

AN INTERACTIVE APPROACH FOR MULTI-CRITERIA

SORTING PROBLEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BURAK KESER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

APRIL 2005

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master

of Science.

 Prof. Dr. Çağlar Güven
 Head of the Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Murat Köksalan

 Supervisor

Examining Committee Members

Prof. Dr. Nesim Erkip (METU, IE)

Assoc. Prof. Yasemin Serin (METU, IE)

Prof. Dr. Erdal Erel (Bilkent U., MAN)

Prof. Dr. Murat Köksalan (METU, IE)

Assist. Prof. Esra Karasakal (METU, IE)

iii

Plagiarism

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last Name : Burak KESER

Signature :

iv

ABSTRACT

AN INTERACTIVE APPROACH FOR MULTI-CRITERIA SORTING

PROBLEMS

Keser, Burak

M. Sc., Department of Industrial Engineering

Supervisor: Prof. Dr. Murat Köksalan

April 2005

This study is concerned with a sorting problem; the placement of alternatives into

preference classes in the existence of multiple criteria. An interactive model is

developed to address the problem, assuming that the decision maker has an

underlying utility function which is linear. A recent methodology, Even-Swaps,

which is based on value tradeoff is utilized in the model for both making an

estimation of the underlying utility function and generating possible dominance

among the alternatives on which it is performed. Convex combinations, dominance

relations, weight space reduction, Even-Swaps and direct decision maker

placements are utilized to place alternatives in preference classes. The proposed

algorithm is experimented with randomly generated alternative sets having different

characteristics.

Keywords: multiple criteria decision making, sorting, even swaps

v

ÖZ

ÇOK KR İTER ALTINDA SIRALAMA PROBLEMLER İ İÇİN

ETK İLEŞİML İ BİR YAKLA ŞIM

Keser, Burak

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat Köksalan

Nisan 2005

Bu çalışma, alternatiflerin çok kriter altında tercih sınıflarına yerleştirilmesi ile

ilgilidir. Karar vericinin gizli fayda fonksiyonunun doğrusal olduğu varsayılarak,

etkileşimli bir yöntem geliştirilmi ştir. Değer ödünleşmeleri üzerine kurulu yeni bir

metodoloji olan Eş-Takas yönteminden, hem karar vericinin gizli fayda

fonksiyonunu tahminlemek hem de üzerinde uygulandığı alternatifler arasında olası

bir baskınlık ilişkisi oluşturmak üzere faydalanılmıştır. Alternatifleri tercih

sınıflarına yerleştirmek için konveks kombinasyonlar, baskınlık ilişkisi, ağırlık

uzayı daraltılması, Eş-Takas ve karar vericinin doğrudan yerleştirmelerinden

faydalanılmıştır. Önerilen algoritma, rastsal oluşturulmuş farklı karakterdeki

alternatif kümeleriyle denenmiştir.

Anahtar Kelimeler: çok kriterli karar verme, sıralama, eş-takas

vi

To my lovely family

vii

ACKNOWLEDGMENTS

I would like to thank my thesis supervisor Prof. Dr. Murat Köksalan for his

continuous support, guidance and patience throughout my work.

I am also thankful to Onur Aktuğ, Cenk Güray, Bulut Aslan, Ümit Sönmez, Engin

Akyürek, and Gizem Karslı.

Finally my dear family; Elif, Remziye and Üzeyir Keser; this work would not be

possible without their support.

viii

TABLE OF CONTENTS
PLAGIARISM ..iii

ABSTRACT.. iv

ÖZ .. v

ACKNOWLEDGMENTS..vii

TABLE OF CONTENTS..viii

LIST OF FIGURES.. x

LIST OF TABLES ..xi

1. INTRODUCTION ... 1

1.1 Problem Definition... 1

1.2 Literature Survey ... 3

1.3 Even - Swaps.. 7

1.4 Even - Swaps Example .. 9

1.5 The Evolution of the algorithm.. 12

2. DEVELOPMENT OF THE MODEL...................................... 13

2.1 Some Notation and Assumptions... 13

2.2 Even Swaps.. 14

2.2.1 Selecting the alternatives for the even swap 15

2.2.2 Performing the Even-Swap .. 15

2.2.3 Even-Swap on more than two criteria .. 17

2.2.4 Estimating the utility function using the Even-Swap................... 19

2.3 Alternative Selection.. 22

2.4 Determining Best and Worst Classes... 24

2.5 Convex Combination Check .. 25

2.6 Utilizing LPs for best and worst classes .. 28

2.7 Finding equivalent dummy points ... 29

2.8 Decision maker placement... 31

3. THE ALGORITHM .. 33

3.1 Summary of the Algorithm .. 33

ix

3.2 The Algorithm.. 34

4. AUTOMATED APPROACH AND EXPERIMENTATION 58

4.1 Development of the Automation and User Screens............................... 58

4.2 Experimentation... 62

5. SUMMARY AND CONCLUSION .. 70

REFERENCES... 73

APPENDIX A – Detailed flow of the algorithmA-1

APPENDIX B – Experimentation ..B-1

x

LIST OF FIGURES

Figure 1. An overall flow of the Even-Swap framework... 8

Figure 2. Even-Swap example - graphical representation of the swap 17

Figure 3. Even-Swap on more than two criteria... 19

Figure 4. Graphical representation of the example .. 27

Figure 5. Step 6 shown graphically.. 31

Figure 6. Graphical representation of dominance and weight space reduction 32

Figure 7. Flow of the initialization phase... 33

Figure 8. Flow of the "placing alternatives phase" .. 34

Figure 9. Example - Alternatives graphically represented....................................... 43

Figure 10. Example - Final status represented graphically 56

Figure 11. Inserting number of alternatives to be considered 59

Figure 12. Inserting the consistency index... 59

Figure 13. Even Swap Screen .. 60

Figure 14. DM Placement .. 61

Figure 15. Consistency index not valid... 61

Figure 16. Swap done in the wrong direction .. 62

Figure 17. DM placed the alternative to a wrong class.. 62

Figure 18. Averages with differing alternative set sizes ... 65

Figure 19. Averages with differing consistency indexes ... 66

Figure 20. Results for 20 alternatives .. 67

Figure 21. Results for 50 alternatives .. 68

Figure 22. Results for 100 alternatives .. 69

xi

LIST OF TABLES

Table 1. Real world applications of classification and sorting problems................... 2

Table 2. Even Swap Example - Consequence Table.. 10

Table 3. Even-Swap Eample - Eliminated Alternative by Dominance.................... 10

Table 4. Even-Swap Example - A Criterion and Alternative Eliminated 11

Table 5. Even-Swap Example - Eliminated Alternative.. 11

Table 6. Even-Swap Example - Final Table .. 12

Table 7. Even-Swap example - alternatives ...16

Table 8. Even-Swap example - the swap ...16

Table 9. Decisions for different values of decision variables 26

Table 10. Example - List of alternatives and their criteria values............................ 43

Table 11. Example - Current status of the alternatives (1)....................................... 48

Table 12. Example - Current status of the alternatives (2)....................................... 55

Table 13. Example - Final status.. 55

Table 14. Example - Means of placements .. 57

Table 15. Run codes and Run parameters ..63

Table 16. Run Results Summary.. 64

1

CHAPTER 1

INTRODUCTION

1.1 Problem Definition

The problem considered in this study is a multi-criteria decision making

(MCDM), problem where the decision maker (DM) intends to group a set of

alternatives into preference classes. The approach developed in this study will be

more suitable for problems where the alternative set is large, and the number of

criteria to consider is small.

The placement of alternatives into predefined classes or groups is referred to as

classification or sorting problems depending on whether the groups are nominal or

ordinal. The problem of sorting / classification has numerous practical

applications, some of which are listed below (Zopounidis, C., Doumpos, M.,

2002)

• Medicine: performing medical diagnosis through the classification of

patients into diseases groups on the basis of some symptoms (Stefanowski

and Slowinski, 1998; Tsumoto, 1998; Belacel, 2000; Michalowski et al.,

2001).

• Pattern recognition: examination of the physical characteristics of objects

or individuals and their classi-fication into appropriate classes (Ripley,

1996; Young and Fu, 1997; Nieddu and Patrizi, 2000). Letter recognition

is one of the best examples in this field.

• Human resources management: assignment of personnel into appropriate

occupation groups according to their qualifications (Rulon et al., 1967;

Gochet et al., 1997).

2

• Production systems management and technical diagnosis: monitoring the

operation of complex production systems for fault diagnosis purposes

(Nowicki et al., 1992; Catelani and Fort, 2000; Shen et al., 2000).

• Marketing: customer satisfaction measurement, analysis of the

characteristics of different groups of customers, development of market

penetration strategies, etc. (Dutka, 1995; Siskos et al., 1998).

• Environmental and energy management, ecology: analysis and

measurement of the environmental impacts of different energy policies,

investigation of the efficiency of energy policies at the country level

(Diakoulaki et al., 1999; Rossi et al., 1999; Flinkman et al., 2000).

• Financial management and economics: business failure prediction, credit

risk assessment for firms and consumers, stock evaluation and

classification, country risk assessment, bond rating, etc. (Altman et al.,

1981; Slowinski and Zopounidis, 1995; Zopounidis, 1998; Doumpos and

Zopounidis, 1998; Greco et al., 1998; Zopounidis et al., 1999a,b).

Below table (Zopounidis, C., Doumpos, M., 2002) shows some real-world

applications of classification / sorting problems (Table 1). Some of these studies

use real-world data for illustrative purposes in order to present the practical

applicability of classification and sorting theory in real-world data sets. Other

studies use real-world data for performance evaluation of selected methods

originating from the developed methods with existing methods, most commonly

originating from the field of statistics.

Table 1. Real world applications of classification and sorting problems

Application Area Studies

Business failure prediction Mahmood and Lawrence (1987), Gupta et al. (1990),

Slowinski and Zopounidis (1995), Gehrlein and

Wagner (1997b), Greco et al. (1998), Zopounidis

and Dimitras (1998), Zopounidis and Doumpos

(1999), Zopounidis et al. (1999b), Konno and

Kobayashi (2000)

3

Application Area Studies

Credit cards assessment Lam et al. (1996), Zopounidis et al. (1998)

Country risk evaluation Doumpos and Zopounidis (2001a)

Ecology Rossi et al. (1999), Flinkman et al. (2000)

Educational administration Choo and Wedley (1985), Lam et al. (1993)

Energy planning Diakoulaki et al. (1999)

Medicine Stefanowski and Slowinski (1998), Belacel (2000),

Michalowski et al. (2001)

Personnel management Gochet et al. (1997)

Portfolio selection and

management

Zopounidis et al. (1999a), Nakayama and Kagaku

(1998), Doumpos et al. (2000)

R&D project evaluation Jacquet-Lagreze (1995)

Technical diagnosis Nowicki et al. (1992)

Venture capital

investments

Stam (1990)

This broad range of application domain lead researchers to develop different

approaches for constructing sorting/classification models. The approach

developed in this study is an interactive method, which utilizes Even-Swap

method, weight space reduction techniques and dominance relations. The use of

Even-Swap method in the study is slightly different from it is original use, where

the original method aims to find the best alternative in a given alternative set by

interacting with the DM.

1.2 Literature Survey

Considering a set of alternatives described by a number of criteria; different

problems are considered in the literature. One, which is more frequently

addressed, is to identify the best alternative or select a limited set of the best

alternatives (this problem is also referred as “the choice problem”). Another

problem is to construct a rank ordering of the alternatives from best to the worst

4

ones (this problem is also referred as “the ranking problem”). One other problem

is to classify or sort the alternatives into groups, where the groups may either have

a preference relation or not (this problem is also referred as “the

classification/sorting problem”).

The problem of identifying the most preferred alternative among a number of

alternatives where each alternative is defined by several criteria is well studied in

the literature. The studies of Keeney and Raiffa (1976) and Green and Srinivasan

(1978) attempt to solve this problem by fitting a utility function that explains the

preferences of the decision maker (DM), and then finding the alternative that

performs best according to the fitted utility function.

Another approach for finding most preferred alternative had been interactive

approach. Interactive approaches typically assume that the DM has an underlying

utility function. However, the exact form of the utility function is assumed to be

unknown to both the DM and the analyst. The DM is expected to be consistent

with his/her underlying utility function while expressing his/her preferences. For

the case where the underlying utility function is assumed to be linear, Zionts

(1981) and Köksalan (1984) developed interactive approaches. Several interactive

approaches have been developed for the quasi-concave utility function case

(Korhonen et al. 1984, Köksalan et al. 1984, Köksalan and Taner 1992, Malakooti

1989); Köksalan and Sagala (1995) also developed an approach for the general

monotone utility function case.

Korhonen (1998) developed a visual interactive approach that makes no

assumption on the underlying utility function of the DM. Köksalan and Öden

(1989) and Köksalan and Rizi (2001) have also developed visual interactive

approaches and utilized graphical aids in their interactive approaches. A more

recent review of the multi-criteria literature is provided by Jacquet-Lagreze and

Siskos (2001).

The problem of constructing a rank ordering of the alternatives from has also been

5

a problem of interest. Assuming that the attributes have been measured at least on

an ordinal scale, Korhonen and Soimaa (1981) attempt to find a complete rank

ordering of alternatives. Malakooti (1989) uses quasi-concave non-linear multi-

attribute utility functions to rank multiple criteria alternatives, and shown that pair

comparison questions can be used to generate partial information on the weights.

Another type of problem is the assignment of alternatives into predefined groups,

which is referred to as classification or sorting problems. While both classification

and sorting refer to the assignment of a set of alternatives into predefined groups,

they differ with respect to the way that the groups are defined. Classification

refers to the case where the groups are defined in a nominal way. On the contrary,

sorting refers to the case where the groups are defined in an ordinal way starting

from those including the most preferred alternatives to those including the least

preferred alternatives.

Earlier work on classification can be traced back to Fisher (1936), whose work

was on the linear discriminant analysis. Some other statistical approaches was

developed following Fisher (Bliss 1934, Berkson 1944, McFadden 1974), which

was later on criticized for their statistical assumptions (Altman et al. 1981).

Recent research on developing classification and sorting models is mainly based

on operations research and artificial intelligence. Compared to other approaches,

multi-criteria decision aiding research (MCDA) does not focus solely on

developing automatic procedures for analyzing an existing data set in order to

construct a classification/sorting model. MCDA researchers also emphasize on the

development of efficient preference modeling methodologies that will enable the

decision analyst to incorporate the decision maker’s preferences in the developed

classification/sorting model (Zopounidis, C., Doumpos, M., 2002).

Outranking relation and utility function are the most widely used criteria

aggregation models in MCDA literature, which are also employed for

classification and sorting purposes. The most widely used sorting method based

on outranking relations is the ELECTRE TRI method (Yu 1992, Roy and

6

Bouyssou 1993). An alternative approach for outranking relation, the utility

theory framework, is used in UTADIS for sorting purposes (Jacquet-Lagreze

1995, Zopounidis and Doumpos 1999).

Köksalan and Ulu (2001, 2003), developed an interactive procedure for

partitioning the alternatives into preference classes regarding different forms of

utility functions of the DM. Dominance, weight space reduction and direct DM

placement techniques are used to place alternatives.

More recently significant research has been conducted on the use of the rough set

approach as a methodology of preference modeling in multi-criteria decision

problems (Greco et al. 1999, 2000). The rough approximations of decision classes

involve dominance relation, instead of indiscernibility relation considered in the

basic rough sets approach. They are built of reference alternatives given in the

sorting example. Decision rules derived from these approximations constitute a

preference model. Also, the dominance-based rough set approach is able to deal

with sorting problems involving both criteria and regular attributes (whose

domains are not preference ordered), (Greco et al., 2002), and missing values in

the evaluation of reference alternatives (Greco et al., 1999, 2000b).

The use of neural networks is another interesting approach that can be used for

preferential modeling purposes in multi-criteria classification and sorting

problems. Neural networks enable the modeling of highly complex non-linear

behaviors of decision-makers. Main disadvantage of the neural networks is that,

the results of a neural networks are difficult to interpret in terms of the given

inputs to the network. The major advantage on the other hand is that, neural

networks can be used to assess utility functions, without posing any assumptions

or restrictions on their particular structure or properties. Arhcer and Wang (1993)

showed that neural networks can provide an efficient mechanism for preference

modeling in sorting problems.

It is important to note that, the development of decision support systems that will

7

enable decision-makers to take advantage of the capabilities that the classification

and sorting approaches provide. Several multi-criteria decision support systems

have been developed over the past decade implementing MCDA classification and

sorting methods. The most characteristic are the RANGU system developed by

Stam and Ungar (1995), the PREFDIS system of Zopounidis and Doumpos

(2000a), the ELECTRE TRI-Assistant system of Mousseau et al. (2000), the

ROSE system of Predki et al. (1998) and the 4eMka system of Greco et al.

(1999a) (Zopounidis, C., Doumpos, M., 2002).

1.3 Even Swaps

Even Swaps (Hammond et al. 1998, 1999) is a multi-criteria decision making

method based on value trade-offs which are called even swaps. Performing

sensible trade-offs is one of the most important and difficult challenges in

decision making (Keeney and Raiffa 1976; Keeney 2002). The even swaps

method is developed in order to fill the gap of clear, easy-to-use and rational

trade-off methodology. It provides a practical way of making trade-offs among

any set of objectives across a range of alternatives. It is a form of bartering that

forces the decision maker to think about the value of one objective in terms of

another. The even swap method does not argue that it provides a mechanism

which makes complex decisions easy, but what it does provide is a reliable

mechanism for making trades and consistent framework in which to make them.

In an even swap, the value of an alternative in one attribute is changed and this

change is compensated with a preferentially equal value change in some other

attribute. The new alternative with these revised values is equally preferred to the

initial one and thus it can be used instead. The aim of the method is to carry out

even swaps that make either attributes irrelevant, in the sense that all the

alternatives have equal values on this attribute, or alternatives dominated, in the

sense that some other alternative is at least as good as this alternative on every

attribute. Such attributes and alternatives can be eliminated, and the process

continues until one alternative, i.e. the most preferred one, remains.

8

The main requirement for using the Even Swaps method is to understand the idea

of an even swap. The decision maker (DM) does not need to have a mathematical

background to use the method. Hammond et al. (1998, 1999) emphasize on the

practical aspects of the process, and let the DM to focus on the most important

work of decision making: deciding the real value to him/her.

The general flow of the even swap framework is provided in Figure 1:

Figure 1. An overall flow of the Even-Swap framework

At the problem initialization step, a consequence table is constructed in order to

have a clear picture of the alternatives and their consequences for each criterion.

The important thing when constructing consequence tables is to use consistent

Problem Initialization

Eliminate Irrelevant
Attributes

Eliminate Dominated
Alternatives

Most preferred alternative
found

NO

YES

Make an Even Swap

Determine alternatives and criteria
to perform even swap on them

Determine the required change

Assess the required change on the
other criterion for compensation

Perform the swap
More than one remaining

alternative?

9

terms for each criterion. Once the consequences table is constructed and criterion

values for each alternative is mapped, look for opportunities to eliminate one or

more alternatives. If an alternative A is better than alternative B in some criteria

and not worse than B in all other criteria, alternative B can be eliminated from

consideration (alternative B is dominated by alternative A). Another issue is to

eliminate irrelevant criteria with an obvious tenet; if every alternative is rated

equally on a given criterion, that criterion can be ignored while making decisions.

Now, the challenge is to choose the most proper even-swap to perform among

numerous choices. This selection shall be made considering the information that

will be provided after the swap. Even-swaps that can lead to a possible

“dominance” or “irrelevant criteria” shall be preferred.

Determining the relative value of different criterion values is hard. The originators

of the even-swap approach, Hammond, Keeney and Raiffa, quoted some

suggestions to make sound trade-offs (Hammond et al. 1998, 1999).

There are few reported applications of even-swaps in the literature; where one of

them is on strategy selection in a rural enterprise (Kajanus et al. 2001) and another

one on environmental planning (Gregory and Wellman 2001). Despite of the

simplicity of the method, the lack of use may be due to insufficient computational

help provided. Recently Mustajoki and Hämäläinen (2004) developed a decision

support system for even swap approach, which is supported by Preference

Programming. Preference programming is a framework for modeling incomplete

information within multi-attribute value theory.

1.4 Even –Swap Example

To illustrate the above discussed methodology, a small example is given below.

The problem is about selecting a second-hand car among a number of alternatives.

Alternatives are evaluated on three criteria (of course, there should be more, but

three of them are selected for simplicity), these are:

• Age of the car (given by model year)

• Mileage of the car (given in kilometers)

10

• Price of the car (in YTL.)

Model year of the car is a higher the better type criterion. But the last two,

mileage and price are lower the better.

The alternatives are selected from a popular car sales web-site from Turkey. The

alternatives and their values on three criteria are given in Table 2 (this is the

consequence table for the DM):

Table 2. Even Swap Example - Consequence Table

 Toyota

Corolla GL

Peugeot

206 XR

Opel

Corsa Swing

Honda

Civic HB

Ford

Fiesta

Model 1999 2000 1999 2000 2000

Mileage 77000 km 55000 km 91000 km 130000 km 64000 km

Price 14500 YTL 16000 YTL 15750 YTL 14750 YTL 15000 YTL

Now, we will look for opportunities to eliminate one or more alternatives by

dominance. It can be observed that, “Opel” is dominated by both “Ford” and

“Toyota”, so it can be eliminated for further consideration, (see Table 3).

Table 3. Even-Swap Eample - Eliminated Alternative by Dominance

 Toyota

Corolla GL

Peugeot

206 XR

Opel

Corsa Swing

Honda

Civic HB

Ford

Fiesta

Model 1999 2000 1999 2000 2000

Mileage 77000 km 55000 km 91000 km 130000 km 64000 km

Price 14500 YTL 16000 YTL 15750 YTL 14750 YTL 15000 YTL

Now, we will perform an even-swap on “Toyota” and ask the DM “How much

will you increase the price, for an increase in the model from 1999 to 2000?”. The

DM says “I will increase the price from 14500 YTL to 15250 YTL”. The new

consequence table is given below (Table 4), the swapped values are highlighted.

11

All alternatives score the same on “Model” criterion, so this alternative is now

irrelevant and can be eliminated; furthermore, “Toyota” is now dominated by

“Ford”, so it can be eliminated from the alternative set, these are also shown in

Table 4.

Table 4. Even-Swap Example - A Criterion and Alternative Eliminated

 Toyota

Corolla GL

Peugeot

206 XR

Honda

Civic HB

Ford

Fiesta

Model 2000 2000 2000 2000

Mileage 77000 km 55000 km 130000 km 64000 km

Price 15250 YTL 16000 YTL 14750 YTL 15000 YTL

The consequence table is reduced to a much smaller form than the original table.

But, three alternatives are left, so we need more swaps and propose the DM

another one on “Ford”: “How much will you increase the price, for a decrease in

the mileage from 64000 to 55000?”. The DM says “I will increase the price from

15000 YTL to 15500 YTL”. Now, “Peugeot” is dominated by “Ford” and

eliminated for further consideration (Table 5).

Table 5. Even-Swap Example - Eliminated Alternative

 Peugeot

206 XR

Honda

Civic HB

Ford

Fiesta

Mileage 55000 km 130000 km 55000 km

Price 16000 YTL 14750 YTL 15500 YTL

Two alternatives are left, one more swap is required, the following question is

asked to DM, for performing an even-swap on “Honda”: “How much will you

increase the price, for a decrease in the mileage from 130000 to 55000?”. The DM

says “I will increase the price from 14750 YTL to 16500 YTL”. Finally “Honda”

is dominated by “Ford”, and eliminated. This reveals “Ford” to be the preferred

alternative for the DM (Table 6).

12

Table 6. Even-Swap Example - Final Table

 Honda

Civic HB

Ford

Fiesta

Mileage 55000 km 55000 km

Price 16500 YTL 15500 YTL

1.5 The Evolution of the algorithm

This study is based on different approaches developed in the field of multi-criteria

decision making and sorting problems literature; and proposes a new interactive

approach for multi-criteria sorting problems. The weight space reduction ideas

generated in Köksalan and Ulu (2001, 2003) are utilized, but LPs used for weight

space reduction are different in order to be more efficient. Even-Swaps

methodology (Hammond et al. 1998, 1999) is included in the algorithm both for

eliciting information from the DM and for placing the alternatives. Even-Swaps

approach is originally proposed for selecting the best alternative among a set of

alternatives, however, in this study it is used for sorting a set of alternatives to

preference classes.

The following chapter discusses the approaches developed in each step of the

proposed algorithm. The third chapter presents the algorithm step by step, and

illustrates a manual example. The fourth chapter introduces the developed

automation for the algorithm, and presents some results, which are obtained by

using the algorithm. The final chapter gives a summary of the study, presents

some conclusions and proposes some possible future work, which can be

performed as extensions to this study.

13

CHAPTER 2

DEVELOPMENT OF THE MODEL

This chapter discusses the approach developed in each step of the algorithm. A

detailed flow of the algorithm is given in Appendix A.

The proposed algorithm is two phased, the initialization phase and then the

selecting alternatives phase. At the initialization phase an initial estimation of the

DM’s underlying utility function is made, using the information gained from an

Even-Swap which is proposed to DM by selecting two alternatives from the

alternative set. At the placing alternatives phase, initially an alternative is selected

to be placed, among the set of unplaced alternatives. The algorithm tries to place

the selected alternative into a preference class either using dominance relations,

convex combinations or weight space reduction techniques. If the alternative

cannot be placed, an Even-Swap is performed on the alternative for swapping to a

dummy alternative, which can be placed by convex combinations. If the

alternative has not been placed yet, the DM is asked to place the alternative

among the range of possible preference classes. Following sections discusses all

the approaches developed in the algorithm.

2.1 Some Notation and Assumptions

Following list defines some notation that will be used in this study,

• thi alternative that is to be placed in preference classes is represented as

iX

•),....,,...,,(,,2,1, pijiiii xxxxX = where jix , is the score of the thi alternative

14

in the thj criterion

• iC is the thi class that the alternatives can be placed in; 1C being the “best”

class and tC being the “worst”, where there exist k classes.

Other notation will be introduced when they are defined in the flow of the

algorithm.

The model assumes that the DM has a linear utility function. That is, the utility of

alternative iX is given by:

 ∑=
j

jijji xUXU)()(,λ

where)(, jij xU is the criterion score of iX on criterion j , and jλ is the weight of

criterion j .

It is assumed that the DM is consistent with his/her responses and can place

alternatives consistently whenever s/he I asked. One other assumption is that, at

least one of the criteria is ordinal and continuous. This assumption is required to

enable performing the swap on that criterion. The model assumes that jλ s –

criteria weights- are not known, and tries to generate an estimated region for jλ s

using DM’s responses.

A consistency index, α , is used when evaluating the Even-Swap information.

This is for evaluating the DM’s swap response within a precision bound, the

discussions on this α value will be given in the following sections.

2.2 Even Swaps

At the initialization phase of the approach, an Even-Swap is performed. The intent

of the Even-Swap is to have an idea about the DM’s underlying utility function.

This early information on the utility function provides the infrastructure for the

latter steps. Following sections discuss: the selection of the alternatives that will

15

be taken into consideration when performing the Even-Swap, performing the

Even-Swap, and the case when there exists more than two criteria for the

alternatives.

2.2.1 Selecting the alternatives for the even swap

Two alternatives will be selected to perform the Even-Swap. Selecting the

alternatives is crucial since we want to make the best use of the DM’s response

while performing the swap. The original Even-Swap methodology is utilized for

generating possible dominance relationships among alternatives which do not

dominate each other. So, the selected alternatives shall not be dominating each

other. Another concern in alternative selection is the ease of the swap. If the

criterion values of the alternatives are too far, it will be hard for the DM to make

such a big swap, and as the size of the swap increases, the size of the error may

increase.

The two alternatives are selected among the alternatives in such a way that

i. they do not dominate each other

ii. they have the smallest Euclidean distance

The selected alternatives are presented to the DM.

2.2.2 Performing the Even-Swap

The Even-Swap will be performed with the motivation discussed in section 1.3.

Following steps will be followed while performing the swap:

• Take one of the selected alternatives as the base (call it the base

alternative); the swap will be performed on the other alternative (swapped

alternative).

• Select one of the criteria (call it fixed criterion) and equate the value of the

swapped alternative on that criterion to that of the base alternative.

• Ask the DM, how much he/she wants to swap on the other criterion, which

is not fixed, to compensate the change on the fixed criterion.

16

Even swap is illustrated on a two criteria example:

Assume that we have two alternatives A and B having the following scores on two

criteria (Table 7):

Table 7. Even-Swap example - alternatives

 Alternative A Alternative B

Criterion 1 45 60

Criterion 2 78 58

Let the DM make a swap on alternative A, and alternative B is selected as the base

alternative. Then, we equate the first criterion value of alternative A to that of

alternative B, and ask the DM how much he/she is willing to decrease on criterion

2 value, to compensate the increase in criterion 1 (Table 8):

Table 8. Even-Swap example - the swap

 Alternative A Alternative Aswapped

Criterion 1 45 60

Criterion 2 78 ???

Say the DM is willing to decrease the value of the second criterion from 78 to 65,

to compensate the increase in the first criterion from 45 to 60. So the alternative

Aswapped becomes (60, 65). Initially no dominance relations are apparent between

alternatives A and B. However, now alternative Aswapped dominates alternative B.

So, BAf . This example is show graphically in Figure 2.

17

even-swap

55

60

65

70

75

80

40 45 50 55 60 65

crit 1

cr
it

2

Figure 2. Even-Swap example - graphical representation of the swap

2.2.3 Even-Swap on more than two criteria

As discussed in section 1.3. the Even-Swap method is originally proposed to be

performed on two criteria. However, we use the approach for comparing two

alternatives, and alternatives can have more than two criteria. For that reason, the

method is expanded to enable the comparison possible for alternatives having

more than two criteria. This is done by performing consecutive swaps. The idea is

illustrated on a four criteria example below:

Illustration:

Let iX and jX be the selected alternatives, having the criterion values

respectively:),,,(4,3,2,1, iiiii xxxxX = and),,,(4,3,2,1, jjjjj xxxxX = . Let iX be the

fixed alternative and the Even-Swap be performed onjX . The following steps

will be used:

• Initially choose the first criterion to be the fixed criterion

Alt. A

Alt. A
swapped

Alt. B

Even-Swap

18

• Equate the first criterion value of jX to that of iX

• Swap the second criterion value of jX to compensate the change in the

first criterion, say the swapped value is s
jx 2,

• Equate the second criterion value of jX , that is s
jx 2, , to that of iX

• Swap the third criterion value of jX to compensate the change in the

second criterion, say the swapped value is s
jx 3,

• Continue in the same manner

The approach discussed above is pictured in Figure 3, where dashed squares

represent the Even-Swaps, arrows representing the swaps. c
jX1 , c

jX 2 , '
jX are all

equivalent alternatives to jX , which are generated after the Even-Swaps.

In c
jX1 , the DM chooses the value 2,j

sx such that, in the first two criteria, the DM

is indifferent between (1,jx , 2,jx) and (1,ix , 2,j
sx). Then the DM chooses 3,j

sx

such that s/he is indifferent between (1,jx , 2,jx , 3,jx) and (1,ix , 2,ix , 3,j
sx). Finally,

the DM choose 4,j
sx such that),,,(4,3,2,1, jjjjj xxxxX = and

),,,(4,3,2,1,
'

j
s

iiij xxxxX = . It would be beneficial to leave the easier swap to the last

step, since all the changes on the other criteria will be compensated by this swap.

19

iX

1,ix

2,ix

3,ix

4,ix

jX

1,jx

2,jx

3,jx

4,jx

c
jX1

1,ix

2,j
sx

3,jx

4,jx

c
jX 2

1,ix

2,ix

3,j
sx

4,jx

'
jX

1,ix

2,ix

3,ix

4,j
sx

Figure 3. Even-Swap on more than two criteria

2.2.4 Estimating the utility function using the Even-Swap

An LP is constructed, in order to make an estimation of the DM’s underlying

utility function, using the information obtained from the swaps made in the

previous step. In fact the Even-Swap implies a direct ratio relationship between

the weights of the criteria on which it is performed. However, the developed LP

evaluates this direct relationship within a consistency interval, depending on the

precision of the DM; the size of the interval can be changed.

There are two constraints coming from each performed Even-Swap and one from

the implied preference relationship after the swaps. These constraints are

elaborated below:

Constraints obtained from the swap:

Assume that the DM performs the swap on alternative i and the Even-Swap will

be performed on criterion 1 and criterion 2, where both criteria are higher the

better type. The values of the alternative on these pair of criteria which the swap is

performed are 1,ix and 2,ix . Again assume that the DM makes a swap from 2,ix to

20

2,i
sx , to compensate the change for going from 1,ix to 1,i

sx . Where, if 1,ix is

greater than 1,i
sx , 2,ix shall be smaller than 2,i

sx ; and if 1,ix is smaller than 1,i
sx ,

2,ix shall be greater than 2,i
sx , that is the swap shall be performed in the reverse

direction. By this swap, the DM implies the following ratio between the weights

of criterion 1 and 2 (for simplicity jix , is used instead of uj(jix ,)):

2,2,

1,1,

1

2

i
s

i

ii
s

xx

xx

−
−=

λ
λ

However, as mentioned above, the response of the DM is evaluated within a

consistency interval. Let α represent the consistency index for the DM’s implied

ratio on the criterion weights. Then, the relationship becomes:

2,2,

1,1,

1

2

2,2,

1,1,
)1()1(

i
s

i

ii
s

i
s

i

ii
s

xx

xx

xx

xx

−
−+≤≤

−
−− α

λ
λα

This relationship gives two constraints for the weight space:

0)1(2
2,2,

1,1,

1 ≥−
−
−+ λαλ

i
s

i

ii
s

xx

xx

and

0)1(
2,2,

1,1,

12 ≥
−
−−−

i
s

i

ii
s

xx

xxαλλ

Constraints obtained from the preference relation on the initial alternatives:

After the swap a dominance relation appears between the swapped alternative and

the base alternative, since all but one of the criteria values are equalized. That

unequal criterion value determines the direction of the dominance.

Let’s assume that, the criterion value of the swapped alternative is higher than that

of the base alternative. Then the swapped alternative dominates the base

alternative. Since the swapped alternative is assumed to have the same utility

value with its original state and all the intermediate alternatives generated during

21

the Even-Swap (when there exist more than two criteria), all these alternatives are

preferred to the base alternative. Then, corresponding constraints are added to

constrain the weight space. If the swapped alternative is dominated by the base

alternative, all preference relations are reversed.

The preference relation is represented with “f ” or “ p ”. For all implied

preference relation the following constraint is added:

() rqrq XXwhereXX f ελ ≥−

With the constraints generated from the performed Even-Swap, the following

initial model is developed to define the weight space for a two criteria example:

()

0

0

1

)1(

)1(

..

max

2,2,

1,1,

12

2
2,2,

1,1,

1

≥
≥

=

∀≥−

≥
−
−−−

≥−
−
−+

∑

ε
λ

λ

ελ

εαλλ

ελαλ

ε

j

rqrq

i
s

i

ii
s

i
s

i

ii
s

XXXX

xx

xx

xx

xx

ts

f

All the constraint are written to be greater than a value of ε , which is to be

maximized, to force the LP to find a weight set which is most distant to the

nearest bound.

Solving the LP, an estimated weight set of the criteria is obtained, which will be

used in the following stages of the approach. Each time when a new preference

relation is implied by DM placement, a new constraint is added to the model, and

the estimated criterion weights are recalculated.

22

2.3 Alternative Selection

The model utilizes some set of rules to select the alternative that will be treated in

the algorithm for placing it in a preference class. Alternative selection is very

crucial for the performance of the algorithm, since a good selection of alternatives

will reduce the DM’s effort. To provide such a good selection, the model uses the

estimated utility function, obtained from the initially performed Even-Swap, and

some set of rules. The rules for alternative selection are given below:

1. If the bounds for all preference classes are not defined

The bounds for the preference classes are determined using the estimated

utility function. For a preference class, among the previously placed

alternatives to that class, the one having the highest estimated utility is the

upper bound for that preference class, and the one having the lowest

estimated utility is the lower bound. For the best class, if only one

alternative is placed previously, than that defines the lower bound,

similarly if only one alternative is placed in the worst class than that

defines the upper bound for that class. If one of the following conditions is

satisfied, there is no way of determining all the bounds for the problem.

i. No alternatives placed in the best class:

ii. No alternatives placed in the worst class

iii. Less than two alternatives placed in an intermediate class

1. No alternatives placed in that intermediate class

2. One alternative is placed in that intermediate class

Initially number of alternatives in each class is calculated, considering the

number of all alternatives and the number of preference classes, and

assuming there is approximately equal number of alternatives in each

class. Then the alternatives are sorted according to the estimated utility

function. This sorting will give an estimated grouping of the alternatives.

Finally, following decisions are made for the alternative selection, for the

above stated cases:

i. Select the alternative which has the minimum estimated

23

utility value in the “estimated best class” (note that

“estimated best class” term is used, since no alternatives are

actually placed in this class yet, the selection is based on

the sorting made using estimated utility function)

ii. Select the alternative which has the maximum estimated

utility value in the “estimated worst class”

iii. Again the selection will be based on the estimated sorting

of the alternatives

a) Select the alternative having the maximum

estimated utility value, among the estimated set of

alternatives for that intermediate class, this

alternative is expected to form the upper bound

for that class.

b) Select the alternative having the minimum

estimated utility value, among the estimated set of

alternatives for that intermediate class, this

alternative is expected to form the lower bound

for that class. (note that if there is only one

alternative actually placed in that class, that

alternative will be forming the upper bound for

that class since the algorithm tries to place the

alternatives having higher estimated utility values

first)

2. If the bounds for all preference classes are defined

The unplaced alternatives, which are out of bounds defined by the

estimated utility values, have precedence when selecting the alternative to

place. So, once the bounds for all alternatives are defined, the algorithm

searches for the existence of alternatives which are out of the estimated

bounds.

i. If there exists some alternatives that fall out of the defined

estimated boundaries, among those alternatives, select the

one which is most distant from the closest boundary in

24

terms of estimated utility. The reason for selecting the most

distant alternative is to maximize the benefit of the

information that will be obtained from the placement of that

alternative. The bound defined by estimated utilities is

enlarged to the maximum extent possible by either placing

that alternative to the better class or the worse class.

ii. If there are no alternatives falling outside the estimated

boundaries, select the alternative which is closest to the

closest boundary.

2.4 Determining Best and Worst Classes

Along the execution of the algorithm, the best and worst possible classes that the

selected alternative can belong to, are utilized. The intent is to narrow down the

range of possible classes that the alternative may be placed, and whenever best

possible class is the same as the worst possible class, the algorithm places the

alternative to that class.

Initially, best class index for all alternatives is set to 1 and worst class index for all

alternatives is set to t (number of classes). Then, as alternatives are placed to

preference classes, going over the previously placed alternatives, alternatives that

are dominated by the selected alternative are searched. Among the dominated

alternatives set, ones that have the smallest class index (lower the index, better the

class), determines the worst class that selected alternative may belong to, and it

will be denoted by W
kX . Similar approach is followed for determining the best

class that the selected alternative may belong to. Going over the previously placed

alternatives, the alternatives that dominate the selected alternative are searched.

Among the dominating alternatives set, ones that have the largest class index

(higher the index, worse the class), determines the best class that the selected

alternative may belong to, and it is denoted byB
kX .

25

The alternative set is traced to identify dominance relationships. For each

alternative, set of dominating alternatives and set of dominated alternatives are

constructed. These sets are useful when the alternative is placed in the 1st class

(best class) or tth class (worst class). If the alternative is placed in the 1st class,

then all the alternatives dominating that alternative can be safely placed to the 1st

class. Similarly if the alternative is placed in the tth class, then all the alternatives

dominated by that alternative can be safely placed to the tth class.

2.5 Convex Combination Check

If the selected alternative can be expressed as a convex combination of

alternatives belonging to the same class, then the selected alternative also belongs

to that class. The following LPs are used to decide whether the selected alternative

is a convex combination, wherekX is the selected alternative and tC is the class

under consideration. 1e , 2e are vectors such that [],,...,..., 1111 εεε=e and

[],,...,..., 2222 εεε=e , where 1ε and 2ε are scalars.

 LP1

0

1

 0

s.t.

 max

i

1
X

1

i

≥

=

≥−−

∑

∑
∈

i

k
C

ii XX
t

µ
µ

µ

ε

e

LP2

0

1

 0

s.t.

 max

i

2
X

2

i

≥

=

≥−−

∑

∑
∈

i

C
iik

t

XX

µ
µ

µ

ε

e

26

Starting from the best class that the selected alternative may belong to, the above

LPs are solved. By looking at the values of 1ε and 2ε a decision is made about the

class that the selected alternative shall belong to. If either 1ε or 2ε is zero, that

means the selected alternative can be expressed as a convex combination, so it

belongs to tC . If both 1ε and 2ε are greater than zero, that means there exist two

convex combinations where the first one dominates the selected alternative, and

the other is dominated by the selected alternative; so the alternative belongs to tC .

If 1ε is greater than zero but 2ε is smaller than zero, that means there exist some

convex combinations that dominates the selected alternative, but no convex

combination is dominated by the selected alternative; so this is the best class that

the alternative may belong to. If 2ε is greater than zero but 1ε is smaller than

zero, that means there exist some convex combinations that are dominated by the

selected alternative, but no convex combination dominates the selected

alternative; so this is the worst class that the alternative may belong to. If both 1ε

and 2ε are smaller than zero, that means there are no convex combinations either

dominating or dominated by the selected alternative. This result gives no

information on the possible class of the selected alternative. All this discussion is

summarized in the below table.

Table 9. Decisions for different values of decision variables

 1ε

 < 0 =0 > 0

< 0 No info tk CX ∈ t
B
k CX =

=0 tk CX ∈ tk CX ∈ tk CX ∈ 2ε

> 0 t
W
k CX = tk CX ∈ tk CX ∈

Going over all classes that the selected alternative may belong to, the alternative is

either placed or its best or worst possible class index is updated.

27

Figure 4 provides a two dimensional graphical example to the above discussion.

Suppose that, alternatives 1, 2 and 3 belong to the same class (say, class f), and

other alternatives are evaluated with above LPs:

• As it can be observed graphically alternative 4 can be represented as a

convex combination of alternatives 1, 2 and 3. So, for alternative 4, both

01 >ε and 02 >ε and alternative 4 also belongs to class f.

• For alternative 5, 01 >ε and 02 <ε , that means class f is the best possible

class alternative 5 can belong to.

• For alternative 6, 01 <ε and 02 >ε , that means class f is the worst

possible class alternative 6 can belong to.

• For alternatives 7 and 8, both 01 <ε and 02 <ε , and no information

provided.

• For alternatives on the lines bounding the shaded region, either 01 =ε and

02 =ε , that can be expressed as a convex combination. Alternative 9 is

such an alternative, and it also belongs to class f.

Figure 4. Graphical representation of the example

t c

1
6

2
4

5

3
7

crit 1

cr
it

2

8

9

28

2.6 Utilizing LPs for best and worst classes

As mentioned above, the algorithm tries the narrow the range of possible classes

that the selected alternative can be placed in. Two similar LPs are used to check

the possibility of the placement of the selected alternative in preference classes

with respect to the defined weight space. The developed LPs are similar to those

developed by Köksalan and Ulu (2003), where each alternative in a certain class is

considered separately. Here all alternatives in a class is considered in one LP. The

reasoning behind this is that, to decide whether the class is the worst/best class

that the selected alternative can belong to there should not exist any feasible

weight set that makes the selected alternative worse/better than “all” alternatives

in that certain class.

Starting with the initial utility estimation, weight space is defined. New

constraints are added (weight space will be reduced) in either of the following

cases:

• whenever a preference relation is implied by an Even-Swap

• whenever an alternative is placed to a class, and there are alternatives in

worse classes which that alternative is not dominating. This implies a

preference relation. If there exist some alternatives in better classes which

are not dominating that alternative, this will also imply a preference

relation.

The following LP is used for determining the best class that the selected

alternative may belong to with respect to the defined weight space where “S”

represents the defined weight space.

S

CXXX thhk

∈

∈∀≥−

λ
ελ

ε

)(

s.t.

 max

29

The above LP is solved for each class tC starting from the worst possible class

until the worst possible class the selected alternative may belong to. If 0<ε or the

LP is infeasible, it is concluded that there is no weight set in the defined weight

space which makes the selected alternative, kX , better than all alternatives in that

class under consideration. So, the class is marked to be the best class that kX may

belong to, B
kX . If the LP is feasible, consider the next class.

A Similar approach is followed to determine the worst class. The following LP is

constructed for that purpose:

S

CXXX ihkh

∈

∈∀≥−

λ
λ

ε

 0)(

s.t.

 max

The above LP is solved for each class tC starting from the best possible class until

the worst possible class the selected alternative may belong to. If 0<ε or the LP

is infeasible, it is concluded that there is no weight set in the defined weight space

which makes the selected alternative,kX , worse than all alternatives in that class

under consideration. So, the class is marked to be the worst class that kX may

belong to, W
kX . If the LP is feasible, consider the next best class.

Whenever, W
k

B
k XX = the selected alternative can safely be placed in that

preference class.

2.7 Finding equivalent dummy points

As mentioned in Section 2.5 if the selected alternative can be expressed as a

convex combination of alternatives belonging to the same class, that selected

alternative also belongs to that class. The following LP is constructed in order to

30

check for a dummy point that dominates a convex combination of alternatives of a

class, and is dominated by another convex combination of the same class and

equivalent to the selected alternative in terms of estimated utility value. Since the

dummy point is both dominating and dominated by two different convex

combinations, it will be a member of that class.

0;0;0;0

1

1

0)(

..

max

≥≥≥≥

=

=

≥−

≥−
=−

∑

∑

∑

∑

∈

∈

εβµ
β

µ

εβ

εµ
λ

ε

dumii

i

i

i
CX

idum

dumi
CX

i

kdumest

X

XX

XX

XX

ts

ti

ti

Figure 5 shows an example of the case where this step can be used. Here, the

“dummy” alternative can be expressed as a convex combination of alternatives 1,

2 and 3, which belong to same class. And using the estimated utility function, it

can be said that alternative 5 and the “dummy” alternative has the same utility

value. The DM is asked to perform an even-swap on alternative 5, to come around

the “dummy alternative”. If the swapped point can also be expressed as a convex

combination – it is expected because of the estimated utility function – we can

place alternative 5 in the same class.

31

Figure 5. Step 6 shown graphically

Starting from the best class that the selected alternative may belong to, the above

LP is solved. If a feasible dummy point can be found, an Even-Swap will be

performed on the selected alternative, to generate a swapped alternative around

the dummy point. Since the dummy alternative will be a member of that class, the

swapped alternative is a close candidate to be a member. But before placing

dominance relations with the convex combinations will be checked, since the

dummy point is found using the estimated weights, so the swapped point can be

slightly different.

2.8 Decision maker placement

If the selected alternative cannot be placed to a preference class with one of the

above procedures, then the DM will be asked to place the alternative to a

preference class between WkX and B
kX .

Let the DM place the alternative to a preference class. If there exists some

1

2

Dummy

3

crit 1

cr
it

2

5

E-S

32

alternative dX belonging to a worse class but not dominated by kX , a constraint

will be added to the weight space indicating dk XX f , that is 0)(≥− dk XXλ . If

there exists some alternative bX belonging to a better class but not dominating

kX , a constraint will be added to the weight space indicating kb XX f , that is

0)(≥− kb XXλ . (Koksalan, M.M., Ulu, C., 2003).

Figure 6, is a graphical example of how dominance and weight space reduction is

utilized for alternative placements (Koksalan, M.M., Ulu, C., 2003). Suppose, DM

places kX to the worst class, the alternatives in the dashed rectangle are

dominated by kX , and they also belong to the worst class. Assume that, it is

known by weight space reduction constraints that slope of the DM’s underlying

utility function lies between 1l and 2l . Then, the alternatives which are marked

with a “*”, will also belong to same class by weight space reduction.

crit 1

cr
it

2 kX

1l

2l

Figure 6. Graphical representation of dominance and weight space reduction

33

CHAPTER 3

THE ALGORITHM

3.1 Summary of the Algorithm

The algorithm used for sorting can be divided into two phases:

• initialization

• placing alternatives

At the “initialization phase” two alternatives are selected from the alternative set

and an Even-Swap is performed on them. Utilizing the information coming from

the Even-Swap, constraints are generated and an estimation of the DM’s utility

function is made. An overall flow of the initialization phase is given in Figure 7

(for the detailed flow, look at Appendix A):

Figure 7. Flow of the initialization phase

At the “placing alternatives phase”, first the alternative to be placed is selected

among the unplaced alternatives. Then according to dominance relations, best and

worst classes for the alternatives are determined. The next step is to check the

selected alternative for convex combinations of the preference classes. Then

utilizing generated LPs and the reduced weight space, possible range of classes

that the selected alternative may belong to is narrowed down. Then an equivalent

dummy alternative, which belongs to a preference class, in terms of estimated

utility is searched and an even swap on the selected alternative is performed to

Select two
alternatives

Perform an
Even-Swap on

them

Generate constraints
& define weight

space

Estimate the
utility function

34

come around the dummy alternative. Whenever it is found that the possible best

and worst classes are the same for the selected alternative, during the execution of

the steps of the algorithm, the alternative is placed to that class. If this does not

happen, DM is asked to place the alternative to a class among the range of classes

that the alternative may belong to. An overall flow of the “placing alternatives

phase” is given in Figure 8 (for the detailed flow, look at Appendix A):

Figure 8. Flow of the "placing alternatives phase"

3.2 The Algorithm

INITIALIZATION

Step 0.

Define X to be the set of all alternatives, and let there be n alternatives, define

each as iX . Then },...,,{ 21 nXXXX = .

Define the thj criterion value of the alternative iX as jix , , and let there be p

criteria, then),....,,...,,(,,2,1, pijiiii xxxxX = .

Let B
kX be the index of the best class that kX can belong to; W

kX be the index of

the worst class that kX can belong to; and C
kX be the index of the class that kX

belongs to, when it is placed.

Let iC be the set of alternatives that belong to thi class; and let there be t

preference classes where 1C represents the “best” class and tC represents the

Select an
alternative to

place

Determine best
and worst classes

by dominance

Check for
convex

combinations

Search for
best class with

WSR

Search for
worst class
with WSR

Find an
equivalent

dummy point

Ask the DM to
place

Place using
dominance

35

“worst”.

Go to next step.

Step1.

Select two alternatives from the alternative set X. Among the alternative pairs

which do not dominate each other, the closest one, in terms of Euclidean distance

is selected. Let the selected alternatives be, qX and rX .

Go to next step.

Step 2.

Ask the DM to perform Even-Swap on the selected alternatives. Let the

alternative to be swapped be qX . If criteria k and l are considered, equate the thk

criterion value of qX to that of rX , and ask the DM how much s/he wants to

swap on the thl criterion. Let the DM swap from lrx , to lr
sx , .

)(,,, kq
s

krkq xxx >−−

)?(,, lr
s

lr xx >−−

After this swap, qX becomes),....,,,...,(,,,1, pqlq
s

kq
s

q
c
q xxxxX = . Perform all the

swaps on all criteria. Finally qX becomes),....,,,...,(,,,1, pq
s

lq
s

kq
s

q
s

q
s xxxxX =

where all criterion values except the last are equal to that of rX ’s.

Go to next step.

Step 3.

One of q
sX or rX dominates the other depending on the value of their last

criterion. Let q
sX dominate rX , write a preference constraint between qX and

rX to constrain the weight space:

rq XX f

36

Write couple of constraints for each swap performed, using previously defined

consistency index α :

0)1(
,,

,, ≥−
−
−+ k

kq
s

kq

lqlq
s

l xx

xx λαλ

and

0)1(
,,

,, ≥
−
−−−

kq
s

kq

lqlq
s

lk xx

xxαλλ

Step 4.

Solve the following LP, and find an estimate of the DM’s utility function.

()

0

0

1

)1(

)1(

..

max

,,

,,

,,

,,

≥
≥

=

∀≥−

≥
−
−−−

≥−
−
−+

∑

ε
λ

λ

ελ

εαλλ

ελαλ

ε

j

rqrq

ki
s

ki

lili
s

lk

k
ki

s
ki

lili
s

l

XXXX

xx

xx

xx

xx

ts

f

Go to next phase.

PLACING ALTERNATIVES

Step 5. (initializing all alternatives)

Initially equate all best possible class indexes for all alternatives to best class, that

is 1=B
kX ; and equate all worst possible class indexes for all alternatives to worst

class, that is tXW
k = . Equate all class indexes for all alternatives to zero, 0=C

kX ,

that means they do not belong to any class yet.

Go to next step.

For each swap performed

37

Step 6. (select one alternative)

Select an alternative among those currently unplaced. Let the selected alternative

be kX .

Go to next step.

Step 7. (decide best and worst classes)

Look for the set of alternatives that dominatekX , let }{D kX denote the set of

alternatives dominating kX . Looking at the class indexes (CX) of all alternatives

in the dominating set, assign the highest class index as the best possible class

index of kX ; }D{in index class maximum k
B
k XX = .

Look for the set of alternatives that are dominated by kX , let }{D '
kX denote the

set of alternatives that are dominated by kX . Looking at the class indexes (CX)

of all alternatives in the dominating set, assign the lowest class index as the worst

possible class index of kX ; }{Din index class minimum '
k

W
k XX = .

If yXX W
k

B
k == , then place kX to class y. Go to Step13

Go to next step.

Step 8. (convex combination check)

Starting from class B
kX to W

kX solve the following LP couple to check whether

kX can be expressed as a convex combination of alternatives that belong to same

class.

38

LP1 (where [],,...,..., 1111 εεε=e)

0

1

 0

s.t.

 max

i

1
X

1

i

≥

=

≥−−

∑

∑
∈

i

k
C

ii XX
t

µ
µ

µ

ε

e

LP2 (where [],,...,..., 2222 εεε=e)

0

1

 0

s.t.

 max

i

2
X

2

i

≥

=

≥−−

∑

∑
∈

i

C
iik

t

XX

µ
µ

µ

ε

e

If both 1ε and 2ε are positive for class y, then place kX to class y, go to Step 13. If

either 1ε or 2ε is equal to zero, again placekX to class y, and go to Step 13.

If 01 >ε and 02 <ε for class y, then equate best possible class index of kX to y,

yX B
k = ; if 01 <ε and 02 >ε for class y, then equate worst possible class index of

kX to y, yXW
k = ; if both 01 <ε and 02 <ε for class y, this gives no information;

go on with the next class.

If there are less than two previously placed alternatives in a class under

consideration, skip that class and consider the next.

When all classes are considered go to next step.

Step 9. (check for best class with WSR)

39

Starting from the worst class that kX can belong to, W
kX , solve the following LP

for all possible classes, where S representing the weight space.

LP3

S

CXXX ihhk

∈
∈∀≥−

λ
ελ

ε

)(

s.t.

 max

If the problem is infeasible or 0≤ε in the optimal solution, then class i is the best

class that kX can belong to, that is iX B
k = , terminate this step. If yXX W

k
B
k == ,

then place kX to class y, go to Step 13. If W
k

B
k XX ≠ , go to Step 10.

If the problem is feasible and 0>ε in the optimal solution, go on with the next

worst class, loop this step till the class just before the best possible class, 1+B
kX ,

is considered.

If there are no previously placed alternative in a class under consideration, skip

that class and consider the next.

When all classes are considered go to Step 10.

Step 10. (check for worst class with WSR)

Starting from the best class that kX can belong to, B
kX , solve the following LP for

all possible classes, where S representing the weight space.

LP4

S

CXXX ihkh

∈
∈∀≥−

λ
ελ

ε

)(

s.t.

 max

If the problem is infeasible or 0≤ε in the optimal solution, then class i is the

worst class that kX can belong to, that is iXW
k = , terminate this step. If

40

yXX W
k

B
k == , then place kX to class y, go to Step 13. If W

k
B
k XX ≠ , go to Step

10.

If the problem is feasible and 0>ε in the optimal solution, go on with the next

best class, loop this step till the class just before the worst possible class, 1−W
kX ,

is considered.

If there are no previously placed alternative in a class under consideration, skip

that class and consider the next.

When all classes are considered go to Step 11.

Step 11. <find a dummy equivalent alternative>

Starting from the best possible class that kX can belong to, solve the following

LP.

LP5

0;0;0;0

1

1

0)(

..

max

≥≥≥≥

=

=

≥−

≥−
=−

∑

∑

∑

∑

∈

∈

εβµ
β

µ

εβ

εµ
λ

ε

dumii

i

i

i
CX

idum

dumi
CX

i

kdumest

X

XX

XX

XX

ts

ti

ti

If a feasible dummy point, dumX , can be found for class y, perform an Even-Swap

on kX to compare with dumX . That is step-by-step equatingkX ’s criterion values

to that of dumX ’s, and performing the swap. After the Even-Swap check the

swapped point, s
kX , if it can be expressed as convex combination of the

alternatives of the class under consideration, go to Step 8.

41

If no feasible solution can be found, consider the next best class. Loop this step

till all possible classes are considered.

If there are less than two previously placed alternatives in a class under

consideration, skip that class and consider the next.

When all classes are considered and no feasible solution obtained, go to next step.

Step 12. (ask DM to place)

Ask the DM to place kX to a preference class among the range of classes B
kX to

W
kX . If the DM chooses class y, go to Step 13.

Go to next step.

Step 13. (assignments, placement by dominance, update best & worst classes)

Assign kX to class y, that is yX C
k = .

If the alternative is placed directly by the decision maker: add a constraint to the

weight space showing dk XX f , that is 0)(≥− dk XXλ , for all dX belonging to a

worse class and not dominated by kX . Update the estimated utility function.

If the alternative is placed directly by the decision maker: add a constraint to the

weight space showing kb XX f , that is 0)(≥− kb XXλ , for all bX belonging to a

better class and not dominating kX . Update the estimated utility function.

If 1=y , that is the best class, then all alternatives dominating kX , }{D kX , shall

also belong to class 1; place those alternatives to class 1. Recursively, the set of

alternatives that are dominating these alternatives shall also be in class 1, check

dominating sets for all placed alternatives.

If ty = , that is the worst class, then all alternatives that are dominated bykX ,

42

}{D '
kX , shall also belong to class t; place those alternatives to class t.

Recursively, the set of alternatives that are dominated by these alternatives shall

also be in class t, check sets of dominated alternatives for all placed alternatives.

If y is an intermediate class, the best possible class index for the set of alternatives

that are dominated by kX shall be at least (lower the better) equal to y; if there

exist some alternatives having best possible class index lower than y, in the

dominated alternatives set, equate their index to y, that is yX B = .

Again, if y is an intermediate class, the worst possible class index for the set of

alternatives that are dominating kX shall be at most (higher the worse) equal to y;

if there exist some alternatives having best possible class index lower than y, in

the dominating alternatives set, equate their index to y, that is yXW = .

If all the alternatives are placed, exit the algorithm and present the preference

classes to the DM. If there are some unplaced alternatives left, go to Step 6.

An Example

The algorithm is illustrated on an example, with 20 alternatives having values on

two criteria. Assume that more is better in both criteria. The DM tries to sort these

20 alternatives in three preference classes. The consistency index is selected to be,

05.0=α . The alternatives are presented in Figure 9, and the alternative IDs and

criterion values are tabulated in Table 10.

While executing the algorithm for this example, two settings are made to simulate

DM’s responses:

• a linear underlying utility function of 2,1, *3.0*7.0)(iii XXXU += is

set, and DM’s responses are declared accordingly.

• DM’s boundaries between preference classes are set like the following:

o If 650.0)(>iXU then place iX to class 1, 1CX i ∈

o If 650.0)(250.0 ≤< iXU then place iX to class 2, 2CX i ∈

43

o If 250.0)(≤iXU then place iX to class 3, 3CX i ∈

0.1717
0.4979

0.7129
0.5627

0.0440
0.2792

0.4681

0.0143

0.8860

0.3096

0.2425

0.1729

0.3957

0.8499

0.0942

0.1718

0.5979

0.6971

0.1362

0.3332

0.0821

0.6767

0.0373

0.3582

0.3130

0.4497

0.1013

0.7660 0.9571

0.7373

0.6970

0.9681

0.8292

0.7750

0.8454
0.7674

0.8576

0.7886

0.0871

0.1286

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

crit.1

cr
it.

2

3

2

1

4

5

6

7

8

9

10

11

12

14

13

15

16

17

18

19

20

Figure 9. Example - Alternatives graphically represented

Table 10. Example - List of alternatives and their criteria values

Alt ID crit.1 crit.2 Alt ID crit.1 crit.2

1 0.1717 0.4979 11 0.3957 0.8499

2 0.8292 0.7750 12 0.0942 0.1718

3 0.0871 0.1286 13 0.5979 0.6971

4 0.7129 0.5627 14 0.1362 0.3332

5 0.0440 0.2792 15 0.8576 0.7886

6 0.4681 0.0143 16 0.0821 0.6767

7 0.8454 0.7674 17 0.0373 0.3582

8 0.8860 0.3096 18 0.3130 0.4497

9 0.2425 0.1729 19 0.1013 0.7660

10 0.6970 0.9681 20 0.9571 0.7373

Step 1.

Euclidean distance between all alternatives are calculated, the closest alternatives

which are not dominating each other are alternatives 2 and 7. These two

alternatives are selected for initial Even-Swap.

44

Step 2.

An Even-Swap will be performed on alternative 2 (0.8292, 0.7750) and alternative

7 (0.8454, 0.7674). Let the swap be performed on alternative 2. For alternative 2:

Crit 1: 0.8292 � 0.8454

Crit 2: 0.7750 � ?

Assume that asking the DM to make the swap to compensate the change, the

following response is taken: “the increase in the first criterion from 0.8292 to

0.8454 is equal to a decrease in the second criterion from 0.7750 to 0.7372”

Step 3.

Then, alternative '2 becomes (0.8454, 0.7372), and this swapped alternative is

dominated by alternative 7. Then it can be said that 7X is preferred to 2X , and

following constraint can be written:

27 XX f

Following two constraints can be generated from the swap performed and using

the consistency indexα :

0)05.01(2
2,22,2

1,21,2

1 ≥−
−
−+ λλ

s

s

xx

xx
 which gives 0450.0 21 ≥− λλ

and

0)05.01(
2,22,2

1,21,2

12 ≥
−
−−−

s

s

xx

xxλλ which gives 0407.0 12 ≥− λλ

Step 4.

The following LP will be solved to make an estimation of the DM’s criteria

weights:

45

()

0

0

1

407.0

450.0

..

max

2727

12

21

≥
≥

=
≥−
≥−
≥−

∑

ε
λ

λ
ελ
ελλ
ελλ

ε

XXforXX

ts

f

Initial estimated weights are found to be: 7075.01 =λ and 2925.02 =λ .

Step 5.

All best possible class indexes are equalized to 1 (1=B
iX for all i), all worst

possible class indexes are equalized to 3 (3=W
iX for all i) and all class indexes

are equalized to zero, since no alternatives have been placed yet (0=C
iX for all i).

Step 6.

Alternative 4 is selected to be placed. Since all the preference classes are initially

empty, none of the steps give results till Step 12; the algorithm steps forward to

Step 12 (DM placement).

Step 12.

The DM is asked to place4X , and he places 4X to class 1. Step forward to Step

13.

Step 13.

14 =CX , and all alternatives dominating 4X will also be placed in class 1, these

are alternatives 2, 7, 15, 20. Then, 1201572 ==== CCCC XXXX . Select a new

alternative and continue. Step forward to Step 6.

46

Step 6.

Alternative 13 is selected to be placed. Since some preference classes are empty,

none of the steps give results till Step 12; the algorithm steps forward to Step 12

(DM placement).

Step 12.

The DM is asked to place13X , and he places 13X to class 2. Step forward to Step

13.

Step 13.

213 =CX , update possible worst class indexes for all unplaced alternatives

dominating 13X to class 2, there is only one10X , 210 =WX . Update possible best

class indexes for all unplaced alternatives dominated by 13X to class 2, there are

10 alternatives dominated by 13X ,

2181716141296531 ========== BBBBBBBBBB XXXXXXXXXX .

Since 13X is not dominated by 4X but in a worse class, a preference relation is

implied, 134 XX f , and the following constraint is added to weight space:

0)(134 ≥− XXλ

Solving the LP for estimated utility function again with the new constraint, it is

seen that the estimated weights do not change. Select a new alternative and

continue. Step forward to Step 6.

Step 6.

Alternative 16 is selected to be placed. Since some preference classes are empty,

none of the steps give results till Step 12; the algorithm steps forward to Step 12

(DM placement).

47

Step 12.

The DM is asked to place16X , and he places 16X to class 2. Step forward to Step

13.

Step 13.

216 =CX , update possible worst class indexes for all unplaced alternatives

dominating 16X to class 2, there are two unplaced dominating alternatives,

21911 == WW XX . Update possible best class indexes for all unplaced alternatives

dominated by 16X to class 2, there are 2 alternatives dominated by 16X ,

alternatives 5 and 17, but their worst class index is already 2, no update required.

Since 16X is not dominated by 4X but in a worse class, a preference relation is

implied, 164 XX f , and the following constraint is added to weight space:

0)(164 ≥− XXλ

Solving the LP for estimated utility function again with the new constraint, it is

seen that the estimated weights do not change. Select a new alternative and

continue. Step forward to Step 6.

Step 6.

Alternative 9 is selected to be placed. Since some preference classes are empty

none of the steps give results till Step 12; the algorithm steps forward to Step 12

(DM placement).

Step 12.

The DM is asked to place9X , and he places 9X to class 3. Step forward to Step

13.

48

Step 13.

39 =CX , and all alternatives dominated by 9X shall also be placed in class 3,

these are alternatives 3 and 12. Then, 3123 == CC XX .

Since 9X is not dominated by 16X but in a worse class, a preference relation is

implied, 916 XX f , and the following constraint is added to weight space:

0)(916 ≥− XXλ

Solving the LP for estimated utility function again with the new constraint, it is

seen that the estimated weights do not change.

Currently 10 alternatives are placed, and the algorithm status is shown in Table

11, highlighted alternatives are placed:

Table 11. Example - Current status of the alternatives (1)

Alternative ID class best worst Alternative ID class best worst

1 0 2 3 11 0 1 2

2 1 1 1 12 3 3 3

3 3 3 3 13 2 2 2

4 1 1 1 14 0 2 3

5 0 2 3 15 1 1 1

6 0 2 3 16 2 2 2

7 1 1 1 17 0 2 3

8 0 1 3 18 0 2 3

9 3 2 3 19 0 1 2

10 0 1 2 20 1 1 1

49

Select a new alternative and continue. Step forward to Step 6.

Step 6.

Alternative 8 is selected to be placed.

Step 7.

18 =BX and 38 =WX .

Step 8.

Starting from best class that 8X can belong to, that is class 1; convex combination

check will be performed, by solving LP1 and LP2. For the first class LP1 gives

01 >ε and LP2 gives 02 <ε ; this implies 18 =BX . For the second class, both

01 <ε and 02 <ε ; no information gained. For the third class 01 <ε and 02 >ε ;

this implies 38 =WX .

Step forward to next step.

Step 9.

Starting from worst class that 8X can belong to, that is class 3; LP3 will be

solved. For both class 3 and 2 LP3 gives feasible and positive solutions; so, no

updates to BX8 . Step forward to next step.

classes

1 2 3

2 13 3

4 16 9

7 12

15

20

50

Step 10.

Starting from best class that 8X can belong to, that is class 1; LP4 will be solved.

For class 1, LP4 gives a feasible solution, but 0<ε ; so the worst class that 8X

can belong to is updated, 18 =WX .

Now, 188 == WB XX , then place 8X to class 1. Go to Step 13.

Step 13.

18 =CX , no updates needed for best and worst possible class indexes of other

alternatives due to dominance relations.

Select a new alternative and continue. Step forward to Step 6.

Step 6.

Alternative 11 is selected to be placed.

Step 7.

111 =BX and 211 =WX .

Step 8.

Starting from best class that 11X can belong to, that is class 1; convex

combination check will be performed, by solving LP1 and LP2. For the first class

LP1 gives 01 <ε and LP2 gives 02 <ε ; no information gained. For the second

class, both 01 <ε and 02 >ε ; this implies 211 =WX .

Step 9.

Starting from worst class that 11X can belong to, that is class 2; LP3 will be

solved. For both class 2 LP3 gives feasible solution, but 0<ε ; so the best class

that 11X can belong to is updated, 211 =BX .

51

Now, 21111 == WB XX , then place 11X to class 2. Go to Step 13.

Step 13.

211 =CX , update possible best class indexes for all unplaced alternatives

dominated by 11X to class 2, there is only one unplaced alternative dominated by

11X , alternative 19, 219 =BX .

Now, 21919 == WB XX , then place 11X to class 2. 19X will be placed to class 2.

Go to Step 13 to place alternative 19.

Step 13.

219 =CX , no updates required for best and worst possible indexes of classes.

Select a new alternative and continue. Step forward to Step 6.

Step 6.

Alternative 10 is selected to be placed.

Step 7.

110 =BX and 210 =WX .

Step 8.

Starting from best class that 10X can belong to, that is class 1; convex

combination check will be performed, by solving LP1 and LP2. For the first class

LP1 gives 01 <ε and LP2 gives 02 <ε ; no information gained. For the second

class, 01 <ε and 02 >ε ; this implies 210 =WX .

Step forward to next step.

Step 9.

Starting from worst class that 10X can belong to, that is class 2; LP3 will be

52

solved. Solving for both class 2, LP3 gives feasible positive solution, so no update

to BX10 Go to Step 10.

Step 10.

Starting from best class that 10X can belong to, that is class 1; LP4 will be solved.

For class 1, LP4 gives a feasible solution, but 0<ε ; so the worst class that 10X

can belong to is updated, 110 =WX .

Now, 11010 == WB XX , then place 10X to class 1. Go to Step 13.

Step 13.

110 =CX , no updates required for best and worst possible indexes of classes, and no

preference relations implied. Select a new alternative and continue. Step forward

to Step 6.

Step 6.

Alternative 14 is selected to be placed.

Step 7.

214 =BX and 314 =WX .

Step 8.

Starting from best class that 14X can belong to, that is class 2; convex

combination check will be performed, by solving LP1 and LP2. For class 2 LP1

gives 01 >ε and LP2 gives 02 <ε ; this implies 214 =BX . For the second class,

01 <ε and 02 >ε ; this implies 314 =WX .

Step forward to next step.

Step 9.

Starting from worst class that 14X can belong to, that is class 3; LP3 will be

53

solved. For class 3 LP3 gives feasible solution, but 0<ε ; so the best class that

14X can belong to is updated, 314 =BX .

Now, 31414 == WB XX , then place 14X to class 3. Go to Step 13.

Step 13.

314 =CX , no updates required for best and worst possible indexes of classes.

Select a new alternative and continue. Step forward to Step 6.

Step 6.

Alternative 1 is selected to be placed.

Step 7.

21 =BX and 31 =WX .

Step 8.

Starting from best class that 1X can belong to, that is class 2; convex combination

check will be performed, by solving LP1 and LP2. For class 2 LP1 gives 01 >ε

and LP2 gives 02 <ε ; this implies 21 =BX . For class 3, 01 <ε and 02 >ε ; this

implies 31 =WX .

Step forward to next step.

Step 9.

Starting from worst class that 1X can belong to, that is class 3; LP3 will be

solved. For class 3 LP3 gives feasible positive solution, so no update on BX1 .

Step 10.

Starting from best class that 1X can belong to, that is class 2; LP4 will be solved.

For class 1, LP4 gives a feasible solution, but 0<ε ; so the worst class that 1X

can belong to is updated, 21 =WX . Now, 211 == WB XX , then place 1X to class 2.

54

Go to Step 13.

Step 13.

21 =CX , no updates required for best and worst possible indexes of classes.

Currently 16 alternatives are placed, and the algorithm status is shown in the

below table, highlighted alternatives are placed:

55

Table 12. Example - Current status of the alternatives (2)

Alternative ID class best worst Alternative ID class best worst

1 2 2 2 11 2 2 2

2 1 1 1 12 3 3 3

3 3 3 3 13 2 2 2

4 1 1 1 14 3 3 3

5 0 2 3 15 1 1 1

6 0 2 3 16 2 2 2

7 1 1 1 17 0 2 3

8 1 1 1 18 0 2 3

9 3 2 3 19 2 2 2

10 1 1 1 20 1 1 1

classes

1 2 3

2 13 3

4 16 9

7 11 12

15 19 14

20 1

8

10

Remaining four alternatives are also placed by weight space reduction. 5X and

17X are placed to class 3, 6X and 18X are placed to class 2. The final placements

are given in the below table (Table 13), and shown graphically in Figure 10.

Table 13. Example - Final status

classes

1 2 3

2 13 3

4 16 9

7 11 12

15 19 14

20 1 5

8 6 17

10 18

56

0.1717

0.4979

0.7129

0.5627

0.0440

0.2792

0.4681

0.0143

0.8860

0.3096

0.2425

0.1729

0.3957
0.8499

0.0942

0.1718

0.5979

0.6971

0.1362

0.3332

0.0821

0.6767

0.0373
0.3582

0.3130

0.4497

0.1013
0.7660 0.9571

0.7373

0.6970
0.9681

0.8292
0.7750

0.8454
0.7674

0.8576
0.7886

0.0871

0.1286

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

crit.1

cr
it.

2

3

2

1

4

5

6

7

8

9

10

11

12

14

13

15

16

17

18

19

20

Figure 10. Example - Final status represented graphically

Below table shows how the alternatives are placed, weight space reduction

(WSR), dominance (DOM) or DM placement (DM). 9 placements are made by

WSR, 7 placements are by DOM and 4 by DM placements. Looking at the

alternatives that are placed by DM, it is observed that these are the alternatives

which constitute the boundary for the classes, this proves the effectiveness of

selecting alternatives for placement technique; all other alternatives are placed

either by WSR or DOM. Only one even-swap is required, which was at the

initialization phase of the algorithm.

Class 1

Class 2

Class 3

57

Table 14. Example - Means of placements

WSR DOM DM

Alternative

ID

Class ID Alternative

ID

Class ID Alternative

ID

Class

ID

8 1 2 1 4 1

11 2 7 1 13 2

10 1 15 1 16 2

14 3 20 1 9 3

1 2 3 3

6 2 12 3

18 2 19 2

17 3 5 3

58

CHAPTER 4

AUTOMATED APPROACH AND EXPERIMENTATION

An automation of the proposed algorithm is developed for bi-criteria problems in

order to provide an infrastructure for DMs to implement the algorithm. The

developed automation is also used to test and interpret the behavior of the

algorithm to problems with certain characteristics. The extension of the

automation to more than two criteria problems may result in longer run-times to

execute and some complications especially dealing with Even-Swaps.

4.1 Development of the Automation and User Screens

The automation is developed using Visual Basic with MS Excel, and utilizes

Excel Solver for the LPs in the algorithm. The alternatives are read from a

worksheet and model parameters - number of alternatives to be considered and the

consistency index - are taken interactively. The following snapshots show

interaction screens; Figure 11 for inserting number of alternatives and Figure 12

for inserting consistency index.

59

Figure 11. Inserting number of alternatives to be considered

Figure 12. Inserting the consistency index

Two other interaction points with the DM are:

• Performing the Even-Swap : Step 2 at the initialization phase and Step

11 at the placing alternatives phase.

• Placing alternatives directly : Step 12 at the placing alternatives phase.

The first one requires DM to perform even swaps. Whenever an Even-Swap is

required, the screen shown in Figure 13 appears and asks the DM the decrease or

increase in the value of one criterion to compensate the change in the other

criterion. The criteria values for the both alternatives, and the change in the other

criterion is presented to the DM, and s/he is expected to make the swap.

60

Figure 13. Even Swap Screen

If none of the former steps can place the selected alternative, the algorithm asks

the DM to place the alternative to a class in between its possible best and worst

classes. These best and worst possible class indexes, and the criteria values of the

alternative is presented to the DM in the screen shown in Figure 14, and s/he is

expected to place the alternative in one class.

61

Figure 14. DM Placement

Entering correct info is crucial, so some checks are done in order to reject

erroneous data entry, error messages appear when one of the following cases

occur:

• Consistency index not between 0 and 1. (Figure 15)

• When swap is done in the wrong direction. (Figure 16)

• When DM tries to place the alternative out of the presented best and

worst possible class indexes bound. (Figure 17)

The following error messages appear, and the algorithm continues when the error

is corrected.

Figure 15. Consistency index not valid

62

Figure 16. Swap done in the wrong direction

Figure 17. DM placed the alternative to a wrong class

4.2 Experimentation

The proposed algorithm is experimented with the developed automation, in order

to analyze the behavior of the algorithm to alternative sets with different

characteristics. Four different parameters can be considered when testing the

algorithm:

• number of classes: this parameter is fixed at 3 for all runs, the

implementation may be extended to handle more classes, but currently

it places alternatives to three preference classes

• number of alternatives: three different sizes of alternative sets are used,

sets with 20, 50 and 100 alternatives are considered

• weights of the utility function: two different weight sets are used,

“weight1 / weight2” ratio of the first one is 0.7/0.3 and the other one is

0.1/0.9.

• consistency index value, alpha: three different consistency indexes are

used, these are; 0.05, 0.15 and 0.30.

The following table summarizes the runs made, with their run codes and run

parameters (Table 15):

63

Table 15. Run codes and Run parameters

Run
Codes

of
Classes

of
Alternatives

Utility
(weight 1 / weight 2) Alpha

Run001 3 20 0,7 / 0,3 0.05

Run002 3 20 0,7 / 0,3 0.15

Run003 3 20 0,7 / 0,3 0.30

Run004 3 20 0,1 / 0,9 0.05

Run005 3 20 0,1 / 0,9 0.15

Run006 3 20 0,1 / 0,9 0.30

Run007 3 50 0,7 / 0,3 0.05

Run008 3 50 0,7 / 0,3 0.15

Run009 3 50 0,7 / 0,3 0.30

Run010 3 50 0,1 / 0,9 0.05

Run011 3 50 0,1 / 0,9 0.15

Run012 3 50 0,1 / 0,9 0.30

Run013 3 100 0,7 / 0,3 0.05

Run014 3 100 0,7 / 0,3 0.15

Run015 3 100 0,7 / 0,3 0.30

Run016 3 100 0,1 / 0,9 0.05

Run017 3 100 0,1 / 0,9 0.15

Run018 3 100 0,1 / 0,9 0.30

During the runs, the DM’s responses for direct placements and Even-Swaps are

given using the underlying utility function of the DM. It is assumed that all

preference classes are approximately of the same size. Three different alternative

sets of sizes 20 alternatives, 50 alternatives and 100 alternatives are used, whose

criteria values are randomly generated. The alternative sets and their criteria

values are given in Appendix B. How each alternative is placed - either by convex

combinations, weight space reduction, Even-Swaps, direct DM placement or

dominance - is tracked and documented. Results of all runs are given in Appendix

B. The Following table (Table 16) summarizes the results obtained from all runs.

64

Table 16. Run Results Summary

Number of alternatives placed with different tools
 # of

Classes
of

Alternatives
Utility

(weight1/ weight2)
Alpha

Convex
Combination WSR Even Swaps DM Placement Dominance

Run001 3 20 0,7 / 0,3 0.05 8 4 8
Run002 3 20 0,7 / 0,3 0.15 7 1 4 8
Run003 3 20 0,7 / 0,3 0.30 1 5 2 4 8
Run004 3 20 0,1 / 0,9 0.05 5 4 11
Run005 3 20 0,1 / 0,9 0.15 5 4 11
Run006 3 20 0,1 / 0,9 0.30 5 4 11
Run007 3 50 0,7 / 0,3 0.05 5 18 5 22
Run008 3 50 0,7 / 0,3 0.15 4 15 4 5 22
Run009 3 50 0,7 / 0,3 0.30 7 9 6 7 21
Run010 3 50 0,1 / 0,9 0.05 6 14 4 26
Run011 3 50 0,1 / 0,9 0.15 6 14 4 26
Run012 3 50 0,1 / 0,9 0.30 6 10 3 5 26
Run013 3 100 0,7 / 0,3 0.05 32 18 8 4 38
Run014 3 100 0,7 / 0,3 0.15 24 22 3 6 45
Run015 3 100 0,7 / 0,3 0.30 35 9 16 6 34
Run016 3 100 0,1 / 0,9 0.05 21 30 0 6 43
Run017 3 100 0,1 / 0,9 0.15 21 29 1 6 43
Run018 3 100 0,1 / 0,9 0.30 28 25 2 6 39

65

Some graphs are plotted using the above tabulated results, to enable the

interpretation of the results graphically. The averages are taken by grouping the

runs according to “number of alternatives”, and Figure 18 is plotted. This figure

shows the average percent of the cases an alternative is placed by a certain

placement method.

0.83%

29.17%

2.50%

20.00%

47.50%

11.33%

26.67%

4.33%

10.00%

47.67%

26.83%

22.17%

5.00%
5.67%

40.50%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 50 100

Averages

Dominance

DM Placement

Even Swaps

WSR

Convex Combination

Figure 18. Averages with differing alternative set sizes

By looking at the alternatives placed by direct DM placement, we can observe a

decreasing trend. The average percent for Even-Swaps increases as the number of

alternatives considered increases, however, if we sum up the average percentages

for DM placement and Even-Swaps the following decreasing trend can be

observed; 22.50%, 14.33% and 10.67% for alternative sets of sizes 20, 50 and 100

respectively. Thus, we can conclude that with larger alternative sets the algorithm

requires relatively less DM effort.

Another observation from this graph is that, the percent of alternatives that are

placed by WSR decreases whereas the percent of alternatives that are placed by

66

convex combinations increases as the size increases. This can be due to increasing

number of convex combination relationships among all alternatives with the

increase in the number of alternatives.

The consistency index is set at the beginning of the algorithm; the information

coming from the Even-Swaps is evaluated within the range defined by this

consistency index. The average percentages for way of placing the alternatives,

under different consistency indexes are plotted in Figure 19. As expected, when

the consistency index increases, the required DM input increases, if we sum up the

average percentages for DM placement and Even-Swaps the following increasing

trend can be observed; 12.67%, 14.50% and 20.33% for consistency index values

of 0.05, 0.15 and 0.30 respectively.

12.50%

29.50%

1.33%

11.33%

45.33%

10.83%

28.17%

2.83%

11.67%

46.50%

15.67%

20.33%

7.67%

12.67%

43.67%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.15 0.30

Averages - Consistency Index

Dominance

DM Placement

Even Swaps

WSR

Convex Combination

Figure 19. Averages with differing consistency indexes

The results are grouped according to the number of alternatives considered, and

67

three graphs are plotted for alternative sets of sizes 20, 50 and 100. Figure 20

illustrates the runs for the alternative set having 20 alternatives. The most

interesting observation from this graph is that, number of alternatives that are

placed by direct DM placement stays constant at 4, with different utility functions

and consistency indexes. These four alternatives are the ones that constitute the

boundaries for preference classes; one for the best class, one for the worst and two

for the middle class. The step for placing the alternative by an Even-Swap is

invoked only three times; the reasoning behind this is that, since the number of

alternatives dealt is small, the case when it is feasible to perform an Even-Swap is

less probable. Another observation from Figure 20 is that, for runs using the

utility function weight ratio “0.1/0.9”, (these are the runs 4, 5 and 6) the results are

stable for different consistency indexes.

8

4

8

7

1

4

8

1

5

2

4

8

5

4

11

5

4

11

5

4

11

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run001 Run002 Run003 Run004 Run005 Run006

20 Alternatives

Dominance

DM Placement

Even Swaps

WSR

Convex Combination

Figure 20. Results for 20 alternatives

Figure 21 and Figure 22, summarize the runs for 50 and 100 alternatives. It can be

observed that; as the consistency index increases, the number of DM placements

and number of placements by Even-Swaps increases, whereas the number of

alternatives that are placed by either WSR or convex combination relations

decreases. The results are more stable with the runs that use utility function with

68

weights 0.1 and 0.9 for criterion 1 and criterion 2 respectively than the runs that

use weights 0.7 and 0.3.

Although we double the size of the alternative set from 50 to 100, we observe just

a slight increase in the number of placements made directly by the DM, so

relatively it is decreasing.

5

18

5

22

4

15

4

5

22

7

9

6

7

21

6

14

4

26

6

14

4

26

6

10

3

5

26

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run007 Run008 Run009 Run010 Run011 Run012

50 Alternatives

Dominance

DM Placement

Even Swaps

WSR

Convex Combination

Figure 21. Results for 50 alternatives

69

32

18

8

4

38

24

22

3
6

45

35

9

16

6

34

21

30

0
6

43

21

29

1
6

43

28

25

2
6

39

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run013 Run014 Run015 Run016 Run017 Run018

100 Alternatives

Dominance

DM Placement

Even Swaps

WSR

Convex Combination

Figure 22. Results for 100 alternatives

The algorithm requires some computational effort; runs with alternative sets

having 100 alternatives, required execution of 277 LPs on the average. Run 15,

with 0.7/0.3 utility weight ratio and 0.30 consistency index, required execution of

348 LPs. It takes couple of minutes to complete a run.

70

CHAPTER 5

SUMMARY AND CONCLUSION

An interactive model for the problem of sorting alternatives to preference classes

in the existence of multiple criteria is proposed in this study.

It is assumed that the DM’s underlying utility function is linear; the model tries to

generate an estimated region for the criteria weights using DM’s responses and

place the alternatives to preference classes either utilizing weight space reduction

or dominance wherever possible.

A two-phased approach is proposed for the problem. The first phase initializes the

placement algorithm, starts with the selection of two alternatives from the

alternative set and an even swap is performed on these two alternatives. Then,

utilizing the information gained from this swap, an estimation of the DM’s

underlying utility function is made. This is done by the help of an LP which

constrains the weight space of the DM.

With the estimated utility function, the algorithm steps forward to second phase.

This phase loops until all alternatives in the preference set are placed to a

preference class. The first step in this phase, is selecting an alternative placement.

Then, by looking at dominance relations with formerly placed alternatives, its

possible best and worst classes are determined. Next, it is checked whether the

selected alternative can be expressed as a convex combination of alternatives that

are already assigned to a given class. This check is conducted for all possible

71

classes the selected alternative may belong to. When it is proved that the

alternative can be expressed as a convex combination of alternatives of a given

class, it is placed to that class. Otherwise, the information gained is utilized and

the algorithm tries to place the alternative using weight space reduction with two

LPs. If this cannot be possible, the next step tries to find an equivalent dummy

point –in terms of estimated utility value- which can be expressed as a convex

combination of the alternatives of a class. Then an even swap is performed on the

selected alternative to swap around the dummy alternative, and it is expected that

the swapped alternative can also be expressed as a convex combination of

alternatives in that class. If no feasible dummy alternative can be found, then the

selected alternative is presented to the DM, and he/she is asked to place the

alternative to one of the possible preference classes.

In each step of the algorithm; whenever information is gathered from the DM, the

weight space is updated accordingly. The weight space is reduced during the

execution of the algorithm. So, although not guaranteed, it is expected and

observed that the DM’s estimated utility function improves as the algorithm

iterates. As more alternatives are placed to preference classes, the algorithm

becomes more effective. That is, as the number of alternatives placed by

dominance and weight space reduction increases, the required DM involvement

for placements decreases.

At the last step of the algorithm the DM is asked to directly place the selected

alternative to a preference class. But before that step, if appropriate, the DM is

asked to place the alternative by performing an Even-Swap using the dummy

alternative approach. In some cases, performing the Even-swap can be harder than

directly placing the alternative. That depends on many factors: the characteristic

of the problem, scaling of the criteria, number of criteria to be considered, the

DM’s value judgments, the amount of the swap required, etc. For example if the

number of criteria to be considered is five, the DM has to make four iterations to

perform the Even-Swap; s/he would rather prefer directly placing the alternative.

However, evaluating the criteria and making the placement may also be difficult,

72

especially when the number of criteria is large.

The algorithm appears to be more effective especially when the number of

alternatives in the alternative set is large and the number of criteria to be

considered is not too many. Without a proper mechanism, it would be hard for the

DM to consider and place too many alternatives; the model provides automatic

placements by making inferences. The problem with too many criteria is due to

the increase in the number of swaps required.

An automated approach for the proposed algorithm is developed. Utilizing the

automation, the model is solved with various alternative sets having different

characteristics, and the results are discussed in Chapter 4.

Possible Future Work

It was assumed that, the DM is consistent with his/her responses; it will be

interesting to analyze cases when there exists inconsistency, beyond the amount

considered by the consistency index. In the same way the consistency index, α,

can be defined dynamically as a function of DM’s responses.

A real life application of the algorithm can be performed; the possible application

areas are listed in the literature survey section.

The Even-Swaps method is originally proposed for finding the best alternative

among a small number of alternatives, however, utilizing the ideas developed in

this study it can be possible to use the method to find the best alternative among a

large number of alternatives, which is a special case of the sorting problem

studied in this thesis.

73

REFERENCES

1. Altman, E.I., Avery, R., Eisenbeis, R., Stinkey, J., 1981. Application of

Classification Techniques in Business, Banking and

Finance.Contemporary Studies in Economic and Financial Analysis,

Vol. 3. JAI Press, Greenwich, CT

2. Arhcer, N.P., Wang, S., 1993. Application of the back propagation

neural networks algorithm with monotonicity constraints for twogroup

classification problems. Decision Sciences 24, 60–75.

3. Berkson, J., 1944. Application of the logistic function to bio-assay.

Journal of the American Statistical Association 39, 357–365.

4. Bliss, C.I., 1934. The method of probits. Science 79, 38–39.

5. Fisher, R.A., 1936. The use of multiple measurements in taxonomic

problems. Annals of Eugenics 7, 179–188.

6. Greco, S., Matarazzo, B., Slowinski, R., 1999a. The use of rough sets

and fuzzy sets in MCDM. In: Gal, T., Hanne, T., Stewart, T.(Eds.),

Advances in Multiple Criteria Decision Making. Kluwer Academic

Publishers, Dordrecht, pp.203–211.

7. Greco, S., Matarazzo, B., Slowinski, R., 2000a. Extension of the rough

set approach to multicriteria decision support. INFOR 38 (3), 161–196.

8. Greco, S., Matarazzo, B., Slowinski, R., 2000b. Dealing with missing

values in rough set analysis of multi-attribute and multi-criteria decision

problems. In: Zanakis, S.H., Doukidis, G., Zopounidis, C. (Eds.),

Decision Making: Recent Developments and Worldwide Applications.

Kluwer Academic Publishers, Dordrecht, pp. 295–316.

9. Greco, S., Matarazzo, B., Slowinski, R., 2002. Rough sets methodology

for sorting problems in presence of multiple attributes and criteria.

European Journal of Operational Research 138, 247-259.

10. Greco, S., Matarazzo, B., Slowinski, R., Zanakis, S., 1999. Rough set

analysis of information tables with missing values. In: Despotis, D.,

74

Zopounidis, C. (Eds.), Integrating Technology & Human Decisions:

Bridging into the 21st Century, Proceedings of the Fifth International

Meeting of the Decision Sciences Institute, Vol. II. New Technologies

Editions, Athens, pp. 1359–1362.

11. Green, P.E., Srinivasan, V., 1978. Conjoint analysis in consumer

research: Issues and outlook. Journal of Consumer Research, 103–123.

12. Gregory, R., K. Wellman. 2001. Bringing stakeholder values into

environmental policy choices: a community-based estuary case study.

Ecological Economics 39 37-52.

13. Hammond, J.S., R.L. Keeney, H. Raiffa. 1998. Even swaps: A rational

method for making trade-offs, Harvard Business Review 76(2) 137-149.

14. Hammond, J.S., R.L. Keeney, H. Raiffa. 1999. Smart Choices. A

Practical Guide to Making Better Decisions. Harvard Business School

Press, Boston, MA.

15. Jacquet-Lagreze, E., 1995. An application of the UTA discriminant

model for the evaluation of R&D projects. In: Pardalos,P.M., Siskos, Y.,

Zopounidis, C. (Eds.), Advances in Multicriteria Analysis. Kluwer

Academic Publishers, Dordrecht, pp.203–211.

16. Jacquet-Lagreze, E., Siskos, Y., 2001. Preference disaggregation: 20

years of MCDA experience. European Journal of Operational Research

130, 233–245.

17. Kajanus, M., J. Ahola, M. Kurttila, M. Pesonen. 2001. Application of

even swaps for strategy selection in a rural enterprise. Management

Decision 39(5) 394-402.

18. Keeney, R.L., Raiffa, H., 1976. Decisions with Multiple Objectives.

Wiley, New York.

19. Keeney, R.L. 2002. Common mistakes in making value trade-offs. Oper.

Res. 50 (6) 935-945.

20. Koksalan, M.M., 1989. Identifying and ranking a most preferred subset

of alternatives in the presence of multiple criteria. Naval Research

Logistics 36, 359–372.

21. Koksalan, M.M., Karwan, M.H., Zionts, S., 1984. An improved method

75

for solving multiple criteria problems involving discrete alternatives.

IEEE Transactions on Systems, Man, and Cybernetics 14, 24–34.

22. Koksalan, M.M., Öden, Ö., 1993. Visual interactive approaches for bi-

criteria decision making. Transactions on Operations Research

(Yöneylem Araştırması Dergisi) 5, 27-44.

23. Koksalan, M.M., Rizi, O., 2001. A visual interactive approach for

multiple criteria decision making with monotone utility functions.

Journal of the Operational Research Society 52, 665-672

24. Koksalan, M.M., Sagala, P., 1995. Interactive approaches for discrete

alternative multiple criteria decision making with monotone utility

functions. Management Science 41, 1158–1171.

25. Koksalan, M.M., Taner, O.V., 1992. An approach for finding the most

preferred alternative in the presence of multiple criteria. European

Journal of Operational Research 60, 52–60.

26. Koksalan, M.M., Ulu, C., 2003. An interactive approach for placing

alternatives in preference classes. European Journal of Operational

Research 144 429–439

27. Korhonen, P., Soismaa, M., 1981. An interactive multiple criteria

approach for ranking alternatives. Journal of the Operational Research

Society 32, 577–585.

28. Korhonen, P., Wallenius, J., Zionts, S., 1984. Solving the discrete

multiple criteria problem using convex cones. Management Science 30,

1336–1345.

29. Larichev, O.I., Moshkovich, H.M., 1994. An approach to ordinal

classification problems. International Transactions in Operational

Research 1, 375–385.

30. Malakooti, B., 1989. Identifying nondominated alternatives with partial

information for multiple-objective discrete and linear programming

problems. IEEE Transactions on SMC 19, 95–107.

31. Malakooti, B., 2000. Ranking and screening multiple criteria alternatives

with partial information and use of ordinal and cardinal strength of

preferences. IEEE Transactions on SMC, Part A 30, 355–36

76

32. Malakooti, B., Raman, V., 2000. Clustering and selecting multiple

criteria alternatives using unsupervised and supervised neural networks.

Journal of Intelligent Manufacturing 11, 435–451.

33. McFadden, D., 1974. Conditional logit analysis in qualitative choice

behavior. In: Zarembka, P. (Ed.), Frontiers in Econometrics.Academic

Press, New York.

34. Michalowski, W., Rubin, S., Slowinski, R., Wilk, S., 2001. Triage of the

child with abdominal pain: A clinical algorithm for emergency patient

management. Paediatrics and Child Health 6 (1), 23–28.

35. Mousseau, V., Slowinski, R., Zielniewicz, P., 2000. A user-oriented

implementation of the ELECTRE-TRI method integrating preference

elicitation support. Computers and Operations Research 27 (7-8), 75

36. Mousseau, V., Slowinski, R., Zielniewicz, P., 2000. A user-oriented

implementation of the ELECTRE-TRI method integrating preference

elicitation support. Computers and Operations Research 27, 757–777.

37. Mustajoki, J., Hämäläinen, R.P., 2004. Making Even Swaps Even

Easier. Manuscript. www.sal.hut.fi/Publications/

38. Preadki, L., Slowinski, R., Stefanowski, J., Susmaga, R., Wilk, Sz.,

1998. ROSE – Software implementation of the rough set theory. In:

Polkowski, L., Skowron, A. (Eds.), Rough Sets and Current Trends in

Computing, Lecture Notes in Artificial Intelligence, Vol. 1424. Springer,

Berlin, pp. 605–608.

39. Roy, B., 1971. Problems and methods with multiple objective functions.

Mathematical Programming 1, 239–266.

40. Siskos, J., 1982. A way to deal with fuzzy preference sets in multi-

criteria decision problems. European Journal of Operational Research

10, 314–324.

41. Siskos, Y., Grigoroudis, E., Zopounidis, C., Saurais, O., 1998.

Measuring customer satisfaction using a survey based preference

disaggregation model. Journal of Global Optimization 12 (2), 175–195

42. Stam, A., Ungar, D.R., 1995. RANGU: A microcomputer package for

two-group mathematical programming-based nonparametric

77

classification. European Journal of Operational Research 86, 374–388.

43. Ulu, C., Koksalan, M., 2001. An interactive procedure for selecting

acceptable alternatives in the presence of multiple criteria. Naval

Research Logistics 48, 592–606.

44. Zionts, S., 1981. A multiple criteria method for choosing among discrete

alternatives. European Journal of Operational Research 7, 143–147.

45. Zopounidis, C., Doumpos, M., 1999. A multicriteria decision aid

methodology for sorting decision problems: The case of

financialdistress. Computational Economics 14 (3), 197–218.

46. Zopounidis, C., Doumpos, M., 2000a. PREFDIS: A multicriteria

decision support system for sorting decision problems. Computers and

Operations Research 27 (7-8), 779–797.

47. Zopounidis, C., Doumpos, M., 2002. Multicriteria classi.cation and

sorting methods: A literature review. European Journal of Operational

Research 138, 229–246

A-1

APPENDIX A – Detailed flow of the algorithm

Initializing Phase

Step 4. Estimate the utility function

Take number of alternatives

Take the consistency index

Read all alternatives

Initialize preference classes

Identify alternative pairs which do not
dominate each other

Calculate Euclidean distances

Find the minimum Euclidean distance

Select the pair having the minimum
distance

Equate two alternatives on one criterion

Perform the swap on the other criterion

Generate two constraints from the swap,
using consistency index

Generate one constraint from the
implied preference

Solve the generated LP, to find the mid-
point of the weight space

Step 0. Initialize the problem

Step 1. Select two alternatives

Step 2. Perform Even-Swap

Step 3. Define the weight space

Take the solution as the estimated utility
function

A-2

Placing Alternatives Phase

Set all best class indexes to 1

Set all worst class indexes to t

Set all class indexes to 0 (not placed)

Step 5. Initialize alternatives

Identify unplaced alternatives

Identify those, which are out of bounds

Select the one, which is far from the
nearest boundary

Select the one, which is closest to the
nearest boundary

Step 6. Select an alternative to place

No alternatives out of
bounds

YES NO

Look for the class indexes dominating
alternatives, which are placed

Set the smallest class index as the best
class index of the selected alternative

Step 7. Decide best and worst classes

Look for the class indexes dominated
alternatives, which are placed

Set the largest class index as the worst
class index of the selected alternative

Solve LP1 to obtain E1

Step 8. Convex Combination check

Solve LP2 to obtain E2

Check whether
E1 = E2 = 0

OR
E1 > 0 ; E2 > 0

Check whether
E1 < 0 ; E2 > 0

Check whether
E1 > 0 ; E2 < 0

Start from the worst possible class

Solve LP3

Step 9. Check for best class with WSR

Set best possible class index to the
class

Consider the next worst class

If
"Infeasible" or E <= 0

All classes except the best, are
considered

NO

YES
NO

Start from the best possible class

Solve LP4

Step 10. Check for worst class with WSR

Set worst possible class index to the
class

Consider the next best class

If
"Infeasible" or E <= 0

All classes except the worst, are
considered

NO

YES
NO

YES

Start from the best possible class

Solve LP5

Step 11. Find a dummy equivalent alternative

Consider the next best class

If
"Infeasible"

All classes are considered?

NO

YES

NO

Perform an Even-Swap to come around
dummy alternative

Set worst class index to current class

Set best class index to current class

Swapped point can be expresses as
a convex combination?

Go to next step

NO

NO

NO

Ask DM to place the alternative to a class,
in between best and worst classes

Step 12. Ask DM to place the alternative

Set class index to current class

Step 13. Place the alternative

For each alternative in a better class, but not
dominating, add a preference constraint to

weight space

For each alternative in a worse class, but not
dominated, add a preference constraint to

weight space

Reestimate the utility function

There exists unplaced alternatives

Document Results
"STOP"

check whether
 best class index = worst class index

Go to next step

NO

YES

stop this step

stop this step

YES

B-1

APPENDIX B – Experimentation

Experimentation with 20 alternatives:

Alternative

ID
Criterion 1

value
Criterion 1

value
1 0.1717 0.4979
2 0.8292 0.7750
3 0.0871 0.1286
4 0.7129 0.5627
5 0.044 0.2792
6 0.4681 0.0143
7 0.8454 0.7674
8 0.886 0.3096
9 0.2425 0.1729

10 0.6970 0.9681
11 0.3957 0.8499
12 0.0942 0.1718
13 0.5979 0.6971
14 0.1362 0.3332
15 0.8576 0.7886
16 0.0821 0.6767
17 0.0373 0.3582
18 0.313 0.4497
19 0.1013 0.7660
20 0.9571 0.7373

Class1 Class2 Class3

Alt
ID Crit1 Crit2

Alt
ID Crit1 Crit2

Alt
ID Crit1 Crit2

2 0.8292 0.775 1 0.1717 0.4979 3 0.0871 0.1286
4 0.7129 0.5627 6 0.4681 0.0143 5 0.044 0.2792
7 0.8454 0.7674 11 0.3957 0.8499 9 0.2425 0.1729
8 0.886 0.3096 13 0.5979 0.6971 12 0.0942 0.1718

10 0.697 0.9681 16 0.0821 0.6767 14 0.1362 0.3332
15 0.8576 0.7886 18 0.313 0.4497 17 0.0373 0.3582
20 0.9571 0.7373 19 0.1013 0.766

B-2

RUN 1:

Run Parameters
of Alternatives 20
Consistency Index 0.05
Underlying Utility Function
(weight 1 / weight 2)

0.7 / 0.3

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

 1 4 2
 6 9 3
 8 13 5
 10 16 7
 11 12
 14 15
 17 19
 18 20

 8 4 8

RUN 2:

Run Parameters
of Alternatives 20
Consistency Index 0.15
Underlying Utility Function
(weight 1 / weight 2)

0.7 / 0.3

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

 6 1 4 2
 8 9 3
 10 13 5
 11 16 7
 14 12
 17 15
 18 19
 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Class 1

Class 2

Class 3

B-3

 7 1 4 8

RUN 3:

Run Parameters
of Alternatives 20
Consistency Index 0.30
Underlying Utility Function
(weight 1 / weight 2)

0.7 / 0.3

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

18 8 1 4 2
 10 6 9 3
 11 13 5
 14 16 7
 17 12
 15
 19
 20

1 5 2 4 8

RUN 4:

Run Parameters
of Alternatives 20
Consistency Index 0.05
Underlying Utility Function
(weight 1 / weight 2)

0.1 / 0.9

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

 4 13 1
 6 14 2
 8 17 3
 9 19 5
 20 7
 10
 11
 12
 15
 16
 18
 5 4 11

RUN 5:

Run Parameters
of Alternatives 20
Consistency Index 0.15
Underlying Utility Function
(weight 1 / weight 2)

0.1 / 0.9

B-4

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

 4 13 1
 6 14 2
 8 17 3
 9 19 5
 20 7
 10
 11
 12
 15
 16
 18
 5 4 11

RUN 6:

Run Parameters
of Alternatives 20
Consistency Index 0.30
Underlying Utility Function
(weight 1 / weight 2)

0.1 / 0.9

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

 4 13 1
 6 14 2
 8 17 3
 9 19 5
 20 7
 10
 11
 12
 15
 16
 18
 5 4 11

B-5

Experimentation with 50 alternatives:

Alternative

ID
Criterion 1

value
Criterion 1

value
 Alternative

ID
Criterion 1

value
Criterion 1

value
1 0.3900 0.3296 26 0.3129 0.6086
2 0.1763 0.0446 27 0.1698 0.7177
3 0.1925 0.3864 28 0.1126 0.665
4 0.9750 0.7850 29 0.1379 0.1646
5 0.6266 0.1859 30 0.4732 0.1023
6 0.9751 0.8548 31 0.9704 0.7103
7 0.4504 0.3621 32 0.8698 0.0837
8 0.2843 0.4652 33 0.9333 0.2587
9 0.1218 0.3370 34 0.5299 0.958

10 0.6526 0.9496 35 0.6433 0.5016
11 0.2514 0.3081 36 0.9242 0.653
12 0.2035 0.8757 37 0.2897 0.8537
13 0.8618 0.3790 38 0.7000 0.9630
14 0.8026 0.3312 39 0.7228 0.6429
15 0.3876 0.5087 40 0.9595 0.8013
16 0.6889 0.6848 41 0.7171 0.8152
17 0.7401 0.3371 42 0.3404 0.8831
18 0.0472 0.0847 43 0.0084 0.5419
19 0.3137 0.2180 44 0.5986 0.1639
20 0.8961 0.0827 45 0.6055 0.1965
21 0.0523 0.7838 46 0.7369 0.7613
22 0.7899 0.9992 47 0.5571 0.6226
23 0.8131 0.3521 48 0.2759 0.1641
24 0.9899 0.6320 49 0.2366 0.9427
25 0.4817 0.8905 50 0.8195 0.472

Class1 Class2 Class3

Alt
ID Crit1 Crit2

Alt
ID Crit1 Crit2

Alt
ID Crit1 Crit2

4 0.975 0.785 5 0.6266 0.1859 1 0.39 0.3296
6 0.9751 0.8548 7 0.4504 0.3621 2 0.1763 0.0446

10 0.6526 0.9496 12 0.2035 0.8757 3 0.1925 0.3864
13 0.8618 0.379 14 0.8026 0.3312 8 0.2843 0.4652
16 0.6889 0.6848 15 0.3876 0.5087 9 0.1218 0.337
22 0.7899 0.9992 17 0.7401 0.3371 11 0.2514 0.3081
23 0.8131 0.3521 20 0.8961 0.0827 18 0.0472 0.0847
24 0.9899 0.632 25 0.4817 0.8905 19 0.3137 0.218
31 0.9704 0.7103 32 0.8698 0.0837 21 0.0523 0.7838
33 0.9333 0.2587 34 0.5299 0.958 26 0.3129 0.6086
36 0.9242 0.653 35 0.6433 0.5016 27 0.1698 0.7177
38 0.7 0.963 37 0.2897 0.8537 28 0.1126 0.665
39 0.7228 0.6429 42 0.3404 0.8831 29 0.1379 0.1646
40 0.9595 0.8013 44 0.5986 0.1639 30 0.4732 0.1023
41 0.7171 0.8152 45 0.6055 0.1965 43 0.0084 0.5419
46 0.7369 0.7613 47 0.5571 0.6226 48 0.2759 0.1641
50 0.8195 0.472 49 0.2366 0.9427

B-6

RUN 7:

Run Parameters
of Alternatives 50
Consistency Index 0.05
Underlying Utility Function
(weight 1 / weight 2)

0.7 / 0.3

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

17 1 12 2
35 5 14 3
37 7 23 4
46 10 26 6
47 15 34 8
 16 9
 20 11
 21 13
 22 18
 27 19
 30 24
 32 25
 33 28
 38 29
 39 31
 41 36
 44 40
 45 42
 43
 48
 49
 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Class 1

Class 2

Class 3

B-7

5 18 5 22

RUN 8:

Run Parameters
of Alternatives 50
Consistency Index 0.15
Underlying Utility Function
(weight 1 / weight 2)

0.7 / 0.3

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

17 1 7 14 2
35 5 12 15 3
46 10 16 20 4
47 22 34 23 6
 30 26 8
 32 9
 33 11
 37 13
 38 18
 39 19
 41 21
 42 24
 44 25
 45 27
 49 28
 29
 31
 36
 40
 43
 48
 50

4 15 4 5 22

RUN 9:

Run Parameters
of Alternatives 50
Consistency Index 0.30
Underlying Utility Function
(weight 1 / weight 2)

0.7 / 0.3

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

1 10 5 7 2
17 22 12 16 3
25 30 14 20 4
35 32 15 23 6
37 33 34 26 8
42 38 45 44 9

B-8

47 39 49 11
 41 13
 46 18
 19
 21
 24
 27
 28
 29
 31
 36
 40
 43
 48
 50

7 9 6 7 21

RUN 10:

Run Parameters
of Alternatives 50
Consistency Index 0.05
Underlying Utility Function
(weight 1 / weight 2)

0.1 / 0.9

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

8 1 3 2
15 10 7 4
17 12 16 5
25 14 36 6
26 21 9
37 23 11
 24 13
 27 18
 28 19
 33 20
 34 22
 42 29
 43 30
 49 31
 32
 35
 38
 39
 40
 41
 44
 45
 46

B-9

 47
 48
 50

6 14 4 26

RUN 11:

Run Parameters
of Alternatives 50
Consistency Index 0.05
Underlying Utility Function
(weight 1 / weight 2)

0.1 / 0.9

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

8 1 3 2
15 10 7 4
17 12 16 5
25 14 36 6
26 21 9
37 23 11
 24 13
 27 18
 28 19
 33 20
 34 22
 42 29
 43 30
 49 31
 32
 35
 38
 39
 40
 41
 44
 45
 46
 47
 48
 50

6 14 4 26

RUN 12:

Run Parameters
of Alternatives 50
Consistency Index 0.05
Underlying Utility Function
(weight 1 / weight 2)

0.1 / 0.9

B-10

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

8 9 3 1 2
15 10 27 7 4
17 12 33 14 5
25 21 16 6
26 24 36 11
37 28 13
 34 18
 42 19
 43 20
 49 22
 23
 29
 30
 31
 32
 35
 38
 39
 40
 41
 44
 45
 46
 47
 48
 50

6 10 3 5 26

B-11

Experimentation with 100 alternatives:

Alternative

ID
Criterion 1

value
Criterion 1

value
 Alternative

ID
Criterion 1

value
Criterion 1

value
1 0.832473245 0.955980422 51 0.992663346 0.921394289
2 0.947412859 0.895050087 52 0.15805215 0.224635798
3 0.753019334 0.49822847 53 0.441496201 0.359501055
4 0.614207422 0.313134137 54 0.14552186 0.871191621
5 0.3424168 0.501686154 55 0.381511131 0.184240931
6 0.08671645 0.27104183 56 0.032140635 0.641507591
7 0.853584041 0.113141229 57 0.864506978 0.457378111
8 0.260190032 0.37133937 58 0.534361588 0.121757557
9 0.537626481 0.135279453 59 0.17648324 0.992295065

10 0.241000145 0.790835886 60 0.453230764 0.541160228
11 0.073750323 0.010561168 61 0.390657796 0.945923677
12 0.513245474 0.932553728 62 0.861542781 0.127758741
13 0.795130693 0.821487671 63 0.422980653 0.929919058
14 0.189861305 0.041740431 64 0.304323174 0.94639595
15 0.839206625 0.144101518 65 0.96922068 0.765952414
16 0.059594292 0.432333708 66 0.927623558 0.629982704
17 0.486867394 0.160671516 67 0.402291509 0.271459831
18 0.735999703 0.166290046 68 0.116232643 0.218325976
19 0.464406083 0.345865531 69 0.732117643 0.39074074
20 0.143466196 0.956707613 70 0.33869598 0.676134621
21 0.192836693 0.036797936 71 0.544549909 0.529443227
22 0.060492734 0.603855139 72 0.235980527 0.873259861
23 0.310464731 0.672643931 73 0.776084535 0.49642373
24 0.285450622 0.24737219 74 0.137548599 0.588775218
25 0.621882788 0.653604652 75 0.076118645 0.572746004
26 0.722183838 0.262613704 76 0.772543958 0.149830007
27 0.778799285 0.340517335 77 0.365535945 0.691822652
28 0.799103113 0.432074287 78 0.13984392 0.601592939
29 0.202996158 0.612900643 79 0.618469837 0.455577213
30 0.836595514 0.508538558 80 0.203597813 0.435135888
31 0.415871906 0.568507938 81 0.745445192 0.680887682
32 0.48931535 0.527788795 82 0.228557863 0.209255101
33 0.777378849 0.625081627 83 0.878099092 0.305676716
34 0.848999086 0.137990519 84 0.022508035 0.262350081
35 0.231353816 0.416213454 85 0.262733829 0.751476624
36 0.337151451 0.843661416 86 0.520259 0.463249447
37 0.375724187 0.810093271 87 0.674965013 0.784149458
38 0.198571633 0.137345423 88 0.042721452 0.343153696
39 0.383331991 0.080726606 89 0.778707712 0.323776414
40 0.914814546 0.027321941 90 0.899764948 0.019489158
41 0.604987791 0.540104749 91 0.802880389 0.614349849
42 0.796419794 0.580064143 92 0.299628367 0.741196774
43 0.850124341 0.021273596 93 0.861517464 0.504841037
44 0.282483332 0.139310251 94 0.174336644 0.255147571
45 0.480130608 0.377300004 95 0.371507941 0.015617171
46 0.574024729 0.674663997 96 0.790817614 0.587568157
47 0.708192047 0.086445481 97 0.831112809 0.718197646
48 0.365422299 0.19239134 98 0.570222766 0.630412933
49 0.023728097 0.686680671 99 0.369114938 0.496737817
50 0.244962971 0.102200394 100 0.289137679 0.673427969

B-12

Placements

Class 1 Class 2 Class 2
Alt ID Crit1 Crit2 Alt ID Crit1 Crit2 Alt ID Crit1 Crit2

1 0.8325 0.956 4 0.6142 0.3131 5 0.3424 0.5017
2 0.9474 0.8951 9 0.5376 0.1353 6 0.0867 0.271
3 0.753 0.4982 10 0.241 0.7908 8 0.2602 0.3713
7 0.8536 0.1131 18 0.736 0.1663 11 0.0738 0.0106

12 0.5132 0.9326 19 0.4644 0.3459 14 0.1899 0.0417
13 0.7951 0.8215 23 0.3105 0.6726 16 0.0596 0.4323
15 0.8392 0.1441 26 0.7222 0.2626 17 0.4869 0.1607
25 0.6219 0.6536 31 0.4159 0.5685 20 0.1435 0.9567
27 0.7788 0.3405 32 0.4893 0.5278 21 0.1928 0.0368
28 0.7991 0.4321 36 0.3372 0.8437 22 0.0605 0.6039
30 0.8366 0.5085 37 0.3757 0.8101 24 0.2855 0.2474
33 0.7774 0.6251 41 0.605 0.5401 29 0.203 0.6129
34 0.849 0.138 45 0.4801 0.3773 35 0.2314 0.4162
40 0.9148 0.0273 47 0.7082 0.0864 38 0.1986 0.1373
42 0.7964 0.5801 53 0.4415 0.3595 39 0.3833 0.0807
43 0.8501 0.0213 58 0.5344 0.1218 44 0.2825 0.1393
46 0.574 0.6747 59 0.1765 0.9923 48 0.3654 0.1924
51 0.9927 0.9214 60 0.4532 0.5412 49 0.0237 0.6867
57 0.8645 0.4574 61 0.3907 0.9459 50 0.245 0.1022
62 0.8615 0.1278 63 0.423 0.9299 52 0.1581 0.2246
65 0.9692 0.766 64 0.3043 0.9464 54 0.1455 0.8712
66 0.9276 0.63 70 0.3387 0.6761 55 0.3815 0.1842
69 0.7321 0.3907 71 0.5445 0.5294 56 0.0321 0.6415
73 0.7761 0.4964 72 0.236 0.8733 67 0.4023 0.2715
81 0.7454 0.6809 76 0.7725 0.1498 68 0.1162 0.2183
83 0.8781 0.3057 77 0.3655 0.6918 74 0.1375 0.5888
87 0.675 0.7841 79 0.6185 0.4556 75 0.0761 0.5727
89 0.7787 0.3238 85 0.2627 0.7515 78 0.1398 0.6016
90 0.8998 0.0195 86 0.5203 0.4632 80 0.2036 0.4351
91 0.8029 0.6143 92 0.2996 0.7412 82 0.2286 0.2093
93 0.8615 0.5048 98 0.5702 0.6304 84 0.0225 0.2624
96 0.7908 0.5876 99 0.3691 0.4967 88 0.0427 0.3432
97 0.8311 0.7182 100 0.2891 0.6734 94 0.1743 0.2551

 95 0.3715 0.0156

B-13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

crit1

cr
it2

Class1

Class2

Class3

RUN 13:

Run Parameters
of Alternatives 100
Consistency Index 0.05
Underlying Utility Function (weight 1 /
weight 2)

0.7 / 0.3

of Classes 3
Convex

Combination
WSR Even

Swaps
DM Placement Dominance

3 9 5 10 1
4 12 20 17 2
7 18 26 46 6
15 19 43 76 8
23 40 58 11
25 45 98 13
27 47 99 14
28 57 100 16
29 59 21
30 61 22
31 62 24
32 63 35
33 64 36
34 66 37
41 72 38
42 83 39
53 90 44
54 93 48
60 49
67 50
69 51
70 52
71 55
73 56
77 65
79 68
85 74
86 75
89 78
91 80

B-14

92 81
96 82
 84
 87
 88
 94
 95
 97

32 18 8 4 38
* 291 LPs Executed

RUN 14:

Run Parameters
of Alternatives 100
Consistency Index 0.15
Underlying Utility Function (weight 1 /
weight 2)

0.7 / 0.3

of Classes 3
Convex

Combination
WSR Even Swaps DM Placement Dominance

3 1 17 5 2
4 9 20 10 6
8 12 46 43 7
15 13 67 11
23 18 76 14
26 19 100 16
27 25 21
28 33 22
29 42 24
30 47 31
34 58 32
35 59 36
41 61 37
45 63 38
53 64 39
54 69 40
73 72 44
79 81 48
80 87 49
85 89 50
86 90 51
96 91 52
97 55
99 56
 57
 60
 62
 65
 66
 68
 70
 71

B-15

 74
 75
 77
 78
 82
 83
 84
 88
 92
 93
 94
 95
 98

24 22 3 6 45
* 261 LPs Executed

RUN 15

Run Parameters
of Alternatives 100
Consistency Index 0.30
Underlying Utility Function (weight 1 / weight
2)

0.7 / 0.3

of Classes 3
Convex

Combination
WSR Even Swaps DM Placement Dominance

3 2 7 5 1
4 18 9 10 6
8 47 15 12 11
13 51 17 26 14
19 57 20 59 16
23 61 28 67 21
25 65 34 22
27 66 40 24
29 93 43 31
30 46 32
33 58 36
35 63 37
41 69 38
42 76 39
45 83 44
53 90 48
54 49
62 50
64 52
70 55
72 56
73 60
79 68
80 71

B-16

81 74
85 75
86 77
87 78
89 82
91 84
92 88
96 94
97 95
99 98

100

35 9 16 6 34
* 348 LPs Executed

RUN 16:

Run Parameters
of Alternatives 100
Consistency Index 0.05
Underlying Utility Function (weight 1 / weight
2)

0.1/ 0.9

of Classes 3
Convex

Combination
WSR Even Swaps DM Placement Dominance

5 8 4 1
12 10 19 2
25 15 42 3
33 16 56 6
36 18 88 7
37 20 96 9
46 22 11
53 23 13
60 26 14
61 29 17
63 30 21
64 31 24
67 34 27
74 35 28
76 40 32
78 41 38
81 49 39
87 54 43
92 57 44
98 59 45
99 62 47
 70 48
 72 50
 75 51
 77 52

B-17

 80 55
 83 58
 85 65
 93 66
 100 68
 69
 71
 73
 79
 82
 84
 86
 89
 90
 91
 94
 95
 97

21 30 0 6 43
* 250 LPs Executed

RUN 17:

Run Parameters
of Alternatives 100
Consistency Index 0.15
Underlying Utility Function (weight 1 / weight
2)

0.1/ 0.9

of Classes 3
Convex

Combination
WSR Even Swaps DM Placement Dominance

5 8 26 4 1
12 10 19 2
25 15 42 3
33 16 56 6
36 18 88 7
37 20 96 9
46 22 11
53 23 13
60 29 14
61 30 17
63 31 21
64 34 24
67 35 27
74 40 28
76 41 32
78 49 38
81 54 39
87 57 43

B-18

92 59 44
98 62 45
99 70 47
 72 48
 75 50
 77 51
 80 52
 83 55
 85 58
 93 65
 100 66
 68
 69
 71
 73
 79
 82
 84
 86
 89
 90
 91
 94
 95
 97

21 29 1 6 43
* 255 LPs Executed

RUN 18:

Run Parameters
of Alternatives 100
Consistency Index 0.30
Underlying Utility Function (weight 1 / weight
2)

0.1/ 0.9

of Classes 3
Convex

Combination
WSR Even Swaps DM Placement Dominance

5 8 26 4 1
12 10 49 42 2
19 15 56 3
25 16 83 6
32 18 88 7
33 20 96 9
35 22 11
36 23 13
37 29 14
45 30 17
46 31 21

B-19

53 34 24
57 40 27
60 41 28
61 54 38
63 59 39
64 62 43
67 70 44
71 72 47
74 75 48
76 77 50
78 80 51
81 85 52
86 93 55
87 100 58
92 65
98 66
99 68
 69
 73
 79
 82
 84
 89
 90
 91
 94
 95
 97

28 25 2 6 39
* 257 LPs Executed

