

In another study, Barron et al. [31] discussed their new technique developed for the 

evaluation of the eigenvalues for the graetz problem extended to the slip-flow. They 

were able to determine first four eigenvalues with precision of about 4 digits. 

Moreover, they proposed a simplified relationship between the eigenvalues and 

Knudsen number. They concluded that an improved method with enhanced 

calculation speed would be of future interest. 

 

Mikhailov and Cotta [32] proposed the use of Mathematica software in the 

calculation of the eigenvalues of the Graetz problem extended to slip-flow. They 

calculated the first five eigenvalues with precision of 16 digits and addressed some 

methods for higher order eigenvalues. 

 

Ameel et al. [33] extended the work of Barron et al. [31] from isothermal case to the 

constant heat flux boundary condition in a microtube. They developed expressions 

for the temperature field and the Nusselt number. The Nusselt number was found to 

decrease with increasing Knudsen number, primarily as a result of an increase in the 

temperature jump at the wall with Knudsen number. They observed a reduction in 

Nusselt number of the order of 40% over the full slip-flow range. Furthermore, they 

found that the entrance length varies with Knudsen number, an increase in slip-flow 

resulting in a longer entrance length. 
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Larrode et al. [3] studied slip-flow heat transfer in circular tubes under the conditions 

that allowed us to exploit its similarities to the classical Graetz problem. They 

showed that heat transfer depends on two parameters; slip radius ρs, which is a 

measure of the degree of rarefaction, and β, which is a function of the surface 

accommodation coefficients. The effect of the temperature jump at the wall, which 

was ignored in previous study of Barron et al. [31], as determined to be essential in 

the heat transfer analysis. They found that heat transfer increase or decrease with 

increasing rarefaction effect depending on the value of the parameter β; on the other 

hand, for fixed degree of rarefaction heat transfer decreases with increasing value of 

the parameter β. Moreover, they developed a new uniform asymptotic approximation 

to the eigen-functions of the Graetz problem, a weighted asymptotic approximation 

that gave improved results with respect to the well known WKB approximation to be 

able to determine the heat transfer close to the entrance, a region where rarefaction 

effects were found to be more pronounced. They briefly discussed the method of 

evaluation of the eigen-function of the Graetz problem in another study [34]. 

 

Bayazitoglu and Kakac [35] discussed the flow regimes and the dimensionless 

parameters that effects the flow field in microchannel single phase gaseous fluid 

flow. They noted that viscous heating, compressibility and rarefaction is to be 

considered in gaseous flows in microchannels. 

 

Tunc and Bayazitoglu [36] studied the convective heat transfer for steady state, 

hydrodynamically developed laminar flow in microtubes with uniform temperature 

and uniform heat flux boundary conditions by integral transform technique. 

Temperature jump at the wall and viscous heating within the medium were included. 

The solution method was verified for the cases where viscous heating is neglected. 

For uniform temperature case, with a given Brinkman number, which is the 

indication of the degree of the viscous heating, at specified axial lengths the effect of 
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viscous heating was investigated for developing range, reaching the fully developed 

Nusselt number. The effect of viscous heating was investigated for both of the cases 

where the fluid was being heated or cooled. They showed the combined effects of 

Knudsen number, Brinkman number and Prandtl number on the heat transfer. They 

underestimated the fully developed Nusselt number, since they considered only the 

first four eigenvalues during their calculations. They concluded that temperature 

jump gives a rise to the Nusselt number, but its effect diminishes with increasing 

Prandtl number. They also showed that viscous heating has different effects for 

different cases. 

 

Tunc and Bayazitoglu [37] solved the transient heat convection in a circular 

microchannel for hydrodynamically developed and thermally developing flow 

conditions with constant wall temperature by the integral transform and Laplace 

transform techniques analytically. The effects of slip velocity, temperature jump and 

viscous heating were investigated. Their results confirmed that the viscous heating 

effects increase the Nusselt number for the specified conditions. They used more 

than four eigenvalues to calculate Nusselt number, and they corrected their results 

from their previous work [36]. They also discussed the effect of considered numbers 

of eigenvalues on the value of the fully developed Nusselt number. 

 

Li et al. [38] investigated the effect of channel size on the laminar flow 

characteristics of gas flowing through microtubes, analytically. They proposed a new 

theoretical model, called wall-adjacent layer model to account for the wall effect. 

They found that the change in viscosity of fluid in a very thin  layer near the wall-

adjacent layer, which is about 5 times of the mean free path, result in significant 

influence on the flow characteristics. The variation of viscosity was obtained by the 

kinetic theory of gases. They discussed the applicability of their model, and 

concluded that it is valid for Kn <0.1. They derived the velocity profile and pressure 

drop for laminar gas flow inside microtube, and concluded that friction factor is less 
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that that in macropassages at a specified value of Reynolds number, the velocity is 

greater than that is determined from the conventional theory. 

 

Guo and Wu [39] studied the compressibility effect on the gas flow and heat transfer 

in a microtube. They used a finite difference, forward marching numerical procedure 

with upwind scheme for the axial direction and power law for the lateral direction. 

They imposed no-slip and no-temperature jump boundary conditions. They validated 

their results with calculation of the friction factor for low Mach number flow. They 

founded that compressibility cause an increase in the mean velocity, an additional 

pressure drop in flow direction and the change of the shape of dimensionless velocity 

profile. Furthermore, they founded that for high Mach number, friction factor 

increases with increasing Mach number and Nusselt number increases with 

increasing dimensionless tube length (i.e. fully developed conditions are 

unachievable).  

 

Xu et al. [40] analyzed the effects of viscous dissipation on the characteristics of 

liquid flow in microchannels, numerically. They solved the combined entrance 

region problem with no-slip velocity and adiabatic wall boundary conditions by 

treating the heat conductivity and viscosity as functions of temperature. They found 

that effects of viscous dissipation became significant and influence the temperature, 

pressure and velocity distributions in the flow. Therefore, relationships between the 

average friction factor and Reynolds number change when the hydraulic diameter of 

the microchannel is very small. They established a criterion to evaluate the 

possibilities of the viscous dissipation effects on flows in microgeometries. 

 

Barber and Emerson [41] conducted an investigation of low Reynolds number 

rarefied gas behavior at the entrance of a parallel plate microchannel using a 

specially adapted two-dimensional Navier-Stokes solver within the slip-flow regime 

(i.e. 0< Kn<0.1) implementing tangential slip velocity boundary condition along the 
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walls of the flow domain. The numerical model indicated that Knudsen number has a 

significant effect on the hydrodynamic development length at the entrance to parallel 

plates. They found that at the upper limit of the slip-flow regime (Kn ~0.1), entrance 

lengths are approximately 25% longer than those experienced in the continuum 

regime. 

 

Kavehpour et al. [42] studied gas compressibility and rarefaction in microchannels 

using a two dimensional flow and heat transfer model assuming slip-flow regime by 

solving the compressible form of momentum and energy equations with slip velocity 

and temperature jump boundary conditions in a parallel plate channel for both 

uniform wall temperature and uniform wall heat flux, numerically. Their numerical 

methodology was based on finite difference scheme. To verify the model, the mass 

flow rate as compared with experimental results of helium through microchannels, 

normalized friction coefficient was compared with the experiments of nitrogen and 

helium flows in microchannels, and axial pressure distribution was compared with 

the experimental results for nitrogen flow in microchannel. They found that Nusselt 

number and friction coefficient were substantially reduced for slip flows compared 

with the continuum flows. Also, the velocity and temperature distributions were 

found to be flattened compared with the continuum flows, and the axial pressure 

variation was found to become nonlinear. They showed that the effect of 

compressibility is important for high Reynolds numbers and that the effect of 

rarefaction is significant for low Reynolds numbers. 

 

Hadjiconstantinou and Simek [43] investigated the constant wall temperature 

convective heat transfer characteristics of a model gaseous flow between parallel 

plates under hydrodynamically and thermally fully developed conditions. In the 

calculation of the Nusselt number, they used slip-flow theory in the presence of axial 

conduction for microchannels, and a stochastic molecular simulation technique 

known as the direct simulation Monte Carlo (DSMC) for nanochannels. They 
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showed that the Nusselt number decreases monotonically with increasing Knudsen 

number in the fully accommodating case, and that axial heat conduction increases the 

Nusselt number. Their results showed a good agreement between slip-flow 

prediction and the DSMC results for Kn <0.1, and a good approximation beyond its 

expected range of applicability. 

 

Zu et al. [44] conducted an analysis of the heat transfer characteristics between two 

asymmetrically heated parallel plates with microspacing. They solved the momentum 

and energy equation with the boundary conditions of the slip velocity and the 

temperature jump in order to obtain the dimensionless temperature distribution, heat 

transfer and Nusselt number. They concluded that, as Knudsen number increases, the 

temperature jump near the heating wall increases; the dimensionless temperature in 

the microchannel decreases under the same heat flux ratio, and the Nusselt rates for 

the asymmetrically heated wall decreases at a fixed heat flux ratio. They also 

concluded that Nusselt number rates for the heated walls increase with increasing 

thermal accommodation coefficient and with decreasing tangential accommodation 

coefficient. 

 

Mayes and Webb [45] analyzed the thermally fully developed, electro-osmotically 

generated convective transport for a parallel plate microchannel and circular 

microtube under imposed constant wall heat flux and constant wall temperature 

boundary conditions. The exact solution for the fully developed, dimensionless 

temperature profile and corresponding Nusselt number have been determined for 

both geometries and both thermal boundary conditions. The fully developed 

temperature profiles and Nusselt number are found to depend on the relative duct 

radius and the magnitude of the dimensionless volumetric source. 

 

Yu and Ameel [46] studied the laminar slip-flow forced convection in rectangular 

microchannels analytically by applying a modified generalized integral transform 
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technique which is a hybrid solution method that uses both analytical and numerical 

procedures to solve the energy equation, assuming hydrodynamically fully developed 

flow. Results were given in terms of the fluid mixed mean temperature, and both 

local and fully developed mean Nusselt numbers. Heat transfer was found to be 

increase, decrease or remain unchanged compared to non-slip flow, depending on 

two dimensionless parameters that include effect of rarefaction and fluid-wall 

interaction. The transition point at which the switch from heat transfer enhancement 

to reduction occurs was identified for different aspect ratios. Furthermore; for a 

given aspect ratio, they found that increasing temperature jump always reduces heat 

transfer and shortens thermal entrance region.  

 

In their foregoing study, Yu and Ameel [47] found a universal finite Nusselt number 

for laminar slip flow heat transfer at the entrance of a conduit which is valid for both 

isothermal and isoflux thermal boundary conditions, and for any conduit geometry, 

by using the same method. They calculated the local Nusselt number at the axial 

location very close to the entrance and then extrapolated their results to found the 

finite entrance Nusselt number value, which is infinite for the macroconduits. 

 

Tunc and Bayazitoglu [48] investigated the convection heat transfer in a rectangular 

microchannel assuming fully developed flow both thermally and hydrodynamically 

for the constant axial and peripheral heat flux boundary condition. They applied 

integral transform technique for both momentum and energy equations. First, the 

fully developed velocity profile was determined, and then substituted into the energy 

equation to determine the Nusselt number. They verified the method by comparing 

the results for zero Knudsen number, which corresponds to a macrosize channel, to 

the data from previous studies. They discussed the effects of rarefaction and channel 

size on the velocity distribution and heat transfer. They concluded that Nusselt 

number decreases with increasing Knudsen number, regardless of the value of the 

aspect ratio; however Nusselt number decreases significantly for smaller values of 
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aspect ratio which was explained by the increasing rarefaction. Furthermore, Nusselt 

number was found to increase with Prandtl number by reducing the temperature 

jump, and the change in Nusselt number due to Prandtl number was found to be 

amplified with decreasing aspect ratio. Although they did not consider the viscous 

heating, they concluded that effects of viscous heating in a rectangular channel might 

be the same as the effect in a microtube, which they discussed in their one of the 

previous studies [36]. 

 

Papautsky et al. [49] described fluid behavior in rectangular microchannels using a 

numerical model based on the micropolar fluid theory that augments the laws of 

classical continuum mechanics including the micro-rotational effects of fluid 

molecules and variations in the apparent fluid viscosity in the region close to the 

walls of the channels. Their numerical model used the finite difference method with 

a successive relaxation solution technique, for fully developed fluid flow in 

microchannels, and provided a means of predicting flow characteristics, such as 

volumetric mass flow rate, average velocity, pressure drop and Darcy friction factor 

for incompressible fluids operating in microchannels. The simulated widths varied 

from 50 to 800 µm, while channel heights ranged from 25 to 50 µm. Moreover, they 

verified their model using experimental data collected for flows through 

micromachined channels. They represented their results with the available 

experimental data and predictions from Navier-Stokes equations, and the numerical 

model provided a better approximation of the experimental data than the Navier-

Stokes theory, which is an essential conclusion to the successful design and 

development of future microscale microfludic devices. 

 

Ryu et al. [50] developed a tree dimensional analysis procedure for the thermal 

performance of a manifold microchannel heat sink, using water as the coolant and 

the silicon as heat sink material. They solved the system of fully elliptic equations 

that govern the flow and thermal fields by a SIMPLE-type finite volume method in 
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which an upwind differencing scheme was used for convective derivatives. They 

obtained the optimal design variables (channel depth, channel width, fin thickness 

and inlet/outlet width ratio) that minimize the thermal resistance for a given pumping 

power and a specified number of manifolds. 

 

Qu and Mudawar [51] analyzed the three-dimensional fluid flow and heat transfer in 

a rectangular microchannel heat sink numerically using water as the cooling fluid. 

Their numerical code is based on finite difference method and the SIMPLE 

algorithm. They compared their numerical results with analytical solutions and 

available experimental data. For their microchannel heat sink, they founded that the 

temperature rise along the flow direction in the solid and fluid regions could be 

approximate as linear and the temperature along the transverse direction at a given 

longitudinal location was nearly constant. They also found that increasing Reynolds 

number increases the length of the developing region and fully developed flow might 

not be achieved inside the heat sink for high Reynolds numbers, which resulted in 

enhanced heat transfer and higher pressure drop. 

 

In the study of Fan et al. [52] carried out the numerical simulation on the gaseous 

micro channel using the DMSC. After normalizing the velocities by the area-

averaged stream wise velocity at the channel exit, the result of DSMC was presented. 

Several unique features were obvious: for maintaining a constant mass flow, the 

mean stream wise velocity at the walls was found to increase to make up for the 

density drop caused by the decrease of the pressure in the channel direction. This 

was in contrast to the classical Poisueille flow. In addition, the velocities at the walls 

were found to be non-zero and increase in the stream wise direction, which 

demonstrates the slip flow effect due to rarefaction. The results of DSMC were 

validated by analytic solution in slip-flow regime, and the two solutions were 

compared. They noted  remarkable agreements between the two results. 
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Toh et al. [53] investigated the three-dimensional fluid flow and heat transfer 

phenomena inside the heated microchannels. Steady, laminar flow and heat transfer 

equations are solved using finite volume method. The numerical procedure was 

validated by comparing the predicted local thermal resistances with available 

experimental data. The friction factor was also predicted in their study. It was found 

that the heat input lowered the friction losses, particularly at lower Reynolds 

numbers. They concluded that at lower Reynolds number the temperature of the 

water increased, leading to a decrease in the viscosity and hence smaller friction 

losses. 

 

Guo and Li [54] reviewed and discussed the size effect on microscale single phase 

fluid flow and heat transfer. They classified the physical mechanisms for the size 

effect on the microchannel flow and heat transfer as the gas rarefaction effect and the 

variations of the predominant factors influence the relative importance various 

phenomena on the flow and heat transfer as the characteristic length decreases. They 

concluded that due to the high surface to volume ratio in microchannel flows, factors 

which are related to the surface area become more important and even dominant over 

factors related to the volume effect among which are (a) surface friction induced 

flow compressibility, which makes the fluid velocity profiles flatter and leads to 

higher friction factors and Nusselt numbers, (b) surface roughness which is likely 

responsible for the early transition from laminar to turbulent flow and increased 

friction factor and Nusselt number, (c) other surface related effects which include the 

axial heat conduction in the channel wall and the surface geometry. They also 

concluded that the discrepancies among different friction factor and heat transfer 

correlations proposed by various investigators might be, at least in part, attributed to 

the uncertainties of the experimental data. 

 

Papautsky et al. [55] compiled a comprehensive study of the results of microscale 

single-phase internal flow. The only definite conclusion that they reached from the 
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currently available data was that the slip-flow gas data indicated an approximately 

60% reduction in friction factor compared to macroscale theory at the same Reynolds 

number. They concluded that the currently available experimental data for other 

types of flows were inconclusive as they appear both above and below the theoretical 

predictions. They attributed these results to roughness of the channels, to uncertainty 

in the determination of channel dimensions, and to the lack of a well-controlled 

surface structure, as the bonding of silicon and glass was the predominant method for 

microchannel fabrication. They made some preliminary conclusions regarding non-

slip fluid flows such as; microchannel surface appeared to increase friction factor, 

laminar friction constant appeared to be approximately 20% higher that the 

theoretical predictions for flow of water, and some data seemed to suggest lower 

transition Reynolds number. They reported that, there is a clear need for additional 

experimental investigations over a wider Reynolds number range using 

microchannels with well-characterized dimensions and surface roughness, and well 

designed experimental methods in order to understand microscale single-phase 

internal fluid flow. 

 

More information on various topics of Steady State and Transient, Single Phase, Two 

Phase, Microchannel Heat Transfer, Microscale and Nanoscale Phenomena, 

Microfluidics Applications, Computational Methods, Heat Pipes, Heat Exchanger 

Applications, Microscale Heat Transfer at Low Temperature and Some Biomedical 

Applications among others can be found in the proceedings of NATO-ASI on 

Microscale Heat Transfer- Fundamentals and Applications in Biological and MEMS 

[56]. 
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CHAPTER 3 

 

 

SINGLE PHASE HEAT TRANSFER IN MICROTUBES WITHOUT 

VISCOUS DISSIPATION 

 

 

3.1. Introduction 

 

In this section, heat transfer analysis of hydrodynamically developed and thermally 

developing single phase laminar flow of a viscous fluid in microtubes is performed. 

The thermo-physical properties are assumed to be constant. Viscous dissipation term 

is neglected. The momentum equation is solved analytically to determine the fully 

developed velocity profile. Substituting the fully developed velocity profile, energy 

equation is solved by using numerical methods for constant wall temperature and 

constant wall heat flux thermal boundary conditions for slip-flow regime, which is 

the flow regime for most of the gaseous flows in microchannels. 

 

3.2. Fully Developed Velocity Distribution in Microtubes 

 

The geometry of the problem considered in this section is shown in Figure 3.1. The 

coordinate system is located at the center of the microtube. There is an unheated 

section at the inlet to be able to have a fully developed velocity profile. 
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Figure 3.1. The Geometry of the Microtube Problem 
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For the flow conditions considered, the governing equations can be written as [57], 

 
Continuity: 
 
1 ( ) 0rv u
r r x

∂ ∂
+ =

∂ ∂
   (3.1)

 
Momentum equations: 

x-component: 
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ν
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠x
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 r-component: 
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2
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x r r r r r

ν
ρ x

⎧ ⎫⎛ ⎞∂∂ ∂ ∂ ∂ ∂⎪ ⎪+ = − + +⎨ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

     (3.3)

      
 

where u and v are the velocity components in x and r directions, respectively.  
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For steady and fully developed flow u = u(r), and the velocity component v is zero 

everywhere. Therefore; continuity equation, Eq. (3.1) is satisfied identicaly and the 

Navier-Stokes Equations, Eqs. (3.2) and (3.3) reduce to 

 

01
2

2

=+
∂
∂

−
dr

ud
x
p ν

ρ  
(3.4)

 

01
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∂
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−
r
p

ρ   

(3.5)

 

From Eq. (3.5), it is concluded that the pressure, p must be constant across any 

section perpendicular to flow (i.e. p = p(x) only). Hence, Eq. (3.4) can be written as; 

 
2

2

dp d u
dx dr

µ=    (3.6)

 

Since the left hand side of the Eq. (3.6) is function of x only and the right hand side 

is function of r only, the only possible solution, both should be equal to a constant. 

 

L
Pconst

dx
dp ∆

−== .
   

(3.7)

 

where ∆P is pressure drop over a length L of the tube. Hence, Eq.(3.6) becomes, 

 

L
P

dr
ud

µ
∆

−=2

2

   
(3.8)

 

Eq. (3.8) is the ordinary differential equation to be solved to determine the fully 
developed velocity profile with the appropriate boundary conditions given below, 
 

r = 0    u = finite    (3.9-a)
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r = R   u = Us      (3.9-b)
 

where Us is the slip velocity, which is defined as, by taking Fm=1 in Eq. (1.3), 

 

Rr
s dr

duU
=

⎟
⎠
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(3.10)

 

where λ is the mean free path. 

 

Integrating the Eq. (3.8) twice yields,  
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Applying the boundary conditions, c1 and c2 can be determined. Substituting c1 and 

c2 into the Eq. (3.11) yields, 
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Using the definition of the mean velocity  for an incompressible fluid [57], the 

velocity profile can be represented in terms of the mean velocity yields, 

 

Kn
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u
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Defining dimensionless radius as, 

 

R
r

=η     (3.14)
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Eq. (3.13) can be written as, 

 

Kn
Kn

u
u

m 81
8)1(2 2

+
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=
η     (3.15)

 

Velocity profile also depends on the Knudsen number. Note that, by setting Kn=0  

Eq. (3.15) is identical to the fully developed velocity profile of a flow in a 

macrotube, which is 

 

)1(2 2η−=
mu

u     (3.16)

 

The terms containing Knudsen number in Eq. (3.15) introduce the slip velocity at the 

wall.  

 

The fully developed velocity profile is plotted as a function of  η and Kn number in 

Figure 3.2. Kn number changes between 0 and 0.1. Kn=0 represents the flow in 

macrotubes, and Kn=0.1 is the applicability limit of the slip flow theory. As seen 

from the figure, as rarefaction increases (i.e. Kn number increases), the slip at the 

wall increases from zero for Kn=0 to 0.444 for Kn=0.1.  This increase in the slip 

velocity leads to a decrease in the gradient of the velocity at the wall, which is the 

reason for the reduction in the friction factor in gaseous flows in microchannels. As 

Kn number increases from 0 to 0.1, the maximum dimensionless velocity located at 

the center, decreases from 2.000 for Kn=0 to 1.556 for Kn=0.1.  

 

The location where the velocity is equal to mean velocity (i.e. u=um) is independent 

of Kn number. The location of that point can be determined by equating Eq. (3.15) to 

unity. This independence is seen as a knot point in the graph, which is around η=0.7.  

 

 32



Dimensionless Velocity (u/um)

0,0 0,5 1,0 1,5 2,0

D
im

en
si

on
le

ss
 R

ad
iu

s 
( η

=r
/R

)

0,0

0,5

1,0

Kn=0(continuum)
Kn=0.02
Kn=0.04

Kn=0.08

Kn=0.06

Kn=0.10

Figure 3.2. Fully Developed Velocity Profile Inside a Microtube 

 

 

3.3. Heat Transfer Analysis 

 

3.3.1. Formulation 

 

Two dimensional energy equation in cylindrical coordinates with constant properties, 

negligible axial conduction  and negligible viscous dissipation term can be written as 

[57]; 
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The case of constant wall temperature, boundary conditions are, 

 

at r = R        sT T=  (3.18-a)

at   r = 0       0T
r

∂
=

∂
 (3.18-b)

at   x = 0        iT T= (3.18-c)

 

where Ti and Ts are the temperatures of the gas at the inlet and at the surface, 

respectively. 

 

In the case of constant wall heat flux, boundary conditions are, 

 

at r = R      
''T q

r k
∂

=
∂

 (3.19-a)

at   r = 0      0T
r

∂
=

∂
 (3.19-b)

at   x = 0        iT T= (3.19-c)

 

The energy equation is non-dimensionalized by the following dimensionless 

quantities, 

 

wi

w

TT
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−
−

=θ   ( for constant wall temperature)   (3.20-a)

'' /
iT T

q R k
θ −

=    ( for constant wall heat flux) (3.20-b)
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(3.20-e)

 

Introducing the dimensionless quantities, Eqs (3.24-a) through (3.24-e) the energy 

equation becomes, 
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  (3.21)

 

Using the dimensionless quantities, Eqs. (3.20-a) through (3.20-e) and the 

temperature jump boundary condition, Eq. (1.5), the boundary conditions for 

constant wall temperature become, 
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The boundary conditions for the constant wall heat flux case, 

 

at  1η =       1θ
η

∂
=

∂
 (3.24-a)

at 0η =       0θ
η

∂
=

∂
     (3.24-b)

at 0ξ =       0θ =  (3.24-c)

 

Local heat transfer coefficient is written as, 

 35



 

Rr
wm

x r
T

TT
kh =∂

∂
−

−= )(
)(

    (3.25)  

 

Introducing dimensionless quantities into Eq. (3.25), the Nusselt number is 

determined  for constant wall temperature as,  
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Introducing dimensionless quantities and the temperature jump boundary condition, 

Eq. (1.5) into the Eq. (3.25), the Nusselt number is determined  for constant wall heat 

flux as,  
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where θm is the dimensionless mean temperature, and it is defined as, 
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To determine the local Nusselt number, the energy equation, Eq. (3-21) should be 

solved with indicated boundary conditions to obtain the temperature distribution. The 

energy equation, Eq. (3-21) is a well-known second order partial diferrential 

equation, which has solutions for  both constant wall temperature and constant wall 

heat flux cases for flows in macrochannels ( i.e. Kn=0) [57]. However, for flows in 

microchannels, there are additional terms in the fully developed velocity profile and 

at the wall thermal boundary conditions. These extensions in the problem introduce 

some difficulties in the analytical solution. Although the analytical solution was 
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obtained  for constant wall temperature [3, 30, 36] and for constant wall heat flux 

[29, 33, 36] cases for flow in microchannels; with some further extensions such as; 

variation of thermophysical properties, compressibility, the effect of axial conduction 

etc., analytical solution can become unachievable. Therefore, using numerical 

methods for the solution of this partial differential equation is an appropriate way to 

handle these difficulties, and improve the solution for further extensions in the 

problem. 

 

3.3.2. Numerical Solution 

 

The energy equation, Eq (3.21) is a second order partial differential equation. The 

momentum equation and energy equation are decoupled, since the thermo-physical 

properties are assumed to be constant. So, the coefficients of the algebraic form of 

differential equation will be constant for a predescribed location in the domain. The 

boundaries of the solution domain are regular, since it is the interior region of a 

microtube. The most convenient way to solve a partial differential equation with 

these conditions is the finite difference scheme due to its simplicity for regular 

boundaries and constant coefficients.  

 

The finite difference scheme divides the solution domain into nodes as shown in 

Figure 3.3. The underlying partial differential equation is written for each of these 

nodes. Finite-difference approximations are then substituted for the derivatives to 

convert the equations to an algebraic form [58]. 

 

The energy equation is a steady state problem. It is not bounded in the increasing x-

direction. But, from the physics of the problem, it is known that the temperature of 

the fluid reaches the wall temperature as x goes to infinity. By introducing this 

aspect, the energy equation becomes a boundary value problem. Therefore, the 

energy equation is characterized as an elliptic partial differential equation. 
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(3.30)  

 

 Solution of the parabolic differential equations includes the evaluation of the 

property of a node for the next time step by substituting the previous time step 

properties of the related nodes. As time goes to infinity, the solution also reaches the 

steady state solution, which is the desired solution of the elliptic differential 

equation, Eq. (3.21). Since, the solution procedure of the parabolic differential 

equation also includes numerical methods, it has also a stability problem which can 

be handled easily, which is mentioned in the foregoing sections. 

 

To initiate the substitution process of the parabolic differential equation, an initial 

value should be assigned. To fasten the solution procedure to obtain the steady state 

results, expected steady state temperature distribution can be the initial value of the 

differential equation, since the parabolic differential equations reach their steady 

state solutions independent of their initial value [58]. But, to obtain the solution of 

the transient problem, the temperature in the domain at t=0 is assigned as the inlet 

temperature of the fluid for this study.  

 

In spite of fastening the solution procedure of the parabolic partial differential 

equation, computation time can be as long as the computation time of  the elliptic 

differential equation; but surely, it is a simple, non-problematic algorithm by 

satisfying the required stability criteria. The advantage of solving the parabolic 

partial differential equation instead of the elliptic partial differential equation is the 

simplicity. 

 

Introducing the dimensionless time also, the initial and the boundary conditions of 

the transient energy equation, Eq. (3.29) become, 
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for constant wall temperature; and, 
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∂
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∂
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∂
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for constant wall heat flux boundary condition. 

 

For the calculation of the Nusselt number, the first derivative at the wall for the 

constant wall temperature case, and the dimensionless mean temperature for both 

cases should be computed. The derivative at the wall is computed by using same  

finite difference approximation that is used in the discretization of the Eq. (3.29). 

The evaluation of the dimensionless mean temperature needs the computation of the 

integral given by Eq. (3.28), which is computed numerically by using Simpson’ s 1/3 

rule [58]. 

 

3.3.2.1. Domain Discretization  

 

The solution domain is divided into finite number of meshes as shown in Figure 3.3. 

The nodes are located at the corners of the meshes. Due to the symmetry of the 
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solution domain, only one half of the solution domain is considered. For constant 

wall temperature case, 100x100 grids; and for constant wall heat flux case, 250x250 

grids which are distributed uniformly in the radial and longitudinal directions are 

used for the computation. The solution domain is bounded in the radial direction, but 

open ended in the longitudinal direction. It is known from the physics of the problem 

that flow becomes thermally fully developed beyond an axial location. Beyond this 

location, there is no need to find the temperature distribution. Therefore, a reasonable 

value for the length of the tube which allows the flow to be thermally fully 

developed, is assigned. For these two boundary conditions, the length of the tube is 

assigned as the dimensionless longitudinal coordinate, ξ=1. 

  

3.3.2.2. Equation Discretization 

 

Discretization of the Eq. (3.29) and the related boundary conditions requires second 

and first derivatives in space and first derivative in time. Centered, forward and 

backward o(h2) finite-divided differences are used to approximate the space 

derivatives depending on the location of the node; only forward finite difference is 

used to approximate the time derivative. The approximate derivatives are given 

below; 
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where i denotes the radial location, j denotes the longitudinal location and k denotes 

the location in time.  

 

In forward and backward differencing formulas, three nodes are used in order to 

reach the same order of accuracy as the central differencing formula. 

 

3.3.2.2.1. Nodes at the Interior Region 

 

For an interior node, central differences for space; Eqs (3.33-c), (3.33-f), (3.33-i) and 

forward difference for time, Eq. (3.33-j) are substituted into the energy equation, Eq. 

(3.29). The algebraic form of the energy equation becomes; 
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(3.34)  
 

where C1, C2, C3 are the coefficients and defined as, 
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and )(ηu  is the dimensionless fully developed velocity profile, given by Eq. (3.15). 

 

3.3.2.2.2. Nodes at the Inlet  

 

The temperature of an inlet node is prescribed, which is the boundary condition. 
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which are for constant wall temperature and constant wall heat flux cases, 

respectively. 

 

3.3.2.2.3. Nodes at the Exit  

 

For an exit node, central differences in radial direction, Eqs. (3.33-c), (3.33-f), 

backward difference in longitudinal direction, Eq. (3.33-h) and forward difference in 

time, Eq. (3.33-j) are substituted into the energy equation, Eq. (3.29). The algebraic 

form of the energy equation becomes; 
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where C1, C2, C3 are the coefficients that are given in Eqs. (3.35), (3.36) and (3.37). 

 

3.3.2.2.4. Nodes at the Centerline  

 

For a centerline node, central differences in longitudinal direction, Eq. (3.33-i), 

forward difference in time, Eq. (3.33-j) are substituted into the energy equation, Eq. 

(3.29). For the second derivative in radial direction, following approximation is used; 
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where 1,
k

jθ−  is a fictitious quantity and is equal to 1,
k

jθ  due to the symmetry of the 

solution domain. Thus Eq. (3.40) becomes, 
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(3.41)  

 

At the center, first derivative term becomes indetermined, therefore limit of this term 

should be calculated. By using l’ Hospital’ s  rule, it can be approximated as, 
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Substituting Eqs. (3.33-i), (3.33-j), (3.41), (3.42) into energy equation, Eq. (3.29), the 

algebraic form of the energy equation becomes;  
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where C1, C3 are the coefficients that are given in Eqs. (3.35) and (3.37). 
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3.3.2.2.5. Nodes at the Boundary  

 

Since thermal wall boundary conditions are different for constant wall temperature 

and constant wall heat flux cases, the discretization at the boundaries are discussed in 

different sections for these two cases. 

 

3.3.2.2.5.1. Constant Wall Temperature 

 

Boundary condition at the wall, Eq. (3.31-a) should be discretised for a boundary 

node. Boundary condition includes the first derivative in radial direction. Since there 

is no node in the forward direction, backward differencing is used to approximate the 

first derivative. By substituting the Eq. (3.33-c) into the Eq. (3.31-a), the algebraic 

form of the boundary condition becomes, 
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jn

 

(3.44)  

 

It should be noted that, when κ=0, dimensionless temperature becomes zero, which 

means no temperature jump at the wall (i.e. flow in macrotubes). 

 

Substituting Eq. (3.44) into the Eq. (3.34), the algebraic form of the energy equation 

for a node near the wall which includes the effect of the boundary condition for the 

constant wall temperature case becomes, 
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(3.45)  

 

where C1, C2, C3 are the coefficients that are given in Eqs. (3.35), (3.36) and (3.37). 

 

3.3.2.2.5.2. Constant Wall Heat Flux 

 

Boundary condition at the wall, Eq. (3.32-a) should be discretised for a boundary 

node. Boundary condition includes the first derivative in radial direction. Since there 

is no node in the forward direction, backward differencing is used to approximate the 

first derivative. By substituting the Eq. (3.33-c) into the Eq. (3.32-a), the algebraic 

form of the boundary condition becomes, 
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Substituting Eq. (3.46) into the Eq. (3.29), the algebraic form of the energy equation 

for a node near the wall which includes the effect of the boundary condition for the 

constant wall temperature case becomes, 
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(3.47)  

 

where C1, C2, C3 are the coefficients that are given in Eqs. (3.35), (3.36) and (3.37). 
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3.3.2.3. Stability and Convergence 

 

In the solution of the parabolic partial differential equation, step size in time is a 

critical choice to obtain a stable solution. The step size in time should satisfy the 

stability criterian for stable solution [58]. It can be written as, 

 

1
1
2

C <  (3.48)  

 

where C1 is the coefficient that is given in Eq. (3.35). 

 

It has been observed that by choosing a proper value for ∆τ, a stable solution is 

reached; otherwise the numerical solution diverges. By trial and error, it is 

determined that 

 

  24.0 ητ ∆=∆ (3.49)  
 

is a safe choice for this study to obtain a stable solution. 

 

This numerical calculation is open ended in the time domain, so a convergence 

criterian is needed to stop the computation. For this study, the convergence criterian 

is that the difference between the two fully developed Nu values of two successive 

time steps, is less than 10-3. To satisfy this criterian, dimensionless time is chosen as  

τ = 2 for constant wall temperature and τ = 4 for constant wall heat flux cases, 

respectively. The mesh sizes are chosen in order to get sufficiently accurate Nusselt 

value for the flows in macrochannels (i.e. Kn = 0), which have available analytical 

solutions [57].  
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3.4. Results and Discussion 

 

The dimensionless transient temperature distribution inside a microtube is 

determined by solving the Eq. (3.29) numerically with the appropriate boundary 

conditions. Once the dimensionless temperature distribution is determined, local 

Nusselt number, being the main interest of the heat transfer problems, is determined 

as a function of dimensionless axial coordinate and dimensionless time from Eqs. 

(3.26) and (3.27) for different Kn number values. Since, the slip flow modelling is 

valid for Kn<0.1, analysis is done for Kn =0, 0.02, 0.04, 0.06, 0.08, 0.10. Notice that, 

Kn =0 is the no-slip condition (i.e. flow in macrochannels), which is the 

validification of the accuracy of the numerical solution.  

 

It is clear from the formulation that temperature distributions in slip-flow regime are 

functions of Kn number and the parameter κ. Kn number includes the effect of 

rarefaction and the parameter κ includes the effect of gas and surface properties. κ =0 

and κ =10 are two limiting cases of this study as stated Larrode et al [3]. κ =0 is a 

fictitious, but a useful case to observe the effect of slip velocity without temperature 

jump on heat transfer. κ =10 is the other limit, which accounts for a very large 

temperature jump at the wall. κ =1.667 is the typical value for air, which is the 

working fluid for various engineering applications. Dimensionless fully developed 

temperature distribution and local Nu numbers are plotted for different Kn number 

and κ values for constant wall temeprature and constant wall heat flux  boundary 

condition cases. 
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Figure 3.4. shows the variation of local Nu with dimensionless time, τ at different 

axial locations, for Kn =0 for both constant wall temperature and constant wall heat 

flux cases. After sufficiently long time, Nu number values reach to a steady-state 

value which is 3.66 for constant wall temperature, and 4.36 for constant wall heat 

flux cases. As the dimensionless axial coordinate, ξ increases, the time required to 

reach the steady state conditions increases. Beyond an axial location, all curves reach 

the same local Nu value, which is the indication of the thermal entrance region. This 

axial location is between ξ =0.1 and ξ =0.5 for both cases. Figure 3.4. is generated 
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only for Kn =0, since for different Kn number and κ values, the behavior of the 

curves does not change. The only differences would be the fully developed Nu 

values, the time required for steady state conditions, and the length of the thermal 

entrance region. 
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Figure 3.5. Dimensionless Fully Developed Temperature Profile  
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Figures 3.5 and 3.6 show the dimensionless fully developed temperature profile as a 

function of Kn number for κ =0 and κ =1.667 for both constant wall tempearture and 

constant wall heat flux cases. From the figures, it is apparent that when Kn=0 
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independent of κ value, there is no temperature jump at the wall, which stands for the 

flow in macrochannel.  
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Figure 3.6. Dimensionless Fully Developed Temperature Profile  

as a Function of Kn Number, Microtube ( κ =1.667) 

 

 

For κ =0, there is no temperature jump at the wall, but  there is a velocity slip at the 

wall due to Kn number dependence of the velocity profile, which leads to different 

temperature profiles for different Kn numbers. As seen from the Figure 3.5, the 

gradient at the wall increases for both cases, which will lead to an increase in Nu 

number. As rarefaction increases, the maximum dimensionless temperature located 

at the center, also increases from 1.803 for Kn =0 to 2.017 for Kn =0.1, which 
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indicates 12% increase for constant wall temperature, and from 1.636 Kn =0 to 1.797 

for Kn =0.1, which indicates 9% increase for constant wall heat flux case. 

 

For κ =1.667, temperature jump exists at the wall, and increases as rarefaction 

increases. Dimensionless fully developed temperature is zero at the wall for Kn =0, 

for both cases; and increases to 0.450 for constant wall temperature case, and 0.484 

for constant wall heat flux case for Kn=0.1. Unlike  κ =0 case, as rarefaction 

increases, the gradient at the wall decreases, and the maximum dimensionless 

temperature decreases for both cases. Larger values of κ will lead to more increase in 

temperature jump, and more decrease in maximum dimensionles temperature. 
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Figure 3.7. Dimensionless Fully Developed Temperature Profile  

as a Function of κ Parameter, Microtube ( Kn=0.1) 

 52



 

Figure 3.7 shows the dimensionless fully developed temperature profile as a function 

of κ parameter for Kn =0.1 for both constant wall temperature and constant wall heat 

flux cases. As κ increases, the temperature jump increases; the amount of 

temperature jump at the wall approaches to each other for both boundary conditions, 

and the dimensionless fully developed temperature profile approaches to a uniform 

distribution for both boundary conditions. The maximum dimensionless temperature 

also decreases as κ increases. The decrease which is 44 % for constant wall 

temperature, and 36 % for constant wall heat flux, is more significant for constant 

wall temperature case. 

 

Figures 3.8, 3.9 and 3.10 show the steady state results of local Nu  number as a 

function of dimensionless axial coordinate for different Kn numbers, where κ =0 

(Figure 3.8),  κ =1.667 (Figure 3.9) and  κ =10 (Figure 3.10) for both constant wall 

temperature and constant wall heat flux cases. From the figures, it can be concluded 

that for Kn=0, independent from the κ value, all curves reach the well known fully 

developed Nu of 3.66 for constant wall temperature case, and of 4.36 for constant 

wall heat flux case asymptotically. Furthermore, all the curves approach to a fully 

developed Nu value asymptotically around ξ =0.1 for constant wall temperature and 

ξ =0.2 for constant wall heat flux case, which means that the flow is thermally 

developed beyond that location.The results deviate from the continuum case by the 

introduction of the rarefaction, and this deviation increases with increasing 

rarefaction. As κ increases, the deviation from the continuum for a prescribed Kn 

increases. 

 

As seen from the Figure 3.8, for the limiting case, when κ=0, our numerical results 

agree with the results of Barron et al [30] for constant wall temperature case. Nu 

number gradually increases from 3.66 to 4.38 for constant wall temperature, and 

from 4.36 to 5.63 for constant wall heat flux, as the Kn increases by neglecting the 
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temperature jump at the wall for both cases. This is the same conclusion as Barron et 

al [30], due to the misapplication of the temperature jump boundary condition. 
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In Figure 3.9, the curves corresponding to constant wall temperature case, are not so 

smooth at the entrance region because of the number of meshes. Since 100x100 

meshes are used for constant wall temperature case, the results close to the entrance 

region are not so accurate. Increasing the number of meshes leads to more accurate 

results for entrance region which will also increase the computational time. Since 
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microchannels have large (L/D) ratios in practice, the entrance region results of this 

study are accepted as accurate enough.  
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Figure 3.9 shows the behavior of the air, as rarefaction increases for both cases. As 

seen from the figure, as Kn increases, local Nu decreases from 3.66 to 2.70 for 

constant wall temperature, and from 4.36 to 2.90 for constant wall heat flux. This is 

in contrast with the previous case; the temperature jump at the wall increases, the 

gradient at the wall decreases; therefore,  the fully developed Nu number decreases 

for both cases. 
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Figure 3.10 shows the behavior of a gas with a large temperature jump. For large Kn 

number values, the local Nu curves coincide for both cases. Again, local Nu 

decreases from 3.66 to 0.84 for constant wall temperature, and from 4.36 to 0.85 for 

constant wall heat flux with increasing Kn number. But; this time, the effect of  

rarefaction is very dominant; even for Kn =0.02, the deviation from continuum is 

significant for both cases. 

 

The results of the Figures 3.8, 3.9 and 3.10 are tabulated in Tables 3.1 and 3.2. 
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Table 3.1. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different Kn Numbers and κ Values for Constant Wall Temperature, Microtube 

 

ξ Kn=0 Kn=0.02 Kn=0.04 Kn=0.06 Kn=0.08 Kn=0.10  
0.01 7.295 8.153 8.820 9.353 9.789 10.151 
0.05 4,042 4.257 4.434 4.583 4.710 4.189 
0.10 3.718 3.915 4.080 4.218 4.336 4.439 
0.50 3.656 3.855 4.020 4.160 4.279 4.382 
1.00 3.656 3.855 4.020 4.160 4.279 4.382 

K
=0

 

0.01 7.295 6.511 5.690 4.968 4.368 3.877 
0.05 4.042 3.858 3.636 3.397 3.158 2.931 
0.10 3.718 3.550 3.353 3.146 2.941 2,746 
0.50 3.656 3.488 3.292 3.087 2.887 2,697 
1.00 3.656 3.488 3.292 3.087 2.887 2.697 

K
=1

.6
67

 

0.01 7.295 3.169 1.983 1.435 1.121 0.919 
0.05 4.042 2.471 1.710 1.295 1.038 0.864 
0.10 3.718 2.331 1.645 1.259 1.015 0.849 
0.50 3.656 2.291 1.624 1.247 1.008 0.844 
1.00 3.656 2.291 1.624 1.247 1.008 0.844 

K
=1

0 

 

 

 

Table 3.2. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different Kn Numbers and κ Values for Constant Wall Heat Flux, Microtube 

 

ξ Kn=0 Kn=0.02 Kn=0.04 Kn=0.06 Kn=0.08 Kn=0.10  
0.004 10.479 12.371 13.796 14.902 15.786 16.506 
0.02 6.166 6.845 7.389 7.831 8.196 8.502 
0.04 5.203 5.690 6.085 6.411 6.684 6.915 
0.10 4.515 4.884 5.189 5.444 5.661 5.847 
0.50 4.364 4.710 4.998 5.241 5.448 5.627 
1.00 4.364 4.710 4.998 5.241 5.448 5.627 

K
=0

 

0.004 10.479 8.758 7.186 5.984 5.084 4.400 
0.02 6.166 5.573 4.950 4.391 3.916 3.517 
0.04 5.203 4.782 4.329 3.906 3.534 3.212 
0.10 4.515 4.200 3.855 6.525 3.226 2.961 
0.50 4.364 4.071 3.749 3.438 3.155 2.903 
1.00 4.364 4.071 3.749 3.438 3.155 2.903 

K
=1

.6
67
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ξ Kn=0 Kn=0.02 Kn=0.04 Kn=0.06 Kn=0.08 Kn=0.10  
0.004 10.479 3.561 2.116 1.499 1.158 0.943 
0.02 6.166 2.889 1.868 1.374 1.085 0.895 
0.04 5.203 2.661 1.772 1.323 1.053 0.874 
0.10 4.515 2.471 1.687 1.276 1.024 0.854 
0.50 4.364 2.425 1.666 1.265 1.017 0.849 
1.00 4.364 2.425 1.666 1.265 1.017 0.849 

K
=1

0 

 

 

Figure 3.11 illustrates the effect of κ on local Nu for a fixed value of Kn =0.1. For 

large κ values, local Nu curves coincide for both cases. Besides the large deviation 

from continuum for large κ values, local Nu curves also become flat for large κ 

values. Fully developed Nu values change between 4.38 and 0.84 for constant wall 

temperature and between 5.63 and 0.85 for constant wall heat flux. The results of the 

Figure 3.11 are tabulated in Tables 3.3 and 3.4. 

 

Table 3.3. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different κ Values for Constant Wall Temperature, Microtube (Kn=0.10) 

 

ξ κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10 
0.01 10.151 9.303 6.912 5.189 3.877 1.698 0.919 
0.05 4.189 4.678 4.135 3.544 2.931 1.511 0.864 
0.10 4,439 4.299 3.797 3.279 2.746 1.464 0.849 
0.50 4.382 2.240 3.732 3.218 2.697 1.448 0.844 
1.00 4.382 4.240 3.732 3.218 2.697 1.448 0.844 
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Table 3.4. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different κ Values for Constant Wall Heat Flux, Microtube (Kn=0.10) 

 

ξ κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10 
0.004 16.506 14.168 9.043 6.227 4.400 1.784 0.943 
0.02 8.502 7.836 5.966 4.595 3.517 1.619 0.895 
0.04 6.915 6.468 5.138 4.088 3.212 1.551 0.874 
0.10 5.847 5.524 4.524 3.690 2.961 1.490 0.854 
0.50 5.627 5.327 4.391 3.601 2.903 1.476 0.849 
1.00 5.627 5.327 4.391 3.601 2.903 1.476 0.849 
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Figure 3.12. Fully Developed Nu as a Function of Kn Number and κ  

for Constant Wall Temperature, Microtube 

 

 

Figures 3.12 and 3.13 illustrate the fully developed Nu as a function of Kn for 

different κ values for both constant wall temperature and constant wall heat flux 

cases. The results of Barron et al. [30], Larrode et al. [3] and Ameel et al [33] are 

also plotted in figures, to show the accuracy of the method. The important conclusion 

of these graphs is that, as κ increases, Nu number decreases. But depending on κ 

value, Nu number can be higher or lower than the continuum case. This effect is due 

to the small temperature gradient in radial direction at the wall. 
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Figure 3.13 Fully Developed Nu as a Function of Kn Number and κ  

for Constant Wall Heat Flux, Microtube 

 

 

The results of the Figures 3.12 and 3.13 are taulated in Tables 3.5 and 3.6 below. 
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Table 3.5. Fully Developed Nu as a Function of Kn Number and κ  

for Constant Wall Heat Temperature, Microtube 

 
 

Kn κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10 
0,00 3.656 3.656 3.656 3.656 3.656 3.656 3.656 
0,005 3.710 3.704 3.682 3.655 3.618 3.445 3.209 
0,01 3.761 3.749 3.704 3.649 3.577 3.250 2.843 
0,02 3.855 3.832 3.739 3.628 3.488 2.902 2.291 
0,04 4.020 3.970 3.778 3.557 3.292 2.356 1.624 
0,06 4.160 4.081 3.785 3.458 3.087 1.961 1.247 
0,08 4.279 4.136 3.767 3.342 2.887 1.670 1.008 
0,10 4.382 4.240 3.732 3.218 2.697 1.448 0.844 

 

 

Table 3.6. Fully Developed Nu as a Function of Kn Number and κ  

for Constant Wall Heat Flux, Microtube 

 
Kn κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10 

0,00 4.364 4.364 4.364 4.364 4.364 4.364 4.364 
0,005 4.457 4.447 4.408 4.360 4.297 4.010 3.645 
0,01 4.545 4.525 4.444 4.348 4.225 3.704 3.125 
0,02 4.710 4.666 4.498 4.304 4.071 3.202 2.425 
0,04 4.998 4.900 4.544 4.165 3.749 2.499 1.666 
0,06 5.241 5.081 4.529 3.987 3.438 2.037 1.265 
0,08 5.448 5.220 4.473 3.794 3.155 1.714 1.017 
0,10 5.627 5.327 4.391 3.601 2.903 1.476 0.849 
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CHAPTER 4 

 

 

SINGLE PHASE HEAT TRANSFER IN MICROCHANNELS BETWEEN 

PARALLEL PLATES WITHOUT VISCOUS DISSIPATION 

 

4.1. Introduction 

 

In this section, heat transfer analysis of hydrodynamically developed and thermally 

developing single phase laminar flow of a viscous fluid in microchannels between 

parallel plates is performed. The thermo-physical properties are assumed to be 

constant. Viscous dissipation term is neglected. The energy equation is solved 

numerically for constant wall temperature and constant wall heat flux thermal 

boundary conditions for slip-flow regime. 

 

4.2. Fully Developed Velocity Distribution in Microchannels Between  

       Parallel  Plates 

 

The geometry of the problem considered in this section is shown in Figure 4.1. The 

coordinate system is located at the center of the parallel plates. There is an unheated 

section at the inlet to be able to have a fully developed velocity profile. 
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Figure 4.1. The Geometry of the Microchannel Problem 

2H 

unheated section 
unheated section 

y 

x

 

Using the governing equations and the slip velocity boundary condition, Eq. (1.2), 

the fully developed velocity profile is determined in terms of mean velocity as, 

 
21 ( ) 43

2 1 6m

y Knu H
u K

− +
=

+ n
    (4.1)

 

Defining dimensionless radius as, 

 

y
H

η =     (4.2)

 

the Eq. (4.1) can be written as, 

 
23 1 4

2 1 6m

u K
u K

η− +
=

+
n

n
    (4.3)
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Fully developed velocity profile depends on the Knudsen number. Notice that, by 

setting Kn =0 in the Eq. (4.3) is identical to the fully developed velocity profile of a 

flow in a macrochannel between parallel plates, which is 

 

23 (1 )
2m

u
u

η= −     (4.4)

 

The terms containing Knudsen number in Eq. (4.4) introduce the slip velocity at the 

wall. 
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Figure 4.2. Fully Developed Velocity Profile Inside a Microchannel 
Between Parallel Plates 
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The fully developed velocity profile is plotted as a function of  η and Kn number in 

Figure 4.2. Kn number changes between 0 and 0.1. Kn =0 represents the flow in 

macrochannels between parallel plates, and Kn =0.1 is the applicability limit of the 

slip flow theory. As seen from the figure, as rarefaction increases, the slip at the wall 

increases from zero for Kn =0 to 0.375 for 0.1. This increase in the slip velocity 

leads to a decrease in the gradient of the velocity at the wall, which is again the 

reason for the reduction in the friction factor in gaseous flows in microchannels. As 

Kn number increases, the maximum dimensionless velocity located at the center 

decreases from 1,5  for Kn =0 to 1.313 for Kn =0.1. There is also a knot point, where 

the velocity is equal to mean velocity around η=0.58. 

 

4.3. Heat Transfer Analysis 

 

4.3.1. Formulation 

 

Two dimensional energy equation in cartesian coordinates with constant properties, 

negligible axial conduction  and negligible viscous dissipation term can be written as 

[57]; 

 
2

2

T Tu
x y

α∂ ∂
=

∂ ∂
    (4.5)

 

The case of constant wall temperature, the boundary conditions are, 

 

at   y = H      sT T=  (4.6-a)

at   y= 0       0T
r

∂
=

∂
 (4.6-b)
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at   x = 0       iT T= (4.6-c)
where Ti and Ts are the temperatures of the gas at the inlet and at the surface, 

respectively.  

 

In the case of constant wall heat flux, the boundary conditions are, 

 

at   y = H      
''T q

y k
∂

=
∂

 (4.7-a)

at   y= 0       0T
r

∂
=

∂
 (4.7-b)

at   x = 0        iT T= (4.7-c)
 

The energy equation is non-dimensionalized by the following dimensionless 

quantities, 

 

wi

w

TT
TT

−
−

=θ    ( for constant wall temperature) (4.8-a)

'' /
iT T

q H k
θ −

=    ( for constant wall heat flux)    (4.8-b)

y
H

η =     (4.8-c)

Re Pr
x

H
ξ =    (4.8-d)

mu
uu =

 
(4.8-e)

 

Introducing the dimensionless quantities, Eqs (4.8-a) through (4.8-e) the energy 

equation becomes,  
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2

24
u θ θ

ξ η
∂ ∂

=
∂ ∂

 (4.9)

 

Using the dimensionless quantities, Eqs (4.8-a) through (4.8-e) and appropriate form 

of the temperature jump boundary condition, Eq. (1.4) for the considered geometry, 

the boundary conditions for constant wall temperature become, 

 

at      1η =         12 ( )Kn η
θθ κ
η =

∂
= −

∂
                                                      (4.10-a)

at      0η =        0θ
η

∂
=

∂
     (4.10-b)

at      0ξ =        1θ =  (4.10-c)

where 2 2
1 Pr

T

T

F
F

1γκ
γ

−
=

+
             (4.11)

 

The boundary conditions for the constant wall heat flux case, 

 

at      1η =         1θ
η

∂
=

∂
                                                                         (4.12-a)

at      0η =        0θ
η

∂
=

∂
     (4.12-b)

at      0ξ =        0θ =  (4.12-c)

 

Local heat transfer coefficient is written as, 

 

Rr
wm

x r
T

TT
kh =∂

∂
−

−= )(
)(

    (4.13)  
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Introducing dimensionless quantities into Eq. (4.13), the Nusselt number is 

determined  for constant wall temperature as,  

 

14( )
x

x
m

h DNu
k

η
θ
η

θ

=
∂
∂= = −       (4.14)  

 

Introducing dimensionless quantities and the temperature jump boundary condition, 

Eq. (1.4) into the Eq. (4.13), the Nusselt number is determined  for constant wall heat 

flux as,  

 

4
2

x
x

m s

h DNu
k Kθ θ κ

= =
− − n

      (4.15)  

 

where θm is the dimensionless mean temperature, and defined as, 

 
1

0

( ) ( , )m
m

u d
u

θ θ η ξ η= ∫      (4.16)  

 

To determine the local Nusselt number, the energy equation, Eq. (4.9) should be 

solved with indicated boundary conditions to obtain the temperature distribution. The 

energy equation is solved by using numerical methods, due to the prescribed reasons 

mentioned in the previous chapter. 

 

4.3.1.1. Numerical Solution 

 

Like the problem in microtubes, the energy equation is transformed into a transient 

problem for the simplicity of the numerical solution.  
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24
uθ θ θ

τ ξ η
∂ ∂ ∂

+ =
∂ ∂ ∂

 (4.17)  

 

By defining dimensionless time as, 

 

2

t
H
ατ =  (4.18)  

 

Introducing dimensionless time also, the initial and boundary conditions of the 

transient energy equation become, 

 

at      0τ =        1θ =                                                                          (4.19-a)

at       1=η         12 ( )Kn η
θθ κ
η =

∂
= −

∂
    (4.19-b)

at      0η =        0θ
η

∂
=

∂
 (4.19-c)

at      0ξ =        1θ =           (4.19-d)
 

for constant wall temperature; and, 

 

at      0τ =        0θ =                                                                          (4.20-a)

at      1=η         1θ
η

∂
=

∂
    (4.20-b)

at      0η =        0θ
η

∂
=

∂
 (4.20-c)

at      0ξ =        0θ =           (4.20-d)
 

for constant wall heat flux boundary condition.  
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To calculate the Nusselt number, the first derivative of the dimensionless 

temperature at the wall and the dimensionless mean temperature should be 

computed. The derivative at the wall is computed by using the finite difference 

approximation. The evaluation of the dimensionless mean temperature needs the 

computation of the integral given by Eq. (4.16), which is computed numerically by 

using Simpson’ s 1/3 rule [58]. 

 

4.3.1.1.1.Domain Discretization  

 

The solution domain is divided into finite number of meshes as shown in Figure 3.3. 

The nodes are located at the corners of the meshes. Due to the symmetry of the 

solution domain, only one half of the solution domain is considered. For constant 

wall temperature case, 100x100 grids; and for constant wall heat flux case, 250x250 

grids which are distributed uniformly in the vertical and longitudinal directions are 

used for the computation. The length of the tube is assigned as the dimensionless 

longitudinal coordinate, ξ=1, like the previous problem. 

  

3.3.1.1.2.Equation Discretization 

 

Discretization of the Eq. (4.17) and the related boundary conditions requires second 

and first derivatives in space and first derivative in time. Centered, forward and 

backward finite-divided differences, defined in Eqs. (3.33-a) through (3.33-j), are 

used to approximate the space derivatives  and the time derivative.  
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4.3.1.1.2.1. Nodes at the Interior Region 

 

For an interior node, central differences for space; Eq. (3.33-c), Eq. (3.33-i) and 

forward difference for time, Eq. (3.33-j) are substituted into the energy equation, Eqn 

(4.17). The algebraic form of the energy equation becomes; 

 
1

, , 1 1, , 1, 2 , 1 ,( 2 ) ( )(k k k k k k k
i j i j i j i j i j i i j i jC C uθ θ θ θ θ η θ θ+

+ − += + − + − − 1)−  (4.21)  
 

where C1, C2 are the coefficients and defined as, 

 

21 )( η
τ

∆
∆

=C
 

(4.22)  

2 8
C τ

ξ
∆

=
∆

 (4.23)  

 

and )(ηu  is the dimensionless fully developed profile, given by Eq. (4.3). 

 

4.3.1.1.2.2. Nodes at the Inlet 

 

The temperature of an inlet node is prescribed, which is the boundary condition. 
 

11
,0 =+k
jθ  (4.24-a)  
1

0, 0k
jθ + =  (4.24-b)

 

which are for constant wall temperature and constant wall heat flux cases, 

respectively. 
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4.3.1.1.2.3. Nodes at the Exit 

 

For a exit node, central difference in radial direction, Eqs. (3.33-c), backward 

difference in longitudinal direction, Eq. (3.33-h) and forward difference for time, Eq. 

(3.33-j) are substituted into the energy equation, Eq.(4.17). The algebraic form of the 

energy equation becomes; 

 

1
, , 1 1, , 1, 2 , , 1 ,( 2 ) ( )(3 4k k k k k k k k

i j i j i j i j i j i i j i j i jC C uθ θ θ θ θ η θ θ θ+
+ − −= + − + − − + 2 )−  (4.25)

 

where C1, C2 are the coefficients that are given in Eqs. (4.22) and (4.23). 

 

4.3.1.1.2.4. Nodes at the Centerline 

 

For a centerline node, central difference in longitudinal direction, Eq. (3.33-i), 

forward difference for time, Eq. (3.33-j) are substituted into the energy equation, 

Eq.(4.17). For the second derivative in radial direction, Eq. (3.41) is substituted. The 

algebraic form of the energy equation becomes;  

 
1

, , 1 1, 0, 2 0 0, 1 0,2 ( ) ( )( )k k k k k k
i j i j j j j jC C uθ θ θ θ η θ θ+

+ −= + − − − 1  (4.26)  

 

where C1, C2 are the coefficients that are given in Eqs. (4.22) and (4.23). 
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4.3.1.1.2.5. Nodes at the Boundary 

 

4.3.2.2.5.1. Constant Wall Temperature 

 

Substituting discritised boundary condition, Eq. (3.44) into the Eqn. (4.17), the 

algebraic form of the energy equation for a node near the wall which includes the 

effect of the boundary condition for the constant wall temperature case becomes, 

 

1, 2,1
1, 1, 1 1, 2,

2 , 1 , 1

4
( 232 (1 )

2
( )( )

k k
n j n jk k k k

n j n j n j n j

k k
i i j i j

C

C u

θ θ
θ θ κ θ θκη

η
η θ θ

− −+
− − − −

+ −

−
= + − +

∆ +
∆

− −

)
  

 
(4.27)  

 

where C1, C2 are the coefficients that are given in Eqs. (4.22) and (4.23). 

 

4.3.2.2.5.2. Constant Wall Heat Flux 

 

Substituting Eq. (3.46) into the Eq. (4.17), the algebraic form of the energy equation 

for a node near the wall which includes the effect of the boundary condition for the 

constant wall heat flux case becomes, 

 

1, 2,1
1, 1, 1 1, 2,

2 , 1 , 1

2 4
( 2

3
( )( )

n j n jk k k k
n j n j n j n j

k k
i i j i j

C

C u

)
η θ θ

θ θ θ θ

η θ θ

− −+
− − − −

+ −

∆ + −
= + − +

− −
 

 
 

(4.28)  

 

where C1, C2 are the coefficients that are given in Eqs. (4.22) and (4.23). 
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4.3.1.1.3. Stability and Convergence 

 

Again, the step size in time should satisfy the stability criterian for stable solution 

[58]. Again, it can be written as, 

 

1
1
2

C <  (4.29)  

 

where C1 is the coefficient that is given in Eq. (4.22). Like the previous case, by trial 

and error, it is seen that 

 

  24.0 ητ ∆=∆ (4.30)  
 

is a safe choice for this problem to get a stable solution. 

 

This numerical calculation is open ended in the time domain, so a convergence 

criterian is needed to stop the computation. For this study, the convergence criterian 

is that the difference between fully developed Nu values of two successive time step 

is less than 10-3. To satisfy this criteria dimensionless time is chosen as τ=2 for 

constant wall temperature and τ=4 for constant wall heat flux cases, respectively. 

 

4.4. Results and Discussion 

 

The dimensionless transient temperature distribution inside a microchannel between 

parallel plates is determined by solving Eq. (4.17) numerically with the appropriate 

boundary conditions. Once the dimensionless temperature distribution is determined, 

local Nusselt number is determined as a function of dimensionless axial coordinate 

and dimensionless time from Eqs. (4.14) and (4.15) for different Kn number values, 

varies between 0 and 0.1. Notice that, Kn =0 is the no-slip condition (i.e. flow in 
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macrochannels), which is again the validification of the accuracy of the numerical 

solution.  
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Figure 4.3. Variation of Local Nu with Dimensionless Time  

at Different Axial Locations, Microchannel ( Kn =0) 

 

 

Figure 4.3 shows the variation of local Nu with dimensionless time, τ at different 

axial locations, for Kn=0 for both constant wall temperature and constant wall heat 

flux cases. After sufficiently long time, Nu number values reach to a steady state 

value which is 7.54 for constant wall temperature, and 8.24 for constant wall heat 
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flux cases. As the dimensiomless axial coordinate, ξ increases, the time required to 

reach the steady-state conditions increases. Beyond an axial location, all curves reach 

the same local Nu value, which is the indication of the thermal entrance region. This 

axial location is between ξ =0.1 and ξ =0.5 for both cases.  
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Figure 4.4. Dimensionless Fully Developed Temperature Profile  

as a Function of Kn Number, Microchannel ( κ =0) 

 

 

Figures 4.4 and 4.5 show the dimensionless fully developed temperature profile as a 

function of Kn number for κ =0 and κ =1.667 for both constant wall tempearture and 

constant wall heat flux cases. When Kn=0 independent of κ value, there is no 
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temperature jump at the wall, which stands for the flow in macrochannels. For κ =0, 

there is no temperature jump at the wall; but,  there exists a velocity slip at the wall, 

which leads to different Nu values for different Kn numbers. As seen from the Figure 

4.4, the gradient at the wall increases for both cases, which will lead to an increase in 

Nu number. As rarefaction increases, the maximum dimensionless temperature 

located at the center, also increases from 1.319 for Kn =0 to 1.406 for Kn =0.1, 

which indicates 25% increase for constant wall temperature, and from 1.287 Kn =0 

to 1.363 for Kn =0.1, which indicates 6% increase for constant wall heat flux case. 
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Figure 4.5. Dimensionless Fully Developed Temperature Profile  

as a Function of Kn Number, Microchannel ( κ =1.667) 
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For κ =1.667, temperature jump exists at the wall, and increases as rarefaction 

increases. Dimensionless fully developed temperature is 0 at the wall for Kn =0, for 

both cases; and increases to 0.422 for constant wall temperature case, and 0.440 for 

constant wall heat flux case for Kn =0.1 Unlike  κ =0 case, as rarefaction increases, 

the gradient at the wall decreases, and the maximum dimensionless temperature 

decreases for both cases. Larger values of κ will lead to more increase in temperature 

jump, and more decrease in maximum dimensionles temperature. 
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Figure 4.6. Dimensionless Fully Developed Temperature Profile  

as a Function of κ Parameter, Microchannel ( Kn=0.1) 
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Figure 4.6 shows the dimensionless fully developed temperature profile as a function 

of κ parameter for Kn =0.1 for both constant wall temperature and constant wall heat 

flux cases. As κ increasing, the temperature jump increases; the amount of 

temperature jump at the wall approaches to each other for both boundary conditions, 

and the dimensionless fully developed temperature profile approaching to a uniform 

distribution for both boundary conditions. The maximum dimensionless temperature 

also decreases as κ increasing. The decrease is 61% for constant wall temperature, 

and 58% for constant wall heat flux. 
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Figure 4.7. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different Kn Numbers, Microchannel (κ =0) 
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Figure 4.7 shows  variation of local Nu number with the  dimensionless axial 

coordinate for different Kn numbers for κ = 0. Nu number gradually increases from 

7.54 to 4.38 for constant wall temperature, and from 8.24 to 5.63 for constant wall 

heat flux, as the Kn increases due to the neglection of the temperature jump at the 

wall, for both cases. Local Nu numbers reach their fully developed value around 

ξ=0.1 for constant wall temperature, and ξ =0.2 for constant wall heat flux case. 
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Figure 4.8. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different Kn Numbers, Microchannel (κ =1.667) 
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Figure 4.8 shows the behavior of the air, as rarefaction increases for both cases. As 

Kn increases, local Nu decreases from 7.54 to 5.06 for constant wall temperature, 

and from 8.24 to 5.28 for constant wall heat flux. As the temperature jump at the 

wall increases, the gradient at the wall decreases; therefore fully develored Nu 

decreases for both cases. 
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Figure 4.9. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different Kn Numbers, Microchannel (κ =10) 
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Figure 4.9 shows the behavior of a gas with a large temperature jump. For large Kn 

number values, the local Nu curves coincide for both cases. Again, local Nu 

decreases from 7.54 to 1.64 for constant wall temperature, and from 8.24 to 1.65 for 

constant wall heat flux with increasing Kn number. The effect of  rarefaction is very 

dominant; even for Kn=0.02, the deviation from continuum is significant for both 

cases, and the deviations are more significant than the microtube case. 

 

The results of the Figures 4.7, 4.8 and 4.9 are tabulated in Tables 4.1 and 4.2 

 

Table 4.1. Variation of Local Nu as a Function of  Dimensionless Axial Coordinate 

for Different Kn Numbers and κ Values for Constant Wall Temperature, 

Microchannel 

 

ξ Kn=0 Kn=0.02 Kn=0.04 Kn=0.06 Kn=0.08 Kn=0.10  
0.01 11.755 12.608 13.303 13.880 14.367 14.782 
0.05 7.679 7.887 8.063 8.214 8.344 8.458 
0.10 7,545 7.743 7.910 8.053 8.177 8.285 
0.50 7.541 7.738 7.905 8.048 8.172 8.283 
1.00 7.541 7.738 7.905 8.048 8.172 8.283 

K
=0

 
0.01 11.755 10.523 9.371 8.364 7.506 6.779 
0.05 7.679 7.073 6.525 6.033 5.592 5.197 
0.10 7.545 6.931 6.380 5.889 5.454 5.067 
0.50 7.541 6.926 6.374 5.882 5.445 5.053 
1.00 7.541 6.926 6.374 5.882 5.445 5.053 

K
=1

.6
67

 

0.01 11.755 5.675 3.692 2.724 2.154 1.779 
0.05 7.679 4.567 3.200 2.451 1.982 1.662 
0.10 7.545 4.480 3.149 2.418 1.959 1.645 
0.50 7.541 4.474 3.145 2.415 1.957 1.655 
1.00 7.541 4.474 3.145 2.415 1.957 1.655 

K
=1

0 

 

 

 

 

 83



 

Table 4.2. Variation of Local Nu as a Function of  Dimensionless Axial Coordinate 

for Different Kn Numbers and κ Values for Constant Wall Heat Flux, Microchannel 

 

ξ Kn=0 Kn=0.02 Kn=0.04 Kn=0.06 Kn=0.08 Kn=0.10  
0.004 19.273 23.108 25.521 27.463 29.056 30.386 
0.02 11.889 12.863 13.674 14.354 14.931 15.250 
0.04 9.996 10.627 11.158 11.608 11.994 12.327 
0.10 8.575 8.968 9.302 9.588 9.835 10.050 
0.50 8.235 8.555 8.825 9.057 9.257 9.432 
1.00 8.235 8.555 8.825 9.057 9.257 9.432 

K
=0

 

0.004 19.273 16.682 13.789 11.571 9.892 8.601 
0.02 11.889 10.592 9.392 8.356 7.482 6.748 
0.04 9.996 9.027 8.133 7.345 6.664 6.080 
0.10 8.575 7.802 7.100 6.480 5.940 5.469 
0.50 8.235 7.487 6.819 6.233 5.724 5.281 
1.00 8.235 7.487 6.819 6.233 5.724 5.281 

K
=1

.6
67

 

0.004 19.273 6.980 4.181 2.973 2.302 1.876 
0.02 11.889 5.626 3.661 2.705 2.141 1.770 
0.04 9.996 5.152 3.453 2.590 2.069 1.721 
0.10 8.575 4.728 3.252 2.473 1.993 1.668 
0.50 8.235 4.611 3.192 2.437 1.968 1.650 
1.00 8.235 4.611 3.192 2.437 1.968 1.650 

K
=1

0 
 

 

Figure 4.10 illustrates the effect of κ on local Nu for a fixed value of Kn=0.1. For 

large κ values, local Nu curves coincide for both cases, since the fully developed 

temperature profiles for these cases are very similar as seen from the Figure 4.6. 

Besides the large deviation from continuum for large κ values, local Nu curves also 

become flat for large κ values. Fully developed Nu values change between 8.28 and 

1.64 for constant wall temperature and between 9.43 and 1.65 for constant wall heat 

flux. The results of the Figure 4.10 are tabulated in Tables 4.3 and 4.4. 
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Figure 4.10. Variation of Local Nu as a Function of  

Dimensionless Axial Coordinate for Different κ Values, Microchannel (Kn=0.10) 

 

 

Table 4.3. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different κ Values for Constant Wall Temperature, Microchannel (Kn=0.10) 

 

ξ κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10 
0.01 14.782 13.845 10.993 8.698 6.779 3.198 1.779 
0.05 8.458 8.173 7.175 6.188 5.197 2.826 1.662 
0.10 8.285 7.996 6.997 6.027 5.067 2.780 1.645 
0.50 8.279 7.990 6.989 6.019 5.058 2.775 1.643 
1.00 8.279 7.990 6.989 6.019 5.058 2.775 1.643 
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Table 4.4. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different κ Values for Constant Wall Heat Flux, Microchannel (Kn=0.10) 

 

ξ κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10 
0.004 30.386 26.378 17.268 12.061 8.601 3.535 1.876 
0.02 15.250 14.320 11.132 8.708 6.748 3.176 1.770 
0.04 12.327 11.612 9.423 7.627 6.080 3.020 1.721 
0.10 10.050 9.570 8.032 6.689 5.469 2.861 1.668 
0.50 9.432 9.007 7.632 6.409 5.281 2.809 1.650 
1.00 9.432 9.007 7.632 6.409 5.281 2.809 1.650 
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Figure 4.11. Fully Developed Nu as a Function of Kn Number and κ  

for Constant Wall Temperature, Microchannel 
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Figures 4.11 and 4.12 illustrate the fully developed Nu as a function of Kn for 

different κ values for both constant wall temperature and constant wall heat flux 

cases. As κ increases, fully developed Nu number decreases. But; depending on κ 

value, fully developed Nu number can be higher or lower than the continuum case. 

This effect is due to the small temperature gradient in radial direction at the wall. The 

results of the Figures 4.11 and 4.12 are tabulated in Tables 4.5 and 4.6. 
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Figure 4.12. Fully Developed Nu as a Function of Kn Number and κ  

for Constant Wall Heat Flux, Microchannel 
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Generally, the behavior of the flow in microchannels between parallel plates is 

similar to the flow in microtube. Therefore; author has came up with the similar 

conclusions for the this two flow configurations.  

 

 

Table 4.5. Fully Developed Nu as a Function of Kn Number and κ  

for Constant Wall Temperature, Microchannel 

 

Kn κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10 
0.00 7.541 7.541 7.541 7.541 7.541 7.541 7.541 

0.005 7.594 7.581 7.529 7.465 7.381 6.987 6.209 
0.01 7.644 7.618 7.514 7.388 7.226 6.502 5.639 
0.02 7.739 7.686 7.478 7.232 6.925 5.696 4.476 
0.04 7.905 7.795 7.382 6.917 6.374 4.539 3.145 
0.06 8.048 7.880 7.264 6.606 5.882 3.756 2.415 
0.08 8.172 7.943 7.131 6.305 5.445 3.195 1.957 
0.10 8.279 7.990 6.989 6.019 5.058 2.775 1.643 

 

 

Table 4.6. Fully Developed Nu as a Function of Kn Number and κ  

for Constant Wall Temperature, Microchannel 

 

Kn κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10 
0.00 8.235 8.235 8.235 8.235 8.235 8.235 8.235 

0.005 8.321 8.303 8.235 8.151 8.042 7.537 6.888 
0.01 8.402 8.367 8.229 8.063 7.852 6.944 5.917 
0.02 8.555 8.483 8.204 7.881 7.487 5.992 4.611 
0.04 8.825 8.672 8.110 7.501 6.819 4.688 3.192 
0.06 9.057 8.817 7.973 7.122 6.233 3.840 2.437 
0.08 9.257 8.926 7.811 6.755 5.724 3.246 1.968 
0.10 9.432 9.007 7.632 6.409 5.281 2.809 1.650 
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CHAPTER 5 

 

 

SINGLE PHASE HEAT TRANSFER IN MICROTUBES  

WITH VISCOUS DISSIPATION 

 

 

5.1. Introduction 

 

Brinkman number, the dimensionless viscous dissipation parameter, is usually 

neglected in low viscosity and low speed flows through macrochannels with short 

lengths. But, Brinkman number is significant for long pipelines. Since length over 

diameter ratio (L/D∼100) is large in microchannels, Brinkman number may become 

important for flows in microchannels like in long pipelines; and may be the answer 

of the unusual behavior of microscale heat transfer together with the rarefaction 

effect. 

 

In this section, effect of Brinkman number on single phase heat transfer analysis of 

hydrodynamically developed and thermally developing single phase laminar flow of 

a viscous fluid in microchannels between parallel plates is analyzed. The thermo-

physical properties are assumed to be constant. Viscous dissipation term is included 

in the energy equation. The energy equation is solved numerically for constant wall 

temperature and constant wall heat flux thermal boundary conditions for slip-flow 

regime. 
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5.2. Heat Transfer Analysis 

 

5.2.1. Formulation 

 

The geometry of the problem is given in Figure 3.1, and the fully developed velocity 

profile in terms of mean velocity and dimensionless radius is given in Eq. (3.15). 

Two dimensional energy equation in cylindrical coordinates with viscous dissipation, 

constant properties, and negligible axial conduction  can be written as [57]; 

 

2( )
p

T Tu r u
x r r r c r

α ν∂ ∂ ∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
    (5.1)

 

The boundary conditions for constant wall temperature boundary condition are, 

 

at r = R       sT T=  (5.2-a)

at   r = 0      0T
r

∂
=

∂
 (5.2-b)

at   x = 0        iT T= (5.2-c)

 

where Ti and Ts are the temperature of the gas at the inlet and at the surface, 

respectively. 

 

The boundary conditions for constant wall heat flux boundary condition are, 

 

at r = R      
''T q

r k
∂

=
∂

 (5.3-a)

at   r = 0       0T
r

∂
=

∂
 (5.3-b)

at   x = 0        iT T= (5.3-c)
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Introducing the dimensionless quantities given in Eq. (3.20) and the first derivative 

of the fully developed velocity profile, the energy equation becomes, 

 
2

2
2 2

1
(1 8 )

Bru
Kn

θ θ θ β η
ξ η η η

∂ ∂ ∂
= + +

∂ ∂ ∂ +
  (5.4)

 

 where, Br is the Brinkman number and defined as, 

 
2

( )
m

i w

uBr
k T T

µ
=

−
  (5.5)

 

for constant wall temperature, and 

 
2

muBr
q D
µ

=
′′

  (5.6)

 

for constant wall heat flux case. β in Eq. (5.4) is a constant coming from the non-

dimensionaliztion, and is equal to 16 for constant wall temperature, and is equal to 

32 for constant wall heat flux case. 

  

Using the dimensionless quantities, Eq. (3.20) and the temperature jump boundary 

condition, Eq. (1.5), the boundary conditions for constant wall temperature become, 

 

at 1η =       12 ( )Kn η
θθ κ
η =

∂
= −

∂
                                                            (5.7-a)

at 0η =       0θ
η

∂
=

∂
     (5.7-b)

at 0ξ =       1θ =  (5.7-c)
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where κ is defined in Eq. (3.23). 

 

The boundary conditions for constant wall heat flux become, 

 

at  1η =       1θ
η

∂
=

∂
 (5.8-a)

at 0η =       0θ
η

∂
=

∂
     (5.8-b)

at 0ξ =       0θ =  (5.8-c)

 

Once the temperature distribution is determined, local Nu numbers are determined by 

using Eqs. (3.26), (3.27) and (3.28). 

 

5.2.2. Numerical Solution 

 

Like the problem in microtubes without viscous dissipation, the energy equation is 

transformed into a transient problem for the simplicity of the numerical solution. 

 
2

2
2 2

1
2 (1
u B

Kn
θ θ θ θ β

8 )
r η

τ ξ η η η
∂ ∂ ∂ ∂

+ = + +
∂ ∂ ∂ ∂ +

  (5.9)

 

By defining the dimensionless time as, 

 

2R
tατ =

 
(5.10)  

 

Introducing the dimensionless time also, the initial condition and the boundary 

conditions of the transient energy equation, Eq. (3.29) become, 

 

at 0τ =       1θ =                                                                 (5.11-a)
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at 0η =       0θ
η

∂
=

∂
     (5.11-b)

at 0ξ =       1θ =  (5.11-c)

at 1η =        12 ( )Kn η
θθ κ
η =

∂
= −

∂
             (5.11-d)

 

for constant wall temperature; and, 

 

at 0τ =  0θ =  (5.12-a)

at 0η =  0θ
η

∂
=

∂
     (5.12-b)

at 0ξ =  0θ =  (5.12-c)

at  1η =  1θ
η

∂
=

∂
 (5.12-d)

 

for constant wall heat flux boundary condition. 

 

The derivative at the wall during the calculation of local Nu number, is computed by 

using same  finite difference approximation that used in the discretization of the Eq.  

(5.9); and Simpson’ s 1/3 rule is used in the calculation of dimensionless mean 

temperature. 

 

5.2.2.1. Domain Discretization  

 

The same solution domain used in Chapter 3 is used for this problem. For constant 

wall temperature case, 100x500 grids; and for constant wall heat flux case, 250x250 

grids which are distributed uniformly in the radial and longitudinal directions are 

used for the computation. For constant wall temperature case, the length of the tube 

is assigned as the dimensionless longitudinal coordinate, ξ=5 to see the effect of 

Brinkman number. For constant wall heat flux case, the length of the tube is assigned 
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as the dimensionless longitudinal coordinate, ξ=1 like in the  flow without viscous 

dissipation. 

  

5.2.2.2. Equation Discretization 

 

Discretization of the Eq. (5.9) and the related boundary conditions requires second 

and first derivatives in space and first derivative in time. Substuting the appropriate 

finite-divided differences defined in Eqs. (3.33-a) through (3.33-j), the algebraic 

forms of the energy equation for the related nodes are determined for constant wall 

temperature and constant wall heat flux cases, and are listed below.. 

 

• Nodes at the Interior Region 

 

For an interior node, central differences for space; Eqs (3.33-c), (3.33-f), (3.33-i) and 

forward difference for time, Eq. (3.33-j) are substituted into the energy equation, Eq. 

(5.9). The algebraic form of the energy equation becomes; 

 

1
, , 1 1, , 1, 2 1, 1,

2
3 , 1 , 1 4

1( 2 ) (

( )( )

k k k k k k k
i j i j i j i j i j i j i j

i
k k

i i j i j

C C

C u C

θ θ θ θ θ θ θ
η

η θ θ η

+
+ − +

+ −

= + − + + −

− − +

)−
 

(5.13)  
 

• Nodes at the Inlet 

 
1

0, 1k
jθ + =   for constant wall temperature (5.14)  
1

0, 0k
jθ + =  for constant wall heat flux (5.15)  
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• Nodes at the Exit 

 

For an exit node, central differences in radial direction, Eqs. (3.33-c), (3.33-f), 

backward difference in longitudinal direction, Eq. (3.33-h) and forward difference in 

time, Eq. (3.33-j) are substituted into the energy equation, Eq. (5.9). The algebraic 

form of the energy equation becomes; 

 

1
, , 1 1, , 1, 2 1, 1,

* 2
3 , , 1 , 2 4

1( 2 ) (

( )(3 4 )

k k k k k k k
i j i j i j i j i j i j i j

i

k k k
i i j i j i j

C C

C u C

θ θ θ θ θ θ θ
η

η θ θ θ η

+
+ − +

− −

= + − + + −

− − + +

)−
 

 

 

(5.16)

 

• Nodes at the Centerline 

 

For a centerline node Eqs. (3.33-i), (3.33-j), (3.41), (3.42) are substituted into energy 

equation, Eq. (5.9). The algebraic form of the energy equation becomes; 

 

))(()(4 1,01,00
*

3,0,11,
1

,
k

j
k

j
k

j
k

j
k

ji
k

ji uCC −+
+ −−−+= θθηθθθθ  (5.17)  

 

• Nodes at the Boundary 

 

For constant wall temperature, Eq. (3.44) is substituted into the Eq. (5.13). The 

algebraic form of the energy equation for a boundary node becomes, 

 

1, 2,1
1, 1, 1 1, 2,

1, 2, * 2
2 2, 3 , 1

4
( 2 )32 (1 )

2
41 ( ) ( )(32 (1 )

2

k k
n j n jk k k k

n j n j n j n j

k k
n j n j k k k

n j i i j i j
i

C

C C u

θ θ
θ θ κ θ θκη

η
θ θ

κ θ η θ θκη η
η

− −+
− − − −

− −
− + −

−
= + − +

∆ +
∆

−
+ − − −

∆ +
∆

, 1 4) C η+

 
 
 
(5.18)  
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For constant wall heat flux, Eq. (3.46) is substituted into the Eq. (5.13). The 

algebraic form of the energy equation for a boundary node becomes, 

 

1, 2,1
1, 1, 1 1, 2,

1, 2, * 2
2 2, 3 , 1

2 4
( 2 )

3
2 41 ( ) ( )(

3

n j n jk k k k
n j n j n j n j

n j n j k k k
n j i i j i j

i

C

C C u , 1 4) C

η θ θ
θ θ θ θ

η θ θ
θ η θ θ η

η

− −+
− − − −

− −
− + −

∆ + −
= + − +

∆ + −
+ − − − +

 
 
 

(5.19)  

 

where C1, C2, C3, C4 are the coefficients and defined as, 

 

21 )( η
τ

∆
∆

=C
 

(5.20)  

η
τ

∆
∆

=
22C

 
(5.21)  

ξ
τ

∆
∆

=
43C

 
(5.22)  

4 2(1 8 )
BrC
Kn

ατ= ∆
+

 (5.23)

 

and )(ηu  is the dimensionless fully developedvelocity profile, given by Eq. (3.15). 

 

5.2.2.3. Stability and Convergence 

 

Again, the step size in time should satisfy the stability criteria for stable solution 

[58]. It can be written as, 

 

1
1
2

C <  (5.24)  

 

where C1 is the coefficient that is given in Eq. (5.20). By trial and error, it is seen that 
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  24.0 ητ ∆=∆ (4.30)  
 

is again a safe choice for this problem to get a stable solution. 

 

For this study, the convergence criterian is that the difference between fully 

developed Nu values of two successive time step is less than 10-3. To satisfy this 

criterian dimensionless time is chosen as τ =10 for constant wall temperature and     

τ =3 for constant wall heat flux cases, respectively. 

 

5.3. Results and Discussion 

 

To show the effect of Brinkman number, the energy equation is solved numerically 

including the viscous dissipation term. The dimensionless temperature distribution 

and the local Nu number are determined as a function of  dimensionless axial 

coordinate for different Kn  number values, ranging between 0 and 0.1; for different 

κ values, ranging between 0 and 10; and for different Brinkman number values, 

ranging between 0 and 0.1(0, 0.001, 0.01, 0.1). Br =0 is the case without viscous 

dissipation which is discussed in Chapter 3. 
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Figure 5.1. Dimensionless Fully Developed Temperature Profile as a Function of  

Kn Number for Constant Wall Temperature, Microtube ( κ =0) 

 

 

Figures 5.1 and 5.2 show the dimensionless fully developed temperature profile as a 

function of Kn number and Br number, for κ =0 and κ =1.667 for constant wall 

tempearture case. Independent of Br number, the dimensionless fully developed 

temperature profiles are same for same Kn number and κ values. For κ =0, the 

gradient at the wall increases with increasing rarefaction and increasing Br number, 

which will lead to an increase in Nu number. As Br number increases, the maximum 

dimensionless temperature decreases from 1.803 to 1.200 for Kn =0, and from 2.017 

to 1.317 for Kn =0.1. 
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Figure 5.2. Dimensionless Fully Developed Temperature Profile as a Function of  

Kn Number for Constant Wall Temperature, Microtube ( κ =1.667) 

 

 

For κ =1.667, the gradient at the wall increases with increasing Br number, which 

will lead to an increase in Nu number for fixed rarefaction. For fixed Br number, the 

gradient at the wall decreases with increasing rarefaction like in Br =0.As Br number 

increases, the maximum dimensionless temperature decreases from 1.351 to 1.172 

for Kn =0, and from 1.281 to 1.105 for Kn =0.1. 
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Figure 5.3. Dimensionless Fully Developed Temperature Profile as a Function of  

κ Parameter for Constant Wall Temperature, Microtube ( Kn=0.1) 

 

 

Figure 5.3 shows the dimensionless fully developed temperature profile as a function 

of κ parameter for Kn =0.1 for constant wall temperature case. As κ increases, the 

temperature jump also increases; the amount of change is increasng with Br number. 

The deviation of the dimensionless temperature profile from Br =0 case is decreasing 

with increasing κ. For large κ and viscous dissipation, the temperature profile 

approaches to uniform temperature distribution which diminishes the heat transfer. 

The maximum dimensionless temperature also decreases with increasing κ and Br 

number. The percentage decrease is 89 % for Br =0, and 20 % for Br different than 0. 
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Figure 5.4. Dimensionless Fully Developed Temperature Profile as a Function of  

Kn Number for Constant Wall Heat Flux, Microtube ( κ =0) 

 

 

Figures 5.4 and 5.5 show the dimensionless fully developed temperature profile as a 

function of Kn number and Br number, for κ =0 and κ =1.667 for constant wall heat 

flux case. Unlike the constant wall temperature case, the dimensionless fully 

developed temperature profiles are deviates from the Br =0 case of the same Kn 

number and κ values. This deviation is strongly depends on the magnitude of Br 

number. Since the deviation is negligible for Br =0.001, 0.01 cases, the 

dimensionless fully developed temperature profiles corresponding to the Br =0.1 is 

shown on the Figures 5.4 and 5.5. For κ =0, the gradient at the wall decreases with 

increasing rarefaction and increasing Br number, which results in an decrease in Nu 
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number. As Br number increases, the maximum dimensionless temperature increases 

from 1.636 to 1.747 for Kn =0, and from 1.797 to 1.854 for Kn =0.1. 
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Figure 5.5. Dimensionless Fully Developed Temperature Profile as a Function of  

Kn Number for Constant Wall Heat Flux, Microtube ( κ =1.667) 

 

 

For κ =1.667, the gradient at the wall decreases with increasing Br number, which 

results in an decrease in Nu number for fixed rarefaction, unlike the constant wall 

temperature case. As Br number increases, the maximum dimensionless temperature 

increases from 1.636 to 1.747 for Kn =0, and from 1.412 to 1.464 for Kn =0.1. 
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Figure 5.6. Dimensionless Fully Developed Temperature Profile as a Function of  

κ Parameter for Constant Wall Heat Flux, Microtube ( Kn=0.1) 

 

 

Figure 5.6 shows the dimensionless fully developed temperature profile as a function 

of κ parameter for Kn =0.1 for constant wall heat flux case. As κ increases, 

temperature profile approaches to uniform temperature distribution. Again, the 

deviation of the dimensionless temperature profile from Br =0 case is decreasing 

with increasing κ.. The maximum dimensionless temperature also decreases with 

increasing κ and Br number.  
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Figure 5.7. Variation of Local Nu as a Function of Dimensionless  

Axial Coordinate for Different κ and Br Numbers  

for Constant Wall Temperature, Microtube (Kn=0.10) 

 

 

Figure 5.7 shows  variation of local Nu number with the  dimensionless axial 

coordinate for different κ values and Br numbers for constant wall temperature for 

Kn=0.1. The continuum case is also shown in the figure. By the effect of increasing 

Br number, local Nu value experiences a jump from 3.66 to 9.60 for Kn =0. 

Independent of Br number, all curves converge to a same number for fixed Kn and κ 

combination. Br number only affects the location of the jump. The jump point is 

getting closer to the entrance as Br number increases. This conclusion points out that 

for short channels, the effect of Br number can be neglected. However, for long 

channels, the effect of Br number should be considered, even for small Br numbers. 
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For κ =0, local Nu jumps from 4.38 to 10.53, indicating 140 % increase; and for       

κ =1.667, locak Nu jumps from 2.70 to 3.80, indicating 40 % increase. Therefore, 

with increasing κ, the significance of the jump decreases. Another conclusion is that, 

with increasing κ, the  axial location of the jump moves far away from the entrance.  
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Figure 5.8 shows  variation of local Nu number with the  dimensionless axial 

coordinate for different κ values and Kn numbers for constant wall temperature for 

Br =0 and Br =0.1. As rarefaction increases, the magnitude of the jump decreases. 

For Kn =0, local Nu number jump from 3.66 to 9.60, which indicates 162 % 

increase. For Kn =0.1, local Nu number jump from 2.70 to 3.82, which indicates 41 

% increase. As Kn increases, the axial location of the jump point moves far away 

from the entrance. 
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Figure 5.9. Variation of Local Nu as a Function of Dimensionless Axial Coordinate 

for Different κ and Br Numbers for Constant Wall Heat Flux, Microtube (Kn=0.10) 
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Figure 5.9 shows  variation of local Nu number with the  dimensionless axial 

coordinate for diffrent Kn numbers, κ values and Br numbers for constant wall heat 

flux. The effect of Br number is different than the constant wall temperature case. By 

the effect of Br number, local Nu value decreases for fixed Kn and κ combination. 

The decrease is very small for small Br numbers, and become significant with 

increasing Br number. The significance of this increase diminishes with increasing κ 

value. The effect of Br =0.001 on local Nu number is calculated, but not shown in 

the figure due to its negligible effect. For κ =1.667, only the effect of Br =0.1 is 

shown, and for κ =10, even the effect of Br =0.1 is very slight, which can not be 

distinguished from the figure. For different Kn and κ values, the curves would 

converge to different numbers ranging between the values on this figure.  
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for Different Kn and Br Numbers for Constant Wall Heat Flux, Microtube (κ=1.667)
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Figure 5.10 shows  variation of local Nu number with the  dimensionless axial 

coordinate for different κ values and Kn numbers for constant wall heat flux for      

Br =0 and Br =0.1. As rarefaction increases, the fully developed Nu number 

decreases. For Kn =0, local Nu number decreases from 4.36 to 3.04, which indicates 

30 % decrease. For Kn =0.1, local Nu number decreases from 2.90 to 2.74, which 

indicates 6 % decrease. As Kn increases; unlike the constant wall temperature, the 

the length of the thermal entrance region does not change.  

 

Table 5.1. Fully Developed Nu as a Function of Kn Number, κ and Br Number 

for Constant Wall Temperature 

 

Kn κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10  
0.00 3.656 3.656 3.656 3.656 3.656 3.656 3.656 
0.005 3.710 3.704 3.682 3.655 3.618 3.445 3.209 
0.01 3.761 3.749 3.704 3.649 3.577 3.250 2.843 
0.02 3.855 3.832 3.739 3.628 3.488 2.902 2.291 
0.04 4.020 3.970 3.778 3.557 3.292 2.356 1.624 
0.06 4.160 4.081 3.785 3.458 3.087 1.961 1.247 
0.08 4.279 4.136 3.767 3.342 2.887 1.670 1.008 
0.10 4.382 4.240 3.732 3.218 2.697 1.448 0.844 

B
r =

 0
 

0.00 9.598 9.598 9.598 9.598 9.598 9.598 9.598 
0.02 9.871 9.679 8.984 8.243 7.426 4.967 3.319 
0.04 10.087 9.696 8.393 7.186 6.031 3.340 2.003 
0.06 10.264 9.668 7.846 6.352 5.064 2.508 1.434 
0.08 10.411 9.610 7.347 5.679 4.359 2.003 1.116 
0.10 10.534 9.530 6.900 5.129 3.818 1.681 0.913 

B
r =

 0
.1

 

 

 

 108



Kn Number

0,00 0,02 0,04 0,06 0,08 0,10 0,12

Fu
lly

 D
ev

el
op

ed
 N

u

0

2

4

6

8

10

12

14 Br = 0
Br = 0.001, 0.01, 0.1

κ=0

κ=0.1

κ=0.5

κ=1.667

κ=1

κ=5
κ=10

κ=0

κ=1.667

 
Figure 5.11. Fully Developed Nu as a Function of Kn Number, κ and Br Number  

for Constant Wall Temperature, Microtube 

 

 

Figures 5.11 and Table 5.1 show the fully developed Nu as a function of Kn for 

different κ and Br number values for constant wall temperature case. The deviation 

of the local Nu from the continuum case Br =0.1 is more significant than the Br =0 

case. The general trend of the curves are very similar to the curves corresponding to 

the Br =0  case. 
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Figure 5.12. Fully Developed Nu as a Function of Kn Number, κ and Br Number  

for Constant Wall Heat Flux, Microtube 

 

 

Figures 5.12 and Table 5.2 show the fully developed Nu as a function of Kn for 

different κ and Br number values for constant wall heat flux case. The value of the 

fully developed Nu numbers are depend on the value of Br number. Only the values 

corresponding to the Br =0.1 are shown on the Figure 5.10 since the effect of Br 

=0.001, 0.01 are negligible; but the results corresponds to Br =0.001, 0.01 are 

tabulated in Table 5.2.. The values corresponding to Br =0.001, 0.01 are tabulated 

below. Again, the deviation of the local Nu from the continuum case for Br =0.1 is 

more significant than the Br =0 case. The general trend of the curves are again very 

similar to the curves corresponding to the Br =0 case. 
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Table 5.2. Fully Developed Nu as a Function of Kn Number, κ and Br Number 

for Constant Wall Heat Flux, Microtube 

 

Kn κ=0 κ=0.1 κ=0.5 κ=1 κ=1.667 κ=5 κ=10  
0.00 4.364 4.364 4.364 4.364 4.364 4.364 4.364 
0.005 4.457 4.447 4.408 4.360 4.297 4.010 3.645 
0.01 4.545 4.525 4.444 4.348 4.225 3.704 3.125 
0.02 4.710 4.666 4.498 4.304 4.071 3.202 2.425 
0.04 4.998 4.900 4.544 4.165 3.749 2.499 1.666 
0.06 5.241 5.081 4.529 3.987 3.438 2.037 1.265 
0.08 5.448 5.220 4.473 3.794 3.155 1.714 1.017 
0.10 5.627 5.327 4.391 3.601 2.903 1.476 0.849 

B
r =

 0
 

0.00 4.345 4.345 4.345 4.345 4.345 4.345 4.345 
0.02 4.695 4.652 4.485 4.292 4.060 3.195 2.421 
0.04 4.986 4.889 4.534 4.157 3.742 2.497 1.665 
0.06 5.231 5.072 4.522 3.982 3.434 2.036 1.264 
0.08 5.440 5.213 4.468 3.791 3.153 1.713 1.016 
0.10 5.620 5.321 4.387 3.598 2.902 1.475 0.849 

B
r =

 0
.0

01
 

0.00 4.181 4.181 4.181 4.181 4.181 4.181 4.181 
0.02 4.568 4.527 4.368 4.186 3.964 3.136 2.387 
0.04 4.885 4.791 4.450 4.086 3.685 2.471 1.654 
0.06 5.149 4.994 4.460 3.934 3.399 2.023 1.259 
0.08 5.372 5.150 4.422 3.757 3.130 1.706 1.014 
0.10 5.563 5.270 4.352 3.574 2.886 1.471 0.848 

B
r =

 0
.0

1 

0.00 3.038 3.038 3.038 3.038 3.038 3.038 3.038 
0.02 3.593 3.567 3.468 3.352 3.209 2.643 2.091 
0.04 4.058 3.993 3.753 3.491 3.194 2.240 1.547 
0.06 4.446 4.330 3.923 3.510 3.077 1.905 1.212 
0.08 4.771 4.596 4.007 3.453 2.916 1.640 0.991 
0.10 5.046 4.804 4.029 3.354 2.741 1.432 0.835 

B
r =

 0
.1
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CHAPTER 6 

 

 

DISCUSSION AND CONCLUSION 

 

 

Heat transfer analysis of two-dimensional, incompressible, constant property, 

hydrodynamically developed, thermally developing, single phase laminar flow in 

microtubes and microchannels between parallel plates with negligible axial 

conduction is performed for constant wall temperature and constant wall heat flux 

thermal boundary conditions for slip flow regime. Fully developed velocity profile is 

determined analytically, and energy equation is solved by using finite difference 

method for both geometries. The rarefaction effect is imposed to the boundary 

conditions of the momentum and energy equations. The viscous dissipation term is 

included in the energy equation. The effects of rarefaction and viscous heating on 

temperature profile and local Nusselt number are discussed. The results of the 

numerical method are verified with the well-known analytical results of the flow in 

macrochannels (i.e. Kn =0, Br =0) and with the available analytical results of flow in 

microchannels for simplified cases. 

 

The effects of three parameters; Kn number, κ parameter and Br number, on the flow 

are discussed. Kn number ranges from Kn =0, which is the continuum case(i.e. flow 

in macrochannels), to Kn =0.1, which is the upper limit of the slip flow regime. κ 

parameter ranges from κ =0, which is a fictious case introducing the effect of 

rarefaction only on the velocity, to κ =10, which stands for the large temperature 

jump at the wall. κ =1.667 is discussed frequently, since it is the typical value for air, 

the working fluid for most of the engineering applications. Brinkman number is 
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ranging from Br =0, which stands for the without viscous dissipation case, to          

Br =0.1. 

 

For Br =0 case; for both geometies, the Kn number and the κ parameter have the 

similar effects on the flow. For practical purposes, to calculate the fully developed 

Nu number, a simplified expression for both geometries and for both thermal 

boundary conditions is found as, 

 

2
1 2

( , 0) 1 ( ) (
( , )

Nu Kn a Kn a Kn
Nu Kn

κ κ κ
κ

=
− = + )

)

    (6.1)

 

where Nu(κ,Kn) is the desired fully developed Nu number and the Nu(κ=0) is the 

value of the fully developed Nu number corresponds to same Kn number when κ =0. 

a1, a2  are the constants depends on the geometry and the boundary condition of the 

problem. Nu(κ =0) can be calculated with the following expression, 

 
2

1 2( , 0) ( 0Nu Kn b Kn b Kn Nu Knκ = = + + =     (6.2)
 

where Nu(Kn=0) is the continuum fully developed Nu number for the given 

configuration and the boundary condition. b1, b2 are the constants depends on the 

geometry and the bounary condition of the problem. a1, a2, b1, b2 constant and are 

tabulated in Table 6.1.  

 

From this study, the following general conclusions can be obtained; 

 

(1) Velocity gradient at the wall decreases with increasing rarefaction which 

leads to a reduction in the friction factor for flows in microchannels. 
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Table 6.1. Constants in Eqs. (6.1) and (6.2) 

 

Geometry Boundary Condition Nu(Kn=0) a1 a2 b1 b2

Microtube Const. Wall Temp. 3.66 0.69 3.51 -29.56 10.15 
Microtube Const. Wall Heat Flux. 4.36 0.56 5.04 -55.25 18.12 

Microchannel Const. Wall Temp. 7.54 0.35 3.70 -29.26 10.28 
Microchannel Const. Wall Heat Flux. 8.24 0.27 4.43 -44.95 16.37 

 

 

(2) For fixed κ parameter, the deviation from the continuum increases with 

increasing rarefaction for both constant wall temperature and constant wall 

heat flux cases without viscous heating. 

 

(3) For fixed Kn number , the deviation from the continuum increases, and 

dimensionless fully developed temperature approaches to uniform 

distribution with increasing κ parameter without viscous heating.  

 

(4) The fully developed Nu number decrease or increase compared to the 

continuum fully developed Nu number values depending on the Kn number 

and κ values, without viscousing heating. 

 

(5) For viscous heating case; even for small Br numbers, there is a deviation 

from the Br =0 case for constant wall temperature case. Fully developed Nu 

number value experiences a jump in magnitude. The magnitude of the Br 

number affects the axial location of the jump. Therefore, the effect of 

viscous heating should be considered even for small Br numbers with large 

length over diameter (L/D) ratios, which is the case for flows in 

microchannels.  
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(6) For constant wall heat flux case with viscous heating, the deviation is 

proportional to the magnitude of the Br number. For small Br numbers, the 

effect can be neglected. 

 

To optimize design parameters in microchannel heat sinks, the dynamic behavior of 

the fluid motion should be understood. This study considers rarefaction and viscous 

heating effects in microtubes and in microchannels between parallel plates. To 

understand the flow in microchannels better, some further extensions in addition to 

the rarefaction and viscous heating such as; axial conduction in the fluid, axial 

conduction at the channel wall, variation of thermophysical properties, 

compressibility effect, different geometrical configurations, different thermal 

boundary conditions, should be included in the analysis.  
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