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ABSTRACT

ANALYSIS OF SERIAL INVENTORY
SYSTEMS UNDER NONSTATIONARY
DEMAND

Baskan, Fevzi
M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Refik Giilli
Co-Supervisor: Prof. Dr. Nesim Erkip

December 2004, 123 pages

In this study we consider a two-echelon supply chain with a nonstationary
demand process. The retailer batches the customer demand for a predetermined
number of periods before placing an order to the supplier. We show that the
demand process for the supplier is more variable than that for the retailer. It
is observed that the supplier can reduce the variability of orders by tracking the

exogenous demand occurring at the retailer’s side.

Keywords: Supply Chain Management, Order Batching, Value of Information
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INCELENMESI
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Tez Yoneticisi: Prof. Dr. Refik Giilli
Ortak Tez Yoneticisi: Prof. Dr. Nesim Erkip

Aralik 2004, 123 sayfa

Bu ¢aligmada stokastik ve degigken taleplerle ¢caligan iki seviyeli bir tedarik zin-
ciri ele alinmistir. Satici periyodik araliklarda tedarikciye siparis verir. Buna gore
tedarik¢inin gordiigii talebin, saticinin gozlemledigi talebe gore daha degisken
oldugu gosterilmigtir. Tedarik¢inin saticinin gozlemlemis oldugu talep verileri
hakinda bilgi sahibi olmasinin tedarik¢inin verdigi siparigin varyansini diigiirdigi

de gozlenmistir.
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CHAPTER 1

INTRODUCTION

Supply chain is a network of production facilities and distribution centers. The
important functions performed in a supply chain involve the procurement of ma-
terials, transformation of materials into intermediate and finished products, and
distribution of these products to customers. Managing supply chain is the inte-
gration of these functions. Coordination among the members of the chain is the

key driving factor in the management of supply chain.

Analytical studies of supply chains need to reflect essential characteristics of
supply networks observed in practice. One of the most important characteristics
of a supply network is the underlying demand process. In most real environments
demand is uncertain, possibly nonstationary, and hence hard to forecast. Among
several other methods, time series analysis is used to model and forecast demand
processes. On the research side, the impact of non-stationarity and variance pa-
rameters of the time series model on the performance of the chain is an important
issue. On the other hand, the practitioners try to come up with a good represen-
tation of their data by fitting a time series model and by making predictions of

future demand using the model.

In this study, we analyze a two-echelon supply chain with a retailer and a
supplier. The demand observed by the retailer is nonstationary and the retailer

uses an order-up-to level policy to determine its order amount from the supplier.



The supplier, in turn, places order from an outside source. There are lead-times
associated with the retailer and supplier orders. Of course, the supplier can fulfill
the order of the retailer as long as it has sufficient on-hand inventory.

In supply chains, each member orders with an upstream stage, but they do not
necessarily place an order every time they experience a demand. A retailer, for
instance, may batch or accumulate demands. There are many common reasons
for an inventory system to work with order-batching: The supplier may not be
able to handle frequent order processing because the time and cost of processing
an order can be substantial. Some manufacturers place orders when they run
their material requirements planning systems. Savings that can be obtained by
ordering in truck-loads, or by consolidating orders for several items would force
a manufacturer or retailer to order less frequently.

In this study our main aim is to model and understand the effect of order-
batching on the system performance and optimal safety stock levels. To achieve
this objective, we let the retailer in the system to follow a particular batching
policy. Specifically, it batches the customer demand for a fixed, predetermined
number of periods, and places an order with the supplier for the batched amount.
The supplier, on the other hand, follows a standard order-up-to level policy by
placing an order at the outside source every time an order is placed by the retailer.

An important observation in supply chain management, known as the bull-
whip effect, suggests that the demand variability increases as one moves up a
supply chain. Order-batching is cited as one of the sources of bullwhip effect.
Please note that the supplier observes lumped orders at regular intervals, and
does not observe potentially important periodic customer demand information.
Another objective of this study is to understand the degree of the bullwhip effect
under the prescribed order-batching policy.

In an attempt to streamline their supply chains, companies have engaged in
information sharing practices. Information sharing may enable companies to over-
come the bullwhip effect. In order to observe the possible benefits of information
sharing, we designed a study that compares two retailer-supplier chains. In one

of the chains, the retailer not only conveys the batched order to the supplier, but



also passed the detailed demand information. In the second chain, the supplier
only receives the order information. In both of the chains, the retailer and the
supplier are assumed to know the relevant parameters of the demand process (the
mean, the standard deviation and, the non-stationarity parameter).

This study uses two different tools; analytical derivations and simulation to
observe the designed system. These methods work in parallel: analytically derived
equations are used in simulation. In the simulation part of the study we aim to
analyze how the system performs when the retailer and the supplier works in

coordination.

1.1 General Description of the System

This study concentrates on a single item inventory system. There are two parties
involved: the supplier, or the upstream stage and the retailer, or the downstream
stage. The retailer observes a nonstationary demand process. For practical pur-
poses, for this kind of demand processes, systems generally depend on forecasts
based on time series of prior demand, e.g. moving averages. And these forecasts
are used on the belief that the most recent demand observations are the best pre-
dictors of the future demand. Exponential-weighted moving average forecasting
model is an example to this kind of forecasting. Our demand process behaves like
a random walk , that is its evolution changes in directions and rates of growth
or decline. And for the type of demand processes, to which the retailer in our
work is exposed, the exponential-weighted moving average forecasting provides
the minimum mean square forecast, Muth (1960), Box et al. (1994).

We build the system using the demand process and the forecasting model
described above, with deterministic replenishment lead-times for the supplier and
the retailer. We also assume that the retailer observes the customer demand for
a fixed, predetermined number of periods and then places order at the supplier in
batches. From the analysis of the model, we determine the safety stock levels that
should be maintained by the supplier and the retailer. We also investigate the

managerial implications of order-batching and information sharing in supplier-
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retailer chains.

System structure can be seen in Figure 1.1. In this system, retailer gives order
in every R periods of time and receives this amount after L periods (lead-time for
the retailer to receive the order) if the supplier has enough amount to fulfill the
order, otherwise the supplier sends the amount of positive inventory on-hand to
the retailer and batches the remaining part of the order. In general; in a period
the retailer first observes that period’s demand, determines that period’s order
quantity, receives the order from L periods ago, and then fills the demand from
inventory. Any demand that can not be met from the shelf is backordered. In
this context we derive inventory and order equations for the retailer and observe
the retiler’s performance under different environmental conditions.

The supplier also has deterministic lead-time to receive its order, this value is
denoted by K, an integer value, multiplied by R. In each R period time, supplier
first observes the order given by the retailer, determines that period’s order, re-
ceives the order from K R periods ago, and then fills the demand from inventory.
Again for the upstream stage the demand that can not be met from inventory
is backordered. By using an order-up-to level policy and above described struc-
ture we derive required equations for the supplier and observe its performance
throughout the study.

We follow the following order in the remaining part of our study; in the next
chapter we mention about the related literature under main groupings and state
the relations of them with our work.

In chapter 3; we define the system analytically and study on the derivations
of the system variables. We mention about the performance of the members of
the system and give some insights about the initial results of the study.

Chapter 4 is devoted to the simulation model. After the model is described,
steps taken for verification and performance measures are presented. Case where
actual demand information becomes available for the supplier is compared with
the no information case. Finally, results of the computational experience are
discussed.

Conclusion comes with chapter 5. We state all the results reached throughout



the work.



CHAPTER 2

RELATED LITERATURE

2.1 Literature Review

We study a single item inventory system of a two-echelon model. The end item
demand is nonstationary, integrated moving average process of (0,1,1), for which
exponential-weighted moving average forecasting provides the minimum mean
square forecast. We introduce batch ordering into retailer’s process, and try to
see its implications. Both parts of the system employs order-up-to policies to
determine their order amounts. Our main purpose is to see the effect of batching
on the systems defined in many different context in the literature. What is its
effect on the general truths of such systems. In the literature there are many
studies considering inventory systems for echelon models and they reach some
general results as: bullwhip effect and main causes of this, importance of infor-
mation sharing under some scenarios and how this can improve the performance
of considered systems. It is our concern to observe the realizability of these results
under batch ordering for the system having nonstationary exogenous demand. In
studying with these we used two method; while analytically deriving the formulas
for the variables of the system we observed the performance of them with sim-
ulation tools. During our literature search we were not so lucky to find enough
batching applications, although this increases our motivation to study on the

subject it makes the study a bit more difficult. This was not the case about other
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topics, there are huge amounts of study on the literature related with the topics
we mentioned previously in this paragraph. After some study we tried to group
the related literature under three main headings: Group 1 consists of the mate-
rials discussing the information structure and bullwhip effect, materials in group
2 concentrates on general processes and descriptions of two-echelon systems, and
the last group is about nonstationary demand processes, forecasting models that
are suitable for these processes, analytical derivations of different equations and

computational studies with simulation.

2.1.1 Bullwhip Effect and Importance of Information Sharing

Under supply chain modeling headings, many studies are on the topics of bullwhip
effect, the increase in the variances of the demand observed by the members as we
move up in a supply chain, and the importance of demand information sharing
between the players of the system. These are really important and popular topics
nowadays. Bullwhip effect is important because the companies that have no
concern on this topic can face one or more of the following problems: They
have excessive inventory piling up, their forecast for product is poor, they may
have insufficient or excessive capacities, their customer service becomes poor due
to unavailable products or long backlogs, they can not have exact production
planning, and they have to pay high costs for corrections, such as for expedited
shipments and overtime. This is a big problem and can be observed in most of
the supply chain. Even when consumer sales do not seem to vary much, there
is pronounced variability in the retailers’ order to the suppliers. Our next topic
in this grouping, information sharing, has been viewed as a major strategy to
encounter this problem. In most context, by letting the supplier have information
of demand observed by the retailer, the harmful effect of demand distortion can
be ameliorated. Indeed, demand information sharing by a downstream operator
to its supplier is the cornerstones of initiatives such as Quick Response (QR) and
Efficient Consumer Response (ECR). Generally information sharing is embedded

in programs like Vendor-Managed-Inventory (VMI) or Continuous Replenishment
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Programs (CRP).

Lee et al. (1997a) study on definition, main causes and methods of coun-
teraction of the bullwhip effect. They state that the ordering patterns share a
common, recurring theme: the variabilities of an upstream site are always greater

than those of downstream site, and discusses main causes for this statement as:

e Demand Forecast Updating: Sterman’s experiment the ”beer game” showed
that players do not make decision rationally and human behavior, such as
misconceptions about inventory and demand information, may cause the
bullwhip effect. An important factor here is each player’s thought process
in projecting the demand pattern based on what he or she observes. When
a downstream operation places an order, the upstream manager processes
that pice of information as a signal for future product demand. By consid-
ering this signal, upstream stage readjusts its demand forecast and updates

its order to its supplier. This contributes to bullwhip effect.

e Order Batching: Companies prefer to batch or accumulate their demands
before issuing an order. They have many reasons to work in this manner,
such as they may have a supplier that can not handle frequent order pro-
cessing because the time and cost of processing an order can be substantial.
Many companies place an order when they run their material requirement
planning systems, and a company with slow moving items may prefer to
order on a regular cyclical basis. When a company, having one of the rea-
sons above to order in batches is considered, it is observed that its supplier
faces erratic stream of orders. There may be a spike in demand at one time
during any cycle followed by no demands for the rest of the cycle. This
variability is of course higher than the variability of demand observed by
the company itself. Therefore periodic ordering amplifies variability and

contributes to bullwhip effect.

e Price Fluctuation: Estimates shows that almost 80 percent of the trans-
actions between the manufacturers and retailers in the grocery industry

were made in a ”forward buy” arrangement in which items were bought



in advance of requirements, generally because of manufacturers’ attractive
price offer, price discounts, quantity discounts, coupons, rebates, and so on.
This promotions could be costly to the supply chain. When the price of
the product is low customer buys more than needed amount. When the
price turns to its normal value, customer stops buying until it has finished
its inventory. As a result, the customer’s buying pattern does not show its
consumption pattern, and the variations of the buying quantities is much

higher than those of the consumption rate.

e Rationing and Shortage Gaming: When the product demand exceeds the
supply, manufacturers often rations its product to customers. One of the
method in doing this is to allocate the amount in proportion to the amount
ordered. Customers know these rationing behavior of the manufacturer and
they exaggerate their real needs when they order. When demand cools or-
ders will suddenly disappear. This gaming strategy gives little information
about the real demand of the product to the manufacturer, especially in

the early stage of the product.

After defining the main causes of the bullwhip effect they concentrate on the
strategies to mitigate it. They examine how companies tackle each of the four
causes and categorize the various initiatives and other possible remedies based
on the underlying coordination mechanism, namely, information sharing, channel

alignment, and operational efficiency.

e Avoid Multiple Demand Forecast Updates: Bullwhip effects are created
when every members of the supply chain use their immediate downstream
input for forecasting. One remedy to repetitive processing of consumption
data in a supply chain is to make demand data available to the upstream
stage. By this way they can update their forecast with the same raw data.
One way for information sharing that can be used by the supply chain

partners is Electronic Data Interchange (EDI).

e Break Order Batches: Companies need to devise strategies that leads to

10



smaller batches or more frequent resupply. One main reason for batch-
ing was the cost of ordering this may be reduced by the implementation
of EDI technologies. One other reason was the high transportation costs.
Distributor tries to give a full truck load of order to reduce the transport-
ing cost. Nowadays some manufacturers induce their distributors to order
assortments of different products, to tackle with this problem. The use of
third-party logistics company also helps making small batch replenishment
economical. By consolidating loads from multiple suppliers located near
each other, a company can realize full truck load economies without the

batches coming from the same supplier.

Stabilize Prices: The manufacturer can reduce the incentives for retail for-
ward buying by establishing a uniform wholesale pricing policy. In the
grocery industry major manufactures have moved to an everyday low price

(EDLP) or value pricing strategy.

Eliminate Gaming in Shortage Situations: In the case of shortage, instead
of allocating products based on orders, allocating in proportion to past
sales records make customers have no incentive to exaggerate their orders.
The sharing of capacity and inventory information of the supplier helps to
alleviate customer’s anxiety and, consequently, lessen their need to engage

in gaming.

In the same year with an other study, Lee et al. (1997b) develop simple

mathematical models of supply chains that capture essential aspects of the in-

stitutional structure and optimizing behaviors of members. They study with the

formulation of the causes and cures that they explained in their previous paper.

They demonstrate through the models that the bullwhip effect is an outcome of

the strategic interactions among rational supply chain members. They employ

mathematical models to explain the outcome of rational decision making and

their results suggest that companies attempting to gain control of the bullwhip

effect are better served by attacking the institutional and inter-organizational

infrastructure and related processes.
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In an inventory management experimental context, Sterman (1989) reports
evidence of the bullwhip effect in the ”Beer Distribution Game”. His experiment
involves supply chain consisting of four members and making decisions individ-
ually, by only considering the input from their immediate downstream stages.
Under the linear cost structure, the experiment proves that the variances of or-
ders amplify as one moves up in the supply chain, confirming the bullwhip effect.
He states that this phenomenon is a consequence of players’ systematic irrational
behavior, or "misperceptions of feedback”.

In their study Chen et al. (2000a) quantify the bullwhip effect for simple
two-stage supply chains consisting of a single downstream stage and a single
upstream stage. Their focus is on determining the impact of demand forecasting
on the bullwhip effect. They do not assume that the retailer knows exact form
of the customer demand process. Instead, the retailer uses a standard demand
forecasting technique to estimate certain parameters of the demand process. They
study not only to show the existence of the bullwhip effect but also to quantify
it. They also consider a multistage supply chain and the impact of centralized
demand information on the bullwhip effect. Their results show that the smoother
the demand forecast, the smaller the increase in variability, with longer lead times,
the retailer must use more demand data in order to reduce the bullwhip effect, and
centralizing customer demand information can significantly reduce the bullwhip
effect but not totally eliminate it.

Chen et al. (2000b) demonstrate use of exponential smoothing forecast by the
retailer can cause the bullwhip effect and contrast these results with the increase
in variability due to use of a moving average forecast. They quantify the bullwhip
effect for simple two-stage supply chains. They consider two types of demand
processes, a correlated demand process and a demand process with a linear trend.
Their results show that the magnitude of the increase in variability depends on
both the nature of the demand process and on the forecasting technique used by
the retailer. They demonstrate that, for a certain demand process, the variance of
order placed by the retailer using a moving average forecast will be less than the

variance of the order placed by the same retailer using an exponential smoothing

12



forecast.

Lee, So, and Tang (2000) try to quantify the benefits of information sharing
between the partners of supply chains and to identify the drivers of the magni-
tudes of these benefits. They study with a simple two level supply chain having
nonstationary end demands by using analytical models. They show that informa-
tion sharing alone could provide significant inventory reduction and cost savings
to the manufacturer. They also suggest that the underlying demand process and
the lead times have significant impact on the magnitudes of cost savings and
inventory reductions associated with information sharing. Their specific results
state that the manufacturer would experience greater savings from the sharing
of information when: the demand correlation over time is high, the demand vari-
ance within each time period is high or the lead times are long. These stated
conditions fit the profile of most high-tech products, therefore they say that the
information sharing would be especially useful for improving the efficiency of the
supply chains in this industry.

As an extension to study of Lee, So, and Tang (2000), Raghunathan (2001)
studies with the same structure by making the manufacturer reduce the variance
of its forecast farther by using the entire order history to which it has access. This
study shows, analytically and using simulation, that even in Lee, So, and Tang
(2000)’s model, sharing of demand information is of limited value when the pa-
rameters of the AR(1) process are known to both parties. This is so because the
manufacturer can forecast the demand information shared by the retailer with a
high degree of accuracy using retailer order history; the accuracy increases mono-
tonically with each subsequent time period, and the value of information shared
by the retailer decreases in the same manner with each time period, converging
to zero in the limit.

Cachon and Fisher (2000) study the value of sharing demand and inventory
data in a model with one supplier, N identical retailers, and stationary stochastic
consumer demand. They compare a traditional information policy that does not
utilize information sharing with the new models of sharing information between

the partners of the supply chains. They study on not only the variance reduction
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benefit of the information sharing but also faster and cheaper order processing
benefits of it, which leads to shorter lead-times and smaller batch sizes. Their
results show that utilizing information technology to accelerate and smooth the
physical flow of goods through a supply chain is more valuable than using it to

expand the flow of information.

2.1.2 Two-Echelon Systems and Batch Ordering

In the literature there are huge amounts of study concentrating on inventory
systems defined for two-echelon, retailer and supplier, supply chains. Their con-
centration are on the system random variables and coordinated performances of
the parties involved. In some other studies they introduce order batching for one
or more members of the chain. While we were searching the available history for
batch ordering we reached studies generally working with fixed batch sizes, for
periodic review inventory replenishment policies. These follows in this subsection.
Our two-echelon model differs here in that we make the retailer define its order
in every ordering period by updating its forecast and considering its order-up-to
level, does not order a fixed amount or a multiple of a fixed amount. Supplier does

not batch its order, it orders every period by using its own order-up-to policy.

Caplin (1985) considers the impact of batch ordering on the bullwhip effect. In
his study retailer follows a continuous review (s, S) inventory policy. For such an
inventory policy the order amount is fixed and has the value of S — s. Therefore,
the variability of the orders placed by the retailer is due only to the variability
in the time between orders. He proves that if the demands faced by the retailer
are i.i.d., then the variance of the orders placed by the retailer is greater than the
variance of the demand faced by the retailer, and that the variance of the orders
increases linearly in the size of orders.

In his study Cachon (2001) considers a two-echelon supply chain with stochas-
tic and discrete consumer demand. He studies on the topics of batch ordering,
periodic inventory review, and deterministic transportation times. The system

consists of one central warehouse and /N identical retailers, which review their in-
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ventory periodically, implement reorder point policies and order quantities equal
integer multiple of a fixed batch size, and have deterministic transportation times
to receive their orders. He defines safety stock exactly for the lower echelon and
details a good approximation for the upper echelon. His results show that system
costs generally increase substantially if the upper echelon is restricted to carry no
inventory, or if the upper echelon is required to provide a high fill rate. Also it
is stated that although in many cases it is optimal to set upper echelon’s reorder
point to yield near zero safety stock, in some cases this simple heuristic can sig-
nificantly increase supply chain operating costs. As a final observation he states
that the policies selected under the assumption of continuous inventory review
can perform poorly if implemented in an environment with periodic review.

Cachon (1999) studies supply chain variability in a model with one supplier
and N retailers that face stochastic demand. Retailers order some multiple of a
fixed batch size in scheduled, fixed intervals. He studies on exact determination
of the system costs. It is stated that the supplier’s demand variance is maximized
when the retailers’ orders are synchronized, i.e., all N retailers order in the same
periods. And it is minimized when the retailers’ orders are balanced, i.e., the same
number of retailers order at each period. His results show that when retailers
order in balance, the supplier’s demand variance is reduced when the retailer
order intervals are lengthened or when retailer’s batch size is reduced.

Shapiro and Byrnes (1992) empirically studies on demand variance in medical
supply industry. They observe that final demand shows little variance but the de-
mand from the hospital shows great fluctuations. As a remedy they implemented
standing order policies with the hospitals. A fixed amount of materials is shipped
at fixed intervals unless an order is placed by the hospital. As a consequence of
this implementation, hospitals need less storage and supplier’s production effi-
ciency is increased. Their results shows that reducing the variance of the demand
observed by the supplier benefits a supply chain.

In her field study Rosenbaum (1981) deals with the application of a heuristic
model which was developed to aid in determining safety-stock placement in the

Eastman Kodak Comapany’s two-level finished goods inventory systems. Com-
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pany’s inventory control system determined such that every location set its service
level individually. She developed a heuristic model to minimize total company
safety-stock inventory while guaranteeing a specified percentage of customer de-
mand will be filled from on-hand inventory. Her field tests show that better
customer service could be provided with the same amount of inventory, or per-
haps even less, if the interaction of the service levels in the two echelons was

considered.

Veinott (1965) introduces the idea of a myopic solution in which the single
variable dynamic program can be solved with only information from the current
period. He considers a dynamic nonstationary multi-product inventory model in
which the demand in each of a sequence of periods of equal length are random
vectors. He shows that when demand is independent over time and replenishment

lead-time is constant the base-stock policy is optimal.

Cheung and Hausman (2000) study a two-echelon supply chain model with
continuous review policy. There is a supplier serving to /V retailers. They concen-
trate on the performance of the supplier serving N many locations, each of which
uses decentralized (@, R) policy based on installation stocks. The order quantity
at each location is not identical and they show that under this circumstances
the steady-state distribution of inventory position is often uniformly distributed.
They also performs test to evaluate classical poisson approximation, and they
reach a conclusion stating that although this approximation is an efficient esti-
mator of the exact performance, its use in optimization may lead to moderate to

significant loss in the resulting cost.

2.1.3 Nonstationary Demand and Related Forecasting Models

In this subsection we concentrate on the studies that design their system such
that the end item demand observed by the retailer is nonstationary and they
introduce a forecasting model to predict the future demand values. They use
some methods to observe the performance of the system they construct; some

use analytical tools such as derivations, some use simulation techniques and some
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use both simultaneously for their purposes. In this grouping our study fits to the
last one. Following papers are about the effect of demand process and forecasting
model on the general structure and performance of the system. Some of them
give general structures for integrated moving average processes and some deals
with which forecasting technique is more beneficial to these systems.

In his study Graves (1999) considers an adaptive base-stock policy for a single
item inventory system, where the demand faced by the retailer is nonstationary,
specifically integrated moving average process of order (0,1,1). It is stated in his
study that for this kind of process the exponential-weighted moving average pro-
vides minimum mean square forecast. Under such a scenario he builds a single
item inventory system assuming a deterministic lead time for the parts of the
model. He analytically derives the equations for the system random variables,
and finds the safety stocks for the supply chain partners. He observes that re-
quired inventory behaves much differently for the case of nonstationary demand
compared with stationary demand. His results show that the upstream stage’s
demand process is not only nonstationary but also more variable than that of
the downstream stage. One other interesting result of his study, special to his
environment, is that there is no benefit for the system in letting the upstream
stage see the exogenous demand. Last result for his study is that for when o > 0,
for nonstationary demand, retailer’s lead-time impacts the safety stock require-
ments for both the retailer and the supplier of a two-stage supply chain. This
is considered as a clue for the improvement seekers for such systems, it is more
beneficial to concentrate on the reduction possibilities of retailer’s lead-time than
supplier’s.

Zhao et al. (2002) presents a study on the effect of forecasting model selection
on the value of information sharing on a supply chain, consisting of a capacitated
supplier and multiple retailers. They use a computer simulation model to ex-
amine demand forecasting and inventory replenishment decisions of the retailers,
and production decisions of the supplier under different demand patterns and ca-
pacity constraints. Analysis of outputs of comprehensive simulation studies bring

following results:
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e Information sharing can significantly increase the performance of the supply
chain. Especially sharing future order information is more beneficial than

only sharing demand information.

e The value of the information sharing is effected by the demand pattern, the

forecasting technique used, and the capacity tightness.

e Benefits to different parties through information sharing could be quite

different under different conditions.

In her general study based on Autoregressive Integrated Moving Average
(ARIMA) time series model, Gilbert (2002) constructs a model that gives the
ARIMA models of orders and inventories for any given ARIMA model of con-
sumer demand and the lead time. The significance of her findings lies under the
fact that they apply to any ARIMA (p,d,q) demand and any number of stages
in a supply chain under the assumption that the order of a given stage becomes
the demand of an immediate upstream stage. Therefore they provide a general
frame-work for understanding the bullwhip effect and the importance of informa-
tion sharing.

Aviv (2001) constructs two models for a two-stage supply chain consisting of
a retailer and a supplier. In his first model each member forecasts locally and
integrates the adjusted forecasts into its replenishment process. These forecast
performed individually by the partners of the system can be correlated. The
system is decentralized therefore the day to day forecasting is available for the
stages locally. In his second model he forces the partners jointly maintain and
update a single forecasting process, collaborative forecasting. His results show
that both of the initiatives can provide substantial benefits to the supply chain,
but the magnitude of these benefits significantly depends on the specific setting.
Local forecasting is beneficial when forecasting strength increases, whereas the
benefits of collaborative forecasting increase when both or either of the initiatives,
quick response and advanced demand information, are implemented.

Aviv (2002) develops a stylized framework to describe a two-level supply chain,

consisting of a retailer and a supplier, that faces an auto regressive demand pro-
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cess. He extends the literature by modeling the ability of the parts to observe
early market signals, hence increase the performance of their forecasting methods.
He examines three types of supply chain configurations: in the first configura-
tion policy parameters are coordinated between the parts to minimize system
wide costs without sharing demand signal information, for the next the supplier
takes the role of managing the whole system and no demand signal information
is transferred to it, and the third setting is the environment where inventory is
managed centrally and all demand related information is shared. As a result he
demonstrates that the consideration of Vendor Managed Inventory and Collab-
orative Forecasting And Replenishment programs are significantly important as
the demand process is more correlated across periods, and as the companies need
to explain larger portion of the demand uncertainty through the use of early de-
mand information. He argues that the determination of the best policies for the
systems depends on the understanding of the interaction between the explanatory
power of the supply chain members.

Lovejoy (1990) shows that a simple order-up-to policy with an order-up-to
level specified by a critical fractile can be optimal or near optimal for a more
general class of demand distributions. In his study some parameter of the demand
distribution is not known with certainty, and estimates of the parameter are
updated in a static fashion as demand is observed through time, with either
exponentially smoothed or Bayesian updating. His analysis derives from a two-
stage reduction of a dynamic programming formulation of the problem. The
first stage begins with a two dimensional state space , and the reduction of this
to revised dynamic program with a single state variable. The second stage of
analysis involves reducing the dynamic program with a single state variable to
one with a ”zero dimensional” state space, i.e., a static optimization problem.
This is the definition of the ”myopic” solution to the inventory problem, and the
optimal policy can easily be derived by calculating a critical fractile.

Reddy and Rajendran (2004) deal with a supply chain with nonstationary
customer demand and different levels of information sharing among the partners

of the system. Their purpose is to minimize the sum of inventory, shortage and
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transport costs. They derived mathematical equations to determine dynamic
order-up-to levels as a function of forecasted demand, replenishment lead-time
and safety factor. Simulation techniques are used to observe the analytically
derived dynamic order-up-to policies based on various heuristic settings. Their

major conclusions can be stated as follows:

e [rrespective of the basis for forecasting at every divisions, the use of fore-
casting technique at any divisions for determining replenishment lead-times

seems to be effective in reducing the holding and shortage costs.

e The use of customer demand information sharing across the partners of the
chain appears to be very effective in reducing holding and shortage costs

for every partner.

e In the case where there is limited information sharing across the members
in the supply chain (they share the demand data only with their immediate
upstream stages) coupled with the use of forecasting technique for deter-
mining the replenishment lead-time, substantial reduction in total cost is

observed as compared to the case where no demand data is shared.

e The use of forecasted lead-time with heuristic settings of safety factor ap-

pears quite effective for different levels of information sharing.

2.2 Relation Between Our Study and Listed Literature

In his inventory management experiment Sterman (1989) reports evidence of the
bullwhip effect. His study concentrates on a chain consisting of four members
and many other studies deal with other types of chains. Lee et al. presents two
studies in the same year 1997 on this subject, in the first one they try to define
the reasons, why bullwhip effect is observed, and the possible remedies for each
of the case. They define order batching as a triggering factor for bullwhip effect
and we observe this in our study as well. In their second study they study on
the quantification of their results in the previous study. Chen et al. (2000a)
again study on quantifying the bullwhip effect for simple two-stage supply chains
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consisting of a single downstream stage and a single upstream stage and they focus
on determining the impact of demand forecasting on the bullwhip effect. In their
other study Chen et al. (2000b) try to see the effect of exponential smoothing
forecast to their observations for different demand processes , a correlated demand
process and a demand process with a linear trend. We use exponential-weighted
forecast and nonstationary demand with batch ordering and as in the studies
listed above we try to observe and quantify the bullwhip effect throughout our
study.

There are many studies in the literature studying on the remedies of bullwhip
effect, and some of them are concentrated on the information sharing topic. It
is generally observed that in most of the structures having the upstream stage
observe the real demand data of the downstream stage increases the performance
of the upstream stage. And for the sake of the chain this must be promoted
by the upstream stages by providing some incentives to the downstream stages.
Lee, So, and Tang (2000) quantify the benefits of information sharing between
the members of supply chains and identify the drivers of the magnitudes of these
benefits. We study both analytically and by modeling on this subject and observe
the importance of this topic. Raghunathan (2001) extends the study performed
by Lee, So, and Tang (2000) by making the supplier use the whole demand history.
He shows how this effects the value of information sharing. Cachon and Fisher
(2000) study the topic by changing the model, one supplier, N identical retailers,
and stationary stochastic consumer demand.

There are not many studies in the literature about order batching, especially
when the order amount is not fixed. Caplin (1985) considers the impact of batch
ordering on the bullwhip effect for a continuous review (s,S) inventory policy.
The order amount for his system is fixed and has the value of S —s. On the other
hand, Cachon (2001) deals with a two-echelon supply chain with stochastic and
discrete consumer demand with batch ordering, periodic inventory review, and
deterministic transportation times. Reorder point policies and order quantities
equal integer multiple of a fixed batch size is implemented. We deal with batch

ordering but since the retailer considers the demand accumulated during batching
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cycle and orders the amount by taking into account the observed demand and
some forecast changes during its lead time, the order amount is not fixed.

Rosenbaum (1981) deals with a heuristic model which was developed to aid in
determining safety-stock placement in the Eastman Kodak Comapany’s two-level
finished goods inventory systems. And she shows that the interaction between
the service levels of the members of the chain increases the performance of the
supply chain. We determine safety-stock values for the members of our model
and by using these set service levels for them. Especially in our simulation study
we try different combinations of service levels and observe the changes in the
general performance of the chain.

In a general study based on Autoregressive Integrated Moving Average (ARIMA)
time series model, Gilbert (2002) constructs a model that gives the ARIMA mod-
els of orders and inventories for any given ARIMA model of consumer demand
and the lead time. We study with a class of ARIMA demand process and derive
order equations and inventory variables similarly.

As we have mentioned previously our inspiration to study on this subject is
somehow comes from the study of Graves (1999). We introduce batch ordering
to a similar system to his defined system. We used same demand process and
forecasting model for the downstream stage and derive analytical equations for the
random variables. We extend our study to simulation modelling of the processes
defined, and we observe the performance of the members of the supply chain.
One interesting result of Graves’s study was as we stated in the previous section
of this chapter that there is no benefit for the system letting the supplier see
the exogenous demand. We analyzed this under our systems dynamics and it is
shown that it is not applicable for our model. In his study by some coincidence
some magical cancellation of the equations for the supplier takes place and same
methodology for the retailer can be applied to the supplier as well. We see that
this is not the case for our study due to the complexity derived by the order
batching.

We talked about the complexity we face due to batch ordering in the previous

paragraph. We can not apply same policies directly to the supplier so we need to
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find an other method to work with the supplier. We constructed a similar order-
up-to policy for the supplier to the one used in the study of Lee, So, and Tang
(2000). The member uses the mean and variance of the demand accumulate dur-
ing its lead time to derive the equation for its order-up-to level and then uses this
to find its order quantity. They study to quantify the value of information sharing
as we do in our study. Also in one extension to their study Raghunathan (2001)
shows that when the supplier utilize whole of its demand history there seems no
benefit from the demand data sharing. We again use similar methodology with
these but we do not employ the whole history.

Lovejoy (1990) shows the optimality of critical-fractile inventory policy for
more general class of demand distributions and Veinott (1965) establishes the
optimality of base stock policy when demand is independent over time and there
is a constant replenishment lead time. We use both these results in our study
but we differ from this prior study in that we take these as given do not try to
establish the optimality of these.

Reddy and Rajendran (2004) deals with supply chain having nonstationary
demand and making observations with the help of simulation tools. We follow

the same structure throughout our study.
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CHAPTER 3

ANALYSIS OF A TWO-ECHELON SUPPLY
CHAIN WITH NONSTATIONARY DEMAND
AND BATCH ORDERING

In this part of the study, we analyze the system analytically first starting from the
explanations of the processes involved; the demand process and forecast model
for the retailer. The chapter continues with the inventory control and order-up-
to policies of the retailer. Inventory equations for three different periods, that
have certain characteristics, in a batching cycle are derived for the retailer for
both of the cases when lead-time value of the retailer is smaller than the value of
batching number and when bigger than it. The supplier’s equations are derived
analytically. Safety stock determination process for the supplier and the retailer
is explained. In the last part of the chapter we show the effect of the information

sharing on the performance of the supplier.

3.1 Notation and Descriptions

The notation used in the problem formulation is provided below:
R : number of periods the retailer batches its order
L : lead time for the retailer to receive its order from upstream

L, : lead time for the supplier to receive its order, Ly = KR and K is an
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Figure 3.1: Retailer’s System Description

integer, K = 1,2, 3...
Xy : starting inventory level for the retailer
XS : starting inventory level for the supplier
d; : demand realized by the retailer in period t

F; : forecast made after observing the demand in period ¢t — 1, for demand in

period ¢

X,z : on hand inventory(or backorders) for the retailer at the end of period

nR, n =0,1,2..

X Sy ¢ on hand inventory(or backorders) for the supplier at the end of period
nR, n =0,12..

Gnr : retailer’s order quantity at period nR
Pnr - supplier’s order quantity at period nR

I, r : inventory on hand for the supplier at period nR
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Figure 3.2: Supplier’s System Description

3.2 The System

We study a two-level supply chain consisting of a retailer and a supplier. The end
customer demand is a nonstationary stochastic process. The replenishment lead-
times for the supplier and the retailer are fixed and they use different order-up-to
level policies to determine their order amounts.

The general process that is applied in the retailer side can be seen in Figure
3.1. In general, in a period the retailer faces customer demand, d;, determines
that period’s order quantity, g,g, receives the order from lead-time, L, periods
ago, and then fills the demand from inventory. Any demand that can not be met
from inventory is backordered. This general structure is not applicable for all the
periods since the retailer in this system batches its demand for a predetermined
number of periods. Parts of this general structure is observed in different periods
in a batching cycle: in every period customer demand is filled, in the ordering
period order is placed to the supplier, and in the receiving period the previous

ordered amount is received from the supplier.
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The structure for the supplier is seen in Figure 3.2. In a period the sup-
plier first observes its demand, ¢, r, determines that period’s order, p,r, receives
the order from L periods ago (p,r_r,), and then fills the retailer’s order from
inventory. It backorders the amount that can not be met from inventory.

In this chapter we study on the retailer and the supplier separately. Analytical
equations for the retailer will be derived by assuming that an uncapacitated

supplier serves to it.

3.3 Retailer’s Process

3.3.1 Demand Process

Notation for the demand process:

i . expected demand and forecast value for any period

a : parameter determining the weight of the most recent demand in deter-
mining the next period’s demand

€; : random noise term in demand, normally distributed with mean 0 and
variance o2, i = 0,1,2...

o : standard deviation of random noise term in demand equation

Demand is defined as in an autoregressive integrated moving average (ARIMA)

process:

di = p+e

dt = dt—l — (]_ - O[)Gt_l + € for t = 2,3,...., (31)
where d; is the observed demand in period ¢, o and p are known parameters, and
(€;) is a time series of independent and identically distributed random variables.
It is assumed that 0 < o < 1. This is known as the integrated moving average

(IMA) process of order (0,1,1).

The model can be expanded by backward substitution as follows:

dy = € + ey + 6o + ... + e + p (3.2)
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Demand process can be expressed as a function of the time series of random
noise or independent shocks with the help of above representation. Each period
there is a shift in the mean of the demand process and this is proportional to the
size of the shock.

Here in this process, a plays an important role; as it grows d; depends more on
recent data and it can also be viewed as the measure of inertia in the process; the
larger it is, the less inertia there is in the process. Larger a values result in less
stable or more transitory environment. When «a value is equal to 1; the demand
process is a random walk on a continuous state space, we can easily observe from
the model for the demand process that new demand is just only noise term added
previous demand.

When we derive the variance and expected value of the demand equation,

Equation 3.2, we have the followings:

dy = q—l—u—l—aiei
Bl = a0
Vid] = o*+a?(t—1)0”
= o*(1+a*(t—1)) (3.3)

It is seen from the variance equation of demand, (3.3), that the variance of
demand depends on time and increases with the increasing value of it.

To observe the values of demand changing with time we simulated the system
with different « values and draw the following graphs. The variance increase of
the demand process with time can be observed from these figures.

In Figure 3.3, the value of a is 0.0 and this makes the demand normally

2

distributed with mean p and variance o°. Figure 3.4 shows the demand value

changing with time for & = 0.5 and Figure 3.5 for @ = 1.0. In these example

figures value of o and p are 1.0 and 10 respectively.

3.3.2 Forecast Model

We employed the model which is stated in Graves (1999) as the one providing

minimum mean square forecast for these kinds of demand processes; first-order
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Figure 3.3: Demand, d;, Values Observed by the Retailer (v = 0.0)
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Figure 3.4: Demand, d;, Values Observed by the Retailer (v = 0.5)
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Figure 3.5: Demand, d;, Values Observed by the Retailer (v = 1.0)

exponential-weighted moving average with parameter « and initial forecast .
Fi 1 is defined as the forecast, made after observing demand in time period ¢, for

demand in period ¢ + 1:

Fy = p and

Fyy = adi+(1—a)F, fort=1,2,.. (3.4)

It can be shown by induction after subtracting equation (3.4) from (3.1) that the

forecast error is:

dt — Ft — €¢ fOI' t= 1, 2... (35)

Since we know that E(¢;) = 0 for any value of ¢, the exponential -weighted moving
average is an unbiased forecast and the forecast error is random noise term for
time period .

The forecast can be expressed in terms of random noise terms by using equa-

tions (3.4) and (3.5):
Fiyn = Fi+ag
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= agt+aeg | +..+ae+p (3.6)

As a general rule of this model of forecast, at time ¢ the forecast of demand in any
future period equals the Fj ;. This is a general fact defined as 7 period ahead

forecast is equal to one period ahead forecast for these kinds of forecast models.

3.4 Order Mechanism

We considere a single item inventory system for two-echelon supply chain and
introduce batch ordering for the retailer into this system. Let ¢,r be the order
placed in period nR for delivery in period nR + L. We assumed that in each
order period, nR;n = 0, 1, 2..., we first observe d, g, determine that period’s order
quantity (¢,r), and fill the demand form inventory. This process changes for the
receiving periods, nR+ L;n = 0,1, 2..., where we first observe d,, g, receive the
order, ¢,g, from L periods ago, and then fill the demand from inventory. We have

two different inventory balance equations in different time periods. These are:

X,r = X,r_1 —d,gr for ordering periods (3.7)

Xnrir = Xarir-1— durir + qur for receiving periods (3.8)

for other periods the equation is the same as the one for X, .

X, stands for the on-hand inventory (or backorders) at the end of period ¢,
and we set an initial inventory level Xy and ¢, = Ry for t < 0.

The system works with base stock policy and adjusts the base stock as the
demand forecast changes. We used order-up-to policy to derive an equation for

q; taking into consideration this change.

L+R—1

Yor = Z FnR,nR+i
=1
= (L+R-1)Fpu (3.9)
R
Iyr = Yv(nfl)R - Z d(nfl)R+i
=1
Yor = Inr+ Gur
G = Yar — Inr
R
= Yur — {Y(n—l)R - Z d(n—l)R-}-i} (3.10)
=1
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where I, g is the inventory position at the beginning of period nR and Y,,g is the
order up to level.
When we modify Equation 3.9 for Y{,_1)z and put it into Equation 3.10 our
order equation can be found as follows:
R
or=(L+R—-1) {FnR+1 - F(n—1)R+1} + z;d(n—l)R-i—i (3.11)
i=
In these derivations our main equation for the order up to point calculation
is taken as the total forecasted demand for L + R — 1 periods since we have to
consider the time until the next order can be received. After giving order in

period nR we give next order in (n + 1)R and receive it at (n + 1)R + L so we

have to take into consideration L + R — 1 periods.

3.5 Order Amplification

The downstream faces the demand d; and orders ¢; from the upstream so ¢
becomes the demand that upstream faces. In this section we compared the two
demand processes and saw the increase in the variance of demand as we move up
in the chain, the bullwhip effect for this process.

We employed (3.1), (3.6), and (3.11) to find following, derivation of this is

provided in the Appendix A.1.

R-1 (n—1)R
o = Y {(L+R—-1+4+0a+1}epi+Ra > +Ru (3.12)
i=0 i=1

To write g41)r With respect to ¢,z and noise terms we modified 3.12 and
then subtracted 3.12 from 3.13:

R-1
Goryr = P {L+R—=1+i)a+1} eminr i
i=0
nR
+ Rad e+ Ru (3.13)
i—1
R—1
d(n+1)R — qnr = Z {(L +R—-1+ Z)O! + 1} (6(n+1)R7i — eani)
i=0
nRk
+ Ra Y (3.14)

i=(n—1)R+1
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where

nR R—1
Ro Z € = Rao Z EnR—i (315)
i=(n—1)R+1 i=0
and when we substitute it;
R—1
Gy —dr = Y {(L+R =1+ 4)a+ 1} (€mi1)r—i —€nr—i)+ Raeyp_;) (3.16)
i=0

Let

YnR—i — {(L+R—1+z)a+1}enR_Z

Yninyg—i = (L +R—=1+10)a+1}emniypmi
Ra
Bi = .
(L+R—1+i)a+1

then Equation 3.16 becomes

R—-1 R—-1
dn+1)R — dnr = Z 1 - ﬂz YnR—i + Z Ym+1)R
=0 =0
R—-1 R—-1
dn+1)R = qnR — Z (1= Bi)Vnr—i + Z Y(n+1)R—i (3.17)
=0 =0

Since above equation has noise terms related to previous periods multiplied
with coefficients bigger than one and summed for R periods our ¢,z is more
variable than both the demand process and the ¢, in Graves (1999).

In Graves’s work, the derived equation for the retailer’s order is similar to
the demand process seen by it and with some modifications the same forecasting
technique used to forecast the demand of retailer can be used to estimate the
demand observed by the supplier. As we compare the derivation above with the
demand equation observed by the retailer we see that this is not the case for our

model due to the complications with summations in Equation 3.17.

3.5.1 Comparison of the Variance of ¢,z with that of Demand for R

Periods

In this part of our study we worked on the variances of demand process observed
by the retailer and its order quantity, that is the demand for the supplier. Retailer

batches its orders for R periods and this order replenishes the demand observed

33



in R many previous periods and adds some correction factor for the change in
the forecast. So here it is wise to compare the variance of demand accumulated
during last R periods with the variance of the order given by the retailer. The

order given by the retailer is found as follows in the previous calculations:

R-1 (n-1R
Qnr = Z{(L+R—1+i)a+1}€n37i+Ra Z €+ Ry
i=0 =1

and the expected value and variance of this is:

E[QnR] = RM
R—1

Vigu] = Y {(L+R—1+4)a+1}°0*+ R**(n—1)Ro*  (3.18)
=0

The equation for total demand over R periods:

R-1
Zd(n—l)R-i-i = R{ Olﬁz‘i‘,u}"‘ Z ]."—ZO[ enR i
) 1=0
(n—1)R R-1
= Rao Z €+ Ru+ Zl+zaean
1=0

i=1

When we take expected value and variance of above equation we have:

E[> dn-1rw) = Rp
1=1
R

V[Zd(n—l)R—l—i] = R2O!2( RU +Z +ZO€ (319)
=1

As we compare the equation for the variance of order, Equation 3.18 with
the equation for variance of R periods accumulated demand, Equation 3.19 it
can easily be seen that the variance of order is bigger than that of the demand.
Therefore there is amplification of the exogenous demand process as we move from
downstream stage to the upstream stage. This amplification can be calculated as

a measure of difference between the different terms in the equations above:
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Amplification = Ri:l {{(L +R-1+da+1}) —(1+ ia)Q} o
i=0

This is the popular phenomenon called ”bullwhip effect” in the literature.
Most of the works that deal with supply chain modelling consider this effect as a
major or complementary topic of their work.

This above result is similar to that mentioned in Lee et al.(1997) as demand
signal processing and batching among the causes of bullwhip effect.

In his article, Sterman(1989) works on this phenomenon and tries to make it
more realizable for the beginners using ”beer distribution game” as an experi-
mental context.

For the system observing stationary demand Chen et al. (1996) show how
the moving-average forecast can introduce bullwhip effect to this serial system.
They work on quantifying the value of this effect and use quantifying variance
amplification for this purpose. In a successive paper they extend to exponential
forecast model and to the case where the demand has linear trend.

Cachon (1998) works on the system having many retailers and one supplier
supplying to all. Retailers have stationary demand, he works on how the variabil-
ity of the orders placed by each retailer changes by their structure and parameters

of the order.

3.6 Characterization of Inventory for the Retailer When
L<R

We tried to find inventory balance equation with respect to noise terms and
initial value, Xj. Since we have two different equations for different time periods
we worked on both separately to derive the inventory random variables specific
to the characteristics of the periods.

Our equations for different time periods are as follows:

Xi = Xi—l_di fori:1,2,..,L—1
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X, = Xpa—dp+q
Xy = Xp—dpy
X, = Xoy—d; fori=L+2L+3,.. R—1
Xr = Xg-1—dg
Xpy1 = Xgp—dra
X, = X, ,—d; fooi=R+2,R+3, ,R+L—1
Xpir = Xgryrn-1—dpir +4r
Xrirv1 = Xgir —dryrs
X, = X, ,—d;, fori=R+L+2R+L+3,..,2R—1
Xor = Xop 1 —dar
Xy, = Xjo1—d; fori=2R+1,2R+2,...2R+L—1
Xorrr = Xomrir-1— dorir + @2r
Xor = Xogp1—dur (3.20)
X, = X;o1—d; fori=nR+1,nR+2,..nR+L—1

Xnrir = Xurtr—1 — dortr + Cur (3.21)

As we work in this fashion, we realize that there is a form of equation for the
receiving periods and an other form of equation for the remaining periods. In the
later form of equation the retailer only fills the demand from inventory whereas
in the former one it receives its previous order and then fills the demand. In the
coming parts of our work we will specifically deal with these characteristics of the

periods.

The form of the equation for receiving period is:

Xnryr = Xortr-1 — dursr + Qur

The form of the equations for the periods other than the receiving period is:

XnR - XnR—l_an

36



3.6.1 Inventory Equation for Ordering Periods

As we have defined previously retailer gives order in every R periods, we tried to
find inventory equations represented by noise terms and initial inventory variable
by backward substitution of inventory equations for different periods.

Starting from Equation 3.20, backward substitution and replacing ¢,z,n =
0,1,2,... with the Equation 3.11 we found the inventory equation as follows, the

derivation can be found in Appendix A.2.

R—
Xor Z (1+ia)enri+ (L—1) > ag (3.22)
i=0 =

From Equation 3.22 and the assumption that ¢; is a time series of normally-
distributed i.i.d random variables with mean and variance, zero and o respec-

tively, we find the variance and mean of X, .

V(Xur) = o Z +ia)? + (L — 1)%a*(n — 1)Ro*  (3.23)

StdDev(Xpg) = O'\l %(1 +ia)? + (L —1)%a?(n — 1)R
E(XnR) — Xo l

As can be seen from the above results, variance of the inventory equation for
the order periods X, z’s depends on n, the time, and increases with increasing
value of it. This was not an expected result, since this was not the case for
a similar process in Graves (1999). In his work this variance term is indepen-
dent of time; the time passes after giving order to the next order coincides with
the time necessary to receive the order, so some calculations become applicable
that makes the process independent of time. Since we changed the process by
making the retailer batch its orders complexity of the structure is increased and
unfortunately we do not have the same situation. It makes the process hard to
think on intuitively and make some logical interpretation. To ease our job we
explore some methods to make the system work more understandable, and we
realized that working with small alpha values would decrease the complexity and

be meaningful to work especially in practical observations. .
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3.6.2 Inventory Equation for Receiving Periods

Downstream receives order in every nR + L periods. In our calculations for the
inventory random variable for these periods again we used backward substitution
with Equation 3.21 and found the following equation, the derivation can be found

in Appendix A.3.

L—1 nRk
Xorsr = Xo— > (L+ia)eppir—i+ (R—1)) e+ (R—L)p (3.24)
=0 =1

From Equation 3.24 and the assumption that ¢; is a time series of normally-
distributed i.i.d random variables with mean zero and variance o2, we find the
variance and mean of X, gyr.

L—-1

V(Xpriz) = 02> (1+ia)’ + (R —1)’a’nRo”

L—1
Std(X,rep) = O'\l > (1+ia)?+ (R—1)%2*nR

E(Xprir) = Xo+ (R—L)p

This variance also depends on time and increases with increasing value of it, so

we have the same difficulty to interpret inventory equations for receiving periods

3.6.3 Inventory Equation for one Period Prior to Receiving Period

We also study the period prior to receiving due to the similarity of the process
in this period with that of Graves (1999). No order, given between time nR and
(n+ 1)R + L, is received for (R + L — 1) periods of time except the one given
at time nR. This order is received at the end of the interval defined above and
when we do not consider the inventory processes in other periods this process is
very similar to the one in Graves (1999). Since in his process, when the retailer
orders, it has to wait for lead time many periods to receive the amount ordered,
it does not have any chance to give a new order and receive it before the previous
order is received. We tried same methods applied previously to find the inventory

equation represented by noise terms for these periods. Inventory random variable
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for X, g1 _1’s has the same structure with the periods other than receiving period,
the retailer fills the demand from inventory without receiving any previous order.
The derived inventory equation for this period is as follows, the derivation can

be found in Appendix A.4.

R+L—-2

XnR+L—1 == X() - Z {(1 + ia)enR—I—L—l—i} - (L - 1),u (325)
1=0

From Equation 3.25 and the assumption that ¢; is a time series of normally-
distributed i.i.d random variables with mean and variance, zero and o? respec-

tively, we find the variance and mean of X, g ;.

R+L-2

V(Xppsr1) = o° ZO (1 + i)?
Std(XnR+L_1) = 0 \j R4§:2(1 + 'ia)2 (326)
E(Xoper) = Xo— (L1 (3.27)

As we expect this variance does not depend on n, the time, and results are
similar to the ones in Graves (1999) in that: limits for summation term was 0
and (L —1) in Graves’s work and these values are 0 and (L + R — 1) for our case.
Since we use (L4 R—1) instead of L in our calculations (L+ R—2) is like (L —1)
in Graves (1999).

3.7 Characterization of Inventory for the Retailer When
L>R(L=R+kk<R)

In this section, we examine the inventory levels for the case of L > R; L = R+ k.
In doing this we want to see whether having L > R or L < R makes any difference
on the inventory random variables and the performance of the system. For the
remaining part of this section we work on the similar equations as in the previous

section.
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3.7.1 Inventory Equation for Order Periods

Starting from Equation 3.20, backward substitution and replacing ¢,z,n = 0,1, 2, ...
with the Equation 3.11 we derived the inventory equation for this special period

similar to the one when L < R, the derivation is provided in Appendix A.5.

2R—-1 (n—2)R
Xor = Xo— Y, (1+ia)eupi+(k—1) > e —Rpu (3.28)
i=0 i=1

From Equation 3.28 and the assumption that ¢; is a time series of normally-
distributed i.i.d random variables with mean and variance, zero and o respec-

tively, we find the variance and mean of X, .

2R—-1

V(Xur) = o Z (1+ia)*+ (k — 1)*a*(n — 2)Ro?

Std(X,r) = a\l 2%?(1 +ia)?2 + (k—1)2a%2(n — 2)R

E(Xnr) = Xo-— Ru

This variance term depends on time and increases with increasing value of it.

3.7.2 Inventory Equation for Receiving Periods

We worked in the same manner as in the previous derivations and reached the

inventory equation for this period, the derivation can be found in Appendix A.6.

L-1 (n—1)R
XnR+L = XU — Z(l + ia)GnR+k_i + (R - 1) Z QE; + (R - L)/L(3.29)
1=0 1=1

From Equation 3.29 and the assumption that ¢; is a time series of normally-
distributed i.i.d random variables with mean and variance, zero and o? respec-

tively, we find the variance and mean of X, g

L-1

V(Xprik) = o Z(l +ia)? + (R — 1)%a*(n — 1)Ro?

Std(X,rer) = U\J Lz:_l(l +ia)?+ (R—1)%2a?(n—1)R

E(Xprir) = Xo+ (R—L)p



Variance term depends on time. It can be seen from above equation that
taking L < R or L > R does not change this since we reach the same result in

both of the cases.

3.7.3 Inventory Equation for one Period Prior to Receiving Periods

The inventory equation for this period is derived as follows and derivation is

provided in Appendix A.7.

R+L—2
XnR+k71 = Xg — Z {(1 + Z‘Oé)GnR+k,1,i} — (L — 1)/L (330)
i=0
From Equation 3.30 and the assumption that ¢; is a time series of normally-
distributed i.i.d random variables with mean and variance, zero and o? respec-

tively, we find the variance and mean of X,z 7 1.

R+L-2

V(Xppie1) = o° Y (1+ia)”
=0
R+L—-2
Std(XnR+k_1) = 0 Z (]_—|—ZO[)2
=0

E(Xprik-1) = Xo— (L—1)p

For this period the variance term does not depend on time. This is due to the
coincidence mentioned previously in the text, in determining inventory equation
for the same period when L < R.

Here also we can easily say that does not make any difference to our calcula-
tions to take L < R or L > R. And we arbitrarily chose L < R case to work on

in our following studies.

3.7.4 Safety Stock Policies

For the inventory control policy defined as in Equation 3.11, the inventory at every
constant variance period is normally distributed with the same mean and standard
deviation. As previously mentioned these periods are the special ones which

have important characteristics. These are the only periods that have variances
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independent of time. From Equation 3.26 the standard deviation is a function
of parameters for the demand process, the lead time, L and batching number,
R. X, is the initial inventory level, and it is used to determine different service
levels in the computational studies. It works as a control variable. In the system
construction these constant variance periods have the smallest inventory levels
in any cycle, and the expected value of inventory level, Equation 3.27, for these
periods can also be thought as the safety stock for the system, which is defined
at the beginning of the process. We use probability of not stocking out occasions
as the service level determining factor. In doing this we set the expected value
of inventory level at this constant variance period to a multiple of the standard
deviation of it. This multiplying factor is defined from the cumulative distribution
function for the standard normal random variable.

It can be shown as:

EXnpir-1] = Std[Xprir-1]
R+L-2
Xo—(L-1p = zoy Y, (1+4ia)? (3.31)
1=0

Where z is the variable generated from cumulative distribution function of
standard normal. In the computation study we define different service levels and
use suitable z values for them to calculate necessary safety stock value for the

retailer to serve for that service level.

3.7.5 Comparison of the Findings With Those of Graves (1999)

The retailer batches its orders for R periods, and gives order in every Rth period.
This differentiates the order mechanism totally from the order process used for the
retailer in Graves (1999). In his study the supplier has almost the same demand
pattern as the one for retailer and the supplier can easily estimate its demand
by employing exponential-weighted moving average, the same forecasting model
for the retailer provided that it knows the demand parameters of the retailer.

However, this can not be the case for our structure due to complications generated
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by order-batching. Equation for the order-batching,Equation 3.17 does not have
the same structure with the demand model, so same method is not applicable for
the supplier to forecast its own demand, it has more complicated demand process

than the supplier of Graves (1999).

We construct the analytical structure having R, the batching number bigger
than 1, and we have an operation in between 0 and R time period. So we can
not take R equal to 1 directly in our analytical results to reduce the system for
the retailer to the system defined for the retailer in Graves (1999). This is due
to the fact that we aim to study with batching and see its effect, and R values

bigger than 1 is used.

3.8 Supplier’s Process

The retailer orders after observing demand for R periods. This accumulated
demand is reached to the supplier in every R period of time, at the time of order
for the retailer and if the on-hand inventory is enough to fill this quantity, the
quantity is immediately sent to the retailer, otherwise the amount on-hand is sent
and the remaining part is backordered. There is L time lag for the retailer to
receive its order after the order is sent by the supplier. The supplier has a lead
time defined as integer multiple of R. This is not a constraint but it eases the
calculations. It can be understood that it does not change the processes to allow
the supplier’s lead time take values not integer multiple of R, since we mostly
concentrate on the process between supplier and retailer not on the supplier’s
inventory process. The supplier sends the quantity ordered by the retailer if it
has the quantity on the shelf at the time when it observes the order, so it does
not matter whether the supplier make the quantity ready some time smaller than
R, earlier than the time it observes the order, or it receives it at time of the order.

So we can consider supplier working in R periods intervals.
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3.8.1 Order-up-to Policy Used and Order Mechanism

The supplier observes the demand, ¢,z in each R periods of time, determines that
period’s order quantity, p,g, receives the order form KR periods ago, p,r_kr,
and then fills the demand from inventory. Any demand that can not be met from
inventory is backordered.

In determining the supplier’s order quantity for each period order-up-to policy
is employed. This policy is used in Lee et al (2000). This is the one minimizing the
total expected holding and shortage costs in the lead time, in period (nR,nR +
KR).

Order-up-to level for the supplier:

Yor = mugr + k\/@

where

k=¢"'[p/(p+h)]

my,r and V,, g are the conditional expectation and variance of the total demand

over the lead time, respectively, where

K
mpr = ZQn+z R|QnR
=1
VnR = O'2V2
K
= VCW(ZQ(n+z')R|an)
=1

By using this order-up-to level we can deduce the order quantity for the sup-

plier as follows:
I,p = Yv(nfl)R — dnR (332)
Pnr = YnR - InR (333)

If we replace inventory variable in 3.33 with Equation 3.32 we have the fol-

lowing order equation.

Pnr = Yor — Yu 1R + Gar
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To derive the equation for the order quantity of the supplier we have to first
of all study on the value of order-up-to level, Y, .
Let B,r be the total shipment quantity over the suppler’s lead time, and

analytically it can be shown as;

K
Bur = Z d(n+i)R
=1

We study this to define it in terms of the currently observed demand and process
parameters only. In doing this we employed previously derived equation for ¢, .

Especially the one in Equation 3.14.

R-1 (n—-1)R
S {(L+R—-1+44)a+1}epi+Ra > e+ Rp
=0 =1
R—1 nRk
dn+1)R — (qnRr + Z {(L +R—-1+ Z)O[ + ].} (€(n+1)sz' - GnR—i) + Ra Z €;
i=0 i=(n—1)R+1

by using this above formula we wrote q(,45r With respect to ¢,z and €;’s, the

derivation can be found in Appendix A.S8.

R-1 (n+i—1)R
g = e+ ) {(L+R—=1+j)a+1} (€myiyr—j — €nr—y) + Ra > ¢
j=0 j=(n—1)R+1

As we reach the compact equation for g, 4 r, the next step is to find a compact
representation for B, g, total shipment quantity over the supplier’s lead time. We

derived it as following and the derivation is provided in Appendix A.9.

R-1
Bor = Kgur+ K Y {—(L—1+j)a—1}er;
=0
R-1
+ D AL+ R-1+j)a+1}€mirr-
=0
R-1

{(L-1+j)a+1+RKa)}€ninr;

+ o+
=1

L—-1+j)a+1+Ra(K —1)}€mntar;

+
iy

L—1+j)a+1+ Ra(K —2)} €nis)r—;j

+ {(L=1+j)a+1+ Ra(K — 1)} €tnrer)r—; (3.34)
t=

=
N

w
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We reached the compact form of the demand, observed by the supplier, dur-
ing lead time. As previously defined, expected value and variance term of this

compact term are to be used in the order-up-to level. These values are computed;

K
Mpr = E(Z Um+ir|nr) (since E(e;)’s are zero this expected value is;)
i=1
mnpr = KQnR
K
VnR = VCLT Z q(n+i) R|QnR
R-1
= K*Y {Ra— (L+R~-1+j)a—1}?0"
7=0
R—1
+ {(L+R—1+j)a+1} o
=0
R—1
+ {(L -1+ j)a+1+RKa)}
7=0
R-1K-2
+ {(L-14j)a+1+ Ra(K —t)}*
7=0 t=1

When we take it to o? parenthesis;

aQRZI —(L-14+j)a-1Y+{(L+R—-1+j)a+1}
+ 3 2{(L—1+])Oz+1+Ra(K—t)}2] (3.35)

This variance term does not depend on time, so it is easier to study as com-
pared to the case for the retailer. After finding the necessary terms from the
demand observed during lead time, we studied with the order quantity derivation
of the supplier. In order to do this, we first need to study with the order-up-to

level then the formula that gives the order equation for the supplier.

Pur = Yur —Yn-1)r + @ur (3.36)

YnR - mnR"—kVnR (337)

we place (3.37) into (3.38);

P = (Mar +kVar) — (M 1r +EVin 1)R) + Gur
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Here the terms containing plus and minus variance drop since the variance

does not depend on time.
Pnr = Mpr — Mn—1)R t nr
where m,r = Kqu,r and mu, 1yr = Kqum-1)r

Pnr = anR - Kq(nfl)R + qnr

= K(QnR - Q(nfl)R) + Gnr (338)

This equation can be interpreted as follows. The supplier sees the current
demand and orders by adjusting this value with the difference between this new
value and the previous one multiplied with lead time. This adjustment helps
the supplier follow the changes in the demand it observes and modify its order
quantity accordingly. Here the supplier works much more similar to the retailer
in Graves (1999). They both use their current observed demand and adjust it.

The only difference occurs in determining the adjustment policy.

3.8.2 Safety Stock Determination

In determining the safety stock for the supplier the variance of the demand ob-
served by the supplier during lead time is taken as a base. After that same
method, which is applied for the retailer, is applied. The quantity in the order-
up-to level equation, kV,,, is the safety stock value. And the starting inventory
for the supplier in the computational studies is the expected order-up-to quantity.

We use standard normal distribution in our service level determination as in
the case for the retailer. In doing this we take different probability of not stockout
occasion values theoretically and try to observe the performance of the system in
these conditions accordingly. The logic behind using the variance of the demand
observed during lead time is more general. The variance of the demand during
lead time is the cause that makes the performer run out of stock, so modifications

of this variance value is the best way to determine the safety stock.
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3.8.3 Inventory Variable for the Supplier

In this part we study on the inventory requirements for the upstream stage. P,r
is the order placed in period nR by the upstream to its supplier. The lead-time
for replenishment to the upstream sage is K R: An order placed in period nR is
for delivery in period (n+ K)R. As it is mentioned previously; in each period nR,
the upstream first observes ¢, , determines this period’s order (p,r), receives the
order from K R periods ago (pp—x)r), and then fills the downstream order from
inventory. Any demand that can not be met from inventory is backordered. The

inventory equation mentioned is

XSur = XSnm-1)rR — @ur +Pin-K)R (3.39)

where XS, denotes the on-hand inventory (or backorders) at the end of period
nR. We assume an initial inventory level X Sy, and that p,r = Ru for nR <= 0.

When we put order equation, Equation 3.38, into its place in the Equation
3.39, and continue on backward substitution we reach the following formula for
the inventory equation of the supplier. The derivation of the equation can be

seen in Appendix A.10.

R—
XS,p = XSO+KZ L—1+j)a+1}em—k)r—j]
R—1 B
— Z[{(L+KR_1+j)a+1}€(n—K+1)R—]
j=0

+ {(L + (K — 1)R -1 +])Oé + 1}€(n—K+2)R—]
+ Y A{L+(K-tR-14j)a+1}em ritrnr

We found the inventory random variable for the supplier in terms of initial

inventory and the random noise terms. Now we are ready to take the expected

value and variance of it. E[e,z] = 0 and Var[e,g] = 2.

E[XS,r] = XS,
R—-1K-1
Var[XS,z] = K* {(L+ (K -t)R—1+j)a+1}
j=0 t=0

—_
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We require more upstream stage safety stock as compared to classical text-
book case of stationary demand (o = 0). Also in the nonstationary demand
environment the relationship between the upstream lead-time and the upstream
safety stock becomes convex. This is so due to increasing rate of increase in safety
stock with lead-time after some point on.

Again for the case of having nonstationary demand (« > 0), the standard
deviation of the upstream stage does not only depends on the upstream lead-time
and the « value of the exogenous demand but also on the downstream lead-time.
Therefore in the nonstationary environment the downstream lead-time has effect
on both determining the safety stock requirement of downstream and that of
supplier. This can be thought as a clue in improvement studies of these kinds of
systems, there is more improvement possibilities in working to reduce the lead-
time of the downstream than paying same attention on the upstream.

And also special to our case the variance depends on the value of the batching
number, and it increases with the increasing value of it. This is stated in the

literature as one of the main causes of the bullwhip effect.

3.8.4 Information Sharing

The previous calculations related with the supplier’s process consider the case
where observed demand information is not shared between the downstream and
the upstream. The upstream stage only knows the demand process and the pa-
rameters of it. Now we extend the study to the case where the downstream
provides the upstream with the last demand data additionally. So the upstream
knows; the order quantity of the downstream, the parameters of the demand ob-
served by the downstream, and last R periods’ noise terms(through the sharing of
demand values for last batching periods) while determining the order-up-to level
at the end of period nR. In doing this the upstream uses the demand observed
during lead time and takes the expected value and variance of it accordingly. The

compact equation for this demand was found in the Equation 3.34 as:

R—-1

B,r = anR+KZ{—(L—l—l—j)a—l}enR,j
j=0
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When the upstream has the information of the last demand data, the upstram
R-1

knows the value of Y- e,r_;. So the expected value of this term in B, is no
Jj=0

more zero and the variance of it is zero now. By considering these we study the

expected value and variance equations for the case of information sharing.

R—1
m;‘LR = anR+K Z {—(L -1 +])C¥ — ]-}GnR—j
=0
R 1
= {(L+R—-1+ja+1}
]:0
K-2
+ {(L+R(K —t) —1+j)a+1}°
t=0

m;  and V', are the conditional expectation and variance of the total demand
over the lead time when information is shared, respectively.

These values are compared with the previous values of them, when informa-
tion is not shared. And after making necessarry modifications, the equations of
conditional expectation and variance of the total demand over the lead time when
information shared can be represented by the equations of them when information

is not shared as follows:

R—1
m:;,R = MnpRr + K Z {—(L —1 +])Oé - ]-}GnR—j
j=0
R—1
e = Var— 02 Y K*{—~(L—1+j)a—1}
j=0

It can be observed from above equations that the variance does not depend
on time. In addition, note from above equation that V*, < V,,g. Thus, informa-
tion sharing would reduce the variance of the total shipment quantity over the
upstream stage’s lead-time, K R. In this case, the upstream stage’s order-up-to

level is given by:

* _ *
YnR - mnR+k nR
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and its order quantity:

*

Por = Yor =Y nr T tnr

We put the new values into their places to see the order quantity of the
upstream stage when it receives additional demand information from the down-

stream stage.
Por = (mup+EVyR) — (mp1yr +EVi_1)r) + Gur

since variance does not depend on time the variance terms cancel out

Por = Mg — Mp-1r + Gk

replace m) ,, values with their compact forms

R-1
o = Kgup+ K> {—(L—-1+j)a—1}enr—y)
=0
R-1
- (Kq(n—l)R + K Z {_(L —1 +])O{ - 1} e(n—l)R—j)
=0

+ qnR
= Kawr — Kqun-1)r + tur

R—1
+ K> {—(L—-14j)a—1}(enrj — €m-1)r—;)
=0

First line of the this order equation is the order equation of the order quantity
for the upstream when demand information is not shared, Equation 3.38. The
remaining part of the above equation is therefore added due to the sharing of

information.
R—1
Por = Par+ KDY {—(L—-1+j)a—1}(enr j—€m nrj) (3.40)
j=0

One important observation here is the case when o = 0:

R—1
Por = Par+ KD {=1} (enr—j — €n-1)r—)
j=0
R-1
= Kqur — K(I(nfl)R +qur — K Z (enR—j - €(n71)Rfj) (3.41)
=0
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compact form for ¢, from Equation3.12 is:

R-1 (n-1R
Qnr = Z{(L—FR—l—i—i)a—l—l}ﬁnR—i"‘RO{ Z €+ Ry
i=0 i=1

when « = 0 it becomes:

R-1
dnr = Z €nR—i T RM
1=0

and the summation in the above equation is equal to

R—1
Z €nk—i = Gnr — Rp
i=0

let’s put this value into its places in Equation 3.41

pZR = K(QnR - C_I(nq)R) + Gnr — K[(an - RM) - (q(nfl)R - Ru)]
= K(qur — qm-1)r) + e — K(tnr — ¢m-1)r)

p;kLR = (nr

When the process is stationary (o = 0), and the demand data is shared
between the two players of the system, the upstream orders the same quantity
that it observes as demand from the downstream. It orders the same quantity
which is demanded from it.

In this point our system differentiates from Graves (1999), in that one of the
important observations of his study is: 'There is not any benefit from providing
the upstream stage with additional information about the exogenous demand
or about the order process of the downstream stage’. Upstream stage needs to
know the parameters of exponential-weighted moving average (or equivalently the
IMA(0,1,1) demand process), and needs to observe its demand process, ¢,z. This
observation was reached by seeing the result of the order process of the upstream
stage, it was very similar to that of the downstream stage and the downstream
forecast was the same as the upstream forecast, and this was an unbiased forecast
both for d;, and ¢,r. In addition the demand process seen by the upstream was
also an IMA(0,1,1) process.

For our case information sharing increases the performance of the system,

especially the performance of the supplier. So it is important for the upstream
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stage to observe extra demand information of the downstream stage. At this
point the supplier must provide some incentives for the retailer to motivate it to

share this extra data.
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CHAPTER 4

SIMULATION STUDIES

Throughout Chapter 3 we analytically study the performance of the retailer and
the supplier separately. We derive equations for the retailer assuming that a
supplier, which has infinite capacity, supplies to the retailer and the supplier
orders from an outside source. We need to use simulation to observe the retailer

and the supplier working in coordination.

In this chapter we simulate the system to observe the performance of the
retailer and the supplier in coordination as shown in Figure 4.1. In the figure,
the retailer faces the end customer demand, d;, places an order, ¢,r, to the
capacitated supplier and the supplier orders, P, g, from an outside source. We
use the derived equations in the previous chapter and make modifications to
connect the retailer to the supplier: The retailer can get what it orders only if
the supplier has enough inventory to fulfill the amount ordered. The supplier
checks the on-hand inventory and sends the ordered amount if it is possible, if
not the supplier sends the positive amount of inventory on-hand, and backorders

the remaining amount.

We observe the system performance in practice by using simulation model. We
use performance measures, such as time to satisfy backorder, backorder occasions,
average inventories, etc., to interpret the general function of the system. The

long-run performance of the system is also observed by increasing the replication
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Figure 4.1: Coordinated System
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lengths for the runs. This observation is used to determine a suitable rolling
horizon for the designed system. As mentioned previously variance of the retailer’s
inventory equation, e.g. Equation 3.23, for the periods other than the constant
variance period is time dependent and when we run the model for longer time
periods, this dependence results in higher variances, and increases the difficulty
in interpretation of the results. In addition, we aim to observe effect of order-
batching and information sharing on the system when the retailer and the supplier
works in coordination.

In safety-stock determination for the retailer, the variance of the inventory
equation for the constant variance period is used. This safety stock value is used
in determination of the retailer’s service level.

We design mainly three different models; the retailer works with uncapaci-
tated supply, the retailer and the supplier work in coordination, and the retailer
and supplier both work in coordination and the retailer shares recent demand
information with the supplier. The first model is used to have insights about
the time effect on the analytically derived equations for the downstream stage.
It is difficult to interpret the behavior of the equations derived analytically due
to the complications resulting from nonstationarity. We analyze outputs of this
model and equations are drawn with respect to time to analyze their structure.
We study with different « values and run lengths to see their effects.

The second model is directly related with the coordination of the supplier and
the retailer. We modified the model by introducing the equations derived for the
supplier; its inventory equation, and order equation derived from an order-up-to
policy. In this model the retailer is not free to receive any amount it orders since
there is an other process that runs in parallel for the supplier and the retailer
can only receive from the supplier if it has inventory on the self, otherwise the
retailer needs to wait to receive the order till the supplier replenishes its inventory
on-hand. In this model the supplier observes only retailer’s order.

Last modification of the model adds processing of shared information to the
second model. In this model the supplier is also provided with the last demand

data of the retailer. The supplier uses this extra demand information in the
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inventory control policy. The change that is brought by the usage of extra demand
data, can be seen from the Equation 3.40, where order equation for the supplier,
when information is shared, is equal to the order equation for the supplier when
information is not shared plus an other term. Analytically we see the effect of
information sharing and we also aim to observe it with the simulation modelling.

In the remaining part of the chapter, we mention about the simulation model,
including verification efforts, description of the performance measures observed,
and issues of output analysis. We will conclude the chapter with the presentation

of the results for each performance measure.

4.1 Modeling

The model is written in Visual C++. We use LCG random number generator,
prime modulus multiplicative linear congruential generator based on Marse and
Roberts’ portable FORTRAN random-number generator UNIRAN. Then we use
a function, provided in Law and Kelton (2000), to obtain normally distributed
random variables by transforming the generated random numbers.

In this part of the chapter we will demonstrate the model; order of events, flow

of the program, the modules of the model, and different parameters employed.

4.1.1 Order of Events

e Demand Generation

— LCG random number generator generates random numbers

— These random numbers are transformed to normally distributed noise
terms, ¢;’s

— Demand is generated by using Equation 3.2 and noise terms

— Negatively generated demand values are equated to zero without dis-
turbing the general generation process of the model: The generation

process uses demand equation, (3.2), that use ¢;’s to generate the de-

mand values.
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Forecast Generation

— Demand values are imported from the demand generation module

— These demand values are put into Equation 3.4 to generate forecast

values.

The Retailer’s Order Generation

Generated demand and forecast values are put into Equation 3.11 to gen-

erate the order amount.

The Supplier’s Order Generation

The retailer’s order amount is processed in Equation 3.38 to get the values

for the supplier’s order amount.

The Supplier’s Inventory Generation
— The supplier starts the run with inventory on-hand value of order-up-to
level quantity
— At time zero the supplier fills the first demand of the retailer

— The supplier’s order amount and the demand that is observed by the
supplier are imported into Equation 3.39 to get the values for the

inventory random variable of the supplier.
e The Retailer’s Inventory Generation

— The supplier’s inventory on hand and order values are checked to see

whether it can fill the retailer’s demand or not

— Then the general equation, (3.8), is employed to get the values of
inventory random variable of the retailer.
4.1.2 Parameters of the Model

In this section of the chapter, we will talk about the parameters used in the

model. One example value for each parameter will also be given in the table
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after definition part. In the following sections of the chapter different values of
these parameters will be used to observe the system performance under different
combinations. The used parameters are:

p: the mean of demand process and forecast model.

o: the standard deviation of the noise terms, ¢;’s.

«: the parameter for the demand process and the forecast model.

R: the batching number, a fixed number of periods that the downstream stage
accumulates its observed demand before placing an order to the upstream stage.

L: the lead-time for the downstream stage. The time passes between placing
of an order and receiving that order for the downstream stage.

B,: the service level for the retailer; probability of no stockout occasions for
the retailer.

Xo: the initial inventory value of the downstream stage. It is determined
according to the desired service level in the model.

K: the number that determines the lead-time for the upstream stage while
multiplied with R.

Bs: the service level for the supplier; probability of no stockout occasions for
the supplier.

X So: the initial inventory for the upstream stage

Example values for these parameters are provided in the Table 4.1 to give

insights about their usage.

4.1.3 Settings for the Parameters

In this section we will define settings for the parameters defined in the previous
section. Some of these parameters are free to be chosen by the programmer and
some are to be determined through other parameters. We define the system
by giving suitable values to the independent parameters to have the expected
performance of the system. Characteristics of the parameters for the supplier

and the retailer can be explained as follows:

e Parameters for the retailer are; R, L, Xy, 3,. In this set R, L and (3, are
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Table 4.1: Example Values for the Parameters

parameter value
] 10
o 1

replen 20

precision | 0.1
R 2 4
L 0 4
« 0 |0.1]0.15
K 1 2 3

free to be chosen and choices of these parameters affect the values of the

dependent parameters.

X is determined through other parameters. The parameters that involve in
determining the value of X are: lead-time for the retailer, L, mean demand
value, p, batching number, R, inertia parameter of demand process, «,
variance of €;’s, 02, and service level for the retailer, 3.. In setting the value
of Xy we use the constant variance period’s calculations. The expected
value of the inventory equation in the constant variance period is defined as
the safety stock value, since it is the minimum value on-hand throughout
the cycle, just before replenishing the inventory. It is found with Equation
3.27 that the value of this expectation is Xy — (L — 1)u and we equate this

value to the safety stock value. The safety stock is defined using this period’s

RAL—2
variance and the standard normal distribution function, za\/ > (1+4iw)?
i=0
where ®(z) is the cumulative distribution function for the standard normal
random variable. Under these definitions Xj is found by using the Equation

3.31 as follows:

R+L—2
Xo = (L-1Dp+zoy > (1+4ia)?
i—0

e Parameters for the supplier are; K, XSy, 5s. In this set K and s are free

60



to be chosen. Choices for these parameters affect the values of dependent

parameters for the supplier.

As in the case for determining the value of X;, we use independent param-
eters to reach the value of supplier’s initial inventory, XSy;. The prameters
used for this purpose are: lead-time value for the supplier, K R, lead-time
value for the retailer, L, batching number, R, mean demand value, p, de-
mand parameters, o and o, and the service value for the supplier, f;. In
determining the value of initial inventory for the upstream stage we use
an order-up-to level policy and the variance term of the demand observed
during lead-time of the upstream stage. The supplier starts the system
with the inventory value of expected order-up-to level plus a safety. Safety
stock is determined through the use of the variance of the demand, Equa-
tion 3.35, observed during the lead-time of the supplier. We add this safety
to expected order-up-to level for the supplier, K Ry, and have the initial

inventory on-hand value for the supplier as;
XSy = KRu+ zs\/Vugr (4.1)

where ®(zs), is the cumulative distribution for the standard normal random

variable.

4.2 Model Verification

This section is devoted to the verification studies of the model. We will talk
about the tests we perform in the following subsections; debugging and runs with

deterministic input.

4.2.1 Debugging

We debug each module of the program in order to test if they run properly. We
import the values of all the variables generated by the model into an excel sheet,
and check one by one all the periods for all of the replications. Example tests of

the models are provided in Tables B.1, B.2, and B.3 of Appendix B.
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In debugging, we first take the normally generated ¢;’s in the first column
of an excel sheet. And these ¢; values are tested with graphical and statistical
methods to see whether or not they are truly generated from normal distribution
with desired mean and variance. Then the values of each variable generated as
output to the model are imported into the same excel sheet. Known analytical
equations for the demand, forecast, inventory random variable for the retailer,
order equation for the retailer, inventory random variable for the supplier and
order equation for the supplier are formulated with the help of excel functions
and the results generated by excel are compared with the original model output.

The results are positive, the program is successful to pass these tests.

4.2.2 Runs with Deterministic Input

We take @ = 0, to have a stationary i.i.d. demand process with mean p, and
variance o?. We are more familiar with this process to interpret and see whether
the process is working as intended or not than the original nonstationary demand
process used throuhgout the study. In this case we take different combinations
of other parameters, and observe the performance of the model.

In another trial o value is taken to be zero. This means that the system
works with deterministic customer demand process, having the mean value p
as its constant value. This process removes the complications resulting from the
demand process and it becomes easy to observe how other variables of the system
perform. We observe the function of the model by giving different values to the
other parameters in the parameter set.

These tests with deterministic input show that the model runs as designed.

Example results for this subsection can be seen in Appendix Tables B.4 - B.7.

4.3 Performance Measures

After verifying that the model runs accuratly in the previous section we design
performance measures to interpret how the system functions. We define different

parameter combinations and watch the effects of a change in any parameter, by
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observing the change it brings over the performance measures.

e Time to satisfy backorder: This is defined as the average number of periods
that pass between the period that the inventory on-hand value of the retailer
or the supplier becomes negative and the period that this value becomes
positive. The program counts the number of times that inventory level hits
below zero with one variable, and the time passes during these occurrences
for the inventory variable to recover with an other variable. Then by using

these two variables the performance measure is calculated.

This performance measure shows the ability of policies employed by the

retailer and supplier for backorder recovery.

e Backorder occasions: The model counts the number of times inventory vari-
able of the retailer and the supplier drops below zero. We observe these
values and try to reach a conclusion about the performance of the retailer

and the supplier.

e Difference between set and observed service levels: We define different ser-
vice levels for the retailer and the supplier. The parameters are arranged
according to theoretic values and run results are compared with the theoret-
ically expected ones. We see how the coordination of the supplier and the
retailer effects their system performance by comparing the separetely set
sevice levels for each with the service levels resulting from the coordinated

work of the supplier and the retailer.

e Average on-hand inventory and backorder: The program accumulates the
positive inventory values both for the upstream stage and for the down-
stream stage. Then we divide these values by replication length to have the
desired performance measure for average on-hand inventory. This perfor-
mance measure is very important for managerial purposes since inventory
is cost and it must be kept under control. By observing values of it under

different conditions desired system can be constructed.
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The program also accumulates the negative quantities of the inventory ran-
dom variable for the retailer and the supplier and divide this to replication
length to find average backorder. Firms pay high attention to this. They

may lose their loyal customers, and may pay high penalty costs.

4.4 Analysis of System Output
4.4.1 Precision

We aim to achieve 90 percent relative precision on the value of the retailer’s
average inventory in the constant variance period. In order to approximately

satisfy the 90 percent precision, we use the following procedure:

e Make an initial n replications and find the estimate for mean and variance
of the constant variance period’s inventory. Assume these values remain

constant as n increases.
e Let 0 < <1 be desired level of relative precision.
e Let nj:(y) be the total number of replications to obtain desired precision, 7.

e Then the required number of replications is found as minimum ¢ found from

the equation;
() = min {i >= 13 (1107290 /0)/| X (0)] <=7}

Where the estimated mean and variance of the constant variance period’s

inventory are as follows:
S*n) = [1/(n—D]>_(X; - X(n))’
X = B/ %,

X, is the average inventory value in the constant variance period for the
replication j. And X (n) is the average of replication averages, X,’s.
After finding the required number of replications the program makes that

many replications to reach the desired results for the observed values.
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4.4.2 Confidence Interval

A confidence interval is constructed for the mean of the inventory random variable
value of the constant variance period, X, gy 1. The theoretical expected value
for the constant variance period’s inventory is checked with the bounds of the
intervals that are constructed through the program run.

After constructing confidence intervals for a defined number of runs, we con-
struct a confidence interval for the true coverage of the confidence intervals con-

structed. The following procedure is applied:

e Make [ many simulation runs and construct a confidence interval for each
run.

e Let yl be the number of confidence intervals that cover the theoretical mean
for the inventory value of the constant variance period.

e This yl is binomially distributed with probability of success p (a confidence
interval contains the observed mean with probability p).

e Expected value of yl is [ * p and variance of it is [ x p x (1 — p)

e Let p =yl/l then expected value of p is Ip/l =p

Then the confidence interval for the true coverage, p, is;

P+ (=)Z1-ap2/p(1 — D)/

Results for different parameter sets can be found in Appendix Tables B.8, and

B.9.

4.4.3 Long Run Performance of the System

Nonstationary customer demand and the order-batching policy applied by the
retailer increase the complexity of the system. Analytical derivations in Chapter

3 shows that inventory variables for the peiods other than constant variance peiod
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have time dependent variances. The time dependency of this variances increase
the difficulty of system planning for long rolling horizons. The variances increase
with increasing value of time and explanation of the performance of the variables
get difficult, if the system is observed far away in the future.

In this part of the study we aim to determine suitable values for the replication
length and demand parameter « in order to have meaningful run results that can
be explained. The model is run with different o values and replication lengths to
decide on the values of them. Figure 4.2 shows the value of retailer’s inventory
with respect to time for number of cycles in a replication,n = 1500, batching
number, R = 4, and demand parameter, & = 0.5 in a specific replication. In
Figure 4.3 the value of « in the previous figure is changed to 0.15 and the value of
inventory random variable variates less. We also decrease the replication length,
n * R, in Figure 4.4 to 4000. After observing the performance of the inventory
variable with different parameter sets by drawing the value of the variable with
time, we decide on the suitable values of the parameters as a =< 0.15 and

n <= 1000.
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Figure 4.2: X, for a = 0.5 and n = 1500
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For the remaining part of model runs we take replication length as 1000 and

the value of demand parameter, o smaller than or equal to 0.15.

4.5 Results

This section is devoted to the presentation of the simulation study. We mainly
concentrate on the models that we have defined; in the first model the supplier
and the retailer work in coordination and the supplier observes only the order
placed by the retailer. In the second model the supplier observes the last customer
demand data in addition to the order placed by the retailer.

The paramater set is defined as in Table 4.1 and runs are made by changing
the values of the parameters in this set (L, probability of nonstockout occasions
for the supplier, probability of nonstockout occasions for the retailer). The effects
of the changes in the values of the parameters on the results of the model are
monitored by observing the performance meaasures defined in this chapter.

In the remaining part of this section we will demostrate the results for each
performance measure separately. We choose different values for the parameters in
the parameter set and provide the values of performance measures in tabulated
forms. Coding of the values for the parameter set is as follows: L has values
0,2,4 and probability of nonstockout occasions have values .85,.90,.95,.98. We
run the rogram by fixing the following values of the other parameters; o = 0.1,

o=1,n=1000, R =4, K =2R.

4.5.1 Time to Satisfy Backorder

This performance measure gives insight about how fast the system recovers, or
how fast the retailer or the supplier responds to a backorder occasion on the
average. Table 4.2 provides observed values of this performance measure both for
the retailer and the supplier. The parameter set has different values as defined
in the beginning of this section.

Values in the Table 4.2 show that keeping all the other variables fixed if

L, lead-time value for the retailer is increased, time to satisfy backorder value
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increases as well. Bigger lead-time values for the retailer increase the time to

recover negative inventory, since it can not replenish its inventory fast.

Another observation from the table is that; increase in the supplier’s theoret-
ically set service level decreases the time to satisfy backorder values both for the
supplier and the retailer. When the supplier is designed to have less probability

of stockout occasions, recovery period becomes shorter as well.

4.5.2 Backorder Occasions

In setting safety stock values for the retailer and the supplier we use service level
based on probability of no stockout occasions. We derive analytical equations
assuming that the retailer and the supplier work separately. An infinite capacity
source supplies both to the retailer and the supplier. These theoretical values are
used as input to the model where the supplier and the retailer work in coordi-
nation. The changes in the observed values of the service level due to different

combinations of the parameters are analyzed in Table 4.3.

It can be seen from Table 4.3 that when the theoretical service level for the
supplier is increased the observed service level for the retailer also increases al-
though its theoretically set value for the service level is fixed. This is due to the
fact that we set the theoretical value for the retailer assuming an uncapacitated
supplier for it. It is observed that when the supplier serves with high service
level, close to zero stockout probability, the observed value of the service level
for the retailer gets closer to its theoretical value. An example from the table
to explain this is: for the parameter values [0,.85,.95] observed values for service
levels are .85233 and .88544, respectively. The retailer’s observed value is smaller
than its theoretical value since the supplier works with probability of nonstockout
occasions of .85233. When the supplier works with high service level as in the
[0,.98,.95] entry of the table we see that observed values for service levels become
98100 and .94640, respectively. The retailer’s observed service level is closer to

the theoretically set value.

69



Table 4.2: Time to Satisfy Backorder

Parameter Supplier’s Retailer’s
Set Time to Satisfy | Time to Satisfy
([L, Bs, Br]) Bacorder Bacorder
[0,.85,.95] 1.11989 1.01178
[0,.90,.95] 1.07250 1.00629
[0,.95,.95] 1.02104 1.00485
[0,.98,.95] 1.01964 1.00000
[2,.85,.95] 1.10992 1.02064
[2,.90,.95] 1.06077 1.01278
[2,.95,.95] 1.01646 1.00635
[2,.98,.95] 1.01250 1.00813
[4,.85,.95] 1.10682 1.03371
[4,.90,.95] 1.04914 1.01425
[4,.95,.95] 1.01440 1.00625
[4,.98,.95] 0.91667 1.00333
[0,.85,.98] 1.11989 1.01061
[0,.90,.98] 1.06764 1.01294
[0,.95,.98] 1.02156 1.01056
[0,.98,.98] 1.01964 1.00000
[2,.85,.98] 1.10136 1.03557
[2,.90,.98] 1.05826 1.00681
[2,.95,.98] 1.01646 1.01548
[2,.98,.98] 1.01250 1.00833
[4,.85,.98] 1.09917 1.03226
[4,.90,.98] 1.04326 1.01274
[4,.95,.98] 1.01440 1.00455
[4,.98,.98] 0.91667 1.00455
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Table 4.3: Backorder Occasions

Parameter Supplier’s Retailer’s
Set Probability of | Probability of
([L, Bs, Br]) | No stockout | No stockout
[0,.85,.95] 0.85233 0.88544
[0,.90,.95] 0.90382 0.91206
[0,.95,.95] 0.94887 0.93461
[0,.98,.95] 0.98100 0.94640
[2,.85,.95] 0.85935 0.89745
[2,.90,.95] 0.90927 0.91955
[2,.95,.95] 0.95220 0.93820
[2,.98,.95] 0.98160 0.94680
[4,.85,.95] 0.86724 0.90533
[4,.90,.95] 0.91456 0.92489
[4,.95,.95] 0.95500 0.94320
[4,.98,.95] 0.98260 0.94840
[0,.85,.98] 0.85233 0.92600
[0,.90,.98] 0.90387 0.95032
[0,.95,.98] 0.94940 0.96840
[0,.98,.98] 0.98100 0.97840
[2,.85,.98] 0.86757 0.94270
[2,.90,.98] 0.90877 0.95985
[2,.95,.98] 0.95220 0.97180
[2,.98,.98] 0.98160 0.97960
[4,.85,.98] 0.86985 0.94820
[4,.90,.98] 0.91060 0.96480
[4,.95,.98] 0.95500 0.97380
[4,.98,.98] 0.98260 0.97860
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4.5.3 Difference Between Set and Observed Service Levels

The probability of nonstockout occasions, that is defined for the supplier and the
retailer analytically, is inspected by constructing confidence intervals over the
observed probability of nonstockout occasions.

Table 4.4 provides confidence intervals constructed over observed probability
of nonstockout occasions for the retailer and the supplier. These confindence in-
tervals are used to check whether the theoretically set probability of nonstockout
values are in the interval or not. It is seen from the table that for every combi-
nation of theoretically set values supplier’s theoretical probability of nonstockout
value is always in between the bounds of confidence intervals constructed. How-
ever it is not the case for the retailer, since it has a capacitated supplier as opposed
to the assumption in analytical derivation part. We see from Table 4.4 that when
the supplier has high probability of nonstockout occasions, the retailer’s theoret-
ical probability of nonstockout occassion value is in between the bounds of the
confidence interval. Wheras, if the supplier works with more than .05 stockout
probability, the retailer’s theoretical probability of nonstockout value is bigger

than the upper bound of the confidence interval.

4.5.4 Average On-hand Inventory

Inventory holding is among the main decision variables in designing general sys-
tems. We aim to observe the effects of the paramaters in the defined set on the
average positive inventory values of the retailer and the supplier.

In Table 4.5, we see that as the replenishment lead-time for the retailer in-
creases fixing the other parameters, both the retailer’s and the supplier’s average
on-hand inventory values increase. This means that reducing the replenishment
lead-time, L, could benefit both the retailer and the supplier.

In addition we can observe from the Table 4.5 that; increasing the value of
probability of nonstockout occasions, increases the time weighted on-hand in-
ventory value both for the supplier and the retailer. They need to keep more

inventory to serve with high service levels.

72



Table 4.4: Comparison of Set and Observed Values

Supplier’s Retailer’s Observed Observed
Theoretical Theoretical CI for Supplier’s | CI for Retailer’s
P (no stockout) | P (no stockout) | P (no stockout) | P (no stockout)
0.98 0.85 (0.978219,0.984981) | (0.838787,0.862413)
0.98 0.90 (0.978219,0.984981) | (0.889776,0.907024)
0.98 0.95 (0.978219,0.984981) | (0.940353,0.953247)
0.98 0.98 (0.978219,0.984981) | (0.975985,0.983215)
0.95 0.85 (0.945863,0.958537) | (0.828045,0.855955)
0.95 0.90 (0.945863,0.958537) | (0.879413,0.900187)
0.95 0.95 (0.945863,0.958537) | (0.931330,0.945070)
0.95 0.98 (0.945863,0.958537) | (0.967528,0.976072)
0.90 0.85 (0.894879,0.915521) | (0.806254,0.838546)
0.90 0.90 (0.894879,0.915521) | (0.857792,0.884208)
0.90 0.95 (0.894879,0.915521) | (0.913136,0.934064)
0.90 0.98 (0.894879,0.915521) | (0.953459,0.966941)

4.5.5 Average Negative Inventory

Certain companies may loose their loyal customers or be punished with big penal-

ties because of backordering. We observe the effects of the paramaters in the de-

fined set on the average negative inventory values of the retailer and the supplier.

In Table 4.6, we see that as the replenishment lead-time for the retailer in-

creases fixing the other parameters, both the retailer’s and the supplier’s average

negative inventory values increase. This again shows the importance of reduction

in the replenishment lead-time, L, for the system as a whole.

It can be observed from the Table 4.5 that; increasing the value of probability

of nonstockout occasions, decreases the time weighted negative inventory value

both for the supplier and the retailer. Keeping more inventory to serve with high

service levels, decreases the values of average negative inventory.




Table 4.5: Time Weighted On-hand Inventory

Parameter | Supplier’s | Retailer’s
Set On-hand On-hand

([L, Bs, Br]) | Inventory | Inventory
[0,.85,.95] 7.22957 17.92239
[0,.90,.95] 8.66201 18.01082
[0,.95,.95] 11.04102 17.60981
[0,.98,.95] 13.63264 17.38250
[2,.85,.95] 8.65113 19.09509
[2,.90,.95] | 10.46458 18.61853
2,.95,.95] | 13.17196 18.62790
2,.98,.95] | 16.05434 18.71438
[4,.85,.95] | 10.55297 | 20.26978
[4,.90,.95] 12.66991 20.04303
[4,.95,.95] 15.72705 19.93664
[4,.98,.95] 18.99449 20.03039
[0,.85,.98] 7.22957 18.68546
[0,.90,.98] 8.78760 18.17699
[0,.95,.98] | 11.12999 18.07792
[0,.98,.98] | 13.63264 18.15651
[2,.85,.98] 9.07147 19.57230
[2,.90,.98] 10.66732 19.86835
2,.95,.98] | 13.17196 19.72043
[2,.98,.98] 16.05434 19.80915
[4,.85,.98] 10.68133 21.22656
[4,.90,.98] 12.92733 21.16409
[4,.95,.98] | 15.72705 | 21.34547
[4,.98,.98] 18.99449 21.44100
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Table 4.6: Time Weighted Negative Inventory

Parameter | Supplier’s | Retailer’s

Set Negative | Negative

([L, Bs, Br]) | Inventory | Inventory
[0,.85,.95] -0.49075 -0.24630
[0,.90,.95] -0.28984 -0.15300
[0,.95,.95] -0.12803 -0.08354
[0,.98,.95] -0.04361 -0.04977
[2,.85,.95] | -0.53609 -0.24941
2,.90,.95] | -0.32090 -0.16145
2,.95,.95] | -0.14391 -0.09862
2,.98,.95] | -0.04949 -0.06746
[4,.85,.95] | -0.56852 -0.25810
[4,.90,.95] -0.34247 -0.17314
[4,.95,.95] -0.15512 -0.10970
[4,.98,.95] -0.05371 -0.08106
[0,.85,.98] -0.49075 -0.17381
[0,.90,.98] -0.29520 -0.10112
[0,.95,.98] | -0.12832 -0.04551
[0,.98,.98] | -0.04361 -0.02104
[2,.85,.98] -0.51141 -0.15148
2,.90,.98] | -0.31918 -0.09301
2,.95,.98] | -0.14391 -0.04971
[2,.98,.98] -0.04949 -0.02749
[4,.85,.98] -0.56251 -0.14997
[4,.90,.98] -0.34861 -0.09366
[4,.95,.98] -0.15512 -0.05330
[4,.98,.98] -0.05371 -0.03180
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4.5.6 Comparison of the Models with and without Information Shar-
ing
In analytical part of the study we realize that the supplier benefits from observing
the last customer demand information. We aim to observe this also with simula-
tion tools. It is not directly observable with the outputs of the sample runs, since
we need to run the system with smaller @ values. Taking a smaller decreases the
effect of information sharing and increases the difficulty of detecting the benefit
with the model output. Due to complications coming from order-batching, re-
sults of some replications deviate and these replications dominate the observed
average. It is difficult to observe the benefit with the presence of these outlier
replications. We use box ploting to find which replications are outliers. The

procedure for the box plot is as follows:

The program counts the number of stockout occasions for the supplier in

each replication.

e Replications are ordered in the order of increasing number of nonstockout

occasions

e The replications, that are in the order of 75th percent and 25th percent,

are found.

e The difference between these two replication’s nonstockout occasions is cal-

culated.

e Then multiplication of this difference value with 1.5 is added to the value
of 75th percent replication to find the upper bound of the box plot and
subtracted from the value of 25th percent replication to find the lower bound

of the box plot.

e The replications that have nonstockout values not in this interval are thrown

out.

An example of box plot output is provided in Appendix Tables B.10 and B.11.
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After throwing out the outlier replications t-testing is used to compare the
output of the models with information sharing and without information sharing.
The values compared are the number of stockout occasions for the supplier. An
example application, with theoretical probability of nonstockout value .98 both
for the supplier and the retailer, of this test can be found in Appendix Tables
B.12 - B.15. The result of this example is provided in the Table 4.7.

Table 4.7: t-Test: Paired Two Sample for Means

Variable 1 | Variable 2
Mean | 4.235294118 | 0.941176471
Variance | 3.441176471 | 2.183823529
Observations 17 17
Pearson Correlation | 0.187757325
Hypothesized Mean Difference 0
df 16
t Stat | 6.335676759
P(Tj=t) one-tail | 4.94835E-06
t Critical one-tail | 1.745884219
P(Tj=t) two-tail | 9.89671E-06
t Critical two-tail | 2.119904821

We see from the example table, (4.7), that the p value is smaller than 0.05.
This means that the two variables tested are different from each other and mean
value for the case of information sharing is smaller. Since the t-test is performed
on the number of stockout occasions, the supplier with customer demand infor-
mation benefits.

Table 4.8 provides t-test comparison on the value of stockout occasion for
different values of the parameters in the parameter set. It is seen from the table
that almost all of the p values for the t-test performed on the sample runs are
less than 0.05. This shows that the tested means are different and the mean for

the supplier who observes extra demand information performs better.
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Table 4.8: Model Comparison

Parameter
Set t-table | t-test

([L, Bs, Br]) | Value | Critic p-value

[0,.85,.95] | 1.65833 | 4.80272 | 2.39971E-06
[0,.90,.95] | 1.67022 | 1.98034 | 2.60903E-02
[0,.95,.95] | 1.73406 | 6.19531 | 3.78664E-06
[0,.98,.95] | 1.75305 | 7.37865 | 1.14835E-06
[2,.85,.95] | 1.66600 | 1.83531 | 3.52666E-02
[2,.90,.95] | 1.68288 | 0.92760 | 1.79522E-01
[2,.95,.95] | 1.74588 | 4.63261 | 1.38287E-04
[2,.98,.95] | 1.74588 | 6.33568 | 4.94835E-06
[4,.85,.95] | 1.67203 | 1.33454 | 9.36673E-02
[4,.90,.95] | 1.69236 | 0.50419 | 3.08738E-01
[4,.95,.95] | 1.75305 | 4.78351 | 1.20788E-04
[4,.98,.95] | 1.74588 | 5.41036 | 2.88857E-05
[0,.85,.98] | 1.65833 | 4.80272 | 2.39971E-06
[0,.90,.98] | 1.70113 | 1.00370 | 1.62059E-01
[0,.95,.98] | 1.74588 | 5.44513 | 2.69779E-05
[0,.98,.98] | 1.75305 | 7.37865 | 1.14835E-06
[2,.85,.98] | 1.68023 | -0.69733 | 2.44632E-01
[2,.90,.98] | 1.71387 | 1.29929 | 1.03359E-01
[2,.95,.98] | 1.74588 | 4.63261 | 1.38287E-04
[2,.98,.98] | 1.74588 | 6.33568 | 4.94835E-06
[4,.85,.98] | 1.68488 | -0.30752 | 3.80043E-01
[4,.90,.98] | 1.74588 | 2.76214 | 6.94160E-03
[4,.95,.98] | 1.75305 | 4.78351 | 1.20788E-04
[4,.98,.98] | 1.74588 | 5.41036 | 2.88857E-05
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CHAPTER 5

CONCLUSION

In this study, a two-echelon supply chain with a retailer and a supplier is analyzed.
The end customer demand observed by the retailer is nonstationary. The retailer
batches the customer demand for a fixed, predetermined number of periods, and
uses an order-up-to policy to determine its order amount from the supplier. Every
time an order is placed by the retailer, the supplier places an order at the outside
source by using a standard order-up-to policy. There are lead-times for the retailer
and the supplier to receive given orders. They can only fulfill the order of the

lower echelon as long as they have sufficient on-hand inventory.

In the first part of Chapter 3, we first concentrate on the retailer’s process.
We present a model for a single-item inventory system with deterministic lead-
time but subject to stochastic, nonstationary demand process. We analytically
derive order and inventory equations for the supplier assuming it is supplied by
an infinite capacity supplier. In the second part of the chapter we examine how
the model extends to a supply chain context. We find that the upstream demand
is a complicated process due to order-batching used by the retailer. Inventory
and order equations are derived for the retailer. In the last part of the chapter
we analytically compare the supplier’s performance for the models with demand

information sharing and without demand information sharing.

The fourth chapter is devoted to simulation. We study on the retailer’s and

79



the supplier’s processes analytically in Chapter 3 separately. In Chapter 4 we
aim to observe their performance while working in coordination. We define four
different performance measures; time to satisfy backorder, backorder occasions,
difference between set and observed values and time weighted on-hand and neg-
ative inventory. We observe these values under different combinations of the
parameters and understand the system performance. In addition, in order to
observe the effect of information sharing we code a new model. The results of
the model with information sharing is compared with the results of the model
without information sharing.

We have the following observations from this study:

e As it is mentioned previously basic structure of our model is similar to
that of Graves (1999). One of its results is interesting and differs from the
general results in the literature. It says that ”there is no benefit from letting
the upstream stage have exogenous demand information”. We study on the
implications of this in our system and we realize that it is not true for our
case. The supplier can benefit from using the extra demand information
to reduce the variance of forecast for the demand observed during its lead-
time. And this reduction in the variance increases the performance of the

supplier.

e We compare the demand observed by the retailer and its order to have some
insights about the demand processes observed by the retailer and the sup-
plier. We take R period accumulated demand observed by the retailer and
its order in this comparison, since the retailer’s order is for the accumulated
demand. We realize that the variance of demand observed by the supplier
is bigger than that of the retailer. This is one of the well-known issues in

the literature about supply chains, the bullwhip effect.

e We observe that it is not wise to work with batch ordering while the demand
parameter or the process inertia parameter o has big values. Variances of
the retailer’s inventory equations in the periods other than the constant

variance period in a cycle depends on time and increase with increasing
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value of it. These variances also depend on the value of a. It is difficult to
work for long rolling horizon in this system. If « is bigger planning for the

long rolling horizon becomes more complicated.

Further studies can be conducted on finding a better forecasting model to
forecast the demand observed by the supplier and consistently constructing a new
order-up-to policy for it. Lead-times or/and ordering period can be stochastic

and the supplier can also batch its demand.
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APPENDIX A

ANALYTICAL DERIVATIONS

A .1.Derivation of Order for the Retailer:
We employed 3.1, 3.6, and 3.11 to find following:

gmr = (L+R—1) {FnR+1 - F(n—l)R—i—l} + zR;d(n—l)RJri
(L4 R—1)(aean + @t 1 + o + a1 + 1)
— (L+R-1)(€m-1)r + €(n_1)g—1 + ... + €1 + 1)
+ {d(n—1)R+1 +dipn-1)rRi2 + ... + an}
= (L+R-1) { Qenp + Qe 1 + e Q€ 1)R+1}

+ Z(M‘f‘ Z Gi)

=1

(L+ R - 1){(aenR+ozenR [ T e 1)R+1}

R(aem-1)r + a€n-1)r—1 + ... + g + 1)

+ o+

{1+ (R-1a}temnpry + {1+ (R—=2)a}€myryor + ... + {1 + (R — R)a} eur

(L + R — 1) {(O!ﬁnR +aeppr 1+ ... + ae(n—l)R—l—l}

(n—1)R R—1

+ R( Y. ag+p)+ > (1+ia)e,

=1 1=0

R-1 (n—-1)R R-1
= (L—i—R—l)aZenR_i—i-R(Z «€; + 1) —i—Z 1+ic)enr_i
i=0 i=1 i=0
R-1 (n—1)R
Inr = {(L+R—-1+i)a+1}epi+Ra > €+ Ru
i=0 i=1
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A.2.Derivation of ilnventory Equation for the Retailer in Ordering Periods
Starting from 3.20, backward substitution and replacing ¢,z,n = 0,1,2, ...
with the equation 3.11 we found:

XnR - Xanl - an
— XnR72 - anfl - an
- XnR—3 - an—Q - an—l - an

i—1

XnR = Xani_Zanfj fori:4,5,..,R—L—2

=0
= Xw-1yrR+141 — dn-1)rRy1+2 — d(n-1)rR41+3 — - — dnr
= Xp-nr+L — dn—1)R+L4+1 — dn—1)R4L42 — - — dnr

= Xm-1)RrtL-1 — Adn—1)R+L T Yn-1)R

— dmn-1)r+141 — An-1)R4142 — - — dnr

where

R
dn-1yr = (L+R—1) {F(n—l)R-H - F(n—2)R+1} + Y din—2)rti

=1

substitute this and continue on backward substitution

Xor = Xo-vrir—1 — dm-nyrer + (L+ R —1) {F(n—1)R+1 - F(n—2)R+1}
R
+ Z din—-2)r+i) = dn-1)R+1+1 — dn—1)r+142 — --- — dpr
i=1

= Xo-nr —dmn-1)r1 + ((L+R—1) {F(nfl)RJrl - F(nf2)R+1}

R

+ Z din—2)r+i) — dn—1)r+2 — dn—1)r+3 — --- — dnr
i—1

= Xw-2r+r — dwn-2)rRi141 — dn-2)R+L+2 — - — dur

R
+ (L+R-1) {F(n—1)R+1 - F(n—2)R+1} + > din-2)r+i)
i=1
= Xm-2)r+1-1 — dn-2)rsr + ((L+ R —1) {F(n—2)R+1 - F(n—3)R+1}
R

+ > dm-syr+i) — dn-2yr+1+1 — dn-2)R+142 — - — dn—1)R+L
im1

R
+ ((L + R — 1) {F(nfl)R+1 - F(n72)R+1} + Z d(n72)R+i)
1=1

— din-1)R+1+41 — An-1)R+L+2 — - — dnr
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= Xm-syrtr—1 — dn-syrer + (L+ R —1) {F(n—3)R+1 - F(n—4)R+1}
R

+ Z din—ayr+i) — An—3)rR+1+1 — An—3)R+1+2 — - — A(n—2)R+L
i=1

R

+ ((L + R — 1) {F(n72)R+1 - F(n73)R+1} + Z d(n73)R+i)
i—1

— din-2)R+141 — An-2)R+L+2 — - — A(n_1)R+L

R
+ (L+R-1) {F(n—1)R+1 - F(n—2)R+1} + > din-2)r+i)
i=1

— dn-1)R+141 — dn-1)R4142 — - — dnr
since plus and minus forecast terms in ¢,g, n = 1, 2, 3... cancel each other we
have:

R
Xor = Xogir—1 —dorir + (L+ R —1){Fopp1 — Fry1} + ZdR-i-i)

=1

+ (L+R-1) {F(n—1)R+1 — F2R+1}

R R R
+ Y dopyi+ D dspii+ o+ D> din_2)Rti

i=1 i=1 i=1
— dopyr+1 — doryr42 — - — dyr

R
= Xgyr1—drsr +(L+R—1){Fru _F1}+Zdi
i=1
+ (L+R—=1){Fn-nrn — Fr}
R R R
+ > dpyi+ D dapyi+ o+ D din2)Rei

i=1 i=1 i=1
— dryr+1 — dryr+2 — o — dpr

= Xp1—dp+q@+(L+R-1) {F(n—1)R+1 - Fl}

R R R
+ Zdi + ZdR—I-i + ...+ Zd(n—Q)R—I-i
=1 =1 =1

— dppr —dpyr — o —dug

= Xo—di—dy— .. —dp+qo+ (L+R—1){Fayra — Fi}
R R R

+ Y di+ D> driit .+ Y dn—2)rii
=1 =1 =1

— dppr —dpyr — o —dug

substituting initial values; go = Ry and F} = p so:

(n—1)R
Xor = Xo+Ru+ (L+R-1) {F(n—l)R—l—l - M} + Z d;

=1
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di —dy — ... —dur

Xo+Ru—(L+R-1)p+ (L+R—-1)F 1)rs1

dy +dy+ .. + iy 1yr

di —dy— ... — dug

Xo— (L= 1)+ (L+R—1)Fp_

din—1)rR+1 — dn—1)R42 — --» — dur

Xo— (L=1)p+ (L —1)F 1y

din-1)R+1 — An—1)r+2 — - — dnr + (R) Frn—1)r41

Xo = (L=1Dp+(L=1)Fu-1)rn

(dnr — Fin-1)r4+1) = (dnr-1 — Fin-vyr41) — - = (dn-1)r41 — Flu-1)r41)
Xo— (L=1)p+ (L —1)Fpn 1ypn

(€nk + Qpp—1 + ... + Q€1 + [ — C€(_1)R — QE(R_1)R—1 — ... — Q€] — 1)

(€nr—1 + Qepr—2 + ... + @€y + j1 — Q€(_1)R — C€(R_1)R—1 — .- — Q€L — [L)
Ri:z (€nk—i + Q€pp—i—1 + ... ey + 1 — Fln_1)ri1)

(6 Rl T Q€(m_1)r + - + Q€L+ L — Q€(_1)p — QE(p_1)R—1 — ... — Q€] — [L)
Xo — (L = Dp+ (L = 1) Fn-1)ra

(€nr + Q€pp—1 + ... + C€(m_1)R41)

(€nr—1 + Q€pr—2 + ... + Q€(n_1)R+1)

(€nr_o + €pr 3+ ... + a’€(n—1)R+1)

Rf
Z €nk—i + Q€pr_i—1 + ... + Q€(n_1)R+1)

N

=3
(6 (n—1 R+1)
R—1
Xo— (L—=Dp+ (L=1)Funr — 2 (1 +ia)enr;
i=0
R—1
X, — Dp—> (14 ia)er;
=0

(L —1){a€m-1)r + @€(n_1)r-1 + ... + ey + u}
R-1

X() — Z (]. + ’iOé)GnR_i - (L — 1)/1,
i=0
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(n—1)R
+ (L-1) > ag+(L-1)pu

=1

R—1 (n—1)R
Xor = Xo— > (14ia)epi+(L—1) Y of
=0 =1
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A3.

XnR+L

Derivation of Inventory Equation for the Retailer in Receiving Periods

Xnrtr—1 — Aprir + Gnr

Xorsr—2 — dnper—1 — duper +(L+ R —1) {FnR+1 - F(n—l)R-H}

R

> din-1)r+i)

i=1

(Xnrer—i — dnrer — duper—1 — o — dupyr—iv1 + (L + R —1) {FnR+1 - F(nfl)RJrl}

R
Zd(n—l)R-i-i) for i = 3, 4, .y R—-1

i-1

X 1)R+L — A 1)R+L11 — dn-1)RyL12 — - — duRryL

R
(L+R-1) {FnR-H - F(n—1)R+1} + > din-1)r+i)
i=1

R
Xon-tyrtr-1 — dp-yrer + (L + R —1) {F(n—1)R+1 - F(n—Q)R—l—l} + Z d(n—2)r+i)

=1
d(n—l)R+L+1 - d(n—l)R+L+2 e T an+L

R
(L+R-1) {FnR-H - F(nf1)R+1} + Y di1yrti)
=1

plus and minus forecast terms in ¢,g,n = 1, 2, 3... cancel each other

XnR+L

+ o+ 0+ o+ 1+

R
Xrir1 —dpyr + (L+R—1){Frpp — i} + ) d;
i=1

drir+1 — drin42 — - — duriL

(L+ R —=1){Fagr+1 — Fria}

R R R
Sdpyi+ Y dogyi + oo+ Y di1yRt
i=1

X1 —dp+qo—dpyr —dpyo — ... — dyryr
(L+ R—-1){F.rs1 — F1}

R R R

SDdi+ Y dryit o+ D dm_1)R+i

i=1 i=1 i=1

X0+Rﬂ—d1 —d2 - ... _an+L

(L+ R—1){Furs1 — F1}
d1—|—d2—|——|—an

Xo+ Ry —dppyr — dnry2 — oo — dppyr

(L+ R —1){Fagrs1 — p}
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XnR+L

Xo+ Ry —dppyr —dury2 — o — dppyp + LEyRry

(L+R—-1Dp+ (R —1)Fupp

Xo = (dnrir — Farg1) = (dnriz—1 — Faryr) — o = (dugyr — Furi)
(R—1){aeyr + aepp + ... +ae +puy— (L—1)p

Xo — (GnR+L + aeppyrp—1 + ...+ a’€nR+1)

(€nrtr-1 + Q€ppyr—2 + ... + Q€nRi1)

(enRJrl)

(R—l)iaeﬁ-(R—l)u—(L—l)u

L—-1 nik
XO — Z(l + Z.a)€nR+L7i + (R — 1) ZO&GZ' + (R — L),u
1=0 1=1
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A.4. Derivation of Inventory Equation for the Retailer in the Period Prior to

Receiving

XnR+L—1 — XnR+L—2 _an—i—L—l

= Xppr+r-3 — prin—2 — dpryn—1

= Xyrti—i — dprer—1 — dprir—2 — .. — dpryr—iq1 fori=4,5..,L—1
= Xyr —dpry1 — dpryo — oo — dppin—1

= Xp-nr+r — dn-1)r4r+1 — Adn—1)Rt142 — - — dnRy—1

= Xu-1)R+L-1 — dn-1)R+L — d(n—1)R+L+1 — - — dnRy—1

R
+ (L+R-1) {F(n—l)R—H - F(n—2)R+1} + Z d(n—2)r+i)
i=1

- X(n—2)R+L—1 - d(n—2)R+L - d(n—2)R+L+1 e T an+L—1

R
+ (L+R-1) {F(nq)RH - F(nf2)R+1} + > din-2)r+i)
=1

R
+ ((L + R - 1) {F(n72)R+1 - F(n73)R+1} + Z d(n73)R+i)
1=1

plus and minus forecast terms in ¢,z,n = 1, 2, 3... cancel each other

Xoptr—1 = Xpoi—dp+qo—dppr —dpyo — ... —dppirn—
+ (L+R—1) {F(n—l)R—l—l_Fl}
R R R
+ Zdi—FZdR_H'—F...—FZd(n,Q)RJFi
i=1 i=1 i=1
= Xo+Rpu—di—dy— ... —dppyr—1
+ (L+R-1) {F(n—l)R+1 - M}
R R R
+ Zdi+ZdR+i+---+Zd(n—2)R+i
i=1 i=1 i=1
Xo+ Ry —dppir1 — duryr 2 — o — dn_1)r41

Xo = (durir—1 — Fn-1yr+1) — (dnrir—2 — Fln-1yre1) — -
— (dn-1yr+1 — Fin—vyr41) — (L= 1)p

= Xo— (L —1)p — (€nryr—1 + Q€npyr—2 + ... + 0€(n_1)r+1)
— (€nryr—2+ Q€pryL-3 + ... + C€m_1)R11)

—  (€nrtr—3 + C€ppip—a + ... + Q€L _1)R41)
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R+L-2
- }: (€nryL—i + Q€ppir—im1 + ... + Q€(_1)R}1)

=1
(GUkJ)R+1)
R+L-2

Xogsr—1 = Xo— >, {(1+ia)enrir—1—i} — (L —1)p

1=0
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A.5. Derivation of Inventory for the Retailer in Ordering Periods (when L |
R)

Starting from 3.20, backward substitution and replacing ¢,z,n = 0,1,2, ...
with the equation 3.11 we found:

Xor = Xnr-1—dnr
= Xap—2 —dnp1 — dur
= Xop-3 — dpp—2 — dpp—1 — dpp

- XnR—4 - an—3 - an—Z - an—l - an

= Xani — an — an,I — . an7i+1 for i = 5, 6, ,R+ k—2
= X(n—l)R+k+1 - d(n—l)R+k+2 - d(n—l)R+k+3 — .. —dyr
= X yrtk — dn-1)Rik+1 — dn-1)Rikr2 — - — dur

= Xu-nrik-1 — dn-1)r+k T qn-2)r
— dn-1)Rtk+1 — dn—1)Rk+2 — - — dnr

where

R
In-2)r = (L+ R —1) {F(n—2)R+1 - F(n—3)R+1} + Y din—3)rti

=1

then we substitute this and continue on backward substitution

Xor = Xp-D)rsb-1 — dn—1)rer + (L+ R —1) {F(n72)R+1 - F(n73)R+1}
R
+ Z din—3)r+i) — Adn—1)R+k+1 — dn—1)Rk+2 — --- — dnr
i=1

= Xu-nr — dpn-nyp41 + (L + R —1) {F(n—2)R+1 - F(n—3)R+1}

R
+ Z dn—3)r+i) = dn—-1)R+2 = Adn—1)r+3 — --- — dnr
=1
= Xm-2)rt+k — Adn-2)R+k+1 — An—2)Rykt2 — - — dur
R
+ (L+R-1) {F(nf2)R+1 - F(n73)R+1} + Y d_3)rti)
=1

= Xo-9rtb-1 — dm-oprek + ((L+ R —1) {F(nf?))RJrl - F(nf4)R+1}
R
+ Z din—1)r+i) = An—-2)R+k+1 — d(n—2)Rk+2 — - — A(n—1) Rtk
i=1
R
+ (L+R-1) {F(n—2)R+1 - F(n—3)R+1} + > din-3)r+i)

=1

93



din—1)R4k+1 — Adin—1)R+kt2 — - — dur

Xon—s3)rek—1 — dn-s)rr + (L + R — 1) {F(nf4)R+1 - F(nf5)R+1}
R

> din-syr+i) — dn-3)r+k11 — An—3)R+k+2 — - — An-2)R+k
=1

R
(L+R-1) {F(n—3)R+1 - F(n—4)R+1} + > din-ayr+i)

=1
dn—-2)R4k+1 — Ad(n—2)Rtk+2 — - — A(n—1)R+k

R
(L+R—-1) {F(nf2)R+1 - F(nf3)R+1} + > din-3)r+i)

=1
din—1)R4k+1 — A(n—1)Rtkt2 — - — dnr

plus and minus forecast terms in ¢,R,n = 1,2, 3... cancel each other

+

We have;

R
Xopie-1— dopyrs + (L+ R —=1){Fre1 — Fi} + > d;)

i=1
(L+R-1) {F(n—2)R+1 - FR+1}

R R R

Yodpyi+ Y dogsi+ o+ Y din_z)rt

i=1 i=1 =1
d2R+k+1 - d2R+k+2 T e T an

Xrih1—dpik+q+ (L+R—1) {F(n—Q)R—l—l — F1}

R R R

SNodi 4+ dpyi+ o+ Y dinz)re

i=1 i=1 i=1

drik+1 — dryky2 — . — dnr

Xo—di—dy— ... —dprp+ @+ (L+R-1) {F(n—2)R+1 - F1}

di +do+ ... + din_or

q = Rp, Fi = p, and L = R + k so after making necessary

cancellation on plus and minus demand terms:

Xor = Xo— an - an—l e T d(n72)R+1

+ Rp+ (R+k+R—1){Fuoru —n}

= Xo—dpr —dng—1 — - — dn—2)rt1 + 2R) Fln—2)r+1
- (B+k—1Dp+ (k= 1)Fn-2rm

= Xo— (dur — Fn-2)r11) — (dur — Fln-2)r41) — -
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(din-2)r+1 — Fln—2)r+1)
(n—2)R
(R+k—1)u+(k—1){ > aq—l—,u}

=1

Xo — (€ng + Q€pp1 + ... + Q€(n_2)R+1)
(€nr_1+ @€pr_o+ ... + Oée(n_g)R_H)

(€nr—2 + Q€pr—3 + ... + C€(n_2)r11)
2R—2
Z (€nk—i + Q€pp—i—1 + ... + Q€(n_2)R+1)
i=3
(G(n—2)R+1)
(n—2)R
Ru+(k—1) Y ag
i=1

2R—1 (n—2)R
Xo— > (L+ia)eppi+(k—1) > ag— Ry
i=0 i—1
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A.6. Derivation of Inventory for the Retailer in Receiving Period (When L |

Xorik = Xortk-1 = ARtk T d-1)R

= Xortk—2 — Qnrpk—1 — dprar + (L+ R —1) {F(nfl)R+1 - F(nf2)R+1}
R
+ ; d(n—2)r+i)
= (Xorth—i = dnrek — dprpk—1 — o — dppyk—iy1 + (L + R —1) {F(n—l)R-H — F(n-2)R+1}
+ f: din-2)r+i)) fori=3,4,.,R—1
= f;zn—l)R-i—k — din—1)Rtk+1 — din—1)Rtk+2 — --» — dnRik

R
+ ((L + R - 1) {F(nfl)R+1 - F(n72)R+1} + Z d(n72)R+i)
=1

R
= Xp-nrtk—1 — dn—1yrsr + (L + R —1) {F(n—2)R+1 - F(n—3)R+1} + Z d(n—3)r+i)

i=1
— dn—1)Rk+1 — An—1)Rk+2 — - — dpRyk

R
+ (L+R-1) {F(n—1)R+1 - F(n—2)R+1} + > dmn-2)r+i)

=1

plus and minus forecast terms in ¢,g,n = 1, 2, 3... cancel each other

Xorek = Xpyr—1 — dryr + qo

+ (L+R=1){Fn-nrn — Fi}

— dryk+1 — dRikr2 — - — dppik
R R R

+ Zdi+ZdR+i+---+Zd(n—2)R+i
=1 =1 =1

= X0+Rﬂ—d1—d2—...—an+k

+ (L+R=1){Fu vrn — R

+ di+dy+ o dp e

= Xo+ Rp—dp-1)re1 — dn—1)r42 — - — dppik

+ (R+k+R—1) {F(n_l)R+1 ~ u}

= Xo+ Rp—dm-1)r+1 — dn-1)rR+2 — - — dnrr + (R + k) Fupia

- (R+k+R-1)p+ (R— 1)F(n—1)R+1
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= Xo— (dursr — Fln—1)r41)

— (dnrsk—1 — Flu—vyr1) — - — (dn—1)r+1 — Fln—1)r+1)

+ (R-1) {ae(n,l)R + o€ 1)p-1 ... + € F ,u} —(R+k—-1)p
= Xo — (€nrik + Q€prip—1 + ... + C€(_1)R41)

—  (€nRyk—1 T Q€uRrik—2 + .. + Q€G_1)RE1)
R+k—2
— Z (€nRak—i T Qepryk—i—1 + .. + X€(_1)R41)
i=2
- (G(nfl)R+1)

(n—1)R
+ (R-=1) > ag+(R-1)p—(R+k—1)p
i—1

L-1 (n—1)R
XnR+L = Xo - 2(1 + ia)enR+k;7i + (R — 1) Z aeE; + (R — L)N
1=0 1=1
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A.7. Derivation of Inventory Equation for the Retailer in the Period Prior to

Receiving (When L ¢ R)

Xnrik—1 = Xprik—2 — Apryk—1

= Xprik-3 — dprik—2 — dprik-1

= Xurtk—i — dpryk—1 — dpryk—2 — - — dppyk—is1 fori=4,5.k—1
= Xur —duprt1 —dppi2 — o — duryk 1

= Xyr—i = dprik—1 — dppyk—2 — ... —dpp_jyr fori=1,2,.. . R—k—1
= Xu-nrtk — dn-1)rRik+1 — dtn_1)Rik4+2 — - — AnRryk—1

= Xm-0)Rtk-1 — An—1)R+k — Adn—1)R+k+1 — - — duRyk 1

R
+ (L+R-1) {F(nf2)R+1 - F(nf3)R+1} + > din-3)r+i)

=1

= Xun-2rik-1 — dn-2)rk — dtn—2)Rk+1 — - — AnRryk—1
R

+ ((L + R - 1) {F(n72)R+1 - F(n73)R+1} + Z d(n73)R+i)
=1
R

+ (L+R-1) {F(n—3)R+1 - F(n—4)R+1} + Z d(n—a)R+i)
i=1
plus and minus forecast terms in ¢,g,n = 1, 2, 3... cancel each other
Xortk-1 = Xpik-1—dryk + G — drikr1 — dryky2 — - — durik1
+ (L4 R=1){Fuore — F1}
R R R
+ Y di+D> driit .+ Y din—s)ri
i=1 i=1 i=1
= Xo+Ru—dy—dy— ... —dppir—1
+ (L + R — ].) {F(n72)R+1 - /L}
R R R
+ Y di+ > driit .+ Y dn-s)r+i
i=1 i=1 i=1
= Xo+ Ry —dppik—1 — duryk—2 — - — dn—2)p41
= Xo— (durtr-1 — Fin—2)r41) — (dnrik—2 — Fln—o)re1) — -
- (d(an)R+1 - F(an)R+1) —(L—-=1)p
= Xo— (L—1p— (enpth—1 + €pripk—2 + ... + aﬁ(n72)R+1)
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(€nRyk—2 + QepRyk—3 + ... + W€(_2)R+1)

(€nR+k73 + a€ppyk—a+ ...+ a’e(n72)R+1)

2R+k—2
Z (€nkth—i + Venpib—ic1 + ... + C€_2)R+1)
i=4

(G(n—2)R+1)
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A.8. Derivation to Represent q(,1r with respect to gn and ¢;’s

R—1
ik = dminr+ P {(L+R—1+i)a+ 1} (€mi2)r—i — €nt1)r—i)
=0
(n+1)R
+ Ra Z
i=nR+1
place q(,4+1)r With its value;
R—1 nRk
i = @r+ D {(L+R—14+9)a+ 1} (€minyri — €ar—i) + R Y. ¢
i=0 i=(n—1)R+1
R-1 (n+1)R
+ {(L+R-1+4+19)a+1}(emro)r—i — €minr—i) + R > ¢
i=0 i=nR+1
R—1
dnrp = s+ Y {(L+R—1+i)a+ 1} (€ni3)r—i — €n+2)r—i)
=0
(n+2)R
+ Ra Z €;
i=(n+1)R+1
place q(,42)r With its value;
R—1 nRk
dnisyp = @r+ D {(L+R—14+0i)a+ 1} (€minyr—i — €ar—i) + R Y. ¢
i=0 i=(n—1)R+1
R-1 (n+1)R
+ {(L+R-1+19)a+1}(emso)r—i — €m+nr—i) + R > €
i=0 i=nR+1
R-1 (n+2)R
+ {(L+R—-1+414)a+1}(emrsri — €mior—i) + R > ¢
= i=(n+1)R+1
R—1
dnrnr = dmenr+ 2 {(L+R =1+ )+ 1} (€nyayr—i — €ni3)r—i)
=0
(n+3)R
+ Ra Z €;
i=(n+2)R+1
place q(,43)r With its value;
R—1 nRk
Gy = G+ D {(L+R—14+9)a+ 1} (€minyri — €ar—i) + R Y. ¢
=0 i=(n—1)R+1
R-1 (n+1)R
+ {(L+R-1+19)a+1}(emio)r—i — €m+nr—i) + R > ¢
=0 i=nR+1
R-1 (n+2)R
+ {(L+R—-1+414)a+1}(emisyr—i — €mioyr—i) + R > ¢

0

-
Il
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(n+3)R
+ {(L +R—-1+ Z)Oé + 1} (€(n+4)R—i - €(n+3)R—i) + Ra Z €;
' i=(n+2)R+1

i

@
Il
o

As we continue writing the equation for the coming g(,,)r, we saw that plus
and minus € terms have same coefficients. We can easily drop these terms and

reach the general term for q(,4.4)r-
R-1 (n+i—1)R

qntipr = e+ ) {(L+R—=1+j)a+1} (€myirj —€nrj) + Ra Y
=0 j=(n—1)R+1
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A.9. Derivation of B, g, Total Shipment Qunatity for the Supplier Over Its

Lead Time
K
Bur > dintir
i=1
dn+1)R T qn+2)R T d(n+3)R + - T q(n+K)R
R—1
e+ D {(L+R—-1+j)a+1} (eminr
7=0
R-1
Gr+ Y {(L+R—-1+7)a+1}(eminr
=0
R-1
o+ D {(L+R—-1+j)a+1} (€mis)rj
j=0
K R—1

ZQnR+Z{L+R_1+])a+1}( (n+t)R

t=4 7=0

we brought together the similar terms;

BnR

R-1
Kgur =K Y {(L+R—1+j)a+1}en
=0

nR

— €,r—j) + Ra Z €j
j=(n—1)R+1
(n+1)R
—enp—j) T Ra D €
j=(n—1)R+1
(n+2)R
enR—j) + Ra Z €
j=(n—-1)R+1
(n+t—1)R
—j eanj) + Ro Z

j=(n—1)R+1

R—1
S A{L+R—-1+j)a+ 1} (eminr—j + €mi2)r—j + - + €Entr)r—i)
7=0

nR (n+1)R
Ra >  +(K-1) Y ¢
j=(n—1)R+1 j=nR+1
(n+2)R (n+K—1)R
(K—Q) Z € +...+ Z Gj)
j=(n+1)R+1 j=(n+K—2)R+1
nk R-1
anR + RaK Z
j=(n—1)R+1 j=0

R—
Z L+R—1+])a+1}€(n+K)R_

O

;UM
=

—KY {(L+R-1+j)a+1}er,

{L+R—=1+j)a+ 1} (€ninyr—j + €mt2)r—j + - + €tk -1)R—j)

0

<.
Il

R— R—
Ra { Z €mt1)r—j + (K Z €mt2)R—j ot D €mtK-1)R—j

R—-1

7=0

combine last two lines above, that have same terms multiplied with different
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coefficients;

BnR

_|_

R-1
anR+KZ {RO[— (L"—R— 1"—])&— ]-}enR—j
j=0
R—-1
{L+R—-1+j)a+1}enin)r—;
7=0
1

R_

S HIL+R-1+j)a+1+Ra(K —1)} €msnyny
=0

L+R—1+j)a+1+Ra(K —2)} €y,

L+R—1+j)a+1+Ra(K —3)}epninn

{(L+R—1+j)a+1+ Ra(K —t)} €tuityr—;

and after last cancellation, it turns out to have the following equation:

BnR

R-1

Kgur +K Y {—~(L—=1+j)a—1}eur
=0

R—

—

{(L +R—-1 +])C¥ + l}e(n—I—K)R—j
j:
R—

- o

{(L—-1+j)a+1+RKa)}enir—;

—_~— s,
~il\g
o

L—1+j)a+1+ Ra(K — 1)} €ni2)r—;

~=
—~

L—1+j)a+1+ Ra(K —2)}€misyn—;

=
N

{(L=1+j)a+1+Ra(K — 1)} €mrt+1)r—j

t—

w
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A.10. Derivation of Inventory Equation for the Supplier

XSur = XSm-1)r = tnr + K(Gn-K)rR — Qn—K-1)R) T+ Qn—K)R
= XSnm-2)r — qn-1)r + K(Q-Kk-1)r — Qn—K-2)R) + An—K-1)R
— e + K(qm-r)r — Gn—K-1)R) + dn—K)R
= XSum-sr — -2k + K(qn-K—-2)r — Gn—K—-3)R) T An—K—-2)R
— qu-1)r T K(qn—k-1)r — Qn—K—2)R) + Q(n—K-1)R
— @ur + K(q-r)r — Un-k-1)R) + Un—K)R
= XStm-9r —qm-3r + K(qm-K-3)r — qn-K-9R) + An-K-3)R
— -2k T K(Qn-K-2R — dn—K—3)R) + d(n—K—2)R
— qu-1)r T K(qn—k-1)r — Qn—K—2)R) + G(n—K—1)R
— @ur + K(q-r)r — Un-k-1)R) + Un—K)R
XSur = XSr—@r+ K(@s-x)r — qe2-K)R) + 43-K)R
— qur + K(qu-x)r — 43-K)R) + d4-K)R
- iQ(t)R + K(qu-r)r — Qu-1-K)R) T+ Qt—K)R
XSur = )}SR — @or + K(qo-k)r — 40-K)R) + 42— K)R
— @r+ K(qs-x)r — Qe-K)R) T 43-K)R
- tzn;;q(t)R + K(qu-r)r — Qt—1-K)R) + Qt—K)R
XSup = )}50 —qr + K(qu-r)r — 4(=r)R) + Q1—-K)R
— @r+K(Qe-rk)r — a-K)R) + 42-K)R
- z": qiwr + K(qu-r)r — 44-1-K)R) + d4—K)R

t=3

(A.2)
plus and minus ¢,z terms cancels each other
XSor = XSo—@wr — qu-1)R — - — —Qn-k+1)r + K — qu-K)R

we can write above equation as;

XSpr = XS — (QnR - Q(an)R) - (Q(nq)R - Q(an)R)
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- ... — ((](n_K-H)R - (I(n—K)R)

Here we use noise term representation of ¢,z values to define the inventory
variable in terms of the random noise terms. In doing this we first of all need to

make some modifications on the equation found for g4z, to have qu—x1ir-

(n+i—-1)R R—1

G+ = @Wmr+Ra Y ¢+ Y {(L+R—1+j)a+1}€npirj
j=(n—1)R+1 Jj=0

=
L

— {(L+R—-1+j)a+1}enr

<.
Il
)

(n—K+i—1)R R—1

don-x+ipr = qur+Ra Y G+ Y {(L+R—1+j)a+1}ewm krirj
j=(n—K—1)R+1 =0

=
_

— {(L+R—1+])Oé+1}€(n_K)R_]

<.
Il
)

let’s use this last equation in the equation 77

XSop = XSp— (Q(n—K+(K))R - q(n—K)R) - (q(n—K—I—(K—l))R - q(n—K)R)

— e (q(anJr(l))R - Q(an)R)
(n—-1)R R—1
= XSO—(RO! Z €J+Z{(L+R—1+])a+1}EnR,J

j=(n—K—1)R+1 =0
— {(L+R—-1+j)a+1}em_ryr—j)
(n—2)R R—1
- (Ra > e+ > {(L+R—-1+4j)a+1}en_1)r—;

j=(n—K—1)R+1 j=0

— {(L+R—1+])Oé+1}€(n_K)R_])

<.
Il
)

(n—t)R R—1

(RO! Z 6]"‘ Z {(L+R—1+j)a’+1}€(n,t+1)R,J‘

j=(n—K—1)R+1 §=0

|
T I~

— {(L+R—1+])Oé+1}€(n_K)R_])
0

<.
Il

(A.3)
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then combine similar terms

R-1

XSur = XSo+K[D_ {(L+R—-1+j)a+1}€m-K)rj]

J=0
K-1

(L + R -1 +])C¥ + 1} Z G(n—i)R—j
i=0

(n—K)R (n—K+1)R (n—1)R
K Z €j+(K—1) Z €j+...+ Z
j=(n—K—-1)R+1 j=(n—K)R+1 j=(n—2)R+1
R—-1

XSor = XSo+ K[> {(L+R—-1+j)a+1}en—kr—j]

)

— DAL +R=1+j)a+1}(enrj +€m R + - + € K41)R )

J=0

: Ra{

R—-1 R—-1

j=0 7=0

R—1
K Y ¢p-rypj+ (K —=1) D €arrnrj+ -+ D €a1)r—;
=0

again combine the similar terms in the last two rows of the above equation:

XSnR =

XS =

XSnR =

R-1
XSo+ K[> {(L+R—-1+j)a+1}em ryr—j]
i=0
HL+R—-1+j)a+1+4+ Ra(K — 1)} €n—r11)r—j
{(L+R—-1+j)a+1+4+ Ra(K —2)} €(nk12)r—j
K

AL +R-1+j)a+1+ Ra(K —t)} €prcityr—;

R-1 R—-1
RaK Z €(n—K)R—j — Z {(L +R—-1 +])Oé + ]-}GnR—j
j=0 j=0
R—-1
XSo+K[ {(L+R—1+])O[+1—RCY}€(R_K)R_]]
j=0

HL+R—-1+j)a+1+ Ra(K —1)} €n—r11)r—j
=0
{L+R—=1+j)a+1+ Ra(K —2)} €(n—k+2)r—j
K-1
Z {L+R-1+j)a+1+Ra(K —1)} €n_K+t)r—j

t=3
R—1
{L+R—-1+j)a+1}epp
j=0
R—-1
XS+ K[Y_ {(L—1+j)a+1}emrn-j]
j=0
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R—-1
Z L+KR—1+j)CY+1}6(n_K+1)R_]

b

—

(L+ (K —1)R—-1+j)a+1}€m_ri2r—j

K-1
DAL (K =R =1+ j)a+ 1} €moktts)r-
t=2
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APPENDIX B

COMPUTATIONS

108



Table B.1: An Example of Expected Result Observations, a=0, [3,=0.99,
£,=0.99, replication-9 (Information is Shared)

t €4 d; F; Ty
0 [ 0.0000 | 0.0000 | 0.0000 | 15.2019
1-2.8276 | 7.1724 | 10.0000 | 8.0294
2| 0.7288 | 10.7288 | 10.0000 | 37.3006
3 1-2.9307 | 7.0693 | 10.0000 | 30.2314
4 | -1.5067 | 8.4933 | 10.0000 | 21.7380
5| 0.6094 | 10.6094 | 10.0000 | 11.1286
6 | 0.0199 | 10.0199 | 10.0000 | 34.5725
7 0.6977 | 10.6977 | 10.0000 | 23.8749
8 | 0.1961 | 10.1961 | 10.0000 | 13.6788
9| 1.7060 | 11.7060 | 10.0000 | 1.9728
10 | -0.7350 | 9.2650 | 10.0000 | 34.2309
11| 0.2479 | 10.2479 | 10.0000 | 23.9830
12 | 0.6095 | 10.6095 | 10.0000 | 13.3734
13 | -0.2640 | 9.7360 | 10.0000 | 3.6374
14 | 2.9111 | 12.9111 | 10.0000 | 27.5276
15 | -0.5295 | 9.4705 | 10.0000 | 18.0571
16 | 0.3498 | 10.3498 | 10.0000 | 7.7073
17 | 0.4364 | 10.4364 | 10.0000 | -2.7291
18 | -1.1670 | 8.8330 | 10.0000 | 29.9610
19 | 0.4870 | 10.4870 | 10.0000 | 19.4740
20 | -0.6990 | 9.3010 | 10.0000 | 10.1730
21| 0.2060 | 10.2060 | 10.0000 | -0.0330
22 | -1.0633 | 8.9367 | 10.0000 | 32.8587
23 | -0.4819 | 9.5181 | 10.0000 | 23.3406
24 | -0.0427 | 9.9573 | 10.0000 | 13.3833
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Table B.2: An Example of Expected Result Observations, a=0, [3,=0.99,
£,=0.99, replication-9 (Information is Shared)(Continued)

z Gor | @S0 | ipw | blo
15.2019 | 40.0000 | 51.3967 | 40.0000 | 0.0000
8.0294
37.3006
30.2314
21.7380 | 33.4638 | 17.9329 | 20.3915 | 0.0000
11.1286
34.5725
23.8749
13.6788 | 41.5231 | 16.4098 | 41.5231 | 0.0000
1.9728
34.2309
23.9830
13.3734 | 41.8284 | -5.0271 | 41.8284 | 5.0271
3.6374
27.5276
18.0571
77073 | 42.4674 | -5.9715 | 42.4674 | 5.9715
-2.7291
29.9610
19.4740
10.1730 | 39.0574 | -3.2005 | 39.0574 | 3.2005
-0.0330
32.8587
23.3406

OO N[O x| W[N]+

—_
(@)

[
—_

—_
[\

—_
w

—_
H~

—_
ot

—_
D

—_
EN |

—_
co

—_
Ne)

[\]
(@)

[\
—_

V]
]

[\]
w

[\
H~
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Table B.3: An Example of Expected Result Observations, a=0, [3,=0.99,
£,=0.99, replication-9 (Information is not Shared)

4 nr TSpr Prr b/o
15.2019 | 40.0000 | 51.3967 | 40.0000 | 0.0000
8.0294
37.3006
30.2314
21.7380 | 33.4638 | 17.9329 | 20.3915 | 0.0000
11.1286
34.5725
23.8749
13.6788 | 41.5231 | 16.4098 | 57.6415 | 0.0000
1.9728
34.2309
23.9830
13.3734 | 41.8284 | -5.0271 | 42.4391 | 5.0271
3.6374
27.5276
18.0571
7.7073 | 42.4674 | 10.1470 | 43.7454 | 0.0000
-2.7291
35.9325
25.4455
16.1445 | 39.0574 | 13.5287 | 32.2374 | 0.0000
5.9385
36.0592
26.5411

OO N[O x| W[N]+

—_
(@)

[
—_

—_
[\

—_
w

—_
H~

—_
ot

—_
D

—_
EN |

—_
co

—_
Ne)

[\]
(@)

[\
—_

V]
]

[\]
w

[\
H~
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Table B.4: Example of @ = 0.0 Deterministic Input Trial (o = 0.0,r

2, Xy = 10, X Sy = 80)

Anr

TSny

Dnr

b/o

10

40

40

40

10

30

10

20

10

10

10

40

40

10

30

10

20

10

10

10

40

40

OR[N =W N[O+

10

—_
)

30

10

—_
—_

20

10

—_
[\

10

10

40

40

—_
w

10

[
S

30

10

—_
Ot

20

10

—_
D

10

10

40

40

—_
EN |

10

—_
co

30

10

—_
Ne)

20

10

[\]
)

10

10

40

40

DO
—_

10

[\V]
(\]

30

10

DO
w

20

10

o
i~

10

10

40

40

[\]
ot

10

[\V]
D

30

10

[N}
BN

20

10
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Table B.5: Example of @ = 0.0 Deterministic Input Trial (o = 0.0,r

0.0, Xo = 30, X Sy = 80)

Anr

TSny

Dnr

b/o

30

40

40

40

20

10

10

10

10

30

10

40

40

20

10

10

10

10

30

10

40

40

OR[N =W N[O+

20

10

—_
)

10

10

—_
—_

10

—_
[\

30

10

40

40

—_
w

20

10

[
S

10

10

—_
Ot

10

—_
D

30

10

40

40

—_
EN |

20

10

—_
co

10

10

—_
Ne)

10

[\]
)

30

10

40

40

DO
—_

20

10

[\V]
(\]

10

10

DO
w

10

o
i~
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10

40

40

[\]
ot

20

10
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D

10

10

[N}
BN

10
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Table B.6: Example of @ = 0.0 Deterministic Input Trial (o = 1.0,r

2, Xy = 10, X Sy = 60)

Anr

TSny

Dnr

b/o

10

30

30

30

10

20

10

10

10

30

30

10

20

10

10

10

30

30

10

20

10

OR[N =W N[O+

10

10

30

30

—_
)

10

—_
—_

20

10

—_
[\

10

10

30

30

—_
w

10

[
S

20

10

—_
Ot
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10

30

30

—_
D

10

—_
EN |

20

10

—_
co

10

10

30

30

—_
Ne)

10

[\]
)

20

10

DO
—_

10

10

30

30

[\V]
(\]

10

DO
w

20

10

o
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10

10

30

30

[\]
ot

10

[\V]
D

20

10

[N}
BN

10

10

30

30
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Table B.7: Example of @ = 0.0 Deterministic Input Trial (o = 1.0,r

2, Xo = 12.5631, X Sy = 60)

Xt

demand

qnr

xXsnr

12.5631

0

30

30

3.873624

8.689476

23.68256

10.19107

12.54668

11.13587

30.01642

-0.01642

2.241272

10.30541

22.33521

9.906063

11.86653

10.46868

30.68015

-0.69656

2.005192

9.861342

21.97152

10.03367

O[O =W I~ O| e

11.30117

10.67035

30.56536

-1.22909

—_
)

0.618231

10.68294

—_
—_

20.39258

10.25849

—
DO

11.08984

9.302738

30.24417

-0.12938

—
w

2.306384

8.783456

[y
S

23.77085

9.879414

—
ot

13.89728

9.873568

28.53644

1.78476

—
(=2}

5.038736

8.858543

—_
~J

23.48072

10.22384

—_
co

13.18941

10.29131

29.37369

2.334044

—_
©

3.50967

9.67974

[\]
)

22.52371

10.35964

[\
—_

11.5727

10.95102

30.9904

-1.82765

[\]
[\

2.751118

8.82158

[\]
w

22.13036

9.783511

N}
~

11.77091

10.35945

28.96454

-0.58125

[\]
ot

1.687899

10.08301

DO
D

24.01903

7.879806
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Table B.8: 90 Percent CI for o = 0.2 and 100 Simulations

For the precision level of 0.05 optimal replication number is found to be 10 so we
continued to work on these many replications. (Absolute precision of a CI is its
H.L) To show how well the confidence interval will perform in terms of coverage in
practice we decided to make several simulation runs and construct a confidence
interval for the actual coverage of individual simulation’s CI’s. Average of CI
(half length/mean) is also calculated as a measure of the precisions of the CI’s.
90Alpha=0.2 with negative demand, 100 simulation

sim-no CI mean stdev
1 (4.018457,4.160785) 4.08962 0.01507
2 (3.992180,4.111309) 4.05174 0.01056
3 (4.142827,4.252752) 4.19779 0.00899
4 (4.002726,4.091907) 4.04732 0.00592
5 (4.028461,4.177829) 4.10315 0.01660
6 (4.074551,4.184065) 4.12931 0.00892
7 (4.057841,4.144867) 4.10135 0.00564
8 (4.022164,4.102485) 4.06233 0.00480
9 (4.020836,4.076856) 4.04885 0.00234
10 (4.051611,4.170432) 4.11102 0.01051

90% CI for the true coverage
Number of intervals that cover the desired mean is 89
Proportion of 100 CIs that cover desired mean is 0.890000
CI for coverage is, 0.890000+(-) 0.051470 that is: (0.838530,0.941470)

Average of CI (half length/mean) for 100 CIs is 0.012830

116



Table B.9: 90 Percent CI for o = 0.2 and 500 Simulations

sim-no CI mean stdev
1 (4.018457,4.160785) 4.08962 0.01507
2 (3.992180,4.111309) 4.05174 0.01056
3 (4.142827,4.252752) 4.19779 0.00899
4 (4.002726,4.091907) 4.04732 0.00592
5 (4.028461,4.177829) 4.10315 0.01660
6 (4.074551,4.184065) 4.12931 0.00892
7 (4.057841,4.144867) 4.10135 0.00564
8 (4.022164,4.102485) 4.06233 0.00480
9 (4.020836,4.076856) 4.04885 0.00234
10 (4.051611,4.170432) 4.11102 0.01051

Number of intervals that cover the desired mean is 456

90% CI for the true coverage

Proportion of 500 CIs that cover desired mean is 0.912000

CI for coverage is, 0.912000+(-) 0.020841 that is: (0.891159,0.932841)

Average of CI (half length/mean) for 500 CIs is 0.013316
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Table B.10: Box Ploting for Outlier Determination

Original Output

Sorted Output

nonstockout | replication | nonstockout | replication
value no value no
0 1 0
42 2 0
0 3 0
4 0 13
0 5 0 14
15 6 0 15
2 7 0 16
5 8 0 17
4 9 0 20
1 10 1 4
11 11 1 10
1 12 1 12
0 13 1 18
0 14 1 19
0 15 2
0 16 4
0 17 5
1 18 11 11
1 19 15
0 20 42
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Table B.11: Box Ploting for Outlier Determination (continued)

In 25th Percent: Replication 14 has value 0
In 75th Percent: Replication 7 has value 2
Difference for Box Plot found as 2 (2-0)
Upper bound of interval= 2+2*1.5=5
Lower bound of interval= 0-2*1.5=-3

Replications that are thrown out are:

nonstockout replication
value no
11 11
15
42 2
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Table B.12: t-test Studies-Number of Stockout Occassions In Each Replication
(Probability of not stockout for retailer=.98 and for supplier=.98)

Qutlier replications are not removed
repno | no-info info
1 5 0
2 9 42
3 7 0
4 7 1
5 6 0
6 3 15
7 5 2
8 7 5
9 3 4
10 5 1
11 8 11
12 1 1
13 4 0
14 4 0
15 4 0
16 3 0
17 4 0
18 3 1
19 3 1
20 1 0
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Table B.13: t-test Studies(continued)-Test Results for the Previos Table

t-Test: Paired Two Sample for Means

Variable 1 | Variable 2

Mean 4.6 4.2

Variance | 4.778947368 | 95.11578947

Observations 20 20
Pearson Correlation | 0.495204857
Hypothesized Mean Difference 0
df 19
t Stat | 0.201544013
P(T;=t) one-tail | 0.42120765
t Critical one-tail | 1.729131327
P(Tj=t) two-tail 0.8424153

t Critical two-tail

2.093024705
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Table B.14: t-test Studies(continued)-Number of Stockout Occassions In Remain-
ing Replications After Removing the Outlier Ones(Probability of not stockout for
retailer=.98 and for supplier=.98)

Qutlier replications are removed
repno | no-info info
1 5 0
3 7 0
4 7 1
5 6 0
7 5 2
8 7 5
9 3 4
10 5 1
12 1 1
13 4 0
14 4 0
15 4 0
16 3 0
17 4 0
18 3 1
19 3 1
20 1 0
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Table B.15: t-test Studies(continued)-Test Results for the Case of Outliers Are

Removed

t-Test: Paired Two Sample for Means

Variable 1

Variable 2

Mean

4.235294118

0.941176471

Variance

3.441176471

2.183823529

Observations

17

17

Pearson Correlation

0.187757325

Hypothesized Mean Difference

0

df

16

t Stat

6.335676759

P(Tj=t) one-tail

4.94835E-06

t Critical one-tail

1.745884219

P(Tj=t) two-tail

9.89671E-06

t Critical two-tail

2.119904821
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