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ABSTRACT 
 
 

IMPROVEMENT OF COMPUTATIONAL SOFTWARE FOR COMPOSITE 
CURVED BRIDGE ANALYSIS 

 
 
 

Kalaycı, Ahmet Serhat 

M.S., Department of Civil Engineering 

Supervisor      : Asst. Prof. Dr. Cem Topkaya 

 

                                 January 2005, 157 pages 
 
 
 
In highway bridge construction, composite curved girder bridges are becoming 

more popular recently. Reduced construction time, long span coverage, economics 

and aesthetics make them more popular than the other structural systems. 

Although there exist some methods for the analysis of such systems, each have 

shortcomings. The use of Finite Element Method (FEM) among these methods is 

limited except in the academic environments. The use of commercial FEM 

software packages in the analysis of such systems is cumbersome as it takes too 

much time to form a model. Considering such problems a computational software 

was developed called UTRAP in 2002 which analyzes bridges for construction 

loads by taking into account the early age deck concrete. As the topic of this thesis 

work, this program was restructured and new features were added. In the 

following thesis work, the program structure, modeling considerations and 

recommendations are discussed together with the parametric studies. 

 
 
 
Keywords: Composite Curved Bridge, Finite Element Method, Software, 
Parametric Studies 
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ÖZ 
 
 

KAVİSLİ KOMPOZİT KÖPRÜ ANALİZİ İÇİN BİR BİLGİSAYAR 
PROGRAMI GELİŞTİRİLMESİ 

 
 
 

Kalaycı, Ahmet Serhat 

Yüksek Lisans., İnşaat Mühendisliği Bölümü 

Tez Yöneticisi      : Yrd. Doç. Dr. Cem Topkaya 

 

Ocak 2005, 157 sayfa 
 
 
 
Günümüzde karayolu köprü inşaatlarında kompozit köprüler daha popüler bir hale 

gelmiştir. İnşaat süresinin kısalması, uzun açıklıkları geçebilme, ekonomi ve 

estetik gibi etkenler bunları diğer yapısal sistemlere göre daha yaygın bir hale 

getirmiştir. Bu tip sistemlerin analizi için çeşitli yöntemler olsa da her birinin 

kendine özgü kısıtlamaları vardır. Anılan yöntemlerin içinde Sonlu Elemanlar 

Yönteminin kullanımı ise akademik çevreler dışında yaygın değildir. Bu tip 

yapısal sistemlerin çözümünde ticari Sonlu Eleman Yöntemi yazılımlarının 

kullanımı ise modellerin oluşturulması uzun zaman aldığı için zordur. Bu tip 

sorunların çözümü için 2002 yılında UTRAP adında, inşaat yükleri altında ve yeni 

dökülen tabliye betonunun çelik kirişler üzerindeki etkilerini de modelleyebilen 

bir program geliştirilmişir. Bu program yeniden düzenlenmiş ve yeni özellikler 

eklenmiştir. Bu tez çalışmasında program yapısı, modelleme tekniği ve tavsiyeleri 

ile beraber yapılan parametrik çalışmalar da açıklanmaktadır.  

 
 
Anahtar Kelimeler: Kompozit Kavisli Köprü, Sonlu Elemenlar Yöntemi, Yazılım, 
Parametrik Çalışmalar. 
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CHAPTER 1 
INTRODUCTION 

 

 

1.1 General  

Composite highway interchange bridges are being built more frequently 

recently. This is mainly because of the ease of construction, long span coverage, 

economy and aesthetics. A typical composite bridge consists of a concrete deck at 

the top and steel girder(s) supporting the deck (Fig.1.1,Fig.1. 2).  

 

 

 

 
Figure 1.1: Typical Composite Bridge Cross-section 

 

 

 

 Although trapezoidal box girders are extensively used owing to their high 

torsional stiffness after the hardening of the deck concrete, steel I-girders are also 

common in practice. Shear studs are welded to the top flanges of the girders to 

achieve composite action (Fig. 1.1). Curved interchange bridges are generally 

long-spanned and the deck concrete should generally be placed not at once but in 

sequence  because of the large volume of the concrete, and also to control 

shrinkage. This requires consideration of the structural behavior of the steel 

Steel Girders(U-shaped)

Deck Concrete 

Internal Braces
External Braces 

Shear Studs 
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girders at early concrete ages during construction. Another major problem faced 

in these structures is the relatively low torsional stiffness observed before the 

achievement of composite behavior between the deck and the girders through the 

studs as the concrete hardens. In order to sustain the stability of the girders 

internal, external and top lateral braces are used (Fig. 1.1). 

 

 

 

 
Figure 1.2: Composite Bridge 

 

 

 

 There are several methods to analyze curved steel girders including the 

approximate hand methods, finite difference method, finite strip method, grid 

analysis method and the finite element method (FEM). Among these, the most 

effective one is the FEM in terms of both modeling and accuracy. In the FEM, the 

complex structures are divided into large, finite number of elements and the 

behavior of these elements is well defined. Accumulating the individual element 
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responses, the overall complex structure response can be obtained. The FEM 

allows one to determine the stresses and strains at any location in a cross-section. 

The main shortcoming of the FEM is the extensive computer resources it requires. 

A large number of equations has to be solved in order to get the required outputs. 

Although the box and I-shaped steel girders can be analyzed using general-

purpose finite element packages which require little finite element background, 

formation of the models can be difficult and time consuming. Also accurate 

modeling of composite action between the concrete deck and steel girder and 

behavior of the composite bridge at the early concrete ages needs extra effort. In 

addition to this, parametric studies cannot be easily carried out as every time a 

parametric study is performed a new model needs to be created.  

Until now FEM was not extensively used as a tool to analyze composite 

curved bridges. Also the behavior of composite bridges at early concrete ages was 

not understood clearly. In the field it was observed that (Topkaya, Williamson, 

Frank 2004) before the concrete gains strength, the steel girders fail to resist the 

torsional stresses created (Fig. 1.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Trapezoidal box girder failure during construction 
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In order to put these issues into the design, to speed up the design process 

and to allow for easy parametric studies a computer program named UTRAP was 

developed (Topkaya, Williamson 2003). UTRAP consists of an analysis module 

and the input module. The analysis module of the program was written in Fortran 

and the input module is a Graphic User Interphase (GUI) written in Visual Basic. 

The inputs to the program are entered through the GUI and the GUI converts these 

inputs into a text file. The main engine of the program reads these inputs from the 

text, performs the analysis and produces the outputs as a text file. Finally, GUI 

reads the outputs and displays them according to the display format. 

UTRAP is able to analyze trapezoidal box girders under the construction 

loads. The analysis module of the program is a linear, three dimensional finite 

element code consisting of pre-processing, processing and the post processing 

components. The analysis module forms the finite element mesh, element 

connectivity and the material properties according to information supplied from 

the GUI. Concrete deck and the steel girders are modeled with nine-node shell 

elements, internal, external and top lateral braces are modeled with two-node truss 

elements and the shear studs are modeled with two-node spring elements. For all 

bridges a constant mesh density is used.  The program is able to analyze single 

and dual girders. At a given cross-section top flanges are modeled with two shell 

elements, webs and bottom flanges are modeled with four shell elements and the 

concrete deck is modeled with ten shell elements for single girder systems and 

twenty elements for dual girders systems. The program utilizes the Imperial 

System of units and the constant element size along the bridge is 0.6m(2-ft). The 

types of the internal, external and top lateral braces implemented into the program 

conform with the practice. For the concrete pour sequence analysis, the concrete 

deck can be divided into segments along the bridge. For each segment different 

values for the concrete modulus, stud stiffness and distributed load can be entered. 

UTRAP is capable of reporting the stresses over the entire cross-section, directly 

computing the brace forces, taking into account the partial composite behavior.  

Through the GUI cross-sectional dimensions, plate thickness, locations of 

supports and braces, properties of the concrete deck and construction loads can be 
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inputted to the program. The GUI has also the ability to display the analysis 

results both numerically and graphically (Fig. 1.4). 

Although UTRAP is a useful program for bridge designers and gives 

outputs compatible with the available analysis tools, it has some limitations. 

These limitations are both geometric, such as the constant element size and 

structural, such as the single element type used for modeling. Also the program 

has a rigid structure so that new features cannot be easily implemented. In order to 

overcome this problem, the program needed to be restructured by rewriting from 

the beginning, keeping certain subroutines, adding new ones and forming a new 

program structure so that in the future, improvements can be easily made with 

minimum effort.  

 

 

 

              
  (a)      (b) 

Figure 1.4: (a)Geometric Properties Input Form, (b)Deflection Diagram 

 

 

 

 One of the limitations of the program was the constant element size which 

leads to a constant mesh density. The user was not able to change mesh density so 

the differences between having a fine mesh or a coarse mesh could not be 

observed. Also a single nine-node shell element was implemented into the 

program to model the steel girders and the concrete deck but there was no 

alternative for this element so the effects of the element  size  on  the  results  were 
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unclear. Another drawback was that the program was only capable of solving 

single or dual girders with box steel sections but in practice I-sections are also 

used and the number of girders can be more than two. The program was able to 

solve only the straight girders and the constant curvature bridges but bridge 

curvature can be variable. This type of variable curvature bridges are commonly 

observed in heavily congested freeway to freeway interchanges. A direct sparse 

solver was implemented in UTRAP but there are also iterative sparse solvers so 

the performance of these two types need to be compared. Finally, the system of 

units used in the program is only the Imperial System of Units but SI units are 

more commonly used in the world.  

 The thesis work consists of the restructuring of the computer program 

UTRAP and overcoming the above mentioned limitations. First of all, the 

constant element size used in the program is converted into variable element size. 

In addition to the previously implemented nine-node element into the program 

another four-node element is implemented. Thirdly I-shaped girders are 

implemented into the program. Also the program is restructured so that it takes 

into account the variable radius of curvature along the length of the bridge. To 

compare the performances of the direct sparse solvers and the iterative sparse 

solvers, a sparse iterative solver is adopted into the program. Finally the present 

form of the program is also compatible with the SI units.  

 In the following sections first the overall program algorithm will be 

explained including the flow chart and all the individual subroutines. In the 

second part Finite Element Formulation and the Numerical Modeling Details will 

be discussed. The third part consists of the verification of the developed software 

with the hand calculations and published solutions. After that parametric studies, 

mesh convergence and analysis recommendations for design will be presented.  
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CHAPTER 2 
PROGRAM STRUCTURE 

 

 
2.1 General 

 The developed program is composed of more than 14 000 lines of Fortran 

code excluding the solver libraries. The solver libraries used in the program are 

readily available equation solver packages. The main engine of the developed 

program consists of the pre-processor, processor and post-processor modules. In 

the pre-processor module, first, the geometry of the bridge is defined together 

with the node locations within a cross-section and along the span. Then the 

elements forming the finite element mesh are formed and element properties are 

assigned. After establishing the geometry using the loading data the nodal loads 

are assigned. Upon the formation of the geometry and assignment of the nodal 

loads the processor module of the program assembles the global stiffness matrix 

and solves the equilibrium equations to obtain the displacements. The nodal 

displacements are processed in the post processor module to give the required 

stresses and forces. The program flowchart is given in Figure 2.1. 

 

2.2 Inputs 

 As mentioned before the inputs of the program are entered through the 

GUI and GUI creates a text file readable by the main engine of the program. The 

inputs to the program can be classified into six main categories namely geometry, 

plate properties, bracing, support, stud and pour sequence. 

 

2.2.1 Geometry 

Geometric inputs of the program are the number of girders which may be 

single or dual, chosen element size which will affect the mesh density, number  of 
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segments including the length and radius curvature of each segment, girder 

section type-either trapezoidal or I section, chosen shell element type which may 

be four-node or nine-node elements and the cross-sectional dimensions. The 

cross-sectional dimensions are web depth, bottom flange width, top width, top 

flange width, deck width and concrete deck thickness.  

 

2.2.2 Plate Properties 

 Inputs for the plate properties are entered to define the thicknesses of the 

webs, bottom flanges and top flanges. The user can enter variable thicknesses 

along the length of the bridge. 

 

2.2.3 Bracing 

 Bracing inputs are internal, external and top lateral brace locations, types 

and areas which may be again variable along the span.  

 

2.2.4 Support 

 To input the supports the number and locations should be specified.  

 

2.2.5 Stud 

 The inputs related to studs include stud locations, spacing and number per 

flange.  

 

2.2.6 Pour Sequence 

 The pour sequence inputs are length of the poured concrete, concrete 

modulus, stud stiffness and the loading which are specified for every pour 

sequence. When the concrete is placed, before it hardens and gains strength, it has 

to be carried by the steel girders. The developed program has the ability to analyze 

girders with semi-cured concrete. 
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2.3 Pre-processor Module 

2.3.1 Preliminaries 

 After the inputs are read and assigned to different variables, the pre-

processing module of the program starts. First of all the total length of the bridge 

is obtained by adding all the segment lengths. The element size is truncated so 

that the total bridge length is an integer multiple of the element size. This 

adjustment was necessary as the total length of the bridge specified by the user 

may not be same as the total length of the bridge obtained after mesh generation. 

The truncation is done as in Algorithm 2.1. 

 

Algorithm 2.1 

1. The integer number of element divisions are assigned to a dummy variable 

idum = Length of the bridge(as specified by the user)/element size(as 

specified by the user) 

2. idum is assigned as the number of divisions.  

ndiv(number of divisions) = idum 

3.Truncated element size is found by dividing the total length of bridge by ndiv  

Element size(truncated) = Length of the bridge(as specified by the user)/ndiv 

 

 After the truncated element size is obtained, the total number of cross-

sections is calculated for the two types of elements, four-node and nine node-shell 

elements. The geometric difference between these two element types is that nine-

node element has middle nodes and four-node element does not. When generating 

the mesh, the program generates more cross-sections for the nine node shell 

element. The number of cross-sections for bridges modeled with nine-node 

elements generated for the nine-node element is twice the number of divisions 

plus one. The number of the cross-sections for the four-node element is calculated 

by adding one to the number of divisions.  

 There are three variables used to define different cross-sections that the 

program can analyze. These variables are the number of girders (denoted by ngird 

in the program), steel girder section type (denoted by isec_type in the program) 

and shell element type (denoted by ielem_type in the program). Number of girders 
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can be either one or two, steel girder section type can be either trapezoidal or I-

section and the shell element type can be either nine-node element or four-node 

element. This makes a total of eight different cases. When defining a specific case 

a three digit number notation is used like ‘xyz’. Here x stands for the number of 

girders, y stands for the steel girder section type and z stands for the shell element 

type. For example 212 defines the cross-section having two I girders with four-

node elements. The program UTRAP is structured in such a way that in the 

restructured program, the number of girders can easily be increased and new steel 

cross-sections can easily be added. In addition to the nine-node element which the 

program utilizes a four-node element is added into the program and if new 

elements need to be utilized they can be added without much effort. 

 As discussed previously the program utilizes a constant cross-sectional 

mesh density for each cross-sectional case. For example for case 111, the concrete 

deck is modeled with ten shell elements, the top flanges are modeled with two 

shell elements, the web and bottom flanges are modeled with four shell elements. 

Table 2.1 shows the eight different cases and how many shell elements are used 

for modeling the different parts.  

 For each of the eight cross-sections the number of nodes per cross-section 

are shown in Table 2.2.  

 

Table 2.1: Shell modeling 

 Number of shell elements used for modeling 

Case Concrete deck Top Flange Bottom Flange Web 

111 10 2 4 4 

112 10 2 4 4 

121 6 2 2 4 

122 6 2 2 4 

211 20 2 4 4 

212 20 2 4 4 

221 12 2 2 4 

222 12 2 2 4 
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The number of nodes for each cross-section is constant and is calculated internally 

in the program.  

 

Table 2.2:Number of Nodes Per Cross-section for Each Case 

Case Number of nodes per cross-section

111 54 

112 28 

121 30 

122 16 

211 107 

212 55 

221 59 

222 31 

 

2.3.2 Node Generation 

 The global x,y and z coordinates of the nodes are computed from the 

cross-sectional dimensions and the radius of curvature of the individual segments. 

In order to define the shell element geometry, three mutually orthogonal unit 

vectors are formed for each node denoted by Q, R, and V. Among these unit 

vectors, V always points in the direction of the thickness of the shell element and 

R always points in the direction of the tangent to the arc length. Q is the unit 

vector which is orthogonal to the other two vectors. The unit vectors for the 111 

case can be seen on the Fig. 2.2. 
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Figure 2.2: Node Locations and Unit Vectors for Case 111 

 

 

 

  In the main program, the subroutine “get_coordinates” is called and this 

subroutine itself calls the subroutines to compute coordinates and unit vectors for 

each node for every cross-section type. For example subroutine 

“get_coordinatesxyz” computes the coordinates and unit vectors for the cross-

section having “x” “y”-type steel sections composed of “z” type shell elements. 

The notation used for expressing the coordinates of a node is xy(a,b). Here “a” 

can take the values 1 for the x-coordinate, 2 for the y-coordinate and 3 for the z-

coordinate. The second variable in the parenthesis, b, stands for the node number.  

 In a given cross-section, nodal coordinates are calculated parametrically by 

the cross-sectional dimensions. These cross-sectional dimensions are web depth, 

bottom flange length, top length, top flange width, deck width, and the offset 

distance (Fig. 2.3). 

 After the determination of the nodal point coordinates(x and y coordinates) 

for the first cross-section, the program generates the nodal point coordinates for 

the rest of the bridge(x,y and z coordinates) using the individual segment lengths 

and radius of curvatures (Algorithm 2.2, Figure 2.4). 

 The nodes for the all eight cross-sections are shown in Fig. 2.5 through Fig 

2.12. 

 

Q 

R 
V 

Q 

R V 

Q 

R 
V 

RV
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Figure 2.3: Cross-sectional Dimensions 

 

 

 

Algorithm 2.2 

1. For each bridge segment having a different radius of curvature, find the start 

and end cross-section numbers. Force the last cross-section number be equal to 

the previously calculated  total number of cross-sections value. 

2. Set the global x and z-coordinates of the centers of each curved segment(cx, cz) 

and vax, vay ,vbx and vby to zero. 

 cx = 0.0 

 cz = 0.0 

3. Loop over the segments and locate the x and z-coordinates of the centers. 

nnpcs : number of nodes per cross-section 

rnn : reference node number 

cx = xy(1,(icsec_start(ij)-1)*nnpcs +rnn)+vax*al_rcurv_segm(ij) 

cz = xy(3,(icsec_start(ij)-1)* nnpcs + rnn)+vaz*al_rcurv_segm(ij) 

4. Define angle theta and set it to zero. 

θ = 0.0 

 Theta is the angle enclosed by the arc length starting from the first cross-section 

up the cross-section for which the nodal coordinates are to be determined. 

y 

x

web depth 

top length top length 

deck width 

Bottom flange length Offset 
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5.Update θ. 

θ new = θ previous + element size/radius of curvature ( 4-node element) 

θ new = θ previous + (element size/2.0)/radius of curvature ( 9-node element) 

6. Form the unit vector va starting from the center of the segment (if it has certain 

curvature) pointing along the radius to the reference node on the bridge center 

line. 

vax = cos(θ) 

vaz = sin(θ) 

5. Form the unit vector, vb which is perpendicular to va  

6. If the bridge segment is straight x and z-coordinates of the generated segments 

are calculated as follows(9-node element): 

do ik = 1, number of cross-sections per segment 

do im = 1, number of nodes per cross-sections 

xy(1,(ik* nnpcs)+im)=xy(1,(ik-1)* nnpcs +im)-element size/2.0*vbx 

xy(3,(ik* nnpcs)+im)=xy(3,(ik-1)* nnpcs +im)- element size /2.0*vbz 

end do 

end do 

7. If the bridge segment(ij) is curved, x and z-coordinates of the generated 

segments are calculated as follows(9-node element): 

do ik = 1, number of cross-sections per segment 

do im = 1, number of nodes per cross-sections 

xy(1,(ik* nnpcs)+im)=cx+vax*(xy(1,im)-radius of curvature(ij)) 

xy(3,(ik* nnpcs)+im)=cz+vaz*(xy(1,im)- radius of curvature (ij)) 

end do 

end do 

 

 Having obtained the x,y and z-coordinates of all nodes forming the finite 

element mesh, previously explained Q, R and V unit vectors (Fig 2.2) which are 

used in defining the shell geometry are calculated. This calculation is explained in 

Algorithm 2.3. 
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Algorithm 2.3 

1. The Q, R and V vectors for the nodes lying on the horizontal plane(nodes 

forming the deck, bottom flange and top flange) are calculated first by forming a 

unit vector on the x-z plane using the bottom flange nodes extending from left to 

right. 

For Case 111; 

qx= xy(1,46+(i-1)*54)-xy(1,38+(i-1)*54) 

qz= xy(3,46+(i-1)*54)-xy(3,38+(i-1)*54) 

2. By diving qx and qz components by the norm of the vector which is; 

Norm = 2 2(qx )qz+  

3. Q unit vector is obtained which always points towards the center. 

R is the unit vector which is perpendicular to Q so the dot product of the two 

vectors should be zero, then it should have the components; 

RX = QZ 

RZ = -QX 

V unit vector always points toward the center of the shell so it will have only y-

component and the value of it is 1. 

VY = 1.0 

4. For the webs which are rather curved, first the x and z components of the R unit 

vector is found by calculating the x and z components of the unit vector on the 

horizontal bottom flange. For case 111; 

ax=xy(1,46+(i-1)*54)-xy(1,38+(i-1)*54) 

az=xy(3,46+(i-1)*54)-xy(3,38+(i-1)*54) 

vect1= 2 2(ax )az+  

ax=ax/vect1 

ay=0.0 

az=az/vect1 

RX = az 

RZ = -ax 

5. The next step is to find the x,y and z components of the Q unit vector. So for 
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111 case; 

QX=xy(1,38+(i-1)*54)-xy(1,30+(i-1)*54) 

QY=xy(2,38+(i-1)*54)-xy(2,30+(i-1)*54) 

QZ=xy(3,38+(i-1)*54)-xy(3,30+(i-1)*54) 

vect2= 2 2 2(qx )qy qz+ +  

QX =qx/vect2 

QY =qy/vect2 

QZ =qz/vect2 

6. V is the unit vector perpendicular to both Q and R, so it can be found by the 

cross product of Q and R. 

V = Q X R 
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 Figure 2.7: (a)Node and (b)Element Numbering for Case 121 
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 Figure 2.8: (a)Node and (b)Element Numbering for Case 122 
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 Figure 2.11: (a)Node and (b)Element Numbering for Case 221 
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 Figure 2.12: (a)Node and (b)Element Numbering for Case 222 
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 After the nodal coordinates and unit vectors associated with them are 

obtained, the next step is to generate the shell elements. Before the shell element 

generation subroutines are called, in the main program three variables are set to 

zero. These are the number of elements per cross-section, the number of nodes per 

element and the number of degrees of freedom per node. These variables are 

cross-section specific, as they are basically different for all eight cases. To give an 

example for case 111, the number of elements per cross-section is 26, the number 

of nodes per element is 9 and the number of degrees of freedom per node is 5.  

 

2.3.3 Shell Element Generation 

 Before the subroutines to generate the shell elements are called, the 

subroutine “get_shell_info” is called which gives the number of elements per 

cross-section, the number of nodes per element and the number of degrees of 

freedom per node values for each of the eight cross-sections. The information 

obtained in this subroutine is used in the upcoming subroutines (Table 2.3). 

Although the number of degrees of freedom per  node  value is constant as 5 for 

each case, if another element  requiring the  sixth  degree of freedom is to be used,  

Table 2.3:Shell Element Information 

Case 
Number of elements 

per cross-section 

Number of nodes 

per element 

Number of degrees  

of freedom per node 

111 26 9 5 

112 26 4 5 

121 14 9 5 

122 14 4 5 

211 52 9 5 

212 52 4 5 

221 28 9 5 

222 28 4 5 

 

by this variable the properties of that element associated with the number of 

degrees of freedom per node can easily be accommodated into the program. 
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 After the required information for all eight cross-sections are dictated, the 

shell element generation starts. In the main program the subroutine “elgen_shell” 

is called and this subroutine call eight subroutines for all eight cases in the form 

“elgen_shell_xyz” where x,y and z stand for the number of girders, the steel 

girder section type and the element type used for modeling, respectively as before. 

For example “elgen_shell_111” stands for the subroutine to generate the shell 

elements for the case 111.  

 In the shell element generation subroutines main point is the way the 

element nodes are numbered because the elements are defined by the nodes. The 

numbering is done starting from the lower left corner of the element and in 

counter-clockwise direction. First the corner nodes are numbered and after that, if 

they exist the mid-nodes are numbered (Fig 2.13). To give an example consider 

the element 1 of the cross-section 111 (Fig. 2.14). 

 In Fig. 2.12 the first shell element forming the deck of Case 111 is shown. 

For the sake of clarity only the node numbers forming that element are shown. As 

the element node numbering method suggests the first node is numbered as 1. 

Nodes 3, 111 and 109 follow that node. As the element is a nine-node element 

having mid-nodes the fifth node is 2. Nodes 57, 110, 55 follow node 2. The last 

node is the node 56. So in order to define element 1 for the case 111 the required 

sequence of nodes is, 1, 3, 111, 109, 2, 57, 110,  55, 56. 

 In order to define all the shell elements along the length of the bridge, first, 

the element definitions for the first cross-section are completed. After that, by 

looping over the total number of element divisions, all the shell elements forming 

the bridge are generated.   
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Figure 2.13: 9-node Shell Element Node Numbering 

Figure 2.14: Shell Element 1 for Case 111 
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2.3.4 Internal and External Braces 

 In order to overcome the stability problems of steel girders of composite 

bridges internal and external braces are used (Fig 1.1). Internal and external 

braces increase the lateral rigidity and torsional stiffness of the steel girders 

especially before the poured deck concrete hardens. In the program, the internal 

and external braces are modeled as truss systems. As mentioned earlier two types 

of steel girder sections are implemented into the program: trapezoidal girder and 

I-girder. Naturally internal braces cannot be used with the I-girders but external 

braces can be used with both types if dual girder system is utilized. The number of 

internal braces and number of internal brace elements are different concepts for 

dual girders as number of internal brace elements is twice the number of internal 

braces because there exists two girders. Another remainder is that while 

generating both the internal braces and the external braces, 4 nodes are required.  

 For both internal and external braces, in the main program, the relationship 

between the number of internal/external braces and internal/external brace 

elements are stated. The information supplied in this section is given in Table 2.4. 

 

Table 2.4:Relationships between  number of internal/external braces and 

internal/external brace elements 

Case Number of Internal Brace Elements Number of External Brace Elements 

111 Number of Internal Braces 0 

112 Number of Internal Braces 0 

121 0 0 

122 0 0 

211 2 x Number of Internal Braces Number of External Braces 

212 2 x Number of Internal Braces Number of External Braces 

221 0 Number of External Braces 

222 0 Number of External Braces 

 

 After the information in Table 2.4 is established the subroutines 

“elgen_int_brace” and “elgen_ext_brace” are called in the main program. These 
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two subroutines again call the secondary subroutines to generate internal and 

external braces respectively. The general form of these secondary subroutines is 

“elgen_int_bracexyz/elgen_ext_bracexyz” where x, y and z stand for the number 

of girders, steel girder section type and the element type used for modeling 

respectively as before. For example “elgen_int_brace111/ elgen_ext_brace111” 

stands for the subroutine to generate the internal/external braces for the case 111. 

Current version of the program utilizes only one type of internal and external 

braces (Fig. 2.15). 
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Figure 2.15: (a)External and (b)Internal Brace Types and Nodes 

 

 

 

 In order to define the internal braces along the length of the bridge, first, 

the internal brace of the first cross-section is defined and then the rest is generated 
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as there always exists a constant number of nodes between the consecutive cross-

sections. Internal brace generation for the first cross-section of the 111 case is 

shown in Figure 2.16. 
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Figure 2.16: Internal Brace and Nodes for Case 111 

 

 

 

 As shown in Figure 2.16 the number of nodes necessary to define an 

internal brace for a single girder system is 4. For the sake of simplicity only the 

nodes for defining the internal braces are shown. The locations of the internal 

braces were inputted to the program previously. As the total length of the bridge is 

an integer multiple of the element size, the location of the internal braces are 

written in terms of the element size. For the four-node element integer division of 

the location of the internal brace “i” by the element size gives the the location of 

the internal brace in terms of the internal multiple cross-sections. As for the nine-

node element there exists the middle node instead of the “element size”, the user 

defined internal brace location values are  divided by “element size/2”.  

 For the 111 case, the node locations to define the internal brace for the first 

cross-section is 30, 54, 38, 46 respectively. By looping over the total number of 

internal braces and multiplying the above specified node numbers by the internal 
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brace locations and total number of nodes per cross-section value which is 54 in 

case 111 the internal brace generation for the entire bridge is obtained.  

 In order to define external braces along the length of the bridge, first, the 

external brace of the first cross-section is defined and then the rest is generated as 

there always exists a constant number of nodes between cross-sections. External 

brace generation for the first cross-section of the 211 case is shown in Figure 2.17. 
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Figure 2.17: External Brace and Nodes for Case 211 

 

 

 

2.3.5 Top Lateral Braces 

 Another precaution to prevent the distortion of the steel section before the 

deck concrete hardens is to put top lateral braces which connect the two flanges of 

the trapezoidal girders in single or dual trapezoidal girder systems and the two I-

girders in dual I-girder systems. Top lateral braces tend to increase the torsional 

stiffness of the steel girders by producing pseudo closed sections. In the program 

the top laterals are modeled as truss elements. There are two types of top laterals 

that can be used in the program (Fig. 2.18). 
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Figure 2.18: Top Lateral Brace Types and Nodes 

 

 

 

 As the top lateral braces are used for connecting the top flanges of a 

trapezoidal girder in single or dual girder systems or the two I-girders of a dual I-

girder system there are no top lateral braces for single I-girder systems. In dual 

girder systems the number of the top lateral elements are twice the number of top 

laterals inputted to the program. 

 In the main program, the subroutine “elgen_toplt” is called and this 

subroutine again calls the secondary subroutines in the form “elgen_topltxyz” 

where x,y and z stand for the number of girders, steel girder section type and 

finite element type used for modeling, respectively as before. For example 

“elgen_toplt111” stands for the subroutine to generate the top lateral braces for 

the case 111. 

Top lateral braces for Case 111 is shown in Figure 2.19. 
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Figure 2.19: Top Lateral Braces for Case 111 

 

 

 

2.3.6 Shear Studs 

 In order to connect the deck concrete to the underlying steel girder(s), stud 

elements are used. Stud elements play a key role in the development of the 

composite action between the concrete and steel deck. In the program, the stud 

elements are modeled as spring elements and it is assumed that three shear studs 

per flange are used. The number of the shear studs used per cross-section for each 

of the eight cases are given in Table 2.5. 

 

Table 2.5:The number of Shear Studs Used 

Case 
Number of Shear  

Studs Used per Cross-section

111 6 

112 6 

121 3 

122 3 
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Table 2.5:The number of Shear Studs Used(Continued) 

Case 
Number of Shear  

Studs Used per Cross-section

211 12 

212 12 

221 6 

222 6 

 

 

 After the number of studs elements is obtained, the stud element 

generation starts. In the main program the subroutine “elgen_studs” is called 

which again calls subroutines in the form “elgen_studsxyz” for all eight cases to 

generate studs where x, y and z stand for the number of girders, steel girder 

section type and finite element type used for modeling, respectively as before. For 

example “elgen_studs111” stands for the subroutine to generate the stud elements 

for the case 111. 

 The stud elements are generated for every cross-section, so for the same 

stud element in successive cross-sections, the node numbers used for generation 

should be increased by the total number of nodes per cross-section value. Stud 

elements for Case 111 are shown in Figure 2.20.  
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Figure 2.20: Stud Elements for Case 111 
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 Two nodes are necessary to define a stud element. One node is on the 

concrete deck and the other node is on the steel girder. In fact these two nodes lie 

on each other. For example to define the stud elements in the first cross-section 

for the case 111 the necessary nodes on the concrete deck are 22,30,25,26,54,29. 

Their counterpart on the steel girders are 5,7,9,13,15,17. So the leftmost stud 

element is defined by the nodes 22 and 5. The rest of the stud elements along the 

bridge length are generated in a similar manner, simply by adding the 

multiplication of total number of nodes per cross-section value with the number of 

cross-sections to the individual node numbers. 

 

2.3.7 Support Elements 

 In practice, in order to reduce the torsional stresses induced from the 

loading, diaphragms made of steel plates are used at the support locations as they 

have very high torsional stiffness. In order to simulate this, very stiff truss systems 

are used at the support locations. By preventing the relative movements of the 

edges of the cross-sections rigid diaphragm action is modeled.  

 Except for the trapezoidal dual girder systems, for all other six sections the 

number of support elements equal to the number of supports as entered by the 

user. For trapezoidal dual girder systems the number of support elements equal to 

three times the number of support elements (Fig 2.21). 

 To generate the supports, in the main program the subroutine 

“elgen_support” is called which again calls subroutines in the form 

“elgen_supportxyz” for all eight cases to generate support elements where x, y 

and z stand for the number of girders, steel girder section type and finite element 

type used for modeling respectively as before. For example “elgen_support111” 

stands for the subroutine to generate the support elements for the case 111. 

 The support locations are inputted by the user and as it was explained 

before, these values are divided by the element size for the four-node element and 

by half the element size for the nine-node element to obtain the support locations 

in terms of integer number of cross-sections. After the support locations are 

expressed in terms of the element size, the cross-section associated with this value 

is determined and the node locations to form the support elements at that 
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particular cross-section are obtained. By this way the support element nodes are 

obtained.  

 Four nodes are required to define a support element. For Case 111 the 

node locations of the support at the first cross-section are 30,54,38 and 46. The 

other node locations for other support are going to be integer multiples of these 

node numbers.  

 

2.3.8 Pin Nodes 

 While modeling the supports, bottom flange nodes of the first support is 

modeled as pin supports. For the rest of the supports, the bottom flange nodes of 

the steel girders are modeled as rollers. To give an example for the Case 111, 

nodes 38,..,46 are pinned if the support is at the first cross-section. The 

corresponding nodes for the other supports are modeled as rollers. The number of 

total number of pinned nodes for a bridge is calculated by multiplying the total 

number of supports by the number of pinned nodes for the first cross-section. 

Table 2.6 shows the pinned nodes for all eight cases.  

 To generate the pinned nodes, in the main program the subroutine 

“gen_pinnodes” is called which again calls subroutines in the form 

“gen_pinnodesxyz” for all eight cases to generate the pinned nodes where x, y and 

z stand for the number of girders, steel girder section type and finite element type 

used for modeling respectively as before. For example “gen_pinnodes111” stands 

for the subroutine to generate the pinned nodes for the case 111. 

Table 2.6:Pinned Nodes 

Case Pinned Nodes 
Number of Pinned 

Nodes 

111 38,..46 9 

112 20,..24 5 

121 26,..30 5 

122 14,..16 3 

211 58,..66-91,..99 18 

212 30,..34-47,..51 10 
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Table 2.6:Pinned Nodes(Continued) 

Case Pinned Nodes 
Number of Pinned 

Nodes 

221 38,..42-55,..59 10 

222 20,..22-29,..31 6 
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2.3.9 Assigning Shell Element Properties 

2.3.9.1 Property Shell Library 

 As the subject bridges are long and in order to get more accurate results, 

the program requires finer meshes and the computer memory requirement is high. 

Also, in the program, there is an option that user can take multiple runs with the 

program according the pour sequence scheme that he/she inputs. All these tend to 

increase the physical memory that the programs needs for execution. To give a 

rough estimate for a Case 111 bridge which is 100 m long and the element size is 

0.1 m, the number of the cross-sections formed will be 1 000 and the number of 

shell elements generated will be 26 000 if we utilize four-node elements. In 

addition to this, the size of the global stiffness matrix that program assembles will 

be 130 000 by 130 000.    

The required inputs for the shell elements are steel modulus; web, bottom 

flange and top flange thicknesses of the steel girders, concrete modulus and 

thickness of the deck. In order to save from memory space required, a property 

library is formed in the form “prop_sh_lib(n_runs, 4, nwebt+ nbotft +ntft+ 

n_deck)” where “nwebt” is the different number of web thicknesses, “nbotft” is 

the different bottom flange thicknesses, “ntft” is the different top flange 

thicknesses and “n_deck” is the different concrete deck concrete pour sequences. 

First by looping over number of runs and number of  web thicknesses the number 

of different web thicknesses along the bridge length are entered. This storage is 

shown in Algorithm  2.4 

Algorithm 2.4 

do ij = 1,number of runs 

do ik = 1,number of web thicknesses 

prop_sh_lib(ij,1,ik)=steelmodulus 

prop_sh_lib(ij,2,ik)=0.3d0 

prop_sh_lib(ij,3,ik)=web thickness 

prop_sh_lib(ij,4,ik)=1.0d0 

end do 

end do 
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The second and fourth entries in the above representation are the poisson’s ratio 

and type of the element respectively which are not entered by the user. After the 

web thicknesses are stored, then the second loop is carried out starting from 

number of web thicknesses to number of bottom flange thicknesses (Alg. 2.5). 

Algorithm 2.5 

do ij = 1,number of runs 

do ik = number of web thicknesses+1,number of web thicknesses+number 

of bottom flange thicknesses 

prop_sh_lib(ij,1,ik)=steelmodulus 

prop_sh_lib(ij,2,ik)=0.3d0 

prop_sh_lib(ij,3,ik)=botft(ik-nwebt) 

prop_sh_lib(ij,4,ik)=1.0d0 

end do 

end do 

 

 The property shell library’s remaining entries for top flange thicknesses 

and number of decks are filled in a similar way. 

 The property shell library is a reference table of properties for the shell 

elements. Once the shell library is formed, instead of assigning the shell properties 

for every shell element one by one and repeating the entries for large number of 

shell elements, the program is structured so that for each element it refers to the 

associated property by mapping the corresponding shell element property.(Fig. 

2.22). 
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Figure 2.22:Shell Element Property Mapping 

 

 

 

2.3.9.2 Property Shell Indexes 

 After the property shell library is formed, the task is to correctly map the 

shell element properties to the associated shell elements. The shell elements could 

be used for modeling the flanges, webs or the concrete deck. They will have 

different geometric properties and each of these properties should be assigned 

properly. 

 The properties are not stored but instead their property shell library 

indexes are stored. In this way when the global stiffness matrix is assembled the 

properties of the shell elements are assigned quickly.  

In order to assign the property shell index values to the shell elements in 

the main program a subroutine “form_prop” is called which again calls 
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subroutines of the form “form_propxyz” to form the shell properties for all eight 

cases where x, y and z stand for the number of girders, steel girder section type 

and finite element type used for modeling respectively as before. For example 

“form_prop111” stands for the subroutine to assign the property indexes for the 

Case 111. 

In the “form_propxyz” subroutine first the property shell index array of 

size “number of shell elements” is formed. After that the internal arrays for the 

deck, the web, the top flange and the bottom flange thicknesses are obtained. 

These arrays are used to determine the start and end division numbers for each 

deck segment, number of web thickness, number of top flange thickness and 

number of bottom flange thickness values. For example if a bridge is divided into 

30 divisions and if we have 3 different top flange thickness values along the 

bridge and their lengths are same, the start and end divisions numbers for the first, 

second and third top flange thickness change intervals will be 1 to10,11 to 20 and 

21 to 30 respectively. Here for all start and end division numbers, the start 

division number is forced to be one and end division number is forced to be zero.  

After the start and end division numbers are obtained for number of decks, 

number of web thicknesses, number of top flange thicknesses and number of 

bottom flange thicknesses the assignment of the property shell indexes to the 

associated shell elements is started.  

Here only the algorithm for the deck thicknesses will be explained and rest 

proceeds in a similar way. The algorithm to assign the deck thicknesses to shell 

elements forming the deck for Case 111 is given in Algorithm 2.6. 
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Algorithm 2.6 

1. Loop over the user inputted different number of deck thicknesses value. 

do im=1,number of decks 

2. Determine ikpro which locates the deck thickness property in the property 

library 

ikpro=#of web thicknesses+#of bottom flange thicknesses+#number of top 

flange thicknesses+im 

3. Loop over the previously calculated start and end division numbers for 

number of decks 

do ij=start division number of deck(im),end division number of deck(im) 

4. The shells forming the deck for the 111 case is numbered as 1 to 10 

(Fig.2.4). So loop over the deck shell elements to assign the property shell 

index values. 

do ik=1,10 

ielnum=ik+(ij-1)*total number of elements per cross-section(26 for Case 

111) 

iprop_sh_index(ielnum)=ikpro 

end do 

end do 

end do 

 

Algorithm 2.6 is repeated for the web, top flange and bottom flange 

thickness by changing the necessary variables so at the end the properties of all 

the shells forming the bridge are obtained.  

 

2.3.10 Assigning the Stud Properties 

 As it will be described in Chapter 3, the studs are modeled as spring 

elements. The studs are used to connect the steel girders to the concrete deck. To 

simulate the wet concrete behavior, in addition, the user specifies concrete 

modulus and the user defines stud stiffness for each concrete pouring sequence. 

So the stiffness is variable along the bridge length. 
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 As the studs are modeled with spring elements, the only property required 

for the studs is the stud stiffness. In order to assign the stud properties to the stud 

elements in the main program, a subroutine “form_stpr” is called which again 

calls subroutines of the form “form_stprxyz” to assign the stud properties for all 

eight cases where x,y and z stand for the number of girders, steel girder section 

type and finite element type used for modeling respectively as before. For 

example “form_stpr111” stands for the subroutine to assign the stud properties for 

the Case 111. 

In the subroutine “form_stprxyz” first the arrays “prop_stud” of size 

number of runs by number of stud elements are formed. Then the internal arrays 

to store the start and  end cross-section numbers for different stud properties are 

generated. The start and end cross-section numbers for different stud property 

intervals are obtained. The overall start cross-section number is forced to be zero 

and overall end cross-section number is forced to be the total number of cross-

sections. Then looping over the number of runs, the number of deck divisions, 

start and end cross-section numbers and finally number of studs per cross-section, 

the stud properties are assigned (Alg. 2.7). 

 

Algorithm 2.7 

do i = 1,number of runs 

do j = 1,number of deck division numbers 

do k = start cross-section, end cross-section 

do l = 1,number of studs per cross-section 

ielnum=ik+(ij-1)* number of studs per cross-section 

prop_stud(il,ielnum)=stud_stf(il,1) 

end do 

end do 

end do 

end do 
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2.3.10.1 Stud Modification Factors 

 As it was explained before three studs are assigned to each flange. So for 

each trapezoidal girder there are 6 studs and for each I-girder there are 3 there 

studs. However in the program the user is free to enter any number of studs per 

flange. The number of studs can take values less than three and more than three. 

In order to simulate this, the individual stud stiffnesses assigned in the previous 

step are modified by stud modification factors. If the user specified number of 

studs per flange is less than three, the stud modification factor for the required 

number of studs is set to 1.0 and the rest is deamplified by a very small number 

(1E-8 in the program). If the user specified number of studs per flange is greater 

than three, the stud stiffness are amplified by the total number of stud stiffness. 

In order to obtain the stud modification factors, in the main program a 

subroutine “form_std_mod” is called which again calls subroutines of the form 

“form_std_modxyz” to assign the stud modification factors for all eight cases 

where x, y and z stand for the number of girders, steel girder section type and 

finite element type used for modeling respectively as before. For example 

“form_std_mod111” stands for the subroutine to assign the stud modification 

factors for the Case 111. 

 

2.3.11 Assigning the Properties for Internal, External and Top Lateral 

Braces 

 As compared with the shell elements, the numbers of the internal, external 

and top lateral braces are small. So there is no storage problem when the 

properties of internal, external and top lateral braces are assigned. For all brace 

types the required inputs are the steel modulus, area of the brace and the type of 

the brace. By looping over each brace element these properties are assigned to the 

braces one by one. For internal and top lateral braces in dual girder systems as the 

internal and top lateral braces in one of the girders is the same as those of the 

other, first the properties of the braces of one girder is assigned and then it is 

copied for the one, on the other girder. Property arrays for internal, external and 

top lateral braces are of size three by the total number of respective brace types.  
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2.4 Processor Module 

2.4.1 Preliminaries 

 After the geometries are formed and the material properties are assigned in 

the Pre-Processor Module, the Processor Module starts. In the Processor Module, 

basically the stiffness matrices for all elements are defined, the global stiffness 

matrix and the load vector are assembled, equilibrium equations are solved and 

the nodal displacements are obtained. In this section, the programming technique 

will be discussed and the theoretical background will be given in Chapter 3.  

 

2.4.2 Gaussian Quadrature Data and Shape Function Arrays 

 Because of the complex algebraic expressions present in element stiffness 

matrix computations the exact evaluation of these integrals is not always possible. 

If this is the case these integrals should be numerically evaluated. This process is 

called numerical integration. Among the numerical integration techniques, the 

most popular one is the Gaussian Quadrature. In Gaussian Quadrature the integral 

expression is approximated as a series of sums of multiplication of quadrature 

points and quadrature weights.  

 In the program Gaussian Quadrature parameters for nine-node and four 

node elements are obtained. In order to obtain the quadrature points and weights 

for the nine-node element a subroutine called “gauss3x3” is called in the main 

program. This subroutine stores the Gaussian quadrature points and weights for 

nine integration points. Likewise a subroutine called “gauss2x2” is called in the 

main program for the four-node element. This subroutine stores the Gaussian 

quadrature points and weights for four integration points. 

 After the Gaussian quadrature points and weights for the nine-node and 

four-node elements are defined the shape functions and their derivatives are 

obtained for the two types of elements.  

 For the nine-node element, in the main program, a subroutine called 

“shaper9” is called. In this subroutine the shape functions and the first and the 

second derivatives of the shape functions are stored. Likewise for the four node 

element, in the main program, a subroutine called “shaper4” is called. In this 

subroutine the shape functions and the first and the second derivatives of the 
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shape functions for the 4-node element are stored. The shapes functions are stored 

in the array “shapes”, the first and second derivatives are stored in the “dshapes” 

array.  

 

2.4.3 Determination of the Number of Nonzero Entries in the Global Stiffness 

Matrix 

 The sparse solver package developed by Compaq, which is a part of the 

Compaq Extended Math Library (CXML) and implemented into the program 

requires only the nonzero entries of the upper triangular half of the symmetric 

structural stiffness matrix be stored. Also auxiliary vectors should be formed to 

define the locations of the nonzero entries should be supplied. Using these 

matrices, the solver is able to reorder and factor the stiffness matrix and solve for 

the displacements.  

 In order to form the auxiliary matrices, first of all, a temporary array called 

“ic” is formed that contains all the nodes. “ic” is a 10 by total number of elements 

array. The total number of elements is found by summing the number of shells, 

internal braces, external braces, top lateral braces, studs and support elements. In a 

typical representation of the form “ic(a,b)” “a” stands for the number of nodes and 

“b” is the element number. As the total number of nodes per any type of element 

is 9(nine-node shell element) the first dimension of the array “ic” is chosen to be 

between 0 and 9. While forming the “ic” array, first the array is defined and 

entries are set to zero. Then a subroutine called “form_ic” is called in the main 

program. In this subroutine starting with shell elements and proceeding with the 

internal braces, external braces, top lateral braces, studs and support elements the 

array entries are filled.  

 The next step is to form the “invinc” array which contains information 

about which node is connected to which elements. In the invinc(a,b) 

representation “a” denotes up to how many elements are connected to the subject 

node and “b” denotes the number of nodes. The algorithm for this process is given 

in Algorithm 2.8.  
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Algorithm 2.8 

1. Form the “invinc” array and set the array entries to zero. 

invinc(0:15,total number of nodes) = 0 

2. Loop over the total number of elements to find which node is connected to 

which element and to how many elements. 

do ik= 1, total number of elements 

do ij=1, ic(0,ik) 

invinc(0, ic(ij, ik))=invinc(0, ic(ij, ik))+1 

invinc((invinc(0, ic(ij, ik))), ic(ij, ik))=ik 

end do 

end do 

 

 In order to find the number of nonzeros in the stiffness matrix subroutine 

“form_nonzero” is called in the main program. This subroutine computes the 

number of nonzero entries in the structural stiffness matrix. In the subroutine 

“form_nonzero” first the arrays “invinc” and “ic” array are retrieved. Then 

nonzero count is set to zero. A loop over all the number of nodes is started. Then 

another loop is started in order to find which elements have that node. In the 

program each node has five degrees of freedom (DOF). After the elements 

connected to subject node is found, the other nodes of those elements are 

determined. If a node does not belong to any element connected to the subject 

node, the DOF’s associated with that node for the DOF’s of the subject node will 

be zero. The above discussion is given in Algorithm 2.9. 
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Algorithm 2.9 

1. Start a loop over all nodes. 

2. Define a dummy array of size, say, 200 and set all entries to 0 

do i = 1,200 

idum1(i) = 0 

3. Loop over all elements that contain that node(Guarantee that the node is not 

written before and greater than the previous node) 

do ikl=1,invinc(0,ij) 

ie=invinc(ikl,ij) 

ldum=ldum+1 

idum1(ldum)=ic(ik,ie) 

4. Compute the number of nonzero entries in the stiffness matrix 

ldum2=ldum*number of DOF’s per node 

do ikl=1, number of DOF’s per node 

irclg=ldum2-ikl+1 

nonzeros=nonzeros+irclg 

5. Go to 1 

 

As it was explained before the solver package implemented in the program 

requires that the structural stiffness matrix be expressed as a vector of size 

“nonzeros”. By this way the zero elements of the structural stiffness matrix is not 

stored. The solver reorders the structural stiffness matrix according to the 

“irowindex” and icolumns” vectors. “irowindex” is a vector of size “number of 

nodes*number of degrees of freedom per node + 1”. “icolumns” vector is vector 

of size “nonzeros”. “irowindex” and “icolumns” vectors define the location of 

every nonzero entry in the structural stiffness matrix.  

 

2.4.4 Formation of the “irowindex” and “icolumns” vectors 

         After “irowindex” and “icolumns” vectors are allocated in the main 

program, the subroutine “form_connect” is called. The subroutine “form_connect” 

fills  the  entries  of   the  “irowindex”  and   “icolumns”   vectors.  The  entries  in  
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“irowindex” vector indexes the first nonzero entry in an upper triangular matrix in 

a row. The entries are numbered from top to bottom and from left to right. This 

requires that row index number of the (i+1)th row minus the row index number of 

the ith row gives the number of nonzero entries in the ith row. In order to force this 

relationship hold every time, a dummy row index is added as the last element of 

“irowindex” array which is one more than the previous. Therefore altogether there 

are “n” rows but “(n+1)” row indexes. While filling the entries of the “icolumns”, 

the column numbers of each nonzero entry of the structural stiffness matrix is 

stored. The algorithm for the above explained procedure is given Algorithm 2.10. 

Algorithm 2.10 

1. Row index number for the first entry is set to 1 

irowindex(1)=1 

2. Start a loop over all nodes. 

3. Define a dummy array of size, say, 200 and set all entries to 0.0 

do i = 1,200 

idum1(i) = 0 

4. Loop over all elements that contain that node(Guarantee that the node is not 

written before and greater than the previous node) 

do ikl=1,invinc(0,ij) 

ie=invinc(ikl,ij) 

ldum=ldum+1 

idum1(ldum)=ic(ik,ie) 

5. Sort the entries of idum1 in ascending order 

6. Convert the obtained nodal connectivity to DOF connectivity 

ldum2=0 
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do ji=1,ldum 

istr=(idum1(ji)-1)*number of DOF’s per node 

do ki=1,5 

ldum2=ldum2+1 

idum2(ldum2)=istr+ki 

end do 

end do 

7. Obtain the “irowindex” and “icolumns” vectors 

do ikl=1, number of DOF’s per node 

irown=(ij-1)* number of DOF’s per node +ikl 

irclg=ldum2-ikl+1   

idu7=0 

do il=ikl,ldum2 

idu7=idu7+1 

icolumns(irowindex(irown)-1+idu7)=idum2(il) 

end do 

irowindex(irown+1)=irowindex(irown)+irclg 

end do 

8. Go to 1. 

  

After the required vectors are obtained the “invinc” and “ic” matrices are 

deallocated in the main program.  

 

2.4.5 Formation of the Structural Stiffness Matrix 

 As mentioned before, the direct and indirect solvers implemented into the 

program require the structural stiffness matrix be reordered and expressed as a 

column vector. The structural stiffness matrix, denoted by “ssm” in the program, 

is of size “nonzeros”. In order to form the structural stiffness matrix for each 

desired run, the entries are first set to 0.0. Also the entries of the required right 

hand side of the system of equilibrium and displacement vectors, “rhs” and “uv” 
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respectively are set to 0.0. The size of these two vectors is number of nodes times 

number of degrees of freedom per node.  

 After “ssm”, “rhs” and “uv” entries are set to zero, the assembly of the 

local stiffness matrix entries into the global stiffness matrix is started. The 

assembly process is carried out for the shell, top lateral, external, internal, support 

and stud elements individually.  

 

2.4.5.1 Assembly of Shell Elements 

 The girders and deck of a typical bridge is modeled with shell elements so 

the most common element of the finite element mesh is the shell element. As 

mentioned before there are two types of shell elements implemented into the 

program so this results in some differences in shell assembly process. 

 In the main program the subroutine “assemb_shell” is called. In the 

subroutine first a loop is started over all the shell elements. For each shell element 

the x, y and z coordinates and the corresponding Q, R, and V vectors of the nodes 

are retrieved. After that the material properties of the individual shell elements are 

assigned using property shell library and property shell index number. The next 

step is to initialize the element force “ef” and element stiffness “ek” matrices. In 

the subroutine another subroutine, “l_r_shell3d02”, is called which computes the 

element stiffness matrix in local coordinates and then rotation matrix of the 

associated element and finally the stiffness matrix in global coordinates. The 

theoretical background will be discussed in Chapter 3.  

 After the rotated element stiffness matrix is obtained, then by looping over 

the number of nodes per element and number of degrees of freedom per node the 

related local degrees of freedom and global degrees of freedom are paired. By 

looping over the number of degrees of freedom per element the row index and 

column number of the element stiffness matrix entry is mapped on the global 

structural stiffness matrix. Comparing the elemental row index and column 

numbers with the global counterparts and adding if they coincide, the global 

structural stiffness matrix entries are filled for shell elements. The above 

discussion is given in Algorithm 2.11. 
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Algorithm 2.11 

1. Start a loop over all shell elements. 

2. Start a loop over each individual number of nodes per shell element. 

3. Retrieve the nodal coordinates, Q, R, and V vectors. 

4. Assign the material properties (Modulus of Elasticity(E), Poisons ratio(ν), 

thickness(h) and type) to the shell element. 

5. Initialize the element stiffness matrix. 

ek(i,j) = 0.0 

6. Obtain the rotated element stiffness matrix. 

7. Transform the local degree of freedom entries of the element stiffness 

matrix into the global global degrees of freedom. 

8. Fill the global structural stiffness matrix for the shell element. 

9. Go to 1. 

 

2.4.5.2 Assembly of Top Lateral Braces 

 Top lateral braces are simple truss elements so their element stiffness 

matrix computations does not require much effort. Simple truss formulation will 

do and then the rotated element stiffness matrix entries are transformed into global 

coordinates.  

 In order to assemble the top lateral braces, in the main program, the 

subroutine “assemb_toplt” is called. In the “assemb_toplt” subroutine first a loop 

is started over all top lateral brace elements and then the top lateral brace nodal 

coordinates are retrieved. After that the material properties are assigned to 

individual top lateral brace elements. The next step is to initialize the element 

stiffness matrix of individual top lateral brace elements. Then a subroutine 

“get_trussk” is called in the subroutine to compute the rotated element stiffness 

matrix of the top lateral brace element which itself is a simple truss element. After 

obtaining the rotated element stiffness matrix the element degrees of freedom in 

local coordinates are transformed into global degrees of freedom by looping over 

each degree of freedom. By looping over the number of degrees of freedom per 

element the row index and column number of the element stiffness matrix entry is 
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mapped on the global structural stiffness matrix. Comparing the elemental row 

index and column numbers with the global counterparts and adding if they 

coincide the global structural stiffness matrix entries are filled for top lateral brace 

elements.  

 

2.4.5.3 Assembly of Internal Braces 

 As the internal braces and external braces are composed of more than one 

truss element, their assembly process is not as simple as the top lateral brace 

elements’. In the assembly of internal and external braces static condensation 

technique is used. First of all the truss elements are assembled together to form a 

superelement.  Second the degrees of freedom which are not shared with the steel 

girder are condensed out.  

 In the assembly of the internal braces, first, in the main program the 

subroutine “assemb_intbr” is called. In the subroutine a loop is started over all 

internal brace elements’. The nodal coordinates are retrieved and material 

properties are assigned to each internal brace element. The twelve by twelve 

element stiffness matrix “ek” is initialized to zero. Then another subroutine 

“get_intbrk” is called which computes the assembled stiffness matrix of the 

components of the internal braces, condenses the assembled internal brace 

element matrix for the unshared degrees of freedom with the steel girders, and 

finally gives the internal brace element stiffness matrix. The algorithm for the 

subroutine “get_intbrk” is given Algortihm 2.12. 

After obtaining the element stiffness matrix the element degrees of 

freedom in local coordinates are transformed into global degrees of freedom by 

looping over each degree of freedom. By looping over the number of degrees of 

freedom per element the row index and column number of the element stiffness 

matrix entry is mapped on the global structural stiffness matrix. Comparing the 

elemental row index and column numbers with the global counterparts and adding 

if they coincide the global structural stiffness matrix entries are filled for internal 

brace elements.  
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2.4.5.4 Assembly of External Braces 

 The assembly of process of the external braces are similar to the internal 

braces. In the assembly of the external braces, first, in the main program the 

subroutine “assemb_extbr” is called. In the subroutine a loop is started over all 

external brace elements. The nodal coordinates are retrieved and material 

properties are assigned to each external brace element. The twelve by twelve 

element stiffness matrix “ek” is initialized to zero. Then another subroutine 

“get_extbrk” is called which computes the assembled stiffness matrix of the 

components of the external braces, condenses the assembled external brace 

element matrix for the unshared degrees of freedom with the steel girders and 

finally gives the external braces element stiffness matrix. The algorithm for the 

subroutine “get_extbrk” is similar to Algorithm 2.12. 

 

 

Algorithm 2.12 

1. The internal braces are actually composed of five nodes so the 

coordinates of all the four nodes are retrieved and the coordinates of the 

fifth node is calculated form the other two (Fig. 2.23). 

 

12 3

4 5
 

                             Figure 2.23: Internal Brace Nodes 

 

coordinates of 1 = (coordinates of 2 + coordinates of 3)/2 

2. The fifteen by fifteen element stiffness matrix is initialized to zero. 

3. A loop is started over all four truss elements forming the internal 

brace. 

4. The material properties are assigned to the truss elements.  
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The assembly of the element stiffness matrix into the global stiffness 

matrix for the external braces follows the same procedure explained for the 

internal braces. The nodes for the external brace elements are given in Figure 

2.24.  

5. The element stiffness matrices of all truss elements are initialized to 

zero. 

6. Rotated element stiffness matrices are formed by calling the 

“get_trussk” subroutine.  

ek2(15,15) 

7. The positions of the entries of the rotated element matrix in the 

internal brace element stiffness matrix are obtained.  

8. Artificial stiffness are assigned to the nodes where there may be zero 

stiffness.  

ek2(1,1) = ek2(1,1) + 1.e-5 

ek2(2,2) = ek2(2,2) + 1.e-5 

ek2(3,3) = ek2(3,3) + 1.e-5 

9. Correction factor is calculated for all the entries of ek2. 

factor = -ek2(j,i)/ek2(i,i) 

10. The entries of ek2 are recalculated taking into account the factor. 

ek2(j,k)=ek2(j,k)+factor*ek2(i,k) 

11. The condensed internal brace element stiffness matrix is obtained by 

ignoring the first three entries of ek2 from left to right and from top to 

bottom 

ek(12,12) = ek2(15-3,15-3) 



 59

1 2

3 4
5  

Figure 2.24: External Brace Nodes 

 

 

 

2.4.5.5 Assembly of Support Elements 

 As discussed previously the supports are modeled as rigid truss systems so 

that the torsional stresses induced from the loading can be handled.  

 In the assembly of the supports the subroutine “assemb_support” is called 

in the main program. In this subroutine, first, a loop is started over all the support 

elements. For each support element the nodal coordinates are retrieved and the 

material properties are assigned. The twelve by twelve element stiffness matrix is 

initialized to zero. After that the subroutine “get_supportk” is called to compute 

the element stiffness matrix for each support element. The algorithm for the 

subroutine “get_supportk” is similar to that of shell elements.  

The assembly of the element stiffness matrix into the global stiffness 

matrix for the support elements follows the same procedure explained for the 

internal braces. 

 

2.4.5.6 Assembly of Studs 

 In the program the stud elements are modeled with spring elements so their 

stiffness matrix computation is simple and explained in Chapter 3. 

 In the main program the subroutine “assemb_stud” is called. In this 

subroutine first a loop is started over all stud elements. For each stud element the 

stud stiffness is modified with corresponding stud modification factor. The six by 

six element stiffness matrix is initialized to zero. After that the subroutine 

“get_studk” is called to compute the element stiffness matrix for each stud 



 60

element. Having obtained the stiffness matrix for each stud element, now next 

step is to assemble the entries to the global structural stiffness matrix.  

The assembly of the element stiffness matrix into the global stiffness 

matrix for the studs follows the same procedure explained for the internal braces. 

 

2.4.6 Modification for Support Conditions 

 As the supports are modeled as rigid truss systems they do not allow 

displacements for some of their degrees of freedom. So some of the structural 

displacements should be modified to simulate this behavior. Penalty method is 

used to prescribe the support conditions. Specifically at the support locations 

where previously pinned nodes were assigned the structural stiffness matrix 

entries are modified by adding a very big number to the associated entry. By this 

way the structural displacement at the subject degree of freedom of the subject 

node is zero.  

 In order to modify for the support conditions, in the main program, a 

subroutine “apply_support” is called. In this subroutine a loop is started over all 

pinned nodes and for the proposed degrees of freedom, to the corresponding 

entries in the global structural stiffness matrix a very big number, say 1.0 E20, is 

added. 

 

2.4.7 Formation of the Load Vector 

 After the structural stiffness matrix is obtained, the next step is to compute 

the load vector. The load vector comprises the right hand side of the system of 

equilibrium equations so this vector is denoted by “rhs” in the program. 

To compute the load vector, in the main program, the subroutine 

“assign_dist_load” is called which again calls subroutines in the form 

“assign_dist_loadxyz” for all eight cases to form the load vectors where x,y and z 

stand for the number of girders, the steel girder section type and the element type 

used for modeling respectively as before. For example “assign_dist_load111” 

stands for the subroutine to generate the load vector for the case 111. 

In a typical subroutine of the form “assign_dist_loadxyz”, first the start 

and end cross-section numbers of concrete pour intervals of the deck are 
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determined. The start and end cross-section numbers are forced to be zero and 

“ncsec” respectively. On each cross-section point loads are acted on the specified 

nodes. These nodes are repeating nodes for each cross-section. Table 2.7 lists the 

nodes on which the equivalent nodal loads are acted for each cross-section case.  

On each specified node the load coming from the tributary area of each 

cross-section are distributed.  

 

Table 2.7:Load Nodes 

Case Load Nodes 

111 22,30,25,26,54,29 

112 12,16,13,14,28,15 

121 14,16,18 

122 8,9,10 

211 42,50,45,46,74,49,75,83,78,79,107,82 

212 22,26,23,24,38,25,39,43,40,41,55,42 

221 26,28,30,43,45,47 

222 14,15,16,23,24,25 

 

2.4.8 Solution for the Displacements 

 After the global stiffness matrix and the load vector are obtained nodal 

displacements are obtained by solving the system of equations. The global 

stiffness matrix and the load vector are given as input to the solver. 

 In the main program the subroutine “solver” is called. This subroutine 

contains the previously explained direct sparse solver of the CXML. Another 

solver called “ITPACK” which is an iterative solver was adopted into the program 

to compare it with the direct solver. The results of this comparison will be given 

in Chapter 4.  

 The subroutine “solver” conveys the calculated structural stiffness matrix 

and load vector to the solver. The solver solves the system of equations and a 

solution vector “uv” is obtained. “uv” contains the structural displacements for 

each degree of freedom.  
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2.5 Post-Processor Module 

2.5.1 Preliminaries 

 After the structural displacements are obtained they are post-processed to 

obtain the average vertical cross-sectional deflections, cross-sectional rotations, 

top lateral, internal, external brace forces, cross-sectional forces and stresses.   

 

2.5.2 Cross-sectional Deflections 

 After solving for the displacements the vertical deflections of each node 

are obtained but a representative value should be specified to give the vertical 

deflection of the bridge. This is essential for the evaluation of the deflection of the 

bridge along the span.  

In order to post-process the vertical deflections, in the main program, the 

subroutine “post_defl” is called which again calls subroutines in the form 

“post_deflxyz” for all eight cases to post-process the deflections where x, y and z 

stand for the number of girders, the steel girder section type and the element type 

used for modeling respectively as before. For example “post_defl111” stands for 

the subroutine to post-process the deflections for the case 111.  

If the post-processed cross-section is a single girder system, the average 

deflection of the nodes on the bottom flange corners are calculated. This value is a 

good approximation for the vertical deflection of the subject bridge at its specified 

location. To be clear, for the Case 111 the average vertical deflection of the nodes 

38 and 46 can be used as the bridge deflection at the specified location.  

For dual girder systems the deflections under each girder are given 

separately.  

 

 2.5.3 Cross-sectional Rotations 

 The cross-sectional rotations are necessary in the design of steel girders 

which are susceptible to torsional stresses.  

In order to calculate cross-sectional rotations, in the main program, the 

subroutine “post_rot” is called which again calls subroutines in the form 

“post_rotxyz” for all eight cases to compute the cross-sectional rotations where x, 

y and z stand for the number of girders, steel girder section type and finite element 
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type used for modeling respectively as before. For example “post_rotl111” stands 

for the subroutine to compute the cross-sectional rotations for the case 111.  

If the cross-sectional rotations for a single girder system is to be 

calculated, the difference of the vertical deflections of the nodes on the bottom 

flange corners of the steel girder are divided by the bottom flange length. For the 

sake of clarity, for Case 111, the cross-sectional rotation is found by dividing the 

difference between the vertical deflections of the nodes 38 and 46 by the bottom 

flange length.  

For dual girder systems the cross-sectional rotations of each girder are 

calculated and reported separately.  

 

2.5.4 Top Lateral Brace Forces 

 The forces induced in the top lateral braces are also computed in the 

program.   

In order to calculate top lateral brace forces, in the main program, the 

subroutine “post_toplt2” is called. In this subroutine first a loop started over all 

top lateral brace elements. Then for each top lateral brace element the coordinates 

of the element nodes are retrieved. After that material properties are assigned to 

each element. In the next step element load vector and element stiffness matrix are 

initialized to zero. The subroutine “get_trussk” is called and the element stiffness 

matrix entries are formed again. The positions of the displacements corresponding 

to the element nodal degrees of freedom in the global displacement vector are 

located and they are stored in an array called “displ”. Element force vector is 

obtained by multiplying the element stiffness matrix with the “displ” vector. Unit 

vectors are obtained in local x, y and z directions and they are multiplied with the 

corresponding load vector entries to obtain the resultant loads. The axial force in 

the top lateral element is calculated.  

 

2.5.5 Internal Brace Forces 

In order to calculate internal brace forces, in the main program, the 

subroutine  “post_intbr” is  called.  In  this  subroutine  first a  loop started over all 
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internal brace elements. Note that each internal brace element is composed of four 

truss elements. For each of these truss elements, the coordinates of the element 

nodes are retrieved. In this stage only nodal coordinates shared with the steel 

girder are retrieved. After that, material properties are assigned to each element. In 

the next step element load vector and element stiffness matrix for the super 

element are initialized to zero. The subroutine “get_intbrk” is called and the 

element stiffness matrix entries are formed again. The positions of the 

displacements corresponding to the element nodal degrees of freedom in the 

global displacement vector are located and they are stored in an array called 

“displ”. Element force vector is obtained by multiplying the element stiffness 

matrix with the “displ” vector. The coordinates of all five nodes of the internal 

brace elements are retrieved. For each truss member forming the internal brace 

superelement unit vectors are obtained in local x, y and z directions and they are 

multiplied with the corresponding load vector entries to obtain the resultant loads. 

The axial force in each of the truss elements forming the internal brace are 

obtained. 

 

2.5.6 External Brace Forces 

In order to calculate external brace forces, in the main program, the 

subroutine “post_extbr” is called. In this subroutine first a loop started over all 

external brace elements. Note that each external brace element is composed of 

four truss elements. Then for each truss element the coordinates of the element 

nodes are retrieved. In this stage only nodal coordinates shared with the steel 

girder are retrieved. After that material properties are assigned to each element. In 

the next step element load vector and element stiffness matrix for the super 

element are initialized to zero. The subroutine “get_extbrk0” is called and the 

element stiffness matrix entries are formed again. The positions of the 

displacements corresponding to the element nodal degrees of freedom in the 

global displacement vector are located and they are stored in an array called 

“displ”. Element force vector is obtained by multiplying the element stiffness 

matrix with the “displ” vector. The coordinates of all five nodes of the external 

brace element are retrieved again. For each truss member forming the external 
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brace superelement unit vectors are obtained in local x, y and z directions and they 

are multiplied with the corresponding load vector entries to obtain the resultant 

loads. The axial force in each of the truss elements forming the external brace are 

obtained.   

 

2.5.7 Cross-sectional Forces 

 The last step in the post-processing part is to compute the internal forces. 

In a cross-section along the bridge 3 force components, in the direction of 

previously defined Q, R, and V vectors, and two couples in the direction of 

previously defines Q and R vectors are defined. These forces and moments are 

denoted by “fq”, ”fr”, ”fr”, ”amq”, ”amr” in the program, respectively (Fig. 2.25). 

 In order to compute the cross-sectional forces, first in the main program, 

the subroutine “post_csec_for” is called. The subroutine “post_csec_for” itself 

calls eight subroutines in the form “post_csec_forxyz” to compute the cross-

sectional forces for eight different cases. Here x stand for the number of girders, y 

stands for the steel girder section type and z stands for the finite element type used 

for shell modeling. The cross-sectional forces are computed in any cross-section 

where the plane is an interface between two sets of shell elements. This means 

that the cross-sectional forces are computed at distances of integer multiple of 

element size. The desired forces can be outputted at either every element 

boundary or at every user defined integer multiple of divisions. For each element, 

the cross-sectional forces are computed for the rear nodes (nodes 3,4 and 7 in 

shell numbering) and then accumulated for the cross-section (Fig. 2.26).  
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Figure 2.25: Cross-sectional Forces 
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Figure 2.26: Computation of Cross-sectional Forces  

 

 

 

 When the internal moments are calculated at the nodes the nodal moments 

are calculated first. After that the moments created by the nodal forces about a 

reference node within the cross-section are determined. These two values are 
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summed and the cross-sectional forces are determined for the desired direction. 

The reference node is within the symmetry plane of the cross-section.  

 In a typical subroutine of the form “post_csec_forxyz”, first the location 

where the cross-sectional forces are to be computed is determined. At that cross-

section the nodes where the nodal forces are going to be calculated are determined 

together with the reference node. For each node Q, R, and V vectors are retrieved 

and the x, y and z coordinates of the reference node is assigned to three unique 

variables, namely “xref”, “yref” and “zref”. The variables to store the cross-

sectional forces are set to zero. After that a loop is started over all the nodes of the 

subject cross-section. For each node the fq, fr and fv forces and am and aq 

moments are computed by calling the subroutine “post_sh_nfor9” for the nine-

node element. For the four-node element the corresponding subroutine is 

“post_sh_nfor4”. Within the loop, the computed nodal forces are summed to get 

the cross-sectional fq, fr and fv forces. The vertical distances of the nodes to the 

reference node are determined and by multiplying these with the corresponding 

nodal forces the moments created by the nodal forces are determined. Also the 

normal stress and shear stresses within each cross-section are determined in the 

subroutine. The algorithm for the subroutine “post_sh_nfor9” is given in 

Algorithm 2.13. The algorithm for the subroutine “post_sh_nfor4” is similar.  
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Algorithm 2.13 

1. Loop over the nodes within the shell element to retrieve the coordinates, Q, 

R, and V vectors. 

2. Assign the material properties. 

3. Initialize the shell element force vector and stiffness matrix. 

4. Retrieve the stiffness matrix of the element. 

5. Locate the element degrees of freedom in the global stiffness matrix, and 

displacement vector.  

6. Using the corresponding displacements at the rear nodes compute the nodal 

forces. 

7. Transform the calculated forces and moments to global coordinates.  

8.  Call the related subroutine to compute the nodal stresses.  

9. Go to 1 
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CHAPTER 3 
NUMERICAL MODELING DETAILS AND PROGRAM 

VERIFICATION 

 

 
3.1 Modeling the Physical System 

 In the literature there are several methods to analyze the steel girder – 

concrete deck interaction. In one of these methods the concrete deck is modeled 

with brick elements and the steel girder is modeled with shell elements (Tarhini 

and Frederick, 1992). The studs are modeled with spring elements.  The 

shortcoming with this method is the large number of brick elements, thus large 

number of degrees of freedom required to capture the flexural response with 

sufficient accuracy (Fig. 3.1). 

 In another approach, both the steel girder and the concrete deck are 

modeled with shell elements (Brockenrough, 1986, and Tabsh and Sahajwani, 

1997). The concrete deck and the steel girders are connected together with 

connector (beam) elements. The length of the connector elements has to be chosen 

by the analyst to properly model the offset between the neutral axis of the top 

flange of the girders and that of the deck. This approach is the most popular 

technique presented in the literature but there is no common consensus on how to 

choose the connector length.  

 In the developed software another approach was employed which 

addresses both of the above-mentioned problems. In a given cross-section two 

types of shell elements are used for modeling. In the shell element formulation the 

three-dimensional domain is represented by a surface. For steel sections, the 

reference surface is the middle surface, whereas, for the concrete deck, the bottom 

surface is the reference surface (Fig. 3.1). Steel sections and the concrete deck are 

connected to each other by spring elements, which represent the stud connectors. 

With this modeling the number of degrees of freedom is reduced as compared 

with the brick modeling. In addition to this, it properly models the interface 
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behavior by eliminating the beam elements and including the girder offset by 

using the bottom shell surface as the reference surface.   

 

 

 

Brick Elements Shell Elements

Connector Elements

(a)

(b)

v v v v v

 
Figure 3.1 (a) Different Modeling Techniques for Deck-Flange Interface, (b) 

Reference Surfaces for Shell Elements 

 

 

 

 Three dimensional models of a double I-girder straight, and a single box-

girder variable degree of curvature bridge are shown in Figure 3.2. The nodal 

coordinates and elements are generated using the developed program and then 

imported to the ANSYS program which is a general purpose finite element 

modeling and analysis tool.  
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         (a)      (b) 

Figure 3.2: Three dimensional views of (a) double I-girder, straight bridge 

and (b) variable radius of curvature, single box-girder bridge 

 

 

 

3.2 Element Formulations 

3.2.1 Shell Element Formulation 

 The program contains two types of shell elements: nine-node 

isoparametric shell element and a four-node isoparametric shell element (Fig.3.3). 

The formulation of these two elements are similar, the only difference is the shape 

functions.  
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Figure 3.3: Nine-Node Shell Element 

 

 

 

 The interpolation functions for the 9-node (Fig. 3.4) element implemented 

into the program are as follows; 
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                                         Figure 3.4: 9-node element 
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 The interpolation functions for the 4-node element (Fig. 3.5) implemented 

into the program are as follows; 

 

 

 
η

ξ
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34

 
Figure 3.5: 4-node element 
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1

2

3
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4
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N

N
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ξ η

ξ η

ξ η

ξ η

= − −
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= + +
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 The geometry of the element is defined as: 

( )

( )

( )

1
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( , , ) ,
2

( , , ) ,
2

( , , ) ,
2

nne

i xi i
i
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hx x V N
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ξ η ζ ζ ξ η

ξ η ζ ζ ξ η

ξ η ζ ζ ξ η

=

=

=

⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

∑

 

where , ,ξ η ζ are the coordinate axes for the mapped element and ζ is in the 

thickness direction. Vi (Vxi, Vyi, Vzi) is the unit vector at each node, which is in 

the direction of the nodal fiber. “h” is the thickness of the shell. ( ),iN ξ η is the 

shape function for node number i. 

 At each node there are three displacement (u, v, w) and two rotational 

( ,α β ) degrees of freedom. In order to define the rotation axes for α and β  a 

right-handed triplet of mutually orthogonal unit vectors (V, R, Q) have to be 

chosen at each node. 

 The displacement components (u, v, w) are interpolated as follows: 
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ξ η ζ ζ α β ξ η

ξ η ζ ζ α β ξ η

ξ η ζ ζ α β ξ η

=

=

=

⎡ ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

∑
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Derivatives of displacements are calculated as follows: 
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=

=

⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
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=

=

⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

∂ ⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

∑

∑
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⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

∂ ⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

∑

∑

∑

 

The Jacobian and its inverse are defined as follows: 

x y z

J x y z

x y z

ξ ξ ξ

η η η

ζ ζ ζ

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂

= ⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

      1

x x x

J
y y y

z z z

ξ η ζ

ξ η ζ

ξ η ζ

−

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟
∂ ∂ ∂⎜ ⎟= ⎜ ⎟∂ ∂ ∂

⎜ ⎟
∂ ∂ ∂⎜ ⎟

⎜ ⎟∂ ∂ ∂⎝ ⎠

 

Derivatives used in the B matrix formation are defined as: 

i i i

i i i

i i i

N N N
x x x
N N N
y y y
N N N
z z z

ξ η
ξ η

ξ η
ξ η

ξ η
ξ η

∂ ∂ ∂∂ ∂
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∂ ∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂
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∂ ∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂ ∂
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Derivatives of displacements functions with respect to coordinates (x,y,z) are as follows: 

 

( ) ( ) ( )

( )

1 1 1
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( ) ,
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∑ ∑ ∑

∑ ( )

( ) ( ) ( )

1 1

1 1

( ) ,
2

( ) , ( ) , ( ) ,
2 2 2

nne nne

i xi i xi i
i i

nne nne

i i yi i yi i i i yi i yi i i yi i yi i
i i

h R Q N
z z

v h h hv R Q N v R Q N R Q N
x x x x

ζα β ξ η

ξ η ζζ α β ξ η ζ α β ξ η α β ξ η
ξ η

= =

= =

⎡ ⎤ ⎡ ∂ ⎤⎛ ⎞+ − +⎜ ⎟⎢ ⎥ ⎢ ⎥∂⎝ ⎠⎣ ⎦⎣ ⎦
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + + − + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∂ ∂⎛ ⎞= + − +⎜ ⎟∂ ∂⎝ ⎠

∑

∑ ∑ ∑

( ) ( ) ( )

( )

1 1 1

1

, ( ) , ( ) ,
2 2

( ) , ( )
2 2

nne nne nne

i i i yi i yi i i yi i yi i
i i i

nne

i i zi i zi i i i zi i zi
i

h hv R Q N R Q N
z z z

w h hw R Q N w R Q
x x

ξ η ζξ η ζ α β ξ η α β ξ η
η

ξζ α β ξ η ζ α β
ξ

= = =

=
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The B matrix is formed as follows: 

 

0 0
2 2

0 0
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 The rigidity matrix, D, must contain the shell assumption that, the stress 

component along the thickness direction is zero. As a result of this a rigidity 

matrix similar to the one used in two-dimensional plane stress analysis is 

obtained.  

2

2
2

2

1 0 0 0 0
1 0 0 0 0

0 0 0 0 0 0
10 0 0 0 0

21
10 0 0 0 0

2
10 0 0 0 0

2

local ED

υ
υ

υ

υ
υ

υ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
= ⎜ ⎟

− ⎜ ⎟
−⎜ ⎟

⎜ ⎟
⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

 As the stiffness terms are calculated in the global coordinates, the rigidity 

matrix should be transformed from local to global coordinates at each integration 

point. This is done by multiplying the rigidity matrix with the rotation matrix, 

ROT . In order to from the rotation matrix, a local orthogonal coordinate axes 

consisting of unit vectors t1, t2, t3 should be formed where t3 is the vector normal 

to the shell surface at the point of consideration. The orthogonal local axes are 

formed as follows: 

 

At the point of consideration: 

1

T
x y zt
ξ ξ ξ

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

r
       2

T
x y zt
η η η

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

ur
 

Form the unit vectors: 

1
1

1

tt
t

=

r
r

r     2
2

2

tt
t

=

ur
ur

ur  

Calculate the normal vector t3: 

3 1 2t t t= ×
ur r ur
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Re-orient the t2 vector: 

2 3 1t t t= ×
ur ur r

 

The rotation matrix that transforms stress-strain laws is: 
2 2 2

1 1 1 1 1 1 1 1 1
2 2 2

2 2 2 2 2 2 2 2 2
2 2 2

3 3 3 3 3 3 3 3 3

1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

3 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3

2 2 2
2 2 2
2 2 2

l m n l m m n n l
l m n l m m n n l
l m n l m m n n l

ROT
l l m m n n l m l m m n m n n l n l
l l m m n n l m l m m n m n n l n l
l l m m n n l m l m m n m n n l n l

⎛
⎜
⎜
⎜

= ⎜
+ + +⎜
+ + +
+ + +⎝

⎞
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

 

 

Where the entries are the directional cosines of vectors t1, t2, t3. 

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3
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x

y

y

y

z

z

z

l t
l t
l t
m t

m t

m t

n t
n t
n t

=
=
=
=

=

=

=
=
=

 

The global rigidity matrix, D, is calculated as follows: 
T localD ROT D ROT=  

The stiffness matrix is: 

{ }
1

det( ) ( )
nip

T

ip

K B DB J w ip
=

= ∑  

The implementation uses regular integration that is 3 integration points in 

,ξ η directions and 2 integration points in ζ direction for the 9-node element and 2 

integration points in ,ξ η directions and 2 integration points in ζ for the 4-node 

element. 
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3.2.2 Truss Element Formulation 

 A standard 3 dimensional, 2-node linear truss element is implemented into 

the program. (Fig 3.6) The stiffness formulation is as follows: 

 

 

 

L

2
1

3

5
4

6
 

Figure 3.6: 3 dimensional, 2 node truss element 

 

 

 

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

EA EA
L L

EA EA
L L

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Where; 

E: Modulus of Elasticity, A: Area of Truss Member, and L: Length of Truss 

Member 

 

3.2.3 Spring Element Formulation 

 A standard 2-node, three dimensional spring element is implemented into 

the program (Fig 3.7). The stiffness matrix formulation is as follows: 
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Figure 3.7: 3 dimensional, 2-node spring element                           

 

 

 

 

1 1

2 2

3 3

1 1

2 2

3 3

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

K K
K K

K K
K K

K K
K K

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

Where; 

K1, K2 and K3 are stiffness values in three global directions. 

 

3.3 Solver Basics 

 The main solver of the developed program is the direct solver which is a 

part of the Compaq Extended Math Library (CXML). An iterative solver called 

ITPACK is also adopted into the program to compare the direct and iterative 

solvers. As discussed previously the direct solver is supplied as a library file and 

can be compiled with the program.  

Suppose we have a system of equations of the form: 

Ax B=  

where A is an n by n matrix and x and B are n element column vectors.  
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 In this representation for our case A is the stiffness matrix and vectors x 

and B are displacement vectors and load vectors, respectively. We know that most 

of the elements of the A matrix are zero. Such matrices are named as sparse 

matrices. Generally speaking computer softwares that find solutions to linear 

equation systems are called solvers. A solver specifically designed to solve sparse 

systems is called a sparse solver. The sparse solvers can be direct or iterative. 

Iterative solvers start with an initial approximation of the solution vector and try 

to converge to the actual result as close as possible. On the other hand, in a direct 

solver, the matrix A is factored into upper and lower triangular matrices and a 

forward and backward triangular solution process is employed. The solution time 

required for direct solvers is more predictable compared with the iterative solvers 

but for some well-conditioned systems the iterative solvers may be more efficient. 

 

3.3.1 Sparse Solver Storage Format 

 The direct solver adopted into the program requires only the nonzero 

entries of the structural stiffness matrix be stored. In addition to this, the solver 

requires two vectors that define the locations of the nonzero entries. Based on the 

information of the nonzero entries and their locations the solver is capable of 

reordering and factoring the stiffness matrix and solving for the displacements. 

Only the upper or lower triangular half of the matrix is stored.  

 The non-zero entries are stored in a vector called “nonzeros”, the column 

and row numbers of these non-zero entries are also stored in two matrices called 

“icolumns” and “irowindex”, respectively. When the elements of the matrix 

“nonzeros” are filled, the upper triangular half of the structural stiffness matrix is 

considered and the nonzero elements are stored starting with the upper first row 

excluding the zero elements. The “icolumns” vector is of the same size as the 

vector “nonzeros”. The entries of the “icolumns” vector give the column numbers 

of the corresponding entries of the vector “nonzeros”. The “irowindex” vector 

gives the location of the first non-zero entry within each row.  

Since the “irowindex” vector gives the location of the first non-zero within 

a row, and the non-zeros are stored consecutively, then we are able to compute the 
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number of non-zeros in the i-th row as the difference of the row indexes of the 

consecutive rows give the desired value.  

In order have this relationship hold for the last row of A, we need to add 

an entry (dummy entry) to the end of “irowindex” array whose value is equal to 

the number of non-zeros in A, plus one. This makes the total length of the 

“irowindex” array one larger than the number of rows of A. 

The above discussion can be more clarified with the following example. 

Suppose we have symmetrical matrix A; 

1 4 9 8 7
* 2 0 0 0
* * 5 0 0
* * * 8 0
* * * * 3

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The “nonzeros” vector will be; 

[ ]1 4 9 8 7 2 5 8 3nonzeros =  

The “icolumns” vector will be; 

[ ]1 2 3 4 5 2 3 4 5icolumns =  

and the “irowindex” vector will be; 

[ ]1 6 7 8 9 10irowindex =  

 The storage schemes for both direct and sparse solvers adopted into the 

program are same.  

 The displacement vector “uv” and the right hand side vector “rhs” in the 

program are vectors of size, the number of nodes times the number of degrees of 

freedom per node.  

 

3.4 Program Verification with Existing Solutions 

3.4.1 General 

 The validity of the computational software was tested both with 

approximate hand methods and with published solutions in the literature.  
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3.4.2 Hand Calculations 

 While the computational software is compared with the hand methods, a 

horizontal, single I-girder is modeled as a simply supported beam and the 

construction loading is applied. The deck concrete is assumed to be just poured 

and the effects of stud stiffnesses are ignored. The single I-girder bridge is solved 

both with program developed and the simple beam bending formula. The analyzed 

bridge cross section is shown in Figure 3.8.  

 

 

 

25 cm
700 cm

115 cm

125 cm
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2 cm
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90 cm

 
Figure 3.8: The Cross-section of the Analyzed Bridge 

 

 

 

The element size is chosen as 100 cm and the modulus of elasticity of steel 

is 20 000 000 N/cm2. The bridge is 6000  cm long and assumed to be straight. 

There are no internal, external or top lateral brace members. The concrete 

modulus and stud stiffnesses are taken to be very close to zero and the distributed 

loading on the bridge is 10 N/cm. The bridge is simply supported with the 

supports at 0 and 6000 cm.  

Maximum bending moment, maximum shear force, maximum normal 

stress, maximum shear stress and mid-span deflection values obtained by using 

both the program and simple beam bending formula are given in Table 3.1 
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Table 3.1: Comparison of the Program Outputs and Hand Methods 

Parameter UTRAP Hand Calculation 

Maximum Bending Moment(Mmax)

(kN.m) 
450 450 

Maximum Shear Force(Vmax) 

(kN) 
30 30 

Maximum Normal Stress(σmax) 

(N/cm2) 
1245.87 1229.72 

Maximum Shear Stress(τmax) 

(N/cm2) 
55.12 56.63 

Maximum Deflection(δmax) 

(cm) 
3.29 3.24 

 

As it can be inferred from Table 3.1, the program gives sufficiently close 

outputs as the simple bending formula. The slight difference between the program 

outputs and the hand calculations can be attributed to the element size selected 

and the node normals. 

 

3.4.3 Published Solutions 

 The computational software results were compared with the hand method 

developed by the researchers Fan and Helwig (1999) in order to predict the top 

lateral brace member forces in curved box girders. The method proposed by Fan 

and Helwig was compared with the commercially available finite element analysis 

package, ANSYS. The predictions of the hand method were in excellent 

agreement with the finite element analysis. In this section, the published finite 

element analysis results are compared with the results of the developed software. 

The bridge analyzed by Fan and Helwig (1999) was a three-span single girder 

system having a radius of 291 m and .a length of 195.06 m. The details of the 

bridge are given in Fig. 3.9.  

 



 86

A B
C

Section P Section N Section P
41.15m 27.43m 57.91m

Section PSection N
41.15m27.43m

w=48.2 kN/m

54.86m 54.86m85.34m

97.55 m

A

B
C

R=291 m(19.7o/100 m)

(Symmetric)

24.1kN/m 24.1kN/m

304.8 cm

Horizontal Truss

35.6 cm x 2.2 cm

1.3 cm 1.3 cm
190.5 cm

1.6 cm

SECTION P

304.8 cm

Horizontal Truss

61.0 cm x 5.7 cm

1.9 cm 1.9 cm190.5 cm

1.6 cm

SECTION N
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Figure 3.9: Layout and Cross-sectional Dimensions of the Bridge (Fan(1999)) 

 

 

 

Internal braces were located at every 3 m, and an X-type top lateral system 

between internal brace points was utilized. The top lateral brace members were 

WT 6 ×  13 sections, while the internal brace elements were L 4×4×  5/16 

sections. The distributed loading on the bridge was 48.2 kN/m. A constant top 

flange width of 35.6 cm was assumed. The thickness of top flange plates in 

Section N was modified to 9.7 cm to give the same plate area.  

 The top lateral members were grouped into (X1 and X2) according to their 

orientation. Force levels for these top lateral members obtained from finite 

element analysis were presented by Fan and Helwig (1999). These force levels are 

compared with the predictions from the developed software in Figures 3.10 and 

3.11. It could be concluded that the developed software is capable of producing 

results similar to the published solutions.   
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Figure 3.10: Comparison of Published and UTRAP Results for X1 Diagonals 
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Figure 3.11: Comparison of Published and UTRAP Results for X2 Diagonals 
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CHAPTER 4 
MODELING RECOMMENDATIONS FOR COMPOSITE BRIDGE 

ANALYSIS 

 
4.1 Simply Supported Bridge Case 

 In order to report some design and modeling recommendations, mesh 

convergence studies are conducted by analyzing three bridges, first of which is a 

simply supported bridge. The configuration of the personal computer used for the 

analysis includes an Intel Centrino Mobile 1.4 GHz Processor and a 512 MB DDR 

RAM. The simply supported bridge analyzed is a 60.0 m long box-girder bridge 

consisting of 19 internal braces each 3.0 m apart. There is one top lateral brace for 

each panel, which make a total of 20 top lateral braces. The uniform loading on 

the bridge is 19kN/m and the elastic modulus of the steel is 200 000 MPa. The 

cross-sectional dimensions are given in Figure 4.1. 

 

 
200 mm

360 mm 360 mm

20 mm

20 mm

15 mm

1900 mm

2300 mm

7120 mm

3050 mm

 
Figure 4.1: Cross-sectional Dimensions 
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The concrete modulus and stud stiffnesses are taken as zero in order to 

simulate the girder behavior at early ages of concrete.  

The simply supported bridge is analyzed for five different radius of 

curvatures. The radius of curvatures for these bridges are defined as the subtended 

angle the bridge covers. The subtended angle is the angle in degrees that is 

enclosed by 100 m of representative bridge length. The bridges are analyzed for 

straight, 5o/100 m, 10o/100 m, 20o/100 m, 30o/100 subtended angles (Fig. 4.2). 

The element sizes are taken as 60 cm, 75 cm, 100 cm, 150 cm and 300 cm, 

which are panel length/5, panel length/4, panel length/3, panel length/2 and panel 

length respectively. Both of the element types implemented into the program, 4-

node and 9-node elements, are used in the analysis (Table 4.1).  

 

Table 4.1 Analysis Parameters 

Subtended Angle(degrees/100 m) 0,5,10,20,30 

Element Size(cm) 60,75,100,150,300 

Element Type 4-node, 9-node 

 

 As it can be inferred from Table 4.1 a total of 50 runs are performed for 

the simply supported bridge. 

While studying the performance of the element types and element sizes, 

the required time for solution and required memory are also recorded using 

CXML direct solver and are given in Table 4.2.  
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Table 4.2: Solution Time and Required Physical Memory 

Subtended 
angle/100 m 

Element 
type 

Element 
Size(cm)

Solution 
Time(sec) 

Required 
Physical 

Memory(MB) 

60 5.9 24 
75 4.8 19 

100 3.6 14 
150 2.3 10 

4-node 
 
 
 
 300 1.2 2 

60 41.0 120 
75 32.4 95 

100 23.9 69 
150 15.7 45 

0o 

9-node 

300 7.8 22 
 

 In Table 4.2 the solution time and the required physical memory for only 

0o/100m subtended angle are shown. As the number of elements and nodes do not 

depend on the degree of curvature these values are same for different subtended 

angles as long as the element sizes are the same.   

 As it can be seen on Table 4.2, when the 4-node element is used, as 

expected, the solution time and required memory are less when compared with the 

9-node element. In Figures 4.3 and 4.4 the variation of Solution Time and 

Required Physical Memory with respect to the element size for 0o subtended angle 

and 9-node element are shown respectively. 
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Figure 4.3: Variation of Solution Time with respect to the Element Size 
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 Figure 4.4: Variation of Required Physical Memory with respect to the 

Element Size 

 

 
 

As it can be seen from Figure 4.3 and Figure 4.4, both the solution time 

and required physical memory for program execution follow a similar trend when 

plotted against the element size. Furthermore it can be concluded that when the 

element size is doubled both the memory requirement and solution time are 

halved.  
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4.1.1 Deflections 
 The maximum deflection for the 0o/100 m subtended angle for 4-node and 

9-node elements with respect to the element size used is given in Fig. 4.5 and Fig. 

4.6, respectively. A representative deflection profile along the bridge is also given 

in Figure 4.7, for 30o/100 m subtended angle, 9-node element and 60 cm element 

size. 

 As it can be inferred from the two figures, the degree of accuracy of the 

results obtained with the 9-node element is far more realistic than the 4-node 

element. For the 9-node element as the element size increases, the obtained results 

for the maximum deflection does not differ much, even for the 150 cm and 300 

cm element sizes the obtained results are 18.12 cm and 18.05 cm respectively, 

even though the element size doubles. On the other hand for the 4-node element 

as the element size increases the maximum deflection value decreases and the 

difference between the maximum deflection values obtained with the 150 cm 

element size and 300 cm element size differs about 23%. Therefore it can be 

concluded that 9-node element is a more reliable element than the 4-node element. 

However considering advantages of solution time and required memory, 4 node 

element is still feasible when the element size is taken as 150 cm. Smaller 

elements sizes for the 4-node elements may also be considered but there is a 

modeling constraint associated with them which will be discussed in Section 

4.1.1.1. 
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Figure 4.5: Maximum Deflections for Various Element Sizes for 4-node 

element 
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Figure 4.6: Maximum Deflections for Various Element Sizes for 9-node 

element 
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Figure 4.7: Deflection Profile Along the Bridge 

 

 

In Figure 4.7 the symmetrical deflection profile agrees with the inputs. 

 The variation of maximum deflection with respect to the radius of 

curvature and element size for the 9-node and 4-node elements are given in Table 

4.5 and Table 4.6, respectively.   

Table 4.5: Variation of Maximum Deflection with Subtended Angle(9-
node element) 

Maximum Deflection(cm) 

Element 
Size 
(cm) 

Subtended 
Angle: 

0o/100m 

Subtended 
Angle: 

5o/100m 

Subtended 
Angle: 

10o/100m 

Subtended 
Angle: 

20o/100m 

Subtended 
Angle: 

30o/100m 

60 18.13 18.19 18.36 19.05 20.21 
75 18.13 18.19 18.36 19.05 20.21 

100 18.13 18.18 18.35 19.04 20.2 
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Table 4.5: Variation of Maximum Deflection with Subtended Angle 

(9-node element)(Continued) 

Maximum Deflection(cm) 
Element 

Size 
(cm) 

Element 
Size 
(cm) 

Element 
Size 
(cm) 

Element 
Size 
(cm) 

Element 
Size 
(cm) 

Element 
Size 
(cm) 

150 18.12 18.17 18.34 19.03 20.18 
300 18.05 18.1 18.27 18.95 20.09 

 

Table 4.6: Variation of Maximum Deflection with Subtended Angle 

(4-node element) 

Maximum Deflection(cm) 

Element 
Size 
(cm) 

Subtended 
Angle: 

0o/100m 

Subtended 
Angle: 

5o/100m 

Subtended 
Angle: 

10o/100m 

Subtended 
Angle: 

20o/100m 

Subtended 
Angle: 

30o/100m 

60 19.78 19.83 20.00 20.65 21.76 
75 19.58 19.63 19.79 20.45 21.55 

100 19.17 19.22 19.38 20.03 21.13 
150 18.11 18.16 18.32 18.95 20.03 
300 13.99 14.04 14.18 14.77 15.76 

 

 From Tables 4.5 and 4.6 it can be inferred that even the 300 cm element 

size when 9-node elements are used gives good results in terms of maximum 

deflection. Also when 4-node element is used, quite useful results are obtained 

considering the time and memory advantages the element offers.  

4.1.1.1 Node Normals 

 When the maximum deflection values for 4-node and 9-node elements are 

compared it is seen that the 4-node element gives higher values than the 9-node 

element (Figs 4.5, 4.6). This unexpected flexible behavior can be attributed to 

node normals.  

As discussed in Chapter 2, the shell geometry is defined by the node 

normals Q, R and V which are defined at each node. Among these unit vectors V 

always points in the direction of the thickness of the shell element and R always 

points in the direction of the tangent to the arc length. Q is the unit vector which is 

orthogonal to the other two vectors. 
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Consider a trapezoidal girder in Figure 4.8. The node normals at the top 

flange-web interface are oriented as given in the figure.  

 

 

 

V

Q

R

 
 

Figure 4.8:Node Normals at the Interphase 

 

 

 

As it can be seen in the figure, when the node normals are used to define 

the geometry, at the connections, as in the case of Figure 4.8, the shaded area is 

discarded. This results in getting higher deflection values as the member sizes 

decrease. The cumulative effect of this shortcoming is more dominant when 4-

node elements are used because their meshes are coarser. 

 

4.1.2 Top Lateral Brace Forces 
 In Table 4.6, maximum top lateral brace forces for different subtended 

angles, element types and element sizes are shown. The given values are the 

absolute values, they can be either tensile or compressive.  
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When the maximum top lateral brace forces for 0o/100 m subtended angle 

are examined it is seen that the obtained results for the 4-node element are even 

two fold of the 9-node counterparts for most of the cases, however when the 

subtended angle increases this difference become negligible and the 4-node 

element becomes feasible. In Figures 4.9 and 4.10 this behavior is shown. 

 

Table 4.6: Maximum Top Lateral Forces 

Subtended angle/100 m Element type Element Size(cm) Maximum Top Lateral 
Force(kN) 

60 60 
75 65 
100 71 
150 75 

4-node 

300 65 
60 32 
75 32 
100 33 
150 34 

0o 

9-node 

300 65 
60 82 
75 86 
100 91 
150 94 

4-node 

300 85 
60 61 
75 61 
100 61 
150 63 

5o 

9-node 

300 86 
60 127 
75 130 
100 133 
150 135 

4-node 

300 127 
60 112 
75 112 
100 112 
150 113 

10o 

9-node 

300 130 
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Table 4.6:Maximum Top Lateral Forces(Continued) 

Subtended angle/100 m Element type Element Size(cm) Maximum Top Lateral 
Force(kN) 

60 232 
75 233 
100 234 
150 234 

4-node 

300 224 
60 226 
75 226 
100 226 
150 227 

20o 

9-node 

300 234 
60 343 
75 344 
100 344 
150 343 

4-node 

300 330 
60 337 
75 337 
100 337 
150 338 

30o 

9-node 

300 345 
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Figure 4.9: Maximum Top Lateral Brace Forces for 0o/100 m subtended 

Angle 
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Figure 4.10: Maximum Top Lateral Brace Forces for 30o/100 m subtended 
Angle 

 

 
 

 As it can be inferred from Figures 4.9 and 4.10 which show the maximum 

top lateral brace forces for 0o/100 m and 30o/100 m subtended angles with respect 

to the element size, even the 4-node elements are reliable when the degree of 

curvature is high. 

In Tables 4.7 and 4.8 the top lateral brace forces for 0o subtended angle 

and 30o subtended angle are given. 
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Table 4:7 Top Lateral Brace Forces for 0o/100 m Subtended Angle 
SUBTENDED ANGLE = 0o/100 m 

ELEMENT TYPE = 4 NODE ELEMENT ELEMENT TYPE = 9 NODE ELEMENT 
TOP 

LATERAL 
BRACE 

ES=60 cm ES=75 cm ES=100 cm ES=150 cm ES=300 cm ES=60 cm ES=75 cm ES=100 cm ES=150 cm ES=300 cm 
L1 -5 -5 -6 -6 -5 -3 -3 -3 -3 -6 
L2 -15 -16 -18 -19 -15 -8 -8 -8 -9 -16 
L3 -25 -27 -30 -32 -27 -14 -14 -14 -15 -27 
L4 -34 -37 -40 -42 -36 -18 -18 -19 -19 -36 
L5 -41 -45 -49 -52 -44 -22 -22 -23 -24 -44 
L6 -47 -51 -56 -59 -51 -26 -26 -26 -27 -51 
L7 -52 -57 -62 -66 -57 -28 -28 -29 -30 -56 
L8 -56 -61 -66 -70 -61 -30 -30 -31 -32 -61 
L9 -58 -63 -69 -73 -63 -32 -32 -32 -34 -63 

L10 -60 -65 -71 -75 -65 -32 -32 -33 -34 -65 
R10 -60 -65 -71 -75 -65 -32 -32 -33 -34 -65 
R9 -58 -63 -69 -73 -63 -32 -32 -32 -34 -63 
R8 -56 -61 -66 -70 -61 -30 -30 -31 -32 -61 
R7 -52 -57 -62 -66 -57 -28 -28 -29 -30 -56 
R6 -47 -51 -56 -59 -51 -26 -26 -26 -27 -51 
R5 -41 -45 -49 -52 -44 -22 -22 -23 -24 -44 
R4 -34 -37 -40 -42 -36 -18 -18 -19 -19 -36 
R3 -25 -27 -30 -32 -27 -14 -14 -14 -15 -27 
R2 -15 -16 -18 -19 -15 -8 -8 -8 -9 -16 
R1 -5 -5 -6 -6 -4 -3 -3 -3 -3 -6 

ES = Element Size 
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Table 4:8 Top Lateral Brace Forces for 30o/100 m Subtended Angle 
SUBTENDED ANGLE = 0o/100 m 

ELEMENT TYPE = 4 NODE ELEMENT ELEMENT TYPE = 9 NODE ELEMENT 
TOP 

LATERAL 
BRACE 

ES=60 cm ES=75 cm ES=100 cm ES=150 cm ES=300 cm ES=60 cm ES=75 cm ES=100 cm ES=150 cm ES=300 cm 
L1 329 328 327 324 315 334 333 333 333 329 
L2 -343 -344 -344 -343 -330 -337 -337 -337 -338 -345 
L3 284 282 279 275 271 296 296 296 295 283 
L4 -317 -320 -323 -324 -310 -303 -303 -303 -304 -321 
L5 209 205 201 197 198 229 229 228 227 206 
L6 -260 -264 -269 -271 -257 -240 -240 -240 -241 -265 
L7 117 113 107 103 108 142 142 141 140 113 
L8 -181 -185 -191 -194 -181 -156 -156 -156 -158 -186 
L9 16 11 5 1 10 43 43 43 41 11 

L10 -86 -91 -97 -101 -89 -59 -59 -59 -61 -91 
R10 -86 -91 -97 -101 -89 -58 -58 -59 -61 -91 
R9 16 11 5 1 10 43 43 43 41 11 
R8 -181 -185 -191 -194 -181 -155 -155 -156 -157 -186 
R7 117 113 107 103 108 142 141 141 140 113 
R6 -260 -264 -268 -271 -257 -239 -239 -240 -241 -265 
R5 209 205 201 196 198 228 228 228 227 206 
R4 -317 -320 -323 -324 -310 -303 -303 -303 -304 -321 
R3 284 282 279 275 271 296 296 296 295 283 
R2 -343 -344 -344 -343 -330 -337 -337 -337 -338 -345 
R1 329 328 327 324 315 333 333 332 332 329 

  ES = Element Size 
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In Tables 4.7 and 4.8, it is seen that when the radius of curvature is small, 

as in the case of Figure 4.7 in which the analyzed bridge is straight, the 300 cm 

element gives much higher values than the 150 cm element for the 9-node element 

so in terms of top lateral brace forces the 300 cm element is not efficient. Smaller 

element sizes should be selected, however, the 150 cm element size seems 

efficient as the difference between the top lateral brace forces obtained by using 

smaller element sizes is far less than 2% for most of the members. In Figure 4.11 

the top lateral brace forces for 0o subtended angle obtained by using 9-node 

element and with 150 and 300 cm element sizes are plotted. As a result of these, it 

may be recommended that element size should be at most half the panel size.  
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Figure 4.11:Top Lateral Brace Forces for 150 and 300 cm Element Sizes  

(ES = Element Size) 

 

 

  

When the subtended angle increases, as torsional effects come into the 

scene, the 300 cm element size performs better as shown in Figure 4.12.  
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Figure 4.12: Top Lateral Brace Forces for 150 and 300 cm Element Sizes 

(ES = Element Size) 

 

 

 

 In Figure 4.12 it is seen that except from some mid-elements the results 

obtained with 150 cm and 300 cm element sizes agree.  

 

4.1.3 Internal Brace Forces 

 In Chapter 2 the internal braces were defined as in Figure 4.13. The 

internal brace elements are composed of 4 truss elements and the numbering 

system is shown in the figure. Due to the symmetry of the cross-section and 

loading, the forces in members 3 and 4 should have opposite signs but same 

magnitude. 
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Figure 4.13: Typical Internal Brace Element 

 

 

 

 In Figures 4.14 and 4.15 the maximum force in the members forming the 

internal brace are shown for 0o/100 m and 30o/100 m subtended angle and for 4-

node and 9-node elements. The maximum force member is the element number 1 

for the specified cases. 
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Figure 4.14: Maximum Internal Brace Element Force for 0o/100 m 

Subtended Angle 
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Figure 4.15: Maximum Internal Brace Element Force for 30o/100 m 

Subtended Angle 

 

 

 

As it can be seen in the above figures there is a significant difference in 

obtained axial force levels when 4-node and 9-node elements are used. Both 

figures show a big diversion from the trend when the 300 cm element is used 

which is because of combined the effect of node normals and mesh fineness. 

 In Table 4.9 the forces in the 4 members forming an internal brace are 

shown for all 19 internal braces along the bridge for 30o/100 m subtended angle 

using 9-node elements. From the table it may be concluded that 150 cm element 

performs very close to 60 cm element, thus it is reliable and suitable for design 

but the 300 cm element size deviates from the actual values for about %50 or even 

more for most of the cases. Therefore, 300 cm element size is not feasible. 

In Figure 4.16 the force in internal brace number 1 for the first 9 internal 

braces are plotted for 60 cm, 150 cm and 300 cm element sizes. The rest of the 

members are not plotted due to the symmetry. In the figure it is clear that although 

similar results are obtained for 60 cm and 150 cm element sizes 300 cm element 

size gives far higher results.  
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Table 4.9: Internal Brace Element Forces for 30o/100 m subtended angle, 9-node element and 60 cm, 150 cm and 300 cm 

element size 

ES = Element Size 

 

R=30o/100 m subtended angle 
Internal Brace Element 1 Internal Brace Element 2 Internal Brace Element 3 Internal Brace Element 4 

Internal 
Brace 

Number ES=60 
cm 

ES=150 
cm 

ES=300 
cm 

ES=60 
cm 

ES=150 
cm 

ES=300 
cm 

ES=60 
cm 

ES=150 
cm 

ES=300 
cm 

ES=60 
cm 

ES=150 
cm 

ES=300 
cm 

1 13 14 19 5 6 11 -10 -11 -9 10 11 9 
2 22 22 28 19 19 23 -4 -4 -7 4 4 7 
3 20 21 32 1 2 17 -25 -25 -20 25 25 20 
4 34 35 47 30 30 37 -6 -6 -12 6 6 12 
5 27 28 46 -1 0 23 -38 -37 -29 38 37 29 
6 42 44 60 37 38 48 -7 -7 -16 7 7 16 
7 32 33 55 -3 -1 28 -46 -45 -36 46 45 36 
8 47 49 68 41 42 54 -8 -8 -19 8 8 19 
9 32 36 59 -4 -2 30 -50 -49 -39 50 49 39 

10 49 51 71 43 44 56 -8 -9 -20 8 9 20 
11 34 36 59 -4 -2 30 -50 -49 -39 50 49 39 
12 47 49 68 41 42 54 -8 -8 -19 8 8 19 
13 32 33 55 -3 -1 28 -46 -45 -36 46 45 36 
14 42 44 60 37 38 48 -7 -7 -16 7 7 16 
15 27 28 46 -1 0 23 -38 -37 -29 38 37 29 
16 34 35 47 30 30 37 -5 -6 -12 5 6 12 
17 20 21 32 1 2 17 -25 -25 -19 25 25 19 
18 22 22 28 19 19 23 -4 -4 -7 4 4 7 
19 14 14 19 5 6 11 -10 -11 -10 10 11 10 
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Figure 4.16:Internal Brace Member #1 Forces for the first 9 Internal Braces 

 

 

 

 As the 4-node element gives more conservative values compared with the 

9-node element when equal element sizes are used except the 300 cm element 

size, the 4-node element can be used at least in the preliminary design phase 

considering the time and memory advantages it offers.  

 

4.1.4 Cross-sectional Forces 

 In Chapter 2, it was explained that the program is able to calculate the 

shear force, bending moment and torsional force within a cross-section. When the 

bridge is straight no torsional stresses develop so the torsional moment is zero. 

When degree of curvature is increased gradually, the torsional moments tend to 

increase.  

 It is pleasing to state that, as expected, all the element types and element 

sizes implemented into the program perform successfully and similar results are 

obtained for all cases that fully agree with the statics. 
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4.1.5 Cross-sectional Stresses 

 The program is able to calculate the cross-sectional stresses at specified 

points within the cross-section. In Figure 4.17 the element integration points 

within the cross-section for which the cross-sectional stresses are computed are 

shown.  
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Figure 4.17: Locations Where the Cross-sectional Stresses are Computed 

 
 
 
 
 The program is able to calculate both normal and shear stresses at a 

specific location. In Figure 4.18, the variation of normal stress at 300 cm right of 

the left support for 0o/100 m subtended angle is plotted against the element size 

for both 4-node and 9-node element types at stress location 12.  
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Figure 4.18: Normal Stress vs. Element Size for 0o/100 m Subtended Angle 

for both 4-node and 9-node Element Types 

 

 

 

 As it can be seen on the above figure the 4-node element gives 

conservative values up to 100 cm element size, however after that the reliability of 

the element size declines. Also the 300 cm element size for the 9-node element 

deviates from the actual value which is around 20 MPa, therefore while using the 

9-node element for detailed analysis the element size should be at least half the 

panel length.  

 Similar arguments stated for the 0o/100 m subtended angle can be restated 

for the 30o/100 m subtended angle. As it can be seen in Figure 4.19 due to the 

torsional effects involved because of the increase in curvature, the cross-sectional 

normal stresses are almost doubled. 
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Figure 4.19: Normal Stress vs Element Size for 30o/100 m Subtended Angle 

for both 4-node and 9-node Element Types 

 

 

 

 The above discussion for the normal stresses can be extended for the shear 

stresses and similar conclusions can be drawn. 

 

4.2 Continuous Bridge Case 

 The second bridge analyzed is a three span continuous bridge of total 

length 150 m. The middle span is 60 m long and the side two spans are 45 m each. 

The cross-sectional dimensions are the same as the simply supported case but at 

the proximity of the negative moment region the plate thicknesses are doubled as 

shown in Figure 4.20. 
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Figure 4.20: Cross-sectional Dimensions at Negative Moment Regions 

 

 

 

 Negative moment regions are identified as 12 m to the right and to the left 

of the middle supports, so a total of 48 m bridge length is modeled using the 

above cross-section. At every 3.0 m except from the supports there is an internal 

brace, which make a total of 47 internal braces. The panel length is 3.0 m and for 

each panel there is a top lateral brace as in the simply supported bridge case. The 

total number of top lateral braces is 50 (Fig 4.21). 

 The concrete modulus and stud stiffnesses are taken as zero in order to 

simulate the girder behavior at early ages of concrete. 

 The   continuous bridge  is  analyzed  for  4  subtended  angles,  which  are 

namely straight, 10o/100 m, 20o/100 m and 30o/100.
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 The element size is taken as 60 cm, 100 cm, 150 cm and 300 cm. The 

analysis parameters are given in Table 4.10.  

 

Table 4.10: Analysis Parameters 
Subtended Angle(degrees/100 m) 0, 10, 20, 30 

Element Size(cm) 60, 100, 150, 300 

Element Type 4-node, 9-node 

 

 As it can be inferred from Table 4.10 a total of 32 runs are taken for the 

continuous bridge case. The supports are at 0 m, 45 m, 105 m and 150m. The 

uniformly distributed load on the bridge is 19 kN/m and the elastic modulus of the 

steel is 200 000 MPa. 

 As in the case of the simply supported bridge, the solution time and 

required physical memory are recorded and given in Table 4.11. 

 

Table 4.11: Solution Time and Required Memory 

Subtended 
angle/100 m 

Element 
type 

Element 
Size(cm)

Solution 
Time(sec) 

Required 
Physical 

Memory(MB) 

60 14.6 58 
100 8.7 36 
150 5.8 24 

4-node 
 
 
 
 300 2.9 3 

60 110.6 300 
100 61.2 180 
150 40.7 121 

0o 

9-node 

300 19.9 58 
 

 As the number of elements and nodes are same for all subtended angles, in 

Table 4.11 only the values for 0o/100 m subtended angle are given. The rest is 

similar. 

 In Table 4.11 it is seen that, when the 4-node element is used, the solution 

time decreases five fold from 60 cm element size to 300 cm element size but the 

required memory decreases about 20 fold. This is not the case for the 9-node 

element as shifting from 60 cm element size to 300 cm element size both the 
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solution time and required physical memory drop by five fold. In terms of solution 

time and required physical memory 4-node element performs better as expected.  

 

4.2.1 Deflections 

 A representative deflection profile along the bridge for 30o/100 m 

subtended angle, 9-node element and 300 cm element size is given in Figure 4.22. 
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Figure 4.22: Deflection Profile along the Bridge for 30o/100 m subtended 

angle, 9-node element and 300 cm element size 

 

 In Figure 4.23 maximum deflection is plotted against the element size for 

4-node and 9-node elements and 0o/100 m subtended angle. 

0 4.5 10.5 15.0
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Figure 4.23: Maximum Deflection vs. Element Size 

 

 

 

 From Figure 4.23 it is understood that in terms of deflections, when using 

the 9-node element, even the 300 cm element size perform very accurately. 

However when the 4-node element is used 300 cm element size fails but element 

sizes up to 150 cm are feasible as they give a little conservative but close values 

as the 9-node element.  

 The above discussion is valid for all subtended angles. The reason why the 

4-node element gives more conservative results was discussed in Section 4.1.1.1 

 

4.2.2 Top Lateral Brace Forces 

 The maximum top lateral brace forces for 0o/100 m subtended angle are 

drawn for both 4-node and 9-node elements and with respect to the element size 

are plotted in Figure 4.24. 
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Figure 4.24: Maximum Top Lateral Brace Force vs. Element Size 

 

 

 

 As it can be seen in the figure above, the 4-node element gives 

conservative values for all element sizes as compared with the 9-node element. 

For the 9-node element the 300 cm element size deviates from the correct value. 

Considering these, it can be stated that, while designing for the top lateral brace 

members and for the straight bridge case 4-node element can be used keeping in 

mind that it gives conservative values and while using the 9-node element for 

detailed design the element size should be at most half the panel length.  

 The same graph for the straight bridge is repeated for 30o/100 m subtended 

angle in Figure 4.25. 
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Figure 4.25: Maximum Top Lateral Force vs. Element Size 

 

 

 

 From the above figure it can be inferred that when the subtended angle 

increases, the 300 cm element size for both 4-node and 9-node elements become 

infeasible so it is recommended that while a curved bridge is analyzed, the 

element length should be at most half the panel length for both element types.  

 

4.2.3 Internal Brace Forces 

 Similar to the simply supported bridge case the maximum internal brace 

element force is observed in member 1 (Fig 4.13). The variation of this with 

respect to the element type and element size for 0o/100 m subtended angle is given 

in Figure 4.26. 



 119

0

5

10

15

20

25

60 100 150 300

Element Size(cm)

M
ax

im
um

 In
te

rn
al

 B
ra

ce
 

Fo
rc

e(
kN

)
4-node element 9-node element

 
Figure 4.26: Maximum Internal Brace Force vs. Element Size 

 

 

 

 Similar conclusions stated for the top lateral brace elements can also be 

drawn for internal braces, such as, when the bridge is straight both 4-node and 9-

node elements can be used if conservative results of the 4-node element is 

desirable. While performing detailed analysis with the 9-node element, 300 cm 

element size may give far higher results than the actual.  

 In Figure 4.27 the maximum internal brace element force is plotted for 

different element sizes and types for 30o/100 m subtended angle. From the figure 

it can be inferred that, as similar to the top lateral brace forces case, the 300 cm 

element performs poorly for both element types when the degree of curvature of 

the bridge increases. Therefore while analyzing the internal braces, the element 

size should be selected such that it is at most half the panel length.  
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Figure 4.27: Maximum Internal Brace Force vs. Element Size 

 

 

 

4.2.4 Cross-sectional Forces 

 As expected, similar to the simply supported bridge case, the program 

performs successfully while computing the internal forces, the vertical shear, 

bending moment and the torsion for all element types, element sizes and 

subtended angles.  

 

4.2.5 Cross-sectional Stresses 

 The discussion on cross-sectional stresses for the continuous bridge case is 

similar to the simply supported bridge case. The 4-node element gives 

conservative values up to 100 cm element size and after that the reliability of the 

element declines. Although the 9-node element gives more accurate results, for 

detailed analysis and design purposes it is recommended that element size should 

be selected such that it is at most 150 cm. 

 

4.3 Simply Supported Double-I Girder Bridge 

 The next bridge analyzed is a 60.0 m long double I-girder bridge 

consisting of 19 external braces each 3.0 m apart. There are 2 top lateral 
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braces(cross brace) for each panel, which make a total of 40 top lateral braces. 

The uniform loading on the bridge is 30 kN/m and the elastic modulus of the steel 

is 200 000 MPa. The cross-sectional dimensions are given in Figure 4.28 and plan 

view of the bridge is shown in Figure 4.29. 
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Figure 4.28: Cross-sectional Dimensions 

 

 

 

 The cross-sectional areas of the external braces are 20 cm2, and the cross-

sectional areas of the top lateral braces are 25 cm2. The studs are placed at every 

60 cm. The concrete modulus and stud stiffnesses are selected very close to zero 

in order to simulate the behavior of the girder under construction loading at early 

ages of deck concrete. 

 The bridge is analyzed for 4 subtended angles, which are namely straight, 

10o/100 m, 20o/100 m and 30o/100 m.  

 The element size is taken as 60 cm, 100 cm, 150 cm and 300 cm. The 

analysis parameters are given in Table 4.12.  
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Table 4.12: Analysis Parameters 
Subtended Angle (degrees/100 m) 0, 10, 20, 30 

Element Size(cm) 60, 100, 150, 300 

Element Type 4-node, 9-node 

 

 As it can be inferred from Table 4.12 a total of 32 runs are taken for the 

continuous bridge case. The supports are at 0 m and 60 m. 

 As in the cases of the simply supported bridge and continuous bridge, the 

solution time and required physical memory are recorded as given in Table 4.13 

for only 0o/100 m subtended angle. As the number of nodes and elements are 

same for different subtended angles, as long as the element size does not change 

the required time and memory will be the same. 

 

Table 4.13: Solution Time and Required Memory 

Subtended 
angle/100 m 

Element 
type 

Element 
Size(cm)

Solution 
Time(sec) 

Required 
Physical 

Memory(MB) 

60 6.4 25 
100 3.8 15 
150 2.6 3 

4-node 
 
 
 
 300 1.4 2 

60 42.5 118 
100 25.2 69 
150 16.7 46 

0o 

9-node 

300 8.3 23 
 

 Similar conclusions as those of the simply supported and continuous 

bridges can be drawn also here, as the 4-node element is utilized faster than the 9-

node element and the required physical memory is less. Also there is almost a 

linear dependence between the element sizes and required time and physical 

memory.  
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4.3.1 Deflections 

 The program calculates displacements for each girder. Representative 

deflection profiles along the bridge for 0o/100 m and 30o/100 m subtended angle, 

9-node element and 300 cm element size are given in Figure 4.30 and 4.31. 
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4.30: Deflection Profile Along the Bridge for 0o/100 m subtended angle, 9-

node element and 300 cm element size 
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4.31: Deflection Profile along the Bridge for 10o/100 m subtended angle, 9-

node element and 300 cm element size 
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 In Figure 4.30 the deflection profiles for girder 1 and girder 2 coincide. As 

it can be seen in Fig. 4.30 and Fig. 4.31 when the subtended angle thus the 

torsional moment increases different deflection profiles are observed.  

 In Figure 4.32 maximum deflection is plotted against the element size for 

4-node and 9-node elements and 0o/100 m subtended angle. 
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4.32: Maximum Deflection vs Element Size 

 

 

 

 As in the cases of the other bridges analyzed, 9-node element performs 

better than the 4-node and for all element sizes and the 4-node element is nor 

recommended for detailed design. However up to 150 cm element size the 4-node 

element gives conservative values, thus it may be used in preliminary analysis or 

may be used when there is time or memory limitation. 

The above discussion is valid for all subtended angles. The reason why the 

4-node element gives more conservative results for some element sizes was 

discussed in Section 4.1.1. 
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4.3.2 Top Lateral Brace Forces 

 The maximum top lateral brace forces for 0o/100 m subtended angle are 

drawn for both 4-node and 9-node elements and with respect to the element size 

are plotted in Figure 4.33. 
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4.33: Maximum Top Lateral Force vs. Element Size 

 

 

 

 As it can be seen in the figure above, the 4-node element gives 

conservative values up to 150 cm element size as compared with the 9-node 

element. Similar conclusions that were stated for the simply supported and 

continuous bridges are valid. 

 

4.3.3 External Brace Forces 

 Because of the geometry of the cross-section, there are no internal braces 

in double I-girder systems. Instead, external braces are used. In Chapter 2 the 

external braces were defined as in Figure 4.34. The external brace elements are 

composed of 5 truss elements and the numbering system is shown in the figure. 
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Figure 4.34: Typical External Brace Element 

 

 

 

In Figures 4.35 and 4.36 the maximum force in the members forming the 

external brace are shown for 0o/100 m and 30o/100 m subtended angle and for 4-

node and 9-node elements. The maximum force element is the element number 1 

for the specified cases. 
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Figure 4.35: Maximum External Brace Element Force for 0o/100 m 

subtended angle 
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Figure 4.36: Maximum External Brace Element Force for 30o/100 m 

subtended angle 

 

 

 

 The maximum force member for the 0o/100 m subtended angle is the 

member 1 of Figure 4.34 and for the 30o/100 m subtended angle is the member 4 

or 5 (these are equal force members in terms of magnitude). When the bridge is 

straight, the 4-node element behaves conservatively up to 150 cm element size. 

However if there is torsion the 4-node element is not reliable for all element sizes.  

 

4.3.4 Cross-sectional Forces 

 As it is expected, similar to the simply supported and continuous bridge 

cases, the program performs successfully while computing the internal forces, the 

vertical shear, bending moment and the torsion for all element types, element 

sizes and subtended angles.  

 

4.3.5 Cross-sectional Stresses 

 The discussion on cross-sectional stresses for the continuous bridge case is 

similar to the simply supported bridge case. The 4-node element gives 

conservative values up to 100 cm element size and after that the reliability of the 

element decreases. Although the 9-node element gives more accurate results, for 
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detailed analysis and design purposes it is recommended that element size should 

be selected such that it is at most 150 cm. 

 

4.4 Solver Type and Performance 

 As previously explained a direct sparse solver of Compaq Extended Math 

Library  (CXML) and an iterative sparse solver called ITPACK was implemented 

into the program. The direct solver, as the name implies, does not use any iterative 

technique but directly gives the desired displacement vector. On the other hand 

ITPACK uses iterative techniques to converge to the desired solution.  

ITPACK is a collection of seven FORTRAN subroutines for solving large 

sparse linear systems employing adaptive accelerated iterative algorithms.  The 

algorithms in ITPACK have been tested most extensively for linear systems 

arising from elliptic partial differential equations. ITPACK uses four major 

iterative solution techniques, which are the Jacobi method, the Successive 

Overrelaxation method, the Symmetric Overrelaxation method and the Reduced 

System method, and two acceleration procedures which are Chebyshev (Semi-

Iteration) and Conjugate Gradient for rapid performance. All the four methods 

listed cannot be combined with the mentioned two acceleration techniques so 

ITPACK includes seven subroutines which are Jacobi Conjugate Gradient (JCG), 

Jacobi Semi-Iteration (JSI), Successive Overrelaxation (SOR), Symmetric 

Successive Overrelaxation Conjugate Gradient (SSORCG), Symmetric 

Successive Overrelaxation Semi-Iteration (SSORSI), Reduced System Conjugate 

Gradient (RSCG) and Reduced System Semi-Iteration (RSSI). The user is able to 

select the method of choice and the solution is carried out accordingly.  

In the main program the required parameters for the method of solution are 

inputted and then the corresponding subroutine is called from the library of 

subroutines which is compiled as an independent FORTRAN file. The critical 

parameters of the iterative solvers which are common for all iterative techniques 

implemented are the Convergence Tolerance, which is denoted by rparm (1), and 

the Maximum Number of Iterations, which is denoted by ITMAX, in the program. 

The convergence tolerance determines the desired accuracy of the result. If the 

convergence tolerance is selected  relatively  small the  convergence time is higher 
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but the accuracy of the result increases. On the other hand if the maximum 

number of iterations is selected as a relatively small number the solver stops 

execution at that specified maximum number of iteration and the accuracy of the 

obtained result decreases. In order to obtain good performance from the solver 

given a specific method of iteration an optimum balance between time limit and 

degree of accuracy should be satisfied. 

 The matrix storage format of ITPACK is same as the direct sparse solver 

of CXML, which played an important role in selecting as the iterative solver. A 

detailed discussion on matrix storage format was discussed in Chapter 2.  

 

4.4.1 Direct vs. Iterative Solver: A Case Study 

In order to compare the direct and iterative solvers adopted into the 

program a generic bridge is selected and it is analyzed with both the direct and the 

iterative solvers. The bridge considered is a simply supported, 30 m long box-

girder bridge with 3.0 m panel length. There are 9 internal braces and 10 top 

lateral braces which is 1 for each panel. The stud and deck concrete stiffnesses are 

taken to be zero. The cross-sectional dimensions are same as those of the bridge 

of Figure 4.1. The elastic modulus of the steel is taken to be 200 000 MPa.  

The iterative subroutines that are used for solution are JCG, JSI, SOR, 

SSORCG and SSORSI subroutines. The RSCG and RSSI subroutines are not 

considered because they require a different matrix storage format for solution. 

Therefore the generic bridge is analyzed with CXML direct solver and five 

iterative methods of ITPACK. The maximum number of iterations is taken as     

10 000 and the following solution times are obtained  (Table 4.14). 

 

 

 

 

 

 

 

 



 131

Table 4.14: Solution Times of Solvers 

SOLUTION TIME(sec) 
Method of Solution  

Iterative(ITPACK) Converge 
Tolerance Direct 

(CXML) JCG JSI SOR SSORCG SSORSI 
1.00E-06 1.98 10.90 14.6 30.2 28.1 
1.00E-05 1.81   4.80 14.6   3.3 28.1 
1.00E-04 1.13   4.10 14.6   2.5 23.7 
1.00E-03 0.91   3.30 11.9   1.1   3.4 
1.00E-02 0.66   2.60   2.8   0.7   0.8 
1.00E-01 

0.7 

0.55   1.60   2.6   0.6   0.6 

  

Although the above solution times are reported not all the iterative solution 

subroutines converge to the true solution. In Table 4.15 the maximum deflection 

values obtained are given. 

 

Table 4.15: Maximum Deflections obtained using the Solvers 

MAXIMUM DEFLECTION(cm) 
Method of Solution  

Iterative(ITPACK) Converge 
Tolerance Direct 

(CXML) JCG JSI SOR SSORCG SSORSI 
1.00E-06 0.89 0.89 0.89 0.89 0.29 
1.00E-05 0.89 0.89 0.89 0.89 0.29 
1.00E-04 0.89 0.89 0.89 0.89 0.25 
1.00E-03 0.89 0.89 0.89 0.89 0.03 
1.00E-02 0.89 0.89 1.01 0.87 0 
1.00E-01 

0.89 

0.03 0.89 0.99 0 0 

  

As it can be seen on above two tables, the direct solver is faster than the 

iterative solver. Of the iterative solution techniques considered JCG is the fastest 

converging technique of all. However, as the convergence tolerance is increased 

for obtaining the results faster the JCG subroutine fails. JSI gives accurate results 

for all the convergence tolerance levels but the solution time is 3 to 5.5 times 

longer than JCG. SOR gives quite accurate results as compared with the SSORCG 

and SSORSI subroutines but the solution time is higher than the JSI subroutine. 

Considering the SOR subroutine the solution times are same for 1e-6, 1e-5 and 

1e-4 convergence tolerance levels because actually the maximum number of 

iterations, 10 000, is insufficient for the subroutine to converge for the specified 

convergence tolerance levels. The obtained maximum deflection results are far 
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below the correct value because the convergence tolerance exceeds the number of 

significant digits reported. Except for the 1e-6 convergence tolerance level the 

SSORCG subroutine seems fast but for 1e-2 and 1e-1 convergence levels it cannot 

converge to the true value. Among all the iterative subroutines, the SSORSI seems 

to be the poorest. This subroutine cannot converge to the true result for all 

convergence tolerance levels for 10 000 maximum number of iterations. In Table 

4.16 the maximum deflection values using SSORSI subroutine for 1e-6 

convergence tolerance level are shown for different maximum number of iteration 

(ITMAX) values.  

 

Table 4.16: Solution Times and Maximum Deflection for SSORSI Subroutine 

ITMAX Solution Time     
(sec) 

Maximum 
Deflection (cm) 

10 000 28.1 0.29 
20 000 55.7 0.49 
30 000 83.5 0.62 
40 000 111.3 0.71 
50 000 138.6 0.77 
60 000 166.1 0.81 
70 000 194.7 0.83 

 

 As ITMAX value is increased the SSORSI subroutine converges to the 

true result but the solution time increases unfeasibly.  

 Considering the above results it may be concluded that for the solution of 

symmetric sparse linear systems the direct solvers are more useful compared with 

the iterative solvers. The matrices produced by the assembly of shell elements are 

ill-conditioned which is an unfavorable condition for the iterative solvers. Also 

the bridge length is selected to be 30, which is fixed for all solver types, is a 

relatively short length. In practice such bridges are much longer and in the 

analysis of such bridges using the iterative solvers the error involved will be 

higher. Among the iterative solution techniques Jacobi Method with Conjugate 

Gradient acceleration technique is the most successful technique considering both 

the solution time and quality of convergence. The solution times and convergence 

qualities of the iterative solvers may be improved by changing the some 

parameters like convergence tolerance and maximum number of iterations but this 
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requires extensive research and familiarity of the methods which is beyond the 

scope of this work.  
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CHAPTER 5 
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 
 

 As they are manufactured and erected rapidly, composite bridge 

construction in highways have become more popular in the last decades. 

Consisting of single or multi box or I-girders at the bottom and concrete deck at 

the top, connected to each other with shear studs, internal, external and top lateral 

braces, these structural systems also offer strength, economy and aesthetics. After 

the composite action is achieved between the concrete deck and the steel girders, 

especially the trapezoidal box-girders have very high torsional stiffness and 

provide adequate strength. However, the problems arise before the deck concrete 

hardens and composite behavior is achieved through the shear studs. The stresses, 

originating from the wet concrete, cause girder failures.   

 In order to simulate the behavior of the bridge before the composite action 

is achieved a computer program employing Finite Element Method (FEM), called 

UTRAP was developed (Topkaya, Williamson 2003). This program is able to 

analyze the bridge for concrete pour sequence and the developed stresses and 

forces within the steel girders, internal and external braces and top laterals can be 

monitored at every stage of the construction. This program is able to analyze only 

the trapezoidal girders. The bridge is modeled with 9-node shell elements and the 

element size used for creating the finite element mesh is constant. Also the 

program is not able to analyze variable radius of curvature bridges. The solver 

adopted into the program was a direct solver of Compaq Extended Math Library 

(CXML). Finally the system of units that the program can support is only the 

Imperial System of units.  

 Keeping the limitations explained in mind, comprising the subject of this 

thesis work, the program UTRAP was improved. First of all, the program had a 

rigid structure that improvements cannot be easily be done. In order to overcome 

this, the program is restructured and converted into a state that improvements can 

easily be done whenever needed. I-girders are added to the program so that in 
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addition to the trapezoidal girders, single and double I-girders can also be 

analyzed with the program. A 4-node element was implemented in order to 

compare the performance of the 9-node and 4-node elements. The element size is 

stored as a variable in order to adjust the density of the finite element mesh can be 

adjusted. The program is improved so that it can analyze variable radius of 

curvature bridges which are commonly observed in practice. An iterative solver 

package, ITPACK, was adopted into the program in order to test the performance 

of iterative solvers and compare them with the direct solver. The system of units 

is arranged so that the user is able to work with any system of units he/she prefers. 

The improvements to the program are summarized in Table 5.1. 

 

Table 5.1: The Improvements of the Program 

UTRAP (2003) UTRAP (2005) 

Has a  rigid structures changes 

cannot be easily implemented 

 Has a flexible structure 

Element size is constant  Element size is variable 

Utilizes 9-node shell elements Utilizes both 9-node and 4-node shell 

elements 

Box Girders can be analyzed Box Girders and I-girders can be analyzed 

Constant curvature and straight 

bridges are analyzed 

 Variable curvature and straight bridges are 

analyzed 

The adopted solver is a direct sparse 

solver 

 In addition to the direct solver an iterative 

solver is adopted into the program 

Uses Imperial system of units  Uses imperial and metric system of units 

 

 In the first part of this thesis, the program structure is explained under pre-

processor, processor and post-processor headings. In the preprocessor module, the 

nodes and elements are generated and their material and geometric properties are 

assigned. In the processor module, the structural stiffness matrix and the load 

vector is formed by assembling the individual elements to the global system. The 

obtained structural stiffness matrix and the load vector are arranged to be 



 136

compatible with the matrix storage format of the solvers. After this the solution is 

carried out and the structural displacements are obtained. In the post-processor 

module, the structural displacements obtained in the processor module are post-

processed and the cross-sectional deflections, cross-sectional rotations, top lateral 

brace forces, internal brace forces, external brace forces, cross-sectional forces 

and cross-sectional stresses are obtained.  

 In the second part of the thesis, numerical modeling details are discussed 

and program verification with existing solutions are carried out. The details of the 

shell, truss and spring element formulations are explained. Also the required 

storage format of the matrices for the solvers are discussed. At the end of this part, 

the program is verified with published solutions.  

The third part of this thesis comprises the modeling recommendations for 

composite bridge analysis. For this part three bridges are taken with different 

geometric features, girder types, internal, external and top lateral brace 

configurations, variable curvatures along the length and some finite element 

modeling advices are given using the developed program. At the end of this part, a 

comparison is made between direct and iterative solvers and some performance 

measures are presented.  

In conclusion, the analysis capabilities of the program UTRAP were 

improved. With the improved capabilities the behavior of 4-node and 9-node 

elements, the convergence rates and accuracies of direct and iterative solvers were 

compared. Some parametric studies are conducted to provide modeling 

recommendations for the bridge designers using the developed software. In the 

future, live load analysis could be implemented into the program. New shell 

elements and steel girder types could be added. The maximum number of girders, 

which is limited to two in the current state, could be increased. It is assumed that 

there is no elevation difference between the supports of the bridges, however in 

the future elevation difference parameter can be added into the analysis. The 

cross-sectional dimensions could be variable along the bridge length which is now 

constant. The stiffener elements could be added and modeled with finite elements. 

The bridge ends could be dapped which is the common form in practice and 

finally superelevation could be added into the analysis. 
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APPENDIX – A SUBROUTINES LIST 
 
 In Table A1, the names of the subroutines in the program are listed 

together with the arguments and functions of the subroutines 

Table A-1: Subroutines List 
Subroutine name Arguments Function 

get_nnpcsec nnpcsec, ngird, isec_type, 
ielem_type 

Computes the number of 
nodes per cross-section 

get_coordinates 

ngird, isec_type, ielem_type, 
numnodes, xy, vai, qai, rai, 
al_segm, al_rcurv_segm, 

elemsize 

Calls the appropriate 
subroutines to compute the 
nodal coordinates and Q, R 

and V vectors 
get_xy111 
get_xy112 
get_xy121 
get_xy122 
get_xy211 
get_xy212 
get_xy221 
get_xy222 

xy, vai, qai, rai, numnodes, 
al_segm, al_rcurv_segm, 

elemsize 

Obtain the nodal coordinates 
of all nodes 

and obtain Q, R and V 
vectors for the specified 

cross-section 

get_shell_info 
n_elem_pcsec, 

n_nodes_pelem, n_dof_pnode, 
ngird, isec_type, ielem_type 

Returns the number of 
elements per cross-section, 
the number of elements per 
node and number of degrees 

of freedom per node for 
each of the 8 cross-section 

combinations 

elgen_shell 
nodes_shell, n_shell_elm, 

ndiv, ngird, isec_type, 
ielem_type 

Calls subroutines which 
form the shell elements by 
assigning the appropriate 
nodes for each of the 8 

cross-section combinations 
elgen_shell_111 
elgen_shell_112 
elgen_shell_121 
elgen_shell_122 
elgen_shell_211 
elgen_shell_212 
elgen_shell_221 
elgen_shell_222 

nodes_shell, n_shell_elm, 
ndiv 

Forms the shell elements by 
assigning the appropriate 
nodes for each of the 8 

cross-section combinations 

elgen_int_brace 

nodes_intbr, n_intbr_elm, 
aloc_int_brc, n_int_brc, ngird, 

isec_type, ielem_type, 
elemsize 

Calls subroutines that 
generates the internal braces 

for the 4 cross-sections 
having internal braces 
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Table A-1: Subroutines List (Continued) 
 

Subroutine name Arguments Function 
elgen_int_brace111 
elgen_int_brace112 
elgen_int_brace211 
elgen_int_brace212 

nodes_intbr, n_intbr_elm, 
aloc_int_brc, n_int_brc, 

elemsize 

Generates the internal 
braces for the specified 

cross-sections 

elgen_ext_brace 

nodes_extbr, n_extbr_elm, 
aloc_ext_brc, n_ext_brc, 

ngird, isec_type, ielem_type, 
elemsize 

Calls subroutines which 
form external braces for 

the 4 cross-sections having 
external braces 

elgen_ext_brace211
elgen_ext_brace212
elgen_ext_brace221
elgen_ext_brace222

nodes_extbr, n_extbr_elm, 
aloc_ext_brc, n_ext_brc, 

elemsize 

Generates the external 
braces for the specified 

cross-sections 

elgen_toplt 

nodes_toplt, n_toplt_elm, 
ktype_top_ltr, ielem_type, 

aloc1_top_ltr, aloc2_top_ltr, 
n_top_ltr, ngird, isec_type, 

elemsize 

Calls subroutines which 
form the top laterals for 

the 6 cross-sections having 
top lateral braces 

elgen_toplt111 
elgen_toplt112 
elgen_toplt211 
elgen_toplt212 
elgen_toplt221 
elgen_toplt222 

nodes_toplt, n_toplt_elm, 
ktype_top_ltr, aloc1_top_ltr, 

aloc2_top_ltr, n_top_ltr, 
elemsize 

Generates the top lateral 
braces for the specified top 

lateral brace members 

elgen_studs nodes_stud, n_stud_elm, 
ielem_type, isec_type, ngird 

Calls subroutines which 
form the studs for all the 8 

cross-sections 
elgen_studs111 
elgen_studs112 
elgen_studs121 
elgen_studs122 
elgen_studs211 
elgen_studs212 
elgen_studs221 
elgen_studs222 

nodes_stud, n_stud_elm, ncsec Forms the studs for the 
specified cross-section 

elgen_support 

nodes_support,  
n_support_elm, aloc_support, 

n_support, elemsize, ngird, 
isec_type, ielem_type 

Calls subroutines which 
form the supports for all 

the 8 cross-sections 

get_ncsec ndiv, ielem_type, ncsec Computes the number of 
cross-sections 
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Table A-1: Subroutines List (Continued) 
 
Subroutine name Arguments Function 
elgen_support111 
elgen_support112 
elgen_support121 
elgen_support122 
elgen_support211 
elgen_support212 
elgen_support221 
elgen_support222 

nodes_support, 
n_support_elm, 

aloc_support, n_support, 
elemsize 

 

Forms the supports for the 
specified cross-section 

gen_pinnodes 

aloc_support, n_support, 
nodes_pin, n_pin_nodes, 

elemsize, ngird, isec_type, 
ielem_type 

Calls subroutines which 
form the pinned nodes for 

all the 8 cross-sections 

gen_pinnodes111 
gen_pinnodes112 
gen_pinnodes121 
gen_pinnodes122 
gen_pinnodes211 
gen_pinnodes212 
gen_pinnodes221 
gen_pinnodes222 

aloc_support, n_support, 
nodes_pin, n_pin_nodes, 

elemsize 
 

Forms the pinned nodes for 
the specified cross-section 

form_plib 

prop_sh_lib, n_runs, nwebt, 
nbotft, ntft, n_deck, webt, 
botft, tft, conc_mod, deckt, 

steelmodulus 

Forms the property library 
for the shell elements 

form_prop 

iprop_sh_index, n_shell_elm, 
al_pour, n_deck, alwebt, 

nwebt, albotft, nbotft, altft, 
ntft, ngird, isec_type, 

ielem_type, elemsize, ndiv 

Calls the subroutines which 
assigns the shell properties 
for all the 8 cross-sections 

form_prop111 
form_prop112 
form_prop121 
form_prop122 
form_prop211 
form_prop212 
form_prop221 
form_prop222 

iprop_sh_index, n_shell_elm, 
al_pour, n_deck, alwebt, 

nwebt, albotft, nbotft, altft, 
ntft, elemsize, ndiv 

Assigns the shell properties 
by mapping the property 

library 

form_stpr 

prop_stud, n_runs, 
n_stud_elm, n_deck, al_pour, 

stud_stf, elemsize, ngird, 
isec_type, ielem_type, ncsec 

Calls subroutines which 
form the stud properties for 

all the 8 cross-sections 
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Table A-1: Subroutines List (Continued) 
 

Subroutine name Arguments Function 
form_stpr111 
form_stpr112 
form_stpr121 
form_stpr122 
form_stpr211 
form_stpr212 
form_stpr221 
form_stpr222 

prop_stud, n_runs, n_stud_elm, 
n_deck, al_pour, stud_stf, 

elemsize, ncsec 

Assigns the stud properties 
for the specified cross-

section 

form_std_mod 

stud_mod_fac, n_stud_elm, 
al_studsp, stud_sp, n_s_flange, 

n_studsp, elemsize, ngird, 
isec_type,  elem_type, ncsec 

Calls the subroutines which 
modify stud stiffnesses for 

all the 8 cross-sections 

form_std_mod111 
form_std_mod112 
form_std_mod121 
form_std_mod122 
form_std_mod211 
form_std_mod212 
form_std_mod221 
form_std_mod222 

stud_mod_fac, n_stud_elm, 
al_studsp, stud_sp, n_s_flange, 

n_studsp, elemsize, ncsec 

Modifies the stud 
stiffnesses for the specified 

cross-section 

gauss3x3 
gauss2x2 weights,xi 

Calculates the Gaussian 
Quadrature data for 

numerical integration for 9-
node and 4-node elements 

shaper9 
shaper4 xi,psi 

Computes the shape 
functions, first and second 

derivatives of the shape 
functions 

For the 9-node and the 4-
node elements 

form_ic 

ic, ne, n_shell_elm, 
n_intbr_elm, n_extbr_elm, 

n_toplt_elm,     n_stud_elm, 
n_support_elm, nodes_shell, 

nodes_intbr, nodes_extbr, 
nodes_toplt, nodes_stud, 

nodes_support, ielem_type, 
n_nodes_pelem 

Stores the node data of 
each element 

form_nonzero invinc, numnodes, ic, ne, 
nonzeros,  n_dof_pnode 

Locates and stores the 
nonzero entries of the 

structural stiffness matrix  
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Table A-1: Subroutines List (Continued) 
 

Subroutine name Arguments Function 

form_connect 
invinc, numnodes, ic, ne, 

icolumns, irowindex, 
nonzeros, n_dof_pnode 

Forms the element 
connectivity data by filling 

“irowindex” and “icolumns” 
vectors 

assemb_shell 

xy, vai, qai, rai, nodes_shell, 
n_shell_elm, numnodes, 

prop_sh_lib, n_runs, nwebt, 
nbotft, ntft, n_deck, 

iprop_sh_index, ssm, 
icolumns, irowindex, 

nonzeros, irun, 
n_nodes_pelem, n_dof_pnode 

Assembles the shell 
elements into the structural 

stiffness matrix 

assemb_toplt 

xy, nodes_toplt, n_toplt_elm,   
numnodes, prop_toplt, ssm, 

icolumns,  irowindex, 
nonzeros, n_dof_pnode 

Assembles the top lateral 
brace elements into the 

structural stiffness matrix 

assemb_intbr 

xy, nodes_intbr, n_intbr_elm, 
numnodes, prop_intbr, ssm, 

icolumns, irowindex, 
nonzeros, n_dof_pnode 

Assembles the internal brace 
elements into the structural 

stiffness matrix 

assemb_extbr 

xy, nodes_extbr, n_extbr_elm, 
numnodes, prop_extbr, ssm, 

icolumns, irowindex, 
nonzeros, n_dof_pnode 

Assembles the external 
brace elements into the 

structural stiffness matrix 

assemb_support 

xy, nodes_support, 
n_support_elm, numnodes, 
ssm, icolumns, irowindex, 
nonzeros, n_dof_pnode, 

steelmodulus 

Assembles the support 
elements into the structural 

stiffness matrix 

assemb_stud 

nodes_stud, n_stud_elm, 
n_runs, prop_stud, numnodes, 

ssm, icolumns, irowindex, 
nonzeros, irun, stud_mod_fac, 

n_dof_pnode 

Assembles the studs into the 
structural stiffness matrix 

apply_support 

nodes_pin, n_pin_nodes, ssm, 
nonzeros, irowindex, 

numnodes, ngird, 
n_dof_pnode, 

n_pin_nodespcsec 

Applies the boundary 
conditions 

assign_dist_load 

rhs, numnodes, al_pour, 
n_deck, dist_load, n_runs, 

irun, n_dof_pnode, elemsize, 
ngird, isec_type, ielem_type, 

ncsec 

Call subroutines that assign 
the distributed loading to the 

nodes for all the 8 cross-
sections 
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Table A-1: Subroutines List (Continued) 
 

Subroutine name Arguments Function 
assign_dist_load111
assign_dist_load112
assign_dist_load121
assign_dist_load122
assign_dist_load211
assign_dist_load212
assign_dist_load221
assign_dist_load222

rhs, numnodes, al_pour, 
n_deck, dist_load, n_runs, 

irun, n_dof_pnode, elemsize, 
ncsec 

Assigns the distributed 
loading to the nodes for all 

the 8 cross-sections 

l_r_shell3d02 - 
Forms the element 

stiffness matrix for shell 
elements 

get_trussk ek, coords, amatprop 
Forms the element 

stiffness matrix for truss 
elements 

get_intbrk ek, coords, amatprop 
Forms the element 

stiffness matrix for internal 
brace elements 

get_extbrk ek, coords, amatprop 
Forms the element 
stiffness matrix for 

external brace elements 

get_supportk ek, coords, amatprop 
Forms the element 

stiffness matrix for support 
elements 

get_studk ek, studstf Forms the element 
stiffness matrix for studs 

invert a, ainv, det Returns the inverse of the 
square matrix “a” 

solver ssm, irowindex, icolumns, 
rhs, uv, numnodes, nonzeros 

Calls the direct 
solver(CXML) 

solver_itpack 
ssm, irowindex, icolumns, 

rhs, uv, numnodes, nonzeros, 
n_dof_pnode, itype 

Calls the iterative 
solver(ITPACK) 

post_defl 
uv, numnodes, irun, ndiv, 

n_dof_pnode, elemsize, ngird, 
isec_type, ielem_type 

Calls the subroutines 
which post-process the 

solution vector to obtain 
the vertical deflections for 

all the 8 cases 
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Table A-1: Subroutines List (Continued) 
 

Subroutine name Arguments Function 
post_defl111 
post_defl112 
post_defl121 
post_defl122 
post_defl211 
post_defl212 
post_defl221 
post_defl222 

uv, numnodes, irun, ndiv, 
n_dof_pnode, elemsize 

Post-processes the solution 
vector to obtain the vertical 
deflections for the specified 

case 

post_rot 
uv, numnodes, ndiv, irun, 

botfl, n_dof_pnode, elemsize, 
ngird, isec_type, ielem_type 

Calls the subroutines to 
post-process the solution 
vector to obtain the cross-

sectional rotations for all the 
8 cases 

post_rot111 
post_rot112 
post_rot121 
post_rot122 
post_rot211 
post_rot212 
post_rot221 
post_rot222 

uv, numnodes, ndiv, irun, 
botfl, n_dof_pnode, elemsize 

Post-processes the solution 
vector to obtain the cross-
sectional rotations for the 

specified case 

post_toplt2 
xy, numnodes, nodes_toplt, 
n_toplt_elm,  prop_toplt, uv, 

irun, n_dof_pnode 

Post-processes the solution 
vector to obtain the top 

lateral brace forces for the 6 
cases having top lateral 

braces 

post_intbr 
xy, numnodes, nodes_intbr, 
n_intbr_elm, prop_intbr, uv, 

irun, n_dof_pnode 

Post-processes the solution 
vector to obtain the internal 
brace forces for the 4 cases 

having internal braces 

post_extbr 
xy, numnodes, nodes_extbr, 
n_extbr_elm, prop_extbr, uv, 

irun, n_dof_pnode 

Post-processes the solution 
vector to obtain the external 
brace forces for the 4 cases 

having external braces 

tr_axforce coords, displ, amatprop, 
axforce 

Calculates the top lateral 
forces by multiplying the 
member stiffness matrix 

with the structural 
displacements 
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Table A-1: Subroutines List (Continued) 
 
Subroutine name Arguments Function 

post_csec_for 

xy, vai, qai, rai, nodes_shell, 
n_shell_elm, numnodes, 

prop_sh_lib, n_runs, nwebt, 
nbotft, ntft, n_deck, 

iprop_sh_index, uv, nonzeros, 
irun, totallength, elemsize, 

ioutelem, n_dof_pnode, ngird, 
isec_type, ielem_type 

Calls the subroutines to 
calculate the cross-sectional 

forces for all the 8 cases 

post_csec_for111 
post_csec_for112 
post_csec_for121 
post_csec_for122 
post_csec_for211 
post_csec_for212 
post_csec_for221 
post_csec_for222 

xy, vai, qai, rai, nodes_shell, 
n_shell_elm, numnodes, 

prop_sh_lib, n_runs, nwebt, 
nbotft, ntft, n_deck, 

iprop_sh_index, uv, nonzeros, 
irun, totallength, elemsize, 

ioutelem, n_dof_pnode 

Calculates the cross-
sectional forces for all the 8 

cases 

post_sh_nfor9 

xy, vai, qai, rai, nodes_shell, 
n_shell_elm, numnodes, 

prop_sh_lib, n_runs, nwebt, 
nbotft, ntft, n_deck, 

iprop_sh_index, uv, nonzeros, 
irun, iel, ql, rl, vl, fl3, fl4, fl7, 
aml3, aml4, aml7, str22, str12 

Calculates the contribution 
of each shell element to the 
cross-sectional forces for 9-

node shell elements 

post_sh_nfor4 

xy, vai, qai, rai, nodes_shell, 
n_shell_elm, numnodes, 

prop_sh_lib, n_runs, nwebt, 
nbotft, ntft, n_deck, 

iprop_sh_index, uv, nonzeros, 
irun, iel, ql, rl, vl, fl3, fl4, 
aml3, aml4, str22, str12 

Calculates the contribution 
of each shell element to the 
cross-sectional forces for 4-

node shell elements 

l_r_shell3d02 - Forms the element stiffness 
matrix for shell elements 

l_r_shell3d03 - Forms the element stiffness 
matrix for shell elements 

l_r_shell3d04 - Forms the element stiffness 
matrix for shell elements 
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APPENDIX – B VARIABLES LIST 
 

In Table A2, the names of the variables, descriptions and types of them are 

given. 

Table A-2: Variables List 
 

Variable Name Description Type 
al_pour length of the concrete poured Real array of size(n_deck) 
al_rcurv_segm radius of curvature of a segment Real array of size(nsegm) 
al_segm length of the bridge segment Real array of size(nsegm) 
al_studsp length of the stud spacing 

intervals 
Real array of 
size(n_studsp) 

albotft length of bottom flange 
thickness change intervals 

Real array of size(nbotft) 

aloc_ext_brc location of the external braces Real array of 
size(n_ext_brc) 

aloc_int_brc location of the internal braces Real array of 
size(n_int_brc) 

aloc_support location of the supports Real array of 
size(n_support) 

aloc1_top_ltr starting coordinate of the top 
laterals 

Real array of 
size(n_top_ltr) 

aloc2_top_ltr ending coordinate of the top 
laterals 

Real array of 
size(n_top_ltr) 

altft length of top flange thickness 
change intervals 

Real array of size(ntft) 

alwebt length of web thickness change 
intervals 

Real array of size(nwebt) 

amatprop material properties of the shell 
elements  

Real array of size(12) 

area_ext_brc cross-sectional areas of the 
external braces 

Real array of 
size(n_ext_brc) 

area_int_brc cross-sectional areas of the 
internal braces 

Real array of 
size(n_int_brc) 

area_top_ltr cross-sectional areas of the top 
laterals 

Real array of 
size(n_top_ltr) 

botfl bottom flange length Real 
botft bottom flange thickness Real array of size(nbotft) 
cmd1 input heading  Character  
conc_mod modulus of elasticity of the 

concrete 
Real array of 
size(n_runs,n_deck) 

coords x,y,z coordinates of the shell 
elements  

Real array of size(3,9) 



 148

Table A-2: Variables List (Continued) 
 

Variable Name Description Type 
deckt deck thickness Real 
deckw deck width Real 
displ(5,9) nodal displacements of the shell 

elements  
Real array of size(5,9) 

dist_load distributed loading Real array of 
size(n_runs,n_deck) 

drb the multiplication the matrices to 
obtain the stresses 

Real array of size(9,45) 

dshapes derivatives of the shape 
functions 

Real array of size(2,9,16) 

dtheta internal variable used in the 
subroutine to form the curvature 
of the bridge along the length 

Real 

dummy variable used for calculating the 
program execution time 

Real 

ef force vector for the shell 
elements 

Real array of size(81) 

ek element stiffness matrix for the 
shell elements  

Real array of size(81,81) 

elemsize element size of the FEM Model Real 
ianalysis_type analysis type under different 

loading conditions 
Integer 

ic nodes of  all elements Integer array of 
size(0:9,ne) 

icolumns column numbers of the nonzero 
entries of the structural stiffness 
matrix 

Integer array of 
size(nonzeros) 

icsec_end internal variable used in the 
subroutine to form the curvature 
of the bridge along the length 

Integer Array of 
size(nsegm) 

icsec_segm internal variable used in the 
subroutine to form the curvature 
of the bridge along the length 

Integer Array of 
size(nsegm) 

icsec_start internal variable used in the 
subroutine to form the curvature 
of the bridge along the length 

Integer Array of 
size(nsegm) 

ielem_type type of the elements to be used 
in FEM analysis 

Integer 

inpcmd input heading  Logical array of size(20) 
invinc contains information about 

which node is connected to 
which element 

Integer Array of 
size(0:15,numnodes) 
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Table A-2: Variables List (Continued) 

 
Variable Name Description Type 

ioutelem an integer number for which the 
user specifies the results to be 
displayed for 

Integer 

iprop_sh_index property indexes for shell 
elements 

Integer array of 
size(n_shell_elm) 

irowindex row index numbers of the 
nonzero entries of the structural 
stiffness matrix 

Integer array of 
size(numnodes*n_dof_pno
de+1) 

irun Internal variable used as a 
counter for the number of runs 

Integer 

isec_type section type of the beams Integer 
isolver_type equation solver type Integer 
k_type_int_brc type of the internal braces Integer array of 

size(n_int_brc) 
ktype_ext_brc type of the external braces Integer array of 

size(n_ext_brc) 
ktype_top_ltr type of top laterals Integer array of 

size(n_top_ltr) 
n_deck number of different deck length 

when pouring concrete 
Integer 

n_dof_pnode number of degrees of freedom 
per node 

Integer 

n_elem_pcsec number of elements per cross-
section 

Integer 

n_ext_brc number of external braces Integer 
n_extbr_elem number of external braces Integer 
n_int_brc number of internal braces Integer 
n_intbr_elem number of internal braces Integer 
n_nodes_pelem number of elements per node Integer 
n_pin_nodes number of pinned nodes Integer 
n_runs number of program analysis runs Integer 
n_runs number of runs Integer 
n_s_flange number of studs per flange Integer array of 

size(n_studsp) 
n_shell_elem number of shell elements Integer 
n_stud_elm number of stud elements  Integer 
n_studsp number of stud spacings Integer 
n_support number of supports Integer 
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Table A-2: Variables List (Continued) 
 

Variable Name Description Type 
n_support_elm number of support elements  Integer 
n_top_ltr number of top laterals Integer 
n_toplt_elm number of top laterals Integer 
nbotft number of bottom flange 

thickness change intervals 
Integer 

ncsec total number of cross-sections Integer 
ndiv number of divisions(2 divisions 

per element for 9 node element 
and 1 division per element for 4 
node element) 

Integer 

ngird number of girders Integer 
nint number of integration points Integer 
nnode number of nodes Integer 
nnpcsec number of nodes per cross-

section 
Integer 

nodes_extbr nodes of external braces Integer array of 
size(4,n_extbr_elm) 

nodes_intbr nodes of internal braces Integer array of 
size(4,n_intbr_elm) 

nodes_pin node numbers of the pinned 
nodes 

Integer array of 
size(n_pin_nodes) 

nodes_shell nodes of shell elements Integer array of 
size(9,n_shell_elm or 
4,n_shell_elm) 

nodes_stud nodes of the studs Integer array of 
size(2,n_stud_elm) 

nodes_support nodes of the supports Integer array of 
size(4,n_support_elm) 

nodes_toplt nodes of top laterals Integer array of 
size(2,n_toplt_elm) 

nsegm number of segments having 
different radius of curvatures 
along the length 

Integer 

ntft number of top flange thickness 
change intervals 

Integer 

numnodes total number of nodes Integer 
nwebt number of web thickness change 

intervals 
Integer 

offset girder offset length Real 
prop_extbr properties of the external braces Real array of 

size(3,n_extbr_elm) 
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Table A-2: Variables List (Continued) 
 

Variable Name Description Type 
prop_intbr properties of the internal braces Real array of 

size(3,n_intbr_elm) 
prop_sh_lib property library for the shell 

elements 
Real array of 
size(n_runs,4,nwebt+nbotft
+ntft+n_deck) 

prop_stud properties of the studs Real array of 
size(n_runs,n_stud_elm) 

prop_toplt properties of the top laterals Real array of 
size(3,n_toplt_elm) 

prpject project name Character  
psi shape functions, first and second 

derivatives of the shape 
functions 

Real array of size (3,9) 

qai unit vectors defining shell 
geometry 

Real arrray of 
size(3,numnodes) 

qi vectors defining the shell 
geometry 

Real array of size(3,9) 

rai unit vectors defining shell 
geometry 

Real arrray of 
size(3,numnodes) 

rhs right hand side of the system of 
linear equations 

Real array of 
size(nonzeros) 

ri vectors defining the shell 
geometry 

Real array of size(3,9) 

segm_legth length of each segment having a 
different radius of curvature 

Real array of size(n_segm) 

shapes shape Functions Real array of size(9,16) 
ssm structural Stiffness Matrix Real array of 

size(numnodes*n_dof_pno
de) 

start variable used for calculating the 
program execution time 

Real  

steelmodulus modulus of Elasticity of Steel Real 
stud_mod_fac stud modification factor Real array of size 

(n_stud_elm) 
stud_sp stud spacing Real array of 

size(n_studsp) 
stud_stf stud stiffnesses Real array of 

size(n_runs,n_deck) 
tft top flange thickness Real array of size(ntft) 
tfw top flange width Real 
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Table A-2: Variables List (Continued) 
 

Variable Name Description Type 
theta internal variable used in the 

subroutine to form the curvature 
of the bridge along the length 

Real 

topl top length Real 
tot_length internal variable used in the 

subroutine to form the curvature 
of the bridge along the length 

Real 

totallength total length of the bridge after 
adjusting the element size 

Real 

totime variable used for calculating the 
program execution time 

Real 

uv structural displacements  Real Array of 
size(numnodes*n_dof_pno
de) 

vai unit vectors defining shell 
geometry 

Real arrray of 
size(3,numnodes) 

vi vectors defining the shell 
geometry 

Real array of size(3,9) 

webd depth of web Real 
webt web thickness Real array of size(nwebt) 
weights weights of the Gaussian 

Quadrature 
Real array of size(9) 

xi integration points of the 
Gaussian Quadrature 

Real array of size(2,9) 

xy x,y,z coordinates of the nodes Real array of 
size(3,numnodes) 
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APPENDIX – C USER’S MANUAL 
 
 

 As discussed previously the inputs to the program are entered through a 

text file named “utinp” which is in the same folder as the executable file of the 

program. After the execution of the program, the outputs are stored as individual 

text files. The output files are also stored in the same folder as the input file. Table 

A-3 lists the names of the outputs files and the description of information stored in 

them.  

 

Table A-3: The Outputs Files and Their Descriptions 

Output File Name Description of the Contents of the Output File 

axf0987 
The number of the top lateral braces and the top lateral 

brace forces. 

ebr0987 
The number of the external braces and the external brace 

forces at each element. 

ibr0987 
The number of the internal braces and the internal brace 

forces at each element. 

def0987 
The location along the bridge and the vertical deflection 

value at that specific location. 

rot0987 
The location along the bridge and the angular rotation 

value at that specific location. 

sec0987 
The location along the bridge and the shear force, bending 

moment and torsional moment at that specific location. 

str0987 
The location along the bridge and the normal and shear 

stresses at that specific location. 

 

 In Table A-4 a sample input file and the descriptions of the input fields are 

listed.  
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Table A-4: Sample Input File and Descriptions of the Input Fields (*) 

Input Field Description 

prname                                

“input file                  “ 
• name of the project. 

ngird 

2    
• number of girders, 1 or 2. 

elemsize 

150 
• element size, 150 cm in this case. 

steelmodulus 

20000000 

• elastic modulus of steel, 20 000 000 

N/cm2 in this case. 

no_of_segments 

3                                    

6000 , 1200 

6000, 0 

6000, -1200 

 

• number of segments with different 

radius of curvature, 

• segment length, radius (3, 6000 cm 

long segments, (-) sign indicates 

negative curvature 

section_type 

1   

• section type, 1 for box girder and 2 

for I-girder. 

secdim 

 230 , 190 , 305 , 36 , 712 , 20 , 230 

• section dimensions in cm (web depth, 

bottom flange width, top length, top 

flange width, deck width, deck thick, 

offset, respectively). 

webthick 

 3                                     

 6000 , 1 

 9000 , 2 

 3000 , 4 

• number of different web thicknesses 

along length, 

• length of segment, thickness. 

botfthick 

 2                                  

 7500 , 1 

 7500 , 2 

• number of different bottom flange 

thicknesses along length, 

• length of segment, thickness. 
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Table A-4: Sample Input File and Descriptions of the Input Fields 
(Continued) 

tfthick 

 4                                   

 4500 , 1 

 4500 , 2 

 4500 , 4 

 4500 , 5 

• number of different top flange 

thicknesses along length. 

• length of segment, thickness(in cm) 

internal_brace 

  8 

2000, 1 , 15 

4000, 1 , 15 

6000, 1 , 15 

8000, 1 , 15 

10000, 1 , 15 

12000, 1 , 15 

14000, 1 , 15 

16000, 1 , 15  

• number of internal braces, 

• location, type, cross-sectional area. 

external_brace 

 10 

2000, 1 , 20 

4000, 1 , 20 

6000, 1 , 20 

8000, 1 , 20 

10000, 1 , 20 

12000, 1 , 20 

14000, 1 , 20 

16000, 1 , 20  

• number of external braces, 

• location, type, cross-sectional area. 
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Table A-4: Sample Input File and Descriptions of the Input Fields 
(Continued) 

top_lateral 

 6        

 1 , 0 , 3000 , 25 

 2 , 3000 , 6000 , 25 

 1 , 6000 , 9000 , 25 

 2 , 6000 , 9000 , 25 

 1 , 9000 , 12000 , 25 

 2 , 12000 , 15000 , 25                       

• number of top lateral braces, 

• type, start location, end location, 

cross-sectional area. 

support 

 3       

 0 

 9000     

 18000 

• the number of supports. 

• support locations. 

element_type 

 1    

• element type, 1 for 9-node element 

and 2 for 4-node element. 

Studs 

 2      

 9000 , 200 , 2 

 9000 , 150 , 3 

• number of different stud �roperty

 es, 

• length, stud spacing, number of studs 

per flange. 

analysis_type 

1 

• analysis type, 1 for pour sequence 

analysis, the program supports only 

“1” in its present situation. 

solver_type 

2 

• solver type, 1 for direct solver and 2 

for iterative solver. 

pour_seq 

 1     

 1     

 600     

 0.00001 , 0.00001 ,190 

• number of runs, 

• number of deck segments, 

• length of the deck segment, 

• concrete modulus, stud stiffness and 

distributed load value. 
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Table A-4: Sample Input File and Descriptions of the Input Fields 
(Continued) 

outelmnum 

2 
• stress display per element. 

(*) Any consistent system of units can be entered. 


