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ABSTRACT

EXACT SUPERSYMMETRIC SOLUTION OF SCHRODINGER EQUATION
FOR SOME POTENTTALS

Aktag, Metin
Ph.D., Department of Physics

Supervisor: Prof. Dr. Ramazan Sever

January 2005, 94 pages.

Exact solution of the Schrodinger equation with some potentials is obtained. The
normal and supersymmetric cases are considered. Deformed ring-shaped potential is
solved in the parabolic and spherical coordinates. By taking appropriate values for the
parameter ¢, similar results are obtained for Hulthén and exponential type screened
potentials. Similarly, Morse, Poschl-Teller and Hulthén potentials are solved for the
supersymmetric case. Supersymmetric solution of PT-/non-PT-symmetric and non-
Hermitian Morse potential is also studied. The Nikiforov-Uvarov and Hamiltonian
Hierarchy methods are used in the calculations. Eigenfunctions and corresponding
energy eigenvalues are calculated analytically. Results are in good agreement with the

ones obtained before.

Keywords: Supersymmetric Quantum Mechanics, Exactly Solvable Potentials,
PT-Symmetric Quantum Mechanics, Hierarchy of Hamiltonian, Nikiforov-Uvarov

Method.
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oY/

BAZI POTANSIYELLERLE SCHRODINGER DENKLEMININ
SUPERSIMETRIK TAM COZUMLERI

Aktag, Metin
Doktora, Fizik Bolimi

Tez Yoneticisi: Prof. Dr. Ramazan Sever

Ocak 2005, 94 sayfa.

Baz1 potansiyellerle Schrodinger denkleminin tam g¢ozimleri elde edildi. Normal ve
supersimetrik durumlar dikkate alindi. Parabolik ve kuresel koordinatlarda deforme
olmus halka sekilli potansiyel ¢oziildii. q parametresi i¢cin uygun degerler alinarak,
benzer sonuclar Hulthén ve eksponansiyel tipteki perdelenmis potansiyeller icin elde
edildi. Benzer sekilde supersimetrik durum i¢in Morse, Poschl-Teller ve Hulthén potan-
siyelleri ¢Ozildii. Ayrica parite-zaman geri doniigimlii, simetrik veya simetrik ol-
mayan ve hermityen olmayan Morse potansiyelinin siipersimetrik ¢oziimleri elde edildi.
Bu hesaplamalarda Nikiforov-Uvarov ve Hamiltonyen hiyerarsi metodlar: kullanild.
()zfonksiyonlar ve bunlara karsilik gelen enerji 6zdegerleri analitik olarak hesaplandi.

Sonuclar, daha 6nceden elde edilenlerle iyi bir uyum i¢indedir.

Anahtar Kelimeler: Siipersimetrik Kuantum Mekanigi, Tam Coziilebilir Potan-
siyeller, Parite-Zaman Simetrik Kuantum Mekanigi, Hamiltonyen Hiyerarsi, Nikiforov-

Uvarov Yontemi.
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CHAPTER 1

INTRODUCTION

Supersymmetry is a new type of symmetry which expands our understanding of
the symmetry of physical systems. Supersymmetry (SUSY) concept plays an im-
portant role for understanding the relationship between the fermions and bosons
as well. Supersymmetric models provide unified description which means a Grand
Unified Theory (GUT) for all basic interactions of nature such as strong, weak,
electromagnetic and gravitational. This model is a necessary ingredient for any
unifying approach. In SUSY, a graded Lie algebra exists. This kind of algebra sat-
isfies certain commutation and anti-commutation relations. Supersymmetry was
first discovered by Gelfand Likhtman as a work on the superalgebra in the space-
time within the framework of the Poincaré algebra [1]. Later, it was reconsidered
for a non-renormalizable form of supersymmetry in field theory by Volkov and
Akulov [2]. Wess and Zumino introduced a model on renormalizable supersym-
metric field theory [3]. SUSY is also responsible for unifying the space-time and
internal symmetries of the S-matrix. The no-go theorem of Coleman and Man-

dula [4] which is based on the assumption of a Lie algebra is not allowed in the



matrix. In addition, by incorporating SUSY to the theory of gravity, we realize
the supergravity [5, 6]. Furthermore, the general theory of relativity discovered
by Einstein is a necessary consequence of a local gauged SUSY. The local SUSY
theories allow us to unify the gravity with the other fundamental interactions in
nature. Although, no experimental evidence of SUSY has so far existed in nature,
the ideas of SUSY have been applied as a new model to all branches of physics,
such as atomic, molecular, nuclear, statistical, condensed matter physics and
nonrelativistic quantum mechanical systems. In a supersymmetric system, su-
persymmetry might be broken (spontaneously broken) or unbroken. If the SUSY
is unbroken, this leads to a degeneracy between the spectra of the fermions and
bosons in a unified field theory. The breaking scale is of the order of the elec-
troweak scale of 100 GeV. The conceptual problem of the symmetry breaking
scale is the gravitational or Planck scale which is of the order of 10 GeV. The
simplest case of SUSY quantum mechanics has first been examined for a class of
the dynamically broken supersymmetric quantum mechanical models by Witten
[7] and Cooper and Freedman [8]. Various methods for estimating the ground
state energy, including the instanton, have been applied by several workers [9,
10]. In the Witten model of SUSYQM, the Hamiltonian of a certain quantum
mechanical system is denoted by a pair of I:ILQ, for which all energy levels ex-
cept for the ground state energy are doubly degenerate for both FILQ. Various

properties of the topological index (the Witten index) introduced by Witten were



studied for the non-perturbative mechanism of SUSY breaking [11-23]. Using a
general formalism for the nonlinear quantum mechanical 0 model, a mechanism
of spontaneous breaking of the supersymmetry at the quantum level related to
the uncertainty of the operator has been obtained [24]. The mechanism of spon-
taneous breaking of the supersymmetry has also been investigated [25]. The ideas
of SUSY have aroused new approaches in physics [9]. For a dynamical SUSY of
even-even and even-odd nuclei, evidence has been found. A path integral for-
mulation of SUSYQM was first given [9]. The path integrals and the Langevin
equation was then used to prove algorithms about the stochastic quantization.
Afterwards, the tunneling rate through double-well barriers could be determined
[26-29]. The SUSYQM concepts extended to higher dimensional systems, and to
systems for large number of particles are studied by several groups [30-38]. A sim-
ple realization of a SUSY algebra involving the fermionic and bosonic operators
is considered in SUSYQM. The fermionic operators commute with the Hamilto-
nian which means that they are invariant. Thus, there is a relationship between
the energy eigenvalues and the eigenfunctions of the S-matrices. It can here be
noted that the degenerate Wess-Zumino field theory has not been interpreted in
the context of SUSYQM. Furthermore, one has attempted for solving of some
well-known potentials in SUSYQM. Recently, the exact multi-soliton solutions to

certain Hamiltonians have been governed by higher order partial equations such



as Korteweg de Vries and sine-Gordon equations. The solution of these equa-
tions is based on the inverse scattering methods whose potential is the solution
itself. In fact, these solutions correspond to a new potential. They are related
to potentials which are isospectral to the single soliton potential. The soliton
solutions have been investigated for field equations defined in space-time. The
kinks in field theory are an example of soliton in 1 + 1 dimensions [39-43]. In
SUSYQM formalism, the Dirac equation have been studied for several aspects
[44-46]. This formalism has also been extended as a model for parasupersym-
metric quantum mechanics [47-49] and orthosupersymmetric quantum mechanics
[50]. The other notable aspect of SUSYQM is the Hamiltonian Hierarchy method
also known as the factorization method introduced first by Schrdodinger [51] to
solve the hydrogen atom problem algebraically. This method was recognized as
a rediscovery of a technique attributable to Darboux [52]. Later, Infeld and Hull
[53] generalized the method to obtain a wide class of solvable potentials by con-
sidering six different forms. Gendenshtein [54] introduced the shape invariance
concept. If a potential is shape invariant, then its SUSY partner potential has
the same spatial dependence as the original potential with a translation param-
eter. The formulation of SUSYQM has also been developed by several groups
[55, 56]. Using both the factorization method and the concept of shape invari-

ance, the nonlinear first-order Riccati equation is reformulated for obtaining the



exact eigenvalue spectra [57]. In this approach, the solution of the second or-
der Schrodinger equation for a given potential reduces to the first-order Riccati
equation involving the superpotential W (z). The solutions of this equation are
the result of the superpotential W (x) of a given potential V(z). Several meth-
ods have been developed in the framework of SUSYQM [58-62]. Because of the
interesting properties of SUSYQM, it has also been applied to other branches
of physics. As an example, the Jaynes-Cummings model for a two-level atom
interacting with an electromagnetic field is analyzed in terms of SUSYQM [63].
Recently, PT-symmetric quantum systems have been studied within the context
of SUSYQM [64, 65]. For scattering states, the SUSYQM formalism has been
applied in nonrelativistic quantum mechanics [66, 67].

The thesis is organized as follows: In chapter 2, we give a review of SUSYQM
extensively. In chapter 3, we introduce perturbative and semiclassical approaches
based on SUSYQM as well as the Nikiforov-Uvarov (NU) method. In chapter 4,
we present the important results. In the last chapter, we generally discuss the

results of SUSYQM together with our results.



CHAPTER 2

BASIC FORMALISM OF SUSYQM

2.1 Review of SUSYQM

In this section, we will calculate the possible forms of the energy eigenvalues
and eigenfunctions with the two partner Hamiltonians Hy;, and Hp respectively.
Let us assume that one dimensional Schrodinger equation for the ground state

wave function ¥y (z) is

HWy(2) = | =5 = + Vi(x) | o(x) = 0, (2.1)

where we choose the ground state energy ESL) of Hy, to be zero. Solving the Eq.

(2.1) for Vi(x), we have

_ 1” Wg(e)

Vi) = o5 @)

. (2.2)

Thus, we can globally reconstruct of V7 (z) from the ground state wave func-
tion that has no nodes. Using a Hermitian positive semi-definite operator in
which QF is the Hermitian adjoint of the operator €2, one can factorize the first

partner Hamiltonian as



Hy(z) =QF Q, (2.3)

where

O =W(r) — —=—p, Q=W()+ (2.4)

i
/—Qmp’
with p = —ih%. In Eq. (2.4), W(x) is known as the Witten superpotential.

Therefore, the first partner Hamiltonian in terms of this superpotential leads to

the well-known nonlinear Riccati equation:

Vi(z) — W3(z) + \/%W'(x) =0. (2.5)

Here, W'(z) is the first order derivative of the superpotential W (z). The Witten

superpotential is given through the ground state wave function as

where

Wo(z) = Nexp l—@ / xW(x')dx'] . (2.7)

As a second step, one can construct the other partner Hamiltonian Hpy, for

VR(IL'),

Hp = Q0" = —5- 73+ VR@)|, (2.8)



and this yields

Vr(2) — W2 (x) — \/%W'(x) = 0. (2.9)

The potentials Vj(z) and Vg(z) which are connected by W (x) are known as
supersymmetric partner potentials. We also note that the quadratic terms W?(x)
in Egs. (2.5) and (2.9) are the average of the partner potentials V7 (x) and Vg(z),
while TW'(z) is proportional with the commutators of © and Q:

Vi) ~Viloll = g ()

2mda \

= ——W, (2.10)
and

1 A
i + vl = g ()
= W?(z), (2.11)

and also

[Q,Qf = %ﬁzw’(ag). (2.12)

Moreover, the addition and substraction of the commutators between [€2, Q] and

[QF, Q)] give the significant results as

Q, 01 + [, 0] = [, 0] — [, O] = ;Th_mw'(x), (2.13)
and
[Q,Qf — [Q, Q] = [Q, Q]+ [QF, Q] = 0. (2.14)



Now, let us assume that W(") and W% denote the eigenfunctions of the bosonic
Hamiltonians Hy, and Hy with the energy eigenvalues E(") and E®) respectively.
In the wave function ¥,,, the integer n represent the number of nodes and it takes
the non-negative values greater then or equal to zero. Here, we will prove that
the partner potentials V;, and Vi have identical bound-state spectra except for
the ground state energy ESL) = 0. In SUSYQM approach, we consider a pair of

Schrodinger equations for n > 0 as

ggn _ |70 V()| w®
Eon ™ 1 om da? L "
= QfQu®
= EPw®), (2.15)

Similarly, one can introduce the other supersymmetric Hamiltonian by the iter-

ating process

. h d
TR [—d— Vi) | (7
2m
= QOtw
= Eu, (2.16)

where E(()i) < Ef) < E2 ... for i = L, R. Especially, assuming that ¥(") is the
eigenfunction of H; with the eigenvalue E(V), then Q\IIL is an eigenfunction of

Hp the same eigenvalue. Therefore, the Eqs. (2.15) and (2.16) yield to

~

Hp [QUP] = 00f(Quh)



= Q(H, )

= EB(QuL), (2.17)

g

Similarly, if U/ is an eigenfunction of Hp, with the eigenvalue E(®) | then Qfw

is also an eigenfunction of H; with the same eigenvalue:

Hy [Qo(] = afo@te®)

n n

= EB QIR (2.18)

From the Eqs. (2.17) and (2.18), we conclude that these two supersymmetric
partner Hamiltonians H; and Hpy, are isospectral (or almost isospectral) and their

normalized eigenfunctions are related by the following transformations:
glR) = i/ (2.19)

and

(2.20)

The normalized eigenfunctions of H 7, and H r are also connected by the relation

as

A (L)
B~ B

For unbroken SUSY case in which ESL) =0 and Q\IJSL) = 0, the cigenstate of Hp

corresponding to \IISL) is not available and the relation

EN =ER  n=0,1,2... (2.22)

n

10



The successive equations (2.19)-(2.21) imply that if the wave function \I/szJr)l of

(R)

ne of Hp, is also normalizable. Furthermore, when the

FIL is normalizable, then ¥
operators O and QF are operated on the eigenfunctions H;, and Hp, respectively,
that is, they convert the eigenfunctions of H; to that of Hg or vice versa with
the same energy spectra. While Q destroys an extra node in the eigenfunction,
the other one creates it. Due to the fact that the ground state wave function of
H; is annihilated by the operator Q, only this state has no SUSY partner but
the others are. By using the operator Q, if we know all the eigenfunctions of [—A[L,
we can determine those of Hg. In addition to that, using Of we can reconstruct
the eigenfunctions of Hj, from those of Hp except for the ground state. This
situation is illustrated in the Fig. 2.1. They are degenerate except that Vi (x)

has an extra energy eigenstate at zero energy ESL). The action operators Qf and

Q (raising and lowering) are shown with the connected eigenfunctions.
In the case of QU™ £ 0 (broken SUSY case), all bound states including the

ground state and further all the eigenstates of two Hamiltonians are paired, e.g.,

the relations:

Y () = ——n 7 (2.23)

and

B (g) = — 2 (2.24)

and also

n=0,1,2... (2.25)

11



>

£() £ ()
El(L) EO(R)

A V.()

Figure 2.1: The energy levels of two supersymmetric partner potentials V7 (x)
and Vg (z) for unbroken SUSY case.

2.2 Supersymmetric Generators

A quantum mechanical system is characterized by a self-adjoint Hamiltonian
H. This type of system is called as a supersymmetric one by Hgpsy if there
exists supercharge operators, QZ (¢ = 1,2,... N), which are also self-adjoint,

i.€., Qz = QI For N = 2, the operators QZ and QI convert a bosonic degree of

12



freedom into fermionic ones and vice versa. Let us now introduce SUSY charge
operators QZ and QI using a Hermitian positive semi-definite operator Of and its

adjoint () in 2 x 2 matrix form

X 0 0 R 0 Of
Q= , Qf = . (2.26)

~

Q2 0 0 0

To construct a supersymmetric system which has the degeneracy as H; and Hp,

we consider the supersymmetric Hamiltonian, Hspgy

Hspsy = QQF+QQ

OO o
0 QOf
H, 0
— . (2.27)
0 Hp

The SUSY Hamiltonian is a 2 x 2 block diagonal matrix. We also note that this
Hamiltonian implies the commutation and anti-commutation relations for both

bosonic and fermionic operators. They satisfy the following superalgebra as

Q. Hsysy] = [Q, Hspsy] = 0, {Q.Q"} = Hsysy, (2.28)

and
{@Qr=20"=0, {Q,0Q1=2Q" =0. (2.29)
Because of this algebra, we conclude that the spectrum of supersymmetric system

has a positive semi-definite structure. For N = 2, supersymmetric algebra can

13



be extended by means of the Hermitian SUSY generators
[Qi, Hsvsy] = 0, {Qi, Q;} = 6;jHsusy Qi = Ql, (2.30)

where (i,7 = 1,2,... N). In these equations, Q; and Hgygy are functions of
a number of bosonic and fermionic lowering and raising operators respectively
denoted by IA)l,lA)I (1 =1,2,...np) and fi,fiT (i = 1,2,...nf). Here, n, and ny
refer to boson and fermion occupation numbers. The basis vectors of bosonic and

fermionic states can be described as
|np, )5 ny,=0,1,2..., ny=0,1 (2.31)

These operators ?)z,l;;r and fi, f’;r satisfy the following commutation and anti-

commutation relations:
b0l =64,  {fufly=05  fi=(H*=0, (2.32)
and
(b, fi] = [bs, f] = 0. (2.33)

In Eq. (2.32), the relation f2 = (f/)2 = 0 is known as the property of nilpotency.

)

For this reason, the above expressions can be computed easily.

2.3 Supersymmetric Structure of the Hamiltonian

In the preceding section, we mention that supersymmetric generators Q; send

a bosonic state into a fermionic one and vice versa. An interaction between

14



bosons and fermions can be described as the invariance of the Hamiltonian. Under
supersymmetry transformations generated by the SUSY generators QZ-, this is a
consequence of nilpotent nature, i.e., the relation Q? = (Q!)? = 0. We can define

a simple supersymmetric model for the operators Q and QT in the following way:

~ A A ~

Q=00 f,  Qf=af,bh) f1, (2.34)

where Q and QF are arbitrary functions of boson operators. These operators are
adjoints of each other. Due to this property, the SUSY operators will also be
adjoints of each other. Therefore, the SUSY Hamiltonian Eq. (2.27) will remain
invariant as well. To construct a convenient supersymmetric structure, we choose

the fermionic type wave functions, 7.e., two-component Pauli spinor as

N ¢r(z)
O(z) = , (2.35)
Pr(z)
where the upper and lower components refer to fermion occupation numbers

ng = 1 and nrp = 0 respectively. The fermion raising and lowering operators fT

and f are defined by 2 x 2 matrices:

fi= . f= . (2.36)

The bosonic operators 2 and Qf which are adjoints with each other are written

in the form

QT = Ql + iQZ, Q - Ql - iQZ, (237)

15



where ; and €2y are Hermitian operators. The supersymmetric generators @);

for N = 2 system

Q1 = QIUI+QZU2

_ % (o1p+ 02 W (2)), (2.38)

and

Qz = Q102—9201

_ % (09 — AW () | (2.39)

where the o; are Pauli spin matrices and W(z) is an arbitrary function of =.
Also, these operators anti-commute each other. From the formal analogy be-
tween bosons, (e.g., photons) and fermions, (e.g.,electrons) we can express the

Hamiltonian

H = Hgz+ Hp

1o~ o 1A o
— §{Q,QT}+§[Q,QT]03, (2.40)

where o3 is a diagonal Pauli spin matrix for z-component. This Hamiltonian
consists of two parts, i.e., bosonic and fermionic parts. Although the bosonic
and fermionic fields obey the commutation and anti-commutation relations re-
spectively, our Hamiltonian reflects the difference between the boson and fermion
statistics. The second part of the Hamiltonian Hp forms in diagonal which is

the property of z-component of Pauli spin matrices. Further, the Hamiltonian

16



includes a fermion degree of freedom only if [2,Qf] # 0. For supersymmetric
generators Q and QF, the arbitrary functions Q) and its adjoint Of are defined
by the bosonic operators b and its adjoint bT. While b has a kernel, i.e., vacuum
state, bt does not. The difference between the operators Q) and O is important
in the study of spontaneous supersymmetry breaking. By taking the Eq. (2.4)
for mass m = 1 and substituting this equation into the Eq. (2.40), we obtain an

expression for the SUSY Hamiltonian

- d
Hsysy = (152 + W?(z) + h03—W> . (2.41)

dx

DO | —

This is the Witten'’s supersymmetric Hamiltonian. In the Eq. (2.41), we assume
|[W(z)] = oo as |z| = oo so that the spectrum of the SUSY Hamiltonian is
discrete. In the Hamiltonian, while the first term represents usual free particle
motion, the second and third terms represent the interaction of bosons with
bosons and that of fermions with bosons. Because of this reason, we join the
supersymmetric models with dynamical breaking of supersymmetry. Now, we
want to rewrite the other forms of the SUSY Hamiltonian in the Fock space
picture with the state |np,ng) or in the Schrodinger picture with a matrix. The
fermion occupation number n; is either zero or one because the fermionic raising
and lowering operators satisfy the anti-commutation relations. Therefore, we

choose the ground state of Hj to have ng = 0. The fermionic state number

17



operator is

l—0o3 1 [,
= =—— . 2.42
Ty T (2.42)
the action operators f and fT, U and ¥ in the Fock space are
flnpsng) =y = 1ong), Ul ng) = |ng,ny — 1), (2.43)
and
fT|nb,nf> = |nb—i—1,nf>, \IIT|nb,nf> = |le,nf+1>, (244)

According to the boson-fermion degeneracy characteristic of the SUSY theo-
ries, the operator QT = Q\IIT has the property of changing the energy state.
In SUSYQM, the SUSY generators have the forms Q = QUt and QJV = QT\II.
Hence, the general form of the SUSY Hamiltonian becomes

2

N d R
Hsysy = (——5 + W) — [¥, Ui’ (2.45)

da?

This is useful in the Lagrangian formulation of SUSY QM.

2.4 Spontaneous Breaking of Supersymmetry

Like in the usual symmetry, supersymmetry might be broken spontaneously
in SUSY systems. If we know the ground state wave function of Hy, then we
can factorize the Hamiltonian and find a SUSY partner Hamiltonian Hp. Let
us now consider the case of a given superpotential W (x). In this case, we have

two possibilities. Using Eq. (2.4) for the operators Q and QT, we can write the
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Figure 2.2: (a) shows an example of the superpotential W (x) for which the ground
state energy is zero Ey = 0 (exact SUSY), (b) corresponds to Ey > 0 (unbroken

SUSY case).

equations Q\IISL) =0 and QT\IJSR) = 0 in the form

lhd

——+ W(x>] vy =0, [—Lﬁ + W(x>] v =0.  (2.46)

V2m dx

The solutions for these equations are respectively

V2 T T
Ui (z) = Nexp [_Tm/o W(x’)dx’] : /0 W (z")dx'" = oo,

and

V2 T T
U{® (z) = Nexp le/g W(a:')d:v'] : /0 W (z")dx' = —oo,
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T = 100,

(2.47)

T = +00,

(2.48)



where N is the normalization constant. By convention, we must choose W (z')
so that only one of the ground state wave functions ¥ (x) and o (x) can be
normalized. Otherwise, neither of these functions can be normalized. If a state
with an energy E' = 0 does exist, that is, the state is non-degenerate. It is implied
that these ground state wave functions are normalizable. Also, we must choose
W (x) to be positive(negative) for large positive(negative) x. It means that the

SUSY is unbroken or exact as in Fig. (2.2-a).

If there are no normalizable solutions to a state with an energy £ = 0, it
means that neither of these conditions hold. In other words, the nonnegativity
of the spectrum of the SUSY Hamiltonian H; means that the ground state has

an energy Ey > 0, that is the SUSY broken case as in Fig. (2.2-b).

We can generally define the distinction between spontaneous breaking of inter-
nal symmetry and supersymmetry. The Hamiltonian H is invariant under certain
transformations [PAI ,['] = 0, where I represents the generators of the transforma-
tions but the ground state or vacuum state |0) is not invariant since I'|0) # 0. In
the case of exact symmetry, without spontaneous breaking, the generators of the
transformations annihilate the vacuum as I'|0) = 0. It means that the vacuum
remains invariant under finite transformations of the form exp(ial’), where « is

a parameter.

In SUSY case, the generators of supersymmetry are the supercharge operators

Q) and Q. For unbroken SUSY case, which means exact SUSY, then we have
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Q|0) = Q'|0) =0, (2.49)
and thus

H|0) = Q*0) = Q" 0) =0 (2.50)

There exists a zero energy of state. Conversely, if there is a state with a zero
energy, the SUSY is exact and no spontaneous breaking is valid. The spontaneous
breaking of supersymmetry is also important. We consider the supersymmetry
in the field of elementary particles. It is necessary that the SUSY must be spon-
taneously broken. In the case of exact supersymmetry, the bosons and fermions

must be in mass degenerate form.

2.5 The Witten Index

A SUSY system generates a good symmetry, i.e., global symmetry. It provides
us annihilation of the vacuum state by means of the supersymmetric generators
Q) and Qf. Therefore, the ground state energy of the SUSY Hamiltonian must
be zero. To determine whether SUSY is broken or not broken in supersymmetric

field theories, Witten proposed the index
A =Tr(-1)F, (2.51)
where the trace is taken over all bound states and continuum states of this Hamil-

tonian. The number of fermionic states np = F can be defined by $(1—03), where
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o3 is the Pauli spin matrix. Using the following equation for the eigenstates of

the Hamiltonian

U, (2) = , (2.52)

one gets the eigenvalues for +1 of (—1)". Conventionally, the eigenvalues (—1, +1)
correspond to H; and Hp respectively. The Witten index has some values as
A =0and A =1. If A = 0 case corresponds to the broken supersymmetry.
However, supersymmetry remains unbroken for non-zero A. In unbroken SUSY
case, Q[0) = 0 leads to H|0) = Q2|0) = 0. Moreover, if all the supersymmetries
are unbroken, it is written 3, Q2|0) = H|0) = 0 for any supersymmetric genera-
tor. In field theory, the Witten index needs regularizations. The determination
of broken SUSY is very hard non-perturbatively. Hence, the SUSYQM gives us
several different methods to understand of non-perturbative broken SUSY. In the
quantum mechanical case, the breaking of SUSY is related, depending on whether
having a normalizable solution or not, to the equation Q[0) = 0[0) = 0, and it
implies the Eqgs. (2.47) and (2.48). These ground state wave functions do not fall
off fast enough at x = +00. Therefore, Q does not annihilate the vacuum and the
SUSY is not spontaneously broken. Using trivial calculations, the Witten index

will provide the correct answer to the question of broken SUSY.
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2.6 Reflection and Transmission Coeflicients

Supersymmetry provides us an understanding of the relationship between the
reflection R(k) and transmission T'(k) coefficients in the case of two partner po-
tentials Hy, and Hp having continuous spectra in scattering concept. Let us now
consider an incident plane wave e’** with energy E at z = —oo. Because of hav-
ing the scattering concept and the partner potentials V7 (x) and Vg(x), one can
obtain transmitted waves T}, (k) e*'*and reflection waves Ry p(k) e”**. The

total wave functions are written as
TR (1 = —00) — ™ + Ry (k) e7*2, (2.53)

and

!

TR (E o = 00) — Tpp(k) 2. (2.54)

Here, k and k' are defined by

k=\E-W2, K =\/E+W2, (2.55)

where we use the definition W (x — +o00) = W4 and the partner potentials are
equal to Vi (z) = W2 as @ = oo and Vg(x) = W2 as © = —oco. The wave
functions of H, and Hp are continuous in SUSY. Analogously, the question of
energy spectrum in discrete levels is important. Using the Eqs. (2.19) and (2.20),

we can write

e* + Rp(k) e ™ = N [(—Zk + W_)e™ + (ik + W,)e’ik“"RR}
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Tu(k) € = N[(=ik'+W,)e* " Tp], (2.56)

where N the normalization constant. From these two equations, we can eliminate

N by comparing term-by-term and get the following results

Ry(k) _ (W— +“f>, ;;EZ)) <W+ - ik') , (2.57)

Re(k) — \W_ —ik AW —iw
A few remarks can be arranged about these two coefficients. The partner po-
tentials have identical probabilities of reflection and transmission since they are
|Rr|?> = |Rg|* and |Tr|? = |Tr[>. With the exception of an additional pole of
Rp(Ty) at k = —iW_, R,(T;) and Rg(Tg) have the same poles in complex
plane. The pole at kK = —iWW_ is on the positive imaginary axis only if W_ < 0,
corresponds to the zero energy bound state. If we choose W, = W_ and k = k',
we have Ty (k) = Tgr(k). Moreover, when W_ = 0 is chosen, then one gets
Ry (k) + Rgr(k) = 0. Furthermore, if, say, W, = —W_ and k = k', we have the

relationship between these coefficients as Ry (k)/Rgr(k) = T (k)/Tr(k).

2.7 Hierarchy of Hamiltonian

In order to construct a hierarchy of non-relativistic Hamiltonians, a system-
atic procedure is followed with the adjacent members of supersymmetric partner
potentials. This procedure, known as the factorization method, is also related
to the factorization of the Hamiltonian. In this approach, the solution of the

second-order Schrodinger equation for a given potential reduces to the first-order
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Riccati equation involving the superpotential W (xz). The method was proposed
by Darboux in a first time, and later was provided for the derivation of exact
spectra of hydrogen atom problem by Schrodinger in the framework of quantum
mechanics. Infeld and Hull [53] developed this technique for solving second-order
differential equations in six different types of factorization. In this section, we

want to show how to factorize a Hamiltonian in details.

Let us start by calling PAIL as ]ffl and [—A[R as ]f[2, and suitably changing the
other subscripts. If we know the ground state wave function of a Hamiltonian
H,, we can find the superpotential W; (x) via the Eq. (2.6). The positive semi-
definite operator Q; and its adjoint QJ{ are used to factorize the Hamiltonian H.
This time, we can also determine the other partner Hamiltonian H, by means of
the semi-definite operators. This Hamiltonian is refactorizable in terms of Wy (z).
This refactorization process provides us to get the another partner Hamiltonian
H;. Tt is repeated that until the number of bound states is exhausted. There-
fore, if the potential problem for H, is exactly solvable, one can get the energy
eigenvalue spectra and corresponding wave functions by repeating the refactor-
ization procedure. However, once the ground state wave functions for all partner
Hamiltonians H;, Hs, ... are known, we can reconstruct the solution of the orig-

inal problem. Any Hamiltonian with the choice of ground state wave function

25



\Ifgl) can be written as

oy = [——+V1(x)] oV

= EMolY, (2.58)

where we set h = 2m = 1 for simplicity and have

A d A d d
0 = ar + Wi(z), af = s + Wi(z), Wi(z) = —@ln \Iigl)(x). (2.59)

Then, the supersymmetric partner one is given as

= [0l +EY]. (2.60)
Hence, the SUSY relations between the SUSY partner potentials V;(z) and V,(x)

Vo(w) = W2+ W, +E"
= Vi(z) +2W]

dZ
= Vi(z) ~251n ol (2.61)

are obtained. The energy spectra and corresponding eigenfunctions of two SUSY

Hamiltonians are related as

E@ =gV, 0ol = EY - ENe®. (2.62)

n

Let us now construct a third partner Hamiltonian H; with respect to a SUSY

partner H,. By choosing the ground state energy of H, as ESQ) = Efl), we can
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factorize H» in terms of the ground state wave function \1182)

H2 - Qlﬁ]{‘i‘Eél)

= 00, + BV, (2.63)
where we have
A d A d d
Oy = — +Wae), O =——+Wala), Wale) = —— ¥ (). (264)

As a result, the SUSY partner Hamiltonian H; of H, is written

. 2
H3 = —@ + VEJ,(Q?)
= 0,0+ EW. (2.65)

EY) = B, = B, (2.66)
and
@ 1 A, 02
n+l — 0
1 A (gD
_ 0,00, (2.67)

By repeated application of the same procedure for a finite number, M, of bound

states leads to the generation of a hierarchy of Hamiltonians as

- OO, + B

= 0,0 +EBMY, (2.68)
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where n =2,3,..., M. We also have

. d . d d n

The energy eigenvalues and corresponding wave functions satisfy the following

relations:
E(m = gD — = grtme), (2.70)
and
pim — a - L - = Qy el (2.71)
\/[Enerfl - Em72] tee [En+m71 - EO ]
and also

d? .
Vo(z) = V,i(z)— 22 In[T{ Y]
d’ Wg@ D)

where n = 2,3,...,M and m = 0,1,2,..., M — n. We note that the n — th
member of the hierarchy has the same eigenvalue spectrum as H; except for the
missing of the first (n — 1) eigenvalues of H,. Moreover, the energy eigenvalue of
the (n — 1) — th excited state of H, is degenerate with the ground state of H,.
We can further construct the n — th member wave function and the successive
SUSY partner potentials with the use of € (t=1,2,...,n—1) and \I!glm,l as

well as the (n — 1) — th excited state wave functions respectively.
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2.8 Various Aspects of SUSYQM

2.8.1 Concepts of Exactly Solvability, Shape Invariance and Self-Similarity

In recent studies of supersymmetric quantum mechanics, several conditions are
proposed for determining the complete spectrum of the Hamiltonians H; and H,.
The exactly solvability condition of any given potential, means exactly solvable
potentials, is obtained through the concept of “shape” or “form — invariance”
introduced by Gendenshtein. If the pair of SUSY partner potentials V;(z) and
Vo(z) are similar in shape and differ only in parameters, then, these potentials
are in shape invariant form. The spectra for these class of potentials can be ob-
tained exactly. The Schrodinger equation for a given potential is transformed to
a hypergeometric or confluent hypergeometric form. There are a number of ex-
actly solvable potential problems in nonrelativistic quantum mechanics for which
all the energy spectra and corresponding the eigenfunctions are known explicitly,
such as harmonic oscillator, Coulomb, Morse, Eckart and Péschl-Teller potentials.

Let us define shape invariance requirement for the partner potentials as
Vo(z,ar) = Vi(z, az) + R(ay), (2.73)

where a; is a set of parameters, as is a function of a; and the remainder term $(a, )
is independent of x. Hence, the new partner potentials for parameters a; and a,
are called as shape invariant. This requirement is also an integrability condition.

Using the Eq. (2.73), and the Hamiltonian Hierarchy method, one obtains the
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energy eigenvalues and eigenfunctions of any shape invariant potential (SIP) for
unbroken case. Let us start from the definition of integrability condition for SUSY

partner Hamiltonians I:II and flg as
U (@, a1) = N exp [—/0 Wiy, ay) dy} , EM(ay) =0. (2.74)

Using the shape invariance condition (2.73), the entire spectrum of partner poten-

tial H; can be obtained. In order to do this, we construct a series of Hamiltonians

I:I1, I:IQ, e H. By repeating the shape invariance procedure, we have
R dZ k—1
Hy = T2 + V(s ax) + Z R(a;), (2.75)

i=1
where a;, = f*71(a;), f*~' means that the function f is applied k& — 1 times. If

we put k = k + 1 in the Eq. (2.75), one can get

R d2 k
H, = —@‘Fvl(lﬁakﬂ)"‘z:%(ai)
=1
d2 k—1
- —@ +V2(x;ak) + Z%(az) (276)

i=1
Here, [—A[k and FIkH are SUSY partner Hamiltonians and they must have the same

spectrum except for the ground state of H, whose energy is

EF = kf R(a;). (2.77)

i=1
By following the Eq. (2.75) and using E(gl), we can generalize this to the Hamil-

tonian H,. Therefore, the complete energy eigenvalues of H; are given by

EM(a1) = Y- R(a), EY(ay) = 0. (2.78)
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Let us now determine the bound state wave function ¥{!)(x,a;) for any shape
invariant potential, Vj(x,a;) using the ground state wave function \Ifgl)(x,al).
The operators { and QF are connected by the eigenfunctions for supersymmetric

Hamiltonians. If we take H, — Hy, — Hj_; — Hj and use the Eq. (2.20), one

can find the excited wave function for the original Hamiltonian Hy(z;a;) as

A ~

W (z301) o QF (2;00)Q (2302) ... QO (a; an)\lfgl)(x; Upt1)- (2.79)
It is more convenient to use the relation

W (2 0,) = Qf (; al)\Ilgll(x; Api1)- (2.80)

n

Using the Egs. (2.19) and (2.20), we can finally obtain the relationships between

the scattering amplitudes with respect to the shape invariance requirement

W_(ay) + ik

W+ (al) — ik
W_ (al) — 1k

Ry (ks a1) = [ W (ay) — ik

] Ry (k;a2), Ti(k;a1) = l ] T1(k; as),
(2.81)
where ay = f(ay). The other important concept used in the determination of the
complete energy spectrum of partner Hamiltonians is the self-similarity. Shabat
and Spiridonov discussed the form of the self-similar potentials. In fact, the result
obtained from the shape invariance and self-similarity are entirely equivalent to
each other. Moreover, the Shabat-Spiridonov self-similarity condition (SS) turns
out to be a special case of the shape invariance one. However, it is necessary

to emphasize that the shape invariance is a much more general concept than

self-similarity.
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2.8.2 Coordinate Transformations

In the previous section, we have shown that the idea of SUSY and the concept
of shape invariance leads to the solution of exactly solvable potentials. Moreover,
by following certain strategies, i.e., translation and scaling of parameters etc., we
get the complete energy spectrum for solvable potentials. There is another useful
approach for these potentials. The most general solvable potentials are reduced
to either hypergeometric or confluent hypergeometric equation for Schrodinger
equation introduced by Natanzon in 1971 [105]. However, some potentials are not
shape invariant. Furthermore, the energy eigenvalues and corresponding eigen-
functions of these potentials are known implicitly rather than explicitly. Finding
the solutions of these problem is important as those of the shape invariant po-
tentials. To do this, we first consider a SIP for a Schrodinger equation which is
exactly solvable. Under point canonical coordinate transformations (PCCT), the
Schrodinger equation is mapped into another form. In the nature of coordinate
transformation, several restrictions on this equation exist. This transformation
satisfying the restrictions allows us to obtain new solvable problems. If we have an
implicit relationship between the coordinates, we can determine the new solutions
implicitly. However, when the relationship is explicit, new solvable potentials ob-
tained by the transformation, are shape invariant as well. The coordinate trans-

formation idea is applied on the d—dimensional Coulomb and harmonic oscillator

32



problems. Let us first consider the one-dimensional Schrodinger equation

@) - B v =0 282

The suitable coordinate transformation r — z is,

dz d d
= — = f—. 2.83
f (2:3)

Substituting the transformation into the Eq. (2.82) and rearranging it, we have

d? f'd 1 B
dz2 f dz + F (V(x) - En) v, =0. (284)

In order to eliminate the second term, one can rescale the wave function as

1

U=

Pn.- (2.85)

Also, when we add a term &,¢, for both sides of the Eq. (2.83), it yields

{—% +[V(E.) + 24 } b () = Enn, (2.86)
where

FE) = L v — gy [ L

V(B = 50 - ) - | - ] (287

This potential V(E, )+, must be independent of n so that Schrédinger equation

is reasonable. For this, we define the quantity as
G=V —E, +e, f> (2.88)

Now, we need to satisfy this condition. There is one way to have f2 and G,

which have the same functional dependence on z(z) as the original potential
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V. It requires that the new potential V is independent of n. Therefore, the
parameters of V' have to be changed with n, and the wave function corresponding
to the n — th member energy level of the new Hamiltonian is related to a wave
function of the old Hamiltonian with parameters, depending on n. We finally note
that all shape invariant potentials are inter-related by point canonical coordinate

transformations.

2.8.3 Parametrization of SUSY Potentials

Let us now consider an interesting problem: How to classify the various solu-
tions to the shape invariance requirement (2.73)7 When the classification problem
is available, the new shape invariant potentials (SIPs) are then discovered by al-

gebraic methods [56].

Two classes of solutions have been found so far. In the first case, the parame-
ters a; and ay are connected to each other by a translation ansatz as ay = a; + a.
All standard problems discussed in nonrelativistic quantum mechanics, which are
analytically solvable, belong to this class. In the second case, these parameters
are connected to each other by using a scaling ansatz as a; = qa;. We are going

to discuss these two types of classes.

We first consider the translation ansatz case ays = a; + «. The structure of

n—th member eigenvalue of the Schrodinger equation for any SIP can be expected
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to be of the form

E, ~ > Cyn®, —2<a<?, (2.89)

where the upper bound is satisfied by the inverse square well potential, i.e., Bn?,
though the lower bound is satisfied by the Coulomb potential i.e., n—AQ. Therefore,
the structure of the complete eigenvalue spectrum for any SIP can be given as
the Eq. (2.78), then it follows

R(ar) ~ > K, —3<p<1, (2.90)

B

where we translate a; with a; in Eq. (2.78). The important question is how to
implement the S—constraint on the remainder R(ay). The general factorizable
form of a new ansatz superpotential W(x;a;) for the k—dependent remainder

R(ay) is defined as

(7;a (ki + ¢i)gi(x) + ———hi(x) + fi(z)|, 2.91
D=2 | D4 @ A @9

where the translation parameters are
alz(kl,kg,...), a2:(k2+a,k2+ﬁ...), (292)

with a, 8 and C; as constants. All of the potentials which contain fractional
power of n are excluded by this ansatz equation. We can use the ansatz for W

in the shape invariance condition (2.73) as

Va(z,a1) = W3(z,a1) +W'(z,a;)
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= W?(x,a0) — W' (z,as) + R(ay)

= Vi(z,as) + R(ag). (2.93)

From Eq. (2.91), we get the conditions satisfied by the functions g;(x), h;(z) and
fi(z). One condition is that the superpotentials W are admissible to give a square
integrable ground state wave function. Therefore, the shape invariance condition
is in a simple form by choosing a rescaled set of parameters m = mq, mo, ..., m,.

The SI condition (2.73) is connected by translation with an integer m as well
Vo(x,m) =Vi(z,m —1) +R(m —1). (2.94)

We note that under re-parametrization of this procedure, the functional differen-

tial equation (2.93) is converted to the differential-difference equation
W2(z,m+ 1) — W?(z,m) + W' (z,m+ 1) + W (x,m) = R(m), (2.95)

where R(m) = L(m) — L(m + 1). By substituting the ansatz equation (2.91)
into the Eq. (2.95) and using the Eq. (2.93) as well, we get various admissible

solutions: The first simplest case is

W(w;a1) = (k+c)gi(2) + hi(z) + fi(z). (2.96)

(k+c¢)
Using the Eqgs. (2.92) and (2.95) in Eq. (2.93), we can find the complete energy
spectrum for various potentials, such as harmonic oscillator, Morse and Poschl-

Teller ones etc. Moreover, we can write the more complicated case

Wi(z;a1) = (k1 + c1)g1 () + g2(z) + fi(x). (2.97)

(k‘g + 02)
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When we substitute the Eqs. (2.92) and (2.95) in the Eq. (2.93), we can find
the conditions for the functions ¢;(x), g2 and fi(x). Hence, these conditions lead
to the various acceptable solutions for Poschl-Teller I and /1 potentials. Several
expressions are given for the various SIPs, that is, Vi(z) and its partner V,(x)
with the parameters a; and ay [56].

Let us now consider the second class of shape invariant potentials. The param-
eters a; and ay are connected by scaling as (a3 = gay). These type of potentials
are reflectionless and have an infinite number of bound states. Also, they can be

obtained in a series form. Suppose we have an expansion of the superpotential as

Wiasay) = 3 g5(a)al, (2.98)
§=0
with the scaling ansatz
as = qay, 0<q<l1. (2.99)

By expanding the Eq. (2.98) for the Eq. (2.95) and solving the set of first-
order differential equation, one can get the complete energy spectrum. It is
important here to note that the self-similarity condition introduced by Shabat and
Spiridonov is considered for this class. It is a special case of the shape-invariance
requirement (2.73). In shape invariant potentials which are not contained the
self-similar ansatz, we must choose r, = R, /(1 — ¢") as non-zero. For example,
if 7, = 0 for n > 3, we obtain the symmetric partner potentials V; o(x). This

corresponds to the unbroken SUSY case.
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For shape invariant potentials, there is another classification of solutions ex-
cept for scaling and translation. To obtain a new type of shape invariant poten-
tials, there are several possibilities. One of them is ay = ga} with p = 2,3, .. ;
as = qai;/(1 + pa;). For p = 2, we consider the new first type as ay = qa?.
Following the same procedure as in the scaling part, we get complete energy
spectrum.

The other possibility for obtaining the shape invariant potentials (SIPs) is the
cyclic case. In this case, the SUSY partner Hamiltonians H, and H, refer to
a series of SIPs that repeat after a cycle of p iterations as f?(a;) = ai, where
as = f(a;) and a3 = f?*(a;) etc. These types of potentials have an infinite
number of periodically spaced eigenvalues.. Also, the potentials are in a closed

form except for p = 2.
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CHAPTER 3

METHODS IN SUSYQM

3.1 Perturbative and Semiclassical Methods

In the framework of SUSYQM, various methods have been used for calculat-
ing the energy eigenvalues and corresponding eigenfunctions, i.e., supersymmet-
ric WKB method, variational approach, d—expansion method, 1/N expansion
technique. The superymmetric WKB (SWKB) method known as the semiclassi-
cal approach is a very useful approximation technique for obtaining the energy
eigenvalues and computing barrier tunneling probabilities of quantum mechanical
systems. There are numerous applications of the method in many branches of
physics and mathematics. The analytic properties of the WKB approximation
method have been studied from a purely mathematical point of view. By compar-
ison, the accuracy of this method can be tested with both analytic and numerical
results. The new aspect of the semiclassical approach is described by the inspi-
ration of supersymmetry called the supersymmetric WKB (SWKB) method. We
point out that this method gives better accuracy than the usual WKB method for

quantum mechanical problems. In fact, the lowest order SWKB approximation
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produces exact energy eigenvalues for all simple shape invariant potentials (SIPs).
Let us now give some general comments on WKB method. There are two remark-
able aspects of this method. The first one is to determine the energy eigenvalues
accurately, while the second one is the ability of describing the tunneling rate.
These are not totally independent so that the spectrum is related to an analytic
continuation of the scattering amplitude. One can define the well-known WKB

quantization condition as

/;R\/Qm(E—V(a:))dx: (n—l—%) hm, n=0,1,... (3.1)
where n refers to the number of nodes of the WKB function between the turning
points x7, and xg. If n is large compared to unity or the turning points are several
wave lengths, the WKB theory shall give good results. For additional accuracy,
it is necessary to consider second and higher order corrections in h.

The other remarkable application of the WKB approximation method is an
exact computation of the tunneling probability. In the classical limit (A = 0,7 =
0), there is indeed no barrier penetration. For the transmission and reflection

probabilities, there is an expected relation |R|* + |T'|* = 1, as given by |T|? =

1/ (1+€*), [R? = €2/ (1 + €2K), where K = 1 [*%\/2m (E — V(x)) dx. Let
us now consider combining the ideas of SUSY with the lowest order WKB method.
The lowest order SWKB quantization condition for unbroken SUSY case was
obtained by Bandrauk and Campbell [104]. They showed that it yields the energy

eigenvalues which are not only accurate for large quantum numbers n but they are
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also exact for the ground state (n = 0). For the partner potential, corresponding
to the superpotential W (z), the lowest order WKB quantization condition (3.1)

takes the form

) e PR ATE

By expanding the left hand side in powers of 4 and integrating over the turning

points, one gets the SWKB quantization conditions (3.2) for unbroken SUSY case

b
/ \/2m [ET(LI) — WZ(a:)] dr = nhr, n=12,3,.... (3.3)

By following the same procedure, the SWKB quantization condition for the part-

ner potential V5(z) takes

/b \/2m [ET(LI) —WQ(x)} dr = (n + 1)hm, n=0,1,2,.... (3.4)

The lowest order SWKB condition gives the exact eigenvalues for all shape in-
variant potentials with translation. By recalling the shape invariance condition
(2.73) and using the general expression for the & — th Hamiltonian given by the
Eq. (2.75), we have an expression for the exactness of the bound state spectrum
given by the Eq. (2.78). As a result, the SWKB quantization condition can be

defined

k—1
/\l2m lEy(Lk) =Y R(a;) — W?(ay; x)| dv = nhr. (3.5)
i=1
Let us now discuss the SWKB quantization condition for broken SUSY. As in

the case of unbroken SUSY, the same derivation applies until one examines the
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O(h) term. For this case, one has
W(a) = W) = VEV. (3.6)

The leading order in h, the SWKB quantization condition for broken SUSY

(BSWKB) is

’ (1 1
/\/Qm [En —WZ(:L‘)] d:v:(n+§)h7r, n=0,1,2,.... (3.7)

As in the unbroken SUSY case, the lowest order BSWKB quantization condition
reproduces the exact spectra for SIPs with a translation parameters.

The variational method is very useful for estimating the ground state energy
FEy when such exact solutions are not available. In this method, we propose an
ansatz, 7.e., a normalized trial wave function to estimate the ground state energy.

Suppose we have a normalizable trial function ¢ and define E[¢] as

(9| H|o)
(9l9)

[¢* H ¢ dr
[o* ¢ dPr

Elg] =

(3.8)

where the integration is over all space coordinates. By considering various ¢, we

can obtain an upper bound to the ground state energy FEj

E[¢] > E. (3.9)

[t means that the minimum of the function E[¢] corresponds to the ground state

energy. To apply this method, we characterize the trial wave function by one or

42



more parameters A, A, ..., and compute E[¢| as a function of these parameters.
Then, E[¢] is minimized by setting the derivative with respect to the parameters

to zero, namely,

OE[¢] 0E[g]
=0 =0,.... 3.10
oAy ’ o\, ’ ( )
Also, we determine the optimum values of Aj, A9, ... and substitute them back

to the expression for E[¢]. By using this method, the true ground state energy
function E[¢] is obtained if the trial wave function has a functional form of the
exact ground energy function. Following the SUSYQM procedures, we can find
the energy difference between the ground state and the first excited state of a
given potential. This result is compared with the exact numerical values. It
is necessary to extend the number of variational parameters to obtain a better
accuracy. Then, by constructing the energy functional E[¢] and requiring Eq.

(3.10), we can minimize this functional for a given potential.

Let us now discuss the d—expansion method. In this method, we introduce
a perturbation parameter §. This describes the degree of nonlinearity of a given
potential. By following the ideas of perturbation theory, both the ground state
energy and the superpotential W (z) have an expansion in the perturbation pa-

rameter. The Riccati equation takes the form with a perturbation parameter

Vi(2) = V(z,d) — C(6) = W(z,d) — W, (3.11)
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where (' is the ground state energy of a given potential. To determine the super-
potential W (z), we use the Taylor series expansion for both W (z) and V;(z) in

0. Using the expression
Vi(z) = 3 "W (@), (3.12)
n=0

and inserting these into Eq. (3.11), we match terms order by order. For the
zero-th and first order, we obtain differential equations for Wy, Wy, ..., W,. The
solution of these equations gives us the ground state energy in § expansion. If we
want to get more accuracy for the ground state energy, we must do the calculation
up to the order of §2. Thus, we can continue in § using Padé approximation
analytically. To calculate all excited states of a given potential in a § expansion,
the standard SUSY methods are used. Moreover, this method can be extended
to perturbing about any shape invariant potential. The determination of energy
levels of a given potential in variational method is simpler and more accurate
than the d—expansion method.

The large-N expansion method is also a powerful technique for analytically
determining the energy eigenstates of the Schrodinger equation even for potentials
which have no coupling constant. N denotes the number of spatial dimensions.
By using the ideas of SUSYQM, the convergence rate of shifted 1/N expansion
is improved. In this method, the solution of the Schrodinger equation in N
spatial dimensions can be considered by taking N to be large and the expansion

parameter 1/N for perturbation theory. The supersymmetry concept has played
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an important role in making for a better expansion.

3.2 The Nikiforov-Uvarov Method

Many physical processes lead to differential, integral, or integro-differential
equations. One needs to simplify the original problem in order to clarify its
most important qualitative features and to understand the relative roles played
by various factors. If a problem is simplified, the solution of the problem can
be obtained in an explicit mathematical form. Thus, we can easily analyse the
results and obtain a qualitative picture. Also, the behavior of the solution can
be analysed depending on the parameters of the problem. Moreover, a knowl-
edge of special functions is essential for understanding many important problems
of physics such as harmonic oscillator, hydrogen atom problems, in solving the
Schrodinger, Dirac and Klein-Gordon, Bethe-Salpeter equations etc. The most
commonly encountered special functions are also known as the classical orthogo-
nal polynomials (Jacobi, Laguerre, Hermite), spherical harmonics and the Bessel
and hypergeometric functions. The main interest in the study of problems is that
discrete energy spectra and corresponding wave functions can be determined by

means of the classical orthogonal polynomials.

Let us introduce the Nikiforov-Uvarov (NU) method [68]. In this method,

a differential equation is reduced to the hypergeometric type by an appropriate
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coordinate transformation, r = x(z) as

d?>U(z)  7(2)d¥(z) 7(2)
dz? +a(z) dz 02(2)\11

+

(2) =0 (3.13)

where o(z) and &(z) are polynomials having at most second degree, and 7(z) is

a polynomial having at most first degree. If we take the following factorization

W(z) = 6(2) y(2), (3.14)
the Eq. (3.13) becomes as
o(2) diiyz(f) +7(2) d?il(;) + Ay(z) =0, (3.15)
where
7(2) = 7(2) - (0 6(2)), (3.16)
and
7(2) = 7(2) + 21 (2). (3.17)
Also, A is given
An+nT'+M:0, n=012,... (3.18)

The energy eigenvalues can be calculated from the above equation. We first have

to determine 7(s) and A by defining

k=A—1'(2). (3.19)

Solving the quadratic equation for 7 (s) with the Eq. (3.19), we get
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rn) =2 =) \/[UI S T'r — &+ ko (3.20)

Here, 7(2) is a polynomial with the parameter z and primes denote the derivatives
at first degree. The determination of £ is the essential point in the calculation of
7(2). It is simply defined as the value that sets the discriminant of the polynomials
inside square root to zero. Therefore, we obtain a general quadratic equation for

k. The determination of the wave function is now in order. We consider the Eq.

(3.16) and the Rodriguez relation

o [0"(2) p(2)], (3.21)

where (), is a normalization constant and the weight function p(z) satisfy the
following relation

—[0(2) p(2)] = 7(2) p(2). (3.22)
The Eq. (3.21) gives the classical orthogonal polynomials that have many impor-

tant properties especially orthogonality relation can be defined as

/ab Un(2)ym(2)p(z) dz =0, m #n. (3.23)

In Table 3.1, we give the relationships between the orthogonal polynomials and

hypergeometric type functions.
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Table 3.1: Relationship between the polynomial o(z) and corresponding orthog-
onal and hypergeometric functions with their weight functions.

Orthogonal Hypergeometric Weight
o(2) Polynomials Functions Function
1 H,(z), Hermite 1Fi(a,b, 2), confluent e~
z L%(z), Laguerre 1Fi(a,b, z), confluent 2P e=o*
(1—2?) P{P) (%), Jacobi o Fi(a,b,c, 2), hypergeometric (1—2)%(1+2)"
22 J.(2), Bessel 1Fi(a,b,2), confluent e2/%
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CHAPTER 4

APPLICATIONS

4.1 The Basic Structure of Diatomic Molecules

In this section, we shall discuss the basic structure of diatomic molecules.
Their wave functions are necessary for understanding the meaning and signif-
icance of the term symbols used for these type of molecules [73]. A simple
application model for quantum mechanical systems is the harmonic oscillator
problem. The unperturbed energy of the system is given by &, = (n + 1/2)hv
with v = %\/%7 where k and p are the constant of force and the reduced mass,
respectively. A molecule consisting of two atoms bonded together by forces. The
wave solution for any but the simplest molecules is very difficult. The simplest
molecules is known as the hydrogen molecules ion. However, the empirical re-
sults of molecular spectroscopy show that the energy of the molecule (aside from
translational energy) consist of three parts. They are called the electronic energy,
vibrational energy and the rotational energy. The energy levels fall into widely
separated groups. They corresponds to different electronic states of the molecule.

For a given electronic state , the levels are again divided into groups, which follow
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one another at nearly equal intervals. These correspond to successive states of
vibration of the nuclei. There is also the fine structure due to the different states
of rotation of the molecule. The successive rotational energy levels are being
separated by larger and larger intervals with increasing rotational energy. The
simple structure of the energy levels suggest a method of approximate solution of
the wave equation involving three separable equations. The first one deals with
the motion of the electrons, the second deals with the vibrational motion of the
nuclei, the last one is related to the rotational motion of the nuclei. Let us discuss
these approaches respectively. Just for an atomic system, the Hamiltonian H for
a diatomic or polyatomic molecule is the sum of the kinetic energy T and the
potential energy V. For a molecule, the kinetic energy consists of two parts. The
contributions to the energy are T, and T,, from the motions of the electrons and
nuclei respectively. The potential energy comprises three terms, V., V,, and V,,.
The first and second ones are due to Coulombic attraction between the electrons
and between the nuclei and the third one is the repulsions among the electrons
and the nuclei. It is a fact that the mass of every atomic nucleus is several thou-
sand times as great as the mass of an electron. This approximation was proposed
by Born-Oppenheimer in 1927. It is also assumed that a vibrating nuclei move so
slowly compared to the electrons, when the electrons adjust instantaneously to
any nuclear motion. In this case, the Born-Oppenheimer approximation is valid.

Following this treatment, the approximate solution ¥, ,(z,\) to the Schrodinger
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equation for nuclear motion is

Here, the wave functions ¥,,(z, A) and ¥,, ,(A) known as the electronic wave func-
tions correspond to different sets of values of the electronic quantum numbers n
and nuclear wave functions, respectively. On the other hand, each of the wave
functions is a function of the nuclear coordinates A\ and the electronic coordinates
x. These wave functions can be obtained by solving the Schrodinger wave equa-
tion for electrons only by the assumption of the fixed nuclei. The electronic wave
equation is an ordinary wave equation for the s electrons. The nuclear wave func-
tions are the acceptable solutions of a wave equation in the nuclear coordinates
A. We now consider the vibrational and rotational parts. It is important here to
note that the solution of nuclear wave equation correspond to the vibrational and
rotational energy levels of the diatomic molecule. This wave function can also
be factorized into vibrational and rotational parts. By using the separation of
variables, the wave equation for the rotation and vibration of a diatomic molecule
is identical with the wave equation of the hydrogen atom. In cartesian coordi-
nates, the wave equation can be separated into two equations which denote the
translational and internal motions of the molecule. For hydrogen atom, the wave
function ¥(r, 9, ¢) is factorized into the radial R, , and angular parts Y7, (7, ¢)
respectively. It may also note that if the atoms are very far (r = oo) from each

other, the potential energy is just the sum of the energies of the two individual
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atoms. Conversely, if the atoms approach one another, a slight attraction will
appear. A stable molecules has a minimum value at the equilibrium position. For
(r = 0), this corresponds to the high repulsion of atoms.

As a result, the total wave function ¥, ,(z, A) and the energy of the diatomic

molecules are written as
\Ijn,u(xa )‘) = \Ijnlpvibquota (42)
and

% [k(k + 1)h?)?
1) - LA T
ey G B o sy

1
E,,= (1/ + 5) hv, + (4.3)

where v,, I, and k are the reduced mass of the molecule, the equilibrium mo-
ment of inertia of the molecule and the angular momentum due to the rotation
of the molecule, respectively. In addition, the first term refers to the vibrational
energy of the molecule which is similar to the harmonic oscillator energy. The
second term refers to the rotational energy of the molecule which is similar to the
energy of rigid rotator. The last term is the correction for non-rigid molecules
due to the rotation. Furthermore, molecules can absorb, or emit radiation not
only as a result of changes in their rotational and vibrational energies but also
changes in electronic energy [74]. The energy changes involved in a transition
from one electronic state of a molecule to another are very large. They corre-
spond to radiation in visible or ultraviolet regions. Diatomic molecules exhibit

many different excited electronic states. The energy of these states is deduced
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from electronic transitions. In fact, in the analysis of electronic bands of diatomic
molecules, the vibrational and rotational structures are considered. These bands
contain a large amount of fine structure. The analysis of the electronic spec-
tra of diatomic molecules can be generalized to a study of electronic spectra of
polyatomic molecules like benzene or ions. For the above reasons, we will concen-
trate on the solution of the ring-shaped potential in our studies. This potential
is used in quantum chemistry and nuclear physics for describing the ring-shaped

molecules like benzene and interactions between the deformed nuclei, respectively.

4.1.1 Ring-Shaped Potential

One of the exactly solvable potentials is the deformed ring-shaped potential
introduced by Hartmann [75]. This potential involves an attractive Coulomb
potential with a repulsive inverse square potential one. In spherical coordinates
it can be expressed as

2
V(T‘, 9) = |-~ q6 2

. 2ein®d S’ agey, (4.4)
where ay and ¢, denote the Bohr radius and the ground state energy of the
hydrogen atom, respectively. ¢ and o are dimensionless positive real parameters
as well. They take values in the range 1 to 10. This potential can be used in
quantum chemistry and nuclear physics to describe ring-shaped molecules like

benzene and interactions between deformed pairs of nuclei. We point out that

the potential takes the form of the Coulomb potential in the limiting case do? = Z
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and ¢ = 0 for hydrogen-like atoms. The energy eigenvalues of the potential has
been calculated before by using various methods such as a non-bijective canonical
transformation, namely, Kustaanheimo-Stiefel (KS) transformation, dynamical
group method, path integral and SUSYQM method etc. [76-90]. Moreover, this
potential can be defined as a Coulomb plus Aharonov-Bohm potential by defining
the parameters as —ee’ = 2agepdo?, —A/2p = gegaid®c? and B = 0. [91, 92, 93].
In the present work, we will obtain an exact solution of the Schrédinger equation
with the g-deformed ring shaped potential by using the Nikiforov-Uvarov (NU)
method in both parabolic and spherical coordinates. The Schrodinger equation
in spherical coordinates becomes

2m

V20 + i [E—V(r,0)]¥ = 0. (4.5)

4.1.1.1 Parabolic Coordinates

First, we are going to study the solution of the problem using parabolic coordi-

nates. One can write the second-type parabolic coordinates as [77, 78, 95]

x=£&ncosp, y=~&nsing and z = (772 — 52) , (4.6)

DN | =

and

(n*+€%). (4.7)

NN

En=rsind and r=

If we write trial wave function in the following form [78]

U(E, ) = % ul€) v(n) ™7, (48)



one can get the following differential equations

Pu (21 2mE. , 2m

dez g2 u A+ ( 72 )§u — (F)/ﬁlu =0, (4.9)
and

v (Y2-1) 2mE. 2m

a2 2 v+ 72 ) — (F)MU =0, (4.10)

where T = /m’” + ¢0202 and p, = py = 202 § ay €¢g. We will first solve the Eq.

4.9) and then easily get the other one. By using the transformation s = &2, the
( Y g y using ,

Eq. (4.9) can be converted into an equation of hypergeometric type. Hence, we

have

QLSUI(S) + 1 [—6282 —als — 62] u(s) =0, (4.11)

n
u"(s) + 12

where 2 = 28E - of =29y, and (2 = (Y2 — {). Comparing the Eq. (4.11)

with the Eq. (3.13), we get
o(s)=2s, 7(s)=1 and &(s)= (—5252 —als — 52) : (4.12)

Substituting these into the Eq. (3.20), we write

1 1
m(s) =5+ 5\/45232 + (8K + 402)s + 432 (4.13)

The constant k£ can be determined from the condition that the discriminant of

the square root must be zero, so that

)

1
k12 = —§Q%I|:6B (414)
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Hence the final result for Eq. (4.13) can be written as

. (s — f), for k=—3al—¢f
m(s) =5+ (4.15)
(es+ ), for k=—3al+ep.

A proper value for 7(s) is chosen, so that the function
7(s) =2(1 £ B) — 2es, (4.16)

must have a negative derivative [68]. Two solutions are acceptable for Eq. (4.16)
since it has a negative derivative. Here, we choose as a solution with plus so that

the result becomes physical. From the Eq. (3.18), we can obtain

1
A, = —§af—5—65

= 2ne. (4.17)
Following the same procedure again one gets for Eq. (4.10) as

1
ATL’ = —§C¥§ — & — 65

= 2n'e. (4.18)

By combining each side of the Eqs. (4.17) and (4.18), we obtain energy eigenvalues

5% ot
Epw=— €. n,n=01,2... (4.19)
’ (n+n'+1+p)°

This solution is identical for 3 ~ T2 with the ones obtained before [77, 78, 80,
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81, 82, 83, 87]. Now, we are going to determine the wave function. Using the Eq.
(3.16), we get

o(s) = s/ e 5%, (4.20)
where v = 1 + 2/3. From the Eqgs. (4.22) and (4.21), we obtain

C, dv .
yn(s) = @@ [8 p(S)], (4'21)

v—1)/2

with p(s) = s e~®5. The Eq. (4.21) stands for the associated Laguerre

polynomials. That is

Yn(s) = LT’BL(S), (4.22)

Hence we have found the wave function that belongs to the Eq. (4.9) as
Un(g) = (Y, s/t e a0 Lg(S), (4'23)

with s = £2. Similarly, we can also write the wave function for Eq. (4.10)

vn(n) = Cp /% e73° LB (s), (4.24)

with s = n%. Therefore, the total wave function becomes

1
\Ijn,n’,m’ (67 m, ()0) = ﬁ

’

Chmr 8% €75 LB (s) LF,(s) €™, (4.25)

n

where the normalization constant C,, ,+ can be found from the Eq. (3.23) as

B 4(nl)(n")! I
Cror = J CENCET : 0,1,2... (4.26)
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One can easily see that in the case of rsinf = £n), the problem reduces to harmonic
oscillator plus inverse square potential case. This problem also reduces to the
molecular Kratzer potential case as Coulomb plus inverse square. Now, we are

dealing with this problem.

4.1.1.2 Spherical Coordinates

Let us now consider the problem in spherical coordinates. Considering the Eq.

(4.8), we can write the total wave function as

U(r,0,p) = utr)

O(0) ®(p), (4.27)

with the well-known azimuthal angle solution

Olp) = = €M m=0,+1,42, ... (4.28)
Thus, we get as
1 d( . doO (m? + )
— 0— ——160=0 4.29
sinf df (Sm d0> * <“ sin?0 / (4.29)
and
d*’U 2 a k
7+;<—E’—7—T—2>U:0, (4.30)
where B’ = ZZZE ,a = 2;3“ and b = Zhﬂzb, x and m? are also separation constants.

Using the NU-method, we are going to solve them. By defining m’ = v/m?2 + b in

Eq. (4.29) and taking x = cos#, it will have a form of hypergeometric type

d*© 2z dO n 1
dz? (1 —2a?)dx (1 — 2?2)?

[Fo(l — %) — m'ﬂ O(x) = 0. (4.31)
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Comparing this with the Eq. (3.13), we get
o) =z, 7(x)=-2z and &(z)=r(l—2?)—m" (4.32)

Substituting these into the Eq. (3.20), we get

m(w) = £/~ (k + r)(1 — 22) + m. (4.33)
The constant k is determined from the condition that the discriminant of the
square root must be zero. Thus, we find
+ m/, for k=&

m(z) = (4.34)

+m' x, for k=kx-—m'".

A proper value for 7(z) can be chosen, so that the function
T(z) = =2(m' +1) z, (4.35)
has a negative derivative. From the Eq. (3.18) we can obtain

A, = k=m/(m'+1)

= 2n(m'+1)+n (n—1). (4.36)

Solving for x, we have

k=rk,=0+1), (4.37)

where ¢/ =n + m'. Now we are going to determine the wave function. From the

Eqgs. (3.22) and (3.21), we can write
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() = o gy (4.38)
with p(x) = (1 —22?)™. Therefore the Eq. (4.38) stands for Jacobi polynomial as
yn = P (), (4.39)

where n =1’ — m/. The wave function becomes

@(1‘) = @l’,m’

= Cpp (1 =222 PI™ ) (1), (4.40)

—m!

with = cos (x € [—1,1]). Using the Eq. (3.23), we get

1 200+ 1
o = " =m0+ m). :
Com o (0 1)\/ 5 (¢ —m"( +m') (4.41)

Let us now consider the Eq. (4.30)
u"(r) + % [—EITZ —a'r — KL] u(r) =0, (4.42)
Comparing this equation with the Eq. (3.13), we obtain
o(ry=r, 7(r)=0 and &(r)=—E"r*—adr — k. (4.43)

If we insert these into the Eq. (3.20), one gets

w(r) = % + \JAE"2 4+ 4(k + a)r + (1 + 4k). (4.44)

We can determine the constant £ by using the condition that discriminant of the

square root is zero, that is

k'172 = —a' + \/ B (]. + 4%) (445)
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Hence the final form of the Eq. (4.44) for each value of k& becomes

2V E'T + /1 + 4r)], for k= —d + \/E'(1+ 4x)

1 1
[2VE'T — 1+ 4k], for k=—d —/E'(1+4k).
A proper value for 7(r) is taken, so that the function
7(r) = (14++v1+4k) — 2V E'r, (4.47)
has a negative derivative. From the Eq. (3.18), we can write
A, = —d —\/E'(1+4k)—VE'
= m VE. (4.48)

Therefore, it gives us the energy eigenvalues of the radial equation with the

deformed ring-shaped potential

52 o4 2
E= —<70> 60], n,=0,1,2,. .. (4.49)

n, +0 +1

where n, denotes the radial quantum number which belongs to the Eq. (4.30). To

determine the wave function, we consider the Eqs. (3.14) and (3.16) for obtaining

B(r) = e VE T p=1)/2 (4.50)

— = 10" (r) p(r)], (4.51)
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with p(r) = e VE™ r(1=v)/2 The Eq. (4.51) stands for associated Laguerre

polynomials, that is
Ya(r) = LE (1), (4.52)

where k = (v — 1)/2. The radial part wave function is written as
Up(r) = C, e VET vk LE(p). (4.53)

By using the orthogonality condition, we can determine the coefficient as

n!
Chk = = 4.54
ok \/2(n+k)(n+k)!’ (4:54)
with k = ¢/(¢' + 1). Hence, the total wave function takes the form
U(r,0,p) = L Coi Com [e’ Bk (Sing)™
» U \/ﬁ n,k ,m
x  Pm) (cosf) LE(r) ei"w] : (4.55)

As a conclusion, we have obtained the exact eigenfunctions and corresponding
energy eigenvalues of the Schrodinger equation with the deformed ring-shaped
potential in both second type parabolic and also spherical coordinates by using
the Nikiforov-Uvarov method. At first our problem reduces to the harmonic oscil-
lator plus inverse square potential, it also reduces to the problem that molecular
Kratzer (Coulomb plus inverse square) one in second case. Results obtained in
two different coordinate systems are identical by following the conditions 3 ~ Y2
in Eq. (4.19) and ¢/ =n+m' in Eq. (4.49). Some numerical values of energy for

a hydrogen-like atom due to the attractive Coulomb potential are presented in
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tabular form. The total wave functions, in both coordinates, are physical. They
behave asymptotically. The agreement of our analytic and numerical results is

good.

4.2 SUSYQM and Central Confining Potentials

In this section, we present the exact supersymmetric solutions of the hyperge-
ometric form of Schrédinger equation with the Morse, Poschl-Teller and Hulthén

potentials by using the Nikiforov-Uvarov (NU) method.

4.2.1 Morse Potential

The Morse potential is
Vir(r) = D (27 — 2¢70) | (4.56)

with x = (r — o) /ro [95]. Here, D denotes the dissociation energy parameter and

ro is the equilibrium distance between nucleus. Its supersymmetric form becomes
[56]

W(x) =A— Be “. (4.57)

Thus, we first get the superpartner potentials as

h
Vi(z, A, B) = A* + B% *** — 2B (A F \/;_m> e (4.58)

From the Eqgs. (2.1) and (2.8), the Schridinger equation can be written as [96]
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HoU =FE. (4.59)

or explicitly

U 2m
— 4+ ——=[F -V ]|U=0. 4.60
B V] (4.60)

Using the Eq. (4.58) for V_, we get

2m r -

V(7)) + Sy [E = Be " 4 Ce ™| W(z) =0, (4.61)

where £ = E_ — A%, B=B? and C = 2B (A + \/—) By introducing a trans-

formation

—s=e (4.62)
the Eq. (4.61) takes the form
1 1
U(s) + =V'(s) + [52 —v%s — a232] U(s) =0, (4.63)
s s
where
2mB 2mE 2mC'
o = g 3 = T (E < O) and 7 = Tl (4.64)
Comparing the Eq. (4.63) with the Eq. (3.13), we obtain
o(s)=s, 7(s)=1 and &(s)= (—52 — %5 — a232) : (4.65)
Substituting these polynomials into the Eq. (3.20), we get
j:\/a252 (k ++%)s + p2. (4.66)

The constant k is determined as
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ki o = —v* 4+ 2a8, (4.67)

and we have

+(as — ), for k= —v2—-2ap
m(s) = (4.68)

+(as + 3), for k=—9*+2ap.

A proper value for 7(s) is chosen, so that the function

7(s) = (1 £25) — 2as, (4.69)

has a negative derivative [68]. Two solutions are acceptable for 7(s). Here, we
choose the solution with plus which is physical. By using the Eq. (3.18), we can

find

AN = —*—2aB -«

= 2an. (4.70)

Thus, we simply get the energy eigenvalues as

(4.71)

n, =0 —

_ a?h? 7 - 1.2
2m [ )] ’

where D = +2/2a. By setting a = 1, this equation reduces to the Eq. (10) as

[98] for s — states. For Eq. (4.71), the square term refers to the anharmonic
oscillator correction and the other one corresponds to the harmonic oscillator

solution. Now, we are going to determine the eigenfunctions for this potential.
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By considering the Eq. (3.14) and using the Eq. (3.16), we obtain
o(s) = 5% e . (4.72)

By using the Egs. (3.22) and (3.21), we obtain

C, dv .
s s 5P (4.73)

Yn(s) =

where p(s) = s? €729, The Eq. (4.73) stands for the associated Laguerre
polynomials, that is

yn(s) = LE(s), (4.74)

where ¢t = 23. Hence, we can write the wave function in the final form

U, (r) =C, 57 e L (s), (4.75)

axr

with s = —e®. It is normalizable. Using the Eq. (3.23), the normalization

constant can be found as

n!
C":\j(n+6+%)(n+26)!’ n=0,1,2... (4.76)

4.2.2 Poschl-Teller Potential

Let us now consider the Poschl-Teller potential

Us

Ver() = T

(4.77)

where Uy = A (A — 1) > 0 [68]. Also, its superpotential potential is [56]
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W (z) = Atanh ax. (4.78)

By means of the Eqgs. (2.5) and (2.9), we get its superpartners

A 1
Vi(z A)=A2— AlAs -2 . 4.79
+(w, 4) ( + \/%> cosh? az ( )

Thus, we can write the Schrodinger equation as

" (z) + 2—? {E - L] U(z) =0, (4.80)

cosh? az

where E=FE — A2and k = A (A + \/_) Introducing a transformation

s = tanh ax, (4.81)
we rewrite the Eq. (4.80)
V() 4 W) g 21— )| W(s) =0, (482)
(1-5?) (1—s%)?
where
B% = 2ThE2 (E<0) and ~*= %. (4.83)

By comparing the Eq. (4.82) with the Eq. (3.13), we determine polynomials as

o(s)=(1—-5%), 7(s)=-25 and &(s)=—F>+*(1—s%). (4.84)

Substituting them into the Eq. (3.20), we obtain

§) = /B2 — 2(1 — 2) + k(1 — 52). (4.85)
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The constant & is determined in the same way. Therefore, we get

+8,  for k=7
7(s) = (4.86)

+fs, for k=~%*-p%

Here we choose the proper value, so that
7(s) = =2(1+ B)s, (4.87)
has a negative derivative. From the Eq. (3.18), we can calculate

A= =55

= n’+n+2nB. (4.88)

Hence, the energy eigenvalues are found as

~ h2a2 1 1 2
Bo=ar- 22 —(n+§)+§\/1+472] . (4.89)

The wave function ¥, (z) is obtained from the Eq. (3.14) by taking 7(s) = —fs as
follows. We first get

o(s) = (1 —s%)P2, (4.90)
and using the Eqs. (3.22) and (3.21), we find

=t (191)

Yn(s) =
where p(s) = (1 — s%)?. The Eq. (4.91) stands for the Jacobi polynomials as

Yo = PP P (5). (4.92)
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Hence, ¥, (x) can be written in the following form
U, (2) = Cp (1= 52 B D(s), (4.93)

with s = tanha z. Considering the Eq. (3.23), the normalization constant is

obtained as

1 \/(2n +28+ 1)n!(2n + 8. (4.94)

2

where n, 5> 0.

4.2.3 Hulthén Potential

Now, we consider the Hulthén potential. This potential is given by

6751

H—_ - @ @
Vo' = Vo(l_e_(h,),

(4.95)

where 0 = 1/a, is the screening parameter. We get the supersymmetric form the
potential for s — states [99]

6—690

W1:a+bm.

(4.96)

Here, @ and b are arbitrary constants. We can also write the supersymmetric

partner of the potential as [100]

2 _—o0x
Vie

H _ yyH
T ey

(4.97)

The second term in the Eq. (4.97) behaves like centrifugal barrier [95]. The
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Schrodinger equation has the form

2 .
T (z) + h—”; [E -V (2)] ¥(x) = 0. (4.98)
Using the transformation
s =%, (4.99)
we rewrite
" (1 — 3) ! 1 2 2\ .2 2 2 2 2
Y (S)—i-mqf (S)—Fw [—(6 +6 )S + (26 —|—B - )S — & ] \IJ(S) =
(4.100)
where
2mE — 2mV; 2mVz2
52 = W(E > 0), 62 = 52—h20 (md 72 = 62h20 . (4101)

By comparing the Eq. (4.100) with the Eq. (3.13), we get

o(s) =s(l—s), 7(s)=1-s and &(s)=—(*+[%)s*+ (22 +B*—~*)s—c2
(4.102)

Substituting them into the Eq. (3.20), we obtain

1 1 1
7r(s):—§sj:§\/4 (52+52—k+1> §2—4(2e24+ B2 — 92 — k) s + 4e2.

(4.103)

From the Eq. (4.103), k is determined as

ki, o= =72+ % £ ey/1+ 492 (4.104)

Following the same procedure, we get

70



m(s) = —%s i% [(25 +4/1+ 4v2> s — 25] : (4.105)

and the energy eigenvalues for the supersymmetric Hulthén potential becomes

2
Er -0 =V l ] , n=1,2,... (4.106)

Here, 52 = 2Vp/6? with (h = m = 1) and 7 = |(n+ %) — 3/T+472|. If the
2 2

limit v — 0 is chosen, the energy eigenvalue reduces to the form obtained from

the usual solution of the Hulthén potential.

The wave functions can now be obtained similarly from the Eq. (3.14). Using

the Eq. (3.16), we have
o(s) = s° (1 — s)"/2, (4.107)

where =14 +/1 + 492, Thus, the Eqgs. (3.22) and (3.21) lead to

— [s"(1 = s)"p(s)] - (4.108)
Here, p(s) = s* (1 — s)#~!. It stands for the Jacobi polynomials as [97]
yn(s) ~ P #=1(1 — 25). (4.109)
Thus, the final form of the wave function can also be written in terms of the
Jacobi polynomials resulting
U, () =C, s° (1 — )2 P2 r=b(1 — 2), (4.110)

—ix

with s = e7°", and also the normalization constant C),.
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In this study, we have applied the NU-method to obtain the exact energy eigen-
values and the corresponding eigenfunctions of the three well-known shape invari-
ant potentials, i.e. Morse, Poschl-Teller and Hulthén. Using with the SUSYQM
together, the Schrodinger equation can be solved analytically. All wave functions

of the three potentials are physical. They are finite everywhere as well.

4.3 SUSYQM and PT-Symmetric Quantum Mechanics with their Applications

Recently, PT-symmetric quantum mechanics has focused on the study of the
spectral properties of various non-Hermitian PT-symmetric Hamiltonians. In the
formalism of PT-symmetric quantum mechanics, the Hamiltonian is required to
be invariant under the simultaneous action of the parity P, (x = —x) and the
time reversal T, (i = —i) operations. Also, it is based on the C'PT theorem,
(C' — charge conjugation operator), that follows from the axiomatic quantum
field theory. One may obtain the general field theory by replacing the axiom
of the Hermiticity of the Hamiltonian by means of C'PT—symmetry. The sim-
plest nonrelativistic examples of such theories is the PT-symmetric quantum me-
chanics. Bender and his collaborates [64] suggested that certain non-Hermitian
Hamiltonians possess real spectra. These type of Hamiltonians are invariant un-
der PT-symmetric transformations so that their spectral properties are associated
to their PT-symmetry. However, the eigenvalues of every PT-symmetric Hamil-

tonians are real or complex. If the PT-symmetry is exact, the spectrum of the

72



Hamiltonian is real. Otherwise, the eigenvalues are complex conjugate pairs and
spontaneous breaking of PT-symmetry exists. Mostafazadeh has suggested that
another version of the non-Hermitian Hamiltonian, termed pseudo-Hermitian con-
cept, that also gives rise to real eigenvalues [65]. Certain class of Hamiltonians
satisfy

H' =nHn?, (4.111)

where H' denotes the adjoint of the corresponding Hamiltonian operator and 7
is a Hermitian invertible linear operator. Pseudo-Hermiticity of a Hamiltonian
implies the existence of an antilinear symmetry. PT-symmetric Hamiltonians also
satisfy

[H,PT) = 0. (4.112)

Moreover, an eigenvalue of H is real provided that the corresponding eigenstate

is invariant under the action of PT and
HYE)=¢|E),  PT|E)=|E), (4.113)

imply € € R.

Furthermore, pseudo-Hermiticity is a necessary condition for having a real
spectrum, but it is not sufficient. PT-symmetric Hamiltonians admit a complete
set of bi-orthonormal eigenvectors {|¥,,a), |¢,,a)}. These Hamiltonians are
also diagonalizable and have a discrete spectrum. There are many applications of

non-Hermitian PT-invariant Hamiltonians in physics. All the Hermitian as well
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as the non-Hermitian Hamiltonians are used in ionization optics, the study of
dissipative systems and resonant states, two-component formulation of the quan-
tum cosmology. The spectral properties of the PT-symmetric Hamiltonians can
also be obtained by using numerical methods. Further, using perturbation and
semiclassical approaches, various PT-invariant potentials have been analysed. In
particular, non-Hermitian Hamiltonians obtained by the addition of an imaginary
external field have been recently introduced to study delocalization transitions in

condensed matter physics. The Lagrangian

L= (Vo) +m?p* —g(io)V, NeR (4.114)

possesses PT-invariance. One can calculate the real, positive Higgs mass in a
renormalizable theory such as —g¢* or igg?® in which symmetry breaking occurs
naturally by using the Schwinger-Dyson equations. If we replace conventional
go* or g¢® theories by —gé* or igg?® theories, it has the effect of reversing signs
in f—function. For example, PT-symmetric massless electrodynamics has a non-
trivial stable critical value of the fine structure constant . Supersymmetric non-
Hermitian, PT invariant Lagrangians have also been examined. The breaking
of parity symmetry does not include a breaking of the apparently robust global
symmetry. The strong coupling constant limit of non-Hermitian PT-symmetric
Hamiltonians has been investigated in quantum field theories. There have been

many applications in constructing non-Hermitian PT-symmetric Hamiltonians
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within the context of SUSYQM. In these studies, a straightforward generaliza-
tion of supersymmetric quantum mechanics is developed for pseudo-Hermitian

Hamiltonians.

4.3.1 Morse Potential and Hierarchy of Hamiltonian

Supersymmetric solution of PT-/non-PT-symmetric and non-Hermitian Morse
potential is studied to get real and complex-valued energy eigenvalues and corre-
sponding wave functions. Hamiltonian Hierarchy method is used in the calcula-

tions.

4.3.1.1 The General gq-deformed Morse Potential

Let us first consider the generalized Morse potential as [101]

Va(z) =Vie 2 — Vo e 7. (4.115)

where Vi and V5 are real parameters. By comparing this potential with the Eq.
(4.56), we conclude V; = D and V, = 2¢D. Thus, one can construct the hierarchy

of Hamiltonians for Schrodinger equation with ¢ = 0,

d*v

e — 20 W) = W), (4.116)

242 . . . .
where p? = 2(121;21 and F = % Z . We can also write the Riccati equation as

W2 —W! + ") = Vi(z). (4.117)
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Here Vi (z) is the superpartner of the superpotential W, (z). Following by ansatz
equation, we have

Wi(z) =—p e +qd, (4.118)

and inserting this into the Eq. (4.117), we get

5= (n—5.) (4.119)

with the first ground state energy

(1) 2 @ \9
€y = —q° (1 — . 4.120
0 ( Qq) ( )

In order to construct the other superpartner potential V;(x), we will solve the
equation

W2+ W +el) = Vy(a). (4.121)

Then, we can find the second member superpotential as

Wo(z) = —p e™* +q k. (4.122)

— (2 4123
k= (1 2q), (4.123)
with
P Tt (4.124)
2q

By similar iterations, one can get the general results
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W%uwz—uew+qp—gm+1ﬂ, (1125)

2
Vg1 (7) = 12 (e72% — 2ge™") + 2napu e, (4.126)
a 1.1
Eﬁ?=—f@—5m+§], (4.127)

and ground state wave function

Uo(z) =N exp{—pe™" +q [u — g(n + %)] z}. (4.128)

where we choose i = ap and set (h =2m = 1) in Eq. (4.127).

4.3.1.2 Non-PT-symmetric and Non-Hermitian Morse Case

Now, we will concentrate on the non-PT-symmetric and non-Hermitian Morse
case. Let us now consider the Eq. (4.115) with respect to V; — D as real
and Vo — 2igD as complex parameters. Hence we construct the hierarchy of
Hamiltonian of the Schrédinger equation for the complexified Morse potential as

d>v

S e ) | W) = 0 (1.129)

where ;2 = 2,1@;/21 and F = 6“22 :rf. Applying the hierarchy of Hamiltonians as in

the previous section, the (n + 1)-th member results will be

1
vmﬁwﬂz—uf”+un—gm+§ﬂ, (4130)
Vg1 (2) = p?(e72% — 2ge™") + 2nap e, (4.131)

a 1.1
ﬂ&mz—fku—gm+§ﬂ, (1132)

77



with
1
‘%@%=N6m>¥ﬂe”+@Pu—gm+§ﬂxh (4.133)

where i = ap.

4.3.1.3 PT-symmetric and Non-Hermitian Morse case

Now, let us consider the PT-symmetric and non-Hermitian Morse case. We as-
sume the potential parameters Vi = (o +i)? and V3 = (27 + 1)(a + i) in the
Eq. (4.115). Here we choose « and 8 and v = —3 + ¢(a + i3). When a = ia in

Eq. (4.115) and choosing V; and V5, the potential form will be
Vir(z) = (o +iB)*(e72% — 2ge™""), (4.134)

The ansatz equation is

Wi(z) =€ e +iq 4. (4.135)

As a result the Schrédinger equation can be written by using the Eq. (4.116) for

pu? = % and £ = 5“227’;22 (if E < 0). Applying the same procedure again,
one can get
—tax : : a 1
Woii(z) =€ e +ig [25 - a(n + 5)] : (4.136)
Vig1(2) = g2 (e — 2qe ") + 2ing a e ", (4.137)
a NG
B =—¢ lz‘& — 5)1 , (4.138)
with
o 1
W) =N exp {6 g [ie- S pla) o)
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where i = tapu. In this study, we have used the PT-symmetric formulation devel-
oped recently within non-relativistic quantum mechanics to a more general Morse
potential. We have solved the Schrodinger equation in one dimension by applying
Hamiltonian hierarchy method within the framework of SUSYQM. We discussed
many different complex forms of this potential. Energy eigenvalues and corre-
sponding eigenfunctions are obtained exactly. We also point out that the exact
results obtained for the complexified Morse potential may increase the number
of interesting applications in the study of different quantum mechanical systems.
In the case of f = 0 in Eq. (4.138), there is only real spectra, when o = 0,
otherwise there exists a complex-valued energy spectra. This implies that broken
PT-symmetry doesn’t occur spontaneously. Moreover, PT-/non-PT-symmetric
non-Hermitian solutions have the same spectra. We also note that both the real
and imaginary parts of the energy eigenvalues correspond to the anharmonic and
harmonic oscillator solutions. The (n + 1) — th member superpotential, its su-
perpartner and also corresponding ground state eigenfunctions of PT-symmetric
non-Hermitian potentials satisfy the condition of PT-invariance though the others

do not.

4.3.2 SUSYQM and Woods-Saxon Potential

Supersymmetric solution of PT-/non-PT-symmetric and non-Hermitian form

of the general g-deformed Woods-Saxon potential is investigated. The real and
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complex-valued energy eigenvalues and corresponding eigenfunctions are obtained.
Hamiltonian hierarchy method within the framework of SUSYQM is used. By
taking appropriate values for the parameter ¢, similar results are obtained for

Hulthén and exponential type screened potentials.

4.3.2.1 The General gq-deformed Woods-Saxon Potential

Let us consider the three-parameter Woods-Saxon potential

6—67"

V) =Y (4.140)

Here, § = 1/a is screening parameter. To determine the superpartner of WS

potential we propose an ansatz for the ground state wavefunction as
Wo~ e (14ge™), (4.141)

where A = (% — 1) §/2 and 3 = \/V;/d > 0 [100]. The superpartner potential
VW5 (r) of Hamiltonian H; is

6—67"

S\ s 2
V1W (T)—‘/()W (T)—q(Sm

(4.142)

Let us now construct the other superpartner potential V;V¥(r) through the ap-

proximate p — state solution for WS potential. The solution is given as [100]

O ~ Qi (4.143)

— A, (4.144)
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and

UV~ e P (14qe ™) (1—Ae ™), (4.145)

in the Eq. (2.7), we get
TV N e P (14 g e (4.146)

In these equations, the constants are defined as B = (3% — 4/46), A = [(8* +
2)/(B* — 2)] and N = X [(B* — 4)/4a] respectively. Then, we substitute the Eq.

(4.146) into the Eq. (4) [100] to obtain the other superpartner potential

6—67"

WS¢\ _ /WS 2
Vaho(r) =V, (7")_3q5m-

(4.147)

Similarly, the (n+ 1) — th member of superpartner potential for iterating process

of supersymmetric partner Hamiltonians takes

1 6—67"

where n =0,1,2,...,and -1 < ¢ < 1.

4.3.2.2 PT-/Non-PT-symmetric and Non-Hermitian of the Woods-

Saxon potential

Now, we consider the PT-symmetric form of WS Potential. To obtain this po-
tential, we take 6 = id in the Eq. (4.140). The ansatz equation for this potential
is

Wy~ e (1+ge ™). (4.149)
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Following the same procedure again as in the previous section, we have

67251"

WS(.\ _ /WS 2
Vite(r) =V, (7")+q5m-

(4.150)

If we use the definition of approximate p — state wave function for PT-symmetric

WS potential as in the Eq. (4.143), one gets

—idr

WS _ /WS 2
V) = ) 80

(4.151)

Consequently, the iterating process gives us a general (n + 1) — th member PT-

symmetric superpartner potentials as

1 6—i(57‘
VI (r) = ViV S(r) +2¢ 6° (n + 5) Trgc) (4.152)

This holds for only n =0,1,2,...,and -1 < ¢ < 1.

4.3.2.3 Energy Eigenvalue Characteristics

The energy eigenvalue characteristics of these type potentials are in the following:
To get the energy eigenvalues for the general g-deformed WS potential, we suggest

an ansatz superpotential in the Eq. (4) as [102]

a

W=y

+b, (4.153)

where a and b are real parameters. Using the Eqs. (2.5), (2.6) and (2.9) for

(h =2m = 1), one can get

+ A (4.154)
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Comparing the Eqs. (4.153) and (4.154) term-by-term, we have

a = —qo, (4.155)
and
R (N
b=A=_%— . (4.156)

The partner potentials Vi (r; ag) and Va(r; a;) must satisfy the shape invariant
requirement

Vi(r;ag) = Va(r; ar) + R(aq). (4.157)

Thus, we choose ap = a and a; = a — ¢d. The remainder term R(a;) can also be

easily determined as

R(ay) = (ﬁ _ @> _ (ﬁ _ ﬂ>2. (4.158)

2a0 2q 2a1  2q

The energy eigenvalues are obtained for partner Hamiltonian H,

ED =3 Ray) = (ﬁ - @>2 - (ﬁ - a—”>2, (4.159)

2a9p 2q 2a, 2q

where a, = a — ngd. For unbroken SUSY case, the ground state energy E(()l) is

zero. Finally, the most general energy eigenvalue becomes

En:—{ll Vo/a —9(n+1)]}2. (4.160)

2(n+1) ¢

This holds for n > 0.
In non-PT-symmetric and non-Hermitian WS case, we consider the coefficient

Vo = Vo +iVyin Eq. (17) as in [103]. It corresponds to the non-PT-symmetric
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case. Hence, we determine the parameters a and b from the ansatz superpotential
(4.153) as a = —igd and b = A = 213 - g. By means of analogy, the energy

eigenvalue can be written in a compact form as

En:—{%lg(nJrl)— Vo/a ]}2 (4.161)

q (n+1)

for n > 0.
In the case of PT-symmetric and non-Hermitian WS potential, we use § = id
in Eqgs. (4.140) and (4.141) so that the potential must be PT-symmetric. Then,

the parameters of superpotential in Eq. (4.153) are obtained as a = —igd and

b=A= g—g — %, respectively. One can also write the energy eigenvalues of the

potential in a compact form

| E

with n > 0.

In this section, using the Hamiltonian hierarchy method within the context
of SUSYQM, we have constructed the (n + 1) — th member superpartner po-
tentials and determined the characteristics of energy eigenvalue spectra of both
the general g-deformed Woods-Saxon potential and its PT-symmetric form. The
approximate p — state solution for WS potential leads to constructing of the
(n 4+ 1) — th member partner potentials. All results obtained by the method for
cases ¢ > 1, ¢ = 0 and ¢ < —1 refer to the solutions of Woods-Saxon, exponential

and Hulthén potentials respectively. By taking § = 0, the (n + 1) — th member
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superpartner potential of WS potential reduces to the (n + 1) — th member PT-
symmetric superpartner potential one. However, this statement is not true for
vice versa. We have also shown that Woods-Saxon and Hulthén potentials have
similar characteristics. Because of having real eigenvalue spectra, PT-symmetry
is exact for these two potentials. We also conclude that PT-symmetry is unbroken

spontaneously.
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CHAPTER 5

CONCLUSIONS AND REMARKS

Supersymmetry is a key model for understanding the basic structures of quan-
tum mechanical systems. Many results are acquired in the work of SUSYQM.
One of the most important properties of supersymmetry is that it collects the
continuous (e.g.,translations) and discrete transformations (e.g.,reflections).
The fermionic and bosonic type systems can be defined by SUSYQM, that is,
the SUSYQM algebra is the result of these systems. A study of supersymmetry
in quantum mechanics is worthwhile for two reasons: Supersymmetry provides
a new point of view for solving of the quantum mechanical problems, which are
widely used in a variety of branches of physics. The second reason is that this
model is useful for developing supersymmetric theories. Because these theories
include a number of concepts which are accumulated in research on the problems
of quantum mechanics. For a SUSY quantum mechanical system, if the ground
state wave function Wy(x) is known, the superpotential W (z) is obtained by us-
ing the Eq. (2.7). Instead, if the superpotential is obtained for a given potential,

the ground state wave function can be found by means of the Eq. (2.6). One of
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the other important results is that if we have an exactly solvable potential with
at least one bound state, then we can always construct its SUSY partner which
is also exactly solvable. In addition to this, shape invariance requirement is a
sufficient but not a necessary condition for exactly solvability. For instance, the
energy eigenvalues and corresponding eigenfunctions of Natanzon potentials are
obtained implicitly. There are a large number of shape invariant potentials (SIPs)
which satisfy the shape invariance condition. The whole spectrum of these type
of potentials can be obtained algebraically by means of the Hamiltonian Hierar-
chy method. The classification of solvable potentials is an important problem in
SUSYQM. In order to classify the potentials, certain parametrization techniques
(translation, scaling, etc) are introduced. In SUSYQM framework, the other im-
portant concept is spontaneous breaking of supersymmetry. If we have a quantum
system with unbroken supersymmetry, means exact, then we have a state with
a zero ground state energy as E(gl) = 0. The converse is also true. If there is a
supersymmetry in the field of elementary particles, the spontaneous breaking of
supersymmetry is needed. In the case of exact supersymmetry, the bosons and
fermions would have to be mass degenerate. Another advantage of the SUSYQM
is that new solvable/exactly solvable potentials can be constructed such as self-
isospectral, phase equivalent ones etc. Moreover, some useful methods are used in

SUSYQM. For example, supersymmetric WKB (SWKB), —expansion methods

are well-known ones. There is no doubt that the SWKB method gives a better
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result than the usual WKB method in the case the ground state wave function
and hence the superpotential W is known.

In the present thesis, we have studied on some well-known problems within
the framework of SUSYQM and the Nikiforov-Uvarov (NU) method. In the first
study, exact supersymmetric solution of Schrodinger equation with the Morse,
Poschl-Teller and Hulthén potentials is obtained by using the Nikiforov-Uvarov
method. Figenfunctions and corresponding eigenvalues are also calculated for
these potentials [69]. In the second study, exact solution of Schrédinger equa-
tion with the deformed ring-shaped potential is presented both in parabolic and
spherical coordinates. These type of potentials are used in quantum chemistry
and nuclear physics to describe the ring-shaped molecules like benzene and in-
teractions between deformed pair of nuclei respectively. The energy eigenvalues
of the potential are calculated by means of the NU method [70]. In the third
study, we use the Hamiltonian Hierarchy method to get supersymmetric solution
of PT/non-PT-symmetric and non-Hermitian Morse potential. In addition, the
real and complex-valued energy eigenvalues and eigenfunctions are obtained for
the potential [71]. In the last study, we deal with supersymmetric solution of ¢-
deformed and PT/non-PT-symmetric version of Woods-Saxon potentials via the
Hamiltonian Hierarchy method. Furthermore, we construct the (n+1)—th mem-
ber superpartner potentials and eigenvalue spectra for both type of potentials

72].
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