

A DEPENDABLE COMPUTING APPLICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

UĞUR GÜNGÖR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

APRIL 2005

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. İsmet ERKMEN
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Hasan Cengiz GÜRAN
 Supervisor

Examining Committee Members

Doç. Dr. Gözde BOZDAĞI AKAR (METU,EEE)

Prof. Dr. Hasan Cengiz GÜRAN (METU,EEE)

Yrd. Doç. Dr. Cüneyt BAZLAMAÇCI (METU,EEE)

Dr. Şenan Ece SCHMIDT (METU,EEE)

Gökhan GÖKSÜGÜR (M.Sc.) (ASELSAN)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

 Uğur GÜNGÖR

 iv

ABSTRACT

A DEPENDABLE COMPUTING APPLICATION

Güngör, Uğur

M.S., Department of Electric and Electronics Engineering

Supervisor : Prof. Dr. Hasan Cengiz Güran

April 2005, 129 pages

This thesis focuses on fault tolerance which is kind of dependable computing

implementation. It deals with the advantages of fault tolerance techniques on Single

Event Upsets (SEU) occurred in a Field Programmable Gate Array (FPGA). Two fault

tolerant methods are applied to floating point multiplier. Most common SEU mitigation

method is Triple Modular Redundancy (TMR). So, two fault tolerance methods, which

use TMR, are tested.

There are three printed circuit boards (PCBs) and one user interface software in the

setup. By user interface software running on a computer, user can inject fault or faults to

the selected part of the system, which uses TMR with voting circuit or TMRVC TMR

with voting and correction circuits on floating point multiplier. After inserting fault or

faults, user can watch results of the fault injection test by user interface software. One of

these printed circuit boards is called as a Test Pattern Generator. It is responsible for

communication between the Fault Tolerant Systems and the user interface software

running on a computer. Fault Tolerant Systems is second PCB in the setup. It is used to

implement fault tolerant methods on fifteen bits floating point multiplier in the FPGA.

First one of these methods is TMR with voter circuit (TMRV) and second one is TMR

with voter and correction circuits (TMRVC). Last PCB in the setup is Display PCB.

This PCB displays fault tolerant test result and floating point multiplication result. All

 v

the functions on Test Pattern Generator and Fault Tolerant Systems are implemented

through the use of a Field Programmable Gate Array (FPGA), which is programmed

using the Very High Speed IC Description Language (VHDL).

Implementation results of the used methods in FPGA are evaluated to observe the

performance of applied methods for tolerating SEU.

 vi

ÖZ

YÜKSEK GÜVENİLİRLİKLİ BİLGİSAYAR DONANIM UYGULAMASI

Güngör, Uğur

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Hasan Cengiz Güran

Nisan 2005, 129 sayfa

Bu tez, yüksek güvenilirlikli bilgisayar uygulamalarından birisi olan hata toleransı

uygulamasının üzerinde durmaktadır. Bu tezde Alan Programlanabilir Kapı Dizini

(FPGA) içinde oluşan Tekli Hata Oluşumlarına (SEU) karşı uygulanan hata tolerans

metodlarının avantajları ile ilgilenilmiştir. Bunun için, 2 tane hata tolerans metodu,

kayan noktalı çarpıcı üzerine uygulanmıştır. En yaygın SEU azaltma metodu Üçlü

Modüler Yedekleme’dir (TMR). Bu nedenle, TMR kullanan iki çeşit hata tolerans

metodu test edilmiştir.

Düzenekte 3 tane Baskı Devre Kartı (PCB) ve 1 tane kulanıcı arayüz yazılımı

bulunmaktadır. Bilgisayar üzerinde çalışan kullanıcı arayüz yazılımı ile kullanıcı,

oylama devreli yada oylama ve düzeltme devreli TMR kullanan systemin seçilen bir

bölgesine hata veya hatalar enjekte edebilir. Hata veye hataları enjekte ettikten sonra ,

kullanıcı hata enjekte etme testinin sonuçlarını kullanıcı arayüz yazılımından izleyebilir.

Düzenekteki PCB’lerden birisi Test Örüntüsü Yaratıcı’dır. Bu PCB, Hata Tolere

Edebilir Sistemler ve kullanıcı arayüz yazılımı arasındaki konuşmadan sorumludur.

Düzenekteki ikinci PCB, Hata Tolere Edebilir Sistemler’dir. Bu PCB, hata tolere

edebilir metotları, kayan noktalı çarpıcı üzerine FPGA’de gerçekleştirmekle sorumludur.

Bu metodlardan birincisi oylama devreli TMR (TMRV), ikincisi ise oylama ve düzeltme

devreli TMR’dır (TMRVC). Düzenekteki son PCB Gösterge PCB’sidir. Bu PCB, test

sonucunu ve çarpma isleminin sonucunu gösterir.

 vii

Test Örüntüsü Yaratıcı ve Hata Tolere Edebilir Sistemler üzerindeki fonksiyonlar, Çok

Yüksek Hızlı Entegre Devre Tanımlama Dili (VHDL) kullanılarak programlanan Alan

Programlanabilir Kapı Dizinleri içine gerçekleştirilmiştir.

FPGA içerinde gerçekleştirilen metotların sonuçları değerlendirilerek, uygulanan

metotların performansları irdelenmiştir.

 viii

To My Family

 ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Prof. Dr. Hasan Cengiz

Güran for his supervision and guidance.

Special thanks to ASELSAN Inc. Microelectronics, Guidance and Electro-Optics

division for providing technical support and laboratory environment in which I could

develop my design.

Also, I am thankful to all my family and my friends for their continued patience,

understanding, and encouragement throughout the preparation of this study.

 x

TABLE OF CONTENTS

PLAGIARISM...İİİ

ABSTRACT...İV

ÖZ...Vİ

ACKNOWLEDGEMENTS..İX

ABBREVIATIONS..XİV

LIST OF TABLES..XV

LIST OF FIGURES...XVİ

CHAPTERS

1 INTRODUCTION...1

 1.1 INTRODUCTION TO FAULT TOLERANCE..1

 xi

 1.2 SHORT DESCRIPTION OF THE THESIS APPLICATION..................................3

 1.2.1 SOFTWARE PART..4

 1.2.2 TEST PATTERN GENERATOR PART..4

 1.2.3 FAULT TOLERANT SYSTEMS PART..5

 1.2.4 DISPLAY PCB..5

 1.3 ORGANIZATION OF THE THESIS...6

2 FAULT TOLERANCE...7

 2.1 FUNDAMENTAL DEFINITIONS...8

 2.1.1 CHARACTERISTICS OF A FAULT...9

 2.1.2 PRIMARY SYSTEM IMPROVEMENT TECHNIQUES................................11

 2.2 DESIGN TECHNIQUES TO ACHIEVE FAULT TOLERANCE......................12

 2.3 REDUNDANCY...12

 2.3.1 HARDWARE REDUNDANCY...13

 2.3.1.1 PASSIVE HARDWARE REDUNDANCY..13

 2.3.1.2 ACTIVE HARDWARE REDUNDANCY..15

 2.3.1.3 HYBRID HARDWARE REDUNDANCY..18

 2.3.2 SOFTWARE REDUNDANCY..18

 2.3.2.1 CONSISTENCY CHECKS..18

 2.3.2.2 CAPABILITY CHECKS..18

 2.3.2.3 N-VERSION PROGRAMMING...18

 xii

3 FPGA FAULT TOLERANCE...20

 3.1 FPGA..20

 3.2 SINGLE EVENT UPSET (SEU)..23

 3.3 FPGA FAULT TOLERANCE TECHNIQUES FOR TOLERATING SEU..........25

4 IMPLEMENTED PCBs IN THE SETUP...28

 4.1 INTRODUCTION...28

 4.2 CRITICAL PCB COMPONENTS..28

 4.2.1 TEST PATTERN GENERATOR PCB CRITICAL COMPONENTS.............28

4.2.1.1 ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY

MEMORY (EEPROM)...28

 4.2.1.2 FIELD PROGRAMMABLE GATE ARRAY (FPGA)..............................29

 4.2.1.3 OSCILLATOR..30

 4.2.1.4 RS232 TRANSCEIVER..30

 4.2.2 FAULT TOLERANT SYSTEMS PCB CRITICAL COMPONENTS..............31

 4.2.2.1 ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY

MEMORY (EEPROM)...31

 4.2.2.2 FIELD PROGRAMMABLE GATE ARRAY (FPGA)..............................32

 4.2.3 DISPLAY PCB CRITICAL COMPONENTS...32

 4.2.3.1 LED...32

 4.3 PCB DESIGN CONSIDERATIONS..33

5 FPGA DESIGN..39

 5.1 FAULT TOLERANT SYSTEMS FPGA..39

 5.1.1 TMR WITH VOTER CIRCUIT..41

 5.1.1.1 MODULE INPUT FAULT INJECTION CIRCUIT...................................43

 5.1.1.2 FP MULTIPLIER INNER FEEDBACK CIRCUIT....................................44

 xiii

 5.1.1.3 15 BITS FP MULTIPLIER...45

 5.1.1.4 VOTER CIRCUIT...56

 5.1.2 TMR WITH VOTER AND CORRECTION CIRCUITS.................................58

 5.1.2.1 MODULE INPUT FAULT INJECTION CIRCUIT...................................59

 5.1.2.2 15 BITS FP MULTIPLIER...59

 5.1.2.3 VOTER AND CORRECTION CIRCUITS..60

 5.2 TEST PATTERN GENERATOR FPGA..61

 5.2.1 TEST PATTERN GENERATOR FPGA RS232 INTERFACE.......................61

6 IMPLEMENTATION RESULTS OF APPLIED ALGORITHMS.......................65

 6.1 IMPLEMENTATION RESULTS OF TMR WITH VOTER CIRCUIT................67

 6.2 IMPLEMENTATION RESULTS OF TMR WITH VOTER AND CORRECTION

CIRCUIT...68

 6.3 ADVANTAGES AND DISADVANTAGES OF APPLIED ALGORITHMS.......70

7 CONCLUSIONS...72

REFERENCES...74

APPENDIX A: SETUP COMPONENTS...76

APPENDIX B: PCB LAYOUT...79

APPENDIX C: TEST PATTERN GENERATOR VHDL CODES...........................89

APPENDIX D: FAULT TOLERANT SYSTEMS VHDL CODES.........................108

 xiv

ABBREVIATIONS

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

BGA Ball Grid Array

CLB Configurable Logic Blocks

CMOS Complementary Metal Oxide Silicon Technology

DSP Digital Signal Processor

PROM Programmable Read Only Memory

EEPROM Electrically Erasable Programmable Read Only Memory

FP Floating Point

FPGA Field Programmable Gate Array

GRM General Routing Matrix

IC Integrated Circuit

IOB Input/Output Block

I2C Inter Integrated Circuit Control

LED Light Emitting Diode

LUT Look-up Table

NMR N-Modular Redundancy

PCB Printed Circuit Board

PGA Pin Grid Array

PROM Programmable Read Only Memory

QFP Quad Flat Package

SEU Single Event Upset

TMR Triple Modular Redundancy

TTL Transistor-Transistor Logic

VHDL Very High Speed Integrated Circuit Description Language

TMRV TMR with voter circuit

TMRVC TMR with voter and correction circuits

 xv

LIST OF TABLES

TABLE

4.1 LAYER STACK-UP OF TEST PATTERN GENERATOR PCB….....................37

4.2 LAYER STACK-UP OF FAULT TOLERANT SYSTEMS PCB…..…...............37

4.3 LAYER STACK-UP OF DISPLAY PCB…………………………..…................38

6.1 TMR WITH VOTER CIRCUIT FPGA PLACEMENT REPORT SUMMARY...67

6.2 TMR WITH VOTER AND CORRECTION CIRCUIT FPGA PLACEMENT

REPORT SUMMARY..69

 xvi

LIST OF FIGURES

 FIGURE

 2.1 RELATIONSHIPS BETWEEN FAULT, ERROR AND FAILURE…................8

 2.2 FAULT CHARACTERISTICS…………………………………….…...............10

 2.3 SYSTEM PERFORMANCE IMPROVEMENT TECHNIQUES BARRIERS...11

 2.4 BLOCK DIAGRAM OF TMR…………………………...…………..................14

 2.5 BLOCK DIAGRAM OF TMR WITH THREE VOTER CIRCUIT…................14

 2.6 BLOCK DIAGRAM OF NMR……...……………………………….................15

 2.7 BLOCK DIAGRAM OF DUPLICATION WITH COMPARISON....................16

 2.8 BLOCK DIAGRAM OF STANDBY SPARING……………….....…...............17

 2.9 BLOCK DIAGRAM OF PAIR-AND-A-SPARE TECHNIQUE…....................17

 3.1 FPGA STRUCTURE…...…..………………………………………...................21

 3.2 CONFIGURABLE LOGIC BLOCK STRUCTURE….....…………..................22

 3.3 PROGRAMMABLE STORAGE ELEMENTS…………..………….................24

 3.4 DEVICE LEVEL TMR………………………..………..……………................25

 3.5 MODULE LEVEL TMR……………………..…..………………...............…...26

 3.6 MODULE LEVEL TMR WITH FEEDBACK………………....……........…....27

 4.1 EEPROM PROGRAM TIMING DIAGRAM……………....….……..........…...29

 5.1 15 BITS FLOATING POINT REPRESENTATION..40

 5.2 MAIN DIAGRAM OF TMR WITH VOTER CIRCUIT......................................42

 5.3 IMPLEMENTATION OF MODULE INPUT FAULT INJECTION

CIRCUIT..43

 5.4 COUNTER_TEST GENERATIONS...44

 5.5 15 BITS FP MULTIPLIER INNER FEEDBACK CIRCUIT...............................44

 5.6 FLOATING POINT MULTIPLIER...45

 5.7 FLOATING POINT MULTIPLIER BLOCK 1...46

 5.8 FLOATING POINT MULTIPLIER BLOCK 2...47

 5.9 FLOATING POINT MULTIPLIER BLOCK 3...48,49,50

5.10 FLOATING POINT MULTIPLIER BLOCK 4..51

 xvii

5.11 MANTISSA_OUT_PRE_0...52

5.12 MANTISSA_OUT_PRE_6...53

5.13 EXPONENT_OFFSET GENERATION FOR NORMALIZATION...................54

5.14 EXPONENT OUT PRE GENERATİON..55

5.15 FLOATING POINT MULTIPLIER BLOCK 6..56

5.16 VOTER CIRCUIT...57

 5.17 MAIN DIAGRAM OF TMR WITH VOTER AND CORRECTION

CIRCUIT..58

 5.18 15 BITS FP MULTIPLIER BLOCK DIAGRAM..60

 5.19 BYTE TRANSFER PROTOCOL..61

 5.20 STATE DIAGRAM FOR RS232 INTERFACE..63

 6.1 TMR WITH VOTER CIRCUIT...65

 6.2 TMR WITH VOTER AND CORRECTION CIRCUITS...................................66

 A.1 SOFTWARE USER INTERFACE OF THESIS APPLICATION…..................76

 A.2 TEST PATTERN GENERATOR……………...………….....……...................77

 A.3 FAULT TOLERANT SYSTEMS………………………………….…..............77

 A.4 DISPLAY PCB…………………………...………………………….................78

 B.1 TEST PATTERN GENERATOR COMPONENTS, SIGNAL ROUTINGS AND

DIMENSIONS….................................………..79

 B.2 TEST PATTERN GENERATOR FIRST LAYER………..............……….......80

 B.3 TEST PATTERN GENERATOR SECOND LAYER (GROUND LAYER).....80

 B.4 TEST PATTERN GENERATOR THIRD LAYER (POWER LAYER)……... 81

 B.5 TEST PATTERN GENERATOR FOURTH LAYER...…………................….81

 B.6 TEST PATTERN GENERATOR FIFTH LAYER...82

 B.7 TEST PATTERN GENERATOR SIXTH LAYER..82

 B.8 FAULT TOLERANT SYSTEMS COMPONENTS, SIGNAL

ROUTINGS AND DIMENSIONS..83

 B.9 FAULT TOLERANT SYSTEMS FIRST LAYER...84

 B.10 FAULT TOLERANT SYSTEMS SECOND LAYER (GROUND LAYER).....84

 B.11 FAULT TOLERANT SYSTEMS THIRD LAYER (POWER LAYER)............85

 B.12 FAULT TOLERANT SYSTEMS FOURTH LAYER..85

 xviii

 B.13 FAULT TOLERANT SYSTEMS FIFTH LAYER...86

 B.14 FAULT TOLERANT SYSTEMS SIXTH LAYER..86

 B.15 DISPLAY PCB COMPONENTS, SIGNAL ROUTINGS AND

DIMENSIONS...87

 B.16 DISPLAY PCB FIRST LAYER..88

 B.17 DISPLAY PCB SECOND LAYER...88

 1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO FAULT TOLERANCE

A Fault tolerant system can perform its specified tasks in the presence of hardware faults

and software errors. Fault tolerance tries to prevent negative effects of these faults on the

system operation. Fault tolerance is very important in mission critical applications. Most

popular applications where fault tolerance is used are listed below. This list shows only

most popular applications but there are many other systems which need fault tolerance.

• Space based applications

• Process control systems

• Missile guidance systems

• Medical applications

Fault tolerance can be classified into sub-classes which are listed below [1].

• Fault Detection

• Fault Diagnosis

• Fault Containment

• Fault Masking

• Fault Compensation

 2

• Fault Repair

Fault Detection determines the occurrence of a fault.

Fault Diagnosis determines the reason of a fault. It also specifies which subsystem is

faulty.

Fault Containment prevents the propagation of faults from one subsystem to other

subsystems.

Fault Masking ensures that only correct values get passed to the system boundary in

spite of a failed component.

Fault Compensation provides a response to compensate for output of the faulty

subsystem.

Fault Repair is a process, which removes faults in the systems and repair faulty modules.

Redundancy is the addition of resources, time, or information beyond what is needed for

normal system operation. There are some forms of redundancy, which are listed below.

• Hardware redundancy

• Software redundancy

• Information redundancy

• Time redundancy

Hardware redundancy is the addition of extra hardware. Software redundancy is the

addition of extra software, beyond what is needed to perform a given function.

Information redundancy is the addition of extra information beyond that required to

implement a given function. Time redundancy is the usage of additional time to perform

 3

the functions of a system. Hardware redundancy and software redundancy are most

common forms of redundancy [1].

1.2 SHORT DESCRIPTION OF THE THESIS APPLICATION

Field Programmable Gate Arrays (FPGAs) are high performance data processing

devices. They provide to construct highly parallel architectures for processing data. They

are reprogrammable. This decreases design period. Functional changes can be

implemented in a short time. As a result, they are preferred in most of the applications

today.

Charged particles can provoke a transient pulse, when it hits the silicon. This pulse can

change the state of a memory cell on integrated circuits. This phenomenon is known as a

Single Event Upset (SEU). SEU is a very serious problem in mission critical

applications. FPGAs are also potentially sensitive to SEU. As a result, fault tolerant

algorithms must be implemented into FPGAs in mission critical applications [2] [3].

SEU is very serious problem in FPGAs. There are some fault tolerant methods to

decrease the probability of a system failure due to these SEUs. Most popular fault

tolerant method for FPGA applications is Triple Modular Redundancy (TMR) with voter

circuit. TMR uses three identical circuits, which perform the same task in parallel. Their

outputs are compared through a majority voter circuit [4].

Fault injection is a widely used technique for dependability estimation of fault tolerant

systems. It is an intentional activation of faults in order to observe the system under fault

behavior.

In this thesis, there are two methods applied to floating point multiplier. One of them is

TMRV. This method is used for detecting faults and correcting output of a system. It

does not correct the faulty module. Second one is TMRVC. It is used for detecting

 4

faults, correcting output of a system and correcting the faulty module. Second one is

more powerful than first one. But, it uses extra logic for correction circuit.

The aim of this work initially was to design a fault tolerant floating point multiplier

circuit with correction property. But the algorithm to be used was not suitable for a

parallel multiplication operation with correction. So, our application multiplies input and

the previous value of the floating point multiplier output. By this way, we can apply

fault tolerant methods with correction circuit to our circuit.

In our application, faults are injected into sub-modules, which are implemented in

XC4010 family FPGA, and responses are observed.

Fault injection test composes of 4 main parts.

1.2.1 Software Part:

By the software user interface running on a computer, user can inject fault or faults to

the selected part of the system, which uses TMRV or TMRVC. After inserting fault or

faults, user can watch the result of the fault injection test by the software user interface.

1.2.2 Test Pattern Generator Part:

There are three PCBs in this thesis setup. One of them is called as Test Pattern

Generator. This PCB is responsible for communication between the Fault Tolerant

Systems and the software user interface running on a computer. Fault Tolerant Systems

is second PCB in the system and responsible for fault tolerant system implementations.

Test Pattern Generator communicates with the software via RS232 port of the computer.

Test Pattern Generator transfers fault injection commands, which come from RS232

 5

port, to the Fault Tolerant Systems by a specified protocol. Then, it takes responses from

the Fault Tolerant Systems and sends them to the software part of the setup.

1.2.3 Fault Tolerant Systems Part:

Second PCB in the setup is called as Fault Tolerant Systems. This PCB is used to

implement 2 fault tolerant methods on floating point multiplier in the FPGA. First one

of these methods is TMRV and second one is TMRVC. As said, there are two systems

but they don’t operate in parallel. By changing FPGA configuration data, which is stored

in EEPROM, of Fault Tolerant Systems, operating fault tolerant method on the system is

selected. Fault injection commands, which come from Test Pattern Generator, are

applied to selected fault tolerant method on the system, and test results send back to Test

Pattern Generator. These test results are also sending to Display PCB, which is the last

PCB on the thesis setup.

1.2.4 Display PCB:

Third PCB in the setup is called as Display PCB. This PCB displays fault tolerant test

result and floating point multiplication result.

Finally, advantages and disadvantages of the applied fault tolerant methods on floating

point multiplier are explained. These explanations are proven by synthesis and

implementation reports of the thesis application.

 6

1.3 ORGANIZATION OF THE THESIS

This thesis is composed of 7 chapters.

Chapter 2 provides general information about fault tolerance. Fundamental definitions

on fault tolerance are given. Design goals and methodologies on fault tolerance are

explained in this chapter.

Chapter 3 focuses on the FPGA fault tolerance. Single Event Upset (SEU) is specified.

FPGA fault tolerance techniques for tolerating SEU are explained.

Chapter 4 explains high speed PCB design rules, which are considered during the design

of PCBs in this setup. PCB components used in these PCBs are also explained in this

chapter.

Chapter 5 is focused on FPGA design in Test Pattern Generator and Fault Tolerant

Systems.

Chapter 6 presents advantages and disadvantages of the applied fault tolerant methods.

These explanations are proven by implementation reports of Fault Tolerant Systems

FPGA.

Chapter 7 gives the conclusion.

 7

CHAPTER 2

FAULT TOLERANCE

A fault tolerant system is one that can continue to correctly perform its specified tasks

in the presence of hardware failures and software errors. Fault tolerance is an attribute

that is designed into a system to achieve some design goals. These design goals are,

reliability, availability, safety, performability, maintainability, testability and

dependability.

Below, we explain each term separately [1] [13],

Reliability, R(t): The conditional probability that a system performs correctly

throughout an interval of time [t0, t], given that the system was performing correctly at

time t0.

Availability, A(t): The probability that a system is operating correctly and is available to

perform its functions at the instant of time t.

Safety, S(t): The probability that a system will either perform its functions correctly or

will discontinue its functions in a well defined, safe manner. Discontinue its functions in

a manner that does not disturb the operation of other systems or compromise the safety

of any people associated with the system.

 8

Performability, P(L, t): The probability that a system is performing at or above some

level of performance L at the instant of time t.

Maintainability, M(t): The probability that an inoperable system will be restored to an

operational state within the time t.

Testability: The ability to test for certain attributes within a system.

Dependability: The quantity of service that a particular system provides. Reliability,

availability, safety, maintainability, performability and testability are measures used to

quantify the dependability of a system.

2.1 FUNDAMENTAL DEFINITIONS

Three fundamental terms in fault tolerant design are fault, error and failures. There is a

cause and affect relationship between them.

A fault is a physical defect, imperfection, or flaw that occurs within some hardware or

software component. An error is an occurrence of an incorrect value in some unit of

information within a system. A failure is a deviation in the expected performance of a

system. The relationships between fault, error and failure are shown in Figure 2.1 [13].

 Fault Error Failure Cause Cause

Figure 2.1 Relationships between fault, error and failure

 9

2.1.1 CHARACTERISTICS OF A FAULT

Faults can be characterized by five attributes, which are cause, nature, duration, extend

and value. Figure 2.2 illustrates each of these basic characteristics of faults.

Possible fault causes can be associated with problems in four areas.

Specifications mistakes:

These include incorrect algorithms, architectures, or hardware and software design

specifications.

Implementation mistakes:

The implementation can introduce faults due to poor design, poor component selection,

poor construction, or software coding mistakes.

Components defects:

These include random device defects, manufacturing imperfections, and component

wear-out.

External disturbance:

These include operator mistakes, radiation, electromagnetic interference, and

environment extremes.

The fault nature specifies the type of fault, which is hardware fault or software fault. If

hardware faults, it specifies analog fault or digital fault.

The fault duration specifies the length of time that a fault is active. There are three

types of fault durations.

Permanent fault:

It is a fault, which remains in existence indefinitely if no corrective action is taken.

 10

Transient fault:

It is a fault, which can appear and disappear within a very short period of time.

Intermittent fault:

It is a fault, which appears, disappears, and reappears repeatedly.

The fault extend specifies whether the fault is localized to a given hardware or software

module or whether it globally affects the hardware, the software, or both.

The fault value can be either determinate or indeterminate. A determinate fault is one

whose status remain unchanged throughout time unless external action upon. An

indeterminate fault is one whose status at some time t may be different from its status at

another time [1].

Figure 2.2 Fault Characteristics

Fault Characteristics

Cause Value Nature Duration Extend

Specification Mistakes

Implementation

Component Defects

External Disturbances

Software

Hardware

Analog

Digital
Intermittent

Transient

Permanent

Indeterminate

Determinate

Global

Local

 11

2.1.2 PRIMARY SYSTEM IMPROVEMENT TECHNIQUES

There are three primary techniques for attempting to improve or maintain a system’s

normal performance. They are fault avoidance, fault masking and fault tolerance.

Fault avoidance is any technique that attempts to prevent the occurrence of faults. It can

include design reviews, component screening, testing and other quality control methods.

Figure 2.3 illustrates the barriers that are constructed by each of the available techniques.

Fault masking is the process of preventing faults from introducing errors.

Fault tolerance is the ability to correct performance of functions in the presence of

faults. (In fact, failure is directly related to error tolerance but we can use fault tolerance

instead of error tolerance.)

Fault tolerance can be achieved by many techniques. Fault masking is one approach to

tolerating faults. Another approach is to detect and locate the fault that has occurred and

reconfigure the system to remove the faulty component.

Figure 2.3 System performance improvement techniques barriers

Fault Avoidance Fault Masking Fault Tolerance

Component Defects

External Disturbances

Software Faults

Errors

System Failures

Hardware Faults

Specification Mistakes

Implementation Mistakes

 12

As shown in Figure 2.3, by fault avoidance occurrence of faults, which is caused by

specification mistakes, implementation mistakes, component defects and external

disturbances is tried to be prevented. Fault masking tries to prevent error occurrence due

to software and hardware faults. Fault tolerance tries to prevent system failure due to

errors.

2.2 DESIGN TECHNIQUES TO ACHIEVE FAULT TOLERANCE

Fault masking achieves fault tolerance by hiding faults that occur. Systems that use

fault masking do not require fault detection before tolerating them. Fault masking makes

faults local. It prevents the effects of faults from spreading throughout the system. Fault

masking is a method of achieving fault containment.

Systems that do not use fault masking require fault detection, fault location and fault

recovery to achieve fault tolerance. Fault detection is essential to fault location and fault

recovery processes. Fault location is required to identify exactly which component is

faulty. Fault recovery involves some form of reconfiguration that is usually

accomplished by disabling, either physical or logically, a faulty component and

enabling, again either physically or logically, a replacement component.

Before dealing with techniques for achieving fault detection, fault location, fault

recovery and fault masking, we are interested in redundancy. Some forms of redundancy

are required for all of these techniques.

2.3 REDUNDANCY

Redundancy is an addition of resources, time, or information beyond what is needed for

normal system operation. There are some forms of redundancy, which are listed below.

Hardware redundancy

Software redundancy

 13

Information redundancy

Time redundancy

Hardware redundancy is an addition of extra hardware beyond what is needed to

perform a given function. Software redundancy is the addition of extra software, beyond

what is needed to perform a given function. Information redundancy is an addition of

extra information beyond that required to implement a given function. Time redundancy

is the usage of additional time to perform the functions of a system [1].

2.3.1 HARDWARE REDUNDANCY

There are three forms of hardware redundancy that are passive, active, and hybrid [1].

Passive techniques use fault masking. Passive approaches are designed to achieve fault

tolerance without requiring any action on any part of the system.

Active techniques (dynamic methodologies) achieve fault tolerance by detecting the

existence of faults and performing some actions to remove the faulty hardware from the

system. In other words, active hardware redundancy uses fault detection, fault location,

and fault recovery to achieve fault tolerance.

Hybrid techniques combine the attractive features of both active and passive techniques.

2.3.1.1 PASSIVE HARDWARE REDUNDANCY

Most of the passive approaches are developed around the concept of majority voting. In

passive approaches, fault detection and system reconfiguration is not required.

Triple Modular Redundancy (TMR)

TMR uses triplication of the hardware and it performs majority vote to determine the

system output. Block diagram of TMR is shown in Figure 2.4.

 14

Figure 2.4 Block diagram of TMR

If one of these modules becomes faulty, other two modules mask the fault by a majority

voting mechanism.

If the voter fails, the complete system fails. This must be prevented. This can be

achieved by increasing number of voters as shown in Figure 2.5. If there are 3 voters,

receiver side must have 3 input channels to get information from fault tolerant module.

Receiver side needs voter circuit to get information.

Figure 2.5 Block diagram of TMR with three voter circuit

Module 1

Module 2

Module 3

Voter

Voter

Module 1

Voter

Voter Module 2

Module 3

 15

N-Modular Redundancy (NMR)

NMR is the generalization of the TMR approach. It uses same principles but number of

modules is not three. N is chosen as an odd number to use majority vote arrangement.

By using NMR, more module faults can be tolerated. Block diagram of NMR is shown

in Figure 2.6.

Figure 2.6 Block Diagram of NMR

2.3.1.2 ACTIVE HARDWARE REDUNDANCY

Active hardware redundancy techniques achieve fault tolerance by fault detection, fault

location and fault recovery. This approach does not try to prevent faults from producing

errors. So that, active hardware redundancy is common in applications that can be

tolerated temporary.

Module 2

Module 1

Module 3

Module N

Voter

 16

Duplication with Comparison

In this scheme, two modules operate in parallel and their results are compared. If they

are different, an error message is generated. This is fundamental fault detection

technique in an active redundancy approach. Block diagram of duplication with

comparison is shown in Figure 2.7.

Figure 2.7 Block diagram of duplication with comparison

Standby Sparing (Standby replacement)

In standby sparing, one of n modules is used to provide the system’s output, and the

remaining n-1 modules serve as spares. Error detection techniques identify faulty

modules so that a fault-free module is always selected to provide the system’s output.

Block diagram of standby sparing is shown in Figure 2.8.

Agree/Disagree

Module 1

Module 2

Comparator

Output

 17

Figure 2.8 Block diagram of standby sparing

Pair–and-a-Spare Technique

It combines the features of both standby and duplication with comparison techniques.

Block diagram of pair-and-a-spare technique is shown in Figure 2.9.

In Pair-and-a-Spare Technique, two of n modules are used to provide inputs to the

compare circuit, and the remaining n-2 modules serve as spares. If compare circuit gives

disagree output, these two modules are identified as faulty modules and another two

modules are selected to provide inputs to the compare circuit.

Figure 2.9 Block diagram of pair-and-a-spare technique
Agree /Disagree

Module 1

Module 2

Module N

Error detection

Error detection

Error detection

N to 1
Switch

Module 1

Module 2

Module

Error detection

Error detection

Error detection

N to 2
Switc
h

C
o
m
p
a
r
e

Output

Output

 18

2.3.1.3 HYBRID HARDWARE REDUNDANCY

Hybrid hardware redundancy combines the attractive features of both the active and the

passive approaches. By fault masking, it tries to prevent erroneous results. Fault

detection, fault location, and fault recovery are used to reconfigure the system in the

event of a fault. Hybrid redundancy is very expensive in terms of hardware required to

implement a system.

2.3.2 SOFTWARE REDUNDANCY

Software redundancy is an addition of extra software, beyond what is needed to perform

a given function.

2.3.2.1 CONSISTENCY CHECKS

It uses priori knowledge about the characteristics of information to verify correctness of

this information.

Example: In processor system, each sensor’s output is in some range. These outputs can

be checked for correctness by the software.

2.3.2.2 CAPABILITY CHECKS

It is performed to verify that a system processes the capability expected.

Example: Memory test, ALU test, processor communication test.

2.3.2.3 N-VERSION PROGRAMMING

Up to now, we deal with software to detect faults occur in hardware. Software faults are

the result of incorrect software designs or coding mistakes. So, simple duplication and

 19

comparison technique will not detect software faults. Design mistake will appear in both

modules.

N-version programming is developed for software fault tolerance. Same functional

software module is programmed by N different programmers. Hopefully all of them

don’t do the same mistake. Then outputs are compared. And fault can be detected easily.

 20

CHAPTER 3

FPGA FAULT TOLERANCE

3.1 FPGA

Field programmable gate array (FPGA) is a general purpose integrated circuit.

Application specific integrated circuit (ASIC) performs similar functions but it can not

be reprogrammed. FPGA can be reprogrammed after it has been deployed into a system.

It is programmed by FPGA system designer.

It is programmed by downloading configuration data (bit stream) into static on-chip

random-access memory. This configuration data is the product of compilers. These

compilers translate the high level abstractions produced by FPGA system designer into

something equivalent but low level and executable code. There are many compilation

tools in the industry. Most popular of them are Precision, Leonardo Spectrum and XST

[14].

FPGAs are high performance signal processing devices. They provide to construct

highly parallel architectures for processing signal. FPGA performance is derived from

this ability. Microprocessor or DSP processor performance is tied to the clock rate at

which the processor can run, but, FPGA performance is tied to the amount of parallelism

to implement algorithms making up a signal processing system. Now, FPGAs can

operate up to clock frequencies of 500 mega hertz. It seems to be slow, but FPGAs

operate with parallelism. FPGA and DSP represent two very different approaches to

signal processing. Each one is good at different things. There are many high sampling

 21

rate applications that FPGA can do easily, while DSP can not. Equally, there are many

complex software problems that FPGA cannot address. As a result, the ideal system is

often splits the work between FPGAs and DSPs [15].

FPGAs are implemented with a regular, flexible programmable architecture of

configurable logic blocks (CLBs), interconnected by versatile routing resources (routing

channels), and surrounded by programmable input/output blocks (IOBs), as seen in

Figure 3.1 [5]. This implementation is a basic structure; some FPGA families have extra

components such as, dedicated multipliers, dual port memories, digital clock managers,

etc…

Figure 3.1 FPGA structure

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

CLB

CLB

CLB

CLB Configurable

Logic Block

Routing
Resources

Input /Output
Block

 22

Most of the logic in FPGA is implemented by configurable logic blocks. Internal

structure of CLBs changes with FPGA family and FPGA manufacturer. Basic diagram

of CLB for XC4000 family Xilinx FPGA that is used in this thesis is shown in Figure

3.2. There are two 4-input function generators (Function generator is called as look-up

table (LUT) in some documents.) which are labeled as F and G in Figure 3.2 [6]. Third

function generator (H) is also provided. H function generator has three inputs as shown

in Figure 3.2.

Each CLB contains two storage elements (d type flip-flops (ff)) that can be used to store

function generator outputs and direct inputs coming from outside the CLB as shown in

Figure 3.2.

Thirteen CLB inputs and four CLB outputs provide access to the function generators and

storage elements. These inputs and outputs connect to the programmable interconnect

resources outside the CLB.

Figure 3.2 Configurable Logic Block Structure

 23

There are 13 FPGA producers today. They are listed below.

Actel Corporation

Altera Corporation

AMI Semiconductor

Amphion Semiconductor, Inc.

Aptix Corporation

Atmel Corporation

Kawasaki LSI U.S.A., Inc.

Nallatech, Inc.

Pentek, Inc.

SiQUEST, Inc.

Tekmos, Inc.

Transtech Parallel Systems

Xilinx, Inc.

3.2 SINGLE EVENT UPSET (SEU)

Fault tolerance on digital circuits has been a meaningful matter since upsets were first

experienced in space applications. The digital circuits located in the space environment

are affected by the charged particles, which are generated by the solar flares. Charged

particles can provoke a transient pulse, when it hits the silicon. This pulse can change

the state of a memory cell. This phenomenon is known as a Single Event Upset (SEU).

A charged particle can also hit the combinational logic. This generates current pulse.

This pulse may be propagated by the combinational logic and latched by memory cells.

This event also causes SEU [2] [3].

 Integrated circuits are becoming more sensitive to radiation effects. High density

devices require smaller feature size, this means less capacitance and hence information

 24

is stored with less charge. Lower voltage or lower power devices mean that less charge

or current is required to store information.

Due to these requirements, integrated circuits become much more vulnerable.

FPGAs are composed of an array of configurable logic blocks (CLBs) surrounded by

programmable input/output blocks (IOBs). All of them are interconnected by routing

resources. The CLBs provide functional elements for constructing logic. The IOBs

provide the interface between the package pins and the CLBs. The CLBs are

interconnected through a general routing matrix (GRM) that comprises an array of

routing switches located at the intersections of horizontal and vertical routing channels.

FPGAs are programmed using a bit stream, which contains all the information to

configure the programmable storage elements in the matrix located in the Look-up

Tables (LUT) and flip-flops (ff), CLBs configuration cells and interconnections. All

these configuration bits are potentially sensitive to SEU. Figure 3.3 shows

programmable storage elements.

Figure 3.3 Programmable Storage Elements

 25

3.3 FPGA FAULT TOLERANCE TECHNIQUES FOR TOLERATING SEU

There are some FPGA fault tolerance techniques for tolerating SEU. These techniques

are explained below.

Most common SEU mitigation method is Triple Modular Redundancy (TMR) with

voting circuit. TMR uses three identical circuits, which perform the same task in

parallel. Their outputs are compared through a majority voter circuit. TMR can be

applied at module level or at device level [4] [7].

Although TMR increases design area and power consumption, full TMR is required in

mission critical FPGA designs. So that, device level TMR is preferred for these

applications. Device level TMR is shown in Figure 3.4. Device level triple device

redundancy has the highest reliability for detecting SEUs. However, this is also the most

costly solution.

Figure 3.4 Device Level TMR

FPGA

FPGA

FPGA

V
O
T
E
R

 26

FPGA design is composed of sub-modules. In most of the applications, some of these

modules are mission critical and some of them are not. To decrease design area and

power consumption, mission critical modules are implemented with fault tolerance.

Other modules are implemented without fault tolerance. For these applications module

level TMR can be used. Module level TMR is shown in Figure 3.5.

Module level TMR can not provide a simple recovery mechanism after an error has been

detected in one of the modules. Error can be detected when it cause a failure.

Figure 3.5 Module Level TMR

Module level TMR with feedback (correction) algorithm satisfies all advantages of

module level TMR. It also satisfies simple recovery mechanism. When error occurs at

Module

Out1 Out2 Out3

Module

Out1 Out2 Out3

Module

Out1 Out2 Out3

Voter

Voter

Voter

 Out1 Out2 Out3

 27

one of the modules, state of the faulty module can be corrected by correcting state of the

related module. This is achieved by restoring state of all modules with respect to correct

result after each operation. Module level TMR with feedback is shown in Figure 3.6.

Figure 3.6 Module Level TMR with feedback

Methods mentioned above use three equivalent components to implement function. We

need at least three circuits to apply voting algorithm. System designer can implement

more than three circuits. This is called as N-Modular Redundancy (NMR), where, n is

the number of equivalent components. NMR increases design area and power

consumption as the number of equivalent components increases. As a result, TMR is

most popular FPGA fault tolerant method.

Module

Module

Module

V
O
T
E
R

 28

CHAPTER 4

IMPLEMENTED PCBs IN THE SETUP

4.1 INTRODUCTION

There are 3 PCBs in this thesis setup. One of them is called as Test Pattern Generator.

This PCB is responsible for communication between Fault Tolerant Systems and

Software User Interface running on a computer. Fault Tolerant Systems is second PCB

in the system and responsible for fault tolerant system implementations. Last PCB in the

setup is Display PCB. This PCB displays fault tolerance test results and floating point

multiplication result. These three PCBs and Software User Interface are shown in

Appendix-A

4.2 CRITICAL PCB COMPONENTS

4.2.1 Test Pattern Generator PCB Critical Components

4.2.1.1 Electrically Erasable Programmable Read Only Memory (EEPROM)

Configuration data (bit stream) of the Test Pattern Generator FPGA is stored in

AT17C512 Electrically Erasable Programmable Read Only Memory (EEPROM) [8],

which is produced by ATMEL Inc. EEPROM loads the FPGA on power up. XC4010E

FPGA, used as Test Pattern Generator FPGA in this system, needs a PROM which has at

least 178144 bits to store configuration data. AT17C512 has 524288 bits. So that it is

chosen as an EEPROM in this PCB.

 29

Test Pattern Generator FPGA is programmed from EEPROM in master serial mode in

this design. This mode is selected by MO, M1 and M2 bits of the FPGA [6]. In master

serial mode, CCLK output of the FPGA drives the CLK input of the EEPROM.

AT17C512 internal address counter is incremented at each rising edge of CCLK output

of the FPGA. On each address, related data bit is put on DATA_OUT pin of the

EEPROM. This pin drives DIN pin of the FPGA. Then, FPGA accept this configuration

bit on the subsequent rising CCLK edge. After loading all of the configuration bits,

DONE pin of the FPGA goes to logical high, which indicates that configuration of the

FPGA is successful. EEPROM program timing diagram is shown in Figure 4.1.

CLK

DATA_OUT

20NS MIN 20NS MIN

50NS MAX 0NS MIN

CLK LOW TIME CLK HIGH TIME

CLK TO DATA_OUT DELAY DATA_OUT HOLD FROM CLK

Figure 4.1 EEPROM program timing diagram

4.2.1.2 Field Programmable Gate Array (FPGA)

On Test Pattern Generator PCB, all control and processing options are implemented in

the XC4010E FPGA [6], which is produced by Xilinx Inc,

 30

Main responsibilities of the Test Pattern Generator FPGA are given below.

It takes user fault injection commands via RS232 transceiver, which is on Test Pattern

Generator PCB. If these commands are in the specified protocol, it transfers fault

injection signals into the Fault Tolerant Systems.

After transferring fault injection commands, it takes responses from the Fault Tolerant

Systems. Then, it sends these responses to the RS232 transceiver in a specified protocol.

By this way fault injection test results are displayed on the software user interface

running on a computer.

Test Pattern Generator FPGA is also responsible for the generation of a Fault Tolerant

Systems FPGA clock.

Implementation of these functions on the Test Pattern Generator FPGA is given in

Chapter 5.

4.2.1.3 Oscillator

M55310/26, 39MHz Oscillator [9], produced by Q-Tech Inc, generates clock for Test

Pattern Generator FPGA. Clock output of the Oscillator is in HCMOS (high speed

CMOS) logic levels. It has a short rise time and fall time. It satisfies input specifications

of the FPGA. As a result it is selected as a clock generator in this PCB.

4.2.1.4 RS232 Transceiver

Communication between Software User Interface and Test Pattern Generator FPGA is

satisfied with DS232A RS232 Transceiver (Transmitter/ Receiver) [10], which is

produced by Dallas Semiconductor Inc. There are two transmitters and two receivers on

this chip. In this design, one transmitter and one receiver are used. Other channels are

not connected.

 31

Receiver inputs accept RS232 level signals, which come from serial port of the

computer. RS232 levels are ±25 volts. These signals are converted to CMOS level

signals and send to the Test Pattern Generator FPGA.

Transmitter inputs accept TTL/CMOS level signals, which come from Test Pattern

Generator FPGA. These signals are converted to RS232 level signals and send to the

serial port of the computer.

4.2.2 Fault Tolerant Systems PCB Critical Components

4.2.2.1 Electrically Erasable Programmable Read Only Memory (EEPROM)

Configuration data of the Fault Tolerant Systems FPGA is stored in AT17C512

Electrically Erasable Programmable Read Only Memory (EEPROM) [8], which is

produced by ATMEL Inc. EEPROM loads the FPGA on power up. XC4010E FPGA,

which is used as a Fault Tolerant Systems FPGA in this system, needs a PROM which

has at least 178144 bits to store configuration data. AT17C512 has 524288 bits. So that

it is chosen as an EEPROM in this PCB.

Fault Tolerant Systems FPGA is programmed from EEPROM in master serial mode in

this design. This mode is selected by MO, M1 and M2 bits of the FPGA [6]. In master

serial mode, the CCLK output of the FPGA drives the CLK input of the EEPROM.

AT17C512 internal address counter is incremented at each rising edge of the CCLK

output of the FPGA. On each address, related data bit is put on the DATA_OUT pin of

the EEPROM. This pin drives the DIN pin of the FPGA. Then, FPGA accept this

configuration bit on the subsequent rising CCLK edge. After loading all of the

configuration bits, DONE pin of the FPGA goes to logical high, which indicates that

configuration of the FPGA is successful.

Fault Tolerant Systems FPGA has two configurations. One of them is TMRV and

second one is TMRVC. Configuration data (bit stream) of the Fault Tolerant Systems

 32

FPGA changes with selected configuration. So that, EEPROM configuration is changed

for selected fault tolerant method test.

4.2.2.2 Field Programmable Gate Array (FPGA)

On Fault Tolerant Systems PCB, all control and processing options are implemented in

the XC4010E FPGA [6], which is produced by Xilinx Inc,

Main responsibilities of Fault Tolerant Systems FPGA are given below.

Fault tolerant methods on floating point multiplier are implemented in this FPGA. First

one of these methods is TMRV and second one is TMRVC. Fault injection commands,

which come from Test Pattern Generator, are applied to selected fault tolerant method

on the system, and test results are sent back to Test Pattern Generator. These test results

are also sent to Display PCB, which is the last PCB on the thesis setup.

Implementation of these functions on the Test Pattern Generator FPGA is given in

Chapter 5.

4.2.3 Display PCB Critical Components

4.2.3.1 LED

90-2841-2832 Dual LED, which is produced by Elma Inc, is used to display fault

tolerant test result and 15 bit floating point multiplication result. This LED is dual. One

of them is red and the other is green.

 33

4.3 PCB DESIGN CONSIDERATIONS

Designing a PCB, which contains high speed devices, requires special attention to

preserve signal quality. When we say high speed, we focus on a clock frequency; we

focus on rise time and fall time (slew rates). High speed (fast slew rates) may contribute

to crosstalk, and ground bounce. Noise reduction is also very critical in high speed PCB

design. To achieve noise free PCBs, we must have noise free power and ground, in other

words power system design requires special attention.

Power systems in digital design serve two essential purposes.

• Provide stable voltage references for exchanging digital signals

• Distribute power to all logic devices

What causes noise voltage between the grounds?

Most common cause involves the return current. Whenever one gate send a signal to

another gate the outgoing signal current returns to initial gate along the power

distribution wiring. The returning signal current acting across inductance of the ground

wiring causes noise voltages. Such noise voltages are called common path noise

voltages. Common path noise voltage is the product of returning signal current and the

ground impedance. To ensure low common path noise, we must have low impedance

ground connections between gates. This principle becomes one of the main power

system design rules.

There are two types of ground distribution systems, which are listed below.

• Ground Buses

• Ground Planes

 34

Ground Planes present remarkably low inductance to returning signal currents, but

Ground Buses design is cheaper than Ground Planes design. So that Ground Planes are

preferred in critical designs and Ground Buses are preferred in simple designs.

We use Ground Plane in Test Pattern Generator PCB and Fault Tolerant Systems PCB.

Display PCB has a simple design. So that we preferred to use Ground Bus.

Only low ground impedance connection does not solve the common path noise problem.

Common path impedance in power wiring can still cause trouble. In the HI state, a gates

output voltage depends on the voltage at its power terminal. Any changes in the power

voltage caused by returning signal currents flowing in the power wiring directly affect

the output voltage. The impedance between power pins on any two gates should be just

as low as the impedance between the ground pins.

There are two types of power distribution systems, which are listed below.

• Power Buses

• Power Planes

Power Planes present remarkably low inductance to returning signal currents, but Power

Buses design is cheaper than Power Planes design. So that Power Planes are preferred in

critical designs and Power Buses are preferred in simple designs.

We use Power Plane in Test Pattern Generator PCB and Fault Tolerant Systems PCB.

Display PCB has a simple design. So that we preferred to use Power Bus.

In a system, returning currents flows through the power supply. To maintain stable

transmitted signal levels, the impedance of the power supply must be very low as well as

the impedance of both the ground and power connections. The only path between the

 35

power and ground is the power supply. As a result, there must be a low impedance path

between the power and ground. This is satisfied by the bypass capacitors from power to

ground.

As a summary, three common power system design rules are listed below [11].

• Use low impedance ground connections between gates.

• The impedance between power pins on any two gates should be just as low as the

impedance between the ground pins.

• There must be low impedance between power and the ground.

Any power system that satisfies three power system design rules will have low common

path noise and it also distribute the power to every where on the PCB at uniform voltage.

Crosstalk

Crosstalk arises through unwanted coupling of signal from one line to another. Traces

which run in parallel for long distances may cause crosstalk problem mainly due to the

mutual inductance. Separating the traces or decreasing their distance from the associated

reference plane can decrease the crosstalk. Route orthogonally on adjacent traces.

Ground bounce

Ground bounce is very serious problem in high speed design, when multiple outputs

change state simultaneously, they cause undesired transient behavior on a non-switching

outputs and even inputs. Ground bounce is primarily due to current changes in the

combined inductance in the circuit.

 36

To reduce ground bounce [12],

• Design PCBs with ground and power planes connected directly to the IC’s supply

pins. Place decoupling capacitors very close to these supply pins.

•• Keep the ground plane as undisturbed as possible. Avoid ground plane

discontinuities and decrease the number of vias.

•• Minimize the impedance of the system ground distribution network and its

connection to the IC pins.

•• Use ICs having low-inductance pins. BGAs are best suited, PGAs are worst,

and QFPs are in-between.

• Reduce the number of simultaneous switching outputs and distribute them

throughout the device.

•• Perform synchronous designs that will not be affected by momentarily

switching pins.

•• Add 10-50Ω resistors in series to each of the switching outputs to limit the

current flow through them.

•• Keep the clock inputs physically away from the outputs that create ground

bounce, and connect clocks to input pins that are close to a ground pin.

Test Pattern Generator PCB and Fault Tolerant Systems PCB are 6 layers PCBs.

Display PCB is 2 layers PCB.

Layer Stack-up of Test Pattern Generator PCB is given in Table 4.1.

 37

Table 4.1 Layer Stack-up of Test Pattern Generator PCB

Layer Order Layer Type
Layer 1 Signal

Layer 2 Ground

Layer 3 Power

Layer 4 Signal

Layer 5 Signal + Power

Layer 6 Signal

Layer 5 is designed as a signal layer. But most of this plane is filled by a ground.

Test Pattern Generator PCB layout and placement are given in Appendix-B.

Layer Stack-up of Fault Tolerant Systems PCB is given in Table 4.2.

Table 4.2 Layer Stack-up of Fault Tolerant Systems PCB

Layer Order Layer Type
Layer 1 Signal
Layer 2 Ground
Layer 3 Power
Layer 4 Signal
Layer 5 Signal + Power
Layer 6 Signal

 38

Layer 5 is designed as a signal layer. But most of this plane is filled by a ground.

Fault Tolerant Systems PCB layout and placement are given in Appendix-B.

Layer Stack-up of Display PCB is given in Table 4.3.

Table 4.3 Layer Stack-up of Display PCB

Layer Order Layer Type
Layer1 Signal
Layer2 Signal

Display PCB does not have any power or ground planes. Power and grounds are

distributed as power and ground buses. Display PCB layout and placement are given in

Appendix-B.

 39

CHAPTER 5

FPGA DESIGN

5.1 FAULT TOLERANT SYSTEMS FPGA

Floating point numbers are used in Fault Tolerant Systems FPGA design. First of all,

floating point representation is given below.

Floating point numbers can be represented by very different notations. General

representation is sign * mantissa * 2 exponent. 15 bits floating point numbers are

represented by a combination of mantissa bits and exponent bits in this application.

Floating point number contains 2 fields as shown in Figure 5.1. These fields are

mantissa and exponent.

In our application floating point number is represented as 15 bits. First 8 bits of it

represent mantissa. It is an 8 bits binary signed number expressed in signed magnitute

form and fractional. Binary point is assumed at the right of the sign bit.

For example:

If mantissa part is equal to “0110001”, it refers to (1 * 1/4) + (1 * 1/8) + (1 * 1/128) =

0,3828125 in decimal representation.

 40

Last 7 bits of the floating point number represent the signed exponent in 2’s complement

form.

For example:

If exponent part is equal to “1110100”, it refers to 2-12 = 0,000244140625 in decimal

representation.

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sign Mantissa ExponentSign
 bit of

Exponent
Bit 6 : Sign bit of exponent
Bit 14 : Sign bit of mantissa

Figure 5.1 15 bits Floating Point Representation

For example, a floating point number “0 1000000 1111001” is equal to + (1 * 1/2) * 2-7.

= + 1/256 = 0,00390625 in decimal representation.

The aim of this work initially was to design a fault tolerant floating point multiplier

circuit with correction property. But the algorithm to be used was not suitable for a

parallel multiplication operation with correction. So, our application multiplies input and

the previous value of the floating point multiplier output. By this way, we can apply

fault tolerant methods with correction circuit to our circuit.

Floating point multiplier in our design multiplies two numbers. One of them is applied

from the software user interface running on a computer. Other one is the previous value

 41

of the multiplier output. Initially this value is assigned as “010000000000001” which is

equal to 1 in decimal representation.

If we want to multiply two floating point numbers, one of these floating point numbers

is applied from the software user interface running on a computer. Multiplier circuit

multiplies this number by 1, which is assigned initially to the other input of the

multiplier. After first multiplication, output of the multiplier is equal to first one of the

floating point numbers. Then, second one of these floating point numbers is applied

from the software user interface running on a computer. Multiplier circuit multiplies this

number and the previous value of the multiplier output, which is equal to to first one of

the floating point numbers. After second multiplication, we can get multiplication of

these two numbers on output of the multiplier.

There are 2 fault tolerant methods, implemented in this study. First one of these methods

is TMRV and second one is TMRVC. As said previously, there are two systems but they

don’t operate in parallel. By changing configuration data, which is stored in EEPROM,

of Fault Tolerant Systems, operating fault tolerant method on the system is selected.

Fault injection commands, which come from Test Pattern Generator, are applied to

selected fault tolerant method on the system, and test results are sent back to Test Pattern

Generator. These test results are also sent to Display PCB, which is the last PCB on the

thesis setup. Implementations of these functions are explained in this section. We divide

Fault Tolerant Systems FGPA design into two parts. First of all, TMRV which is applied

to floating point multiplier with inner feedback circuit is described. After that second

system, TMRVC which is applied to floating point multiplier is described.

5.1.1 TMR WITH VOTER CIRCUIT

TMR with voter circuit which is applied to floating point multiplier with inner feedback

is implemented to show fault detection. It has no fault correction property. Floating point

multiplier with inner feedback is described in section 5.1.1.2.

 42

This system contains module input fault injection circuit, 3 sub-components (floating

point (FP) multiplier inner feedback circuit), and voter circuit. Main diagram of TMRV

which is applied to floating point multiplier with inner feedback is shown in Figure 5.2.

Figure 5.2 Main diagram of TMR with voter circuit

When we insert fault, related module (one of the floating point multiplier inner feedback

circuit) gets faulty input. This module produces different multiplication result than other

two modules. (It produces faulty output.) Due to inner feedback, this different

multiplication result drives FP multiplier input of related module on the next

multiplication. So that, any fault injection causes to permanent fault on the related

module.

When two of these modules produce same multiplication result, system operates

properly due to majority voter circuit. When all of these modules produce different

outputs, system fails.

Triple Moduler Redundancy without Correction Block VHDL Code in Appendix-D

refers to TMR with voter circuit.

 43

5.1.1.1 Module Input Fault Injection Circuit

Floating point input, Operation_Start, Insert_Module_Fault, and Insert_Module_Failure

signals are applied to this circuit. It generates floating point input of 3 sub-components

(floating point multiplier). When Insert_Module_Failure is 1, one of these modules

(floating point multipliers) gets FP_Input_A as an input. Other two modules get faulty

inputs. When Insert_Module_Fault is 1, two of these modules get FP_Input_A as an

input. Other module gets faulty input. Floating point multiplication operation starts with

the rising edge of the Start_Operation input.

Implementation of Module Input Fault Injection Circuit is shown in Figure 5.3. We use

(0111110000000 & Counter_test(1 down to 0)) and (0111000000001 & Counter_test(1

down to 0)) signal bits to insert as a fault to the related module inputs as shown in

Figure 5.3.

Figure 5.3 Implementation of Module Input Fault Injection Circuit

 44

We use Counter_test signal bits in the implementation of Module Input Fault Injection

Circuit. This signal bits are generated as shown in Figure 5.4. Counter_test signal is

incremented by one on rising edge of the Operation_Start input. By this way, we can

change fault injected module/ modules on each operation.

Figure 5.4 Counter_test Generation

5.1.1.2 FP Multiplier Inner Feedback Circuit

Floating Point (FP) Multiplier Inner Feedback Circuit is implemented as shown in

Figure 5.5. FP_Input_a is connected to Module Input Fault Injection Circuit. Other

multiplier input is connected to output of a FP Multiplier. FP Multiplier output is

updated on falling edge of Start_Operation input signal. So that, FP Multiplier multiplies

FP_Input_a and previous multiplication result and gets new multiplication result. Initial

value of FP Multiplication Output is assigned as 010000000000001, which is equal to 1.

Figure 5.5 15 bits FP Multiplier Inner Feedback Circuit

 45

Floating Point Inner Feedback Block VHDL Code in Appendix-D refers to FP multiplier

inner feedback circuit.

5.1.1.3 15 Bits FP Multiplier

Floating Point Multiplier is composed of 6 main blocks as shown in Figure 5.6. Lets

explain them seperately.

Figure 5.6 Floating Point Multiplier

Floating Point Multiplier Block VHDL Code in Appendix-D refers to 15 bits Floating

Point Multiplier.

Block 1:

Operation_Start, Input A and Input B are applied to Block 1. This block generates Sign

A, Mantissa A, Exponent A, Sign B, Mantissa B and Exponent B as an output signals.

Its operation is given in Figure 5.7.

 46

Input A and Input B are buffered. In other words, Sign A, Mantissa A, Exponent A, Sign

B, Mantissa B and Exponent B signals are updated on the rising edge of Operation_Start

signal.

buffer

Rst Operation_Start

buffer

Rst Operation_Start

buffer

Rs t Operation_Start

buffer

Rst Operation_Start

InputA(6)

ExponentA(5)

ExponentA(6)

ExponentA(0)

ExponentA(1)

InputA(0)

InputA(1)

InputA(5)

buffer

Rst Operation_Start

buffer

Rst Operation_Start

MantissaA(0)

MantissaA(1)

InputA(7)

InputA(8)

buffer

Rst Operation_Start

buffer

Rst Operation_Start

buffer

Rst Operation_Start

buffer

Rst Operation_Start

InputB(6)

ExponentB(5)

ExponentB(6)

ExponentB(0)

ExponentB(1)

InputB(0)

InputB(1)

InputB(5)

buffer

Rs t Operation_Start

buffer

Rst Operation_Start

MantissaA(0)

MantissaB(1)

InputB(7)

InputB(8)

buffer

Rst Operation_Start

buffer

Rst Operation_Start

InputB(13)

MantissaB(5)

MantissaB(6)

InputB(12)

buffer

Rst Operation_Start

InputB(14) SignB

buffer

Rst Operation_Start

buffer

Rst Operation_Start

InputA(13)

MantissaA(5)

MantissaA(6)

InputA(12)

buffer

Rst Operation_Start

InputA(14) SignA

(sign bit of exponentA) (sign bit of exponentB)

(sign bit of mantissaA) (sign bit of mantissaB)

Figure 5.7 Floating Point Multiplier Block 1

 47

Block 2:

Sign bit of input A and sign bit of input B are applied to Block 2. It generates Sign as an

output signal. Its operation is given in Figure 5.8.

 Sign A

 Sign B
 Sign

Figure 5.8 Floating Point Multiplier Block 2

Block 3:

It is 7 bits binary multiplier. 7 bits mantissa part of input A and 7 bits mantissa part of

input B are applied to Block 3. It generates 14 bits mantissa as an output.

In the implementation of this block we use Hall Adders (HA) and Full Adders.

While implement Block 3, 7 bits mantissa part of input A is represented as A (6 down to

0). 7 bits mantissa part of input B is represented as B (6 down to 0). 14 bit Mantissa

(result of the mantissa multiplication) is represented by S (13 down to 0).

Implementation of Block 3 is given in Figure 5.9.

 48

S0

 A0,B1

A1,B0

A2,B0

A1,B1

A0,B2

A3,B0

A2,B1

A1,B2

A0,B3

 A4,B0

A3,B1

A2,B2

A1,B3

A0,B4

HA

HA

HA

 A6,B0

 A5,B1

 A4,B2

 A3,B3

 A2,B4

HA

FA

FA
 A1,B5

 A0,B6

S1

S2

S3

S4

S6

A0,B0

FA

FA

FA

FA

FA

FA

FA

FA

FA

HA

 49

 A6,B0

A5,B1

A4,B2

 A3,B3

 A2,B4

HA

 A1,B5

 A0,B6

 A6,B1

A5,B2

A4,B3

 A3,B4

 A2,B5

FA

FA

HA
 A1,B6

 A6,B2

A5,B3

A4,B4

 A3,B5

 A2,B6

FA

S6

S7

S8

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA
FA

 50

Figure 5.9 Floating Point Multiplier Block 3

Block 4:

It is 7 bits signed adder. 7 bits exponent part of input A and 7 bits exponent part of input

B are applied to Block 4. It generates 7 bits Exponent and Overflow_a as an output.

Implementation of Block 4 is given in Figure 5.10.

 A6,B2

 A5,B3

 A4,B4

 A3,B5

 A2,B6

FA

FA

 A6,B5

 A5,B6

 A6,B6

S8

S12

S13

FA

FA

FA FA

FA

FA

 51

Figure 5.10 Floating Point Multiplier Block 4

HA

FA

FA

FA

FA

FA

FA

ExponentA_0

ExponentB_0

ExponentA_1

ExponentB_1

ExponentA_2

ExponentB_2

ExponentA_3

ExponentB_3

ExponentA_4

ExponentB_4

ExponentA_5

ExponentB_5

ExponentA_6

ExponentB_6

Exponent_0

Exponent_1

Exponent_2

Exponent_3

Exponent_4

Exponent_5

Exponent_6 (Sign Bit of Exponent)

Overflow_inner_a

ExponentA_6

Exponent_6

ExponentB_6

 52

Block 5:

It is responsible for normalization of mantissa part; it also adapts exponent part with

respect to this normalization.

Floating point numbers must have normalized mantissa. To achieve this, we must

normalize the mantissa signal. If we shift mantissa bits one bit position left, we must

decrease exponent signal by one.

First of all, mantissa part of the floating point number is normalized. Generation of least

significant bit of the Mantissa_Out_Pre is shown in Figure 5.11.

Figure 5.11 Mantissa_Out_Pre_0

Generation of most significant bit of the Mantissa_Out_Pre is shown in Figure 5.12.

Mantissa_Out_Pre_0

M
a
n
t
i
s
s
a
1
3

M
a
n
t
i
s
s
a
1
2

M
a
n
t
i
s
s
a
1
1

M
a
n
t
i
s
s
a
1
0

M
a
n
t
i
s
s
a
9

M
a
n
t
i
s
s
a
8

M
a
n
t
i
s
s
a
7

Mantissa 2

Mantissa 3

Mantissa 4

Mantissa 5

Mantissa 6

Mantissa 7

Mantissa 1

Mantissa 0

M
U
X

select

1

0

A typical mux unit
used in figure

 53

 Figure 5.12 Mantissa_Out_Pre_6

Mantissa_Out_Pre is 7 bits signal. Generations of most significant and least significant

bits are shown above. Other bits are also generated in the same way.

Number of bits required to shift mantissa left for normalization is calculated. This

calculation is shown in Figure 5.13. This number is called as an Exponent_Offset and it

represents the number which must be subtracted from Exponent signal.

Mantissa_Out_Pre_6

M
a
n
t
i
s
s
a
1
3

M
a
n
t
i
s
s
a
1
2

M
a
n
t
i
s
s
a
1
1

M
a
n
t
i
s
s
a
1
0

M
a
n
t
i
s
s
a
1
9

M
a
n
t
i
s
s
a
8

M
a
n
t
i
s
s
a
7

M
a
n
t
i
s
s
a
6

M
a
n
t
i
s
s
a
5

Mantissa_8

Mantissa_9

Mantissa_10

Mantissa_11

Mantissa_12

Mantissa_13

Mantissa_7

Mantissa_6

Mantissa_5

Mantissa_Pre_6

Mantissa_Pre_6

M
a
n
t
i
s
s
a
4

M
a
n
t
i
s
s
a
3

M
a
n
t
i
s
s
a
2

M
a
n
t
i
s
s
a
1

Mantissa 1

Mantissa 2

Mantissa 3

Mantissa 4

Mantissa 0

M
U
X

select

1

0

A typical mux unit
used in figure

 54

Figure 5.13 Exponent_Offset Generation for Normalization

Exp Ofset Pre

M
a
n
t
i
s
s
a
5

“1000”

M
a
n
t
i
s
s
a
6

M
a
n
t
i
s
s
a
9

M
a
n
t
i
s
s
a
1
0

M
a
n
t
i
s
s
a
1
3

M
a
n
t
i
s
s
a
1
1

M
a
n
t
i
s
s
a
7

M
a
n
t
i
s
s
a
1
2

M
a
n
t
i
s
s
a
8

Exponent Ofset“001”

“0010”

“0011

“0100”

“0101”

“0110”

“0111”

“1001”

Exp Ofset Pre
“1010”

“1011”

“1100”

“1101”

“1110”

M
a
n
t
i
s
s
a
1

M
a
n
t
i
s
s
a
0

M
a
n
t
i
s
s
a
4

M
a
n
t
i
s
s
a
3

M
a
n
t
i
s
s
a
2

“000”

M
U
X

select

1

0

A typical mux unit
used in figure

 55

Exponent_Offset signal is subtracted from exponent signal and Exponent Out Pre is

obtained. This operation is shown in Figure 5.14.

Figure 5.14 Exponent Out Pre Generation

Block 6:

It is responsible for buffering output signals. Mantissa_Out_Pre, Overflow_Inner_b and

Exponent_Out_Pre are buffered. FP_Multiplier_Output and Overflow signals are

updated on the rising edge of the system clock. This operation is shown in Figure 5.15.

Exponent _6

FA

FA

FA

FA

FA

FA

FA

Exponent_Offset_0

Exponent_0

Exponent_Offset _1

Exponent_1

Exponent_Offset _2

Exponent_2

Exponent_Offset _3

Exponent_3

1

Exponent_4

1

Exponent_5

1

Exponent_6

Exponent_Out_Pre_0

Exponent_Out_Pre _1

Exponent_Out_Pre _2

Exponent_Out_Pre _3

Exponent_Out_Pre _4

Exponent_Out_Pre _5

Exponent_Out_Pre _6

Exponent_Out_Pre_6

Overflow_inner_a

Overflow_inner_b

1

 56

buffer

Rst Operation_Start

buffer

Rst Operation_Start

buffer

Rst Operation_Start

buffer

Rst Operation_Start

FP_Multiplier_Output(0)Exponent_Out_Pre(0)

buffer

Rst Operation_Start

buffer

Rst Operation_Start

buffer

Rst Operation_Start

Exponent_Out_Pre(1)

Exponent_Out_Pre(5)

Exponent_Out_Pre(6)

FP_Multiplier_Output(1)

FP_Multiplier_Output(5)

FP_Multiplier_Output(6)

FP_Multiplier_Output(7)

FP_Multiplier_Output(8)

FP_Multiplier_Output(9)

Mantissa_Out_Pre(0)

Mantissa_Out_Pre(1)

Mantissa_Out_Pre(2)

buffer

Rst Operation_Start

buffer

Rst Operation_Start

FP_Multiplier_Output(13)

FP_Multiplier_Output(14)

Mantissa_Out_Pre(6)

Sign

buffer

Rst Operation_Start

OverflowOverflow_Inner_b

Figure 5.15 Floating Point Multiplier Block 6

5.1.1.4 Voter Circuit

Voter circuit is the last part in the TMRV implementation. Implementation of voter

circuit is shown in Figure 5.16.

When two modules outputs (floating point multiplier outputs) are same, System_Output

is equal to one of them and Failure_Detection output is equal to 0. When all modules

give different outputs, Failure_Detection output is equal to 1. (Failure detected.)

 57

Figure 5.16 Voter Circuit

FP_Output_module_1

FP_Output_module_2

System_Output

FP_Output_module_1

FP_Output_module_3

MUX

1 0

OR

MUX

1 0

FP_Output_module_2

FP_Output_module_3

Failure_Detection

MUX

010000000000001

1 0

 OR

15

BITS

C
O
M
P
E
R
A
T
O
R

15

BITS

C
O
M
P
E
R
A
T
O
R

15

BITS

C
O
M
P
E
R
A
T
O
R

 58

5.1.2 TMR WITH VOTER AND CORRECTION CIRCUITS

TMRVC which is applied to floating point multiplier circuit is implemented to show

fault detection and correction.

This system contains module input fault injection circuit, 3 sub-components (floating

point (FP) multiplier), and voter and correction circuits. Main diagram of TMRVC

which is applied to floating point multiplier circuit is shown in Figure 5.17.

Triple Moduler Redundancy with Correction Block VHDL Code in Appendix-D refers

to TMR with voter and correction circuits.

Figure 5.17 Main diagram of TMR with voter and correction circuit

 59

When user inserts fault, related module (floating point multiplier) gets faulty input. This

module produces different multiplication result than other two modules. (It produces

faulty output.) When two of these modules produce same multiplication result, system

operates properly due to majority voter circuit. Correction circuit satisfies correct input

to the all modules. So that system repairs itself. When all the modules produce different

outputs, (Fault is injected to more than 1 module at the same time.) system fails.

5.1.2.1 Module Input Fault Injection Circuit

Module Input Fault Injection Circuit in TMRVC circuits is same as the Module Input

Fault Injection Circuit in TMR with voter circuit. Floating point number,

Operation_Start, Insert_Module_Fault, and Insert_Module_Failure signals are applied to

this circuit. It generates FP_Input_A of 3 modules. When Insert_Module_Failure is 1,

one of these modules gets FP_Input_A as an input. Other two modules get faulty inputs.

When Insert_Module_Fault is 1, two of these modules get FP_Input_A as an input.

Other module gets faulty input. Floating Point Multiplication operation starts with the

rising edge of the Start_Operation input. Implementation of Module Input Fault

Injection Circuit is shown in Figure 5.2. (Implementation of Module Input Fault

Injection Circuit is same for both methods.)

5.1.2.2 15 Bits FP Multiplier

Block diagram of 15 bits FP Multiplier is shown in Figure 5.18. FP_Input_a is

connected to Module Input Fault Injection Circuit. Other multiplier input is connected to

System_Output. System_Output is updated on the falling edge of Start_Operation input

signal. 15 bits FP Multiplier multiplies FP_Input_b and System Output which comes

from Voter and Correction Circuit.

Implementation of 15 Bits FP Multiplier is same for both methods. As a result, we do

not repeat this section. It is explained in section 5.1.1.3.

 60

Figure 5.18 15 bits FP Multiplier Block Diagram

5.1.2.3 Voter and Correction Circuits

Voter Circuit:

Voter and Correction Circuit is last part in TMRVC implementation. Implementation of

voter circuit is same for both methods. It is shown in Figure 5.16.

When two modules outputs (floating point multiplier outputs) are same, System_Output

is equal to one of them and Failure_Detection output is equal to 0. When all modules

give different outputs, Failure_Detection output is equal to 1. (Failure detected.).

Correction Circuit:

System_Output drives registered FP_Input_b of three FP Multipliers. This is the

correction circuit.

 61

5.2 TEST PATTERN GENERATOR FPGA

5.2.1 Test Pattern Generator FPGA RS232 Interface

There are two input/output pins, assigned for Software communication on Test Pattern

Generator FPGA. One of them is called as RS232_in and the other one is called as

RS232_out. RS232_in is responsible for receiving fault injection commands from

RS232 transceiver and RS232_out is responsible for transmitting fault injection test

results to the RS232 transceiver in a defined protocol.

Transfers (transmit/ receive) commands are sending by bytes. Byte transfer is specified

as follow:

Initially serial channel is set to 1. Communication starts with the falling edge of this

channel. Then, 8 bits (one byte) are transmitted/received with the baud rate of 9600.

Finally this channel is set to 1 and new commands are waited for transfer. Byte transfer

protocol is shown in Figure 5.19.

Start= 0

Initial = 1 Bit 0 Bit 2 Bit 4 Bit 6

Bit 1 Bit 3 Bit 5 Bit 7

Stop = 1

Final = 1

104,166 us

Figure 5.19 Byte transfer protocol

 62

Receiving Fault Injection Commands and Floating Point Multiplier Input:

FPGA waits in the first state. Then, if it takes AA byte from the RS232_in input pin, it

gets to second state. If it takes 55 byte from the RS232_in input pin, it gets to fifth state.

In other cases, it returns the first state and waits for AA or 55 bytes.

If it gets to second state, it waits for the new byte which includes fault injection

commands. When it takes the second byte, these commands are transferred to Fault

Tolerant Systems FPGA and Test Pattern Generator FPGA gets to third state, where it

finishes the receiving and waits the test results.

If it gets to fifth state, it waits for the new 2 bytes. First one of them includes sign bit and

mantissa bits of the floating point multiplier circuit. Second byte contains exponent bits

of the floating point multiplier circuit. When Test Pattern Generator FPGA takes these

two bytes in fifth state, it returns to first state.

Transmitting Fault Injection Test Results:

FPGA logic drives 1 to RS232_out pin. When FPGA gets to third state, it transmits BB

byte from RS232_out pin and it gets to fourth state. In fourth state it transmits fault

injection test results in one byte to the computer. Finally, FPGA gets to initial state (first

state) and waits new fault injection sequence.

FPGA state diagram for RS232 interface is shown in Figure 5.20.

 63

Figure 5.20 State Diagram for RS232 Interface

There are three VHDL source codes for RS232 Interface.

First one of them is called as RS232 Transmitter. This module is responsible for

transmitting 8 bits parallel data to the serial port. This VHDL source is given in

Appendix-C.

Second one of them is called as RS232 Receiver. This module is responsible for

receiving serial data at 9600 baud rate and transfers this signals into 8 bits parallel data.

This VHDL source is given in Appendix-C.

 64

Third one of them is called as RS232 Interface. This module is an upper class VHDL

code for RS232 Transmitter and RS232 Receiver modules. It coordinates the operation

of RS232 Transmitter and RS232 Receiver modules. It generates the state machine,

which specifies protocol for software communication. This VHDL source is given in

Appendix-C.

 65

CHAPTER 6

IMPLEMENTATION RESULTS OF APPLIED

ALGORITHMS

Two fault tolerant methods are tested in this thesis. Both of these methods use triple

modular redundancy (TMR) as a fault tolerant method. First one of them uses three

identical components (Floating Point Multiplier Inner Feedback Circuit) and voter

circuit as said previously. This method is called as TMRV and it is shown in Figure 6.1.

Second one uses three identical components (Floating Point Multiplier), voter circuit and

correction circuit and it is shown in Figure 6.2.

Module 1
15 bits FP Multiplier

Inner Feedback
V
o
t
e
r

C
i
r
c
u
i
t

FP_Output_module_1

Module 2
15 bits FP Multiplier

Inner Feedback

Module 3
15 bits FP Multiplier

Inner Feedback
FP_Output_module_3

FP_Output_module_2 System_OutputFP_Input_A

Figure 6.1 TMR with Voter Circuit

 66

Figure 6.2 TMR with Voter and Correction Circuits

SEU is very serious problem in FPGA applications. When we use three identical

components, any error occurred in one of these 3 components can be tolerated. But

SEUs, which occurs in the extra logic due to fault tolerance, can not be tolerated.

In TMRV, component is declared as Floating Point Multiplier Inner Feedback Circuit

and extra logic due to fault tolerance is declared as a voter circuit.

In TMRVC, component is declared as Floating Point Multiplier and extra logic due to

fault tolerance is declared as voter and correction circuits.

If voter circuit in TMRV is smaller than a single component (Floating Point Multiplier

Inner Feedback Circuit), TMRV can be preferred to tolerate SEU. Also, if voter and

correction circuits in TMRVC are smaller than a single module (Floating Point

Multiplier), TMRVC can be preferred to tolerate SEU too. These module sizes are given

in the following sections for each method. These values are obtained from FPGA

implementation reports.

 67

6.1 Implementation Results of TMR with voter circuit

Main building block of FPGA is called as Configurable Logic Blocks (CLBs). It is

composed of Function Generators and Flip Flops.

So that, if the number of flip flops and number of function generators in the voter circuit

is smaller than number of these in single component (Floating Point Multiplier Inner

Feedback Circuit), applied method is preferable to tolerate SEU. FPGA placement

report summary is given in Table 6.1. This report shows used flip flop and function

generator quantities in single component (Floating Point Multiplier Inner Feedback

Circuit) and in TMRV (in the system).

Table 6.1 TMR with voter circuit FPGA placement report summary

In system
(In TMR with voter

circuit)

In single module
(In 15 bits Floating Point Multiplier Inner

Feedback Circuit)

Number of CLB Flip Flops 261 87

Number of Function Generators 702 217

Number of flip flops used in the voter circuit = ((Total number of flip flops) – 3 x

(number of flip flops in the FP multiplier inner feedback circuit)).

Number of flip flops used in the voter circuit = 261 – 3 x 87

Number of flip flops used in the voter circuit = 0

 68

SEU mitigation percentage of flip flops = Number of flip flops used in the

voter circuit / Number of flip flops used in the FP multiplier inner feedback circuit x 100

SEU mitigation percentage of flip flops = 0 / 87 x 100

SEU mitigation percentage of flip flops = % 0

Number of function generators used in the voter circuit = ((Total number of function

generators) – 3 x (number of function generators in the FP multiplier inner feedback

circuit)).

Number of function generators used in the voter circuit = 702- 3 x 217

Number of function generators used in thevoter circuit = 51

SEU mitigation percentage of function generators = Number of flip flops used in

the voter circuit / Number of flip flops used in the FP multiplier inner feedback circuit

*100

SEU mitigation percentage of function generators = 51 / 217 x 100

SEU mitigation percentage of function generators = % 23, 5

6.2 Implementation Results of TMR with voter and correction circuit

FPGA placement report summary for TMRVC is given in Table 6.2. This report shows

used flip flop and function generator quantities in single component and in TMRVC (in

the system).

 69

Table 6.2 TMR with voter and correction circuit FPGA placement report summary

In system
(In TMR with voter and

correction circuit)

In single module
(In 15 bits Floating Point

Multiplier)

Number of CLB Flip Flops 336 103

Number of Function Generators 698 213

Number of flip flops used in voter and correction circuits = ((Total number of

flip flops) – 3 x (number of flip flops in the FP multiplier circuit)).

Number of flip flops used in voter and correction circuits = 336 – 3 x 103

Number of flip flops used in voter and correction circuits = 27

SEU mitigation percentage of flip flops = Number of flip flops used in voter

and correction circuits / Number of flip flops used in the FP multiplier circuit x 100

SEU mitigation percentage of flip flops = 27 / 103 x 100

SEU mitigation percentage of flip flops = % 26, 2

Number of function generators used in voter and correction circuits = ((Total number of

function generators) – 3 x (number of function generators in the FP multiplier circuit)).

Number of function generators used in voter and correction circuits = 698- 3 x 213

Number of function generators used in voter and correction circuits = 57

 70

SEU mitigation percentage of function generators = Number of flip flops used in

voter and correction circuits / Number of flip flops used in the FP multiplier inner

feedback circuit *100

SEU mitigation percentage of function generators = 57 / 213 x 100

SEU mitigation percentage of function generators = % 26, 7

6.3 Advantages and Disadvantages of Applied Algorithms

As shown in the previous section,

Implementation results of TMR with voter circuit:

SEU mitigation percentage of flip flops = % 0

SEU mitigation percentage of function generators = % 23, 5

Voter circuit does not use flip flops. So that, probability of SEU occurrence at these flip

flops is zero. Number of function generators used in the voter circuit is almost ¼ of the

number of function generators used in the FP multiplier inner feedback circuit. So that,

probability of SEU occurrence at function generators in voter circuit is less than the

probability of SEU occurrence at function generators in the FP multiplier inner feedback

circuit.

So, TMR with voter circuit is a preferable method to tolerate SEU in this application.

Implementation results of TMR with voter and correction circuits:

SEU mitigation percentage of flip flops = % 26, 2

SEU mitigation percentage of function generators = % 26, 7

 71

Numbers of flip flops and function generators used in voter and correction circuits are

almost ¼ of the numbers of flip flops and function generators used in the FP multiplier

circuit. So that, probability of SEU occurrence at flip flops and function generators in

voter and correction circuits is less than the probability of SEU occurrence at flip flops

and function generators in the FP multiplier circuit.

So, TMR with voter and correction circuits is a preferable method to tolerate SEU in this

application too.

Number of flip flops and function generators in the voter circuit of TMRV is smaller

than the number of flip flops and function generators in voter and correction circuits of

TMRVC. When we deal with only SEU detection, TMRV seems to be preferable than

TMRVC. But don’t forget that, TMRVC has repair property and extra logic due to

correction circuit is very small. So, TMRVC can be used as a fault tolerant method,

when we need only fault detection or fault detection and correction.

 72

CHAPTER 7

CONCLUSIONS

The aim of this thesis is to investigate the behaviour of hardware fault tolerant methods

as the implementation of dependable computing application. In this work, a floating

point multiplier unit is selected and implemented in the FPGA to tolerate SEU. Two

methods are tested. Both of these methods use triple modular redundancy (TMR) as a

fault tolerant method. First one of them uses three identical components (Floating Point

Multiplier Inner Feedback Circuit) and a voter circuit. This method is called as TMRV.

Second one uses three identical components (Floating Point Multiplier), voter circuit and

correction circuit. It is called as TMRVC.

In TMRV, when one of these 3 components (Floating Point Multiplier Inner Feedback

Circuit) gets faulty output due to transient error, it is ignored by the voter circuit but

after that, faulty component could not operate regularly. In TMRVC, when one of these

modules (Floating Point Multiplier) gets faulty output due to transient error, it is ignored

by the voter circuit and correction circuit repairs faulty module. After this error, faulty

component could operate regularly.

Main consideration in SEU tolerance is area constraint. If extra logic due to fault

tolerance is bigger than one of the components in TMR, probability of SEU in the extra

logic due to fault tolerance is bigger than the probability of SEU in a single component.

In this case, applied fault tolerant technique is not preferred for tolerating SEU.

 73

Extra logic added due to fault tolerance is voter circuit in TMRV and it is smaller than a

single component (Floating Point Multiplier Inner Feedback Circuit). So, TMRV is

preferable for tolerating SEU.

Extra logic added due to fault tolerance is voter and correction circuits in TMRVC.

Extra logic due to fault tolerance is smaller than a single component (Floating Point

Multiplier). So, TMRVC is preferable for tolerating SEU too.

When we need fault correction TMRVC is preferred method. Voter circuit in TMRV is

smaller than voter and correction circuits in TMRVC. When we only deal with SEU

detection, TMRV seems to be preferable. But extra logic added due to correction is very

small. So we can use TMRVC when we need SEU detection too.

In our application, we use Leonardo Spectrum as a synthesis program. If we use another

synthesis programs (Precision Synthesis, XST ...), implementation outputs may change.

But all of these synthesis programs produce similar outputs and our implementation

outputs do not change very much with the selected synthesis program.

 74

REFERENCES

[1] Barry W. Johnson, “Design and Analysis of Fault Tolerant Digital Systems”,

1989

[2] M. Nikoladis, “Time Redundancy Based Soft-Error Tolerance to Rescue

Nanometer Technologies”, IEEE 17’Th VLSI Test Symposium, April 1999, pp.

86-94

[3] M. Violante, M. Ceschia, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M.

Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Candelori,

“Analyzing SEU Effects in SRAM-based FPGAs”, IEEE International On-Line

Testing Symposium, pp. 119-123, 2003

[4] Sandi Habinc, “Functional Triple Modular Redundancy (FTMR): VHDL Design

Methodology for Redundancy in Combinatorial and Sequential Logic Design and

Assessment Report”, 12/2002

[5] Jamil Khatib, “Introduction to Programmable Logic Devices”,

http://www.geocities.com/jamilkhatib75/fpga/FPGA_intro.html, 2002

[6] XILINX, XC4000E and XC4000X Series Field Programmable Gate Arrays Data

Sheet, 05/1999

[7] JETTA - Journal of Electronic Testing - Theory and Applications, vol. 17, pp.

163-174, 2001.

[8] Atmel, AT17C512/010 FPGA Configuration EEPROM Memory Data Sheet,

06/2001

 75

[9] Q-Tech Corporation, M55310/26B Data Sheet, 07/1990

[10] Dallas Semiconductor, Dual RS232 Transmitter/Receiver Data Sheet

[11] ASELSAN, High Speed PCB Design Guide: Power System Design, 2004

[12] ASELSAN, High Speed PCB Design Guide: Ground Bounce, 2004

[13] Andrew S. Tanenbaum & Maarten van Steen, Distributed Systems: Principles

and Paradigms, 2001

[14] Xilinx, “RTL Synthesis Tools”,

http://www.xilinx.com/products/design_resources/design_tool/grouping/synthesi

s.htm

[15] Xilinx Signal Processing Group, “FPGAs: The High End Alternative for DSP

Applications”, 2000

 76

APPENDIX-A

SETUP COMPONENTS

There are 4 components in our setup. They are shown below.

Figure A.1 Software user interface of thesis application

 77

Figure A.2 Test Pattern Generator

Figure A.3 Fault Tolerant Systems

 78

Figure A.4 Display PCB

 79

APPENDIX-B

PCB LAYOUT

TEST PATTERN GENERATOR PCB LAYOUT

Test Pattern Generator is designed as a six layers Printed Circuit Board (PCB). All

components are located on the upper side of the PCB. First layer is assigned for

component placement and signal routing. Second layer is assigned for a ground. Third

layer is assigned for a power. Other three layers are assigned for signal routing. These

layers are shown in the following figures.

Figure B.1 Test Pattern Generator components, signal routings and dimensions

 80

Figure B.2 Test Pattern Generator First Layer

Figure B.3 Test Pattern Generator Second Layer (Ground Layer)

 81

Figure B.4 Test Pattern Generator Third Layer (Power Layer)

Figure B.5 Test Pattern Generator Fourth Layer

 82

Figure B.6 Test Pattern Generator Fifth Layer

Figure B.7 Test Pattern Generator Sixth Layer

 83

FAULT TOLERANT SYSTEMS PCB LAYOUT

Fault Tolerant Systems is designed as a six layers Printed Circuit Board (PCB). All

components are located on the upper side of the PCB. First layer is assigned for

component placement and signal routing. Second layer is assigned for a ground. Third

layer is assigned for a power. Other three layers are assigned for signal routing. These

layers are shown in the following figures.

Figure B.8 Fault Tolerant Systems components, signal routings and dimensions

 84

Figure B.9 Fault Tolerant Systems First Layer

Figure B.10 Fault Tolerant Systems Second Layer (Ground Layer)

 85

Figure B.11 Fault Tolerant Systems Third Layer (Power Layer)

Figure B.12 Fault Tolerant Systems Fourth Layer

 86

Figure B.13 Fault Tolerant Systems Fifth Layer

Figure B.14 Fault Tolerant Systems Sixth Layer

 87

DISPLAY PCB LAYOUT

Display PCB is designed as a two layers Printed Circuit Board (PCB). All components

are located on the upper side of the PCB. First layer is assigned for component

placement and signal routing. Second layer is assigned for a signal routing. This PCB

does not has a ground and power planes. Ground and planes are implemented as a signal.

These layers are shown in the following figures.

Figure B.15 Display PCB components, signal routings and dimensions

 88

Figure B.16 Display PCB First Layer

Figure B.17 Display PCB Second Layer

 89

APPENDIX-C

TEST PATTERN GENERATOR VHDL CODES

RS232 Receiver Block VHDL Code

--***

--********************************* METU / EE ***********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

-- BLOCK NAME: RS232 alici blogu

-- ACIKLAMA :

--**

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY rs232_receiver IS

PORT(

 baudrate : IN std_logic_vector (7 DOWNTO 0);

 clk : IN std_logic;

 cs : IN std_logic;

 rst : IN std_logic;

 sin : IN std_logic;

 data_out : OUT std_logic_vector (7 DOWNTO 0);

 datavalid : OUT std_logic;

 90

 receiving : OUT std_logic

);

END rs232_receiver ;

architecture arch_rs232_receiver of rs232_receiver is

constant wait_first : std_logic_vector(1 downto 0) := "00";

constant count_half : std_logic_vector(1 downto 0) := "01";

constant get_first : std_logic_vector(1 downto 0) := "10";

constant get_last : std_logic_vector(1 downto 0) := "11";

signal counter : std_logic_vector(7 downto 0);

signal count_8 : std_logic_vector(2 downto 0);

signal rcv_data : std_logic_vector(7 downto 0);

signal data_flag : std_logic;

signal rcv_state : std_logic_vector(1 downto 0);

begin

 process(clk, rst)

 begin

 if rst = '0' then

 rcv_state <= wait_first;

 counter <= (others => '0');

 count_8 <= (others => '0');

 rcv_data <= (others => '0');

 data_flag <= '1';

 receiving <= '0';

 elsif rising_edge(clk) then

 if cs = '0' then

 rcv_state <= wait_first;

 counter <= (others => '0');

 count_8 <= (others => '0');

 receiving <= '0';

 data_flag <= '1';

 else

 case rcv_state is

 when wait_first =>

 91

 counter <= (others => '0');

 data_flag <= '1';

 if sin = '1' then

 rcv_state <= wait_first;

 else

 rcv_state <= count_half;

 end if;

 when count_half =>

 counter <= counter+1;

 if sin = '0' then

 if counter = ('0'&baudrate(7 downto 1)) then

 counter <= (others => '0');

 rcv_state <= get_first;

 receiving <= '1';

 else

 rcv_state <= count_half;

 end if;

 else

 rcv_state <= wait_first;

 end if;

 when get_first =>

 counter <= counter+1;

 if counter = baudrate then

 counter <= (others => '0');

 rcv_data <= sin&rcv_data(7 downto 1);

 count_8 <= count_8+1;

 if count_8 = "111" then

 rcv_state <= get_last;

 end if;

 end if;

 when get_last =>

 counter <= counter+1;

 if counter = baudrate then

 counter <= (others => '0');

 receiving <= '0';

 if sin='1' then

 data_flag <= '0';

 92

 end if;

 rcv_state <=wait_first;

 end if;

 when others =>

 null;

 end case;

 end if;

 end if;

 end process;

 process(clk,rst)

 begin

 if rst='0' then

 data_out <=(others=>'0');

 datavalid <= '1';

 elsif rising_edge(clk) then

 datavalid <= '1';

 if data_flag='0' then

 data_out <= rcv_data;

 datavalid <= '0';

 end if;

 end if;

 end process;

END ;

--** end of architecture

--***

--********************************* METU / EE **********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

 93

RS232 Transmitter Block VHDL Code

--***

--********************************* METU / EE ***********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

-- BLOCK NAME: RS232 gonderici blogu

-- ACIKLAMA : .

--***

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY rs232_transmitter IS

PORT(

 baudrate : IN std_logic_vector (7 DOWNTO 0);

 clk : IN std_logic;

 cs : IN std_logic;

 data_in : IN std_logic_vector (7 DOWNTO 0);

 rst : IN std_logic;

 start_xmit : IN std_logic;

 sout : OUT std_logic;

 transmitting : OUT std_logic

);

END rs232_transmitter ;

architecture arch_rs232_transmitter of rs232_transmitter is

signal xmitdt : std_logic_vector(7 downto 0);

signal xmit_stm : std_logic_vector(1 downto 0);

signal cnt1 : std_logic_vector(7 downto 0);

signal cnt_xmit_stop : std_logic_vector(2 downto 0);

constant WAITSTATE : std_logic_vector(1 downto 0) := "00";

constant STARTSTATE : std_logic_vector(1 downto 0) := "01";

constant DATASTATE : std_logic_vector(1 downto 0) := "10";

 94

constant STOPSTATE : std_logic_vector(1 downto 0) := "11";

begin

 process(clk, rst)

 begin

 if rst = '0' then

 xmit_stm <= WAITSTATE;

 sout <= '1';

 cnt1 <= (others => '0');

 cnt_xmit_stop <= (others => '0');

 xmitdt <= (others => '0');

 transmitting <= '0';

 elsif falling_edge(clk) then

 if cs = '0' then

 xmit_stm <= WAITSTATE;

 transmitting <= '0';

 sout <= '1';

 cnt1 <= (others => '0');

 cnt_xmit_stop <= (others => '0');

 else

 case xmit_stm is

 --ready to transmit data 1 start,1 stop bit

 when WAITSTATE =>

 if start_xmit = '1' then

 xmit_stm <= STARTSTATE;

 xmitdt <= data_in;

 end if;

 when STARTSTATE =>

 transmitting <= '1';

 sout <= '0';

 cnt1 <= cnt1+1;

 if cnt1 = baudrate then

 cnt1 <= (others => '0');

 xmit_stm <= DATASTATE;

 end if;

 when DATASTATE =>

 95

 sout <= xmitdt(0);

 cnt1 <= cnt1+1;

 if cnt1 = baudrate then

 cnt_xmit_stop <= cnt_xmit_stop+1;

 xmitdt <= '0'&xmitdt(7 downto 1);

 if cnt_xmit_stop = "111" then

 sout <= '1';

 cnt_xmit_stop <= (others => '0');

 xmit_stm <= STOPSTATE;

 end if;

 cnt1 <= (others => '0');

 end if;

 when STOPSTATE =>

 cnt1 <=cnt1+1;

 if cnt1=baudrate then

 cnt1<=(others=>'0');

 xmit_stm<=WAITSTATE;

 transmitting<='0';

 end if;

 when others=>

 null;

 end case;

 end if;

 end if;

 end process;

END ;

--***

--********************************* METU / EE ***********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

 96

RS232 Interface Block VHDL Code

--***

--********************************* METU / EE ***********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

-- BLOCK NAME: RS232 arayuz blogu

-- ACIKLAMA :

--**

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY rs232_arayuz IS

PORT

 (

 rst : IN std_logic;

 clk : IN std_logic;

 rs232_in : IN std_logic;

 rs232_out : OUT std_logic;

 alinan_data : OUT std_logic_vector (7 DOWNTO 0);

 gonderilen_data : IN std_logic_vector (7 DOWNTO 0);

 mult_input : out std_logic_vector (14 DOWNTO 0)

);

END rs232_arayuz ;

architecture arch_rs232_arayuz of rs232_arayuz is

COMPONENT rs232_receiver

 PORT(

 baudrate : IN std_logic_vector (7 DOWNTO 0);

 clk : IN std_logic;

 cs : IN std_logic;

 rst : IN std_logic;

 sin : IN std_logic;

 data_out : OUT std_logic_vector (7 DOWNTO 0);

 datavalid : OUT std_logic;

 97

 receiving : OUT std_logic

);

END COMPONENT ;

COMPONENT rs232_transmitter

 PORT(

 baudrate : IN std_logic_vector (7 DOWNTO 0);

 clk : IN std_logic;

 cs : IN std_logic;

 data_in : IN std_logic_vector (7 DOWNTO 0);

 rst : IN std_logic;

 start_xmit : IN std_logic;

 sout : OUT std_logic;

 transmitting : OUT std_logic

);

 END COMPONENT ;

signal baudrate : std_logic_vector (7 DOWNTO 0);

signal cs : std_logic;

signal data_out : std_logic_vector (7 DOWNTO 0);

signal datavalid : std_logic;

signal receiving : std_logic;

signal data_in : std_logic_vector (7 DOWNTO 0);

signal start_xmit : std_logic;

signal transmitting : std_logic;

signal state_a : std_logic_vector (5 DOWNTO 0);

signal valid_buf : std_logic;

signal count_a : std_logic_vector (9 DOWNTO 0);

signal alinan_data_mi : std_logic_vector (7 DOWNTO 0);

signal data_check : std_logic_vector (7 DOWNTO 0);

signal ugur : std_logic_vector (7 DOWNTO 0);

signal FP_input_a : std_logic_vector (7 DOWNTO 0);

signal FP_input_b : std_logic_vector (7 DOWNTO 0);

BEGIN

baudrate <= "00100000"; -- 9600 baudrate if Tclk= 1,641 us;

cs <= '1' ;

 process(clk, rst)

 begin

 if rst = '0' then

 98

 state_a <= (others => '0');

 valid_buf <= '1';

 start_xmit <= '0';

 alinan_data <= (others => '0');

 alinan_data_mi <= (others => '0');

 count_a <= (others => '0');

 data_check <= (others => '0');

 ugur <= (others => '0');

 FP_input_a <= (others => '0'); FP_input_a(6) <= '1';

 FP_input_b <= (others => '0'); FP_input_b(0) <= '1';

 mult_input <= "010000000000001";

 elsif falling_edge(clk) then

 valid_buf <= datavalid ;

 case state_a is

 when "000000" =>

 if (datavalid ='1') and (valid_buf ='0') then

 if (data_out = "10101010") then --AA

 state_a <= state_a + '1';

 end if;

 end if;

 if (datavalid ='1') and (valid_buf ='0') then

 if (data_out = "01010101") then --55

 state_a <= "100000";

 end if;

 end if;

 when "000001" =>

 if (datavalid ='1') and (valid_buf ='0') then

 alinan_data_mi <= data_out;

 state_a <= state_a + '1';

 end if;

 when "000010" =>

 alinan_data <= alinan_data_mi ;

 data_in <= "10111011"; --BB

 state_a <= state_a + '1';

 when "000011" =>

 start_xmit <= '1';

 state_a <= state_a + '1';

 when "000100" =>

 start_xmit <= '0';

 99

 state_a <= state_a + '1';

 when "000101" =>

 state_a <= state_a + '1';

 when "000110" =>

 if transmitting = '0' then

 data_in <= gonderilen_data;

 ugur <= gonderilen_data;

 state_a <= "011000";

 count_a <= (others => '0');

 end if;

 when "011000" =>

 state_a <= state_a + '1';

 when "011001" =>

 start_xmit <= '1';

 state_a <= state_a + '1';

 when "011010" =>

 start_xmit <= '0';

 state_a <= (others => '0');

 when "100000" =>

 if (datavalid ='1') and (valid_buf ='0') then

 FP_input_a <= data_out;

 state_a <= state_a + '1';

 end if;

 when "100001" =>

 if (datavalid ='1') and (valid_buf ='0') then

 FP_input_b <= data_out;

 state_a <= state_a + '1';

 end if;

 when "100010" =>

 mult_input <= FP_input_a & FP_input_b (6 downto 0);

 state_a <= state_a + '1';

 when "100011" =>

 state_a <= (others => '0');

 when others=>

 null;

 100

 end case;n

 end if;

 end process;

U1: rs232_receiver PORT MAP

 (

 baudrate => baudrate ,

 clk => clk ,

 cs => cs ,

 rst => rst ,

 sin => rs232_in ,

 data_out => data_out ,

 datavalid => datavalid ,

 receiving => receiving

);

U2: rs232_transmitter PORT MAP

 (

 baudrate => baudrate ,

 clk => clk ,

 cs => cs ,

 data_in => data_in ,

 rst => rst ,

 start_xmit => start_xmit,

 sout => rs232_out ,

 transmitting => transmitting

);

END ;

--***

--********************************* METU / EE ***********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

 101

Test Pattern Generator Block VHDL Code

--***

--********************************* METU / EE ***********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

-- BLOCK NAME: Test pattern generator

-- ACIKLAMA : FPGA1 testini suren test pattern yaratilir ve sonuclar degerlendirilir.

--**

library ieee ;

use ieee.std_logic_unsigned.all ;

use ieee.std_logic_1164.all ;

library UNISIM ;

use UNISIM.VCOMPONENTS.all ;

entity test_pattern_generator is

port (

 rst : IN std_logic ; -- rst signal, initalize all

registers.

 clk_in : IN std_logic ; -- 39MHz input clk

 rs232_in : IN std_logic ; -- RS232 port data tranmit

 rs232_out : OUT std_logic ; -- RS232 port data receive

 insert_module_fault_1 : OUT std_logic ; -- insert one fault to the TMR

circuit

 insert_module_failure_1 : OUT std_logic ; -- insert two fault to the TMR

circuit

 insert_voter_fault_1 : OUT std_logic ; -- insert voter fault to the TMR

circuit

 insert_module_fault_2 : OUT std_logic ; -- insert one fault to the TMR

with feedback circuit

 insert_module_failure_2 : OUT std_logic ; -- insert two fault to the TMR

with feedback circuit

 insert_voter_fault_2 : OUT std_logic ; -- insert voter fault to the TMR

with feedback circuit

 failure_detection_1 : IN std_logic ; -- fault detection signal in TMR

circuit

 102

 failure_detection_2 : IN std_logic ; -- fault detection signal in TMR

with feedback circuit

 operation_start : OUT std_logic ; -- start multiplication without

fault injection

 clk_out : OUT std_logic ; -- operational clock of fault

tolerant system implementation fpga

 fault_module_a : IN std_logic ; -- fault injected oodule

specifier_1

 fault_module_b : IN std_logic ; -- fault injected oodule

specifier_2

 --fault_module_c : IN std_logic ; -- fault injected oodule

specifier_3

 mult_input : OUT std_logic_vector(14 DOWNTO 0) --fp multiplier

input

);

end test_pattern_generator;

architecture arch_test_pattern_generator of test_pattern_generator is

COMPONENT BUFG --- clock buffer

port

 (

 i : in std_logic;

 o : out std_logic

);

end COMPONENT;

COMPONENT rs232_arayuz --used to communicate with rs232 port of the computer at 9600

baudrate

PORT

 (

 rst : IN std_logic;

 clk : IN std_logic;

 rs232_in : IN std_logic;

 rs232_out : OUT std_logic;

 alinan_data : OUT std_logic_vector (7 DOWNTO 0);

 gonderilen_data : IN std_logic_vector (7 DOWNTO 0);

 mult_input : out std_logic_vector (14 DOWNTO 0)

);

END COMPONENT ;

-- signal declerations

 103

signal clk_divider : std_logic_vector (6 downto 0);

signal alinan_data : std_logic_vector (7 DOWNTO 0);

signal gonderilen_data : std_logic_vector (7 DOWNTO 0);

signal clk : std_logic;

signal response_time : std_logic_vector (4 DOWNTO 0);

signal insert_module_fault_1_a : std_logic;

signal insert_module_failure_1_a : std_logic;

signal insert_voter_fault_1_a : std_logic;

signal insert_module_fault_2_a : std_logic;

signal insert_module_failure_2_a : std_logic;

signal insert_voter_fault_2_a : std_logic;

signal insert_module_fault_1_b : std_logic;

signal insert_module_failure_1_b : std_logic;

signal insert_voter_fault_1_b : std_logic;

signal insert_module_fault_2_b : std_logic;

signal insert_module_failure_2_b : std_logic;

signal insert_voter_fault_2_b : std_logic;

signal insert_module_fault_1_c : std_logic;

signal insert_module_failure_1_c : std_logic;

signal insert_voter_fault_1_c : std_logic;

signal insert_module_fault_2_c : std_logic;

signal insert_module_failure_2_c : std_logic;

signal insert_voter_fault_2_c : std_logic;

signal operation_start_a : std_logic;

signal operation_start_b : std_logic;

signal operation_start_c : std_logic;

signal send_response : std_logic;

signal send_response_buf : std_logic;

--signal mult_input : std_logic;

BEGIN

process(clk_in, rst)

 begin

 if rst = '0' then

 insert_module_fault_1_a <= '0' ;

 insert_module_failure_1_a <= '0' ;

 insert_voter_fault_1_a <= '0' ;

 insert_module_fault_2_a <= '0' ;

 insert_module_failure_2_a <= '0' ;

 insert_voter_fault_2_a <= '0' ;

 insert_module_fault_1_b <= '0' ;

 insert_module_failure_1_b <= '0' ;

 insert_voter_fault_1_b <= '0' ;

 insert_module_fault_2_b <= '0' ;

 insert_module_failure_2_b <= '0' ;

 104

 insert_voter_fault_2_b <= '0' ;

 insert_module_fault_1_c <= '0' ;

 insert_module_failure_1_c <= '0' ;

 insert_voter_fault_1_c <= '0' ;

 insert_module_fault_2_c <= '0' ;

 insert_module_failure_2_c <= '0' ;

 insert_voter_fault_2_c <= '0' ;

 operation_start_a <= '0' ;

 operation_start_b <= '0' ;

 operation_start_c <= '0' ;

 send_response <= '0' ;

 send_response_buf <= '0' ;

 response_time <= "00000";

 elsif falling_edge(clk) then

 insert_module_fault_1_a <= alinan_data (0) ;

 insert_module_failure_1_a <= alinan_data (1) ;

 insert_voter_fault_1_a <= alinan_data (2) ;

 insert_module_fault_2_a <= alinan_data (3) ;

 insert_module_failure_2_a <= alinan_data (4) ;

 insert_voter_fault_2_a <= alinan_data (5) ;

 operation_start_a <= alinan_data (6) ;

 insert_module_fault_1_b <= insert_module_fault_1_a ;

 insert_module_failure_1_b <= insert_module_failure_1_a ;

 insert_voter_fault_1_b <= insert_voter_fault_1_a ;

 insert_module_fault_2_b <= insert_module_fault_2_a ;

 insert_module_failure_2_b <= insert_module_failure_2_a ;

 insert_voter_fault_2_b <= insert_voter_fault_2_a ;

 operation_start_b <= operation_start_a ;

 insert_module_fault_1_c <= insert_module_fault_1_b ;

 insert_module_failure_1_c <= insert_module_failure_1_b ;

 insert_voter_fault_1_c <= insert_voter_fault_1_b ;

 insert_module_fault_2_c <= insert_module_fault_2_b ;

 insert_module_failure_2_c <= insert_module_failure_2_b ;

 insert_voter_fault_2_c <= insert_voter_fault_2_b ;

 operation_start_c <= operation_start_b ;

 insert_module_fault_1 <= insert_module_fault_1_c ;

 insert_module_failure_1 <= insert_module_failure_1_c ;

 insert_voter_fault_1 <= insert_voter_fault_1_c ;

 insert_module_fault_2 <= insert_module_fault_2_c ;

 insert_module_failure_2 <= insert_module_failure_2_c ;

 insert_voter_fault_2 <= insert_voter_fault_2_c ;

 -- operation_start <= operation_start_c ;

 105

 send_response_buf <= send_response ;

 operation_start <= send_response_buf ;

 if ((insert_module_fault_1_c = '0') and (insert_module_fault_1_b = '1')) then

--rising

 send_response <= '1';

 end if;

 if ((insert_module_fault_2_c = '0') and (insert_module_fault_2_b = '1')) then

--rising

 send_response <= '1';

 end if;

 if ((insert_module_failure_1_c = '0') and (insert_module_failure_1_b = '1'))then

--rising

 send_response <= '1';

 end if;

 if ((insert_module_failure_2_c = '0') and (insert_module_failure_2_b = '1'))then

--rising

 send_response <= '1';

 end if;

 if ((insert_voter_fault_1_c = '0') and (insert_voter_fault_1_b = '1')) then

--rising

 send_response <= '1';

 end if;

 if ((insert_voter_fault_2_c = '0') and (insert_voter_fault_2_b = '1')) then

--rising

 send_response <= '1';

 end if;

 if ((operation_start_c = '0') and (operation_start_b = '1')) then

--rising

 send_response <= '1';

 end if;

 if (send_response = '1') then

 response_time <= response_time + '1';

 if (response_time >= "01100")then

 send_response <= '0';

 response_time <= "00000";

 -- gonderilen_data

 -- gonderilen_data test sonuclarini bilgisayara gondermekte kullanilir.

 gonderilen_data(0) <= not (failure_detection_1);

 106

 gonderilen_data(1) <= not (failure_detection_2);

 gonderilen_data(2) <= fault_module_a ;

 gonderilen_data(3) <= fault_module_b ;

 -- gonderilen_data(4) <= fault_module_c ;

 gonderilen_data(7 downto 4) <= "0000";

 end if;

 end if;

 end if;

 end process;

 clk_out <= clk;

-- multiplier_input_a <= mult_input ;

 process(clk_in, rst)

 begin

 if rst = '0' then

 clk_divider <= "0000000";

 elsif falling_edge(clk_in) then

 clk_divider <= clk_divider +'1' ;

 end if;

 end process;

U3: BUFG port map --clk buffer instantiation

 (

 i => clk_divider(6),

 o => clk

);

U2: rs232_arayuz PORT MAP -- rs232 arayuz instantiation

 (

 rst => rst ,

 clk => clk ,

 rs232_in => rs232_in ,

 rs232_out => rs232_out ,

 alinan_data => alinan_data ,

 gonderilen_data => gonderilen_data,

 mult_input => mult_input

);

END;

--***

--********************************* METU / EE ***********************************

--***

 107

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

 108

APPENDIX-D

FAULT TOLERANT SYSTEMS VHDL CODES

Floating Point Multiplier Block VHDL Code

--***

--********************************* METU / EE ***********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

--

-- BLOCK NAME: Floating Point Multiplier

-- ACIKLAMA : Iki tane 15 bit floating point sayiyi alip bunlari carpar.

-- Sonucu normalize ederek yine 16 bit verir.

--

--***

--

-- 16 bit fp number =>

-- bit 14 -> sign bit

-- 1 ise negatif

-- 0 ise pozitif

-- bit 13:7 -> mantissa

-- unsigned representation

-- bit 6:0 -> exponent

-- signed representation

--

--***

library ieee ;

use ieee.std_logic_unsigned.all ;

use ieee.std_logic_1164.all ;

use ieee.numeric_std.all ;

library UNISIM ;

 109

use UNISIM.VCOMPONENTS.all ;

--***

-- entity decleration

-- bu kisimda giris cikis sinyalleri gosterilmistir.

ENTITY FP_multiplier IS

 port (

 rst : in std_logic ;

 clk : in std_logic ;

 FP_input_A : in std_logic_vector (14 downto 0) ;

 FP_input_B : in std_logic_vector (14 downto 0) ;

 FP_output : out std_logic_vector (14 downto 0) ;

 overflow : out std_logic ;

 underflow : out std_logic ;

 operation_start : in std_logic

);

END FP_multiplier;

-- end of entity decleration

--***

-- architecture, kodun implemente edildigi kisim

ARCHITECTURE Arch_FP_multiplier of FP_multiplier is

-- signal assignments (kod icinde kullanilan sinyaller bu kisimda tanimlanir.)

signal FP_input_A_sign : std_logic ;

signal FP_input_A_exponent : signed (6 downto 0) ;

signal FP_input_A_mantissa : unsigned (6 downto 0) ;

signal FP_input_B_sign : std_logic ;

signal FP_input_B_exponent : signed (6 downto 0) ;

signal FP_input_B_mantissa : unsigned (6 downto 0) ;

signal FP_input_A_exponent_EX : signed (8 downto 0) ;

signal FP_input_B_exponent_EX : signed (8 downto 0) ;

signal Exponent_addition : signed (8 downto 0) ;

signal multiplier_sign : std_logic ;

signal multiplier_sign_a : std_logic ;

signal multiplier_sign_b : std_logic ;

signal FP_input_A_mantissa_b : unsigned (6 downto 0) ;

 110

signal FP_input_B_mantissa_b : unsigned (6 downto 0) ;

signal Mantissa_multip : unsigned(13 downto 0) ;

signal output_mantissa : unsigned(6 downto 0) ;

signal output_exponent : signed (8 downto 0) ;

signal output_mantissa_b : unsigned(6 downto 0) ;

signal output_exponent_b : signed (8 downto 0) ;

signal operation_start_buf : std_logic ;

signal operation_start_buf_b : std_logic ;

signal state_initial : std_logic_vector(6 downto 0);

signal utu : std_logic ;

--***

BEGIN -- begin operations

-- asenkron atamalarin yapilmasi.

FP_input_A_sign <= FP_input_A(14) ;

FP_input_A_exponent <= signed(FP_input_A(6 downto 0)) ;

FP_input_A_mantissa <= unsigned(FP_input_A(13 downto 7)) ;

FP_input_B_sign <= FP_input_B(14);

FP_input_B_exponent <= signed(FP_input_B(6 downto 0)) ;

FP_input_B_mantissa <= unsigned(FP_input_B(13 downto 7)) ;

process(rst,clk)

begin

 if rst = '0' then

 overflow <= '0'; -- NO OVERFLOW

 underflow <= '0'; -- NO UNDERFLOW

 FP_output <= "010000000000001";

 FP_input_A_exponent_EX <= "000000001";

 FP_input_B_exponent_EX <= "000000001";

 Exponent_addition <= "000000010";

 multiplier_sign <= '0'; -- POSITIVE

 multiplier_sign_a <= '0'; -- POSITIVE

 multiplier_sign_b <= '0'; -- POSITIVE

 FP_input_A_mantissa_b <= "1000000" ; -- VALUE1

 FP_input_B_mantissa_b <= "1000000" ;

 Mantissa_multip <= "10000001000000" ;

 output_mantissa <= "1000000";

 output_exponent <= "000000001";

 111

 output_mantissa_b <= "1000000";

 output_exponent_B <= "000000001";

 FP_output <= "010000000000001";

 operation_start_buf <= '0';

 operation_start_buf_b <= '0';

 elsif rising_edge(clk) then -- clk nin rising'i ile alinmisti.

 operation_start_buf_b <= operation_start_buf ;

 operation_start_buf <= operation_start ;

 if (((operation_start_buf_b ='0') and (operation_start_buf = '1')))then --rising

edge

 FP_input_A_exponent_EX <= resize (FP_input_A_exponent, 9);

 FP_input_B_exponent_EX <= resize (FP_input_B_exponent, 9);

 multiplier_sign <= (FP_input_A_sign xor FP_input_B_sign) ;

 FP_input_A_mantissa_b <= FP_input_A_mantissa;

 FP_input_B_mantissa_b <= FP_input_B_mantissa;

 multiplier_sign_a <= multiplier_sign ;

 utu <= '0';

 end if;

 multiplier_sign_a <= multiplier_sign ;

 multiplier_sign_b <= multiplier_sign_a ;

 Exponent_addition <= (FP_input_B_exponent_EX + FP_input_A_exponent_EX);

 Mantissa_multip <= (FP_input_A_mantissa_b * FP_input_B_mantissa_b);

 if Mantissa_multip(13) = '1' then

 output_mantissa <= Mantissa_multip (13 downto 7);

 output_exponent <= Exponent_addition ;

 elsif Mantissa_multip(12) = '1' then

 output_mantissa <= Mantissa_multip (12 downto 6);

 output_exponent <= Exponent_addition - "001" ;

 elsif Mantissa_multip(11) = '1' then

 output_mantissa <= Mantissa_multip (11 downto 5);

 output_exponent <= Exponent_addition - "010" ;

 elsif Mantissa_multip(10) = '1' then

 output_mantissa <= Mantissa_multip (10 downto 4);

 112

 output_exponent <= Exponent_addition - "011" ;

 elsif Mantissa_multip(9) = '1' then

 output_mantissa <= Mantissa_multip (9 downto 3);

 output_exponent <= Exponent_addition - "0100" ;

 elsif Mantissa_multip(8) = '1' then

 output_mantissa <= Mantissa_multip (8 downto 2);

 output_exponent <= Exponent_addition - "0101" ;

 elsif Mantissa_multip(7) = '1' then

 output_mantissa <= Mantissa_multip (7 downto 1);

 output_exponent <= Exponent_addition - "0110" ;

 elsif Mantissa_multip(6) = '1' then

 output_mantissa <= Mantissa_multip (6 downto 0);

 output_exponent <= Exponent_addition - "0111" ;

 elsif Mantissa_multip(5) = '1' then

 output_mantissa <= Mantissa_multip (5 downto 0) & '0';

 output_exponent <= Exponent_addition - "01000";

 elsif Mantissa_multip(4) = '1' then

 output_mantissa <= (Mantissa_multip(4 downto 0)& "00");

 output_exponent <= Exponent_addition - "01001";

 elsif Mantissa_multip(3) = '1' then

 output_mantissa <= (Mantissa_multip(3 downto 0) &"000");

 output_exponent <= Exponent_addition - "01010";

 elsif Mantissa_multip(2) = '1' then

 output_mantissa <=(Mantissa_multip(2 downto 0)& "0000");

 output_exponent <= Exponent_addition - "01011";

 elsif Mantissa_multip(1) = '1' then

 output_mantissa <=(Mantissa_multip(1 downto 0)&"00000");

 output_exponent <= Exponent_addition - "01100";

 113

 elsif Mantissa_multip(0) = '1' then

 output_mantissa <= (Mantissa_multip(0)&"000000");

 output_exponent <= Exponent_addition - "01101";

 else

 output_mantissa <= "0000000";

 output_exponent <= "000000000";

 end if;

 output_mantissa_b <= output_mantissa;

 output_exponent_b <= output_exponent;

 if (output_exponent < "111000000") then --minimum

 output_mantissa_b <= "0000000";

 output_exponent_b <= "000000000";

 underflow <= '1';

 else

 underflow <= '0';

 end if;

 if (output_exponent > "000111111") then --maximum

 output_mantissa_b <= "0000000";

 output_exponent_b <= "000000000";

 overflow <= '1';

 else

 overflow <= '0';

 end if;

 if (output_mantissa_b = "0000000") then

 FP_output(14) <= '0';

 else

 FP_output(14) <= multiplier_sign_b ;

 end if;

 114

 FP_output(6 downto 0) <= std_logic_vector(resize (output_exponent_b ,7)) ;

 FP_output(13 downto 7) <= std_logic_vector(output_mantissa_b) ;

 end if;

end process;

END Arch_FP_multiplier ;

--***************************** end of architecture *****************************

--***

--********************************* METU / EE **********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

Floating Point Inner Feedback Block VHDL Code

--***

--********************************* METU / EE **********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

-- BLOCK NAME: FP_multiplier_with_feedback

-- ACIKLAMA : Carpma sonucunda cikan sayilardan birisi

-- carpma bloguna input_b olarak yeniden girer.

--***

library ieee ;

use ieee.std_logic_unsigned.all ;

use ieee.std_logic_1164.all ;

use ieee.numeric_std.all ;

library UNISIM ;

use UNISIM.VCOMPONENTS.all ;

entity FP_multiplier_with_feedback is

 115

port (

 rst : in std_logic ;

 clk : in std_logic ;

 FP_input_A : in std_logic_vector (14 downto 0) ;

 FP_output : out std_logic_vector (14 downto 0) ;

 overflow : out std_logic ;

 underflow : out std_logic ;

 operation_start : in std_logic

);

end;

architecture arch_FP_multiplier_with_feedback of FP_multiplier_with_feedback is

COMPONENT FP_multiplier IS

 port (

 rst : in std_logic ;

 clk : in std_logic ;

 FP_input_A : in std_logic_vector (14 downto 0) ;

 FP_input_B : in std_logic_vector (14 downto 0) ;

 FP_output : out std_logic_vector (14 downto 0) ;

 overflow : out std_logic ;

 underflow : out std_logic ;

 operation_start : in std_logic

);

END COMPONENT ;

signal FP_output_a : std_logic_vector (14 downto 0) ;

signal FP_output_b : std_logic_vector (14 downto 0) ;

signal overflow_b : std_logic ;

signal underflow_b : std_logic ;

begin

overflow <= overflow_b ;

underflow <= underflow_b ;

FP_output <= FP_output_a ;

process (rst, clk)

begin

if rst = '0' then

 FP_output_b <= "010000000000001";

elsif rising_edge(clk) then

 if ((overflow_b ='1')or (underflow_b ='1'))then

 FP_output_b <= "010000000000001";

 else

 FP_output_b <= FP_output_a ;

 116

 end if;

end if;

end process;

-- FP_output_b <= FP_output_a + '1' when ;

 u1 : FP_multiplier

 port map (

 rst => rst ,

 clk => clk ,

 FP_input_A => FP_input_A ,

 FP_input_B => FP_output_b ,

 FP_output => FP_output_a ,

 overflow => overflow_b ,

 underflow => underflow_b ,

 operation_start => operation_start

);

end ;

--***

--********************************* METU / EE **********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

Triple Modular Redundancy without Correction Block VHDL Code

--***

--********************************* METU / EE **********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

-- BLOCK NAME: FP_multiplier_simple_TMR

-- ACIKLAMA : Triple moduler redundancy without correction

--***

 117

library ieee ;

use ieee.std_logic_unsigned.all ;

use ieee.std_logic_1164.all ;

library UNISIM ;

use UNISIM.VCOMPONENTS.all ;

--***

-- entity decleration

-- bu kisimda giris cikis sinyalleri gosterilmistir.

entity FP_multiplier_simple_TMR is

port (

 rst : in std_logic ;

 clk_in : in std_logic ;

 FP_input_A : in std_logic_vector (14 downto 0) ;

 failure_detection : out std_logic ;

 FP_output : out std_logic_vector (14 downto 0) ;

 insert_module_fault : in std_logic ;

 insert_module_failure : in std_logic ;

 insert_voter_fault : in std_logic ;

 operation_start : in std_logic ;

 fault_module_a : out std_logic ;

 fault_module_b : out std_logic ;

 failure_detection_display : out std_logic

);

end ;

-- end of entity decleration

--***

architecture FP_multiplier_with_feedback_arch of FP_multiplier_simple_TMR is

-- component assignments (kodun kullandigi alt moduller bu kisimda implemente edilir.)

component BUFG --- clock buffer

port (

 i : in std_logic;

 o : out std_logic

);

 118

end component;

component FP_multiplier_with_feedback IS

port (

 rst : in std_logic ;

 clk : in std_logic ;

 FP_input_A : in std_logic_vector (14 downto 0) ;

 FP_output : out std_logic_vector (14 downto 0) ;

 overflow : out std_logic ;

 underflow : out std_logic ;

 operation_start : in std_logic

);

end component ;

-- signal assignments (kod icinde kullanilan sinyaller bu kisimda tanimlanir.)

signal clk : std_logic ;

signal FP_output_module1 : std_logic_vector (14 downto 0) ;

signal overflow_module1 : std_logic ;

signal underflow_module1 : std_logic ;

signal FP_output_module2 : std_logic_vector (14 downto 0) ;

signal overflow_module2 : std_logic ;

signal underflow_module2 : std_logic ;

signal fault_detection : std_logic ;

signal FP_output_module3 : std_logic_vector (14 downto 0) ;

signal overflow_module3 : std_logic ;

signal underflow_module3 : std_logic ;

signal input1 : std_logic_vector (14 downto 0) ;

signal input2 : std_logic_vector (14 downto 0) ;

signal input3 : std_logic_vector (14 downto 0) ;

signal operation_start_buf : std_logic ;

signal inputa : std_logic_vector (14 downto 0) ;

signal inputb : std_logic_vector (14 downto 0) ;

signal inputc : std_logic_vector (14 downto 0) ;

signal counter_test : std_logic_vector (7 downto 0) ;

signal operation_start_buf_b : std_logic ;

signal operation_start_buf_c : std_logic ;

 119

signal operation_start_buf_e : std_logic ;

signal operation_start_buf_d : std_logic ;

--***

BEGIN -- begin operations

-- asenkron atamalarin yapilmasi.

failure_detection_display <= fault_detection ;

failure_detection <= fault_detection ;

operation_start_buf <= '1' when (operation_start = '1') else '0';

inputc <= "0111000000001"& counter_test(1 downto 0) when ((insert_module_failure =

'1')

 or (insert_module_fault = '1')) else FP_input_A ;

inputb <= "0111110000000"& counter_test(1 downto 0) when (insert_module_failure =

'1')

 else FP_input_A ;

inputa <= FP_input_A ;

process(rst,clk)

begin

 if rst = '0' then

 FP_output <= "010000000000001";

 fault_detection <= '0';

 elsif rising_edge(clk) then -- clk nin rising'i ile alinmisti.

 if insert_voter_fault = '0' then

 fault_detection <= '0';

 if (FP_output_module1 = FP_output_module2) then

 FP_output <= FP_output_module1;

 elsif(FP_output_module1 = FP_output_module3) then

 FP_output <= FP_output_module1;

 elsif (FP_output_module2 = FP_output_module3) then

 FP_output <= FP_output_module3;

 else

 120

 fault_detection <= '1';

 FP_output <= (others=>'0');

 end if;

 else

 fault_detection <= '1';

 end if;

 end if;

end process;

process(rst,clk)

begin

 if rst = '0' then

 counter_test <= (others=>'0');

 fault_module_a <= '1';

 fault_module_b <= '1';

 operation_start_buf_c <= '0';

 operation_start_buf_b <= '0';

 operation_start_buf_d <= '0';

 operation_start_buf_e <= '0';

 elsif rising_edge(clk) then -- clk nin rising'i ile alinmisti.

 operation_start_buf_c <= operation_start_buf_b ;

 operation_start_buf_b <= operation_start_buf;

 operation_start_buf_d <= operation_start_buf_c ;

 operation_start_buf_e <= operation_start_buf_d ;

 if (operation_start_buf_c = '1') and (operation_start_buf_b = '0') then

 counter_test <= counter_test +'1';

 end if;

 case counter_test(1 downto 0) is

 when "00"=>

 input1 <= inputa ;

 input2 <= inputb ;

 input3 <= inputc ;

 fault_module_a <= '1';

 121

 fault_module_b <= '1';

 when "01"=>

 input1 <= inputb ;

 input2 <= inputc ;

 input3 <= inputa ;

 fault_module_a <= '0';

 fault_module_b <= '1';

 when "10" =>

 input1 <= inputc ;

 input2 <= inputa ;

 input3 <= inputb ;

 fault_module_a <= '0';

 fault_module_b <= '0';

 when "11"=>

 input1 <= inputa ;

 input2 <= inputb ;

 input3 <= inputc ;

 fault_module_a <= '1';

 fault_module_b <= '1';

 when others =>

 null;

 end case;

 end if;

end process;

u1 : FP_multiplier_with_feedback

 port map (

 rst => rst ,

 clk => clk ,

 FP_input_A =>input1 ,

 FP_output => FP_output_module1 ,

 overflow => overflow_module1 ,

 underflow => underflow_module1 ,

 operation_start => operation_start_buf_e

);

 122

 u2 : FP_multiplier_with_feedback

 port map (

 rst => rst ,

 clk => clk ,

 FP_input_A => input2 ,

 FP_output => FP_output_module2 ,

 overflow => overflow_module2 ,

 underflow => underflow_module2 ,

 operation_start => operation_start_buf_e

);

 u3 : FP_multiplier_with_feedback

 port map (

 rst => rst ,

 clk => clk ,

 FP_input_A => input3 ,

 FP_output => FP_output_module3 ,

 overflow => overflow_module3 ,

 underflow => underflow_module3 ,

 operation_start => operation_start_buf_e

);

 U4 : BUFG

 port map (

 i => clk_in,

 o => clk

) ;

END;

 --***************************** end of architecture *****************************

--***

--********************************* METU / EE **********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

 123

Triple Modular Redundancy with Correction Block VHDL Code

--***

--********************************* METU / EE **********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

-- BLOCK NAME: FP_multiplier_with_correction

-- ACIKLAMA : Triple moduler redundancy with correction of a fault

--***

library ieee ;

use ieee.std_logic_unsigned.all ;

use ieee.std_logic_1164.all ;

library UNISIM ;

use UNISIM.VCOMPONENTS.all ;

--***

-- entity decleration

-- bu kisimda giris cikis sinyalleri gosterilmistir.

entity FP_multiplier_with_correction is

port (

 rst : in std_logic ;

 clk_in : in std_logic ;

 FP_input_A : in std_logic_vector (14 downto 0) ;

 failure_detection : out std_logic ;

 FP_output_port : out std_logic_vector (14 downto 0) ;

 insert_module_fault : in std_logic ;

 insert_module_failure : in std_logic ;

 insert_voter_fault : in std_logic ;

 operation_start : in std_logic ;

 fault_module_a : out std_logic ;

 fault_module_b : out std_logic ;

 failure_detection_display : out std_logic

);

end ;

-- end of entity decleration

 124

--***

architecture FP_multiplier_with_correction_arch of FP_multiplier_with_correction is

-- component assignments (kodun kullandigi alt moduller bu kisimda implemente edilir.)

component BUFG --- clock buffer

port (

 i : in std_logic;

 o : out std_logic

);

end component;

component FP_multiplier IS

 port (

 rst : in std_logic ;

 clk : in std_logic ;

 FP_input_A : in std_logic_vector (14 downto 0) ;

 FP_input_B : in std_logic_vector (14 downto 0) ;

 FP_output : out std_logic_vector (14 downto 0) ;

 overflow : out std_logic ;

 underflow : out std_logic ;

 operation_start : in std_logic

);

end component ;

-- signal assignments (kod icinde kullanilan sinyaller bu kisimda tanimlanir.)

signal clk : std_logic ;

signal FP_output_module1 : std_logic_vector (14 downto 0) ;

signal overflow_module1 : std_logic ;

signal underflow_module1 : std_logic ;

signal FP_output_module2 : std_logic_vector (14 downto 0) ;

signal overflow_module2 : std_logic ;

signal underflow_module2 : std_logic ;

signal fault_detection : std_logic ;

signal FP_output_module3 : std_logic_vector (14 downto 0) ;

signal overflow_module3 : std_logic ;

signal underflow_module3 : std_logic ;

signal FP_out : std_logic_vector (14 downto 0) ;

signal FP_output : std_logic_vector (14 downto 0) ;

signal input1 : std_logic_vector (14 downto 0) ;

signal input2 : std_logic_vector (14 downto 0) ;

 125

signal input3 : std_logic_vector (14 downto 0) ;

signal operation_start_buf : std_logic;

signal inputa : std_logic_vector (14 downto 0) ;

signal inputb : std_logic_vector (14 downto 0) ;

signal inputc : std_logic_vector (14 downto 0) ;

signal counter_test : std_logic_vector (7 downto 0) ;

signal operation_start_buf_b : std_logic ;

signal operation_start_buf_c : std_logic ;

signal operation_start_buf_d : std_logic ;

signal operation_start_buf_e : std_logic ;

--***

BEGIN -- begin operations

-- asenkron atamalarin yapilmasi.

failure_detection_display <= fault_detection ;

failure_detection <= fault_detection ;

FP_output_port <= FP_output ;

operation_start_buf <= '1' when (operation_start = '1') else '0';

inputc <= "0111000000001" & counter_test(1 downto 0) when ((insert_module_failure =

'1')

 or (insert_module_fault = '1')) else FP_input_A ;

inputb <= "0111110000000" & counter_test(1 downto 0) when (insert_module_failure =

'1')

 else FP_input_A ;

inputa <= FP_input_A ;

process (rst, clk)

begin

if rst = '0' then

 FP_out <= "010000000000001";

elsif rising_edge(clk) then

 if ((overflow_module1 ='1') or (underflow_module1 ='1')) then

 FP_out <= "010000000000001";

 126

 else

 FP_out <= FP_output ;

 end if;

end if;

end process;

process(rst,clk)

begin

 if rst = '0' then

 FP_output <="010000000000001";

 fault_detection <= '0';

 elsif rising_edge(clk) then -- clk nin rising'i ile alinmisti.

 if insert_voter_fault = '0' then

 fault_detection <= '0';

 if (FP_output_module1 = FP_output_module2) then

 FP_output <= FP_output_module1;

 elsif (FP_output_module1 = FP_output_module3) then

 FP_output <= FP_output_module1;

 elsif (FP_output_module2 = FP_output_module3) then

 FP_output <= FP_output_module3;

 else

 fault_detection <= '1';

 FP_output <= "010000000000001";

 end if;

 else

 fault_detection <= '1';

 127

 end if;

 end if;

end process;

process(rst,clk)

begin

 if rst = '0' then

 counter_test <= (others=>'0');

 fault_module_a <= '1' ;

 fault_module_b <= '1' ;

 operation_start_buf_c <= '0' ;

 operation_start_buf_b <= '0' ;

 operation_start_buf_e <= '0' ;

 operation_start_buf_d <= '0' ;

 elsif rising_edge(clk) then -- clk nin rising'i ile alinmisti.

 operation_start_buf_c <= operation_start_buf_b ;

 operation_start_buf_b <= operation_start_buf ;

 operation_start_buf_d <= operation_start_buf_c ;

 operation_start_buf_e <= operation_start_buf_d ;

 if (operation_start_buf_c = '1') and (operation_start_buf_b = '0') then

 counter_test <= counter_test +'1';

 end if;

 case counter_test(1 downto 0) is

 when "00"=>

 input1 <= inputa ;

 input2 <= inputb ;

 input3 <= inputc ;

 fault_module_a <= '1';

 fault_module_b <= '1';

 when "01"=>

 input1 <= inputb ;

 input2 <= inputc ;

 input3 <= inputa ;

 fault_module_a <= '0';

 fault_module_b <= '1';

 128

 when "10" =>

 input1 <= inputc ;

 input2 <= inputa ;

 input3 <= inputb ;

 fault_module_a <= '0';

 fault_module_b <= '0';

 when "11"=>

 input1 <= inputa ;

 input2 <= inputb ;

 input3 <= inputc ;

 fault_module_a <= '1';

 fault_module_b <= '1';

 when others =>

 null;

 end case;

 end if;

end process;

u1 : FP_multiplier

 port map (

 rst => rst ,

 clk => clk ,

 FP_input_A => input1 ,

 FP_input_B => FP_out ,

 FP_output => FP_output_module1 ,

 overflow => overflow_module1 ,

 underflow => underflow_module1 ,

 operation_start => operation_start_buf_e

);

u2 : FP_multiplier

 port map (

 129

 rst => rst ,

 clk => clk ,

 FP_input_A => input2 ,

 FP_input_B => FP_out ,

 FP_output => FP_output_module2 ,

 overflow => overflow_module2 ,

 underflow => underflow_module2 ,

 operation_start => operation_start_buf_e

);

 u3 : FP_multiplier

 port map (

 rst => rst ,

 clk => clk ,

 FP_input_A => input3 ,

 FP_input_B => FP_out ,

 FP_output => FP_output_module3 ,

 overflow => overflow_module3 ,

 underflow => underflow_module3 ,

 operation_start => operation_start_buf_e

);

U4 : BUFG

 port map (

 i => clk_in,

 o => clk

) ;

END;

--***************************** end of architecture *****************************

--***

--********************************* METU / EE **********************************

--***

--**************************** WRITTEN BY UGUR GUNGOR ***************************

--***

--********************************* METU / EE ***********************************

--***

