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ABSTRACT 
 

 
A DEPENDABLE COMPUTING APPLICATION 

 

Güngör, Uğur 

M.S., Department of Electric and Electronics Engineering  

Supervisor      : Prof. Dr. Hasan Cengiz Güran 

  

April 2005, 129 pages 

 

 

This thesis focuses on fault tolerance which is kind of dependable computing 

implementation. It deals with the advantages of fault tolerance techniques on Single 

Event Upsets (SEU) occurred in a Field Programmable Gate Array (FPGA). Two fault 

tolerant methods are applied to floating point multiplier. Most common SEU mitigation 

method is Triple Modular Redundancy (TMR). So, two fault tolerance methods, which 

use TMR, are tested. 

 

There are three printed circuit boards (PCBs) and one user interface software in the 

setup. By user interface software running on a computer, user can inject fault or faults to 

the selected part of the system, which uses TMR with voting circuit or TMRVC TMR 

with voting and correction circuits on floating point multiplier. After inserting fault or 

faults, user can watch results of the fault injection test by user interface software. One of 

these printed circuit boards is called as a Test Pattern Generator. It is responsible for 

communication between the Fault Tolerant Systems and the user interface software 

running on a computer. Fault Tolerant Systems is second PCB in the setup. It is used to 

implement fault tolerant methods on fifteen bits floating point multiplier in the FPGA.  

First one of these methods is TMR with voter circuit (TMRV) and second one is TMR 

with voter and correction circuits (TMRVC). Last PCB in the setup is Display PCB.  

This PCB displays fault tolerant test result and floating point multiplication result. All 
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the functions on Test Pattern Generator and Fault Tolerant Systems are implemented 

through the use of a Field Programmable Gate Array (FPGA), which is programmed 

using the Very High Speed IC Description Language (VHDL). 

 

Implementation results of the used methods in FPGA are evaluated to observe the 

performance of applied methods for tolerating SEU.   
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ÖZ 
 

 
YÜKSEK GÜVENİLİRLİKLİ BİLGİSAYAR DONANIM UYGULAMASI 

 

Güngör, Uğur 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Hasan Cengiz Güran 

 

Nisan 2005, 129 sayfa 

 
Bu tez, yüksek güvenilirlikli bilgisayar uygulamalarından birisi olan hata toleransı 

uygulamasının üzerinde durmaktadır. Bu tezde Alan Programlanabilir Kapı Dizini 

(FPGA) içinde oluşan Tekli Hata Oluşumlarına (SEU) karşı uygulanan hata tolerans 

metodlarının avantajları ile ilgilenilmiştir. Bunun için, 2 tane hata tolerans metodu, 

kayan noktalı çarpıcı üzerine uygulanmıştır. En yaygın SEU azaltma metodu Üçlü 

Modüler Yedekleme’dir (TMR). Bu nedenle, TMR kullanan iki çeşit hata tolerans 

metodu test edilmiştir. 

 

Düzenekte 3 tane Baskı Devre Kartı (PCB) ve 1 tane kulanıcı arayüz yazılımı 

bulunmaktadır.  Bilgisayar üzerinde çalışan kullanıcı arayüz yazılımı ile kullanıcı, 

oylama devreli yada oylama ve düzeltme devreli TMR kullanan systemin  seçilen bir 

bölgesine hata veya hatalar enjekte edebilir.  Hata veye hataları enjekte ettikten sonra , 

kullanıcı hata enjekte etme testinin sonuçlarını kullanıcı arayüz yazılımından izleyebilir. 

Düzenekteki PCB’lerden birisi Test Örüntüsü Yaratıcı’dır. Bu PCB, Hata Tolere 

Edebilir Sistemler ve kullanıcı arayüz yazılımı arasındaki konuşmadan sorumludur. 

Düzenekteki ikinci PCB, Hata Tolere Edebilir  Sistemler’dir. Bu PCB, hata tolere 

edebilir metotları, kayan noktalı çarpıcı üzerine FPGA’de gerçekleştirmekle sorumludur. 

Bu metodlardan birincisi oylama devreli TMR (TMRV), ikincisi ise oylama ve düzeltme 

devreli TMR’dır (TMRVC). Düzenekteki son PCB Gösterge PCB’sidir. Bu PCB, test 

sonucunu ve çarpma isleminin sonucunu gösterir.  
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Test Örüntüsü Yaratıcı ve Hata Tolere Edebilir Sistemler üzerindeki fonksiyonlar, Çok 

Yüksek Hızlı Entegre Devre Tanımlama Dili (VHDL) kullanılarak programlanan Alan 

Programlanabilir Kapı Dizinleri içine gerçekleştirilmiştir. 

 

FPGA içerinde gerçekleştirilen metotların sonuçları değerlendirilerek, uygulanan 

metotların performansları irdelenmiştir. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 
1.1 INTRODUCTION TO FAULT TOLERANCE 

 

A Fault tolerant system can perform its specified tasks in the presence of hardware faults 

and software errors. Fault tolerance tries to prevent negative effects of these faults on the 

system operation. Fault tolerance is very important in mission critical applications. Most 

popular applications where fault tolerance is used are listed below. This list shows only 

most popular applications but there are many other systems which need fault tolerance.   

 

• Space based applications 

• Process control systems 

• Missile guidance systems 

• Medical applications 

 

 
Fault tolerance can be classified into sub-classes which are listed below [1]. 

 

• Fault Detection    

• Fault Diagnosis    

• Fault Containment  

• Fault Masking   

• Fault Compensation  
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• Fault Repair      

 

Fault Detection determines the occurrence of a fault.  

 

Fault Diagnosis determines the reason of a fault. It also specifies which subsystem is 

faulty. 

 

Fault Containment prevents the propagation of faults from one subsystem to other 

subsystems. 

 

Fault Masking ensures that only correct values get passed to the system boundary in 

spite of a failed component. 

 

Fault Compensation provides a response to compensate for output of the faulty 

subsystem. 

 

Fault Repair is a process, which removes faults in the systems and repair faulty modules. 

 

Redundancy is the addition of resources, time, or information beyond what is needed for 

normal system operation. There are some forms of redundancy, which are listed below. 

 

• Hardware redundancy 

• Software redundancy 

• Information redundancy 

• Time redundancy 

 

Hardware redundancy is the addition of extra hardware. Software redundancy is the 

addition of extra software, beyond what is needed to perform a given function. 

Information redundancy is the addition of extra information beyond that required to 

implement a given function. Time redundancy is the usage of additional time to perform 
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the functions of a system. Hardware redundancy and software redundancy are most 

common forms of redundancy [1]. 

 

 

1.2 SHORT DESCRIPTION OF THE THESIS APPLICATION 

 

Field Programmable Gate Arrays (FPGAs) are high performance data processing 

devices. They provide to construct highly parallel architectures for processing data. They 

are reprogrammable. This decreases design period. Functional changes can be 

implemented in a short time. As a result, they are preferred in most of the applications 

today.  

 

Charged particles can provoke a transient pulse, when it hits the silicon. This pulse can 

change the state of a memory cell on integrated circuits. This phenomenon is known as a 

Single Event Upset (SEU). SEU is a very serious problem in mission critical 

applications. FPGAs are also potentially sensitive to SEU. As a result, fault tolerant 

algorithms must be implemented into FPGAs in mission critical applications [2] [3]. 

 

SEU is very serious problem in FPGAs. There are some fault tolerant methods to 

decrease the probability of a system failure due to these SEUs. Most popular fault 

tolerant method for FPGA applications is Triple Modular Redundancy (TMR) with voter 

circuit. TMR uses three identical circuits, which perform the same task in parallel. Their 

outputs are compared through a majority voter circuit [4]. 

 

Fault injection is a widely used technique for dependability estimation of fault tolerant 

systems. It is an intentional activation of faults in order to observe the system under fault 

behavior.  

 

In this thesis, there are two methods applied to floating point multiplier. One of them is 

TMRV. This method is used for detecting faults and correcting output of a system. It 

does not correct the faulty module. Second one is TMRVC. It is used for detecting 
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faults, correcting output of a system and correcting the faulty module. Second one is 

more powerful than first one. But, it uses extra logic for correction circuit.  

 

The aim of this work initially was to design a fault tolerant floating point multiplier 

circuit with correction property. But the algorithm to be used was not suitable for a 

parallel multiplication operation with correction. So, our application multiplies input and 

the previous value of the floating point multiplier output. By this way, we can apply 

fault tolerant methods with correction circuit to our circuit. 

 

In our application, faults are injected into sub-modules, which are implemented in 

XC4010 family FPGA, and responses are observed.   

 

Fault injection test composes of 4 main parts. 

 

1.2.1 Software Part:  

 
By the software user interface running on a computer, user can inject fault or faults to 

the selected part of the system, which uses TMRV or TMRVC. After inserting fault or 

faults, user can watch the result of the fault injection test by the software user interface.  

 

 

1.2.2 Test Pattern Generator Part:  

 

There are three PCBs in this thesis setup. One of them is called as Test Pattern 

Generator. This PCB is responsible for communication between the Fault Tolerant 

Systems and the software user interface running on a computer. Fault Tolerant Systems 

is second PCB in the system and responsible for fault tolerant system implementations.  

 

 

Test Pattern Generator communicates with the software via RS232 port of the computer. 

Test Pattern Generator transfers fault injection commands, which come from RS232 
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port, to the Fault Tolerant Systems by a specified protocol. Then, it takes responses from 

the Fault Tolerant Systems and sends them to the software part of the setup.  

 

 

1.2.3 Fault Tolerant Systems Part:  

 
Second PCB in the setup is called as Fault Tolerant Systems. This PCB is used to 

implement 2 fault tolerant methods on floating point multiplier in the FPGA.  First one 

of these methods is TMRV and second one is TMRVC. As said, there are two systems 

but they don’t operate in parallel. By changing FPGA configuration data, which is stored 

in EEPROM, of Fault Tolerant Systems, operating fault tolerant method on the system is 

selected. Fault injection commands, which come from Test Pattern Generator, are 

applied to selected fault tolerant method on the system, and test results send back to Test 

Pattern Generator. These test results are also sending to Display PCB, which is the last 

PCB on the thesis setup.   

 

 

1.2.4 Display PCB:  

 
Third PCB in the setup is called as Display PCB. This PCB displays fault tolerant test 

result and floating point multiplication result.  

 

 

Finally, advantages and disadvantages of the applied fault tolerant methods on floating 

point multiplier are explained. These explanations are proven by synthesis and 

implementation reports of the thesis application. 
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1.3 ORGANIZATION OF THE THESIS 

 
This thesis is composed of 7 chapters. 

 

Chapter 2 provides general information about fault tolerance. Fundamental definitions 

on fault tolerance are given. Design goals and methodologies on fault tolerance are 

explained in this chapter.     

 

Chapter 3 focuses on the FPGA fault tolerance. Single Event Upset (SEU) is specified. 

FPGA fault tolerance techniques for tolerating SEU are explained. 

 

Chapter 4 explains high speed PCB design rules, which are considered during the design 

of PCBs in this setup. PCB components used in these PCBs are also explained in this 

chapter.  

 

Chapter 5 is focused on FPGA design in Test Pattern Generator and Fault Tolerant 

Systems.  

 

Chapter 6 presents advantages and disadvantages of the applied fault tolerant methods. 

These explanations are proven by implementation reports of Fault Tolerant Systems 

FPGA. 

 

Chapter 7 gives the conclusion. 
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CHAPTER 2 

 

 

FAULT TOLERANCE 

 

 
A fault tolerant system is one that can continue to correctly perform its specified tasks 

in the presence of hardware failures and software errors. Fault tolerance is an attribute 

that is designed into a system to achieve some design goals. These design goals are, 

reliability, availability, safety, performability, maintainability, testability and 

dependability. 

 

Below, we explain each term separately [1] [13], 

 

Reliability, R(t): The conditional probability that a system performs correctly 

throughout    an interval of time [t0, t], given that the system was performing correctly at 

time t0. 

 

Availability, A(t): The probability that a system is operating correctly and is available to 

perform its functions at the instant of time t. 

  

Safety, S(t): The probability that a system will either perform its functions correctly or 

will discontinue its functions in a well defined, safe manner. Discontinue its functions in 

a manner that does not disturb the operation of other systems or compromise the safety 

of any people associated with the system. 
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Performability, P(L, t):  The probability that a system is performing at or above some 

level of performance L at the instant of time t. 

 

Maintainability, M(t): The probability that an inoperable system will be restored to an 

operational state within the time t. 

 

Testability: The ability to test for certain attributes within a system. 

 

Dependability: The quantity of service that a particular system provides. Reliability, 

availability, safety, maintainability, performability and testability are measures used to 

quantify the dependability of a system.  

 
2.1 FUNDAMENTAL DEFINITIONS 

 

Three fundamental terms in fault tolerant design are fault, error and failures. There is a 

cause and affect relationship between them. 

 

A fault is a physical defect, imperfection, or flaw that occurs within some hardware or 

software component. An error is an occurrence of an incorrect value in some unit of 

information within a system. A failure is a deviation in the expected performance of a 

system. The relationships between fault, error and failure are shown in Figure 2.1 [13]. 

 

 

 Fault Error Failure Cause Cause

 
Figure 2.1 Relationships between fault, error and failure 
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2.1.1 CHARACTERISTICS OF A FAULT 

 

Faults can be characterized by five attributes, which are cause, nature, duration, extend 

and value. Figure 2.2 illustrates each of these basic characteristics of faults. 

 

Possible fault causes can be associated with problems in four areas. 

 

Specifications mistakes:  

These include incorrect algorithms, architectures, or hardware and software design 

specifications.  

 

Implementation mistakes:  

The implementation can introduce faults due to poor design, poor component selection, 

poor construction, or software coding mistakes.  

 

Components defects:  

These include random device defects, manufacturing imperfections, and component 

wear-out.    

 

External disturbance:  

These include operator mistakes, radiation, electromagnetic interference, and 

environment extremes. 

 

The fault nature specifies the type of fault, which is hardware fault or software fault. If 

hardware faults, it specifies analog fault or digital fault.  

 

The fault duration specifies the length of time that a fault is active. There are three 

types of fault durations. 

 

Permanent fault:  

It is a fault, which remains in existence indefinitely if no corrective action is taken. 
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Transient fault:  

It is a fault, which can appear and disappear within a very short period of time. 

 

Intermittent fault: 

It is a fault, which appears, disappears, and reappears repeatedly. 

 

The fault extend specifies whether the fault is localized to a given hardware or software 

module or whether it globally affects the hardware, the software, or both. 

 

The fault value can be either determinate or indeterminate. A determinate fault is one 

whose status remain unchanged throughout time unless external action upon. An 

indeterminate fault is one whose status at some time t may be different from its status at 

another time [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Fault Characteristics 
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2.1.2 PRIMARY SYSTEM IMPROVEMENT TECHNIQUES 

 

There are three primary techniques for attempting to improve or maintain a system’s 

normal performance.  They are fault avoidance, fault masking and fault tolerance.  

 

Fault avoidance is any technique that attempts to prevent the occurrence of faults. It can 

include design reviews, component screening, testing and other quality control methods. 

Figure 2.3 illustrates the barriers that are constructed by each of the available techniques.   

 

Fault masking   is the process of preventing faults from introducing errors.  

 

Fault tolerance is the ability to correct performance of functions in the presence of 

faults. (In fact, failure is directly related to error tolerance but we can use fault tolerance 

instead of error tolerance.) 

  

Fault tolerance can be achieved by many techniques. Fault masking is one approach to 

tolerating faults. Another approach is to detect and locate the fault that has occurred and 

reconfigure the system to remove the faulty component.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 System performance improvement techniques barriers   
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As shown in Figure 2.3, by fault avoidance occurrence of faults, which is caused by 

specification mistakes, implementation mistakes, component defects and external 

disturbances is tried to be prevented. Fault masking tries to prevent error occurrence due 

to software and hardware faults. Fault tolerance tries to prevent system failure due to 

errors.  

 

2.2 DESIGN TECHNIQUES TO ACHIEVE FAULT TOLERANCE 

 

Fault masking achieves fault tolerance by hiding faults that occur. Systems that use 

fault masking do not require fault detection before tolerating them. Fault masking makes 

faults local. It prevents the effects of faults from spreading throughout the system. Fault 

masking is a method of achieving fault containment.  

 

Systems that do not use fault masking require fault detection, fault location and fault 

recovery to achieve fault tolerance. Fault detection is essential to fault location and fault 

recovery processes. Fault location is required to identify exactly which component is 

faulty. Fault recovery involves some form of reconfiguration that is usually 

accomplished by disabling, either physical or logically, a faulty component and 

enabling, again either physically or logically, a replacement component. 

 

Before dealing with techniques for achieving fault detection, fault location, fault 

recovery and fault masking, we are interested in redundancy. Some forms of redundancy 

are required for all of these techniques.  

 

2.3 REDUNDANCY 

 

Redundancy is an addition of resources, time, or information beyond what is needed for 

normal system operation. There are some forms of redundancy, which are listed below.  

 

Hardware redundancy 

Software redundancy 
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Information redundancy 

Time redundancy 

 

Hardware redundancy is an addition of extra hardware beyond what is needed to 

perform a given function. Software redundancy is the addition of extra software, beyond 

what is needed to perform a given function. Information redundancy is an addition of 

extra information beyond that required to implement a given function. Time redundancy 

is the usage of additional time to perform the functions of a system [1].    

 
2.3.1 HARDWARE REDUNDANCY 
 

There are three forms of hardware redundancy that are passive, active, and hybrid [1]. 

Passive techniques use fault masking. Passive approaches are designed to achieve fault 

tolerance without requiring any action on any part of the system.  

 

Active techniques (dynamic methodologies) achieve fault tolerance by detecting the 

existence of faults and performing some actions to remove the faulty hardware from the 

system. In other words, active hardware redundancy uses fault detection, fault location, 

and fault recovery to achieve fault tolerance. 

 

Hybrid techniques combine the attractive features of both active and passive techniques. 

 

2.3.1.1 PASSIVE HARDWARE REDUNDANCY 

 

Most of the passive approaches are developed around the concept of majority voting. In 

passive approaches, fault detection and system reconfiguration is not required. 

 

Triple Modular Redundancy (TMR) 

 

TMR uses triplication of the hardware and it performs majority vote to determine the 

system output. Block diagram of TMR is shown in Figure 2.4. 
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Figure 2.4 Block diagram of TMR 

 

 

If one of these modules becomes faulty, other two modules mask the fault by a majority 

voting mechanism.  

If the voter fails, the complete system fails. This must be prevented.  This can be 

achieved by increasing number of voters as shown in Figure 2.5. If there are 3 voters, 

receiver side must have 3 input channels to get information from fault tolerant module. 

Receiver side needs voter circuit to get information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Block diagram of TMR with three voter circuit 
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N-Modular Redundancy (NMR) 

 

NMR is the generalization of the TMR approach. It uses same principles but number of 

modules is not three. N is chosen as an odd number to use majority vote arrangement. 

 

By using NMR, more module faults can be tolerated. Block diagram of NMR is shown 

in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Block Diagram of NMR 

 

 
2.3.1.2 ACTIVE HARDWARE REDUNDANCY 

 

Active hardware redundancy techniques achieve fault tolerance by fault detection, fault 

location and fault recovery. This approach does not try to prevent faults from producing 

errors. So that, active hardware redundancy is common in applications that can be 

tolerated temporary. 
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Duplication with Comparison 

 

In this scheme, two modules operate in parallel and their results are compared. If they 

are different, an error message is generated. This is fundamental fault detection 

technique in an active redundancy approach. Block diagram of duplication with 

comparison is shown in Figure 2.7. 

 

 

 

  

 

 

 

 

 

Figure 2.7 Block diagram of duplication with comparison 

 

 

Standby Sparing (Standby replacement)  

 

In standby sparing, one of n modules is used to provide the system’s output, and the 

remaining n-1 modules serve as spares. Error detection techniques identify faulty 

modules so that a fault-free module is always selected to provide the system’s output. 

Block diagram of standby sparing is shown in Figure 2.8. 
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Figure 2.8 Block diagram of standby sparing 

 

Pair–and-a-Spare Technique  

 

It combines the features of both standby and duplication with comparison techniques. 

Block diagram of pair-and-a-spare technique is shown in Figure 2.9.   

 

In Pair-and-a-Spare Technique, two of n modules are used to provide inputs to the 

compare circuit, and the remaining n-2 modules serve as spares. If compare circuit gives 

disagree output, these two modules are identified as faulty modules and another two 

modules are selected to provide inputs to the compare circuit.  

 

 

           

           

           

           

           

 

 

 

 

Figure 2.9 Block diagram of pair-and-a-spare technique 
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2.3.1.3 HYBRID HARDWARE REDUNDANCY 

 

Hybrid hardware redundancy combines the attractive features of both the active and the 

passive approaches. By fault masking, it tries to prevent erroneous results. Fault 

detection, fault location, and fault recovery are used to reconfigure the system in the 

event of a fault. Hybrid redundancy is very expensive in terms of hardware required to 

implement a system.    

 

 

2.3.2 SOFTWARE REDUNDANCY 

 
Software redundancy is an addition of extra software, beyond what is needed to perform 

a given function. 

 

2.3.2.1 CONSISTENCY CHECKS  

 

It uses priori knowledge about the characteristics of information to verify correctness of 

this information. 

Example: In processor system, each sensor’s output is in some range. These outputs can 

be checked for correctness by the software.    

 

2.3.2.2 CAPABILITY CHECKS 

 

It is performed to verify that a system processes the capability expected. 

Example: Memory test, ALU test, processor communication test. 

 

2.3.2.3 N-VERSION PROGRAMMING 

 

Up to now, we deal with software to detect faults occur in hardware. Software faults are 

the result of incorrect software designs or coding mistakes. So, simple duplication and 
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comparison technique will not detect software faults. Design mistake will appear in both 

modules.   

 

N-version programming is developed for software fault tolerance. Same functional 

software module is programmed by N different programmers. Hopefully all of them 

don’t do the same mistake. Then outputs are compared. And fault can be detected easily. 
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CHAPTER 3 
 
 

FPGA FAULT TOLERANCE 

 

 
3.1 FPGA 

 

Field programmable gate array (FPGA) is a general purpose integrated circuit. 

Application specific integrated circuit (ASIC) performs similar functions but it can not 

be reprogrammed. FPGA can be reprogrammed after it has been deployed into a system. 

It is programmed by FPGA system designer. 

 

It is programmed by downloading configuration data (bit stream) into static on-chip 

random-access memory. This configuration data is the product of compilers. These 

compilers translate the high level abstractions produced by FPGA system designer into 

something equivalent but low level and executable code. There are many compilation 

tools in the industry.  Most popular of them are Precision, Leonardo Spectrum and XST 

[14]. 

 

FPGAs are high performance signal processing devices. They provide to construct 

highly parallel architectures for processing signal. FPGA performance is derived from 

this ability. Microprocessor or DSP processor performance is tied to the clock rate at 

which the processor can run, but, FPGA performance is tied to the amount of parallelism 

to implement algorithms making up a signal processing system. Now, FPGAs can 

operate up to clock frequencies of 500 mega hertz. It seems to be slow, but FPGAs 

operate with parallelism. FPGA and DSP represent two very different approaches to 

signal processing. Each one is good at different things. There are many high sampling 
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rate applications that FPGA can do easily, while DSP can not. Equally, there are many 

complex software problems that FPGA cannot address. As a result, the ideal system is 

often splits the work between FPGAs and DSPs [15]. 

 

FPGAs are implemented with a regular, flexible programmable architecture of 

configurable logic blocks (CLBs), interconnected by versatile routing resources (routing 

channels), and surrounded by programmable input/output blocks (IOBs), as seen in 

Figure 3.1 [5]. This implementation is a basic structure; some FPGA families have extra 

components such as, dedicated multipliers, dual port memories, digital clock managers, 

etc… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 FPGA structure 
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Most of the logic in FPGA is implemented by configurable logic blocks. Internal 

structure of CLBs changes with FPGA family and FPGA manufacturer.  Basic diagram 

of CLB for XC4000 family Xilinx FPGA that is used in this thesis is shown in Figure 

3.2. There are two 4-input function generators (Function generator is called as look-up 

table (LUT) in some documents.) which are labeled as F and G in Figure 3.2 [6]. Third 

function generator (H) is also provided. H function generator has three inputs as shown 

in Figure 3.2.  

 

Each CLB contains two storage elements (d type flip-flops (ff)) that can be used to store 

function generator outputs and direct inputs coming from outside the CLB as shown in 

Figure 3.2.  

 

Thirteen CLB inputs and four CLB outputs provide access to the function generators and 

storage elements. These inputs and outputs connect to the programmable interconnect 

resources outside the CLB. 

 

 

 
Figure 3.2 Configurable Logic Block Structure 
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There are 13 FPGA producers today. They are listed below. 

 

Actel Corporation 

Altera Corporation 

AMI Semiconductor 

Amphion Semiconductor, Inc. 

Aptix Corporation 

Atmel Corporation 

Kawasaki LSI U.S.A., Inc. 

Nallatech, Inc. 

Pentek, Inc. 

SiQUEST, Inc. 

Tekmos, Inc. 

Transtech Parallel Systems 

Xilinx, Inc. 

 

3.2 SINGLE EVENT UPSET (SEU) 

 

Fault tolerance on digital circuits has been a meaningful matter since upsets were first 

experienced in space applications. The digital circuits located in the space environment 

are affected by the charged particles, which are generated by the solar flares. Charged 

particles can provoke a transient pulse, when it hits the silicon. This pulse can change 

the state of a memory cell. This phenomenon is known as a Single Event Upset (SEU). 

A charged particle can also hit the combinational logic. This generates current pulse. 

This pulse may be propagated by the combinational logic and latched by memory cells. 

This event also causes SEU [2] [3]. 

 

 Integrated circuits are becoming more sensitive to radiation effects. High density 

devices require smaller feature size, this means less capacitance and hence information 
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is stored with less charge. Lower voltage or lower power devices mean that less charge 

or current is required to store information.   

Due to these requirements, integrated circuits become much more vulnerable. 

 

FPGAs are composed of an array of configurable logic blocks (CLBs) surrounded by 

programmable input/output blocks (IOBs). All of them are interconnected by routing 

resources. The CLBs provide functional elements for constructing logic. The IOBs 

provide the interface between the package pins and the CLBs. The CLBs are 

interconnected through a general routing matrix (GRM) that comprises an array of 

routing switches located at the intersections of horizontal and vertical routing channels. 

 

FPGAs are programmed using a bit stream, which contains all the information to 

configure the programmable storage elements in the matrix located in the Look-up 

Tables (LUT) and flip-flops (ff), CLBs configuration cells and interconnections. All 

these configuration bits are potentially sensitive to SEU. Figure 3.3 shows 

programmable storage elements. 

 

 

 
 

Figure 3.3 Programmable Storage Elements 
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3.3 FPGA FAULT TOLERANCE TECHNIQUES FOR TOLERATING SEU 

 

There are some FPGA fault tolerance techniques for tolerating SEU. These techniques 

are explained below.  

 

Most common SEU mitigation method is Triple Modular Redundancy (TMR) with 

voting circuit. TMR uses three identical circuits, which perform the same task in 

parallel. Their outputs are compared through a majority voter circuit.  TMR can be 

applied at module level or at device level [4] [7]. 

 

Although TMR increases design area and power consumption, full TMR is required in 

mission critical FPGA designs. So that, device level TMR is preferred for these 

applications. Device level TMR is shown in Figure 3.4. Device level triple device 

redundancy has the highest reliability for detecting SEUs. However, this is also the most 

costly solution. 

 

 
Figure 3.4 Device Level TMR 
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FPGA design is composed of sub-modules. In most of the applications, some of these 

modules are mission critical and some of them are not. To decrease design area and 

power consumption, mission critical modules are implemented with fault tolerance. 

Other modules are implemented without fault tolerance. For these applications module 

level TMR can be used. Module level TMR is shown in Figure 3.5. 

 

Module level TMR can not provide a simple recovery mechanism after an error has been 

detected in one of the modules. Error can  be detected when it cause a failure.   

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Module Level TMR 
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one of the modules, state of the faulty module can be corrected by correcting state of the 

related module. This is achieved by restoring state of all modules with respect to correct 

result after each operation. Module level TMR with feedback is shown in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Module Level TMR with feedback 

 

 

Methods mentioned above use three equivalent components to implement function. We 

need at least three circuits to apply voting algorithm. System designer can implement 

more than three circuits. This is called as N-Modular Redundancy (NMR), where, n is 

the number of equivalent components. NMR increases design area and power 

consumption as the number of equivalent components increases. As a result, TMR is 

most popular FPGA fault tolerant method. 
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CHAPTER 4 

 

 

IMPLEMENTED PCBs IN THE SETUP 
 

 
4.1 INTRODUCTION 

 

There are 3 PCBs in this thesis setup. One of them is called as Test Pattern Generator. 

This PCB is responsible for communication between Fault Tolerant Systems and 

Software User Interface running on a computer. Fault Tolerant Systems is second PCB 

in the system and responsible for fault tolerant system implementations. Last PCB in the 

setup is Display PCB.  This PCB displays fault tolerance test results and floating point 

multiplication result. These three PCBs and Software User Interface are shown in 

Appendix-A 

 

4.2 CRITICAL PCB COMPONENTS 

 

4.2.1 Test Pattern Generator PCB Critical Components 

 

4.2.1.1 Electrically Erasable Programmable Read Only Memory (EEPROM) 

 

Configuration data (bit stream) of the Test Pattern Generator FPGA is stored in 

AT17C512 Electrically Erasable Programmable Read Only Memory (EEPROM) [8], 

which is produced by ATMEL Inc. EEPROM loads the FPGA on power up.  XC4010E 

FPGA, used as Test Pattern Generator FPGA in this system, needs a PROM which has at 

least 178144 bits to store configuration data. AT17C512 has 524288 bits. So that it is 

chosen as an EEPROM in this PCB. 
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Test Pattern Generator FPGA is programmed from EEPROM in master serial mode in 

this design. This mode is selected by MO, M1 and M2 bits of the FPGA [6]. In master 

serial mode, CCLK output of the FPGA drives the CLK input of the EEPROM. 

AT17C512 internal address counter is incremented at each rising edge of CCLK output 

of the FPGA. On each address, related data bit is put on DATA_OUT pin of the 

EEPROM. This pin drives DIN pin of the FPGA. Then, FPGA accept this configuration 

bit on the subsequent rising CCLK edge. After loading all of the configuration bits, 

DONE pin of the FPGA goes to logical high, which indicates that configuration of the 

FPGA is successful. EEPROM program timing diagram is shown in Figure 4.1. 

 

 

CLK

DATA_OUT

20NS MIN 20NS MIN

50NS MAX 0NS MIN

CLK LOW TIME CLK HIGH TIME

CLK TO DATA_OUT DELAY DATA_OUT HOLD FROM CLK

 

Figure 4.1 EEPROM program timing diagram 

 

 

4.2.1.2 Field Programmable Gate Array (FPGA) 

 

On Test Pattern Generator PCB, all control and processing options are implemented in 

the XC4010E FPGA [6], which is produced by Xilinx Inc,  
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Main responsibilities of the Test Pattern Generator FPGA are given below.  

 

It takes user fault injection commands via RS232 transceiver, which is on Test Pattern 

Generator PCB. If these commands are in the specified protocol, it transfers fault 

injection signals into the Fault Tolerant Systems.  

 

After transferring fault injection commands, it takes responses from the Fault Tolerant 

Systems. Then, it sends these responses to the RS232 transceiver in a specified protocol. 

By this way fault injection test results are displayed on the software user interface 

running on a computer. 

 

Test Pattern Generator FPGA is also responsible for the generation of a Fault Tolerant 

Systems FPGA clock. 

 

Implementation of these functions on the Test Pattern Generator FPGA is given in 

Chapter 5. 

 

4.2.1.3 Oscillator 

 

M55310/26, 39MHz Oscillator [9], produced by Q-Tech Inc, generates clock for Test 

Pattern Generator FPGA. Clock output of the Oscillator is in HCMOS (high speed 

CMOS) logic levels. It has a short rise time and fall time. It satisfies input specifications 

of the FPGA. As a result it is selected as a clock generator in this PCB. 

 

4.2.1.4 RS232 Transceiver 

 

Communication between Software User Interface and Test Pattern Generator FPGA is 

satisfied with DS232A RS232 Transceiver (Transmitter/ Receiver) [10], which is 

produced by Dallas Semiconductor Inc. There are two transmitters and two receivers on 

this chip. In this design, one transmitter and one receiver are used. Other channels are 

not connected. 
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Receiver inputs accept RS232 level signals, which come from serial port of the 

computer. RS232 levels are ±25 volts. These signals are converted to CMOS level 

signals and send to the Test Pattern Generator FPGA. 

 

Transmitter inputs accept TTL/CMOS level signals, which come from Test Pattern 

Generator FPGA. These signals are converted to RS232 level signals and send to the 

serial port of the computer. 

 

4.2.2 Fault Tolerant Systems PCB Critical Components 

 

4.2.2.1 Electrically Erasable Programmable Read Only Memory (EEPROM) 

 

Configuration data of the Fault Tolerant Systems FPGA is stored in AT17C512 

Electrically Erasable Programmable Read Only Memory (EEPROM) [8], which is 

produced by ATMEL Inc. EEPROM loads the FPGA on power up. XC4010E FPGA, 

which is used as a Fault Tolerant Systems FPGA in this system, needs a PROM which 

has at least 178144 bits to store configuration data. AT17C512 has 524288 bits. So that 

it is chosen as an EEPROM in this PCB. 

 

Fault Tolerant Systems FPGA is programmed from EEPROM in master serial mode in 

this design. This mode is selected by MO, M1 and M2 bits of the FPGA [6]. In master 

serial mode, the CCLK output of the FPGA drives the CLK input of the EEPROM. 

AT17C512 internal address counter is incremented at each rising edge of the CCLK 

output of the FPGA. On each address, related data bit is put on the DATA_OUT pin of 

the EEPROM. This pin drives the DIN pin of the FPGA. Then, FPGA accept this 

configuration bit on the subsequent rising CCLK edge. After loading all of the 

configuration bits, DONE pin of the FPGA goes to logical high, which indicates that 

configuration of the FPGA is successful.     

 

Fault Tolerant Systems FPGA has two configurations. One of them is TMRV and 

second one is TMRVC. Configuration data (bit stream) of the Fault Tolerant Systems 
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FPGA changes with selected configuration. So that, EEPROM configuration is changed 

for selected fault tolerant method test. 

 

4.2.2.2 Field Programmable Gate Array (FPGA) 

 

On Fault Tolerant Systems PCB, all control and processing options are implemented in 

the XC4010E FPGA [6], which is produced by Xilinx Inc,  

 

Main responsibilities of Fault Tolerant Systems FPGA are given below.  

 

Fault tolerant methods on floating point multiplier are implemented in this FPGA.  First 

one of these methods is TMRV and second one is TMRVC. Fault injection commands, 

which come from Test Pattern Generator, are applied to selected fault tolerant method 

on the system, and test results are sent back to Test Pattern Generator. These test results 

are also sent to Display PCB, which is the last PCB on the thesis setup.   

 

Implementation of these functions on the Test Pattern Generator FPGA is given in 

Chapter 5. 

 

4.2.3 Display PCB Critical Components 

 

4.2.3.1 LED 

 

90-2841-2832 Dual LED, which is produced by Elma Inc, is used to display fault 

tolerant test result and 15 bit floating point multiplication result. This LED is dual. One 

of them is red and the other is green. 
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4.3 PCB DESIGN CONSIDERATIONS 

 

Designing a PCB, which contains high speed devices, requires special attention to 

preserve signal quality. When we say high speed, we focus on a clock frequency; we 

focus on rise time and fall time (slew rates). High speed (fast slew rates) may contribute 

to crosstalk, and ground bounce. Noise reduction is also very critical in high speed PCB 

design. To achieve noise free PCBs, we must have noise free power and ground, in other 

words power system design requires special attention.  

 

Power systems in digital design serve two essential purposes. 

 

• Provide stable voltage references for exchanging digital signals 

• Distribute power to all logic devices 

 

What causes noise voltage between the grounds? 

 

Most common cause involves the return current. Whenever one gate send a signal to 

another gate the outgoing signal current returns to initial gate along the power 

distribution wiring. The returning signal current acting across inductance of the ground 

wiring causes noise voltages. Such noise voltages are called common path noise 

voltages. Common path noise voltage is the product of returning signal current and the 

ground impedance. To ensure low common path noise, we must have low impedance 

ground connections between gates. This principle becomes one of the main power 

system design rules. 

 

There are two types of ground distribution systems, which are listed below.  

 

• Ground Buses 

• Ground Planes  
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Ground Planes present remarkably low inductance to returning signal currents, but 

Ground Buses design is cheaper than Ground Planes design. So that Ground Planes are 

preferred in critical designs and Ground Buses are preferred in simple designs. 

 

We use Ground Plane in Test Pattern Generator PCB and Fault Tolerant Systems PCB. 

Display PCB has a simple design. So that we preferred to use Ground Bus. 

  

Only low ground impedance connection does not solve the common path noise problem. 

Common path impedance in power wiring can still cause trouble. In the HI state, a gates 

output voltage depends on the voltage at its power terminal. Any changes in the power 

voltage caused by returning signal currents flowing in the power wiring directly affect 

the output voltage. The impedance between power pins on any two gates should be just 

as low as the impedance between the ground pins.  

 

 

There are two types of power distribution systems, which are listed below.  

 

• Power Buses 

• Power Planes  

 

Power Planes present remarkably low inductance to returning signal currents, but Power 

Buses design is cheaper than Power Planes design. So that Power Planes are preferred in 

critical designs and Power Buses are preferred in simple designs. 

 

 

We use Power Plane in Test Pattern Generator PCB and Fault Tolerant Systems PCB. 

Display PCB has a simple design. So that we preferred to use Power Bus.  

 

In a system, returning currents flows through the power supply. To maintain stable 

transmitted signal levels, the impedance of the power supply must be very low as well as 

the impedance of both the ground and power connections. The only path between the 
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power and ground is the power supply. As a result, there must be a low impedance path 

between the power and ground. This is satisfied by the bypass capacitors from power to 

ground. 

 

As a summary, three common power system design rules are listed below [11]. 

 

• Use low impedance ground connections between gates. 

• The impedance between power pins on any two gates should be just as low as the 

impedance between the ground pins. 

• There must be low impedance between power and the ground. 

 

Any power system that satisfies three power system design rules will have low common 

path noise and it also distribute the power to every where on the PCB at uniform voltage. 

 

Crosstalk 

 

Crosstalk arises through unwanted coupling of signal from one line to another. Traces 

which run in parallel for long distances may cause crosstalk problem mainly due to the 

mutual inductance. Separating the traces or decreasing their distance from the associated 

reference plane can decrease the crosstalk. Route orthogonally on adjacent traces. 

 

Ground bounce 

 

Ground bounce is very serious problem in high speed design, when multiple outputs 

change state simultaneously, they cause undesired transient behavior on a non-switching 

outputs and even inputs. Ground bounce is primarily due to current changes in the 

combined inductance in the circuit.  
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To reduce ground bounce [12], 

 

• Design PCBs with ground and power planes connected directly to the IC’s supply 

pins. Place decoupling capacitors very close to these supply pins.  

  

••  Keep the ground plane as undisturbed as possible. Avoid ground plane 

discontinuities and decrease the number of vias.   

••  Minimize the impedance of the system ground distribution network and its 

connection to the IC pins.   

••  Use ICs having low-inductance pins. BGAs are best suited, PGAs are worst, 

and QFPs are in-between.   

 

• Reduce the number of simultaneous switching outputs and distribute them 

throughout the device.  

  

••  Perform synchronous designs that will not be affected by momentarily 

switching pins.   

••  Add 10-50Ω resistors in series to each of the switching outputs to limit the 

current flow through them.   

••  Keep the clock inputs physically away from the outputs that create ground 

bounce, and connect clocks to input pins that are close to a ground pin.   

 

 

Test Pattern Generator PCB and Fault Tolerant Systems PCB are 6 layers PCBs.  

Display PCB is 2 layers PCB.  

 

Layer Stack-up of Test Pattern Generator PCB is given in Table 4.1. 
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Table 4.1 Layer Stack-up of Test Pattern Generator PCB 

 

Layer Order Layer Type 
Layer 1 Signal 

Layer 2 Ground 

Layer 3 Power 

Layer 4 Signal 

Layer 5 Signal + Power 

Layer 6 Signal 
 

 

 

Layer 5 is designed as a signal layer. But most of this plane is filled by a ground.  

Test Pattern Generator PCB layout and placement are given in Appendix-B. 

 

Layer Stack-up of Fault Tolerant Systems PCB is given in Table 4.2. 

 

 

Table 4.2 Layer Stack-up of Fault Tolerant Systems PCB 

 

Layer Order Layer Type 
Layer 1 Signal 
Layer 2 Ground 
Layer 3 Power 
Layer 4 Signal 
Layer 5 Signal + Power 
Layer 6 Signal 
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Layer 5 is designed as a signal layer. But most of this plane is filled by a ground.  

Fault Tolerant Systems PCB layout and placement are given in Appendix-B. 

 

Layer Stack-up of Display PCB is given in Table 4.3. 

 

 

Table 4.3 Layer Stack-up of Display PCB 

 

Layer Order Layer Type 
Layer1 Signal 
Layer2 Signal 

 

 

 

Display PCB does not have any power or ground planes. Power and grounds are 

distributed as power and ground buses. Display PCB layout and placement are given in 

Appendix-B. 
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CHAPTER 5 

 

 

FPGA DESIGN 

 

 
5.1 FAULT TOLERANT SYSTEMS FPGA 

 

Floating point numbers are used in Fault Tolerant Systems FPGA design. First of all, 

floating point representation is given below.  

 

Floating point numbers can be represented by very different notations. General 

representation is sign * mantissa * 2 exponent. 15 bits floating point numbers are 

represented by a combination of mantissa bits and exponent bits in this application.  

 

Floating point number contains 2 fields as shown in Figure 5.1. These fields are 

mantissa and exponent. 

 

In our application floating point number is represented as 15 bits. First 8 bits of it 

represent mantissa. It is an 8 bits binary signed number expressed in signed magnitute 

form and fractional. Binary point is assumed at the right of the sign bit.  

 

For example: 

If mantissa part is equal to “0110001”, it refers to (1 * 1/4) + (1 * 1/8) + (1 * 1/128) = 

0,3828125 in decimal representation. 
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Last 7 bits of the floating point number represent the signed exponent in 2’s complement 

form. 

  

For example: 

If exponent part is equal to “1110100”, it refers to 2-12 = 0,000244140625 in decimal 

representation. 

 

 

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sign Mantissa ExponentSign
 bit of

Exponent
Bit 6        : Sign bit of  exponent
Bit 14      : Sign bit of  mantissa

Figure 5.1 15 bits Floating Point Representation 
 

 

 

For example, a floating point number “0 1000000 1111001” is equal to + (1 * 1/2) * 2-7. 

= + 1/256 = 0,00390625 in decimal representation. 

 

The aim of this work initially was to design a fault tolerant floating point multiplier 

circuit with correction property. But the algorithm to be used was not suitable for a 

parallel multiplication operation with correction. So, our application multiplies input and 

the previous value of the floating point multiplier output. By this way, we can apply 

fault tolerant methods with correction circuit to our circuit. 

 

Floating point multiplier in our design multiplies two numbers. One of them is applied 

from the software user interface running on a computer. Other one is the previous value 
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of the multiplier output. Initially this value is assigned as “010000000000001” which is 

equal to 1 in decimal representation.  

 

If we want to multiply two floating point numbers, one of these floating point numbers 

is applied from the software user interface running on a computer. Multiplier circuit 

multiplies this number by 1, which is assigned initially to the other input of the 

multiplier. After first multiplication, output of the multiplier is equal to first one of the 

floating point numbers. Then, second one of these floating point numbers is applied 

from the software user interface running on a computer. Multiplier circuit multiplies this 

number and the previous value of the multiplier output, which is equal to to first one of 

the floating point numbers. After second multiplication, we can get multiplication of 

these two numbers on output of the multiplier. 

 

There are 2 fault tolerant methods, implemented in this study. First one of these methods 

is TMRV and second one is TMRVC. As said previously, there are two systems but they 

don’t operate in parallel. By changing configuration data, which is stored in EEPROM, 

of Fault Tolerant Systems, operating fault tolerant method on the system is selected. 

Fault injection commands, which come from Test Pattern Generator, are applied to 

selected fault tolerant method on the system, and test results are sent back to Test Pattern 

Generator. These test results are also sent to Display PCB, which is the last PCB on the 

thesis setup. Implementations of these functions are explained in this section. We divide 

Fault Tolerant Systems FGPA design into two parts. First of all, TMRV which is applied 

to floating point multiplier with inner feedback circuit is described. After that second 

system, TMRVC which is applied to floating point multiplier is described.  

 

5.1.1 TMR WITH VOTER CIRCUIT 

 

TMR with voter circuit which is applied to floating point multiplier with inner feedback 

is implemented to show fault detection. It has no fault correction property. Floating point 

multiplier with inner feedback is described in section 5.1.1.2. 
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This system contains module input fault injection circuit, 3 sub-components (floating 

point (FP) multiplier inner feedback circuit), and voter circuit. Main diagram of TMRV 

which is applied to floating point multiplier with inner feedback is shown in Figure 5.2. 

 

 

 

Figure 5.2 Main diagram of TMR with voter circuit 

 

 

When we insert fault, related module (one of the floating point multiplier inner feedback 

circuit) gets faulty input. This module produces different multiplication result than other 

two modules. (It produces faulty output.) Due to inner feedback, this different 

multiplication result drives FP multiplier input of related module on the next 

multiplication. So that, any fault injection causes to permanent fault on the related 

module.  

 

When two of these modules produce same multiplication result, system operates 

properly due to majority voter circuit. When all of these modules produce different 

outputs, system fails.  

 

Triple Moduler Redundancy without Correction Block VHDL Code in Appendix-D 

refers to TMR with voter circuit. 
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5.1.1.1 Module Input Fault Injection Circuit 

 

Floating point input, Operation_Start, Insert_Module_Fault, and Insert_Module_Failure 

signals are applied to this circuit. It generates floating point input of 3 sub-components 

(floating point multiplier). When Insert_Module_Failure is 1, one of these modules 

(floating point multipliers) gets FP_Input_A as an input. Other two modules get faulty 

inputs. When Insert_Module_Fault is 1, two of these modules get FP_Input_A as an 

input. Other module gets faulty input. Floating point multiplication operation starts with 

the rising edge of the Start_Operation input.  

 

Implementation of Module Input Fault Injection Circuit is shown in Figure 5.3. We use 

(0111110000000 & Counter_test(1 down to 0)) and (0111000000001  & Counter_test(1 

down to 0)) signal bits to insert as a  fault to the related module inputs as shown in 

Figure 5.3. 

 

 
Figure 5.3 Implementation of Module Input Fault Injection Circuit 
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We use Counter_test signal bits in the implementation of Module Input Fault Injection 

Circuit. This signal bits are generated as shown in Figure 5.4. Counter_test signal is 

incremented by one on rising edge of the Operation_Start input. By this way, we can 

change fault injected module/ modules on each operation. 

 

 

 
 

Figure 5.4 Counter_test Generation 

 

5.1.1.2 FP Multiplier Inner Feedback Circuit 

 

Floating Point (FP) Multiplier Inner Feedback Circuit is implemented as shown in 

Figure 5.5. FP_Input_a is connected to Module Input Fault Injection Circuit. Other 

multiplier input is connected to output of a FP Multiplier. FP Multiplier output is 

updated on falling edge of Start_Operation input signal. So that, FP Multiplier multiplies 

FP_Input_a and previous multiplication result and gets new multiplication result. Initial 

value of FP Multiplication Output is assigned as 010000000000001, which is equal to 1.  

 

 
 

Figure 5.5 15 bits FP Multiplier Inner Feedback Circuit  
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Floating Point Inner Feedback Block VHDL Code in Appendix-D refers to FP multiplier 

inner feedback circuit. 

 

5.1.1.3 15 Bits FP Multiplier 

 

Floating Point Multiplier is composed of 6 main blocks as shown in Figure 5.6. Lets 

explain them seperately.  

 

 
 

Figure 5.6 Floating Point Multiplier 
 

 

Floating Point Multiplier Block VHDL Code in Appendix-D refers to 15 bits Floating 

Point Multiplier. 

 

Block 1:  

 

Operation_Start, Input A and Input B are applied to Block 1. This block generates Sign 

A, Mantissa A, Exponent A, Sign B, Mantissa B and Exponent B as an output signals. 

Its operation is given in Figure 5.7. 
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Input A and Input B are buffered. In other words, Sign A, Mantissa A, Exponent A, Sign 

B, Mantissa B and Exponent B signals are updated on the rising edge of Operation_Start 

signal. 
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Rst Operation_Start

buffer

Rst Operation_Start

buffer

Rs t Operation_Start
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Rst Operation_Start

InputA(6)

ExponentA(5)
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ExponentB(6)
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Rs t Operation_Start
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buffer
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MantissaB(5)
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InputB(12)
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Rst Operation_Start
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Figure 5.7 Floating Point Multiplier Block 1 
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Block 2:  

 

Sign bit of input A and sign bit of input B are applied to Block 2. It generates Sign as an 

output signal. Its operation is given in Figure 5.8. 

 
 

  Sign A

 Sign B
 Sign

 
 

Figure 5.8 Floating Point Multiplier Block 2 
 
 
 
Block 3: 

 

It is 7 bits binary multiplier. 7 bits mantissa part of input A and 7 bits mantissa part of 

input B are applied to Block 3. It generates 14 bits mantissa as an output. 

 

In the implementation of this block we use Hall Adders (HA) and Full Adders.  

 
 
While implement Block 3, 7 bits mantissa part of input A is represented as A (6 down to 

0). 7 bits mantissa part of input B is represented as B (6 down to 0). 14 bit Mantissa 

(result of the mantissa multiplication) is represented by S (13 down to 0).  

 

Implementation of Block 3 is given in Figure 5.9.  
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Figure 5.9 Floating Point Multiplier Block 3 

 
 
Block 4: 

 

It is 7 bits signed adder. 7 bits exponent part of input A and 7 bits exponent part of input 

B are applied to Block 4. It generates 7 bits Exponent and Overflow_a as an output. 

 

Implementation of Block 4 is given in Figure 5.10.  
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Figure 5.10 Floating Point Multiplier Block 4 
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Block 5: 

 

It is responsible for normalization of mantissa part; it also adapts exponent part with 

respect to this normalization. 

 

Floating point numbers must have normalized mantissa. To achieve this, we must 

normalize the mantissa signal. If we shift mantissa bits one bit position left, we must 

decrease exponent signal by one.  

 

First of all, mantissa part of the floating point number is normalized. Generation of least 

significant bit of the Mantissa_Out_Pre is shown in Figure 5.11.  

 

 
Figure 5.11 Mantissa_Out_Pre_0  

 
 
 

Generation of most significant bit of the Mantissa_Out_Pre is shown in Figure 5.12. 
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 Figure 5.12 Mantissa_Out_Pre_6 

 

 

Mantissa_Out_Pre is 7 bits signal. Generations of most significant and least significant 

bits are shown above. Other bits are also generated in the same way. 

 

Number of bits required to shift mantissa left for normalization is calculated. This 

calculation is shown in Figure 5.13. This number is called as an Exponent_Offset and it 

represents the number which must be subtracted from Exponent signal. 
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Figure 5.13 Exponent_Offset Generation for Normalization 
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Exponent_Offset signal is subtracted from exponent signal and Exponent Out Pre is 

obtained. This operation is shown in Figure 5.14. 

 
 

 
 

Figure 5.14 Exponent Out Pre Generation 
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It is responsible for buffering output signals. Mantissa_Out_Pre, Overflow_Inner_b and 

Exponent_Out_Pre are buffered. FP_Multiplier_Output and Overflow signals are 

updated on the rising edge of the system clock. This operation is shown in Figure 5.15. 
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Figure 5.15 Floating Point Multiplier Block 6 

 

 

5.1.1.4 Voter Circuit 

 

Voter circuit is the last part in the TMRV implementation. Implementation of voter 

circuit is shown in Figure 5.16. 

 

When two modules outputs (floating point multiplier outputs) are same, System_Output 

is equal to one of them and Failure_Detection output is equal to 0. When all modules 

give different outputs, Failure_Detection output is equal to 1. (Failure detected.) 
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Figure 5.16 Voter Circuit 
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5.1.2 TMR WITH VOTER AND CORRECTION CIRCUITS 

 

TMRVC which is applied to floating point multiplier circuit is implemented to show 

fault detection and correction.  

 

This system contains module input fault injection circuit, 3 sub-components (floating 

point (FP) multiplier), and voter and correction circuits.  Main diagram of TMRVC 

which is applied to floating point multiplier circuit is shown in Figure 5.17. 

 

Triple Moduler Redundancy with Correction Block VHDL Code in Appendix-D refers 

to TMR with voter and correction circuits. 

 

 

 

Figure 5.17 Main diagram of TMR with voter and correction circuit 
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When user inserts fault, related module (floating point multiplier) gets faulty input. This 

module produces different multiplication result than other two modules. (It produces 

faulty output.) When two of these modules produce same multiplication result, system 

operates properly due to majority voter circuit. Correction circuit satisfies correct input 

to the all modules. So that system repairs itself. When all the modules produce different 

outputs, (Fault is injected to more than 1 module at the same time.) system fails.  

 

5.1.2.1 Module Input Fault Injection Circuit 

 

Module Input Fault Injection Circuit in TMRVC circuits is same as the Module Input 

Fault Injection Circuit in TMR with voter circuit. Floating point number, 

Operation_Start, Insert_Module_Fault, and Insert_Module_Failure signals are applied to 

this circuit. It generates FP_Input_A of 3 modules. When Insert_Module_Failure is 1, 

one of these modules gets FP_Input_A as an input. Other two modules get faulty inputs. 

When Insert_Module_Fault is 1, two of these modules get FP_Input_A as an input. 

Other module gets faulty input. Floating Point Multiplication operation starts with the 

rising edge of the Start_Operation input. Implementation of Module Input Fault 

Injection Circuit is shown in Figure 5.2. (Implementation of Module Input Fault 

Injection Circuit is same for both methods.) 

 

5.1.2.2 15 Bits FP Multiplier 

 

Block diagram of 15 bits FP Multiplier is shown in Figure 5.18. FP_Input_a is 

connected to Module Input Fault Injection Circuit. Other multiplier input is connected to 

System_Output. System_Output is updated on the falling edge of Start_Operation input 

signal. 15 bits FP Multiplier multiplies FP_Input_b and System Output which comes 

from Voter and Correction Circuit.  

 

Implementation of 15 Bits FP Multiplier is same for both methods. As a result, we do 

not repeat this section. It is explained in section 5.1.1.3. 
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Figure 5.18 15 bits FP Multiplier Block Diagram 

 

 

5.1.2.3 Voter  and Correction Circuits 

 

Voter Circuit: 

Voter and Correction Circuit is last part in TMRVC implementation. Implementation of 

voter circuit is same for both methods. It is shown in Figure 5.16.  

 

When two modules outputs (floating point multiplier outputs) are same, System_Output 

is equal to one of them and Failure_Detection output is equal to 0. When all modules 

give different outputs, Failure_Detection output is equal to 1. (Failure detected.).  

 

Correction Circuit: 

System_Output drives registered FP_Input_b of three FP Multipliers. This is the 

correction circuit.   
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5.2 TEST PATTERN GENERATOR FPGA 

 

5.2.1 Test Pattern Generator FPGA RS232 Interface 

 

There are two input/output pins, assigned for Software communication on Test Pattern 

Generator FPGA. One of them is called as RS232_in and the other one is called as 

RS232_out. RS232_in is responsible for receiving fault injection commands from 

RS232 transceiver and RS232_out is responsible for transmitting fault injection test 

results to the RS232 transceiver in a defined protocol.  

 

Transfers (transmit/ receive) commands are sending by bytes. Byte transfer is specified 

as follow: 

 

Initially serial channel is set to 1. Communication starts with the falling edge of this 

channel. Then, 8 bits (one byte) are transmitted/received with the baud rate of 9600. 

Finally this channel is set to 1 and new commands are waited for transfer. Byte transfer 

protocol is shown in Figure 5.19. 

Start= 0

Initial = 1 Bit  0 Bit  2 Bit  4 Bit  6

Bit  1 Bit 3 Bit  5 Bit  7

Stop = 1

Final = 1

104,166  us

 
Figure 5.19 Byte transfer protocol 
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Receiving Fault Injection Commands and Floating Point Multiplier Input: 

 

FPGA waits in the first state. Then, if it takes AA byte from the RS232_in input pin, it 

gets to second state. If it takes 55 byte from the RS232_in input pin, it gets to fifth state. 

In other cases, it returns the first state and waits for AA or 55 bytes.  

 

If it gets to second state, it waits for the new byte which includes fault injection 

commands. When it takes the second byte, these commands are transferred to Fault 

Tolerant Systems FPGA and Test Pattern Generator FPGA gets to third state, where it 

finishes the receiving and waits the test results. 

 
If it gets to fifth state, it waits for the new 2 bytes. First one of them includes sign bit and 

mantissa bits of the floating point multiplier circuit. Second byte contains exponent bits 

of the floating point multiplier circuit. When Test Pattern Generator FPGA takes these 

two bytes in fifth state, it returns to first state.  

 
 
Transmitting Fault Injection Test Results: 

 

FPGA logic drives 1 to RS232_out pin. When FPGA gets to third state, it transmits BB 

byte from RS232_out pin and it gets to fourth state.  In fourth state it transmits fault 

injection test results in one byte to the computer. Finally, FPGA gets to initial state (first 

state) and waits new fault injection sequence.  

 

FPGA state diagram for RS232 interface is shown in Figure 5.20. 
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Figure 5.20 State Diagram for RS232 Interface 
 

 

There are three VHDL source codes for RS232 Interface.  

 

First one of them is called as RS232 Transmitter. This module is responsible for 

transmitting 8 bits parallel data to the serial port. This VHDL source is given in 

Appendix-C. 

 

Second one of them is called as RS232 Receiver. This module is responsible for 

receiving serial data at 9600 baud rate and transfers this signals into 8 bits parallel data. 

This VHDL source is given in Appendix-C. 
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Third one of them is called as RS232 Interface. This module is an upper class VHDL 

code for RS232 Transmitter and RS232 Receiver modules. It coordinates the operation 

of RS232 Transmitter and RS232 Receiver modules. It generates the state machine, 

which specifies protocol for software communication. This VHDL source is given in 

Appendix-C. 
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CHAPTER 6 

 

 

IMPLEMENTATION RESULTS OF APPLIED 

ALGORITHMS 
 
 
Two fault tolerant methods are tested in this thesis. Both of these methods use triple 

modular redundancy (TMR) as a fault tolerant method. First one of them uses three 

identical components (Floating Point Multiplier Inner Feedback Circuit) and voter 

circuit as said previously. This method is called as TMRV and it is shown in Figure 6.1. 

Second one uses three identical components (Floating Point Multiplier), voter circuit and 

correction circuit and it is shown in Figure 6.2. 
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Figure 6.1 TMR with Voter Circuit 
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Figure 6.2 TMR with Voter and Correction Circuits 

 

 
SEU is very serious problem in FPGA applications. When we use three identical 

components, any error occurred in one of these 3 components can be tolerated. But 

SEUs, which occurs in the extra logic due to fault tolerance, can not be tolerated. 

 

In TMRV, component is declared as Floating Point Multiplier Inner Feedback Circuit 

and extra logic due to fault tolerance is declared as a voter circuit. 

 

In TMRVC, component is declared as Floating Point Multiplier and extra logic due to 

fault tolerance is declared as voter and correction circuits. 

 

If voter circuit in TMRV is smaller than a single component (Floating Point Multiplier 

Inner Feedback Circuit), TMRV can be preferred to tolerate SEU. Also, if voter and 

correction circuits in TMRVC are smaller than a single module (Floating Point 

Multiplier), TMRVC can be preferred to tolerate SEU too. These module sizes are given 

in the following sections for each method. These values are obtained from FPGA 

implementation reports.    
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6.1 Implementation Results of TMR with voter circuit  

 

Main building block of FPGA is called as Configurable Logic Blocks (CLBs). It is 

composed of Function Generators and Flip Flops.   

 

So that, if the number of flip flops and number of function generators in the voter circuit 

is smaller than number of these in single component (Floating Point Multiplier Inner 

Feedback Circuit), applied method is preferable to tolerate SEU.  FPGA placement 

report summary is given in Table 6.1. This report shows used flip flop and function 

generator quantities in single component (Floating Point Multiplier Inner Feedback 

Circuit) and in TMRV (in the system).  

 

 

Table 6.1 TMR with voter circuit FPGA placement report summary 

 

  

In system 
(In TMR with voter 

circuit) 

In single module 
(In 15 bits Floating Point Multiplier Inner 

Feedback Circuit) 

Number of CLB Flip Flops 261 87 

Number of Function Generators 702 217 
 
 
 

Number of flip flops used in the voter circuit          = ((Total number of flip flops) – 3 x   

(number of flip flops in the FP multiplier inner feedback circuit)).   

 

Number of flip flops used in the voter circuit          = 261 – 3 x 87 

Number of flip flops used in the voter circuit          = 0 
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SEU mitigation percentage of flip flops                  = Number of flip flops used in the 

voter circuit / Number of flip flops used in the FP multiplier inner feedback circuit x 100 

SEU mitigation percentage of flip flops                  = 0 / 87 x 100 

SEU mitigation percentage of flip flops                = % 0 

 

Number of function generators used in the voter circuit  = ((Total number of function 

generators) – 3 x (number of function generators in the FP multiplier inner feedback 

circuit)).   

 

Number of function generators used in the voter circuit     =  702- 3 x 217  

Number of function generators used in thevoter circuit      =  51 

 

SEU mitigation percentage of function generators              = Number of flip flops used in 

the voter circuit / Number of flip flops used in the FP multiplier inner feedback circuit 

*100 

SEU mitigation percentage of function generators              = 51 / 217 x 100 

SEU mitigation percentage of function generators           = % 23, 5 

 
 
 
6.2 Implementation Results of TMR with voter and correction circuit 

 
FPGA placement report summary for TMRVC is given in Table 6.2. This report shows 

used flip flop and function generator quantities in single component and in TMRVC (in 

the system). 
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Table 6.2 TMR with voter and correction circuit FPGA placement report summary  

 

  

In system 
(In TMR with voter and 

correction circuit) 

In single module 
(In 15 bits Floating Point 

Multiplier) 

Number of CLB Flip Flops 336 103 

Number of Function Generators 698 213 
 

 

 

Number of flip flops used in voter and correction circuits             = ((Total number of 

flip flops) – 3 x   (number of flip flops in the FP multiplier circuit)).   

 

Number of flip flops used in voter and correction circuits             = 336 – 3 x 103 

Number of flip flops used in voter and correction circuits             = 27 

 

 

SEU mitigation percentage of flip flops                  = Number of flip flops used in voter 

and correction circuits / Number of flip flops used in the FP multiplier circuit x 100 

 

SEU mitigation percentage of flip flops                  = 27 / 103 x 100 

SEU mitigation percentage of flip flops               = % 26, 2 

 

Number of function generators used in voter and correction circuits = ((Total number of 

function generators) – 3 x (number of function generators in the FP multiplier circuit)).   

 

Number of function generators used in voter and correction circuits  =  698- 3 x 213  

Number of function generators used in voter and correction circuits  =  57 
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SEU mitigation percentage of function generators         = Number of flip flops used in 

voter and correction circuits / Number of flip flops used in the FP multiplier inner 

feedback circuit *100 

 

SEU mitigation percentage of function generators          = 57 / 213 x 100 

SEU mitigation percentage of function generators       = % 26, 7 

 
 
6.3 Advantages and Disadvantages of Applied Algorithms 

 
As shown in the previous section, 

 

Implementation results of TMR with voter circuit: 

 
SEU mitigation percentage of flip flops                           = % 0 

SEU mitigation percentage of function generators          = % 23, 5 

 

Voter circuit does not use flip flops. So that, probability of SEU occurrence at these flip 

flops is zero. Number of function generators used in the voter circuit is almost ¼ of the 

number of function generators used in the FP multiplier inner feedback circuit. So that, 

probability of SEU occurrence at function generators in voter circuit is less than the 

probability of SEU occurrence at function generators in the FP multiplier inner feedback 

circuit. 

 

So, TMR with voter circuit is a preferable method to tolerate SEU in this application. 

 

Implementation results of TMR with voter and correction circuits: 

 

SEU mitigation percentage of flip flops                     = % 26, 2 

SEU mitigation percentage of function generators     = % 26, 7 

 



 

 71

Numbers of flip flops and function generators used in voter and correction circuits are 

almost ¼ of the numbers of flip flops and function generators used in the FP multiplier 

circuit. So that, probability of SEU occurrence at flip flops and function generators in 

voter and correction circuits is less than the probability of SEU occurrence at flip flops 

and function generators in the FP multiplier circuit. 

 

So, TMR with voter and correction circuits is a preferable method to tolerate SEU in this 

application too.  

 

Number of flip flops and function generators in the voter circuit of TMRV is smaller 

than the number of flip flops and function generators in voter and correction circuits of 

TMRVC. When we deal with only SEU detection, TMRV seems to be preferable than 

TMRVC. But don’t forget that, TMRVC has repair property and extra logic due to 

correction circuit is very small. So, TMRVC can be used as a fault tolerant method, 

when we need only fault detection or fault detection and correction.  

 



 

 72

 

CHAPTER 7 

 

 

CONCLUSIONS 
 
 
The aim of this thesis is to investigate the behaviour of hardware fault tolerant methods 

as the implementation of dependable computing application. In this work, a floating 

point multiplier unit is selected and implemented in the FPGA to tolerate SEU. Two 

methods are tested. Both of these methods use triple modular redundancy (TMR) as a 

fault tolerant method. First one of them uses three identical components (Floating Point 

Multiplier Inner Feedback Circuit) and a voter circuit. This method is called as TMRV. 

Second one uses three identical components (Floating Point Multiplier), voter circuit and 

correction circuit. It is called as TMRVC.  

 

In TMRV, when one of these 3 components (Floating Point Multiplier Inner Feedback 

Circuit) gets faulty output due to transient error, it is ignored by the voter circuit but 

after that, faulty component could not operate regularly. In TMRVC, when one of these 

modules (Floating Point Multiplier) gets faulty output due to transient error, it is ignored 

by the voter circuit and correction circuit repairs faulty module.  After this error, faulty 

component could operate regularly.  

 

Main consideration in SEU tolerance is area constraint. If extra logic due to fault 

tolerance is bigger than one of the components in TMR, probability of SEU in the extra 

logic due to fault tolerance is bigger than the probability of SEU in a single component. 

In this case, applied fault tolerant technique is not preferred for tolerating SEU.  
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Extra logic added due to fault tolerance is voter circuit in TMRV and it is smaller than a 

single component (Floating Point Multiplier Inner Feedback Circuit).  So, TMRV is 

preferable for tolerating SEU.  

 

Extra logic added due to fault tolerance is voter and correction circuits in TMRVC. 

Extra logic due to fault tolerance is smaller than a single component (Floating Point 

Multiplier). So, TMRVC is preferable for tolerating SEU too. 

 

When we need fault correction TMRVC is preferred method. Voter circuit in TMRV is 

smaller than voter and correction circuits in TMRVC. When we only deal with SEU 

detection, TMRV seems to be preferable. But extra logic added due to correction is very 

small. So we can use TMRVC when we need SEU detection too. 

 

In our application, we use Leonardo Spectrum as a synthesis program. If we use another 

synthesis programs (Precision Synthesis, XST ...), implementation outputs may change. 

But all of these synthesis programs produce similar outputs and our implementation 

outputs do not change very much with the selected synthesis program. 
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APPENDIX-A 

 

 

SETUP COMPONENTS 
 
There are 4 components in our setup. They are shown below. 
 
 
 

 
Figure A.1 Software user interface of thesis application 



 

 77

 
 

Figure A.2 Test Pattern Generator  

 

 
 

Figure A.3 Fault Tolerant Systems 
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Figure A.4 Display PCB 
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APPENDIX-B 

 

 

PCB LAYOUT 

 

 
TEST PATTERN GENERATOR PCB LAYOUT 

 
Test Pattern Generator is designed as a six layers Printed Circuit Board (PCB). All 

components are located on the upper side of the PCB. First layer is assigned for 

component placement and signal routing. Second layer is assigned for a ground. Third 

layer is assigned for a power. Other three layers are assigned for signal routing. These 

layers are shown in the following figures.  

 

 
 

Figure B.1 Test Pattern Generator components, signal routings and dimensions  
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Figure B.2 Test Pattern Generator First Layer 

 

 

 
 

Figure B.3 Test Pattern Generator Second Layer (Ground Layer) 
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Figure B.4 Test Pattern Generator Third Layer (Power Layer) 

 
 

 
 

Figure B.5 Test Pattern Generator Fourth Layer 
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Figure B.6 Test Pattern Generator Fifth Layer 

 

 

 
 

Figure B.7 Test Pattern Generator Sixth Layer 
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FAULT TOLERANT SYSTEMS PCB LAYOUT 

 

Fault Tolerant Systems is designed as a six layers Printed Circuit Board (PCB). All 

components are located on the upper side of the PCB. First layer is assigned for 

component placement and signal routing. Second layer is assigned for a ground. Third 

layer is assigned for a power. Other three layers are assigned for signal routing. These 

layers are shown in the following figures.  

 

 

 
 

 
 

Figure B.8 Fault Tolerant Systems components, signal routings and dimensions  
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Figure B.9 Fault Tolerant Systems First Layer 

 

 

 
 

Figure B.10 Fault Tolerant Systems Second Layer (Ground Layer) 
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Figure B.11 Fault Tolerant Systems Third Layer (Power Layer) 

 
 

 
 

Figure B.12 Fault Tolerant Systems Fourth Layer 
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Figure B.13 Fault Tolerant Systems Fifth Layer 

 

 

 
 

Figure B.14 Fault Tolerant Systems Sixth Layer 
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DISPLAY PCB LAYOUT 

 
Display PCB is designed as a two layers Printed Circuit Board (PCB). All components 

are located on the upper side of the PCB. First layer is assigned for component 

placement and signal routing. Second layer is assigned for a signal routing. This PCB 

does not has a ground and power planes. Ground and planes are implemented as a signal.  

These layers are shown in the following figures.  

 

 

 
 

Figure B.15 Display PCB components, signal routings and dimensions  
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Figure B.16 Display PCB First Layer 

 

 

 

 
 

Figure B.17 Display PCB Second Layer  
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APPENDIX-C 

 

 

TEST PATTERN GENERATOR VHDL CODES 

 

 
RS232 Receiver Block VHDL Code 

 
--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

-- BLOCK NAME: RS232 alici blogu 

-- ACIKLAMA  :  

--****************************************************************************** 

 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_unsigned.all; 

 

 

ENTITY rs232_receiver IS 

    

PORT(  

      baudrate  : IN     std_logic_vector (7 DOWNTO 0); 

      clk       : IN     std_logic; 

      cs        : IN     std_logic; 

      rst       : IN     std_logic; 

      sin       : IN     std_logic; 

      data_out  : OUT    std_logic_vector (7 DOWNTO 0); 

      datavalid : OUT    std_logic; 
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      receiving : OUT    std_logic 

   ); 

END  rs232_receiver ; 

 

architecture arch_rs232_receiver of rs232_receiver is 

 

  

constant wait_first : std_logic_vector(1 downto 0) := "00"; 

constant count_half : std_logic_vector(1 downto 0) := "01"; 

constant get_first  : std_logic_vector(1 downto 0) := "10"; 

constant get_last   : std_logic_vector(1 downto 0) := "11"; 

   

signal   counter    : std_logic_vector(7 downto 0); 

signal   count_8    : std_logic_vector(2 downto 0); 

signal   rcv_data   : std_logic_vector(7 downto 0); 

signal   data_flag  : std_logic; 

signal   rcv_state  : std_logic_vector(1 downto 0); 

 

begin 

 

  process(clk, rst) 

 

  begin 

 

    if rst = '0' then 

       

       rcv_state            <= wait_first; 

       counter              <= (others => '0'); 

       count_8              <= (others => '0'); 

       rcv_data             <= (others => '0'); 

       data_flag            <= '1'; 

       receiving            <= '0'; 

    

    elsif rising_edge(clk) then 

      

      if cs = '0' then 

         rcv_state          <= wait_first; 

         counter            <= (others => '0'); 

         count_8            <= (others => '0'); 

         receiving          <= '0'; 

         data_flag          <= '1'; 

      else 

 

        case rcv_state is 

           

         when wait_first => 
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            counter         <= (others => '0'); 

            data_flag       <= '1'; 

            if sin = '1' then 

               rcv_state    <= wait_first; 

            else 

               rcv_state    <= count_half; 

            end if; 

 

         when count_half            => 

             

            counter         <= counter+1; 

            

            if sin = '0' then 

              if counter     = ('0'&baudrate(7 downto 1)) then 

                 counter    <= (others => '0'); 

                 rcv_state  <= get_first; 

                 receiving  <= '1'; 

              else 

                 rcv_state  <= count_half; 

              end if; 

             

            else 

              rcv_state     <= wait_first; 

            end if; 

 

         when get_first             => 

            

            counter         <= counter+1; 

            

            if counter       = baudrate then 

               counter      <= (others => '0'); 

               rcv_data     <= sin&rcv_data(7 downto 1); 

               count_8      <= count_8+1; 

               

               if count_8 = "111" then 

                  rcv_state <= get_last; 

              end if; 

            end if; 

 

         when get_last      => 

            counter         <= counter+1; 

           

            if counter = baudrate then 

               counter      <= (others => '0'); 

               receiving    <= '0'; 

               if sin='1' then 

                  data_flag <= '0'; 
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               end if; 

               rcv_state    <=wait_first; 

            end if;   

             

         when others       => 

            null;    

             

        end case; 

         

      end if; 

       

    end if;     

 

  end process; 

 

  process(clk,rst) 

  begin  

 

    if rst='0' then 

       

       data_out       <=(others=>'0'); 

       datavalid      <= '1'; 

    

    elsif rising_edge(clk) then 

     

      datavalid       <= '1'; 

      

      if data_flag='0' then 

         data_out     <= rcv_data;  

         datavalid    <= '0'; 

      end if;   

    end if;    

 

  end process;      

 

 

END ; 

--**********************************************************  end of architecture 

--******************************************************************************* 

--********************************* METU / EE  ********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 
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RS232 Transmitter Block VHDL Code 

 
--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

-- BLOCK NAME: RS232 gonderici blogu 

-- ACIKLAMA  : .  

--******************************************************************************* 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_unsigned.all; 

 

ENTITY rs232_transmitter IS 

 

PORT(  

      baudrate     : IN     std_logic_vector (7 DOWNTO 0); 

      clk          : IN     std_logic; 

      cs           : IN     std_logic; 

      data_in      : IN     std_logic_vector (7 DOWNTO 0); 

      rst          : IN     std_logic; 

      start_xmit   : IN     std_logic; 

      sout         : OUT    std_logic; 

      transmitting : OUT    std_logic 

   ); 

 

END  rs232_transmitter ; 

 

 

 

architecture  arch_rs232_transmitter of rs232_transmitter is 

 

signal xmitdt        : std_logic_vector(7 downto 0); 

signal xmit_stm      : std_logic_vector(1 downto 0); 

signal cnt1          : std_logic_vector(7 downto 0); 

signal cnt_xmit_stop : std_logic_vector(2 downto 0); 

 

constant WAITSTATE   : std_logic_vector(1 downto 0) := "00"; 

constant STARTSTATE  : std_logic_vector(1 downto 0) := "01"; 

constant DATASTATE   : std_logic_vector(1 downto 0) := "10"; 
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constant STOPSTATE   : std_logic_vector(1 downto 0) := "11"; 

begin 

 

  process(clk, rst) 

  begin 

    

    if rst = '0' then 

      xmit_stm         <= WAITSTATE; 

      sout             <= '1'; 

      cnt1             <= (others => '0'); 

      cnt_xmit_stop    <= (others => '0'); 

      xmitdt           <= (others => '0'); 

      transmitting     <= '0'; 

    

    elsif falling_edge(clk) then 

     

      if cs = '0' then 

         xmit_stm      <= WAITSTATE; 

         transmitting  <= '0'; 

         sout          <= '1'; 

         cnt1          <= (others => '0'); 

         cnt_xmit_stop <= (others => '0'); 

      else 

 

        case xmit_stm is 

 

          --ready to transmit data 1 start,1 stop bit 

          when WAITSTATE => 

            

            if start_xmit = '1' then 

               xmit_stm <= STARTSTATE; 

               xmitdt   <= data_in; 

            end if; 

 

          when STARTSTATE           => 

            

            transmitting <= '1'; 

            sout         <= '0'; 

            cnt1         <= cnt1+1; 

             

            if cnt1 = baudrate then 

               cnt1      <= (others => '0'); 

               xmit_stm  <= DATASTATE; 

            end if; 

 

          when DATASTATE                 => 
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            sout               <= xmitdt(0); 

            cnt1               <= cnt1+1; 

            

            if cnt1 = baudrate then 

              cnt_xmit_stop    <= cnt_xmit_stop+1; 

              xmitdt           <= '0'&xmitdt(7 downto 1); 

             

              if cnt_xmit_stop = "111" then 

                 sout          <= '1'; 

                 cnt_xmit_stop <= (others => '0'); 

                 xmit_stm      <= STOPSTATE; 

              end if; 

              cnt1            <= (others => '0'); 

            end if; 

 

          when STOPSTATE => 

           

            cnt1 <=cnt1+1; 

           

            if cnt1=baudrate then 

               cnt1<=(others=>'0');  

               xmit_stm<=WAITSTATE; 

               transmitting<='0'; 

            end if; 

             

          when others=> 

            null;    

             

        end case; 

         

      end if;   

       

    end if;     

 

  end process; 

 

END ; 

 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 
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RS232 Interface Block VHDL Code 

 
--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

-- BLOCK NAME: RS232 arayuz blogu 

-- ACIKLAMA  :  

--****************************************************************************** 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_unsigned.all; 

 

 

ENTITY  rs232_arayuz IS 

 

PORT 

  ( 

    rst             : IN     std_logic; 

    clk             : IN     std_logic; 

    rs232_in        : IN     std_logic; 

    rs232_out       : OUT    std_logic; 

    alinan_data     : OUT    std_logic_vector (7 DOWNTO 0); 

    gonderilen_data : IN     std_logic_vector (7 DOWNTO 0); 

    mult_input      : out    std_logic_vector (14 DOWNTO 0) 

  ); 

END rs232_arayuz ; 

 

architecture arch_rs232_arayuz of rs232_arayuz is 

 

 

COMPONENT rs232_receiver 

   PORT(  

      baudrate     : IN     std_logic_vector (7 DOWNTO 0); 

      clk          : IN     std_logic;   

      cs           : IN     std_logic; 

      rst          : IN     std_logic; 

      sin          : IN     std_logic; 

      data_out     : OUT    std_logic_vector (7 DOWNTO 0); 

      datavalid    : OUT    std_logic; 
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      receiving    : OUT    std_logic 

   ); 

END  COMPONENT ; 

 

COMPONENT rs232_transmitter  

   PORT(  

      baudrate     : IN     std_logic_vector (7 DOWNTO 0); 

      clk          : IN     std_logic; 

      cs           : IN     std_logic; 

      data_in      : IN     std_logic_vector (7 DOWNTO 0); 

      rst          : IN     std_logic; 

      start_xmit   : IN     std_logic; 

      sout         : OUT    std_logic; 

      transmitting : OUT    std_logic 

   ); 

 

 END COMPONENT ; 

 

signal   baudrate        :    std_logic_vector (7 DOWNTO 0); 

signal   cs              :    std_logic; 

signal   data_out        :    std_logic_vector (7 DOWNTO 0); 

signal   datavalid       :    std_logic; 

signal   receiving       :    std_logic;  

signal   data_in         :    std_logic_vector (7 DOWNTO 0); 

signal   start_xmit      :    std_logic; 

signal   transmitting    :    std_logic; 

 

signal   state_a         :    std_logic_vector (5 DOWNTO 0); 

signal   valid_buf       :    std_logic; 

signal   count_a         :    std_logic_vector (9 DOWNTO 0); 

signal   alinan_data_mi  :    std_logic_vector (7 DOWNTO 0); 

signal   data_check      :    std_logic_vector (7 DOWNTO 0); 

signal   ugur            :    std_logic_vector (7 DOWNTO 0); 

signal   FP_input_a      :    std_logic_vector (7 DOWNTO 0); 

signal   FP_input_b      :    std_logic_vector (7 DOWNTO 0); 

 

 

BEGIN 

 

baudrate <= "00100000";  -- 9600 baudrate if Tclk= 1,641 us; 

cs       <= '1' ;  

 

 

 process(clk, rst) 

  begin 

    if rst = '0' then 
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       state_a        <= (others => '0'); 

       valid_buf      <= '1';  

       start_xmit     <= '0'; 

       alinan_data    <= (others => '0');  

       alinan_data_mi <= (others => '0'); 

       count_a        <= (others => '0');  

       data_check     <= (others => '0'); 

       ugur           <= (others => '0'); 

       FP_input_a     <= (others => '0');  FP_input_a(6) <= '1'; 

       FP_input_b     <= (others => '0');  FP_input_b(0) <= '1';  

       mult_input     <= "010000000000001"; 

   

    elsif falling_edge(clk) then 

      

       valid_buf      <= datavalid ; 

       case state_a is  

            

            when "000000" => 

                 if (datavalid ='1' ) and (valid_buf ='0' ) then 

                    if (data_out = "10101010")  then     --AA 

                        state_a  <= state_a  + '1'; 

                    end if; 

                 end if; 

                if (datavalid ='1' ) and (valid_buf ='0' ) then 

                    if (data_out = "01010101")  then     --55 

                        state_a  <= "100000"; 

                    end if; 

                 end if; 

            when "000001" =>  

                  

                 if (datavalid ='1' ) and (valid_buf ='0' ) then 

                    alinan_data_mi <= data_out;   

                    state_a  <= state_a  + '1'; 

                 

                 end if; 

             

            when "000010" =>  

                  alinan_data  <=  alinan_data_mi ; 

                  data_in      <= "10111011";  --BB 

                  state_a      <= state_a  + '1'; 

             

            when "000011" =>  

                  start_xmit   <= '1'; 

                  state_a      <= state_a  + '1'; 

             

            when "000100" =>  

                  start_xmit   <= '0'; 
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                  state_a      <= state_a  + '1'; 

            

            when "000101" => 

                  state_a      <= state_a  + '1'; 

            

            when "000110" =>            

                 if transmitting = '0' then 

                    data_in    <= gonderilen_data; 

                    ugur       <= gonderilen_data; 

                    state_a    <= "011000"; 

                    count_a    <= (others => '0'); 

                  

                 end if;    

        

            when "011000" =>   

                  state_a      <= state_a  + '1'; 

            

            when "011001" =>   

                  start_xmit   <= '1'; 

                  state_a      <= state_a  + '1'; 

             

            when "011010" =>  

                  start_xmit   <= '0'; 

                  state_a      <= (others => '0'); 

                   

            

            when "100000" =>   

                if (datavalid ='1' ) and (valid_buf ='0' ) then 

                    FP_input_a   <= data_out;   

                    state_a  <= state_a  + '1'; 

                end if; 

            when "100001" =>   

                if (datavalid ='1' ) and (valid_buf ='0' ) then 

                    FP_input_b   <= data_out;   

                    state_a  <= state_a  + '1'; 

                end if; 

            when "100010" =>   

           

                mult_input     <=    FP_input_a   & FP_input_b (6 downto 0); 

                state_a  <= state_a  + '1'; 

                   

            when "100011" =>   

                   

                   state_a    <= (others => '0'); 

             

            when others=> 

                 null;    
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            end case;n 

     end if;     

 end process; 

 

 

U1: rs232_receiver  PORT MAP 

    ( 

      baudrate    => baudrate  , 

      clk         => clk       , 

      cs          => cs        , 

      rst         => rst       , 

      sin         => rs232_in  ,  

      data_out    => data_out  , 

      datavalid   => datavalid , 

      receiving   => receiving  

    ); 

 

 

U2: rs232_transmitter PORT MAP  

    (  

      baudrate     => baudrate  , 

      clk          => clk       , 

      cs           => cs        ,   

      data_in      => data_in   ,     

      rst          => rst       , 

      start_xmit   => start_xmit, 

      sout         => rs232_out , 

      transmitting => transmitting 

    ); 

 

END ; 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 
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Test Pattern Generator Block VHDL Code 

 
--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

-- BLOCK NAME: Test pattern generator 

-- ACIKLAMA  : FPGA1 testini suren test pattern yaratilir ve sonuclar degerlendirilir. 

--****************************************************************************** 

 

library ieee                    ; 

use ieee.std_logic_unsigned.all ; 

use ieee.std_logic_1164.all     ; 

 

library UNISIM                  ; 

use UNISIM.VCOMPONENTS.all      ; 

 

 

 

entity test_pattern_generator  is 

 

port (   

        rst                      :  IN   std_logic ;   -- rst signal, initalize all 

registers.  

        clk_in                   :  IN   std_logic ;   -- 39MHz input clk  

        rs232_in                 :  IN   std_logic ;   -- RS232 port data tranmit 

        rs232_out                :  OUT  std_logic ;   -- RS232 port data receive 

        insert_module_fault_1    :  OUT  std_logic ;   -- insert one fault to the TMR 

circuit   

        insert_module_failure_1  :  OUT  std_logic ;   -- insert two fault to the TMR 

circuit   

        insert_voter_fault_1     :  OUT  std_logic ;   -- insert voter fault to the TMR 

circuit   

        insert_module_fault_2    :  OUT  std_logic ;   -- insert one fault to the TMR 

with feedback circuit   

        insert_module_failure_2  :  OUT  std_logic ;   -- insert two fault to the TMR 

with feedback circuit   

        insert_voter_fault_2     :  OUT  std_logic ;   -- insert voter fault to the TMR 

with feedback circuit 

        failure_detection_1      :  IN   std_logic ;   -- fault detection signal in TMR 

circuit  
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        failure_detection_2      :  IN   std_logic ;   -- fault detection signal in TMR 

with feedback circuit  

        operation_start          :  OUT  std_logic ;   -- start multiplication without 

fault injection 

        clk_out                  :  OUT  std_logic ;   -- operational clock of fault 

tolerant system implementation fpga 

        fault_module_a           :  IN   std_logic ;   -- fault injected oodule 

specifier_1 

        fault_module_b           :  IN   std_logic ;   -- fault injected oodule 

specifier_2 

      --fault_module_c           :  IN   std_logic ;   -- fault injected oodule 

specifier_3 

        mult_input               :  OUT  std_logic_vector(14 DOWNTO 0)  --fp multiplier 

input 

    );     

end test_pattern_generator; 

 

architecture arch_test_pattern_generator of test_pattern_generator is 

 

 

COMPONENT BUFG  --- clock buffer  

 

port  

    ( 

       i : in  std_logic; 

       o : out std_logic 

    

    ); 

end COMPONENT; 

 

COMPONENT  rs232_arayuz  --used to communicate with rs232 port of the computer at 9600 

baudrate 

 

PORT 

    ( 

      rst             : IN     std_logic; 

      clk             : IN     std_logic; 

      rs232_in        : IN     std_logic; 

      rs232_out       : OUT    std_logic; 

      alinan_data     : OUT    std_logic_vector (7 DOWNTO 0); 

      gonderilen_data : IN     std_logic_vector (7 DOWNTO 0); 

      mult_input      : out    std_logic_vector (14 DOWNTO 0) 

  

    ); 

END COMPONENT ; 

 

-- signal declerations 
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signal clk_divider                : std_logic_vector (6 downto 0); 

signal alinan_data                : std_logic_vector (7 DOWNTO 0); 

signal gonderilen_data            : std_logic_vector (7 DOWNTO 0); 

signal clk                        : std_logic; 

signal response_time              : std_logic_vector (4 DOWNTO 0); 

signal insert_module_fault_1_a    : std_logic; 

signal insert_module_failure_1_a  : std_logic; 

signal insert_voter_fault_1_a     : std_logic; 

signal insert_module_fault_2_a    : std_logic; 

signal insert_module_failure_2_a  : std_logic; 

signal insert_voter_fault_2_a     : std_logic; 

signal insert_module_fault_1_b    : std_logic; 

signal insert_module_failure_1_b  : std_logic; 

signal insert_voter_fault_1_b     : std_logic; 

signal insert_module_fault_2_b    : std_logic; 

signal insert_module_failure_2_b  : std_logic; 

signal insert_voter_fault_2_b     : std_logic; 

signal insert_module_fault_1_c    : std_logic; 

signal insert_module_failure_1_c  : std_logic; 

signal insert_voter_fault_1_c     : std_logic; 

signal insert_module_fault_2_c    : std_logic; 

signal insert_module_failure_2_c  : std_logic; 

signal insert_voter_fault_2_c     : std_logic; 

signal operation_start_a          : std_logic; 

signal operation_start_b          : std_logic; 

signal operation_start_c          : std_logic; 

signal send_response              : std_logic; 

signal send_response_buf          : std_logic; 

--signal mult_input                 : std_logic; 

 

BEGIN  

 

process(clk_in, rst) 

 begin 

   if rst = '0' then 

     

      insert_module_fault_1_a    <= '0'    ; 

      insert_module_failure_1_a  <= '0'    ;  

      insert_voter_fault_1_a     <= '0'    ; 

      insert_module_fault_2_a    <= '0'    ; 

      insert_module_failure_2_a  <= '0'    ; 

      insert_voter_fault_2_a     <= '0'    ; 

      insert_module_fault_1_b    <= '0'    ; 

      insert_module_failure_1_b  <= '0'    ;  

      insert_voter_fault_1_b     <= '0'    ; 

      insert_module_fault_2_b    <= '0'    ; 

      insert_module_failure_2_b  <= '0'    ; 
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      insert_voter_fault_2_b     <= '0'    ; 

      insert_module_fault_1_c    <= '0'    ; 

      insert_module_failure_1_c  <= '0'    ;  

      insert_voter_fault_1_c     <= '0'    ; 

      insert_module_fault_2_c    <= '0'    ; 

      insert_module_failure_2_c  <= '0'    ; 

      insert_voter_fault_2_c     <= '0'    ; 

      operation_start_a          <= '0'    ; 

      operation_start_b          <= '0'    ; 

      operation_start_c          <= '0'    ; 

      send_response              <= '0'    ; 

      send_response_buf          <= '0'    ; 

      response_time              <= "00000";  

    

   elsif falling_edge(clk) then 

     

      insert_module_fault_1_a    <=  alinan_data (0)           ; 

      insert_module_failure_1_a  <=  alinan_data (1)           ; 

      insert_voter_fault_1_a     <=  alinan_data (2)           ; 

      insert_module_fault_2_a    <=  alinan_data (3)           ; 

      insert_module_failure_2_a  <=  alinan_data (4)           ; 

      insert_voter_fault_2_a     <=  alinan_data (5)           ; 

      operation_start_a          <=  alinan_data (6)           ; 

   

      insert_module_fault_1_b    <=  insert_module_fault_1_a   ; 

      insert_module_failure_1_b  <=  insert_module_failure_1_a ; 

      insert_voter_fault_1_b     <=  insert_voter_fault_1_a    ; 

      insert_module_fault_2_b    <=  insert_module_fault_2_a   ; 

      insert_module_failure_2_b  <=  insert_module_failure_2_a ; 

      insert_voter_fault_2_b     <=  insert_voter_fault_2_a    ; 

      operation_start_b          <=  operation_start_a         ;  

      

      insert_module_fault_1_c    <=  insert_module_fault_1_b   ; 

      insert_module_failure_1_c  <=  insert_module_failure_1_b ; 

      insert_voter_fault_1_c     <=  insert_voter_fault_1_b    ; 

      insert_module_fault_2_c    <=  insert_module_fault_2_b   ; 

      insert_module_failure_2_c  <=  insert_module_failure_2_b ; 

      insert_voter_fault_2_c     <=  insert_voter_fault_2_b    ; 

      operation_start_c          <=  operation_start_b         ;   

      

      insert_module_fault_1      <=  insert_module_fault_1_c   ; 

      insert_module_failure_1    <=  insert_module_failure_1_c ; 

      insert_voter_fault_1       <=  insert_voter_fault_1_c    ; 

      insert_module_fault_2      <=  insert_module_fault_2_c   ; 

      insert_module_failure_2    <=  insert_module_failure_2_c ; 

      insert_voter_fault_2       <=  insert_voter_fault_2_c    ; 

   -- operation_start            <=  operation_start_c         ;   



 

 105

      send_response_buf          <=  send_response             ; 

      operation_start            <=  send_response_buf         ; 

       

    if ((insert_module_fault_1_c = '0' )   and  (insert_module_fault_1_b = '1' ))  then  

--rising  

         send_response <= '1'; 

    end if; 

     

    if ((insert_module_fault_2_c = '0' )   and  (insert_module_fault_2_b = '1' ))  then  

--rising  

         send_response <= '1'; 

    end if; 

     

    if ((insert_module_failure_1_c = '0' ) and  (insert_module_failure_1_b = '1' ))then  

--rising  

         send_response <= '1'; 

    end if; 

    

    if ((insert_module_failure_2_c = '0' ) and  (insert_module_failure_2_b = '1' ))then  

--rising  

         send_response <= '1'; 

    end if; 

    

    if ((insert_voter_fault_1_c = '0' )    and  (insert_voter_fault_1_b = '1' ))   then  

--rising  

         send_response <= '1'; 

    end if; 

     

    if ((insert_voter_fault_2_c = '0' )    and  (insert_voter_fault_2_b = '1' ))   then  

--rising  

         send_response <= '1'; 

    end if; 

    

    if ((operation_start_c = '0' )         and  ( operation_start_b = '1' ))       then  

--rising  

         send_response <= '1'; 

    end if; 

   

  

    if ( send_response = '1' ) then  

       response_time <=   response_time + '1'; 

       if (response_time  >= "01100" )then  

          send_response <= '0'; 

          response_time  <= "00000"; 

          -- gonderilen_data 

          -- gonderilen_data test sonuclarini bilgisayara gondermekte kullanilir. 

          gonderilen_data(0)          <=  not (failure_detection_1 ); 
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          gonderilen_data(1)          <=  not (failure_detection_2 ); 

          gonderilen_data(2)          <=  fault_module_a ;   

          gonderilen_data(3)          <=  fault_module_b ;    

       -- gonderilen_data(4)          <=  fault_module_c ;    

          gonderilen_data(7 downto 4) <=  "0000"; 

      end if; 

    end if;  

    

 end if;     

 end process;   

   

 clk_out            <= clk; 

-- multiplier_input_a <= mult_input     ;  

  

  

 process(clk_in, rst) 

 

 begin 

   if rst = '0' then 

       clk_divider <= "0000000"; 

   elsif falling_edge(clk_in) then 

       clk_divider <=  clk_divider +'1' ; 

   end if;     

 end process; 

    

U3: BUFG   port map   --clk buffer instantiation 

    ( 

     i => clk_divider(6),  

     o => clk 

    ); 

 

U2: rs232_arayuz PORT MAP   -- rs232 arayuz instantiation 

   (  

    rst             => rst            , 

    clk             => clk            ,   

    rs232_in        => rs232_in       ,     

    rs232_out       => rs232_out      ,    

    alinan_data     => alinan_data    , 

    gonderilen_data => gonderilen_data, 

    mult_input      => mult_input      

   ); 

 

END; 

 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 
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--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 
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APPENDIX-D 

 

 

FAULT TOLERANT SYSTEMS VHDL CODES 

 

 
Floating Point Multiplier Block VHDL Code 

 
--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

-- 

-- BLOCK NAME: Floating Point Multiplier 

-- ACIKLAMA  : Iki tane 15 bit floating point sayiyi alip bunlari carpar. 

--             Sonucu normalize ederek yine 16 bit verir.  

-- 

--******************************************************************************* 

-- 

-- 16 bit fp number => 

--                     bit 14    ->  sign bit  

--                                           1 ise negatif  

--                                           0 ise pozitif 

--                     bit 13:7  ->  mantissa                    

--                                           unsigned representation  

--                     bit 6:0   ->  exponent                    

--                                           signed representation   

-- 

--******************************************************************************* 

 

library ieee                    ; 

use ieee.std_logic_unsigned.all ; 

use ieee.std_logic_1164.all     ; 

use ieee.numeric_std.all        ;   

 

library UNISIM                  ; 
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use UNISIM.VCOMPONENTS.all      ; 

 

--******************************************************************************* 

-- entity decleration 

-- bu kisimda giris cikis sinyalleri gosterilmistir. 

 

ENTITY FP_multiplier IS     

    

 port (   

        rst                    : in   std_logic ;  

        clk                    : in   std_logic ;  

        FP_input_A             : in   std_logic_vector (14 downto 0) ; 

        FP_input_B             : in   std_logic_vector (14 downto 0) ; 

        FP_output              : out  std_logic_vector (14 downto 0) ; 

        overflow               : out  std_logic ;  

        underflow              : out  std_logic ;  

        operation_start        : in   std_logic 

      ); 

END FP_multiplier; 

 

-- end of entity decleration  

--******************************************************************************* 

 

-- architecture, kodun implemente edildigi kisim 

 

ARCHITECTURE  Arch_FP_multiplier of FP_multiplier is 

 

 

-- signal assignments (kod icinde kullanilan sinyaller bu kisimda tanimlanir.) 

 

signal  FP_input_A_sign        : std_logic ; 

signal  FP_input_A_exponent    : signed   (6 downto 0) ; 

signal  FP_input_A_mantissa    : unsigned (6 downto 0) ; 

 

signal  FP_input_B_sign        : std_logic ; 

signal  FP_input_B_exponent    : signed   (6 downto 0) ; 

signal  FP_input_B_mantissa    : unsigned (6 downto 0) ; 

 

signal  FP_input_A_exponent_EX : signed   (8 downto 0) ; 

signal  FP_input_B_exponent_EX : signed   (8 downto 0) ; 

signal  Exponent_addition      : signed   (8 downto 0) ; 

 

signal  multiplier_sign        : std_logic             ; 

signal  multiplier_sign_a      : std_logic             ; 

signal  multiplier_sign_b      : std_logic             ; 

 

signal  FP_input_A_mantissa_b  : unsigned (6 downto 0) ; 



 

 110

signal  FP_input_B_mantissa_b  : unsigned (6 downto 0) ; 

signal  Mantissa_multip        : unsigned(13 downto 0) ; 

 

signal  output_mantissa        : unsigned( 6 downto 0) ; 

signal  output_exponent        : signed  ( 8 downto 0) ; 

signal  output_mantissa_b      : unsigned( 6 downto 0) ; 

signal  output_exponent_b      : signed  ( 8 downto 0) ; 

 

signal  operation_start_buf    : std_logic             ; 

signal  operation_start_buf_b  : std_logic             ; 

signal  state_initial          : std_logic_vector( 6 downto 0); 

signal  utu                    : std_logic             ; 

 

 

--******************************************************************************* 

BEGIN  -- begin operations 

  

   

-- asenkron atamalarin yapilmasi. 

 

FP_input_A_sign      <= FP_input_A(14)                     ;   

FP_input_A_exponent  <= signed( FP_input_A(6 downto 0))    ;  

FP_input_A_mantissa  <= unsigned( FP_input_A(13 downto 7)) ; 

   

FP_input_B_sign      <= FP_input_B(14);   

FP_input_B_exponent  <= signed( FP_input_B(6 downto 0))    ;  

FP_input_B_mantissa  <= unsigned( FP_input_B(13 downto 7)) ; 

 

process(rst,clk)  

 

begin 

  if rst = '0' then 

          

        overflow                   <= '0';                -- NO OVERFLOW 

        underflow                  <= '0';                -- NO UNDERFLOW   

        FP_output                  <= "010000000000001";   

        FP_input_A_exponent_EX     <= "000000001";     

        FP_input_B_exponent_EX     <= "000000001";        

        Exponent_addition          <= "000000010";          

        multiplier_sign            <= '0';                -- POSITIVE 

        multiplier_sign_a          <= '0';                -- POSITIVE 

        multiplier_sign_b          <= '0';                -- POSITIVE 

        FP_input_A_mantissa_b      <= "1000000" ;         -- VALUE1    

        FP_input_B_mantissa_b      <= "1000000" ;      

        Mantissa_multip            <= "10000001000000" ;    

        output_mantissa            <= "1000000";      

        output_exponent            <= "000000001";      
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        output_mantissa_b          <= "1000000";      

        output_exponent_B          <= "000000001";      

        FP_output                  <= "010000000000001";  

        operation_start_buf        <= '0'; 

        operation_start_buf_b      <= '0';  

       

  elsif rising_edge(clk) then   -- clk nin rising'i ile alinmisti.    

       

       operation_start_buf_b      <= operation_start_buf ; 

       operation_start_buf        <=  operation_start ; 

     

       if (((operation_start_buf_b ='0') and (operation_start_buf = '1')) )then --rising 

edge 

         

           FP_input_A_exponent_EX  <= resize ( FP_input_A_exponent, 9); 

           FP_input_B_exponent_EX  <= resize ( FP_input_B_exponent, 9); 

           multiplier_sign         <= ( FP_input_A_sign xor  FP_input_B_sign) ; 

           FP_input_A_mantissa_b   <= FP_input_A_mantissa; 

           FP_input_B_mantissa_b   <= FP_input_B_mantissa; 

           multiplier_sign_a       <= multiplier_sign    ;  

           utu                     <= '0';  

        

        end if; 

         

        multiplier_sign_a       <= multiplier_sign   ; 

        multiplier_sign_b       <= multiplier_sign_a ; 

        Exponent_addition       <= ( FP_input_B_exponent_EX +   FP_input_A_exponent_EX ); 

        Mantissa_multip         <= ( FP_input_A_mantissa_b  *   FP_input_B_mantissa_b  ); 

      

        if  Mantissa_multip(13) = '1' then  

          

            output_mantissa    <= Mantissa_multip (13 downto 7);  

            output_exponent    <= Exponent_addition ; 

        

        elsif Mantissa_multip(12) = '1' then  

           

            output_mantissa   <= Mantissa_multip (12 downto 6);  

            output_exponent   <= Exponent_addition - "001"    ; 

        

        elsif Mantissa_multip(11) = '1' then  

          

            output_mantissa   <= Mantissa_multip (11 downto 5);  

            output_exponent   <= Exponent_addition  - "010"    ; 

         

        elsif Mantissa_multip(10) = '1' then  

         

            output_mantissa   <= Mantissa_multip (10 downto 4);  
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            output_exponent   <= Exponent_addition  - "011"    ; 

       

        elsif Mantissa_multip(9) = '1' then  

         

            output_mantissa   <= Mantissa_multip (9 downto 3);  

            output_exponent   <= Exponent_addition  - "0100"   ; 

       

        elsif Mantissa_multip(8) = '1' then  

           

            output_mantissa   <= Mantissa_multip (8 downto 2);  

            output_exponent   <= Exponent_addition - "0101"    ; 

        

        elsif Mantissa_multip(7) = '1' then  

            

            output_mantissa   <= Mantissa_multip (7 downto 1);  

            output_exponent   <= Exponent_addition - "0110"    ; 

        

        elsif Mantissa_multip(6) = '1' then  

           

            output_mantissa   <= Mantissa_multip (6 downto 0);  

            output_exponent   <= Exponent_addition - "0111"    ; 

        

        elsif  Mantissa_multip(5) = '1' then  

             

             output_mantissa   <= Mantissa_multip (5 downto 0) & '0';  

             output_exponent   <= Exponent_addition - "01000"; 

       

        elsif Mantissa_multip(4) = '1' then  

             

             output_mantissa   <= (  Mantissa_multip(4 downto 0)& "00" );  

             output_exponent   <= Exponent_addition - "01001"; 

        

        elsif Mantissa_multip(3) = '1' then  

             

             output_mantissa   <= ( Mantissa_multip(3 downto 0) &"000" );  

             output_exponent   <= Exponent_addition - "01010"; 

        

        elsif Mantissa_multip(2) = '1' then  

             

             output_mantissa   <=(  Mantissa_multip(2 downto 0)& "0000");  

             output_exponent   <= Exponent_addition - "01011"; 

       

        elsif Mantissa_multip(1) = '1' then  

             

             output_mantissa   <=( Mantissa_multip(1 downto 0)&"00000" );  

             output_exponent   <= Exponent_addition - "01100"; 
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        elsif Mantissa_multip(0) = '1' then  

              

             output_mantissa   <= (  Mantissa_multip(0)&"000000" );  

             output_exponent   <= Exponent_addition - "01101"; 

     

        else 

            

             output_mantissa   <=  "0000000"; 

             output_exponent   <=  "000000000"; 

        

        end if; 

      

        output_mantissa_b      <= output_mantissa; 

        output_exponent_b      <= output_exponent; 

  

        if  (output_exponent < "111000000" ) then  --minimum 

           

            output_mantissa_b  <=  "0000000"; 

            output_exponent_b  <=  "000000000"; 

            underflow          <=  '1';     

        

        else 

          

            underflow          <=  '0';   

       

        end if; 

 

  

        if  (output_exponent > "000111111" ) then     --maximum 

             

             output_mantissa_b  <=  "0000000"; 

             output_exponent_b  <=  "000000000"; 

             overflow           <=  '1';     

         

         else 

             overflow           <=  '0';  

         end if; 

 

         if  ( output_mantissa_b =  "0000000") then 

            

             FP_output(14)      <= '0';  

         

         else 

           

             FP_output(14)      <= multiplier_sign_b  ; 

         end if;  
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         FP_output(6 downto 0)  <= std_logic_vector( resize (output_exponent_b ,7)) ; 

         FP_output(13 downto 7) <= std_logic_vector( output_mantissa_b)  ; 

     

    end if; 

    

end process;  

 

END  Arch_FP_multiplier ; 

 

--***************************** end of architecture *****************************   

--******************************************************************************* 

--********************************* METU / EE  ********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

 

 

Floating Point Inner Feedback Block VHDL Code 

 

 
--******************************************************************************* 

--********************************* METU / EE  ********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

-- BLOCK NAME: FP_multiplier_with_feedback  

-- ACIKLAMA  : Carpma sonucunda cikan sayilardan birisi  

--               carpma bloguna input_b olarak yeniden girer. 

--******************************************************************************* 

 

library ieee                    ; 

use ieee.std_logic_unsigned.all ; 

use ieee.std_logic_1164.all     ; 

use ieee.numeric_std.all        ;  

 

library UNISIM                  ; 

use UNISIM.VCOMPONENTS.all      ; 

 

entity  FP_multiplier_with_feedback is 
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port (   

        rst                    : in   std_logic ;  

        clk                    : in   std_logic ;  

        FP_input_A             : in   std_logic_vector (14 downto 0) ; 

        FP_output              : out  std_logic_vector (14 downto 0) ; 

        overflow               : out  std_logic ;  

        underflow              : out  std_logic ; 

        operation_start        : in   std_logic  

      ); 

 

end; 

 

architecture arch_FP_multiplier_with_feedback of  FP_multiplier_with_feedback  is 

 

COMPONENT FP_multiplier IS 

 port (   

        rst                    : in   std_logic ;  

        clk                    : in   std_logic ;  

        FP_input_A             : in   std_logic_vector (14 downto 0) ; 

        FP_input_B             : in   std_logic_vector (14 downto 0) ; 

        FP_output              : out  std_logic_vector (14 downto 0) ; 

        overflow               : out  std_logic ;  

        underflow              : out  std_logic ;  

        operation_start        : in   std_logic 

      ); 

END COMPONENT ; 

  

signal FP_output_a             : std_logic_vector (14 downto 0) ; 

signal FP_output_b             : std_logic_vector (14 downto 0) ;              

signal overflow_b              : std_logic ;  

signal underflow_b             : std_logic ; 

 

begin   

 

overflow  <= overflow_b  ; 

underflow <= underflow_b ;  

FP_output <= FP_output_a ; 

 

process (rst, clk ) 

begin 

if rst = '0' then       

     FP_output_b  <=  "010000000000001"; 

elsif rising_edge(clk) then 

    if ((overflow_b ='1')or (underflow_b ='1' ))then 

     FP_output_b <= "010000000000001"; 

    else   

       FP_output_b <= FP_output_a ; 
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    end if;   

end if; 

end process; 

 

-- FP_output_b <= FP_output_a + '1' when  ;  

 

 u1 : FP_multiplier  

      port map ( 

                rst              => rst         , 

                clk              => clk         , 

                FP_input_A       => FP_input_A  ,  

                FP_input_B       => FP_output_b ,   

                FP_output        => FP_output_a , 

                overflow         => overflow_b  , 

                underflow        => underflow_b  , 

                operation_start  => operation_start  

               ); 

end ;       

  

--******************************************************************************* 

--********************************* METU / EE  ********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--*******************************************************************************        

 

 

Triple Modular Redundancy without Correction Block VHDL Code 

 

 
--******************************************************************************* 

--********************************* METU / EE  ********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

-- BLOCK NAME:  FP_multiplier_simple_TMR 

-- ACIKLAMA  :  Triple moduler redundancy  without correction          

--******************************************************************************* 
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library ieee                    ; 

use ieee.std_logic_unsigned.all ; 

use ieee.std_logic_1164.all     ; 

 

library UNISIM                  ; 

use UNISIM.VCOMPONENTS.all      ; 

 

--******************************************************************************* 

-- entity decleration 

-- bu kisimda giris cikis sinyalleri gosterilmistir. 

 

entity  FP_multiplier_simple_TMR is 

 

port (   

 

     rst                          :  in   std_logic ;  

     clk_in                       :  in   std_logic ;  

     FP_input_A                   :  in   std_logic_vector (14 downto 0) ; 

     failure_detection            :  out  std_logic ; 

     FP_output                    :  out  std_logic_vector (14 downto 0) ; 

     insert_module_fault          :  in   std_logic ;  

     insert_module_failure        :  in   std_logic ;  

     insert_voter_fault           :  in   std_logic ;  

     operation_start              :  in   std_logic ; 

     fault_module_a               :  out  std_logic ;  

     fault_module_b               :  out  std_logic ; 

     failure_detection_display    :  out  std_logic    

    

); 

 

end ; 

 

-- end of entity decleration  

--******************************************************************************* 

 

architecture  FP_multiplier_with_feedback_arch of   FP_multiplier_simple_TMR  is 

 

-- component assignments (kodun kullandigi alt moduller bu kisimda implemente edilir.) 

 

component BUFG  --- clock buffer 

 

port ( 

      

       i : in  std_logic; 

       o : out std_logic 

    

     ); 
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end component; 

 

component FP_multiplier_with_feedback IS 

 

port (   

       rst                    :  in   std_logic ;  

       clk                    :  in   std_logic ;  

       FP_input_A             :  in   std_logic_vector (14 downto 0) ; 

       FP_output              :  out  std_logic_vector (14 downto 0) ; 

       overflow               :  out  std_logic ;  

       underflow              :  out  std_logic ;  

       operation_start        :  in   std_logic  

        

      ); 

 

end component ; 

 

-- signal assignments (kod icinde kullanilan sinyaller bu kisimda tanimlanir.) 

 

signal  clk                    :   std_logic ;  

 

signal  FP_output_module1      :   std_logic_vector (14 downto 0) ; 

signal  overflow_module1       :   std_logic ;  

signal  underflow_module1      :   std_logic ; 

 

signal  FP_output_module2      :   std_logic_vector (14 downto 0) ; 

signal  overflow_module2       :   std_logic ;  

signal  underflow_module2      :   std_logic ; 

 

signal  fault_detection        :   std_logic ;  

 

signal  FP_output_module3      :   std_logic_vector (14 downto 0) ; 

signal  overflow_module3       :   std_logic ;  

signal  underflow_module3      :   std_logic ; 

 

signal input1                  :   std_logic_vector (14 downto 0) ; 

signal input2                  :   std_logic_vector (14 downto 0) ; 

signal input3                  :   std_logic_vector (14 downto 0) ; 

signal operation_start_buf     :   std_logic ; 

 

signal inputa                  :   std_logic_vector (14 downto 0) ; 

signal inputb                  :   std_logic_vector (14 downto 0) ; 

signal inputc                  :   std_logic_vector (14 downto 0) ; 

signal counter_test            :   std_logic_vector (7 downto 0) ; 

 

signal operation_start_buf_b   :   std_logic ; 

signal operation_start_buf_c   :   std_logic ; 
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signal operation_start_buf_e   :   std_logic ; 

signal operation_start_buf_d   :   std_logic ; 

 

--******************************************************************************* 

BEGIN -- begin operations 

 

-- asenkron atamalarin yapilmasi. 

 

failure_detection_display <= fault_detection ; 

failure_detection         <=  fault_detection  ; 

operation_start_buf       <= '1' when    (operation_start = '1') else '0';  

 

inputc <=  "0111000000001"& counter_test(1 downto 0)  when  (( insert_module_failure  = 

'1') 

           or ( insert_module_fault  = '1') )  else FP_input_A  ; 

 

inputb <=  "0111110000000"& counter_test(1 downto 0)   when ( insert_module_failure  = 

'1') 

           else FP_input_A  ; 

 

inputa <=   FP_input_A ; 

 

 

process(rst,clk)  

 

begin 

  

    if rst = '0' then 

 

       FP_output                    <= "010000000000001"; 

       fault_detection              <= '0'; 

 

     elsif rising_edge(clk) then   -- clk nin rising'i ile alinmisti.    

 

        if insert_voter_fault = '0' then  

 

           fault_detection          <= '0'; 

           if  ( FP_output_module1 =  FP_output_module2 ) then  

 

               FP_output            <= FP_output_module1; 

           elsif( FP_output_module1 =  FP_output_module3 ) then  

 

                FP_output           <= FP_output_module1; 

           elsif ( FP_output_module2 =  FP_output_module3 ) then  

 

               FP_output            <= FP_output_module3; 

           else 
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               fault_detection      <= '1'; 

               FP_output            <= (others=>'0');   

 

           end if;  

        else  

               fault_detection      <= '1'; 

        end if;  

      

     end if;  

end process;  

 

 

process(rst,clk)  

 

begin 

 

 if rst = '0' then 

  

    counter_test           <= (others=>'0');        

    fault_module_a         <= '1'; 

    fault_module_b         <= '1';   

    operation_start_buf_c  <= '0';   

    operation_start_buf_b  <= '0';      

    operation_start_buf_d  <= '0';   

    operation_start_buf_e  <= '0';      

  

 elsif rising_edge(clk) then   -- clk nin rising'i ile alinmisti.     

   

    operation_start_buf_c  <= operation_start_buf_b ; 

    operation_start_buf_b  <= operation_start_buf; 

    operation_start_buf_d  <= operation_start_buf_c ; 

    operation_start_buf_e  <= operation_start_buf_d ; 

    

    if ( operation_start_buf_c = '1' ) and  ( operation_start_buf_b = '0' )  then 

    

       counter_test       <=    counter_test   +'1'; 

   

    end if; 

     

    case counter_test(1 downto 0)  is  

     

    when "00"=> 

                 input1          <= inputa ; 

                 input2          <= inputb ; 

                 input3          <= inputc ;  

                 fault_module_a  <= '1'; 
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                 fault_module_b  <= '1'; 

               

               

    when "01"=> 

                

                 input1          <= inputb ; 

                 input2          <= inputc ; 

                 input3          <= inputa ;     

                 fault_module_a  <= '0'; 

                 fault_module_b  <= '1'; 

    

    when "10" => 

                 

                 input1          <= inputc ; 

                 input2          <= inputa ; 

                 input3          <= inputb ;  

                 fault_module_a  <= '0'; 

                 fault_module_b  <= '0'; 

   

    when "11"=> 

                

                 input1          <= inputa ; 

                 input2          <= inputb ; 

                 input3          <= inputc ;  

                 fault_module_a  <= '1'; 

                 fault_module_b  <= '1'; 

                  

    when others => 

                 null; 

    

    end case;      

  end if; 

 

end process; 

 

u1 : FP_multiplier_with_feedback   

      

      port map ( 

                rst             => rst                  , 

                clk             => clk                  , 

                FP_input_A      =>input1                ,  

                FP_output       => FP_output_module1    , 

                overflow        => overflow_module1     , 

                underflow       => underflow_module1    , 

                operation_start => operation_start_buf_e  

                

               ); 
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 u2 : FP_multiplier_with_feedback  

    

      port map ( 

        

                rst             => rst                  , 

                clk             => clk                  , 

                FP_input_A      => input2               ,  

                FP_output       => FP_output_module2    , 

                overflow        => overflow_module2     , 

                underflow       => underflow_module2    , 

                operation_start => operation_start_buf_e   

                

               );  

 

 u3 :  FP_multiplier_with_feedback 

   

      port map ( 

              

                rst             => rst                  , 

                clk             => clk                  , 

                FP_input_A      => input3               ,  

                FP_output       => FP_output_module3    , 

                overflow        => overflow_module3     , 

                underflow       => underflow_module3    , 

                operation_start => operation_start_buf_e   

               

                ); 

 U4 : BUFG    

      

      port map ( 

               

                i => clk_in,  

                o => clk 

             

               ) ; 

      

END; 

 

 --***************************** end of architecture *****************************   

--******************************************************************************* 

--********************************* METU / EE  ********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 
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Triple Modular Redundancy with Correction Block VHDL Code 

 

 
--******************************************************************************* 

--********************************* METU / EE  ********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

-- BLOCK NAME:  FP_multiplier_with_correction 

-- ACIKLAMA  :  Triple moduler redundancy  with correction of a fault          

--******************************************************************************* 

 

library ieee                    ; 

use ieee.std_logic_unsigned.all ; 

use ieee.std_logic_1164.all     ; 

 

library UNISIM                  ; 

use UNISIM.VCOMPONENTS.all      ; 

 

--******************************************************************************* 

-- entity decleration 

-- bu kisimda giris cikis sinyalleri gosterilmistir. 

 

entity  FP_multiplier_with_correction is 

 

port (   

     rst                       :  in   std_logic ;  

     clk_in                    :  in   std_logic ;  

     FP_input_A                :  in   std_logic_vector (14 downto 0) ; 

     failure_detection         :  out  std_logic ; 

     FP_output_port            :  out  std_logic_vector (14 downto 0) ; 

     insert_module_fault       :  in   std_logic ;  

     insert_module_failure     :  in   std_logic ;  

     insert_voter_fault        :  in   std_logic ;   

     operation_start           :  in   std_logic ; 

     fault_module_a            :  out  std_logic ;  

     fault_module_b            :  out  std_logic ;    

     failure_detection_display :  out  std_logic 

); 

end ; 

 

-- end of entity decleration  
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--******************************************************************************* 

 

architecture FP_multiplier_with_correction_arch of  FP_multiplier_with_correction is 

 

-- component assignments (kodun kullandigi alt moduller bu kisimda implemente edilir.) 

 

component BUFG  --- clock buffer 

port ( 

       i : in  std_logic; 

       o : out std_logic 

     ); 

end component; 

 

component FP_multiplier IS 

 port (   

        rst                    : in   std_logic ;  

        clk                    : in   std_logic ;  

        FP_input_A             : in   std_logic_vector (14 downto 0) ; 

        FP_input_B             : in   std_logic_vector (14 downto 0) ; 

        FP_output              : out  std_logic_vector (14 downto 0) ; 

        overflow               : out  std_logic ;  

        underflow              : out  std_logic ; 

        operation_start        : in   std_logic 

      ); 

end component ; 

 

-- signal assignments (kod icinde kullanilan sinyaller bu kisimda tanimlanir.) 

 

signal  clk                    :   std_logic ;  

signal  FP_output_module1      :   std_logic_vector (14 downto 0) ; 

signal  overflow_module1       :   std_logic ;  

signal  underflow_module1      :   std_logic ; 

 

 

signal  FP_output_module2      :   std_logic_vector (14 downto 0) ; 

signal  overflow_module2       :   std_logic ;  

signal  underflow_module2      :   std_logic ; 

 

signal  fault_detection        :   std_logic ;  

signal  FP_output_module3      :   std_logic_vector (14 downto 0) ; 

signal  overflow_module3       :   std_logic ;  

signal  underflow_module3      :   std_logic ; 

signal  FP_out                 :   std_logic_vector (14 downto 0) ; 

signal  FP_output              :   std_logic_vector (14 downto 0) ; 

 

signal input1                  :   std_logic_vector (14 downto 0) ; 

signal input2                  :   std_logic_vector (14 downto 0) ; 
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signal input3                  :   std_logic_vector (14 downto 0) ; 

 

signal operation_start_buf     :   std_logic; 

 

signal inputa                  :   std_logic_vector (14 downto 0) ; 

signal inputb                  :   std_logic_vector (14 downto 0) ; 

signal inputc                  :   std_logic_vector (14 downto 0) ; 

signal counter_test            :   std_logic_vector (7 downto 0) ; 

 

signal operation_start_buf_b   :   std_logic ; 

signal operation_start_buf_c   :   std_logic ; 

signal operation_start_buf_d   :   std_logic ; 

signal operation_start_buf_e   :   std_logic ; 

 

--******************************************************************************* 

BEGIN -- begin operations 

 

-- asenkron atamalarin yapilmasi. 

 

failure_detection_display <= fault_detection ; 

failure_detection         <= fault_detection ; 

FP_output_port            <= FP_output ; 

operation_start_buf       <= '1' when  (operation_start = '1') else '0'; 

 

inputc <=  "0111000000001" &  counter_test(1 downto 0) when  (( insert_module_failure  = 

'1') 

           or ( insert_module_fault  = '1') )  else FP_input_A  ; 

 

inputb <=  "0111110000000" & counter_test(1 downto 0) when ( insert_module_failure  = 

'1')  

           else FP_input_A  ; 

 

inputa <=   FP_input_A ; 

  

  

process (rst, clk ) 

begin 

 

if rst = '0' then       

 

   FP_out  <= "010000000000001"; 

 

elsif rising_edge(clk) then 

  

   if ((overflow_module1  ='1') or (underflow_module1  ='1' )) then 

     

      FP_out  <= "010000000000001"; 
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    else   

    

       FP_out  <=  FP_output  ; 

    

    end if;   

 

end if; 

 

end process; 

 

 

process(rst,clk)  

begin 

    if rst = '0' then 

       

       FP_output             <="010000000000001"; 

       fault_detection       <= '0'; 

   

    elsif rising_edge(clk) then   -- clk nin rising'i ile alinmisti.  

      

        if  insert_voter_fault = '0' then   

           

            fault_detection           <= '0'; 

            if    ( FP_output_module1  =  FP_output_module2 ) then  

           

                  FP_output           <= FP_output_module1; 

            

            elsif ( FP_output_module1  =  FP_output_module3 ) then  

            

                  FP_output           <= FP_output_module1; 

            

            elsif ( FP_output_module2  =  FP_output_module3 ) then  

            

                  FP_output           <= FP_output_module3; 

            

            else 

            

                  fault_detection     <= '1'; 

                  FP_output           <=  "010000000000001"; 

          

            end if;    

      

       else  

        

           fault_detection          <= '1'; 
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       end if;  

    

    end if;  

 

end process;  

 

process(rst,clk)  

begin 

  

 if rst = '0' then 

    

    counter_test           <= (others=>'0');        

    fault_module_a         <= '1' ; 

    fault_module_b         <= '1' ;    

    operation_start_buf_c  <= '0' ;   

    operation_start_buf_b  <= '0' ;      

    operation_start_buf_e  <= '0' ;   

    operation_start_buf_d  <= '0' ;   

 

 elsif rising_edge(clk) then   -- clk nin rising'i ile alinmisti.     

    

    operation_start_buf_c  <= operation_start_buf_b ; 

    operation_start_buf_b  <= operation_start_buf   ; 

    operation_start_buf_d  <= operation_start_buf_c ; 

    operation_start_buf_e  <= operation_start_buf_d ; 

    

    if ( operation_start_buf_c = '1' ) and  ( operation_start_buf_b = '0' )  then 

       counter_test        <= counter_test   +'1'; 

    end if; 

     

    case counter_test(1 downto 0)  is  

     

    when "00"=> 

                

                 input1          <= inputa ; 

                 input2          <= inputb ; 

                 input3          <= inputc ;  

                 fault_module_a  <= '1'; 

                 fault_module_b  <= '1'; 

               

     when "01"=> 

               

                 input1          <= inputb ; 

                 input2          <= inputc ; 

                 input3          <= inputa ;     

                 fault_module_a  <= '0'; 

                 fault_module_b  <= '1'; 
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    when "10" => 

                

                 input1          <= inputc ; 

                 input2          <= inputa ; 

                 input3          <= inputb ;  

                 fault_module_a  <= '0'; 

                 fault_module_b  <= '0'; 

   

    when "11"=> 

             

                 input1          <= inputa ; 

                 input2          <= inputb ; 

                 input3          <= inputc ;  

                 fault_module_a  <= '1'; 

                 fault_module_b  <= '1'; 

                  

    when others => 

                 

                 null; 

    end case;      

 

 end if; 

 

end process; 

 

 

 

u1 : FP_multiplier   

     

      port map (   

               

                rst             => rst                  , 

                clk             => clk                  , 

                FP_input_A      => input1               ,  

                FP_input_B      => FP_out               ,   

                FP_output       => FP_output_module1    , 

                overflow        => overflow_module1     , 

                underflow       => underflow_module1    , 

                operation_start => operation_start_buf_e 

               

               ); 

 

u2 : FP_multiplier  

     

      port map (   
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                rst             => rst                  , 

                clk             => clk                  , 

                FP_input_A      => input2               ,  

                FP_input_B      => FP_out               ,             

                FP_output       => FP_output_module2    , 

                overflow        => overflow_module2     , 

                underflow       => underflow_module2    , 

                operation_start => operation_start_buf_e 

               

               ); 

 

 u3 : FP_multiplier  

    

      port map (   

               

                rst             => rst                  , 

                clk             => clk                  , 

                FP_input_A      => input3               ,  

                FP_input_B      => FP_out               ,                  

                FP_output       => FP_output_module3    , 

                overflow        => overflow_module3     , 

                underflow       => underflow_module3    , 

                operation_start => operation_start_buf_e 

               

               ); 

 

U4 : BUFG    

    

     port map ( 

                

               i => clk_in,  

               o => clk 

              

              ) ; 

END;       

  

--***************************** end of architecture *****************************   

--******************************************************************************* 

--********************************* METU / EE  ********************************** 

--******************************************************************************* 

--**************************** WRITTEN BY UGUR GUNGOR *************************** 

--******************************************************************************* 

--********************************* METU / EE *********************************** 

--******************************************************************************* 

 


