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Abstract

CONFORMAL VECTOR FIELDS WITH RESPECT TO

THE SASAKI METRIC

Şimşir, Fatma Muazzez

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Cem TEZER

January 2005, 37 pages

On the tangent bundle of a Riemannian manifold the most natural choice of metric

tensor field is the Sasaki metric. This immediately brings up the question of infinites-

imal symmetries associated with the inherent geometry of the tangent bundle arising

from the Sasaki metric. The elucidation of the form and the classification of the

Killing vector fields have already been effected by the Japanese school of Riemannian

geometry in the sixties. In this thesis we shall take up the conformal vector fields of

the Sasaki metric with the help of relatively advanced techniques.

Keywords: Sasaki metric tensor, Tangent Bundle, Killing vector fields, Conformal

vector fields, Lifts of tensor fields.
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Öz

SASAKİ METRİĞİNE GÖRE KONFORM VEKTÖR

ALANLARI

Şimşir, Fatma Muazzez

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Cem TEZER

Ocak 2005, 37 sayfa

Bir Riemann manifolduna ait teğet demeti üzerinde metrik tansör olarak en tabii

olanı Sasaki metriğidir. Bu hal hemen teğet demeti üzerinde Sasaki metriği vasıtasıyla

bu suretle ortaya çıkan geometriye ait enfinitesimal simetriler sorusunu davet eder.

Bu cümleden olmak üzere Killing vektör alanlarının şekillerinin ortaya çıkartılması

ve sınıflandırılması çalışmaları Japon Riemann geometrisi ekolünce altmışlı yıllarda

bitirilmiştir. Bu tezde Sasaki metriğinin konform vektör alanları nispeten ileri yöntemlerle

ele alınacaktır.

Anahtar Kelimeler: Sasaki Metrik tansörü, Teğet demeti, Killing vektör alanları,

Konform vektör alanları, Tansör alanlarının kaldırılması.
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Chapter 1

Introduction

In its most embryonic form, the idea of working with the tangent bundles occurs in

the theory of ordinary differential equations where one routinely transforms systems

of second order ordinary differential equations into systems of first order ordinary

differential equations in twice as many unknowns. Since the systems of second order

differential equations constitute a central issue of classical mechanics, the importance

of this technique can not be exaggerated. The natural and nonetheless ingenious

sequel to this approach is analytical mechanics in the style of Lagrange in which

components of momentum are treated on equal footing with components of position,

that is as ”coordinates” not of the physical object but of the ”physical state” of the

object. Even at this stage the implicit occurence of the cotangent bundle is clearly

recognisable.

Tangent bundle of a manifold has a natural manifold structure. The inherent

linearity of tangent fibers has a mathematically simplifying effect on the tangent

bundle, bestowing upon it a hybrid structure combining linear and nonlinear features.

The modern study of the geometry of tangent bundle may be considered to have

commenced with the seminal articles of S. Sasaki ([11]) in 1958 and P. Dombrowski

([3]) in 1962. Of course, the tangent bundle of a Riemannian manifold is an attractive

object for at least two reasons: Firstly, in the presence of a Riemannian tensor field

on a manifold, the tangent bundle becomes ”paired” with the cotangent bundle and

inherits a natural symplectic structure. Secondly, a Riemannian tensor field on a

manifold induces a natural flow on the tangent bundle which is called the geodesic

flow and is one of the most intensely studied objects of dynamical systems theory

([4], [7], [1], [9]).
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Definition of the Sasaki metric was followed by the question of infinitesimal sym-

metries associated with this natural Riemannian geometry of the tangent bundle.

Killing and Conformal vector fields on the one hand ([5], [6], [8]) and the tangent

bundle of a manifold ([10]) on the other are natural objects of study in mathematics

as well as in theoretical physics. The Killing vector fields with respect to the Sasaki

metric tensor field on the tangent bundle of a Riemannian manifold were completely

characterized by S. Tanno ([12]) yet his calculations were not so easy to follow. We

reobtain the results of S. Tanno ([12]) in Chapter 3 by introducing more streamlined

methods in the light of which we shall characterize the conformal vector fields on the

tangent bundle with respect to the Sasaki metric tensor field in Chapter 4.

All that follows will be in the smooth category unless explicitly qualified otherwise.
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Chapter 2

Vector Fields on Riemannian

Manifolds

2.1 Killing Vector Fields

Let g be the metric tensor field on the Riemannian manifold M . A vector field

A ∈ X(M) is said to be a Killing vector field with respect to a Riemannian metric

tensor field g ∈ X(0,2)(M) if it satisfies the so called Killing’s equation, that is

LAg = o (2.1)

In the presence of a chart x = (xi)1≤i≤n such that g |dom(x)= gijdxi⊗dxj the equation

(1) reduces to

LAg = ∇iAj +∇jAi = 0 (2.2)

in dom(x) where A |dom(x)= Ai ∂

∂xi
.

Example 2.1. A ∈ X(R2), A is a Killing vector field with respect to

g = dx⊗ dx + dy ⊗ dy iff

A = (−wy + a)
∂

∂x
+ (wx + b)

∂

∂y

for some w, a, b ∈ R. ♦
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Example 2.2. Consider the Poincare half plane,

{(x, y) ∈ R2 | y > 0} and g =
1

y2
(dx⊗ dx + dy ⊗ dy). A ∈ X(M) is a Killing vector

field iff

A = a
∂

∂x
+ b(x

∂

∂x
+ y

∂

∂y
) + c[(x2 − y2)

∂

∂x
+ 2xy

∂

∂y
]

for some a, b, c ∈ R ♦

Example 2.3. Generalising 2.1 A ∈ X(Rn) , is a Killing vector field with respect

to g = δijdxi ⊗ dxj. Then A is a Killing vector field iff Ai = Yi + xqHqi where

Hqi + Hiq = 0. ♦

2.2 Conformal Vector Fields

Definition 2.1. A vector field A ∈ X(M) is said to be a conformal vector field (or

a conformal Killing vector field ) with respect to a Riemannian metric tensor field

g ∈ X0,2(M) if

LAg = 2 σ g (2.3)

for some scalar field σ ∈ F(M).

A conformal vector field A is called an infinitesimal homothety if σ is constant.

In the presence of a chart x = (xi)1≤i≤n, the equation 2.3 reduces to

∇iAj +∇jAi = 2 σ gij (2.4)

on dom(x) where

g|dom(x) = gij dxi ⊗ dxj

and

A|dom(x) = Ai ∂

∂xi
.

Raising j and contracting with i in 2.4 it is easily seen that

σ =
1

n
div(A)

where n = dim M . We would like to mention immediately one special instance of a

conformal vector field as it strongly bears upon our work in the sequel :
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Example 2.4. Let n ≥ 3 . On the n-dimensional Euclidean space, which is simply

the manifold Rn with the Riemannian metric tensor field g = gij dxi ⊗ dxj where gij

is a constant for each 1 ≤ i, j ≤ n, the equation 2.4 reduces to

∂Aj

∂xi
+

∂Ai

∂xj
= 2 σ gij (2.5)

from which it can be deduced that σ must be of the form σ = aqx
q + b for some

constants aq, b ∈ R and

Ai = Yi + xqHqi +
1

2
xqxr(aqgri + argqi − aigqr)

where Yi, Hqi ∈ R are constants and Hqi + Hiq = 2 b gqi (Chapter 2.7, p.53 [2]) .

It is easily discernible that the first term generates a translation whereas the second

generates a rotation followed by a dilation . The third term, however, can generate

only a local flow which is an inversion followed by a reflection for each non-zero value

of the parameter of the local flow. We notice that this conformal vector field is

complete iff the vector a = (ai)1≤i≤n vanishes . On complete Riemannian manifolds,

Killing vector fields are always complete. The above example shows us that this is

not always the case for conformal vector fields, [2]. ♦
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Chapter 3

Geometry of the Tangent Bundle

The purpose of this chapter is to present the fundamental concepts in the geometry

of the tangent bundle.

3.1 Preliminaries

Given a manifold M, let F(M) stand for the ring of smooth scalar fields on M and

let Xp,q(M) denote the F(M)-module of tensor fields of bidegree (p, q) on M . In

particular X0,0(M) = F(M), X1,0(M) = X(M), X0,1(M) = X∗(M).

Let M be a manifold of dimension n, TM its tangent bundle and τ : TM → M be

the canonical tangent bundle projection. In the presence of a chart x = (x1, . . . , xn),

the vectors
∂

∂x1
|p, . . . ,

∂

∂xn
|p

constitute a basis for the tangent space TpM at p for each p ∈ dom(x). For each

chart x = (xi)1≤i≤n, an open subset A of dom(x) and an open subset U of R consider

the set

Nx,A,U = {ai ∂

∂xi
|p∈ A, (a1, . . . , an) ∈ U} ⊆ TM .

It can be routinely checked that sets of the form Nx,A,U constitute a basis for a

topology on TM with respect to which TM is locally Euclidean (of dimension 2n)

and Hausdorff, consequently a topological manifold. Given any chart

x = (xi)1≤i≤n : dom(x)⊆op M −→ x dom(x)⊆op Rn
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on M , we consider the chart

x̂ = (x̂α)1≤α≤2n : dom(x̂) = τ−1dom(x)⊆op TM −→ x̂dom(x)× Rn⊆op R2n

defined for each u ∈ τ−1dom(x) by

x̂i(u) = xi(τ(u))

x̂i+n(u) = ui

for 1 ≤ i ≤ n where u = ui ∂

∂xi
|τ(u).

By abuse of notation and as an obvious aid for memory we allow xi to stand for

x̂i = xi ◦ τ for 1 ≤ i ≤ n. Again for obvious reasons we shall denote x̂i+n by ẋi

for 1 ≤ i ≤ n. Of course, the dot is just a notational device and does not connote

differentiation.

The above described chart (x, ẋ) = (xi, ẋi)1≤i≤n will be called the chart associated

with the chart x = (xi)1≤i≤n.

If the charts x = (xi)1≤i≤n and y = (yi)1≤i≤n on M have overlapping domains,

each yi can be expressed as a function yi = yi(x1, x2, . . . , xn) of xj s on dom(x) ∩
dom(y) . In this case (x, ẋ) and (y, ẏ) have overlapping domains, too. Moreover, on

dom(x, ẋ) ∩ dom(y, ẏ) we have

yi = yi(x1, x2, . . . , xn)

ẏi =
∂yi

∂xq
(x1, x2, . . . , xn)ẋq

We observe that ẏi is linear in ẋq s. Indeed the following is well known in classical

Lagrangian mechanics:
∂ẏi

∂ẋj
=

∂yi

∂xj

This shows us, among others thatthe charts on TM associated to smooths charts on

M , induce a smooth structure on TM .

3.2 Lifting tensor fields to the tangent bundle

In the study of the tangent bundle it will be important to produce tensor fields on

the tangent bundle, from out of tensor fields on the manifold itself. Such a procedure

is usually referred to as a ”lifting” of tensor fields on M to tensor fields on TM .
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Let f be a scalar field on U ⊆op M , the corresponding scalar field f ◦ τ on τ−1(U)

will be written as f for brevity. Indeed, we have already availed ourselves of this

simplification in connection with the chart (x, ẋ) associated with the chart x.

Definition 3.1. Given A ∈ X(M), the vertical lift vA of A is the velocity field of

the flow

Ψ : TM × R −→ TM

on TM defined by

Ψ(u, t) = u + tAτ(u).

It can be readily checked that in the presence of a chart x = (xi)1≤i≤n with

A = Ai ∂

∂xi

vA|dom(x,ẋ) = Ai ∂

∂ẋi
.

Note that the vertical lift of vector fields is ”tensorial”. To be precise, the value

of vA at u ∈ M can be determined only on the basis of value of A at τ(u). In fact

v(fA) = f vA

for any A ∈ X(M), f ∈ F(M).

Definition 3.2. Each tensor field S ∈ Xp,q+1(M) can be naturally regarded as a

tensor field nS ∈ Xp,q(M) ([14]), which we call, for want of a better name, the

natural lift of S and define it by

nS|dom(x) = ẋkS
i1...ip
kj1...jq

∂

∂ẋi1
⊗ . . .⊗ ∂

∂ẋip
⊗ dxj1 ⊗ . . .⊗ dxjq

where

S|dom(x) = S
i1...ip
kj1...jq

∂

∂xi1
⊗ . . .

∂

∂xip
⊗ dxk ⊗ dxj1 ⊗ . . . dxjq

Given a tensor field H ∈ X1,1(M) it is instructive to construct its natural lift
nH ∈ X(TM) in three equalivalent ways :

1. For all u ∈ TM , nH = v(Hτ(u)(u)).
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2. H induces a flow

Ψ : TM × R −→ TM

defined by

Ψ(u, t) = exp(tHτ(u))u

nH is the velocity field of Ψ.

3. In the presence of a chart x = (xi)1≤i≤n where

H |dom(x)= Hi
q

∂

∂xi
⊗ dxq

we have

H |dom(x,ẋ)= ẋq Hi
q

∂

∂ẋi

Definition 3.3. Given A ∈ X(M) which is also understood as a map A : M −→ TM ,

the complete lift cA of A is defined by

cA = TA : TM −→ T (TM).

Again in the presence of a chart x = (xi)1≤i≤n with A = Ai ∂

∂xi
it can be checked that

cA|dom(x,ẋ) = Ai ∂

∂xi
+ ẋq ∂Ai

∂xq

∂

∂ẋi
.

Note that the complete lift of a vector field is not ”tensorial” ! Indeed,

c(fA) = f cA + ndf vA .

Definition 3.4. Given A ∈ X(M) and a connection ∇ on M , the horizontal lift
hA ∈ X(M) of A (with respect to ∇) is defined for each u ∈ TM by hAu = U̇(0)

, where U : J −→ TM is the parallel vector field along a curve γ : J −→ M with

U(0) = u, γ(0) = m, γ̇(0) = Am, J being an open subset of R with 0 ∈ J .

In the presence of a chart x = (xi)1≤i≤n with A = Ai ∂

∂xi
we find easily

hA|dom(x,ẋ) = Ai ∂

∂xi
− ẋqΓi

qpA
p ∂

∂ẋi
.

where Γk
ij = dxk(∇(

∂

∂xi
,

∂

∂xj
)).

9



Remark 3.1. In the presence of a Connection ∇, cA− hA = n∇A

On dom(x), instead of the local frame fields that arise from the chart (x, ẋ) on

TM , we shall make consistent use of the non-holonomic frame fields

ei = h ∂

∂xi
=

∂

∂xi
− ẋq Γr

qi

∂

∂ẋr
eī = v ∂

∂xi
=

∂

∂ẋi

for 1 ≤ i ≤ n , where ī stands for i + n. For A ∈ X(M) with A|dom(x) = Ai ∂

∂xi
we

clearly have

vA|dom(x,ẋ) = Aieī , cA|dom(x,ẋ) = Aiei + ẋq∇qA
iei , hA

∣∣
dom(x,ẋ)

= Aiei .

It should be pointed out that the Lie-Brackets of non-holonomic frame fields do not

vanish, in general. By a routine computation,

[ei, ej] = − ẋqR k
ijq ek̄ , [ei, ej̄] = [ej, eī] = −Γk

ij ek̄ , [eī, ej̄] = 0.

Definition 3.5. For any A ∈ X(M) with A|dom(x) = Ai ∂

∂xi
, the modified vertical

lift v′A ∈ X(TM) of A will be defined by

v′A
∣∣∣
dom(x,ẋ)

Aieī − ẋq∇iAqei

We shall also make use of the frame field (θα)1≤α≤2n dual to (eα)1≤α2n. It can be

easily checked that

θi = dxi

θī = dẋi + Γi
qrẋ

qdxr

3.3 The Sasaki Metric Tensor Field

Let M be a Riemannian manifold with tangent bundle TM . The Sasaki metric tensor

field G on TM is defined by

G |dom(x,ẋ) = gij

(
θi ⊗ θj + θī ⊗ θj̄

)
Equivalently, G can be written in the form G |dom(x,ẋ) = Gαβθα ⊗ θβ where Gij = gij,

Gij̄ = Gīj = 0 and Gīj̄ = gij.

10



Another way of introducing the Sasaki metric is the following: For every u ∈ TM

we define the vertical subspace VuTM of TsfuTM to be the subspace generated by

vertical lifts of elements of Tτ(u) to u. Clearly, in the presence of a chart x = (xi)1≤i≤n

with τ(u) ∈ dom(x)

VuTM =

〈
∂

∂ẋi
|u

〉
1≤i≤n

The distribution u −→ VuTM on TM is called the vertical distribution. There is

no inherent distribution that complements the vertical distribution. With respect to

a connection ∇ we define the horizontal space HuTM .

HuTM =

〈
∂

∂ẋi
− Γr

iqu
q ∂

∂ẋr

〉
1≤i≤n

where, of course u = ui ∂

∂xi
|τ(u) and Γr

iq’s are the Christoffel symbols of∇ with respect

to the chart x with x ∈ τ−1(domx). Hu is independent of the choice of the chart x.

The distribution u −→ Hu(TM) on TM is called the horizontal distribution with

respect to ∇. It can be checked that for all u ∈ TuTM , TuTM = VuTM ⊕HuTM .

Remark 3.2. Notice that we could complement the (inherently defined) vertical distri-

bution only by introducing a connection. Conversely, each choice of a distribution on

TM complementing the vertical distribution (provided a simple linearity assumption

is made!) arises from a connection.

Note that:

Tuτ : HuTM ≤ TuTM −→ TmM and

Ψu : VuTM −→ TmM
∂

∂ẋi
−→ ∂

∂xi

for any chart x with m ∈ dom(x) are isomorphisms. We define Gu on HuTM by

pulling gm on TmM back by Tuτ . We define Gu VuTM by pulling gm on TmM back

by Ψu. To complete the definition of G on TuTM we declare VuTM and HuTM

orthogonal.

Let � be the Levi-Civita connection of the Sasaki metric tensor G on TM . The

associated Christoffel symbols can be calculated from the formula

Υγ
αβ = θγ(�(eα, eβ))

11



Theorem 3.1.

Υk
ij = Γk

ij , Υk
īj =

1

2
R k

qij ẋq , Υk
ij̄ =

1

2
R k

qji ẋq , Υk
īj̄ = 0

Υk̄
ij = −1

2
R k

ijq ẋq , Υk̄
īj = 0 , Υk̄

ij̄ = Γk
ij , Υk̄

īj̄ = 0

Proof. Applying the formula

G(�(X, Y ), Z) =
1

2
{{XG(Y, Z) + Y G(X, Z)− ZG(X, Y )

+ G([X, Y ], Z)− G([Y, Z], X) + G([Z,X], Y )}

to the non-holonomic frame fields we obtain on the lefthand side of the equation

G(�(ei, ej), ek) = G(Υr
ij er + Υr̄

ij er̄, ek)

= Υr
ij grk

On the righthand side we obtain,
1

2
{∂gjk

∂xi
+

∂gik

∂xj
− ∂gij

∂xk
}. Hence,

Υr
ij =

1

2
{∂gjk

∂xi
+

∂gik

∂xj
− ∂gij

∂xk
}grk = Γk

ij

The other formulas can be derived by the same method.

G(�(ei, ej), ek̄) = G(Υr
ij er + Υr̄

ij er̄, ek̄)

= Υr̄
ij grk

=
1

2
{eiG(ej, ek̄) + ejG(ei, ek̄)− ek̄G(ei, ej)

+ G([ei, ej], ek̄)− G([ej, ek̄], ei) + G([ek̄, ei], ej̄)}

= −1

2
ẋq R k

ijq grk

Hence, Υr̄
ij = −1

2
ẋq R k

ijq . The remaning formulae can be routinely checked. �

Given a vector field A ∈ X(TM) where A|dom(x,ẋ) = Aiei + Aīeī we can work out

the following special cases of

�αAβ = eαAβ −Υµ
αβAµ

as follows:

12



Case α = i, β = j :

�iAj = eiAj −Υk
ijAk −Υk̄

ijAk̄

= (
∂

∂xi
− ẋq Γr

qi

∂

∂ẋr
)Aj − Γk

ijAk +
1

2
R k

ijq ẋqAk̄

Case α = ī, β = j :

�īAj = eīAj −Υk
ījAk −Υk̄

ījAk̄

=
∂Aj

∂ẋi
− 1

2
R k

qij ẋqAk

Case α = i, β = j̄ :

�iAj̄ = eiAj̄ −Υk
ij̄Ak −Υk̄

ij̄Ak̄

= (
∂

∂xi
− ẋq Γr

qi

∂

∂ẋr
)Aj̄ −

1

2
R k

qji ẋqAk − Γk
ijAk̄

Case α = ī, β = j̄ :

�īAj̄ = eīAj̄ −Υk
īj̄Ak −Υk̄

īj̄Ak̄

=
∂Aj̄

∂ẋi

13



Chapter 4

Killing Vector Fields with

respect to the Sasaki Metric

Tensor Field

Definition 4.1. On M with Riemannian metric tensor field g we shall call P ∈
X1,1(M) skew symmetric with respect to g if

g(P(X), Y ) = g(X, P(Y ))

for all X,Y ∈ X(M).

In the presence of a chart x = (x)1≤i≤n, if

P|dom(x) = P j
i dxi ⊗ ∂

∂xj

the above condition assumes the very simple local form

Pij + Pji = 0

using the index raising and lowering convention. Notice that a skew symmetric P

has the effect of an infinitesimal Euclidean rotation on each TmM with respect to the

Euclidean geometry induced by the inner product gm. In this chapter, as well as in

the following we shall make use of a tensor field introduced by S. Tanno [12].

Definition 4.2. To each vector field B ∈ X(M), let the tensor field TB ∈ X0,4(M)

be defined by

TB(X, Y, Z, W ) = G(∇((R(X, Z, W ), B), Y )

14



If B|dom(x) = Bi ∂

∂xi
in the presence of a chart x = (x)1≤i≤n, then

TB|dom(x) = R p
qij ∇pBr dxq ⊗ dxi ⊗ dxj ⊗ dxr .

A vector field A ∈ X(TM) where

A |dom(x,ẋ)= Ai ∂

∂xi
+ Aī ∂

∂xī
.

is a Killing vector field iff

�αAβ + �βAα = 0 (4.1)

for each choice of chart x on M .

The equation (4.1) reduces in the respective cases α = i, β = j and α = ī, β = j

and α = ī, β = j̄ to

∂Aj

∂xi
− Γp

ijAp +
∂Ai

∂xj
− Γp

jiAp − ẋq

(
Γr

qi

∂Aj

∂ẋr
+ Γr

qj

∂Ai

∂ẋr

)
= 0 (4.2)

and

∂Aj

∂ẋi
+

∂Aī

∂xj
− Γp

ijAp̄ − ẋq

(
R p

qij Ap + Γr
qj

∂Aī

∂ẋr

)
= 0 (4.3)

and

∂Aj̄

∂ẋi
+

∂Aī

∂ẋj
= 0 (4.4)

From (4.4) we immediately conclude that

Aī = Yi + ẋqHqi

where Yi and Hqi are “vertically constant ” functions on dom(x, ẋ) and

Hij + Hji = 0

Substituting this expression for Aī in (4.3) and regrouping we obtain

∂Aj

∂ẋi
+∇jYi + ẋq

(
−R p

qij Ap +∇jHqi

)
= 0 (4.5)

Lemma 4.1. Ajs in (4.5) is an analytic function of ẋis.
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Proof. Regarding xi’s as constants, the above assertion is seen to be a special case

of the following : Given analtic functions Kijq, Lij where 1 ≤ i, j, q ≤ N, of z =

(z1, . . . , zN) ∈ Ω ⊆ RN , defined on the open set Ω, each solution F i : Ω → R of the

system
∂F i

∂zj
= KijqF

q + Lij

is analytic in z = (z1, . . . , zN) . To see this, consider a point a = (a1 . . . aN) ∈ Ω and

take any convex neighbourhood V of a in Ω . Putting

ϕi = ϕi
z(t) = F i((1− t)a + tz)

for each z = (z1 . . . zN) ∈ V we obtain

dϕi

dt
=

∂F i

∂zj
(zj − aj)

= (zj − aj)Kijq((1− t)a + tz)ϕq(t) + (zj − aj)Lij((1− t)a + tz)

and hence we find that for each 1 ≤ i ≤ N , ϕi is the solution of

dϕi

dt
= kiqϕ

q + ρi

ϕi(0) = F i(a)

where the functions kiq = kiq,z(t), ρi = ρi,z(t) defined on an open interval containing

[0, 1] ⊆ R depend analtically on the parameter z = (z1, . . . , zN). Since the above

system is linear it has a solution on an open interval containing [0, 1] that depends

analytically on z = (z1, . . . , zN). Consequently, F i(z1, . . . , zN) = ϕi(1) is an analytic

function of z = (z1, . . . , zN) ∈ V . �

Lemma 4.2.

∂NAj

∂ẋi1∂ẋi2 · · · ∂ẋiN
=

1

N

N∑
k=1

ẋq R p
qikj

∂N−1Ap

∂ẋi1 · · · ∂ẋik−1∂ẋik+1 · · · ∂ẋiN

for all N ≥ 2 . In particular

∂NAj

∂ẋi1∂ẋi2 · · · ∂ẋiN

∣∣∣∣
ẋ=0

= 0

for all N ≥ 2 .
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Proof. Assuming Aj ∈ F(TM) we first differentiate (4.5) with respect to ẋr.

∂2Aj

∂ẋrẋi
− R p

rij Ap +∇jHri − ẋq R p
qji

∂Ap

∂ẋr
= 0

Interchanging i and r we find

∂Aj

∂ẋiẋr
− R p

irj Ap +∇jHir − ẋq R p
qrj

∂Ap

∂ẋi
= 0

Adding up these equations, in view of the antisymmetry of R in its first two arguments

and that of H we obtain,

∂2Aj

∂ẋrẋi
=

1

2
ẋq

(
R p

qij

∂Ap

∂ẋr
+ R p

qrj

∂Ap

∂ẋi

)
Now, differentiating this equation with respect to ẋs we get,

∂3Aj

∂ẋs∂ẋr∂ẋi
=

1

2

(
R p

sij

∂Ap

∂ẋr
+ R p

srj

∂Ap

∂ẋi

)
+

1

2
ẋq

(
R p

qij

∂2Ap

∂ẋs∂ẋr
+ R p

qrj

∂2Ap

∂ẋs∂ẋi

)
Permutating i, s, t cyclically and adding up the resulting three equations we obtain

∂3Aj

∂ẋs∂ẋr∂ẋi
=

ẋq

3

(
R p

qij

∂2Ap

∂ẋs∂ẋr
+ R p

qrj

∂2Ap

∂ẋi∂ẋs
+ R p

qij

∂2Ap

∂ẋs∂ẋr
+ R p

qsj

∂2Ap

∂ẋr∂ẋi

)
Therefore, the assertion true for N = 3. Differentiating that identity with respect to

ẋiN+1 we obtain

∂N+1Aj

∂ẋi1∂ẋi2 · · · ∂ẋiN ∂ẋiN+1
=

1

N

N∑
k=1

R p
iN+1ikj

∂N−1Ap

∂ẋi1 · · · ∂̂ẋik · · · ∂ẋiN

+
ẋq

N

N∑
k=1

R p
qikj

∂NAp

∂ẋi1 · · · ∂̂ẋik · · · ∂ẋiN ∂ẋiN+1

Permuting i1, i2, · · · , iN , iN+1 cyclically and adding up the resulting equations will

give rise to

∂N+1Aj

∂ẋi1∂ẋi2 · · · ∂ẋiN ∂ẋiN+1
=

ẋq

N + 1

N+1∑
k=1

R p
qikj

∂NAp

∂ẋi1 · · · ∂̂ẋik · · · ∂ẋiN ∂ẋiN+1

which was to be proven. �
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Since Ai is “vertically analytic“ we find that

Ai = Xi + ẋqVqi

where Xi and Vqi are “vertically constant ” functions on dom(x, ẋ). Substituting these

expressions in (4.2) and (4.3) respectively we conclude that

Vij +∇jYi + (− R p
qij Xp +∇jHqi)ẋ

q + (− R p
qij Vrp)ẋ

qẋr = 0 (4.6)

∇iXj +∇jXi + ẋq(∇iVqj +∇jVqi) = 0 (4.7)

Lemma 4.3. If ∇iBj +∇jBi = 0, then R p
kji Bp = −∇i∇jBk.

Proof. Let

Hijk = ∇i∇jBk + R p
kji Bp

= ∇i∇jBk + RkjipB
p

= ∇i∇jBk −∇k∇jBi +∇j∇kBi

= ∇i∇jBk +∇k∇iBj +∇j∇kBi

Furthermore

Hijk = ∇i∇jBk +∇k∇iBj +∇j∇kBi

= −∇i∇kBj −∇k∇jBi −∇j∇iBk

= −Hjik

yet

Hijk = ∇i∇jBk +∇k∇iBj +∇j∇kBi

= ∇j∇iBk +∇i∇kBj +∇k∇jBi + (Rijkp + Rjkip + Rkijp)B
p = Hjik

from which we conclude that Hijk = 0. �

Theorem 4.1. (S. Tanno [12]) A ∈ X(TM) is a Killing vector field for G iff

A = cX + v′Y + nP

where X,Y ∈ X(M), P ∈ X1,1(M) such that
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1. X is a Killing vector with respect to g ,

2. The tensor fields ∇∇Y ∈ X1,2(M) and and TY ∈ X0,4(M) are antisymmetric

in the first two components,

3. P is a parallel tensor field that is skew symmetric with respect to g.

Proof. We know that

A|dom(x,ẋ) =
(
X i + ẋqV i

q

)
ei +

(
Y i + ẋqH i

q

)
eī

such that employing the above lemma and considering the coefficients of ẋq and ẋqẋr

in the equations (4.6) and (4.7), we find that Vij = −∇jYi and

∇iXj +∇jXi = 0

∇i∇jYq +∇j∇iYq = 0

∇j (∇iXq + Hqi) = 0

Rqijp∇pYr + Rrijp∇pYq = 0.

Putting Pij = ∇iXj + Hji we find

A|dom(x,ẋ) =
(
X i − ẋq∇iYq

)
ei +

(
Y i + ẋq(P i

q −∇iXq)
)
eī

and in view of ∇iXq = −∇qX
i

A|dom(x,ẋ) =
(
X iei + ẋq∇qX

ieī

)
+ Y ieī + ẋqP i

qeī − ẋq∇iYqei

�

The vague and intuitively rather unappealing condition (2) is drastically simplified

on a compact manifold. Indeed when M is compact,

Corollary 4.1. (S. Tanno[12]) If M is compact and orientable, A ∈ X(TM) is a

Killing vector field with respect to the Sasaki metric tensor field on TM iff

A = cX + vY + nP

with X,Y ∈ X(M), P ∈ X1,1(M) where X is a Killing vector field on M, Y and P

are parallel and g(P(.), .) is antisymmetric.
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Proof. Since ∇∇Y is antisymmetric, it can be immediately seen that ∇i∇iYq =

∇i∇iYq = 0 and

‖ ∇Y ‖2
∣∣
dom(x)

= ∇iYj∇iY j = ∇i(Yj∇iY j) .

Consequently, ∂∇Y ∂2 = divB where B|dom(c) = Yj∇iY j ∂

∂xi
and thus∫

M

‖ ∇Y ‖2 volg =

∫
M

divB volg = 0

which shows that ∇Y = 0 . �
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Chapter 5

Conformal Vector Fields with

respect to the the Sasaki Metric

Tensor Field

We shall be particularly interested in the natural lift nα ∈ F(TM) of a covector field

α ∈ X∗(TM) and nI ∈ X(TM) for the identity tensor field I ∈ X1,1(M). Clearly

nα|dom(x,ẋ) = ẋqαq

where α|dom(x) = αidxi and
nI|dom(x,ẋ) = ẋqeq̄ .

Also the natural scalar field E ∈ F(TM) defined by

E|dom(x,ẋ) =
1

2
gqr ẋqẋr

will make its appearance in our calculations.

The symbol Si,j,k will indicate summation under cyclic permutation of i, j, k in

the given order.

5.1 Statement of Results

For each B ∈ X(M) we shall consider its dual B[ = g(B, •) ∈ X∗(M). Clearly,

B[|dom(x) = gij Bj dxi = Bi dxi
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where

B|dom(x) = Bi ∂

∂xi
.

We shall also make use of a rather unusual if very straightforward extension of the

gradient and divergence operators to arbitrary tensor fields. If T ∈ Xp,q(M) with

T|dom(x) = T
i1...ip
j1...jq

∂

∂xi1
⊗ . . .⊗ ∂

∂xip
⊗ dxj1 ⊗ . . .⊗ dxjq

then grad(T) ∈ Xp+1,q(M) and div(T) ∈ Xp−1,q(M) are defined by

grad(T)|dom(x) = ∇kT
i1···ip
j1...jq

∂

∂xk
⊗ ∂

∂xi1
⊗ . . .⊗ ∂

∂xip
⊗ dxj1 ⊗ . . .⊗ dxjq

div(T)|dom(x) = ∇kT
ki2...ip
j1...jq

∂

∂xi2
⊗ · · · ⊗ ∂

∂xip
⊗ dxj1 ⊗ . . .⊗ dxjq .

We employ the natural method proposed by S. Tanno with some modifications

and prove the following result :

Theorem 5.1. Given a Riemannian manifold (M, g) with n = dim(M) ≥ 3, A ∈
X(TM) is a conformal vector field with respect to the Sasaki metric tensor field on

TM iff

A = cX + v′Y + nP− E cgrad (b) + E va + na[
nI− 1

3
E ngrad (a[)

where X, Y ∈ X(M), P ∈ X1,1(M) and

b =
1

n
div(X) ∈ F(M)

a = − 1

n
div(grad(Y )) ∈ X(M)

such that

1. X is a conformal vector field with respect to g and

∇∇b = 0 ,

2. the tensor fields

∇∇Y + g ⊗ a ∈ X1,2(M)

∇∇a ∈ X1,2(M)

TY +
2

3
g ⊗∇a[ −

2

3
(g ⊗∇a[)[2,4] ∈ X0,4(M)

Ta ∈ X0,4(M)

are antisymmetric in the first two arguments ,
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3. P is skew symmetric with respect to g and satisfies

∇P = I⊗ db− g ⊗ grad b .

This is admittedly not quite pretty. However, it assumes a simple and surprising

form on compact manidifolds.

Theorem 5.2. Let (M, g) be a compact Riemannian manifold with n = dim(M) ≥ 3 .

A vector field A ∈ X(TM) , is a conformal vector field with respect to the Sasaki

metric tensor field on TM iff it is a Killing vector field with respect to the Sasaki

metric tensor field on TM .

We note once again that the above results are valid for manifolds of dimension at

least three. Two dimensional manifolds present certain peculiarities and they will be

treated elsewhere.

5.2 Proofs of the Results

Case α = i, β = j :

�iAj = eiAj −Υk
ijAk −Υk̄

ijAk̄ = (
∂

∂xi
− ẋq Γr

qi

∂

∂ẋr
)Aj − Γk

ijAk +
1

2
R k

ijq ẋqAk̄

Case α = ī, β = j :

�īAj = eīAj −Υk
ījAk −Υk̄

ījAk̄ =
∂Aj

∂ẋi
− 1

2
R k

qij ẋqAk

Case α = i, β = j̄ :

�iAj̄ = eiAj̄ −Υk
ij̄Ak −Υk̄

ij̄Ak̄ = (
∂

∂xi
− ẋq Γr

qi

∂

∂ẋr
)Aj̄ −

1

2
R k

qji ẋqAk − Γk
ijAk̄

Case α = ī, β = j̄ :

�īAj̄ = eīAj̄ −Υk
īj̄Ak −Υk̄

īj̄Ak̄ =
∂Aj̄

∂ẋi

A vector field A ∈ X(TM) where A|dom(x,ẋ) = Aαeα = Aiei + Aīeī is a conformal

vector field with respect to G iff

�αAβ + �βAα = 2 σ Gαβ (5.1)
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for each choice of chart x and α, β ∈ {i, ī}, where Gij = Gīj̄ = gij and Gij̄ = Gīj = 0

for all 1 ≤ i, j ≤ n. The equation 5.1 reduces in the respective cases (α, β) = (i, j),

(α, β) = (̄i, j), (α, β) = (̄i, j̄) to

∂Aj

∂xi
− Γp

ijAp +
∂Ai

∂xj
− Γp

jiAp − ẋq

(
Γr

qi

∂Aj

∂ẋr
+ Γr

qj

∂Ai

∂ẋr

)
= 2 σ gij (5.2)

∂Aj

∂ẋi
+

∂Aī

∂xj
− Γp

ijAp̄ − ẋq

(
R p

qij Ap + Γr
qj

∂Aī

∂ẋr

)
= 0 (5.3)

∂Aj̄

∂ẋi
+

∂Aī

∂ẋj
= 2 σ gij (5.4)

Treating functions of xi’s as constants it is seen that 5.4 is nothing but the equation

2.5 in unknowns ẋi’s and

σ = aqẋ
q + b (5.5)

Aī = Yi + ẋqHqi +
1

2
ẋqẋrSqri (5.6)

where aq, b, Yj, Hqi, Sqri ∈ F(dom(x, ẋ)) are functions of xis alone and

Hqr + Hrq = 2 b gqr (5.7)

Sqri = aqgri + argqi − aigqr . (5.8)

We avail ourselves of the conventional abuse of notation and understand aq,

b, Yj, Hqi, Sqri ∈ F(dom(x)) . In fact these functions are clearly components of tensor

fields restricted to dom(x). In particular there exist Y ∈ X(M) and H ∈ X1,1(M)

such that

Y | dom(x) = Y i ∂

∂xi

and

H| dom(x) = H i
q

∂

∂xi
⊗ dxq .

Substituting 5.5 and 5.6 in the equation 5.3 and regrouping we obtain

∂Aj

∂ẋi
+∇jYi + ẋq

(
∇jHqi −R k

qij Ak

)
+

1

2
ẋqẋr∇jSqri = 0 (5.9)

Lemma 5.1. Aj in 5.9 is an analytic function of ẋis.

Proof. Regarding xi s as constants, the above assertion is seen to be a special case

of the following : Given analytic functions Ki
jq, L

i
j where 1 ≤ i, j, q ≤ N, of
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z = (z1, . . . , zN) ∈ Ω ⊆ RN , defined on the open set Ω, each solution F i : Ω → R of

the system
∂F i

∂zj
= Ki

jqF
q + Li

j

is analytic in z = (z1, . . . , zN) . To see this, consider a point a = (a1 . . . aN) ∈ Ω and

take any convex neighbourhood V of a in Ω . Putting

ϕi = ϕi
z(t) = F i((1− t)a + tz)

for each z = (z1 . . . zN) ∈ V we obtain

dϕi

dt
=

∂F i

∂zj
(zj − aj)

= (zj − aj)Ki
jq((1− t)a + tz)ϕq(t) + (zj − aj)Li

j((1− t)a + tz)

and hence we find that for each 1 ≤ i ≤ N , ϕi is the solution of

dϕi

dt
= ki

qϕ
q + ρi

ϕi(0) = F i(a)

where the functions ki
q = ki

q,z(t), ρi = ρi
z(t) defined on an open interval containing

[0, 1] ⊆ R depend analtically on the parameter z = (z1, . . . , zN). Since the above

system is linear, it has a solution on an open interval containing [0, 1] that depends

analytically on z = (z1, . . . , zN). Consequently, F i(z1, . . . , zN) = ϕi(1) is an analytic

function of z = (z1, . . . , zN) ∈ V . �

Lemma 5.2.

∂NAj

∂ẋi1∂ẋi2 · · · ∂ẋiN
=

ẋq

N

N∑
k=1

R p
qikj

∂N−1Ap

∂ẋi1 · · · ∂̂ẋik · · · ∂ẋiN

for all N ≥ 4 . In particular

∂NAj

∂ẋi1∂ẋi2 · · · ∂ẋiN

∣∣∣∣
ẋ=0

= 0

for all N ≥ 4 .

Proof. Assuming Aj ∈ F(TM) we first differentiate 5.9 with respect to ẋs to obtain

∂2Aj

∂ẋi∂ẋs
+ (∇jHsi −R p

sij Ap) + ẋq

(
−R p

qij

∂Ap

∂ẋs
+∇jSsqi

)
= 0
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in view the symmetry of Ssqi in the first two indices. Interchanging i and s we find

∂2Aj

∂ẋs∂ẋi
+ (∇jHis −R p

isj Ap) + ẋq

(
−R p

qsj

∂Ap

∂ẋi
+∇jSiqs

)
= 0 .

Adding up these equations, we obtain

∂2Aj

∂ẋi∂ẋs
=

ẋq

2

(
R p

qij

∂Ap

∂ẋs
+ R p

qsj

∂Ap

∂ẋi

)
− 1

2
ẋq(∇jSsqi +∇jSiqs)−∇j b gis

in view of 5.5 and the antisymmetry of the Riemannian curvature tensor in the first

two arguments. Differentiating this equation with respect to ẋt we find

∂3Aj

∂ẋi∂ẋs∂ẋt
=

1

2

(
R p

tij

∂Ap

∂ẋs
+ R p

tsj

∂Ap

∂ẋi

)
+

ẋq

2

(
R p

qij

∂2Ap

∂ẋs∂ẋt
+ R p

qsj

∂2Ap

∂ẋi∂ẋt

)
− 1

2
(∇jSsti +∇jSits) .

Permutating i, s, t cyclically and adding up the resulting three equations we obtain

∂3Aj

∂ẋi∂ẋs∂ẋt
=

ẋq

3

(
R p

qij

∂2Ap

∂ẋs∂ẋt
+ R p

qsj

∂2Ap

∂ẋi∂ẋt
+ R p

qtj

∂2Ap

∂ẋi∂ẋs

)
− 1

3
(∇jSist +∇jSsti +∇jStis) .

Now, differentiate this with respect to ẋr to get

∂4Aj

∂ẋi∂ẋs∂ẋt∂ẋr
=

1

3

(
R p

rij

∂2Ap

∂ẋs∂ẋi
+ R p

rsj

∂2Ap

∂ẋi∂ẋt
+ R p

rtj

∂2Ap

∂ẋi∂ẋs

)
+

ẋq

3

(
R p

qij

∂3Ap

∂ẋs∂ẋt∂ẋr
+ R p

qsj

∂3Ap

∂ẋi∂ẋt∂ẋr
+ R p

qtj

∂3Ap

∂ẋi∂ẋs∂ẋr

)
Finally, permutating i, s, t, r cyclically and adding up the resulting four equations we

obtain

∂4Aj

∂ẋi∂ẋs∂ẋt∂ẋr
=

ẋq

4

(
R p

qij

∂3Ap

∂ẋs∂ẋt∂ẋr
+ R p

qsj

∂3Ap

∂ẋi∂ẋt∂ẋr

+ R p
qtj

∂3Ap

∂ẋi∂ẋs∂ẋr
+ R p

qrj

∂3Ap

∂ẋi∂ẋs∂ẋt

)
.

Therefore, the assertion true for N = 4. Differentiating the asserted identity for N

with respect to ẋiN+1 we obtain

∂N+1Aj

∂ẋi1∂ẋi2 · · · ∂ẋiN ∂ẋiN+1
=

1

N

N∑
k=1

R p
iN+1ikj

∂N−1Ap

∂ẋi1 · · · ∂̂ẋik · · · ∂ẋiN

+
ẋq

N

N∑
k=1

R p
qikj

∂NAp

∂ẋi1 · · · ∂̂ẋik · · · ∂ẋiN ∂ẋiN+1
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Permuting i1, i2, · · · , iN , iN+1 cyclically and adding up the resulting equations will

give rise to

∂N+1Aj

∂ẋi1∂ẋi2 · · · ∂ẋiN ∂ẋiN+1
=

ẋq

N + 1

N+1∑
k=1

R p
qikj

∂NAp

∂ẋi1 · · · ∂̂ẋik · · · ∂ẋiN ∂ẋiN+1

which was to be proven. �

Lemma 5.3. If ∇iXj +∇jXi = 2 b gij , then

R p
qij Xp = ∇j∇qXi − gji∇qb− gqi∇jb + gjq∇ib (5.10)

Proof. Let Nijq = R p
qij Xp −∇j∇qXi and notice that

Nijq = −∇q∇iXj +∇i∇qXj −∇j∇qXi

= −∇q∇iXj +∇i(−∇jXq + 2 gjq b)−∇j∇qXi

= −Si,j,q(∇q∇iXj) + 2 gjq ∇ib

= Si,j,q(R
p

qij Xp −∇i∇qXj) + 2 gjq∇ib

= −Si,j,q(∇i∇qXj) + 2 gjq ∇ib

= Niqj

On the other hand,

Nijq = −Si,j,q(∇q∇iXj) + 2 gjq ∇ib

= −∇q∇iXj −∇i∇jXq −∇j∇qXi + 2 b gjq ∇ib

= −∇q(−∇jXi + 2 b gij)−∇i(−∇qXj + 2 b gjq)

−∇j(−∇iXq + 2 b gqi) + 2 gjq ∇ib

= −Niqj − 2 gji ∇qb− 2 gqi ∇jb + 2 gjq∇ib

hence

Nijq = −gji∇qb− gqi∇jb + gjq∇ib

�

Lemma 5.4. An infinitesimal homothety on a compact manifold is a Killing vector

field.
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Proof. Let (M, g) be a compact Riemannian manifold of dimension n, which we

assume to be orientable by taking its orientable double cover if necessary and denote

its volume form with respect to g by V olg . If X ∈ X(M) is an infinitesimal homothety,

then LXg = 2σg where

σ =
1

n
div(X)

is a constant. We have

σ2 =
1

n
σ div(X) =

1

n
div(σ X)

and ∫
M

σ2 V olg =
1

n

∫
M

div(σ X) V olg = 0

hence we conclude that σ ≡ 0 . �

5.2.1 Proof of theorem 2.1

Proof. By Lemma 5.1 and Lemma 5.2 we conclude that

Aj = Xj + ẋqVqj +
1

2
ẋqẋrKqrj +

1

6
ẋqẋrẋsLqrsj (5.11)

where Xj, Vqj, Kqrj, Lqrsj ∈ F(dom(x, ẋ)) are functions of xi’s alone and Kqrj is sym-

metric in q, r and Lqrsj is symmetric in q, r, s. Again by the conventional abuse of

notation we understand Xj, Vqj, Kqrj, Lqrsj ∈ F(dom(x)) . Again we note that these

functions are components of tensor fields restricted to dom(x). In particular there

exists X ∈ X(M) such that

X| dom(x) = X i ∂

∂xi
.
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Substituting 5.11 in 5.2 and 5.9 we obtain

∇iXj +∇jXi + ẋq (∇iVqj +∇jVqi)

+
1

2
ẋqẋr (∇iKqrj +∇jKqri)

+
1

6
ẋqẋrẋs (∇iLqrsj +∇jLqrsi)

= 2bgij + 2ẋqaqgij (5.12)

Vij +∇jYi + ẋq
(
Kqij +∇jHqi −R p

qij Xp

)
+

1

2
ẋqẋr

(
Lqrij +∇jSqri − 2 R p

qij Vrp

)
+ ẋqẋrẋs

(
−1

2
R p

qij Krsp

)
+ ẋqẋrẋsẋt

(
−1

6
R p

qij Lrstp

)
= 0 (5.13)

Since 5.12 is valid for all values of ẋq we obtain

∇iXj +∇jXi = 2 b gij (5.14)

and notice that

b =
1

n
div(X) .

Similarly from 5.13 we obtain Vij = −∇jYi. Again in 5.12 the coefficient of ẋq gives

us ∇iVqj +∇jVqi = 2 aq gij from which we obtain

∇i∇jYq +∇j∇iYq = −2 aq gij (5.15)

Raising j and contracting with i we find

aq = − 1

n
∇i∇iYq (5.16)

which shows that aq’s are components of the restriction of a vector field a ∈ X(M)

and

a = − 1

n
div(grad(Y )) .

The coefficient of ẋq in 5.13 gives

Kqij +∇jHqi −R p
qij Xp = 0 (5.17)

Using 5.7 and the symmetry of Kqij in q, i and antisymmetry of R p
qij in q, i we have

Kqij = −gqi∇jb (5.18)
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In view of the Lemma 5.3 we find from 5.17 and 5.18

−gqi∇jb +∇jHqi −∇j∇qXi + giq∇jb + gji∇qb− gjq∇ib = 0

and

∇jPqi = −gji∇qb + gqj∇ib (5.19)

where

Pqi = Hqi −∇qXi

Pqi + Piq = 0 (5.20)

hence

∇jPiq = gij∇qb−∇ib− gqj∇ib

and

∇jP
i

q = δj
i∇qb− gqj∇ib

which shows us that there exists a tensor field P ∈ X1,1(M) having the form P |dom(x)=

P i
qdxi ⊗ ∂

∂xi
in local coordinates such that

∇P = I⊗ db− g ⊗ grad b (5.21)

Using 5.18 we find from the coefficient of ẋqẋr in 5.12

∇i (−gqr∇jb) +∇j (−gqr∇ib) = 0

hence,

∇i∇jb = 0 (5.22)

Since,

R p
qij Krsp = grsR

p
qij ∇pb = −grs (∇q∇i∇jb−∇i∇q∇jb) = 0

the coefficient of ẋqẋrẋs in 5.12 is automatically zero. Now, considering the coefficient

of ẋqẋr in 5.13 we find

Lqrij +∇jSqri −R p
qij ∇pYr −R p

rij ∇pYq = 0 .
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If we interchange q and i

Lqrij + ∇jSirq −R p
iqj ∇pYr −R p

rqj ∇pYi = 0

and if we interchange r and i

Lqrij + ∇jSqir −R p
qrj ∇pYi −R p

irj ∇pYq = 0

hence,

3 Lqrij = − ∇j(Sqri + Sriq + Siqr)

= − ∇j(aqgri + argqi − aigqr + argiq + aigrq − aqgri + aigqr + aqgir − argiq)

= −∇j(aqgri + argiqaigqr)

and thus,

Lqrij = −1

3
(Sq,r,i ∇jaqgri) (5.23)

As for the coefficient of ẋqẋrẋs in 5.12

∇iLqrsj +∇jLqrsi = 0

which gives in view of 5.23

Sq,r,s (∇i∇jaq +∇j∇iaq) = 0

Explicitly, for each q, r, s, i, j

(∇i∇jaq +∇j∇iaq) grs + (∇i∇jar +∇j∇iar) gsq + (∇i∇jas +∇j∇ias) gqr = 0 .

Given q, if gqq 6= 0 we put q = r = s in this equation to obtain

3 gqq (∇i∇jaq +∇j∇iaq) = 0

If gqq = 0, we choose r with gqr 6= 0 and put s = q to obtain

2 gqr (∇i∇jaq +∇j∇iaq) = 0

In any case

∇i∇jaq +∇j∇iaq = 0 . (5.24)
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As the coefficient of ẋqẋrẋsẋt in 5.13 must reduce to 0, we use 5.23 to obtain

R p
qij ∇p ar gst + R p

qij ∇p as gtr + R p
qij ∇p at grs

+ R p
rij ∇p as gtq + R p

rij ∇p at gqs + R p
rij ∇p aq gst

+ R p
sij ∇p at gqr + R p

sij ∇p aq grt + R p
sij ∇p ar gtq

+ R p
tij ∇p aq grs + R p

tij ∇p ar gsq + R p
tij ∇p as gqr = 0 . (5.25)

We shall show that 5.25 is equivalent to

R p
qij ∇p ar + R p

rij ∇p aq = 0 (5.26)

for all q, r, i, j. It is easy to see that 5.26 implies 5.25 Let us conversely suppose that

5.25 holds. Having fixed i, j for any given q if gqq 6= 0 putting s = t = q = r we find

that 16 R p
qij ∇p aq gqq = 0 hence R p

qij ∇p aq = 0. If gqq = 0, ∃q′ such that gqq′ 6= 0.

Put s = t = q and r = q′ to obtain 6 R p
qij ∇p aqgqq′ = 0 hence R p

qij ∇p aq = 0 in

any case. We note in particular that 5.26 is valid if q = r. Now, consider distinct

q, r : If gqr 6= 0 put s = q, t = r to obtain 4 (R p
qij ∇p ar + R p

rij ∇p aq)gqr = 0 and

R p
qij ∇p ar + R p

rij ∇p aq = 0. If gqr = 0, multiply with gst and contract over s, t to

obtain (n + 4)(R p
qij ∇p ar + R p

rij ∇p aq) = 0. Therefore, in any case 5.26 holds.

Finally, we consider the coefficient of ẋqẋr in 5.13

Lqrij +∇jSqri + R p
qij ∇pYr + R p

rij ∇pYq = 0

which gives in view of 5.8 and 5.23

− 1

3
(∇j aq gri +∇j ar giq +∇j ai gqr) + (∇j aq gri +∇j ar giq −∇j ai gqr)

+ R p
qij ∇pYr + R p

rij ∇pYq = 0.

Equivalently,

R p
qij ∇pYr + R p

rij ∇pYq =
2

3
(2 gqr ∇j ai − gqi ∇j ar − gri ∇j aq) (5.27)

Summing up we find that A ∈ X(TM) is a conformal vector field with respect to the
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Sasaki metric tensor field iff

A|dom(x,ẋ) = Aiei + Aīeī

=

(
X i + ẋqV i

q +
1

2
ẋqẋrK i

qr +
1

6
ẋqẋrẋsL i

qrs

)
ei

+

(
Y i + ẋqH i

q +
1

2
ẋqẋrS i

qr

)
eī

=

(
X i − ẋq∇iYq −

1

2
ẋqẋrgqr∇ib− 1

6
ẋqẋrẋs 1

3
Sq,r,s(∇iaqgrs)

)
ei

+

(
Y i + ẋqH i

q +
1

2
ẋqẋr(aqδ

i
r + arδ

i
q − aigqr)

)
eī

= (X iei + ẋq∇qX
ieī) + ẋq(H i

q −∇qX
i)eī + (Y ieī − ẋq∇iYqei)− E ∇ib ei

+
1

2
ẋqaqẋ

ieī +
1

2
ẋrarẋ

ieī − E(ai eī)−
1

3

(
E ẋq∇iaq

)
ei

=

(
cX − 1

n
E cgrad(b) + v′Y +

1

n
E va

+
1

n
na[

nI +
1

3
E ngrad(a[) + nP

)
|dom(x,ẋ)

for each chart x = (xi)1≤i≤n on M . This proves the assertion and the conditions (1) ,

(2) , (3) are direct consequences of 5.22, 5.15, 5.24, 5.27, 5.26 , 5.19. 5.20, 5.21.

�

5.2.2 Proof of theorem 2.2

Proof. Taking the orientable double covering space if necessary, we may assume with-

out loss of generality, that M is orientable. Clearly

‖∇b‖2 = ∇ib∇ib

= ∇i(b∇ib)− b ∇i∇ib

= ∇i(b∇ib)

showing that

‖∇b‖2 = div(b grad(b))

Consequently, ∫
M

‖∇b‖2V olg =

∫
M

div(b grad(b))V olg = 0
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by the divergence theorem and hence ∇b ≡ 0 showing that b is a constant and X

is an infinitesimal homothety. Consequently b ≡ 0 by Lemma 4 and X is a Killing

vector field. On the other hand , in view of

∇i∇iaj = gip∇i∇paj

= −gip∇p∇iaj = −∇p∇paj = 0

we find

‖∇a‖2|dom(x) = ∇iaj∇iaj

= ∇i(aj∇iaj)− aj∇i∇iaj

= ∇i(aj∇iaj) .

Consequently, ‖∇a‖2 = div(W ) for W ∈ X(M) where

W |dom(x) = aj∇iaj ∂

∂xi
.

Therefore, ∫
M

‖∇a‖2 V olg =

∫
M

div(W ) V olg = 0

and we conclude ∇a ≡ 0 . Finally,

‖ a ‖2
∣∣
dom(x)

= aqa
q

= − 1

n
(∇i∇iYq)a

q

= − 1

n
(∇i((∇iYq)a

q)−∇iYq∇ia
q)

= − 1

n
∇i((∇iYq)a

q) .

Consequently ‖a‖2 = div(Z) for Z ∈ X(M) where

Z|dom(x) = − 1

n
(∇iYq)a

q ∂

∂xi
.

Hence ∫
M

‖a‖2 V olg =

∫
M

div(Z) V olg = 0

and we conclude a ≡ 0 . �

34



References

[1] D. V. Anasov. Geodesic flows on closed riemannian manifolds with negative

curvature. Proceeedings of the Steklov Institute of Mathematics, 90, 1969.
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