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ABSTRACT 

 

 

EFFICIENT ANALYSIS OF LARGE ARRAY ANTENNAS 

 

Ovalı, Fatih 

M.S, Electrical and Electronics Engineering Department 

Supervisor: Assoc. Prof. Özlem Aydın Çivi 

 

December 2004, 98 pages 

 

Large phased array antennas are widely used in many military and commercial 

applications. The analysis of large arrays containing many antenna or frequency-

selective (FSS) surface elements is inefficient or intractable when brute force 

numerical methods are used. For the efficient analysis of such structures hybrid 

methods (analytic and numerical, numerical and numerical) can be used. In this 

thesis, a hybrid method combining the uniform geometrical theory of diffraction 

(UTD) and the moment method (MoM) used for the analysis of large, finite arrays 

is modified for the efficient yet accurate analysis of large printed dipole arrays. In 

the present hybrid UTD-MoM approach, the number of unknowns to be solved is 

drastically reduced as compared to the conventional MoM approach, which 

provides a great efficiency on the computational cost. This extreme reduction in the 

number of MoM unknowns is carried out by introducing a few UTD-ray type 

global basis functions for the unknown array element currents. In this study, this 

hybrid UTD-MoM method is applied to the analysis of a finite, planar periodic 

array of printed dipoles on a grounded dielectric substrate. The efficiency and 

accuracy of this hybrid method are demonstrated with some numerical results.   

 

 

Keywords: Large finite arrays, UTD-MoM 
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ÖZ 

 

 

BÜYÜK ANTEN DİZİLERİNİN EFEKTİF ANALİZİ 

 

Ovalı, Fatih 

Y. Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Özlem Aydın Çivi 

 

Aralık 2004, 98 sayfa 

 

 

Faz dizili büyük antenler yaygın olarak birçok askeri ve ticari uygulamada 

kullanılmaktadır. Çok fazla sayıda anten ya da frekans seçici elemana sahip 

dizilerin analizi sadece nümerik yöntemler kullanılarak çözüldüğünde olanaksız 

hale gelmektedir. Bu tür yapıların efektif bir şekilde analizi için hibrit yöntemler 

(analitik ve nümerik, nümerik ve nümerik) kullanılabilir. Bu tezde, büyük sonlu 

anten dizilerinin analizi için geliştirilmiş olan UTD-MoM metodu, çok sayıda faz 

dizilimli baskı dipol içeren anten dizilerinin efektif ve doğru analizi için 

uyarlanmıştır. Bu hibrit UTD-MoM yönteminde çözülmesi gereken bilinmeyen 

sayısı konvansiyonel MoM yöntemindekine göre oldukça azdır ve bu da işlemsel 

açıdan büyük kolaylık sağlamaktadır. Bilinmeyen sayısındaki bu önemli azalma, 

elemanların bilinmeyen akım değerlerinin birkaç UTD-ışın tipi baz fonksiyonları 

cinsinden ifade edilmesiyle sağlanmaktadır. UTD-MoM hibrit metodu bu 

çalışmada topraklanmış dielektrik bir materyal üzerine periyodik olarak basılmış 

çok sayıda dipol içeren bir anten dizisinin analizi için kullanılmıştır. Bu yöntemin 

doğruluğu ve verimliliği elde edilen sonuçlarla gösterilmiştir. 

 

 

Anahtar Kelimeler: Büyük Anten Dizileri, UTD-MoM 
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CHAPTER 1 

 

 

INTRODUCTION 

 

Printed periodic phased array antennas are currently being used in many 

commercial and military applications due to their advanced and advantageous 

characteristics. Contrary to dish or slotted array antennas, which use physical shape 

and direction to form and steer the beam, phased array antennas utilize the 

interference between multiple radiating elements to achieve beam forming and 

beam steering.  By electronically adjusting the signal radiated by each element, the 

combined radiation pattern can be scanned and shaped at high speed and have 

advanced capabilities. Phased-array antennas have been developed mainly for radar 

applications but nowadays they are  also used  for space-based communications and 

aerospace applications because of their advantages in scanning, beam agility, 

reliability (performance degrades slowly if some elements malfunction), less 

structural intrusion (no moving parts, easier to fit into confined space), re-

configurability, weight, and power. In future satellite communication systems, 

demands for faster access and more information are expected to increase because of 

the continuous growth of the Internet and direct-to-user satellite requirements. 

Meeting these requirements will require multi-beam satellite systems having an 

onboard active phased-array antenna system. Phased-array-antenna-based 

communications links are anticipated to deliver high data rates without the risk of 

the single-point failure of the gimbaled motors and transmitters used in reflector-

based systems. Thus phased array antenna technology is very popular and analysis 

of large finite arrays gained more importance as a result of this trend in the antenna 

technology. It is therefore of interest to develop an efficient yet accurate analysis of 

large finite arrays. 
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Infinite periodic structure approach was used in the early analysis of large finite 

arrays. This method gives approximate solutions for large arrays; only the 

performance of the middle elements can be estimated accurately, current 

distribution of the elements on or near the edges can not be obtained correctly. As a 

result of this, main beam of the radiation pattern can be predicted accurately 

whereas far side lobe patterns can not. Full-wave analysis methods such as Method 

of Moments (MoM) or Finite Element Method (FEM) should be used in order to 

achieve rigorous solutions. In the conventional MoM approach [1] for the analysis 

of antennas, an integral equation is reduced to a matrix equation, and then this 

matrix equation is solved for the unknown element currents. Although MoM 

permits handling of problems which cannot be solved by analytic methods, it 

rapidly becomes impractical for solving electrically large problems due to the 

enormous number of unknowns. Asymptotic high-frequency methods such as 

Uniform Theory of Diffraction (UTD) [2], [3], [4] are preferable for the analysis of 

electrically large problems. Yet they can not be used alone when the geometry of 

interest contains electrically small antenna/FSS elements. However, lacking 

features of MoM and UTD can be compensated when they are combined to form a 

hybrid method that enables efficient analysis of large finite array 

radiation/scattering problems. 

 

Many works have been published regarding UTD-MoM. In 1975, Burnside et al. 

[5] provided the solution of current distribution on a simple wedge using the results 

of scattering of a TE plane wave incident on the wedge. They achieved this by 

introducing a few local basis functions in the vicinity of diffraction point and two 

additional diffraction current functions, one on each wall of wedge, away from the 

diffraction point. Agreement of their results with the exact solutions showed that 

this kind of 2-D problems could be solved with few unknowns by the help of UTD-

MoM. Again in 1975, Thiele and Newhouse [6] used this hybrid technique for the 

characterization of wire antennas on or near three-dimensional metallic surface. 

The basic idea in their work was to modify the impedance matrix using UTD to 
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include diffractions from metallic body or discontinuity where the antenna was 

placed on or nearby. They modeled the current on the wire by conventional 

piecewise-sinusoidal basis functions, whereas for the coupling of the wire with the 

conducting body they used a UTD based Green’s function. Thus, only the wire 

antenna had unknown current to be solved for. Srikanth et al [7] extended the work 

of Burnside et al [5] by analyzing the scattering from a perfectly conducting semi-

circular cylinder, where they took the coupling between the sharp edges and curved 

surfaces into account for their UTD-MoM hybrid solution. Again they employed 

only a few rectangular pulse type basis functions in the close vicinity of the edges. 

For the remaining part, which may be electrically large, they used UTD type basis 

functions. Eventually the number of unknowns was considerably less than those in 

conventional MoM solution. 

 

The initial point in solving the problems of periodic structures such as 

radiation/scattering from planar periodic arrays of infinite extent is Floquet’s 

Theorem. In the MoM analysis of infinite periodic arrays, only one cell called unit 

cell is treated with the use of Floquet Modes [8]. Floquet modes of infinite periodic 

structures are briefly explained in the Appendix A. The determination of the 

unknown current coefficients (more than one expansion modes per element) for 

one element in that unit cell accounts for all other elements as well due to the 

periodic and infinite structure. This approach cannot directly be applied to finite 

planar periodic arrays, however Shubert and Munk [9] adapted the infinite array 

theory to finite arrays such that they expanded the current amplitudes on the dipole 

elements into Fourier series which allowed them to express their finite array 

solution in terms of Floquet based infinite array solution. Ishimaru et al [10] 

reported a different procedure, which they called “finite periodic structure” method. 

Their solution based on a convolution integral of two functions: one is in the form 

of Floquet based infinite array solution, and the other involving the Fourier 

transform of the aperture current distribution. They carried out this method for a 

dipole array in free space. Skrivervik and Mosig [11] extended the work of [10] by 
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applying that method to finite periodic array of microstrip antennas. The methods 

in [9], [10], [11] allow the MoM operator matrix to be computed in terms of 

Floquet-modes, which is more efficient as compared to the conventional MoM 

solution. However, all those methods do not provide any advantage in reducing the 

number of unknowns which is still at least equal to or greater than the number of 

array elements. 

 

Carin and Felsen [12] and Carin et al [13] carried out an asymptotic high-frequency 

analysis on scattering from a 2-D truncated array of infinitely long line sources of 

conducting strips. Their algorithm based on truncated Floquet modes and Floquet 

based edge diffractions due to truncations of the array. 

 

Asymptotic high-frequency based analysis on completely finite arrays have been 

reported by Capolino [14] and Çivi et al [15,16] to include the 3-D wave 

diffractions from the array corners, in addition to the 3-D Floquet mode waves 

excited from the interior of the array and diffractions from the edges. Çivi et al [17] 

extended the study of [16] to include the presence of grounded dielectric substrates 

on which the array elements are placed. Asymptotic ray solutions are based on 

Kirchhoff approximation, which assumes that the aperture field distribution over 

the finite array is the same as that for the corresponding infinite array. High-

frequency based analysis regarding the array of dipoles on a grounded dielectric 

slab was also carried out in [18] and [19]. 

 

In this study, an efficient analysis of an electrically large, finite, planar periodic 

array of printed dipoles on a grounded dielectric substrate is developed based on 

the study of [17]. In this hybrid UTD-MoM method, an integral equation 

formulation for the unknown currents on the dipoles is constituted as in the 

conventional MoM approach. Then unknown array element currents are expanded 

employing a few UTD-ray type global basis functions resulting in a drastic 

reduction in the number of unknowns as compared to the conventional MoM. 
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Those expansion functions are tested with the same functions to produce Galerkin 

solution, whereas in [17] point matching is used. Galerkin procedure provides more 

accurate results. 

 

The composition of this thesis is as follows. In Chapter 2, formulation for the 

hybrid UTD-MoM approach is presented for the efficient analysis of electrically 

large, planar, periodic, finite array of printed dipoles. In Section 2.1, the 

conventional moment method formulation is provided for the array under 

consideration. An integral equation for the unknown element currents is obtained 

and reduced to a well-known matrix equation [Z][I]=[V]. In Section 2.2, the UTD 

ray concept that describes the asymptotic ray behavior of radiated/scattered fields 

from a planar array of printed dipoles is explained briefly which constitutes the 

basis for UTD-MoM formulation. In Section 2.3., UTD-MoM formulation is 

developed. UTD-type global basis functions for the unknown array element 

currents are defined and the unknown current [I] in conventional MoM are 

expanded using those UTD based basis functions. This operation enables a 

substantial reduction in the number of unknowns such that the matrix equation 

[Z][I] = [V] in the conventional MoM is transformed to a smaller size matrix 

equation  ′ ′ ′[Z ][I ] = [V ] . In Chapter 3, numerical results are presented to validate the 

efficiency and accuracy of the UTD-MoM approach. Results obtained by UTD-

MoM method are compared with the conventional MoM results, results of [17] and 

the infinite array solution. Concluding remarks and future work are presented in 

Chapter 4.  

 

 

 

 

 

 

 



 6

CHAPTER 2 

 

 

FORMULATION 

 

 

In this chapter, the hybrid method combining the uniform geometrical theory of 

diffraction with the moment method approach is presented for the efficient analysis 

of electrically large, planar, periodic, finite array of printed dipoles. The problem 

geometry and configuration shown in Figure 2.1 are chosen because this structure 

provides simplicity in the development and understanding of the present hybrid 

method. However this approach can be utilized for the analysis of more complex 

arrays such as large finite array of microstrip patch antennas etc. 

 

In Section 2.1, conventional moment method formulation is provided for the 

problem of geometry shown in Figure 2.1. An integral equation for the unknown 

element currents is obtained and reduced to the well-known matrix equation 

[Z][I]=[V]. 

 

In Section 2.2, UTD ray concept describing the asymptotic ray behavior of 

radiated/scattered fields from a planar array of printed dipoles is explained briefly. 

It is shown that the total field at an observation point sufficiently far from the 

source point can be represented as a sum of a few rays coming from special points 

in array. 

 

In the light of Sections 2.1 and 2.2, UTD-MoM formulation is developed in Section 

2.3. With the assumption that the current amplitudes on the array elements also 

obey the UTD rules, UTD-type global basis functions for the unknown array 

element currents are defined. The integral equation for the unknown current 

elements on the array obtained via conventional MoM method is solved by utilizing 
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those UTD-type global basis functions which yields a drastic reduction in the 

number of unknown current elements to be solved for. An example is given at the 

end of this section to show how the reduction in the number of unknowns, which is 

the essence of this hybrid method, is achieved. 

 

2.1 The Moment Method Solution 

 

In this section, a MoM formulation is provided in spectral domain for the 

rectangular periodic array of printed dipoles shown in Figure 2.1. An electric field 

integral equation (EFIE) is obtained using grounded dielectric slab Green’s 

function. Piecewise-sinusoidal expansion and weighting functions are used yielding 

Galerkin solution.  

 

The printed dipole elements are assumed to be perfectly conducting and oriented in 

the âx  direction on a grounded dielectric slab of infinite extent (Figure 2.1). Each 

dipole is assumed to have a length L, a width W, and spaced from neighboring 

dipoles by distances dx in the x-direction and dy in the y-direction. The dipoles are 

thin as compared to their length (W << L) so that only the âx directed currents are 

taken into account.  

 

The dielectric slab Green’s function representing the electric field at an arbitrary 

point on the surface of a grounded dielectric slab, Gxx(x,y,d), due to an infinitesimal 

electric dipole of unit strength located at ( x , y ,′ ′ d) on that grounded dielectric slab 

of thickness d and relative permittivity rε  is expressed as [20], [21]; 

 

0

0

( )( )
2 ( , )

4
yx jk y yjk x x

xx x y x y
jZ

G Q k k e e dk dk
kπ

∞ ∞ ′−′−

−∞ −∞

−
= ∫ ∫                             (2.1.1) 

where 
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2 2 2 2
2 1 1 10 0

1

( ) cos( ) ( )sin( )
( , ) sin( )r x x

x y
e m

k k k k d jk k k k d
Q k k k d

T T

ε − + −
=              (2.1.2) 

1 1 2 1cos( ) sin( )eT k k d jk k d= +                       (2.1.3) 

2 1 1 1cos( ) sin( )rmT k k d jk k dε= +                      (2.1.4) 

2 2 2
1 0 1

, (Im 0)
r

k k kε β= − <                     (2.1.5) 

2 2 2
2 0 2

, (Im 0)k k kβ= − <                             (2.1.6) 

2 2 2
x y

k kβ = +                                    (2.1.7) 

0 00
, intrinsic impedance of free - spaceZ µ ε=                   (2.1.8) 

0 0 0 , free - space wave numberk ω µ ε=                           (2.1.9) 

 

Zeros of Te  and Tm functions correspond to the transverse electric (TE) and 

transverse magnetic (TM) surface wave poles, respectively, of the grounded 

dielectric slab.  

 

 
 

Figure 2.1 A planar, periodic rectangular array of (2N+1)(2M+1) identical x-    

     directed printed dipoles on a grounded dielectric substrate 

 

rε
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The E-field at (x,y,d) generated by the currents on the dipoles is ; 

0
2

0

( )( )

4

( , , )

( , ) ( , )
N M

yx

n N m M

aE
x

jZ jk y yjk x x
x y nm x y

k
x y

x y d

Q k k e e J x y dy dx dk dk
π

=− =−

=

∞ ∞ ′− −′−

′ ′−∞ −∞

′ ′ ′ ′∫ ∫ ∫ ∫∑ ∑
              

                                              (2.1.10) 

                                

where n and m stand for the indices of the elements of array, taking on the integer 

values as N n N− ≤ ≤  and M m M− ≤ ≤ . ( , )J x ynm ′ ′  denote the current 

distribution on the (n, m)th dipole and are the equivalent sources that radiate aEx  in 

the absence of dipoles. 

 

aEx  can be deduced if the observation points for the E-field are chosen as the points 

on the printed dipoles. Boundary condition for the E-field requires the tangential 

component of the total E-field to be zero on the dipoles: 

 

0, on the dipolesinc a
x xE E+ =                        (2.1.11) 

 

where inc
xE  is the x-directed component of the excited E-field which is either due 

to delta gap voltages impressed at the central feed points on the dipole elements or 

due to an externally incident plane wave which is impinging on the whole array. 

The following expression is obtained after substituting (2.1.10) into (2.1.11): 

0
2

0

( )

( )( )

, ,

( , ) ( , )
4

N M
yx

n N m M

inc
x

jk y yjk x x
x y nm x y

x y

E x y d

jZ
Q k k e e J x y dy dx dk dk

kπ
=− =−

=

∞ ∞
′−′−

′ ′−∞ −∞

′ ′ ′ ′∑ ∑ ∫ ∫ ∫ ∫
                       (2.1.12) 
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where x and y correspond to the observation point that lie on the (p , q)th element, p 

and q take the values  N p N− ≤ ≤  and M q M− ≤ ≤ .     

 

Unknown dipole current on the (n , m)th element, ˆ( , )
nm

J x y ax′ ′ , can be expanded as; 

 

1
( , ) ( , )

I
i
nm inm

i
J x y A f x y≅

=
′ ′ ′ ′∑              (2.1.13)  

 

where I is the number of modes per dipole, i
nmA  are the unknown current 

coefficients, and ( , )f x yi ′ ′  is the ith expansion (basis) function which is chosen as 

piecewise sinusoidal function; 

 

sin( ( ))
( , ) sin( )

| |nm
ie

i e

k h x x
f x y W k h

′− −
′ ′ =         (2.1.14) 

 

where h is the half-length of the expansion mode, nm
i

x  and nm
i

y  are the coordinates 

of the center of ith mode, ke is the wave number of the expansion mode chosen as, 

[20]: 

 

0 ( 1) / 2e rk k ε= +                      (2.1.15) 

 

 Substituting (2.1.13) and (2.1.14) in (2.1.12) yields; 
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0
2

0

( ) ( )

1

( , , )

( , )
4

sin

sin( )

( | |)( )

x y

inc
x

N M I
jk x x jk y y

x y
n N m M x y

nm
ei i

nm x y
e

i

E x y d

jZ
Q k k e e

k

k h x x
A dy dx dk dk

W k h

π

=

∞ ∞
′ ′− −

=− =− ′ ′−∞ −∞=

′− −
′ ′

∑ ∑ ∑ ∫ ∫ ∫ ∫  (2.1.16)

          

Since the RHS of Equation (2.1.12) is approximated as in (2.1.16) using (2.1.13), 

[RHS of (2.1.16) - ( , , )inc
x

E x y d ] produces error, r; 

 

( , , ) , residue(2.1.16)[ ] [ ]inc
x

r E x y dRHS of= −                                (2.1.17) 

 

Applying the method of weighted residuals to minimize the error, inner product of 

r and weighting function should be zero: 

 

, ( , ) 0
j

r w x y =                                    (2.1.18) 

 

where . , .  indicates inner product and ( , )
j

w x y  is the weighting function. 

Applying Galerkin method, weighting function is chosen the same as expansion 

function: 

 

sin( ( ))
( , ) , 1, 2,.......sin( )

| |pq
je

j e

k h x x
w x y j JW k h

− −
= =                                       (2.1.19) 

 

where J=I is the number of modes per dipole and ( pq
j

x , pq
j

y ) are the coordinates 

of the center of jth mode of (p, q)th element. 
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(2.1.19) is substituted in (2.1.18) and the inner product is performed, then the 

following equation is obtained: 

 

0
2

0

( )( )

1

( , )
4

sin( ( | |))sin( ( | |))

sin( ) sin( )

sin( ( | |))
( , )

sin( )

pqnm
ji

pq
j

M IN jk y yjk x x yx
x y

n N m M i x y x y

eei
nm x y

e e

einc
x

x y e

jZ
Q k k e e

k

k h x xk h x x
A dydxdy dx dk dk

W k h W k h

k h x x
E x y dydx

W k h

π

∞ ∞
′−′−

=− =− = ′ ′−∞ −∞

− −′− −
′ ′

− −
=

∑ ∑ ∑ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

   (2.1.20) 

                             

( , )inc
xE x y  in (2.1.12) at the (p, q)th dipole can be expressed as: 

 

0
( 1) / 2 ( 1) / 2[ ] [ ]

( )( , ) ( ) ( )
J J

inc pq pq
pqx

jk ux vyE x y e x x y yδ δυ
+ +

+= − −                         (2.1.21) 

sin coss su θ φ=                      (2.1.22) 

sin sins sv θ φ=                       (2.1.23) 

 

where (
( 1) / 2[ ]J

pqx
+

, 
( 1) / 2[ ]J

pqy
+

) are the coordinates of the center of the [(J+1)/2]th mode 

of (p,q)th element, i.e. actually the center of the (p,q)th element when the number of 

modes, J, is chosen to be odd. ( , )inc
x

E x y  in (2.1.21) corresponds to an impressed 

voltage 0 ( 1) / 2 ( 1) / 2[ ] [ ]( )J J
pq pq

pq

jk ux vyeυ + ++
 at the center of each (p,q)th element to 

provide maximum radiation at the scan angle of ( sθ , sφ ) in the case of an antenna 

phased array radiation problem. The Equation (2.1.16) can also be solved for the 

passive array scattering problem by defining ( , )inc
xE x y  as an incident plane wave 

impinging on the array, but the analysis in this study is made for the radiation case 
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for the sake of simplicity. 
( 1) / 2[ ]

( )
J

pqx xδ
+

−  and 
( 1) / 2[ ]

)(
J

pqy yδ
+

−  are the Dirac delta 

functions to describe the corresponding delta-gap voltage generator at the center of 

each (p,q)th dipole element. 

 

Equation (2.1.20) can be represented as a matrix equation: 

 
[ ][ ] [ ]Z I V=                                                       (2.1.24) 

 
where [Z] is the matrix whose elements represent the mutual impedances between 

the modes of the elements in the array, i, j
nm, pq

Z : 

 

0
2

0

( )( )( , )
4

sin( ( | |))sin( ( | |))

sin( ) sin( )
i

yx

pqnm
j

jk y yjk x xi, j
x ynm, pq

eei
nm

e e

x y

jZ
Z Q k k

k x yx y

k h x xk h x x
A

W k h W k h

dydxdy dx dk dk

e e
π

∞ ∞
′−′−

−∞ −∞

=
′ ′

− −′− −

′ ′

∫ ∫ ∫ ∫ ∫ ∫

             (2.1.25) 

 

[I] is the vector having the elements that represent the unknown current amplitudes 

of the expansion modes: 

 
[I] = i

nmA             (2.1.26) 

 
[V] is the voltage excitation vector of elements that represent the impressed 

voltages at the center of each (p,q)th element, j
pq

V . 

 

0 ( )
, ( 1) / 2

0 , 1,2....... , ( 1) / 2

pq pq
j jpqj

pq

jk ux vy
e j JV W

j J j J

υ + = += 
 = ≠ +

     (2.1.27) 
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,
,

i j
nm pq

Z  in (2.1.25) can be written in a more suitable form as follows: 

2
0

0

, *
,

( , ) ( , ) ( , )
4

i j ji
nm x y x y x ynm pq pq

jZ
Z Q k k F k k F k k dk dkx y

kπ

∞ ∞

−∞ −∞

= ∫ ∫       (2.1.28) 

 
where 

sin
( , ) sin( )

( | |)( )nm
yi xi e

x ynm ex y

k h x x jk yjk xF k k e e dy dxW k h
′ ′

′ ′− − −′− ′ ′= ∫ ∫                    (2.1.29) 

 

* sin
( , ) sin( )

( | |)( )pq
j yxej

x ypq ex y

k h x x jk yjk xF k k e e dydxW k h
− −= ∫ ∫                 (2.1.30) 

 

Integrals in (2.1.29) and (2.1.30) can be evaluated in closed form easily. 

 
The integral in (2.1.28) needs treatment to be able to evaluate it numerically since it 

includes double infinite integral. This integral can be reduced to a finite integral 

and a semi-infinite integral by converting to polar coordinates ( , )β α  in the 

spectral domain: 

 
2

0
2

0 0 0

, *
,

( , ) ( , ) ( , )
4

i j ji
x y nm x y x ynm pq pq

jZ
Z Q k k F k k F k k d d

k

π

β α

β β α
π

∞

= =

= ∫ ∫             (2.1.31) 

 
where 

 
cosxk β α=                      (2.1.32) 

 
sinyk β α=                        (2.1.33) 

 

The upper limit of semi-infinite integral in (2.1.31) cannot be taken as infinity in 

numerical integration. Discussion and more information on the choice of β  value  
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as the upper limit where the integral converges can be found in [22]. In addition, 

convergence of the semi-infinite integral in (2.1.31) can be accelerated by 

subtracting the term representing the contribution of the current in a homogeneous 

medium from the Green’s function of the dielectric slab and reinserting it as a 

separate integral as follows, [22]: 

 
2

0
2

0 0 0

, , *
,,

[ ]
4

i j i j jh i
nmnm pqnm pq pq

jZ
Z Zh Q Q F F d d

k

π

β α

β β α
π

∞

= =

= + −∫ ∫                        (2.1.34) 

 

where ,
,

i j
nm pq

Zh  is the mutual impedance between the modes of (n,m)th and (p,q)th 

elements in a grounded homogenous medium of effective relative permittivity 

( 1) / 2e rε ε= + . Details can be found in [22] about the Green’s function of 

grounded homogeneous dielectric medium. 

 
2

0
2

0 0 0

, *
, 4

i j jh i
nmnm pq pq

jZ
Zh Q F F d d

k

π

β α

β β α
π

∞

= =

= ∫ ∫                  (2.1.35) 

 
2 2
0 1

1

2( )
( , ) (1 )

2
x ejk de

x y
e e

k khQ k k e
j k

ε

ε

− −= −                                             (2.1.36) 

 
2 2 2

01e ek kε β= −                      (2.1.37) 

 

Although the mutual impedance expression in (2.1.28) has been modified and 

improved as in (2.1.34) for the computational efficiency, this may not be enough 

for large array problems which may require excessive fill time for the [Z] matrix 

due to the convergence issue of (2.1.34). Since the number of modes used per 

dipole is directly related with the size of the [Z] matrix, it is reasonable to choose 

least possible number of modes to keep the size of the impedance matrix small. The 

choice of expansion mode as PWS function as in (2.1.14) and the wave number as 
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in (2.1.15) gives satisfactory results even when only one mode is used [20]. Thus 

one mode per dipole is taken in this study. Returning back to (2.1.24) with the 

choice of one mode per dipole: 

 
[ ][ ] [ ]Z I V=                       (2.1.24) 

 
[Z], consisting of the elements 

,nm pq
Z  that corresponds to the mutual impedance 

between the (n,m)th and (p,q)th dipole elements, is a square matrix of size 

[(2N+1)(2M+1)]2. [I] is a column vector of length (2N+1)(2M+1) which contains 

the unknown current amplitudes, 
nm

A , of the dipole elements. [V] is also a column 

vector of length (2N+1)(2M+1) whose elements are the impressed voltages, 
pq

V , 

at the center of the (p,q)th dipoles. 

 

In the conventional MoM method, (2.1.24) is solved for the unknowns
nm

A  for the 

given values of excitation 
pq

V , by inverting the [Z] matrix which is of size 

[(2N+1)(2M+1)]2. When N and M are large, the number of unknowns and the size 

of [Z] become very large resulting the solution of (2.1.24) to be highly inefficient. 

However the same problem can be solved faster and far more efficiently by using 

the present hybrid UTD-MoM approach which provides a drastic reduction in the 

number of unknowns,
nm

A . 

 

2.2 Summary of Asymptotic Analysis of Radiation/Scattering from Large 

Finite Arrays  

 

It will be useful to make a brief explanation on the UTD [3] ray analysis of planar 

finite arrays, which constitutes the basis for UTD-MoM formulation. 

Asymptotic high-frequency analysis for describing the fields of a large finite 

rectangular planar array of free-standing dipoles [16, 23, 24] and an array of 
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dipoles on an infinite grounded dielectric slab [18, 19] shows that the field at an 

observation point that is sufficiently far from the array truncation boundaries can be 

represented as a superposition of fields of a few rays arising from specific interior 

points and points at the truncation boundaries. These rays are illustrated in Figures 

2.2a and 2.2b for a finite planar array of periodic elements on an infinite grounded 

dielectric slab for the scattering case and radiation case, respectively. The number 

of significant rays remains constant if the physical size of the array increases for a 

given frequency. The ray fields arising from the specific interior points of the array 

are related with the periodic structure Floquet modal waves that would exist on the 

corresponding infinite array. For the scattering case, the dominant Floquet modal 

ray is reflected specularly, obeying usual geometrical optics rules, on the other 

hand higher order propagating Floquet modal rays follow different type of reflected 

ray path, in an extended geometrical optics sense as shown in Figure 2.2a. For a 

given frequency, only a finite number of lower order modes are propagating away 

from the array surface, while the remaining infinite number of modes is evanescent 

normal to the array face. Additional surface rays launched from the corners and 

edge boundaries of the array exist as shown in Figure 2.2. The Floquet modal rays 

that make up the total field at an observation point P for the radiation case are 

illustrated in Figure 2.2b. Reflected Floquet mode rays are now replaced by 

incident Floquet modal rays in the radiation case. 

 

It is noted that all of the propagating Floquet modal rays may not contribute to the 

total field at an observation point. Floquet modal wave contributions are discarded 

at those points if they arrive there originating from points outside the actual finite 

array. Thus the finiteness of the array introduces ray shadow boundaries for the 

Floquet modal field contributions. These Floquet ray shadow boundaries divide the 

observation space into the lit region, where Floquet ray contributions exist, and the 

shadow region where their contributions are discarded. Each propagating Floquet 
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Figure 2.2 UTD Rays (a) for scattering by a planar, periodic rectangular array of 
printed elements. r: reflected Floquet Modal ray, e: edge diffracted Floquet Modal 
ray, esw: edge launched surface wave, c: corner diffracted Floquet Modal ray, csw: 
corner launched surface wave (b) for radiation by a planar, periodic rectangular 
array of printed elements. i: incident Floquet Modal ray. c, e, csw, esw  are the 
same as defined for scattering case.  
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modal ray has its own ray shadow boundary since each Floquet mode has a 

different propagation direction. 

 

Another aspect of the finiteness of the array is the diffraction of the Floquet modal 

rays at the array truncation boundaries. Those Floquet modal rays experience 

diffraction at the array edges and corners and produce edge/corner diffracted fields 

and edge/corner launched surface waves. Thus the total high-frequency field at an 

observation point can be given by the superposition of the fields of all the rays that 

arrive there such as the incident ray from direct path of source, the rays resultant 

from the diffraction of the incident rays at the array edges and corners and the 

surface rays launched from the array edges and corners again due to the diffraction 

of the incident rays. For example ( , , )aE
x

x y d  in (2.1.10), the E-field at a point on the 

array surface can be expressed in terms of rays as follows: 

 

 

32

54

4 4

1 1 1 1

4 4

1 1 1 1

( , , ) ( , ) ( , ) ( , )

( , ) ( , )

FM

JJJ1

j
j =1 e j c j

JJ

e j c j

a ed cdE x y d E x y E x y E x yx j j

esw cswE x y E x yj j

′
′ ′ ′= = = =

′ ′= = = =

+ +′ ′

+ +′ ′

∑ ∑ ∑ ∑∑

∑∑ ∑∑

∼

        (2.2.1)

  

where FM
jE ′  is the geometrical-optics-type incident Floquet ray field, edE j′  and 

cdE j′  denote the edge and corner diffracted ray fields, and eswE j′  and cswE j′  denote 

the edge and corner launched surface waves produced by the jth Floquet mode 

respectively. J denotes the number of propagating Floquet modes and 1,2,3,4,5J J≤  

since all of the incident Floquet modes may not reach the observation point due to 

the shadowing effects. Edge/corner diffracted or edge/corner launched surface rays 

of all incident Floquet modes also may not arrive the observation point. In most of 

the practical array designs, parameters are chosen such that only one Floquet mode 
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(the dominant mode) is excited. For this reason the UTD-MoM formulation to be 

developed in Section 2.3 is based only on the dominant Floquet mode and this 

practice gives quite sufficient results as shown in Chapter 3.  

 

Edge diffracted Floquet modal ray is in the form of a modal summation of conical 

waves emanating from the array edges and compensates for the discontinuity of the 

associated Floquet mode across its shadow boundary arising from that edge. The 

location of the edge diffraction depends on the observation point. Edge diffraction 

produces both propagating and evanescent modes. The propagation constants of the 

propagating modes are less than the free space wave number and they diffract as 

diffraction cones, as shown in Figures 2.3a and 2.4a. Propagation constants of the 

evanescent modes are larger than the free space wave number so that they are 

guided along the edge but attenuate away from the edge, as shown in Figures 2.3b 

and 2.4b. Edge diffracted Floquet modes propagate as cylindrical waves [18].  

 

Corner diffraction of the propagating Floquet modal ray occurs due to the element 

truncation of the array at the corner. Corner diffracted Floquet ray field is in the 

form of a spherical wave originating from the corner of the array. The Floquet 

corner diffracted field compensates for the discontinuity of the edge diffracted 

Floquet modal ray at the corresponding shadow boundary arising at the corner. 

Corner diffraction of a Floquet modal ray is illustrated in Figure 2.5. 

 
Edge-excited surface waves are launched from the array edges due to the 

diffraction of Floquet modal waves. These waves have the same propagation 

constant as the surface waves of a grounded substrate that can exist also in the 

absence of the array. 
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Figure 2.3 Edge diffracted Floquet wave rays from the x-directed edge 

                     (a) Propagating mode (b) Evanescent mode 

 

Propagation constant of an edge-launched surface wave is matched to the 

Floquet modal wave number in the direction along the edge. These edge-

excited complex waves exist in specific regions and disappear at the shadow 

boundary plane due to the truncation of the edge [18]. Figure 2.6 shows the ray 

picture illustrating the edge excited complex surface waves. 

 

 

 

 

p 2 2
x o(b) Evanescent mode, (k ) k>

p 2 2
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p
k x
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Figure 2.4 Edge diffracted Floquet wave rays from the y directed edge, 

                      (a) Propagating mode (b) Evanescent mode 

 

 
 
Figure 2.5 A ray picture illustrating the corner diffraction of Floquet modal  
                     ray. 

q 2 2
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Figure 2.6 Edge-launched Floquet wave rays from the array edges (Top view),  

                    (a) the y directed edges (b) the x directed edges  

 

Corner-excited surface waves are launched from the array corners due to the 

diffraction of Floquet modal waves as discussed before. As in the edge-excited 

case, these waves have the same propagation constant as the surface waves of a 

grounded substrate that can exist in the absence of the array. The corner-excited 
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complex waves have a cylindrical spreading factor. These surface waves 

compensate for the discontinuities of the corresponding edge-excited surface waves 

at the shadow boundary planes [18]. Figure 2.7 shows the ray picture illustrating 

the corner excited complex surface waves 

  

 
Figure 2.7 A ray picture illustrating the corner-excited complex surface waves 

 

2.3 UTD-MoM Solution 

 

In this section the hybrid UTD-MoM formulation is developed for the finite array 

of printed dipoles illustrated in Figure 2.1. 

 

Conventional MoM formulation has been provided in Section 2.1 for the array 

under consideration. A matrix equation representation for an EFIE is obtained to be 

solved for the unknown current vector [I] of elements Anm  in (2.1.24). As 

emphasized at the end of Section 2.1, the solution to the unknown [I] eventually 

becomes inefficient as the number of elements in the array increases since 

inversion of the impedance matrix, [Z], of larger size is required. The present 

hybrid method handles the vector [I] to reduce the length, i.e. the number of 

unknowns, of it. With the guidance of Section 2.2, where asymptotic ray analysis 

of radiation/scattering from the array under consideration is summarized, it is 

assumed that the complex amplitudes Anm of [I] also follow the UTD rules. This 
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enables [I] to be reformed by expanding it via a few UTD-type global basis 

functions. This technique is described below: 

 

UTD-MoM=I f I[ ] [ ][ ]′                                                    (2.3.1) 

 

where UTD-MoM[f ]  is the matrix having the elements as the values of UTD-MoM 

basis functions and [I ]′  is the vector containing the new unknowns. 

 

The procedure for evaluating UTD-MoM[f ]  matrix is explained in the following 

paragraphs. The matrix Equation (2.1.24) then takes the form: 

 

UTD-MoM VZ f I =[ ][ ][ ][ ]′                                         (2.3.2) 

 

To achieve Galerkin MoM solution, both sides of (2.3.2) is multiplied by the 

conjugate transpose of UTD-MoM[f ]  to obtain the following equation; 

 

[ ][ ] [ ]Z I V′ ′ ′=             (2.3.3) 

 

where  

 

T
UTD-MoM UTD-MoM[ ] {conj[f ]} [Z][f ]Z ′ =        (2.3.4) 

 

[ ]I ′  : vector of new unknowns                     (2.3.5) 

 

T
UTD-MoM[ ] {conj[f ]} [ ]V V′ =                                           (2.3.6) 

 

It is worth noting that solution of (2.3.3) requires the inversion of ′[Z ]  matrix  
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whose size is now much more smaller than of [Z]  matrix. After solving Equation 

(2.3.3) for [I ]′ , current distribution of  the array is obtained from Equation (2.3.1).  

 

• UTD-MoM Basis Functions and New Unknowns 

 

In the UTD-MoM concept, the array is divided into regions as corner, edge, and 

inner parts as depicted in Figure 2.8. Keeping the UTD ray behavior in mind, the 

complex amplitudes Anm  of the currents on the dipoles within array interior can be 

thought of as consisting of the infinite array value, i.e. propagating Floquet modal 

ray from direct path, together with the contributions from edge and corner 

diffracted rays and edge and corner launched surface waves. Thus it is reasonable 

to divide the array into a large inner part and a small remaining outer part as shown 

in Figure 2.8. Division of the array into regions cannot be done arbitrarily. 

According to the asymptotic high-frequency analysis of EM fields, a sufficient 

distance (at least one or two wavelengths) between the source and observation 

points is required to obtain accurate results. Assuming that the element spacing is 

0dx = dy = 0.5λ , it is enough to choose edge parts as shown in Figure 2.8, which 

are only three cells away from the corresponding actual array edges. For a 19x19 

element array each corner region has 15 elements. The remaining inner elements 

constitute the inner region. If the number of elements is increased greatly with 

inter-element spacing unchanged, i.e. 0dx = dy = 0.5λ , again it is enough to define 

edge regions as 3 cells away from the corresponding actual edges (edge regions 

now contains more elements) and corner regions as each having 15 elements. The 

remaining inner region now contains many more elements. Thus the determination 

of the regions is independent of the physical size of the array. Another crucial point 

is that, although the number of elements increased in the edge regions and inner 

part for the latter case, the number of unknowns remains the same, which is the 

advantageous and appealing characteristic of the present hybrid method. This is 

explained in the following paragraphs.  
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Figure 2.8 (a) Regions that the array is divided into in UTD-MoM approach (b) 

Ray fields that an element in the inner region experiences i.e. field from direct path, 

edge diffracted field, and edge and corner launched surface waves.  
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As mentioned at the beginning of this section, the unknown currents Anm on the 

dipoles are expanded in terms of UTD-based global basis functions. According to 

the regional description of the elements the following expression can be used for 

Anm as: 

 

, for corner cells of theouter part1, 1

, for edgecells of theouter part

, for theinner part

C n N m M

A E Anm nm nm
A Anm nm

− + + + +
′ ′′= +

′ ′′+







                    (2.3.7) 

 

• Inner part: Elements in the “inner region” of the array experience the ray 

fields of Floquet modal waves from direct path, edge and corner diffracted waves 

of those Floquet modes, and edge and corner launched surface waves of those 

Floquet modes. The physical interpretation of each type of ray fields is given 

below. 

 

nmA  = nm nmA A′ ′′+                       (2.3.8) 

 

nmA  : Unknown current amplitudes of the elements in the “inner region”. 

 

nmA′  : Currents contributed by Floquet modal waves from direct path, edge and 

corner diffracted waves of those Floquet modes. 

 

nmA′′  : Currents contributed by edge and corner launched surface waves of the 

propagating Floquet modes 

 

For the special case of J=1 (single propagating Floquet mode):  
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4 4

1 1

e c
nm nm nm nm

e c
A D B Q

= =
′ = + +∑ ∑                                                                     (2.3.9) 

 

where  

 

nmD : Direct ray contribution of the dominant Floquet modal wave that 

corresponds to the infinite array value i.e. the field produced by an infinite periodic 

array.  

 

4

1

e
nmB

e=
∑ : Floquet edge-diffracted field contributions. Since the array is finite, the 

Floquet modal ray is truncated and diffracted at the array edges. 

 
4

1

c
nm

c
Q

=
∑ : Floquet corner-diffracted field contributions. 

 

Functional forms of the terms that make up the equation (2.3.9) are as follows: 

 

( , ) yx j mdyj ndx
nmD V ndx mdy e e

ββ −−=D                                                          (2.3.10) 

 

sin( ) cos( )x s skβ θ φ=                               (2.3.11) 

 

sin( )sin( )y s skβ θ φ=                             (2.3.12) 

 

where ( ,s sθ φ ) is the scan angle and k  is the free-space wave-number. 

( , )V ndx mdy is the feed voltage amplitude at the center of each (n,m)th dipole. In 

this study uniform excitation is assumed so that ( , )V ndx mdy =1 for each of the 
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(n,m)th element. Choice of ( , )V ndx mdy  for a tapered excitation also provides 

accurate results as in [25]. 

 

D: Unknown coefficient of the UTD-type global basis function representing the 

direct ray contribution of the dominant Floquet modal wave. It brings only one 

unknown for the inner region no matter how large the inner part is. 

 

3 5
( , )

( ) ( )

y ee x e j yjks j xe
nm e e e

e e

B e V x y e e U
ks ks kse

ββ −− −= + +
 
 
 
 

e e eA B F
      (2.3.13) 

 

where 

 

( , )e ex y : coordinates of the diffraction point on the edge.     
 

2 2
( 2,4), ,x

e e e
x

y Mdy
x x Ndx x Ndx y Mdy e

k

β

β
= − − < < =± =

−

∓
           (2.3.14) 

 

2 2
, , ( 1,3)y

e e e
y

x Ndx
y y Mdy y Mdy x Ndx e

k

β

β
= − − < < =± =

−

∓
             (2.3.15) 

 

es : distance between the diffraction point at the edge and the observation point 
(x,y) on the element. 
 

2 2( ) ( )e e es x x y y= − + −                                                                          (2.3.16) 
 

eU : Heavy-side unit step function which cuts off the edge-diffraction defining the 

domain of existence. It takes the value of 1 if ( , )e ex y  lies on the true edge, 0 

otherwise. 
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Ae, Be, Fe: Unknown coefficients of the UTD-type global basis functions for the 

edge diffracted propagating Floquet modal ray. They bring 12 unknowns for all the 

elements at which the edge diffraction contributions are included. 

 
c
nmQ : corner diffraction from the th cornerc                                                  (2.3.17) 

 

The contributions resultant from corner diffraction can be excluded because the 

effects of edge diffraction is much more dominant in comparison when any (n,m)th 

cell is not within approximately 2 wavelengths from an array corner. In the vicinity 

of array corners, the effect of corner diffraction on Anm  is already included 

through 1, 1C n N m M− + + + +  of (2.3.7). 

 

Again for the special case of J=1 (only one propagating Floquet mode): 

 

1 2nmA A A′′ ′′ ′′= +                     (2.3.18) 

 

where 

 

1A′′ :  Edge-excited surface wave contributions. Surface waves are launched from 

the array edges due to the diffraction of incident Floquet modal waves. 

 

2
A′′ : Corner-excited surface wave contributions. These surface waves are launched  

from the array corners due to the diffraction of Floquet modal waves as discussed 

before. 

 

Functional forms of the terms that make up the equation (2.3.18) are as follows: 
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( , )e ex y′ ′ : The point at the edge at which the surface wave is launched. 
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, , ( 2, 4)x

e e e
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y y Mdy y Mdy x Ndx e
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β β
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∓
            (2.3.21) 

 

es′ : distance between the point where the surface wave is launched at the edge and  

the observation point (x,y) on the element. 
 

2 2( ) ( )e e es x x y y′ ′ ′= − + −                                                                      (2.3.22) 
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                              (2.3.23) 

       

swβ : surface wave propagation constant of the grounded dielectric slab. 

 

eU ′ : Heavy side unit step function. It takes the value of 1 if ( , )e ex y′ ′  lies on the  

true edge, 0 otherwise.  

 

2( ) cos ( ) H TM surface wave patternyf φ φ′ ′= ≡       (2.3.24) 
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eφ ′ : Angles of shadow boundaries for the edges 
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  Figure 2.9 Shadow boundaries for x and y directed edges respectively  
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eG : Unknown coefficients of the UTD-type global basis function for the edge 

launched surface wave. It brings 4 unknowns for all the elements at which the edge 

excited surface wave contributions are included. 

 

Again for the special case of J=1 (only one propagating Floquet mode): 

 

2
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           (2.3.28) 

 

( , )c cx y : coordinates of the corresponding corners. 
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                                                                           (2.3.29) 

 

cs : distance between the cth corner and the observation point. 
 

2 2( ) ( )c c cs x x y y= − + −                                                                          (2.3.30) 

 

1

1

tan ( ) (sgn[ ] 1) 2 ; 1,..., 4

0 tan ( )

ci
ci ci

ci

y y
y y i

x x

where

φ π

θ π

−

−

−
= + − − =

−

≤ ≤

              (2.3.31)    



 35 

2

2

2 sin ( )
2

2 sin ( )
2

c cx
cx sw c

c cy
cy sw c

s

s

φ φ
δ β

φ φ
δ β

′−
′ =

′−
′ =

                                                                         (2.3.32) 

 

2

4

1

3

( 2) ; 1, 2

( 4) ; 3, 4

( 1) ; 1, 4

( 3) ; 2,3

cx

cy

e c

e c

e c

e c

φ
φ

φ

φ
φ

φ

′ = =
′ =

′ = =

′ = =
′ =

′ = =








                                                                   (2.3.33) 

 

2

2

( ) 2 UTD Fresnel Transition Function

( ) cos ( ) H TM surface wave patterny

,

,

j jF j e e d

f

ξ
ξ τξ ξ τ

φ φ

∞ −=

=

∫
       (2.3.34) 

 

        

Figure 2.10 Surface waves launched from corners 
 

,cx cyG G : Since 
2

A′′  compensates for the discontinuities of the corresponding 

edge-excited surface waves at the shadow boundary planes, andcx cyG G  

contribute no new unknowns (see Equations 2.3.35 and 2.3.36 below). 

1cf 2cf
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1cs
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• Edge Part: Similarly, elements in the “edge” parts of the array experience 

the ray fields of: Floquet modal waves from direct path, edge and corner diffracted 

waves of those Floquet mode rays, and edge and corner launched surface waves 

resultant from the diffraction of those Floquet mode rays. 

 

Anm  = E Anm nm′ ′′+                      (2.3.37) 

 

Anm  : Unknown current amplitudes of the elements in the “edge” parts. 

 

Enm′  : Currents contributed by Floquet modal waves from direct path, edge and 

corner diffracted waves of those Floquet modes. 

 

Anm′′  : Currents contributed by edge and corner launched surface waves of  

the propagating Floquet modes 

 

For the special case of J=1 (only one propagating Floquet mode): 

4 4

1, 1
( , ) lj e c

nm nm nm nm
e e l c

E l j H B Q
= ≠ =

′ = + +∑ ∑                                                       (2.3.38) 

 

where  
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ljHnm : Direct ray contribution of the dominant Floquet modal wave which 

represents the field produced by an infinite periodic array.  

                     

4

e=1, e

eBnm
≠

∑
A

: Floquet edge-diffracted fields, as explained in “Inner Part” section. 

The only difference is that, for an element belonging to eth edge, the field 

contribution resultant from the ray diffraction at the corresponding edge is 

excluded. This is due to the ray theory that requires a separation of at least one 0λ  

between the source and observation points. 

 
4

1

c
nm

c
Q

=
∑ : Floquet corner-diffracted field contributions.  

 

Functional forms of the terms that make up the equation (2.3.38) are as follows: 

 

( , )
j mdyj ndxlj yx

nmH V ndx mdy e e
ββ −−≈ ljH                                                      (2.3.39) 

 

ljH : Unknown coefficient of the UTD-type global basis function representing the 

direct ray contribution of the dominant Floquet modal wave i.e. the infinite array 

value. It brings only one unknown for the elements on the jth row/column of lth 

edge. 

  
eBnm : The same as explained in “Inner Part” section. (See Equation (2.3.13)) 

 
cQnm  : The same as explained in “Inner Part” section. (See Equation (2.3.17)) 

 

Anm′′  : The same as explained in “Inner Part” section. (See Equation (2.3.18)) 
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The substantial reduction in the number of unknowns is made possible by using the  

UTD ray-type global basis functions that have been defined by the Equations 

(2.3.7) through (2.3.39). Assume that the array to be analyzed is divided into 

regions as shown in Figure 2.8a. Corner regions will bring 4x15 = 60 unknowns 

(each corner has 15 elements/unknowns). Edge regions will bring 4x3 = 12 

unknowns (each edge has 3 rows/columns and each row/column has one unknown 

i.e. infinite array value). The inner region has only 1 unknown i.e. the infinite array 

value. The infinite array values defined for the elements in the inner and edge 

regions are contributed by the edge-diffracted rays that bring 12 unknowns (Ae, Be, 

Fe, where e = 1,..,4) and the edge and corner launched surface waves that bring 4 

unknowns (Ge, where e = 1,..,4). Total number of unknowns is then 89 for this 

hybrid approach. If that array contains 100x100 = 10000 elements, the number of 

unknowns equals to at least 10000 (in the case of one mode per element is taken) in 

the conventional MoM approach. 

 
Example: In this example, expansion of the unknown current on an element in the 

inner region is illustrated. The array consists of 7x7 elements as shown in Figure 

2.11. Actually this array is small to analyze with this hybrid approach. It is chosen 

just to show how the new [ ]Z ′  matrix elements are calculated. The element under 

consideration has the unknown coefficient 1,2A  as shown in Figure 2.11. 

 

                           Figure 2.11 A 7x7 array of printed dipoles. 

A1,2

(0,0)

(0,1)

(1,0)

(1,1)
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Figure 2.11 shows the regions that the array is divided into using UTD-MoM 

approach. If one mode per dipole is taken, there are 7x7 = 49 unknowns to be 

solved for in the conventional MoM approach. This number reduces to 33 if UTD-

MoM method is used with the regions defined as in Figure 2.11.  

 
Figure 2.12 shows the expansion of conventional unknown currents for this 

example according to the Equation 2.3.1: 

 

UTD-MoM=I f I[ ] [ ][ ]′                       (2.3.1) 

 
It should be noted that the black squares in UTD-MoMf[ ]  (Fig. 2.12) matrix do not 

represent the same value. They are calculated according to the equations provided 

in Section 2.3. 

 
For example let’s consider the expansion of 1,2A . This current amplitude belongs 

to an element in the inner region and the terms in the expression below are 

calculated according to the Equations 2.3.8 through 2.3.39.  
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UTD-MoM=I f I[ ] [ ][ ]′  

 

Figure 2.12 Expansion of conventional unknown currents in terms of UTD- 
                     MoM unknowns  
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CHAPTER 3 

 

 

NUMERICAL RESULTS 

 

 

In this chapter, numerical results obtained via the hybrid UTD-MoM approach 

developed in Section 2.3 are presented for the element currents on the array under 

consideration. These results are compared with the results of the conventional 

MoM solution, the method in [17] and the infinite array solution to demonstrate the 

accuracy, efficiency and robustness of the present hybrid method. 

 

The UTD-MoM approach is applied to the analysis of radiation from the finite 

array of printed dipoles on an infinite grounded slab shown in Figure 2.1. In the 

numerical results shown in this chapter the array is assumed to be consisting of 

19x19 printed dipole elements. Three different cases are investigated to test the 

accuracy and robustness of the current UTD-MoM method. In all three cases it is 

assumed that the array is excited uniformly in amplitude, so that Vnm = 1 for each of 

the (n,m)th dipoles. Another condition common to all three cases is the periodic 

spacing of the dipoles that are 0dx = 0.5λ  and 0dy = 0.5λ , in the ˆxa  and ˆya  

directions, respectively. Keeping these element spacings in mind, the array is 

divided into regions such that each corner region consists of 15 elements and each 

edge region consists of 3 rows or columns, as shown in Figure 3.1. The remaining 

elements constitute the large inner part. This configuration produces 89 unknown 

element currents to be solved for, whereas it is 361 in the conventional MoM 

approach. Solution of this problem via UTD-MoM approach for the unknown 

element currents requires the inversion of ′[Z ]  matrix (see Equation 2.3.3) of size 

892. If the same problem is handled via conventional MoM approach, the solution 

requires the inversion of the impedance matrix [Z]  (see Equation 2.1.24) of size 

3612. If the number of elements in the array is increased, for example to 101x101 = 
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10201, the number of unknowns thus the size of the ′[Z ]  matrix to be inversed 

remains the same as 89 and 892 respectively (provided that the array is divided into 

the same electrical regions) in the present UTD-MoM approach, whereas the 

number of unknowns increases to 10201 and the size of the impedance matrix [Z]  

becomes 102012 in the conventional MoM approach. This example indicates the 

superior feature of the present hybrid method in terms of computational efficiency. 

 
 

 

 

Accuracy of the present UTD-MoM method is demonstrated for three cases. In the 

first case, an electrically thin ( 0d = 0.06λ ) dielectric substrate of relative 

permittivity 2.55rε =  is chosen. In the second case, all the parameters are the 

same as in the first case except for the thickness of the substrate which is increased 

to 0d = 0.19λ . In the third case, all the parameters are the same as in the first case 

except that relative permittivity of the slab is increased to 12.8rε =  and length of 

dipoles is decreased to L= 00.156λ . The aim of choosing three different cases in 

terms of substrate thickness or its relative permittivity is to find out how well the 

present hybrid method can handle the effects of surface waves. Surface waves are 

trapped in the substrate and travel parallel to the ground plane, thus don’t 

Figure 3.1 (Top view) Division of a 19x19 printed dipole array  
                   into regions.   
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contribute to the array radiation at the scan angle and a part of the power is wasted. 

Both TE and TM surface waves can be excited on a grounded dielectric substrate 

and the number of surface wave modes and how strong they are excited depend on 

the material and thickness of the slab. For the accurate prediction of the array 

performance, the mutual coupling effects of surface waves must be included in the 

analysis. In the conventional MoM formulation, the surface wave contributions are 

included in the evaluation of impedance matrix elements. The present hybrid 

method also accounts for the mutual coupling of the surface waves. TM0 mode 

surface wave has a zero cut-off frequency so that it can be excited for any substrate 

of thickness d. For thin substrates ( 00.01d λ< ) surface wave contribution is 

generally not significant [26]. However, as the thickness or/and relative 

permittivity of the dielectric substrate increase, surface wave(s) is/are better excited 

and coupling to the lower order mode(s) can become stronger. This condition is 

realized by increasing the thickness of the dielectric substrate in Case 2 and 

increasing the relative permittivity of the slab in Case 3. Results are in very good 

agreement with the conventional MoM results for both cases, thus the present 

hybrid method is capable of including the surface wave effects successfully. In all 

three cases, for the sake of simplicity, only one surface wave (TM10) is excited 

although the present hybrid method can handle problems with more than one 

surface wave. Besides, in practical applications, designs are made such that the 

least possible number of surface waves is excited since they cause power loss 

reducing the efficiency of the antenna. 

 

Case 1 The geometry of the problem is the same as in Figure 2.1 with 19x19 dipole 

elements printed on an infinite grounded dielectric slab. Dipoles are oriented in the 

ˆxa  direction. The dielectric substrate is electrically thin ( 0d = 0.06λ ) with relative 

permittivity 2.55rε =  so that the dielectric slab surface wave is not well excited. 

Each dipole has a length L= 00.39λ , a width W= 00.01λ , and spaced from 
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neighboring dipoles by distances dx= 00.5λ  in the x-direction and dy= 00.5λ  in the 

y-direction.  

 

Results are obtained for near-broadside ( sθ = 10o) and off-broadside ( sθ = 60o) 

radiations and compared with three different results; i.e. conventional MoM, the 

method used in [17] and the infinite array solution. As seen from the figures, the 

hybrid solution compares very well with the conventional MoM solution for both 

the near-broadside ( sθ = 10o) and off-broadside ( sθ = 60o) radiations. As seen on 

the figures, the infinite array value approximates the current distribution on the 

elements far from the edges whereas it becomes more inaccurate for the element 

near edges. The current magnitudes obtained from the method in [17] seem to 

follow the conventional MoM current pattern with less accuracy as compared to the 

present method. The method in [17] is the same as the method in this study except 

for the Galerkin solution used in this study. In [17], the unknown element currents 

are expanded the same way as explained in this study using UTD-type global 

functions, but those expansion functions are tested in point-matching fashion on 

some elements in the interior region whose locations are chosen by the user. Thus 

the accuracy of that method depends on the locations of the testing functions. 

However the method developed in this study doesn’t need that kind of 

manipulation since Galerkin solution is applied, which makes the present hybrid 

method robust. 

 

The present hybrid method may not provide accurate results at scan angles near 

grazing. This is due to the ill-conditioned character of ′[Z ] ; as the scan angle 

becomes large, the condition of the ′[Z ]  matrix in (2.3.3) becomes large and 

eventually inversion of ′[Z ]  matrix can not be carried out properly since it is nearly 

singular. (In this study it is observed that simulation terminates for sθ > 75o giving 

singularity error) 
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The current distributions on the first 3 rows (1st, 2nd and 3rd rows), on the middle 3 

rows (9th, 10th, and 11th rows), on the last 3 rows (17th,18th, and 19th rows) and on 

the first 3 columns (1st, 2nd and 3rd columns), on the middle 3 columns (9th, 10th, 

and 11th columns), on the last 3 columns (17th,18th, and 19th columns) are plotted 

for 10o
sθ =  in Figures 3.2~3.7. Since 0sφ = , symmetric rows with respect to the 

middle row have the same current distributions. For this reason, for 60o
sθ =  in 

Case 1 and for the other 2 cases, first three rows, 9th and 10th rows (10th row is the 

middle row) are plotted, 11th row and last three rows are not plotted due to the 

symmetry. E-plane radiation patterns for the Eθ  component in the case of scan 

angles 10o
sθ =  and 60o

sθ =  are shown in Figure 3.13. 
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Figure 3.2 Element currents on the first three rows for Case 1 at sθ = 10o; graph on 

the top is for the first row, graph in the middle is for the second row, graph at the 
bottom is for the third row 

1st row ( θs=10o, Case 1) 

2nd row ( θs=10o, Case 1) 

3rd row ( θs=10o, Case 1) 
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Figure 3.3 Element currents on the middle three rows for Case 1 at sθ = 10o; graph 

on the top is for the 9th row, graph in the middle is for the 10th row, graph at the 
bottom is for the 11th row. 

9th row ( θs=10o, Case 1) 

10th row ( θs=10o, Case 1) 

11th row ( θs=10o, Case 1) 
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Figure 3.4 Element currents on the last three rows for Case 1 at sθ = 10o; graph on 

the top: 17th row, graph in the middle: 18th row, graph at the bottom: 19th row 
 

17th row ( θs=10o, Case 1) 

18th row ( θs=10o, Case 1) 

19th row ( θs=10o, Case 1) 



 49

 

 

 
 

Figure 3.5 Element currents on the first three columns for Case 1 at sθ = 10o; 

graph on the top is for the first column, graph in the middle is for the second 
column, graph at the bottom is for the third column 

1st column ( θs=10o, Case 1)

2nd column ( θs=10o, Case 1)

3rd column ( θs=10o, Case 1)
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Figure 3.6 Element currents on the middle three columns for Case 1 at sθ = 10o; 

graph on the top is for the 9th column, graph in the middle is for the 10th column, 
graph at the bottom is for the 11th column. 

9th column ( θs=10o, Case 1)

10th column ( θs=10o, Case 1)

11th column ( θs=10o, Case 1)
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Figure 3.7 Element currents on the last three columns for Case 1 at sθ = 10o; graph 

on the top is for the 17th column, graph in the middle is for the 18th column, graph 
at the bottom is for the 19th column. 

17th column ( θs=10o, Case 1)

18th column ( θs=10o, Case 1)

19th column ( θs=10o, Case 1)
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Figure 3.8 Element currents on the first three rows for Case 1 at sθ = 60o; graph on 

the top is for the first row, graph in the middle is for the second row, graph at the 
bottom is for the third row. 

1st row ( θs=60o, Case 1) 

2nd row ( θs=60o, Case 1) 

3rd row ( θs=60o, Case 1) 
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Figure 3.9 Element currents on the 9th and 10th rows in the middle for Case 1 at 

sθ = 60o; graph on the top is for the 9th row, graph at the bottom is for the 10th row. 

 
 

9th row ( θs=60o, Case 1) 

10th row ( θs=60o, Case 1) 
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Figure 3.10 Element currents on the first three columns for Case 1 at sθ = 60o; 

graph on the top is for the first column, graph in the middle is for the second 
column, graph at the bottom is for the third column 

1st column ( θs=60o, Case 1)

2nd column ( θs=60o, Case 1)

3rd column ( θs=60o, Case 1)
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Figure 3.11 Element currents on the middle three columns for Case 1 at sθ = 60o; 

graph on the top is for the 9th column, graph in the middle is for the 10th column, 
graph at the bottom is for the 11th column. 

9th column ( θs=60o, Case 1)

10th column ( θs=60o, Case 1)

11th column ( θs=60o, Case 1)
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Figure 3.12 Element currents on the last three columns for Case 1 at sθ = 60o; 

graph on the top is for the 17th column, graph in the middle is for the 18th column, 
graph at the bottom is for the 19th column. 

17th column ( θs=60o, Case 1)

18th column ( θs=60o, Case 1)

19th column ( θs=60o, Case 1)
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(a) 

 
(b) 

 
Figure 3.13 E-plane radiation patterns for the Eθ  component in the case of scan 

angles a) 10o
sθ = b) 60o

sθ =  (Case 1) 
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Case 2 The geometry and the parameters are the same as in Case 1 except for the 

thickness of the dielectric slab. The dielectric substrate is electrically thicker now 

( 0d = 0.19λ ) so that the surface wave is better excited as compared to Case1.  

 

Results are obtained for near-broadside ( sθ = 10o) and scan blindness ( sθ = 45.8o) 

angles and compared with three different results; i.e. conventional MoM, the 

method used in [17] and the infinite array solution. Although the mutual coupling 

effect of the surface wave is more significant now as compared to the Case 1 (due 

to the thicker dielectric slab), results of the present hybrid method compare very 

well with the results of conventional MoM method. For the arrays of printed 

dipoles, scan blindness is possible when the wave number β  in (2.1.7) takes the 

value of the propagation constant, swβ  of the dielectric slab [27]. At blindness, 

nearly all the power incident on the array is trapped in the non-radiating surface 

wave(s), resulting in a severe degradation in the radiation in the direction of scan 

angle. Figures 3.19~3.24 show that the present hybrid UTD-MoM method also 

provides very accurate results at scan blindness angles. 

 

The currents on the first 3 rows (1st, 2nd, and 3rd rows), on the 9th and 10th rows, and 

on the first 3 columns (1st, 2nd, and 3rd columns), on the 3 middle columns (9th, 10th, 

and 11th columns), on the last 3 columns (17th, 18th, and 19th columns) are plotted in 

the Figures 3.14~3.23. E-plane radiation patterns for the Eθ  component in the case 

of scan angles 10o
sθ =  and 45.8o

sθ =  are shown in the Figure 3.24. 
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Figure 3.14 Element currents on the first three rows for Case 2 at sθ = 10o; graph 

on the top is for the first row, graph in the middle is for the second row, graph at 
the bottom is for the third row. 

1st row ( θs=10o, Case 2) 

2nd row ( θs=10o, Case 2) 

3rd row ( θs=10o, Case 2) 
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Figure 3.15 Element currents on the 9th and 10th rows in the middle for Case 2 at 

sθ = 10o; graph on the top is for the 9th row, graph at the bottom is for the 10th row. 

 
 

9th row ( θs=10o, Case 2) 

10th row ( θs=10o, Case 2) 
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Figure 3.16 Element currents on the first three columns for Case 2 at sθ = 10o; 

graph on the top is for the first column, graph in the middle is for the second 
column, graph at the bottom is for the third column 

1st column ( θs=10o, Case 2)

2nd column ( θs=10o, Case 2)

3rd column ( θs=10o, Case 2)
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Figure 3.17 Element currents on the middle three columns for Case 2 at sθ = 10o; 

graph on the top is for the 9th column, graph in the middle is for the 10th column, 
graph at the bottom is for the 11th column. 

9th column ( θs=10o, Case 2)

10th column ( θs=10o, Case 2)

11th column ( θs=10o, Case 2)
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Figure 3.18 Element currents on the last three columns for Case 2 at sθ = 10o; 

graph on the top is for the 17th column, graph in the middle is for the 18th column, 
graph at the bottom is for the 19th column. 

17th column ( θs=10o, Case 2)

18th column ( θs=10o, Case 2)

19th column ( θs=10o, Case 2)
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Figure 3.19 Element currents on the first three rows for Case 2 at sθ = 45.8o; graph 

on the top is for the first row, graph in the middle is for the second row, graph at 
the bottom is for the third row 

1st row ( θs=45.8o, Case 2) 

2nd row ( θs=45.8o, Case 2) 

3rd row ( θs=45.8o, Case 2) 
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Figure 3.20 Element currents on the 9th and 10th rows in the middle for Case 2 at 

sθ = 45.8o; graph on the top is for the 9th row, graph at the bottom is for the 10th 

row. 
 

9th row ( θs=45.8o, Case 2) 

10th row ( θs=45.8o, Case 2)
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Figure 3.21 Element currents on the first three columns for Case 2 at sθ = 45.8o; 

graph on the top is for the first column, graph in the middle is for the second 
column, graph at the bottom is for the third column 

1st column ( θs=45.8o, Case 2)

2nd column ( θs=45.8o, Case 2)

3rd column ( θs=45.8o, Case 2)
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Figure 3.22 Element currents on the middle three columns for Case 2 at sθ = 

45.8o; graph on the top is for the 9th column, graph in the middle is for the 10th 
column, graph at the bottom is for the 11th column. 

9th column ( θs=45.8o, Case 2)

10th column ( θs=45.8o, Case 2)

11th column ( θs=45.8o, Case 2)
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Figure 3.23 Element currents on the last three columns for Case 2 at sθ = 45.8o; 

graph on the top is for the 17th column, graph in the middle is for the 18th column, 
graph at the bottom is for the 19th column 

17th column ( θs=45.8o, Case 2)

18th column ( θs=45.8o, Case 2)

19th column ( θs=45.8o, Case 2)
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(a) 

 
(b) 

 
Figure 3.24 E-plane radiation patterns for the Eθ  component in the case of scan 

angles a) 10o
sθ =  b) 44.8o

sθ = , 45.8o
sθ = (scan blindness), 46.8o

sθ = (Case 2) 
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Case 3 In this case the dielectric substrate is electrically thin ( 0d = 0.06λ ) but of 

high relative permittivity so that the surface wave is better excited.  

 

Results are obtained for near-broadside ( sθ = 10o) and off-broadside ( sθ = 55o) 

radiations and compared with three different results; i.e. conventional MoM, the 

method used in [17] and the infinite array solution. Although the mutual coupling 

effect of the surface wave is more significant now as compared to the Case 1 (due 

to the higher relative permittivity of the dielectric slab), results of the present 

hybrid method compare very well with the results of conventional MoM method 

for both the near-broadside ( sθ = 10o) and off-broadside ( sθ = 55o) radiations.  

 

The currents on the first 3 rows (1st, 2nd, and 3rd rows), on the 9th and 10th rows, and 

on the first 3 columns (1st, 2nd, and 3rd columns), on the 3 middle columns (9th, 10th, 

and 11th columns), on the last 3 columns (17th, 18th, and 19th columns) are plotted in 

the Figures 3.25~3.34. E-plane radiation patterns for the Eθ  component in the case 

of scan angles 10o
sθ =  and 55o

sθ =  are shown in the Figure 3.35. 
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Figure 3.25 Element currents on the first three rows for Case 3 at sθ = 10o; graph 

on the top is for the first row, graph in the middle is for the second row, graph at 
the bottom is for the third row 

1st row ( θs=10o, Case 3) 

2nd row ( θs=10o, Case 3) 

3rd row ( θs=10o, Case 3) 
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Figure 3.26 Element currents on the 9th and 10th rows in the middle for Case 3 at 

sθ = 10o; graph on the top is for the 9th row, graph at the bottom is for the 10th row. 

 
 

9th row ( θs=10o, Case 3) 

10th row ( θs=10o, Case 3) 
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Figure 3.27 Element currents on the first three columns for Case 3 at sθ = 10o; 

graph on the top is for the first column, graph in the middle is for the second 
column, graph at the bottom is for the third column. 

1st column ( θs=10o, Case 3)

2nd column ( θs=10o, Case 3)

3rd column ( θs=10o, Case 3)
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Figure 3.28 Element currents on the middle three columns for Case 3 at sθ = 10o; 

graph on the top is for the 9th column, graph in the middle is for the 10th column, 
graph at the bottom is for the 11th column. 

9th column ( θs=10o, Case 3)

10th column ( θs=10o, Case 3)

11th column ( θs=10o, Case 3)
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Figure 3.29 Element currents on the last three columns for Case 3 at sθ = 10o; 

graph on the top is for the 17th column, graph in the middle is for the 18th column, 
graph at the bottom is for the 19th column. 

17th column ( θs=10o, Case 3) 

18th column ( θs=10o, Case 3)

19th column ( θs=10o, Case 3)
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Figure 3.30 Element currents on the first three rows for Case 3 at sθ = 55o; graph 

on the top is for the first row, graph in the middle is for the second row, graph at 
the bottom is for the third row. 

1st row ( θs=55o, Case 3) 

2nd row ( θs=55o, Case 3) 

3rd row ( θs=55o, Case 3) 
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Figure 3.31 Element currents on the 9th and 10th rows in the middle for Case 3 at 

sθ = 55o; graph on the top is for the 9th row, graph at the bottom is for the 10th row. 

 
 

9th row ( θs=55o, Case 3) 

10th row ( θs=55o, Case 3) 
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Figure 3.32 Element currents on the first three columns for Case 3 at sθ = 55o; 

graph on the top is for the first column, graph in the middle is for the second 
column, graph at the bottom is for the third column 

1st column ( θs=55o, Case 3)

2nd column ( θs=55o, Case 3)

3rd column ( θs=55o, Case 3)
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Figure 3.33 Element currents on the middle three columns for Case 3 at sθ = 55o; 

graph on the top is for the 9th column, graph in the middle is for the 10th column, 
graph at the bottom is for the 11th column. 

9th column ( θs=55o, Case 3)

10th column ( θs=55o, Case 3)

11th column ( θs=55o, Case 3)
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Figure 3.34 Element currents on the last three columns for Case 3 at sθ = 55o; 

graph on the top is for the 17th column, graph in the middle is for the 18th column, 
graph at the bottom is for the 19th column. 

17th column ( θs=55o, Case 3) 

18th column ( θs=55o, Case 3)

19th column ( θs=55o, Case 3)
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(a) 

 
(b) 

 
Figure 3.35 E-plane radiation patterns for the Eθ  component in the case of scan 

angles a) 10o
sθ = b) 55o

sθ =  (Case 3) 
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CHAPTER 4 

 

 

CONCLUSION 

 

 

In this study, a hybrid method is presented for the efficient yet accurate prediction 

of current distribution on a finite phased array of printed dipoles. Hybrid analysis 

begins with the usual MoM approach to obtain an integral equation formulation for 

the unknown currents on the dipoles. As the size of the array increases, this 

rigorous MoM analysis eventually becomes computationally prohibitive due to 

large number of unknowns. This drawback of conventional MoM approach for the 

analysis of large arrays is treated by utilizing the UTD-ray concept for the 

unknown array element currents. Asymptotic ray analysis for radiation/scattering 

from large finite arrays enables to expand the unknown array element currents 

using a few appropriate UTD-type global basis functions. Consequently, the 

number of unknown currents is drastically reduced, the matrices that make up the 

integral equation obtained via conventional MoM approach shrink greatly in size 

and the solution becomes computationally far more efficient as compared to the 

conventional MoM solution.  

 

Of course the computational efficiency is not the only issue; the analysis should 

give reasonably accurate results as well. The analysis of large printed periodic 

arrays using the theory of infinite periodic structures allows the expansion of the 

fields in terms of Floquet waves and the analysis reduces to a single cell of 

periodicity. This provides a great efficiency on the computational cost but lacks in 

the accuracy. This infinite array approximation leads to reasonable results for 

describing the characteristics of elements far from the array boundaries, whereas it 

is significantly inaccurate for the elements in the vicinity of array boundaries. 
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However behavior of each element in the array can be predicted accurately by 

using the present UTD-MoM approach. 

 

The numerical results and comparisons presented in Chapter 3 show that the hybrid 

UTD-MoM method developed in this study can be used for the efficient analysis of 

large planar printed dipole arrays. It is shown that this UTD-MoM approach 

provides very accurate results at scan angles from broadside to off-broadside (up to 

~75o) including scan blindness angles. It provides good results for the arrays on 

thin and thick dielectric substrates as well as dielectrics with high permittivity 

values.  Finite array of printed dipoles is chosen in this study to provide simplicity 

in the understanding of the present hybrid method and ease of finding results of 

different approaches to compare them with the results of the present hybrid 

method. However the approach developed here can be extended for treating the 

complicated printed elements such as patches or more complex elements on multi-

layered media and for the analysis of frequency selective surfaces (FSS). 

 

In this study, the unknown currents are handled utilizing the UTD-ray concept 

providing computational efficiency. However this UTD-ray concept can also be 

used to calculate the mutual impedances to reduce the fill time of the impedance 

matrix. When separations between elements are greater than 0λ , the contribution of 

large group of elements to the field of an element can be calculated by using UTD 

rays of rectangular finite array. For small separations, mutual coupling calculations 

can be handled in conventional fashion. 

 

In the future studies, the UTD-MoM approach developed in this study can also be 

extended for the analysis of arrays of slots, patches or more complex antenna array 

elements in multilayered structures. Furthermore, this approach can be modified to 

analyze radiation/scattering from conformal arrays, like arrays on cylindrical 

surfaces. 
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APPENDIX A 

 

 

PERIODIC STRUCTURES AND FLOQUET' S THEOREM 

 

 

In this part, characteristics and mathematical representation of waves propagating 

in periodic structures are presented. Let us consider a wave propagating in periodic 

structures, which may be characterized by periodic boundary conditions or a 

periodically varied dielectric constant (Figure A.1) [28]. It is noted that the fields at 

a point z in an infinite periodic structure differ from the fields one period L away by 

a complex constant. This is apparently valid because in an infinite periodic 

structure, there should be no difference between the fields at z and z+L except for 

the attenuation and phase shift. Let a function u(z) represent a wave. Then a wave 

u(z) at z and a wave u(z+L) at z+L are related in the same manner as a wave u(z+L) 

at z+L and a wave u(z+2L) at z+2L. This can be expressed mathematically as: 

 

u(z + L) u(z + 2L) u(z + mL)
= = = C = constant

u(z) u(z + L) u[z + (m - 1)L]
                        (A.1) 

 

From (A.1) the equation below is obtained: 

 
mu(z + mL)= C u(z)                 (A.2) 

 

The constant C is in general complex, which can be written as: 

 
jβL-C = , β = complexe               (A.3) 

 

and β  represents the propagation constant. 
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Now let us consider a function as: 

 

( ) ( )j zR z u ze β=                      (A.4) 

 

Then ( )( ) ( ) ( )j z LR z L u z L R ze β ++ = + = . Therefore, R(z) is a periodic function 

of z with the period L, and thus can be represented in a Fourier series: 

 

(2 / )( ) j n L z
n

n
R z A e π

∞
−

=−∞

= ∑               (A.5) 

 

 
Figure A.1 Periodic structures 

 

Using (A.4), a general expression for a wave in a periodic structure with the period 

L can be obtained: 

 

( 2 / )( )

n

j n L z
n

n

j z
n

n

u z A e

A e

β π

β

∞
− +

=−∞

∞
−

=−∞

=

=

∑

∑
                (A.6) 

 

where 
2

n
n
L
π

β β= +  
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Noting that, in general, the wave consists of both positive and negative-going 

waves: 

 

( ) n nj z j z
n n

n n
u z A e A eβ β

∞ ∞
− +

=−∞ =−∞

= +∑ ∑               (A.7) 

 

This is a representation of a wave in periodic structures in a form of an infinite 

series, resembling harmonic representation ( j tne ω− ) in time. The nth term in (A.6) 

is called the nth space harmonic or Hartree harmonic. Equation (A.7) is the 

mathematical representation of Floquet’s theorem, which states that the wave in 

periodic structures consists of an infinite number of space harmonics. 

 
 




