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ABSTRACT 

 

 

NUMERICAL MODELING OF RE-SUSPENSION AND TRANSPORT OF 

FINE SEDIMENTS IN COASTAL WATERS 

 

 

KARADOĞAN, Erol 

M. S., Department of Civil Engineering 

Supervisor: Prof. Dr. Erdal ÖZHAN 

 

December 2004, 84 pages 

 

 

 In this thesis, the theory of three dimensional numerical modeling of 

transport and re-suspension of fine sediments is studied and a computer program 

is developed for simulation of the three dimensional suspended sediment 

transport. The computer program solves the three dimensional advection-

diffusion equation simultaneously with a computer program prepared earlier for 

the simulation of three dimensional current systems. This computer program 

computes the velocity vectors, eddy viscosities and water surface elevations 

which are used as inputs by the program of fine sediment transport. The model is 

applied to Bay of Izmir for different wind conditions. 

 

Keywords: Mathematical Model, numerical model, finite difference, 

finite element, sediment transport 
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ÖZ 

 

 

KIYI SULARINDA İNCE SEDİMENT TAŞINMININ VE ASILI HALE 

GELMESİNİN MATEMATİKSEL MODELLENMESİ 

 

 

KARADOĞAN, Erol 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Erdal ÖZHAN 

 

Aralık 2004, 84 sayfa 

 

 

 Bu tez çalışmasında, ince sediment taşınımının ve askı durumuna 

gelmesinin üç boyutlu modelleme kuramı incelenmiş ve üç boyutlu ince 

sediment taşınımını öykünen bir bilgisayar programi hazırlanmıştır. Bu 

bilgisayar programı üç boyutlu ilerlemeli yayılma denklemini; üç boyutlu 

akıntıların hesaplanması için daha önceden hazırlanmış olan bir bilgisayar 

programı ile birlikte eş zamanlı olarak çözmektedir. Bu bilgisayar programı, 

sediment taşınımı programına girdi olarak kullanılan akıntı hız vektörlerini, iç 

sürtünme katsayılarını ve su yüzeyi değişimlerini hesaplamaktadır.  Model eğişik 

rüzgar durumları için İzmir körfezine uygulanmıştır. 

 

Anahtar Sözcükler: Matematiksel modelleme, sayısal modelleme, sonlu 

farklar,  sonlu elemanlar, sediment taşınımı 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 Description of the Problem 

 

 Re-suspension and transport of fine sediment by waves and currents in 

estuarine and coastal seas is an important phenomenon for many reasons as they 

play a critical role in the functionality and health of these systems. Firstly the 

process may affect the quality of water column because of its links to biological 

and chemical processes. When bottom sediment is re-suspended, trace metals, 

nutrients and organic contaminants can be released into the water column, which 

in turn can limit the amount of light entering the water, reduce the water quality 

and suitability of habitats to numerous species. Also, with growing awareness of 

navigational and flooding problems, mechanism of sediment transport in 

estuarine and coastal seas has received considerable attention in recent years as it 

determines seabed morphology. The increased suspended sediment into the 

estuarine ecosystem may cause enormous economic burden for local 

communities for rectifying the situation and/or preserving the environment in a 

suitable state. 

 

 Numerical models that simulate transport of sediment are being 

constructed primarily to aid the development of management strategies as they 

predict distribution of concentrations of suspended sediments and their transport 

and fate in estuaries and coastal waters.  
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1.2 Scope and Extent of the Present Study 

 

 In this study, a three dimensional suspended sediment transport model is 

developed. The processes that the suspended sediment transport model considers 

are advective and diffusive transport, settling, deposition and re-suspension. Also 

the model may be advanced in order to take into account the processes of 

consolidation and flocculation. 

 

Modeling suspended sediment transport correctly requires a chain of 

modules   forming an integrated model. The suspended sediment transport model 

is utilized as a sub-model together with a comprehensive three dimensional 

hydrodynamic model that simulates sea currents and transport processes. The 

computer program of the hydrodynamic model (Balas and Ozhan 2001) is 

advanced by this study to include suspended sediment transport terms. 

 

 The hydrodynamic model computes sea level variations and water 

particle velocity distributions after simulating temperature and salinity variations 

and flows induced by wind, sea level differences and density gradients by 

solving the Navier-Stokes equations with the hydrostatic pressure distribution 

assumption and the Boussinesq approximation. As the turbulence model, the 

values of eddy viscosities and dispersion coefficients can be taken as constant or 

calculated utilizing the two-equation k-ε turbulence model. Hydrodynamic action 

is the most important mechanism involved in sediment transport. It advects the 

suspended sediments, provides the force needed to re-suspend from the bed and, 

through turbulence; plays a major role in the flocculation of cohesive sediments. 

 

 In this study, three-dimensional advection diffusion is solved 

simultaneously with three dimensional hydrodynamic model using implicit finite 

difference approximations. Velocity fields (distribution of advective velocities), 
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eddy viscosities (and dispersion coefficients) and bottom shear stresses are 

provided from the hydrodynamic model over the period of time considered for 

computations of the suspended sediment transport model. 

 

 The hydrodynamic and suspended sediment transport models are applied 

to the Bay of Izmir for the prediction of circulation patterns, distribution of 

suspended sediments and the sites of deposition and re-suspension. Izmir Bay is 

located at the west Anatolia–eastern Aegean Sea. Izmir Bay has a highly 

disturbed environment due to the rapid increase of the population and 

development of industry. Because of the untreated domestic and industrial 

wastes, atmospheric pollution, agricultural pollution, shipping, dredging 

activities in the harbor and the disposal of the dredged material to the outer bay, 

especially in the bay where the city of Izmir is located, the water quality in whole 

bay is seriously endangered. 

 

As a result, the computer program developed in this study is capable of 

computing the distribution of suspended sediment concentration over horizontal 

plane and along water depth, identifying re-suspension, deposition and 

equilibrium sites of the study area and evaluating possible changes in the sea bed 

morphology. Therefore, it is a predictive three dimensional model that can be 

used for contributing to management policies and implementations. 
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CHAPTER II 

 

 

LITERATURE SURVEY 

 

 

 

 Although flow structures and sediment circulation in coastal waters and 

estuaries are complex phenomena due to vertical gradients of suspended 

sediment generated from the settling velocity and the water–bottom interaction 

and only a three dimensional model seems to be appropriate to simulate their 

motions and patterns, most applications have been restricted to transport 

processes in one dimension (1D) or in two-dimensions (2D) until recently 

because of the complexity of the computations.  

 

One dimensional models have been frequently used to simulate sediment 

transport and large-scale morphological changes in rivers. Two dimensional 

models involve solving the depth integrated or depth averaged two-dimensional 

equations to describe governing suspended sediment transport processes (Lin and 

Falconer, 1996) and need much less data and computer resources in comparison 

with three-dimensional models. In general, the simpler models tend to be very 

useful for many practical engineering applications and economical but 

sometimes inaccurate because they have comparatively small run time and 

incorporate unrealistic simplifications. The main disadvantage of two-

dimensional suspended sediment transport models is absence of the value of near 

bed reference concentration, which is required to compute the sediment 

deposition or erosion rates.  
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In two dimensional models, the value of near bed reference concentration, 

which is required to compute the sediment deposition or erosion rate, must be 

related to depth averaged concentration. A common assumption made to relate 

reference sediment concentration with depth averaged concentration is that the 

ratio of near bed sediment concentration to the depth averaged concentration is 

equal to the corresponding ratio in the equilibrium state. This implies that the 

vertical sediment transport profile adjusts instantly to the equilibrium profile, 

with this approach therefore being limited to situations where the differences 

between the local true sediment profile and the local equilibrium profile are 

relatively small (Lin and Falconer, 1996). 

 

Three dimensional approaches are the most adequate for sediment 

transport modeling purposes. These models calculate local suspended sediment 

distribution using the advective-diffusion equation and directly relate the near 

bed concentration to the re-suspension or deposition of sediment.  

 

Nowadays, even with inexpensive computers, three dimensional models 

are feasible and capable of simulating the tide, wind and density forcing 

(Cancino and Neves, 1999a). (Nicholson and O’Connor 1986, Teisson 1992, Lin 

and Falconer 1996, Cancino and Neves 1999, Wu, Gerritsen et al. 2000, Roger 

and Falconer 2000, Douiler et al. 2001, van Ledden 2001). 
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CHAPTER III 

 

 

STATE OF THE ART OF NUMERICAL MODELING OF SUSPENDED 

SEDIMENT TRANSPORT 

 

 

 Three dimensional suspended sediment transport models solve transport 

equations for suspended sediments in addition to the hydrodynamic momentum 

and continuity equations. The model is capable of computing suspended 

sediment distributions, amount of eroded and deposited sediment together with 

water levels and water particle velocity distributions. The simplifying 

approximations of the hydrodynamic model are hydrostatic pressure distribution 

assumption and Boussinesq approximation. The main assumptions of the 

suspended sediment transport model are: 

o Water motion is not affected by the suspended sediment concentrations, 

o A uniform and time-independent bed roughness parameter; 

o Time and space independent settling velocity; 

o Uniform and time-independent sea bed factors that affect critical shear 

stresses. 

 

 

3.1 Governing Equations 

 

The governing three dimensional advection–diffusion equation 

(conservation equation) for suspended sediment where the vertical advection 

includes the particle settling velocity can be written as: 
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where, 

C  : Suspended sediment concentration, 

t  : Time, 

x,y  : Horizontal coordinates, 

z  : Vertical coordinate, 

u, v, w             : Velocity components in x, y and z directions at any grid 

locations in space respectively 

ws  : Settling Velocity 

Dx, Dy,Dz        : Turbulent diffusion coefficient in x, y and z directions 

respectively. 

 

 The governing hydrodynamic equations in the three dimensional cartesian 

coordinate system are as follows 

 

The continuity equation: 

y
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 The momentum equations in the orthogonal horizontal directions x and y: 
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and in vertical direction z: 

g
z

.ρρ
−=

∂
∂           (3.5) 

 

where, 

f  : Corriolis coefficient, 

P  : Pressure, 

ρo  : Reference density, 

xυ , yυ , zυ        : Eddy viscosity coefficients in x, y and z directions 

respectively, 

g  : Gravitational acceleration, 

ρ  : In situ water density.  

 

 Depth integrated continuity equation: 
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where, 

η  : Water surface elevation. 

h(x,y)  : Water depth measured from the undisturbed water surface. 

 

 

3.2 The Turbulence Model 

 

 The values of eddy viscosities and turbulent diffusion coefficients can be 

used as constant or be obtained from the two equation k-ε turbulence modeling. 
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The model equations for the kinetic energy and dissipation of the kinetic energy 

are: 
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where, 

k : Kinetic energy, 

ε : Rate of dissipation of kinetic energy, 

P : Stress production due to the kinetic energy, 

B : Buoyancy production of the kinetic energy, 

σk : A universal empirical constant (σk = 1), 

σε : A universal empirical constant (σε = 1.3), 

C1ε : A universal empirical constant (C1ε = 1.44), 

C2ε : A universal empirical constant (C2ε = 1.92), 

C3ε      : A non-universal empirical constant (If G>0 C3ε = 1 and If G<0 

C3ε = 0.2) (Balas,1998). 

 

 The buoyancy production of kinetic energy is defined by: 

 

zP
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ρ
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where; Pr is the turbulent Prandatl or Schmidth number. It is considered as a 

constant           (Pr = 0.7) (Balas, 1998). 
 9



 

 The stress production of the kinetic energy is defined by: 
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where, 

zυ  : Vertical eddy viscosity 

hυ  : Horizontal eddy viscosity 

 

 The ratio of the vertical length scale to the horizontal length scale is 

generally very slow and the vertical eddy viscosity-diffusivity terms are 

correspondingly several orders of magnitude larger than horizontal eddy 

viscosity-diffusivity terms. Therefore, in applying governing hydrodynamic and 

suspended sediment transport equations, it is important to prescribe the vertical 

eddy viscosities and diffusivities more accurately than for the corresponding 

horizontal terms (Lin and Falconer, 1996). The vertical eddy viscosity is 

calculated by: 

 

ε
υ µ

2

. kCz =         (3.11) 

where; Cµ is a universal empirical constant (Cµ = 0.09) (Balas, 1998). 

 

 Horizontal eddy viscosity can be simulated by the Smagorinsky algebraic 

sub-grid scale turbulence model (Balas, 1998): 
21222

.
2
1..01.0

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∆∆×=
y
v

x
u

y
v

x
uyxhυ     (3.12) 
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 The relationship between eddy diffusivities and viscosities are as follows: 

hhD υ=         (3.13) 

r

z
z P

D
υ

=         (3.14) 

where, 

Dz : Vertical eddy diffusivity 

Dh : Horizontal eddy diffusivity 

 

3.3   Settling Velocity 

 

Initially, the setting velocity of sediment (ws) is assumed to be constant in 

time and space. Settling motion of particles is effected by gravitational forces, 

viscous drag on particles and  interparticle interactions. Thus, it is related to the 

sand grain size, kinematic viscosity of water and ratio of densities of particle and 

water. Due to the ability of forming flocs, the settling velocity for mud is 

generally not constant in time and space but strongly depends on turbulent 

intensity and the mud concentration in the water column. It is recommended to 

include and analyse the effect of a time- and space-dependent settling velocity 

for mud in a following phase (van Ledden, 2001). 

 

For a given type of particles, the settling velocity may be derived from               

Stoke’s formula for non-cohesive particles with a diameter less than 100 µm as            

follows: 

( )
υ.18
..1 2

s
s

Dgs
w

−
=        (3.15) 

ws : Settling Velocity, 

s : Ratio of densities of particles and water ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

water

seds
ρ
ρ

, 

Ds : Representetive diameter of particles, 

υ  : Kinematic molecular viscosity of water, 

g : Gravitational acceleration. 
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 The particles that have representative diameter in the range of 64 µm and 

250 µm is considered as very fine sand. If the particle diameter is less than 64 µm 

then, it is considered as cohesive mud (silt and clay). Cohesive sediments, 

subject to surface electrochemical forces and inter-particle collision because of 

their small size, will flocculate, i.e. particles cluster in aggregates. As a result of 

floc aggregation, cohesive sediments settle by flocs rather than by individual 

particles (Teisson, 1991). It was found that the settling velocity of the flocs 

depended strongly on the suspended cohesive sediment concentration (Wu, 

Roger and Falconer, 1999). At moderate concentrations, the settling velocity 

increases with concentration but, for higher concentration settling is hindered, 

because water has to be expelled through the interstitial spaces of the continuous 

network of aggregates.  

 

 

3.4 Boundary Conditions 

 

 There are four types of boundaries; free surface, sea bed, open sea and 

coastal land boundaries. All boundary conditions are chosen to be time 

independent for reasons of simplicity. 

 

3.4.1 Free Surface 

 

 The water velocity gradient below the sea surface is caused by wind 

induced shear stress at the sea surface: 

ρ
τ

υ xwind
zz

u ,. =
∂
∂  , 

ρ
τ

υ ywind
zz

v ,. =
∂
∂      (3.16) 

where, τwind,x and τwind,y are wind shear components in x and y directions; ρ is 

water density. 
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 The wind induced shear stress at the sea surface is expressed as: 

[ ] [ ] 22.,.., wwwwdawywx vuvuC += ρττ      (3.17) 

 

where, 

uw,vw   : Wind velocity components (m/s) in x and y directions, 

ρa  : Air density, 

Cd  : Drag coefficient of air. 

 

 The formulation for drag coefficient: 

 

( )⎩
⎨
⎧

≤≤××+
<×

=
−

−

smWsmW
smW

Cd /25/1110065.049.0
/11102.1

3

3

    (3.18) 

where, W is the wind velocity (m/s). 

 

 The sea surface boundary condition for kinetic energy and its rate of 

dissipation when there exists wind shear is as follows: 

µC
u

k s
s

2
*=  ; ⎣ ⎦

s

s
s z

u
∆

=
.

3
*

κ
ε       (3.19) 

where, 

u*s : Surface shear velocity, 

κ : von Karman constant (κ = 0.42), 

∆zs : Distance from the surface to the first grid point below. 

 

 Shear velocity is defined as: 

ρ
τ wx

sxu =*         (3.20) 

 

 At the free surface the net vertical sediment flux was assumed to be zero, 

i.e. there is no exchange of particles through surface: 
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( )[ ]surfacesz Cww
z
CD .−=
∂
∂       (3.21) 

 

 

3.4.2 Sea Bed 

 

At the sea bed, the bottom shear stress is determined by matching 

velocities with the logarithmic law of wall: 

 

22
0 .... bbbf

b
zbx vuuC

z
u

+=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= ρυτ  

22
0 .... bbbf

b
zby vuvC

z
v

+=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= ρυτ       (3.22) 

where, 

τbx, τby  : The bottom shear stress components, 

ub, vb               : Horizontal velocity components at the grid point nearest to 

the sea bottom, 

Cf  : Empirical coefficient for bottom friction. 

 

The sea bed boundary condition for kinetic energy and its rate of 

dissipation when there exists wind shear is as follows: 

 

µC
u

k b
b

2
*=  ; ⎣ ⎦

b

b
b z

u
∆

=
.

3
*

κ
ε       (3.23) 

 

It is assumed that, when bottom friction is smaller than a critical value for 

deposition, there is addition of matter to the bottom, and, when the bottom shear 

is higher than a minimum value, erosion occurs. Between those values, erosion 

and deposition balance each other. 
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At the bottom the boundary condition is that the fluxes of particles 

between the sea floor and water column is as flows: 

 

( )DE
z
CDCw zbeds −=
∂
∂

−− .       (3.24) 

 

where, 

D, E               : Sediment transport rates through deposition and re-

suspension, respectively 

 

 

3.4.2.1  The Deposition Model 

 

Deposition is calculated as the product of the settling flux and the 

probability of a particle to remain on the bed: 

For dττ ≤   ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

∂
∂

d

b
s

D bCbwD
t

M
τ
τ

1..  

For dττ >   0==
∂

∂ D
t

M D         (3.25) 

 

where, 

τd  : Critical shear stress for deposition, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

d

b

τ
τ1          : The probability of a settling particle becomes attached to 

the bed. 

 

 

 The formulation is based on the assumption that a particle reaching the 

bottom has a probability of remaining there that varies between 0 and 1 as the 

bottom shear stress varies between its upper limit for deposition and zero, 

respectively. 
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The critical shear stress for deposition depends mainly on size of 

particles/flocs. Bigger particles have higher probability of remaining on the bed 

than smaller particles. Nevertheless, previous works suggest that a constant value 

is a reasonable approximation (Cancino and Neves, 1999a). 

 

 

 

3.4.2.2  The Re-suspension Model 

 

 Erosion or re-suspension of bottom sediments is one of the most 

important factors controlling the fine sediment transport in natural water bodies. 

Far from lateral sources and sinks of materials, and in the absence of biological 

production, erosion is the major source for suspended particles in the water 

column. Re-suspension is a common physical process that occurs everywhere in 

the marine environment, both in shallow coastal areas and in the deep sea. Re-

suspension occurs when shear stress (friction of the water against the bottom), is 

high enough to lift the sediment particles. Thus, re-suspension also leads to a 

transport of particles along the sea floor with currents.  

 

 There is general agreement that bottom shear stress exerted by currents 

and waves are dominant forces causing re-suspension. Also, the site specific 

sediment characteristics like particle size distribution, particle density, 

cohesiveness, water content etc. control resistance to re-suspension. In the 

generally accepted re-suspension rate formulation of Partheniades, the site 

specific sediment characteristics are represented with erosion rate constant: 

 

For  eττ ≥  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

∂
∂

1.
e

bE keE
t

M
τ
τ  

For eττ <   0==
∂

∂
E

t
M E          (3.26) 
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Critical shear stress for erosion is a function of the degree of compaction 

of bottom sediments measured by the dry density of the bottom sediments:  ratio 

between the mass of sediment after extraction of the interstitial water at 105 C 

and its initial volume (Nicholson and O’Connor, 1986). In some applications 

threshold current velocities are used instead of critical shear stresses. One of the 

main difficulties in sediment transport modeling is the method of obtaining the 

re-suspension and deposition thresholds and the erodability constant. Thus, in 

previous applications they are selected by trial and error in such a way that they 

produce the best fit of model results to observations, although parameters must 

be physically realistic. 

 

 

 

 

3.4.3 Coastal Land Boundary and Open Sea Boundary 

 

 In the case of outgoing flux at the lateral boundaries and at bank 

boundaries, a Neumann condition is imposed: 

0;0 =
∂
∂

=
∂
∂

y
C

x
C        (3.27) 

 

For inflow conditions at the open boundaries, the concentrations have to 

be specified. At open sea boundaries, generally a value of concentration is 

imposed. At coastal land boundaries, in the case of inflow flux condition, an 

equilibrium sand concentration profile is used. 
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CHAPTER IV 

 

 

NUMERICAL SOLUTION 

 

 

4.1 Numerical Solution Scheme 

 

 The governing hydrodynamic equations and advective-diffusive transport 

equation for suspended sediments are solved by utilizing a composite finite 

differences and finite element method. The governing equations, written in the 

Cartesian co-ordinates, are solved by the Galerkin weighted residual method in 

the vertical plane and by finite difference approximations in the horizontal plane, 

without any co-ordinate transformation. The water depths are divided into the 

same number of layers following the bottom topography. Therefore, the vertical 

layer thickness is proportional to the local water depth at all nodal points (Balas 

and Özhan, 2000). 

 

 The solution domain is divided into finite elements along the water depth. 

The next step is to develop equations to approximate the solution for each 

element. First of all, an approximate function with unknown coefficients must be 

chosen.  Secondly, the coefficients must be evaluated, so that the function 

approximates the solution with an optimal fashion, i.e. minimum errors. The 

simplest alternative is the use of first order polynomial: 

 

( ) zaazG .10 +=        (4.1) 

where G(z) is the dependent variable, z is independent variable, a0 and a1 are the  

coefficients 
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This function must pass through the values of G(z) at the beginning (z1) 

and (z2) end points of the element.  

 

1101 .zaaG +=   2102 .zaaG +=       (4.2) 

 

where, G1 and G2  are values of the function at the beginning and end of the 

element. 

 

 For the finite element method, the values of the dependent variable G are 

written in terms of discrete values of this variable at the vertical nodal points by 

using linear shape functions: 

 

GG ~
→  kk GNGNG 2211 ..~

+=       (4.3) 

 

where, 

G~   : The approximation or shape function, 

k  : The number of the element 

N1, N2  : Interpolation functions  

kl
zzN −

= 2
1  , 

kl
zzN 1

2
−

=       (4.4) 

where, lk is the length of kth element ( )12 zzlk −= . 

 

 The approximate expressions for variables are substituted into governing 

equations. Since Equation (4.3) is an approximation , not the exact solution, there 

will be residuals (errors) in each of the equations. Resulting residuals (R), are 

minimized by using the Galerkin procedure as follows (Balas, 1998): 

0..
2

1

=∫
z

z
i dzNR   for i = 1,2      (4.5) 
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When the integrals of the functions are to be performed, all the horizontal 

gradient terms are replaced by finite difference expressions. The finite difference 

scheme is illustrated below: 

 

 
Figure 4.1. Finite difference molecule for computations of all other variables 

except horizontal velocities (Symbols represent the variables as follows: u ○, v □, 

all other variables *) (Balas, 1998). 

 

4.2 Global Matrices 

 

 The governing equation for the dependent unknown variable G can be 

considered as follows: 

 

0=+
∂
∂ F

t
G        (4.6) 

 

 In the above equation, the term F denotes the part of the equation that 

does not include time derivative terms. After the application of Galerkin 
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weighted residual method for the vertical plane, the error is minimized as 

follows: 

RF
t
G

=+
∂
∂ ~~

       (4.7) 

 

∫∫∫ ≅=+
∂
∂ 2

1

2

1

2

1

0....~..
~ z

z
i

z

z
i

z

z
i dzNRdzNFdzN

t
G  for i = 1,2    (4.8) 

 

( )

( )
∫∫

∫∫

−=
∂
+∂

−=
∂
+∂

2

1

2

1

2

1

2

1

..~..
..

..~..
..

22
2211

11
2211

z

z

z

z

z

z

z

z

dzNFdzN
t

NGNG

dzNFdzN
t

NGNG

     (4.9) 

 

∫∫∫

∫∫∫

−=
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

2

1

2

1

2

1

2

1

2

1

2

1

..~.....

..~.....

2
2

2
2

21
1

121
22

1
1

z

z

z

z

z

z

z

z

z

z

z

z

dzNFdzN
t

G
dzNN

t
G

dzNFdzNN
t

G
dzN

t
G

  (4.10) 

 

After obtaining the integrals of shape functions and the replacement of   

derivative terms with respect to horizontal coordinates appearing in the equations       

with their finite difference approximations, the local matrices and vectors 

describing    the non-linear equations for each of the element k over water depth 

are obtained as below: 

 

( )

( )kA
t

Gl
t

Gl

kA
t

Gl
t

Gl

k
k

k
k

k
k

k
k

,2.
3

.
6

,1.
6

.
3

21

21

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

     (4.11) 

 

 The local element matrices for all elements along the water depth are 

grouped together to form the global matrix equation for the unknown nodal time 
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derivatives of the variables at a grid point on the horizontal plane. Every nodal 

point, except the nodal points at the sea bed and sea surface, is at the end point of 

the element k and at the beginning point of the element k+1. 

 

For the boundary conditions, if the gradients of a variable are known at 

sea surface and sea bottom ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

z
G

z
G m

2
1
1 ,  as for the advection – diffusion 

equation of suspended sediment transport, the system of equations are written as 

follows: 

 

( )

( )

( )

( )

( )

( )

( )12.4

.,2.
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.
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,1.
6

.
3

.....
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∂

 

 

where, Dz represents eddy viscosity or turbulent diffusion constant, the subscripts 

show the matrix element location and superscripts show the layer for which the 

equation is written. In its general form, the global matrices are written as follows: 
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 If the value of the variable is known at the sea bottom (G1
1) and the 

gradient of the variable is known at the sea surface ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

z
G m

2  as the momentum 

equations in the orthogonal horizontal directions, then the global matrices are 

written as follow: 
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 If the values of the variables at the sea surface and sea bottom ( )mGG 2
1
1 ,  as 

the model equations of k-epsilon turbulence model, then the global matrices are 

written as follow: 
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 After the values of terms that does not include time derivatives in the 

equation are obtained at each nodal point, the values of the unknown variables at 

the new time step are calculated by solving equations either explicitly or 

implicitly. 

 

 For the explicit solution, the system of non-linear equations are solved by 

the adaptive step size controlled Runge - Kutta Fehlberg Method (Chapra and 

Canale, 1989). The Runge - Kutta Fehlberg Method requires six function 

evaluations per time step. After defining a local error tolerance (E) and an initial 

step size, the maximum error in simultaneous equations is estimated. If the 

estimated maximum error is greater than the local error tolerance, the step size is 

reduced to its half value until the estimated maximum error falls below the local 
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error tolerance. If the estimated maximum error is less than 
10
E , the step is 

doubled until the error is raised to within accepted range, i.e. EEE
<< max10

. 

 

 For the implicit solution, the equations are solved by the Crank Nicholson 

Method which has second order accuracy in time. The Crank Nicholson Method 

develops difference approximations at the mid point of the time step. The 

temporal first derivative is approximated at ⎟
⎠
⎞

⎜
⎝
⎛ +

2
1t  and all other variables and 

derivatives at this time are determined by averaging the difference 

approximations at the beginning (t) and at the end (t+1) of the time increment. 

Resultant set of implicit equations are solved by an iterative method, which is 

controlled by under – relaxation in order to hasten convergence by dampening 

out oscillations (Balas, 1998). 

 

 

4.3 The Computer Program 

 

 The computer program is written in Fortran 95 and Matlab R13 program 

languages. The program utilizes some of the most modern computer hardware 

and software and is available for personal computers with Windows 98, 

Windows NT, Windows XP and various workstations of UNIX and LINUX. 

Also, for preparing data and analyzing the results of simulation, a software, that 

is utilized for graphical presentation, is developed. 

 

 The program consists of three steps. Each step is executed consecutively 

and independently. 

 

 The first and last steps of the program are written in Matlab R13. Matlab 

enables the user to identify interesting concepts and useful techniques in 

 25



 26

scientific visualization. The first step takes the input values and calls initial 

values of all variables that are going to be computed at an advanced time step. 

The program can take the input data through a series of interactive execution or 

by preparing command files. In that step, the user can view the appropriate input 

data graphically to check them and give some of the input data by pointing the 

mouse on graphics. At the end of the first step, an input file, that contains 

sufficient data to start computations, is created.    

 

The second step is computational part of the program and it is written in 

Fortran 95 because Fortran takes significantly less CPU time than Matlab does 

for calculations. After the termination of the program that takes input values (the 

first step), the computational part reads the input file and starts to make 

computations. The set of non-linear equations are solved depending on the 

specifications in the input data file. The output data is stored at desired time steps 

during the computations together with the values at end of final time. The block 

diagram of the computational program is illustrated in Figure 4.2. 

 

The last step of the program provides the graphics of the data stored at 

desired time steps during the computations. After the termination of 

computational part of the program (the second step), the program reads the 

output files.  Last step is interactive too. The user can modify the appearance of 

the graphics using various options. An example of obtaining input data and 

getting the output graphics utilizing interactive menu systems is shown in 

Appendix C. 

 

 

 

 

 

 

 



 
Figure 4.2. Block Diagram of the Computer Program 
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4.3.1 The Computational Part of the Program 

 

 The three dimensional mathematical model developed in this dissertation, 

consists of three sub-model problems: the hydrodynamic sub-model, the 

turbulence sub-model and suspended sediment transport sub-model. 

 

 The computer program prepared by Balas that computes the full spatial 

distribution of velocities of unsteady flow induced by wind, tide or water density 

differences forms the hydrodynamic sub-model (Balas, 1998). This program is 

modified to include suspended sediment transport component so that they will 

run simultaneously with each other. 

 

 The sub-programs of computational part of the program are as follows: 

• Subroutine READ_MAIN: This routine reads the following data before 

calling the main program: 

o the bathymetry of coastal area, 

o the number of grid points on the horizontal plane and over the water 

depth, 

o the horizontal mesh lengths, 

o the start time, the final time and the time increment, 

o wind characteristics, 

o coriolis coefficient, 

o empirical coefficient for bottom friction, 

o critical shear stress for deposition and re-suspension, 

o re-suspension rate coefficient. 

• Subroutine MAIN_PRO: This sub-routine calls following subroutines 

before starting to make computations and storing output data at desired 

time steps: 

o  Subroutine COMP_AREA: Specifies the configuration of the 

coastal area 
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o Subroutine INI_HYDRO: Specifies the initial values of flow 

velocities and water elevations 

o Subroutine INI_SSTM: Specifies initial values of suspended 

sediment concentration and the boundary condition of suspended 

sediment transport model at the sea bed. 

o Subroutine COMPUTE_W_FALL: Gives the sediment fall velocity 

o Subroutine WIND: Specifies the hydrodynamic boundary condition 

at the sea surface.  

• Subroutine RKFSYS_SSTM: The set of nonlinear equations are solved by 

the adaptive step size controlled Runge Kutta Fehlberg Method explicitly. 

The flow chart of the program is shown in Figure 4.3. This program calls 

subroutines DER_HYDRO, BED_SHEAR, DER_SSTM and 

CHECK_VALUES. 

• Subroutine DER_HYDRO: In this subroutine values of time derivatives of 

hydrodynamic terms are calculated. 

• Subroutine BED_SHEAR: This subroutine gives bottom shear stress. 

• Subroutine DER_SSTM: In this subroutine values of time derivatives of 

suspended sediment transport model terms are calculated. 

• Subroutines HYDRO_INI and SSTM_INI: These subroutines sets the 

initial values of the variables, whose time derivatives are calculated, at 

the start of each time step. 

• Subroutine COMPUTE_W: In this subroutine, the continuity equation 

(Equation 2.2) is solved to give vertical flow velocities. 

• Subroutine VEL_DEP_INTEG: This subroutine gives the average values 

horizontal velocities along the water depth. 

• Subroutine DEP_ERO: In this subroutine, values of re-suspension and 

deposition rates are calculated. 

• Subroutines COMPUTE_U_DER and COMPUTE_V_DER: These 

subroutines call MOMENT_X, MOMENT_Y, BOT_VAL_SUR_GRAD and 

THOMAS. 



• Subroutines MOMENT_X and MOMENT_Y: These subroutines, in order 

to calculate the values time derivative terms calculate the right hand side 

of the momentum equation in x direction (Equation 2.3) and the 

momentum equation in y direction (Equation 2.4). These are the elements 

of the local matrices [ ]A  for each of the element k over the water depth 

(Equation 4.11). 

• Subroutine ADV_DIFF_SUS: This subroutine  gives the right hand side 

of the conservation equation for suspended sediment (Equation 4.1). 

• Subroutine BOT_VAL_SUR_GRAD: This function gives the elements of 

local vector on the left hand side of an equation if the value of the 

variable is known at the sea bed and the gradient of the variable is known 

at sea surface. 

• Subroutine BOT_GRAD_SUR_GRAD: This function gives the elements 

of local vector on the left hand side of an equation if the gradients of the 

variable is known at sea surface and at the sea bed. 

• Subroutine THOMAS: This subroutine calculates the values of unknown 

variables in equation using Thomas algorithm. 

 

 

 

 

 

 30



 31

 

 

 

CHAPTER V 

 

 

APPLICATION OF THE PROGRAM TO THE BAY OF IZMIR 

 

 

5.1 General Description 

 

Izmir Bay is a micro-tidal bay situated at the western coast of the 

Anatolian peninsula between latitudes of 38o20’ and 38o42’ N and longitudes of 

29o25’ – 27o10’ E, and is connected to the Aegean Sea. The bay is roughly ‘‘L’’ 

shaped. The leg of the ‘‘L shape’’ is about 20 km wide and 40 km long, and the 

base of the ‘‘L’’ is about 5 – 7 km wide and 24 km long.  

 

The Bay of Izmir has been divided into three areas according to their 

physical characteristics. These are Outer Bay, Middle Bay and Inner Bay. The 

Outer Bay is about 20 km wide at the east of Karaburun and extends 45 km in 

northwest-southeast direction. The Central Bay and Inner Bay extend in a west–

east direction, and are together 24 km long and 6 km wide. The Outer Bay is 

further divided into three sub-regions, Outer I, Outer II and Outer III. There are a 

series of islands parallel to the west coast of the Bay. The narrow Mordogan 

Strait, which is situated between Uzunada Island and the west coast of the Bay 

(Outer II), has a sill depth of 14 m. From time to time, Aegean Sea surface water 

can flow in the surface layer through the narrow Mordogan Strait into the small 

Gulbahce Bay, which is situated at the southwest end of the Izmir Bay (Sayin, 

2003). Another very important narrowness is the Yenikale Strait between the 

Inner Bay and the Middle Bay. The physical and chemical characteristics of 

water change drastically both sides of the Yenikale sill (Sayin, 2003). The inner 
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bay, which is the shallowest part of the bay, exhibits a limited water exchange 

with the middle bay. The depth of the bay increases towards the middle and 

outer bays and reaches a maximum at the exit of the outer bay. The maximum 

depths of the inner, middle and outer bays are 20, 45 and 72 m, respectively 

(Figure 5.1). 

 

The circulation of the surface water in Izmir Bay varies according to the 

prevailing winds. Tides are semidiurnal (range between 0.2 and 0.5 m) and do 

not constitute the major forcing agent that shape the water circulation in the bay. 

The eighty five percent of the energy necessary for the advection, mixing and 

dispersion is obtained from the wind, while the residual fifteen percent is 

supplied by tides (Duman et. al., 2004). 

 

The Bay of Izmir region is under the influence of northerly winds all 

around the year without any exceptional case. Actually the expected wind 

direction at this latitude is the westerly wind. However, the location and position 

of the Bay and the irregular distribution of land and sea are suitable for northerly 

winds to occur (Sayin, 2003). In summer and autumn, the surface water is driven 

by NW and WNW winds towards the southeast paralleling the coastline with 

speeds of about 0.4 m.s-1. In winter, the winds are from the N and NE and the 

currents are directed towards the south with speeds of 0.3 m.s-1. Sparse available 

data suggest that the bottom waters move more or less opposite to the surface 

waters (Duman et. al., 2004). 

 

Izmir Bay is an area of fine-grained and recently deposited sediments. 

The northern sea floor of the Outer Izmir Bay is floored by relict shore-face 

sands whilst at Izmir Bay it is entirely covered with recent sediments. Bottom 

sediments are relatively coarse in the west, with a general size decreasing 

towards to the east in the outer part of the bay. The western part of the outer bay 

is covered by silty sand and muddy sand, whilst the eastern part of the outer bay 

is covered with silt and mud. This general size decreasing pattern is reversed in 
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the inner bay. Most of the inner bay is covered with sandy silt and the area 

between the central and inner bay is floored by silt (Figure 5.2) (Duman et. al., 

2004). 

 

5.2 Wind Induced Currents in Izmir Bay 

 

 In this study, the coastal area is schematized by a rectangle grid as shown 

in Figure (5.3). The grid size is 637.14 m along x-axis (∆x) and along y-axis (∆y) 

it is 498.39 m. The model area was represented horizontally using a mesh of 67 

x 105 grid rectangles. Computations are made at 7 elevations along the water 

depth. The bathymetry of coastal area is shown in Figure (5.4). The time step is 

5 sec but, the time step can be reduced if the error found in the Runge-Kutta 

Fehlberg Method is greater than the tolerance value. 

 

 The water density is taken constant and is equal to 1025 kg/m3. 

Horizontal eddy viscosities are used as 10 m2/sec and vertical eddy viscosity is 

used as 0.1 m2/sec, if “Constant Eddy Viscosities” is selected for the 

“Turbulence Model”. 

 

 The water mass is subjected to the free surface shear induced by a 

uniform and steady wind with a speed 10 m/sec blowing from NNW. Steady 

state circulation pattern is established approximately 7 hours after beginning of 

the storm. For understanding the circulation pattern and suspended sediment 

transport in more detail, wind speed is increased to 20 m/sec. Steady state is 

reached approximately after 8 hours for this case. These steady state velocity 

vectors at the upper node of the sea bed are shown in Figure (5.5) and at the sea 

surface is shown in Figure (5.6). The depth averaged velocity vectors are 

presented in Figure (5.7). Figures (5.8) and (5.9) are the sketches of the vertical 

velocity profiles at different node points. Figure (5.10) shows the steady state 

water level changes. 
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 The model results show flow patterns that are typical wind induced 

currents in the surface and bottom layers. The model being three dimensional 

allows observing counter flows at the near bed. However, the vertical variation 

horizontal velocities do not show characteristics of wind induced flows because 

of boundary effect at some parts of the bay due to narrowness. 

 

 As expected, at the sea surface the velocity vectors have the same 

direction with the wind. Steady state flow patterns show horizontal gyres at the 

east of Uzun Island and between Pelikan Lagoon and Hekim Island. These 

places are in Outer I Bay and the flow pattern turn to westward direction 

showing an anti-cyclonic movement. 

 

At the upper node of the sea bed, the velocity vectors are generally in the 

opposite direction with the wind direction. A gyre is observed at the south of 

Uzun Island where topography is very narrow and flow pattern become parallel 

to the land boundaries. Another gyre is seen at the west of Pelikan and Homa 

Lagoons. There is limited water exchange between inner and middle bay. 

Maximum velocities occur at the east of Uzun Island and at the east of Hekim 

Island where water depth change drastically. 

 

Model results showed that with northwesterly wind, at the Outer Izmir 

Bay, the depth averaged flow is inward to the bay i.e. north western direction for 

one hour after the beginning of the storm and gyres are observed at Outer I Bay 

and Central Bay. Then the flow pattern at the Outer Izmir starts to turn outward 

i.e. south eastern direction. When the steady state is reached, Outer Izmir Bay 

and its northern part are dominated by south eastern transport. In the northern 

part near the boundary with Aegean Sea, two gyres can be seen. One of them 

near Foca shows a cyclonic, the other one near Karaburun shows an anti-

cyclonic movement. The water that entered the bay near Foca combine with the 

water flowing back into Aegean Sea at the northeast of Uzun Island and some 

part of it flows into the central bay. The water that entered the bay near 
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Karaburun flows into the Mordogan strait. Circulation of water is seen between 

Hekim Island and Pelikan Lagoon. The water from the Middle Bay and the water 

from the Mordogan strait combine with each other and flow back to the Aegean 

Sea as a compensation flow. Within the Central Izmir Bay transport vectors 

shows two main directions. Transport vectors east south east directed in the 

northern half of the central bay between Uzun Island and Homa lagoon. In the 

southern half of the central bay transport is mainly towards to northeast, north 

and west. Also there is limited water exchange between Outer I bay and Middle 

Bay. The currents directed to the Outer I Bay is much stronger in comparison to 

the currents directed into Middle Bay near the Pelikan Lagoon. Maximum values 

of depth averaged velocities are observed at the east Uzun Island. 

 

 

 5.3 Suspended Sediment Transport in Izmir Bay 

 

 

 Computations were made for different values of re-suspension rate 

coefficient and critical shear stresses for re-suspension and deposition: 

 

 Increasing values of critical shear stress for re-suspension leads to greater 

deposition areas and smaller re-suspension zones due to the deposition 

flux formula whatever the value of re-suspension rate coefficient. 

 The value of the re-suspension rate coefficient does not modify the type 

of flux (deposition, re-suspension or equilibrium) but, does affect the 

quantity of any particulate matter that is re-suspended. For one value of 

the re-suspension rate coefficient, re-suspension fluxes are produced 

which are insignificant compared to deposition. Another value of the re-

suspension rate coefficient provides such large re-suspension fluxes that 

deposition is necessarily less. 

 The settling velocity significantly affects the suspended sediment 

concentration. For a lower settling velocity, the decrease in suspended 
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sediment concentration is less sharp and vice versa. Also, for larger 

values of settling velocity, the model time step should be reduced in 

order to show the effect of settling velocity more accurately. 

 The quantity of deposited sediment increase as the concentration of 

suspended sediment increases, even though the formula for deposition 

does not change. In the coastal area, if sediment is re-suspended in one 

area and deposited in another area, then the erosion rate will affect the 

quantity of deposited sediment due to its effect on suspended sediment 

concentration. 

 At the surface layer advection by currents dominates and dispersion is 

smaller compared to the advection at the surface layer.  

 Model results showed that with northwesterly wind, in the Middle and 

Inner Bay, the concentration of suspended sediment shows a continuous 

decrease. Fall velocity is the parameter that affects most significantly the 

profile of suspended sediment concentration. This is due to the limited 

water exchange with Outer Bay, low bottom shear stresses and lack of 

coastal land boundaries. Also, the model does not consider the mud 

content in the sea bed. The development of bed level and morphological 

behavior in time and space is determined by both sand and mud. 

 In the Outer II Bay generally deposition occurs and concentration of 

suspended sediment shows a continuous decrease.  This is mainly 

because of the flow pattern. The currents that creates smaller bottom 

shear stresses than critical shear stress for re-suspension, carries 

sediments from northern part of the bay through Mordogan strait to the 

south of Uzun Island. The water exchange between Mordogan strait and 

Gulbahce Bay is limited. The open sea boundary condition for suspended 

sediment transport and fall velocity are main aspects that control the 

profile of suspended sediment concentration. 

 In the Outer I and Outer III Bays, the concentration of suspended 

sediment is maximum at west of Uzun and Hekim Islands. These areas 

are the sites where the re-suspension occurs most. Furthermore, the flow 
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pattern plays an effective role in increasing concentration of suspended 

sediment. Two currents carry sediments from Aegean Sea to that site 

additional to the sediment that is re-suspended. The sediment that entered 

the bay near the coastal land boundaries at the north of the bay follows 

two paths. The first one passes through Karaburun, Mordogan Passage 

and south of Hekim and Uzun Islands. The second one passes through 

west of Foca, Homa and Pelikan Lagoons. Then, two currents combine at 

the east of Uzun Island and flow towards to the Aegean Sea. 



 

 

 
Figure 5.1. The regions, which have different types of water properties, and 

Izmir Bay topography (Sayin, 2003). 
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Figure.5.2 Map showing distribution of surficial sediments in Izmir Bay, (for 

samples lacking gravel). S=sand; M=mud; Z=silt; s=sandy; m=muddy; z=silty 

(Duman et. al., 2004). 
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Figure 5.3 The schematization of the Bay of Izmir 
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Figure 5.4 Bathymetry of Coastal Area 
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Figure 5.5 Current pattern at bottom layer (NNW wind speed: 10 m/sec) steady 

state condition 
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Figure 5.6 Current pattern at sea surface (NNW wind speed: 10 m/sec) steady 

state condition 
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Figure 5.7 Depth average current pattern (NNW wind speed: 10 m/sec) steady 

state condition 
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Figure 5.8 Vertical profiles of horizontal velocities at node (17,26), (NNW wind 

speed: 10 m/sec) steady state condition 
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Figure 5.9 Vertical profiles of horizontal velocities at node (91,26), (NNW wind 

speed: 10 m/sec) steady state condition 
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Figure 5.10 Steady state water level changes (NNW wind speed: 10 m/sec) 
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Figure 5.11 Depth average current pattern (NNW wind speed: 10 m/sec) 1 hour 

after beginning of the storm  
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Figure 5.12 Values of shear stresses at the sea bed (NNW wind speed: 10 m/sec) 

steady state condition 
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Figure 5.13 Deposition, re-suspension and equilibrium sites of the coastal area 

(NNW wind speed: 10 m/sec) steady state condition 
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Figure 5.14 Distribution of suspended sediment concentration at the sea surface 

1 hr after the storm (Initial value: 0.005 kg/m3)  
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Figure 5.15 Distribution of suspended sediment concentration at the sea bed 1 hr 

after the storm (Initial value: 0.005 kg/m3) 
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Figure 5.16 Distribution of suspended sediment concentration at the sea surface 

2 hrs after the storm (Initial value: 0.005 kg/m3) 
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Figure 5.17 Distribution of suspended sediment concentration at the sea bed 2 

hrs after the storm (Initial value: 0.005 kg/m3) 
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Figure 5.18 Distribution of suspended sediment concentration at the sea surface 

5 hrs after the storm (Initial value: 0.005 kg/m3) 
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Figure 5.19 Distribution of suspended sediment concentration at the sea bed 5 

hrs after the storm (Initial value: 0.005 kg/m3) 
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Figure 5.20 Distribution of suspended sediment concentration at the sea surface 

8 hrs after the storm (Initial value: 0.005 kg/m3) 
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Figure 5.21 Distribution of suspended sediment concentration at the sea bed 8 

hrs after the storm (Initial value: 0.005 kg/m3) 
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CHAPTER VI 

 

 

CONCLUSION 

 

 

 The followings are the main conclusions of this study: 

 

1. The computer program prepared by Balas that computes the full spatial 

distribution of velocities of unsteady flow induced by wind, tide or water 

density differences is advanced to include suspended sediment transport 

component. The velocity components and eddy viscosities in x, y, z 

spaces together with water level fluctuations over the specified period of 

time are supplied by the hydrodynamic model component. The developed 

program computes the suspended sediment concentration profiles, 

determines the re-suspension, equilibrium, deposition sites of the coastal 

area and predicts the changes in sea bed morphology quantitatively. 

Using this program a sensitivity analysis providing a quantified 

assessment of the strengths and weaknesses of modeling and input data is 

derived and applied to the bay of Izmir. 

 

2. The model consists of three components: hydrodynamic, turbulence and 

suspended sediment transport model components. In the hydrodynamic 

model hydrostatic pressure distribution assumption and Boussinesq 

approximation are used. The density gradient forces are introduced in the 

momentum equations through the hydrostatic pressure and horizontal 

variations of pressure (Balas, 1998). The suspended sediment transport 

model uses the assumptions of uniform and time independent bed 
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roughness parameter, time and space independent settling velocity and 

uniform and time independent sea bed factors that affect the critical shear 

stresses for re-suspension and deposition and re-suspension rate 

coefficient. 

 

3. The mathematical program needs to be verified by using appropriate 

sediment sampling and concentration measurements because the 

parameters, that show the effect of settling velocity and bed roughness 

coefficient, can strongly vary in time and space. It is recommended to 

further analyze the model behavior by applying time and space dependent 

formulations for both the settling velocity for mud and the bed roughness 

coefficient. 

 

4. Model results could only qualitatively be compared with field data. It is 

recommended to apply the model with more realistic boundary conditions 

and a realistic bathymetry in which sand and mud fraction was specified 

together with current and water surface elevation measurements and in 

situ erosion tests. 

 

5. The numerical model can be utilized as a powerful design tool as it gives 

preoperational modeling simulations. 

 

6. Further studies could be made on the following: 

i. Implementation of orthogonal curvilinear coordinate grids. 

ii. Implementation of higher order interpolating functions of Galerkin 

Weighted Residual Method. 

iii. The reflection of the effect of fluvial discharges and coastal land 

boundaries in the model. 

iv. The representation of flocculation by means of empirical 

formulations. 
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 Application of the Galerkin Method is shown below where, EGF ~,~,~  
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Figure B.1. Flowchart of RKFSYS_SSTM_1 
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