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ABSTRACT 

 

                                                                                                                         

AN INTERACTIVE APPROACH FOR MULTI-CRITERIA SORTING 

PROBLEMS 

 

 

Keser, Burak 

M. Sc., Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat Köksalan 

 

April 2005 

 

 

This study is concerned with a sorting problem; the placement of alternatives into 

preference classes in the existence of multiple criteria. An interactive model is 

developed to address the problem, assuming that the decision maker has an 

underlying utility function which is linear. A recent methodology, Even-Swaps, 

which is based on value tradeoff is utilized in the model for both making an 

estimation of the underlying utility function and generating possible dominance 

among the alternatives on which it is performed. Convex combinations, dominance 

relations, weight space reduction, Even-Swaps and direct decision maker 

placements are utilized to place alternatives in preference classes. The proposed 

algorithm is experimented with randomly generated alternative sets having different 

characteristics.  

 

Keywords: multiple criteria decision making, sorting, even swaps 
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ÖZ 

 

 

ÇOK KR İTER ALTINDA SIRALAMA PROBLEMLER İ İÇİN 

ETK İLEŞİML İ BİR YAKLA ŞIM 

 

Keser, Burak 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat Köksalan 

 

Nisan 2005 

 

 

Bu çalışma, alternatiflerin çok kriter altında tercih sınıflarına yerleştirilmesi ile 

ilgilidir. Karar vericinin gizli fayda fonksiyonunun doğrusal olduğu varsayılarak, 

etkileşimli bir yöntem geliştirilmi ştir. Değer ödünleşmeleri üzerine kurulu yeni bir 

metodoloji olan Eş-Takas yönteminden, hem karar vericinin gizli fayda 

fonksiyonunu tahminlemek hem de üzerinde uygulandığı alternatifler arasında olası 

bir baskınlık ilişkisi oluşturmak üzere faydalanılmıştır. Alternatifleri tercih 

sınıflarına yerleştirmek için konveks kombinasyonlar, baskınlık ilişkisi, ağırlık 

uzayı daraltılması, Eş-Takas ve karar vericinin doğrudan yerleştirmelerinden 

faydalanılmıştır. Önerilen algoritma, rastsal oluşturulmuş farklı karakterdeki 

alternatif kümeleriyle denenmiştir. 

 

Anahtar Kelimeler: çok kriterli karar verme, sıralama, eş-takas 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Problem Definition 

 
The problem considered in this study is a multi-criteria decision making 

(MCDM), problem where the decision maker (DM) intends to group a set of 

alternatives into preference classes. The approach developed in this study will be 

more suitable for problems where the alternative set is large, and the number of 

criteria to consider is small. 

 

The placement of alternatives into predefined classes or groups is referred to as 

classification or sorting problems depending on whether the groups are nominal or 

ordinal. The problem of sorting / classification has numerous practical 

applications, some of which are listed below (Zopounidis, C., Doumpos, M., 

2002) 

• Medicine: performing medical diagnosis through the classification of 

patients into diseases groups on the basis of some symptoms (Stefanowski 

and Slowinski, 1998; Tsumoto, 1998; Belacel, 2000; Michalowski et al., 

2001). 

• Pattern recognition: examination of the physical characteristics of objects 

or individuals and their classi-fication into appropriate classes (Ripley, 

1996; Young and Fu, 1997; Nieddu and Patrizi, 2000). Letter recognition 

is one of the best examples in this field. 

• Human resources management: assignment of personnel into appropriate 

occupation groups according to their qualifications (Rulon et al., 1967; 

Gochet et al., 1997). 
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• Production systems management and technical diagnosis: monitoring the 

operation of complex production systems for fault diagnosis purposes 

(Nowicki et al., 1992; Catelani and Fort, 2000; Shen et al., 2000). 

• Marketing: customer satisfaction measurement, analysis of the 

characteristics of different groups of customers, development of market 

penetration strategies, etc. (Dutka, 1995; Siskos et al., 1998). 

• Environmental and energy management, ecology: analysis and 

measurement of the environmental impacts of different energy policies, 

investigation of the efficiency of energy policies at the country level 

(Diakoulaki et al., 1999; Rossi et al., 1999; Flinkman et al., 2000). 

• Financial management and economics: business failure prediction, credit 

risk assessment for firms and consumers, stock evaluation and 

classification, country risk assessment, bond rating, etc. (Altman et al., 

1981; Slowinski and Zopounidis, 1995; Zopounidis, 1998; Doumpos and 

Zopounidis, 1998; Greco et al., 1998; Zopounidis et al., 1999a,b). 

 

Below table (Zopounidis, C., Doumpos, M., 2002) shows some real-world 

applications of classification / sorting problems (Table 1). Some of these studies 

use real-world data for illustrative purposes in order to present the practical 

applicability of classification and sorting theory in real-world data sets. Other 

studies use real-world data for performance evaluation of selected methods 

originating from the developed methods with existing methods, most commonly 

originating from the field of statistics. 

Table 1. Real world applications of classification and sorting problems 

Application Area Studies 

Business failure prediction Mahmood and Lawrence (1987), Gupta et al. (1990), 

Slowinski and Zopounidis (1995), Gehrlein and 

Wagner (1997b), Greco et al. (1998), Zopounidis 

and Dimitras (1998), Zopounidis and Doumpos 

(1999), Zopounidis et al. (1999b), Konno and 

Kobayashi (2000) 
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Application Area Studies 

Credit cards assessment Lam et al. (1996), Zopounidis et al. (1998) 

Country risk evaluation Doumpos and Zopounidis (2001a) 

Ecology Rossi et al. (1999), Flinkman et al. (2000) 

Educational administration Choo and Wedley (1985), Lam et al. (1993) 

Energy planning Diakoulaki et al. (1999) 

Medicine Stefanowski and Slowinski (1998), Belacel (2000), 

Michalowski et al. (2001) 

Personnel management Gochet et al. (1997) 

Portfolio selection and 

management 

Zopounidis et al. (1999a), Nakayama and Kagaku 

(1998), Doumpos et al. (2000) 

R&D project evaluation Jacquet-Lagreze (1995) 

Technical diagnosis Nowicki et al. (1992) 

Venture capital 

investments 

Stam (1990) 

 

This broad range of application domain lead researchers to develop different 

approaches for constructing sorting/classification models. The approach 

developed in this study is an interactive method, which utilizes Even-Swap 

method, weight space reduction techniques and dominance relations. The use of 

Even-Swap method in the study is slightly different from it is original use, where 

the original method aims to find the best alternative in a given alternative set by 

interacting with the DM. 

 

1.2 Literature Survey 

 

Considering a set of alternatives described by a number of criteria; different 

problems are considered in the literature. One, which is more frequently 

addressed, is to identify the best alternative or select a limited set of the best 

alternatives (this problem is also referred as “the choice problem”). Another 

problem is to construct a rank ordering of the alternatives from best to the worst 
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ones (this problem is also referred as “the ranking problem”). One other problem 

is to classify or sort the alternatives into groups, where the groups may either have 

a preference relation or not (this problem is also referred as “the 

classification/sorting problem”). 

 

The problem of identifying the most preferred alternative among a number of 

alternatives where each alternative is defined by several criteria is well studied in 

the literature. The studies of Keeney and Raiffa (1976) and Green and Srinivasan 

(1978) attempt to solve this problem by fitting a utility function that explains the 

preferences of the decision maker (DM), and then finding the alternative that 

performs best according to the fitted utility function. 

 

Another approach for finding most preferred alternative had been interactive 

approach. Interactive approaches typically assume that the DM has an underlying 

utility function. However, the exact form of the utility function is assumed to be 

unknown to both the DM and the analyst. The DM is expected to be consistent 

with his/her underlying utility function while expressing his/her preferences. For 

the case where the underlying utility function is assumed to be linear, Zionts 

(1981) and Köksalan (1984) developed interactive approaches. Several interactive 

approaches have been developed for the quasi-concave utility function case 

(Korhonen et al. 1984, Köksalan et al. 1984, Köksalan and Taner 1992, Malakooti 

1989); Köksalan and Sagala (1995) also developed an approach for the general 

monotone utility function case. 

 

Korhonen (1998) developed a visual interactive approach that makes no 

assumption on the underlying utility function of the DM. Köksalan and Öden 

(1989) and Köksalan and Rizi (2001) have also developed visual interactive 

approaches and utilized graphical aids in their interactive approaches. A more 

recent review of the multi-criteria literature is provided by Jacquet-Lagreze and 

Siskos (2001). 

 

The problem of constructing a rank ordering of the alternatives from has also been 
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a problem of interest. Assuming that the attributes have been measured at least on 

an ordinal scale, Korhonen and Soimaa (1981) attempt to find a complete rank 

ordering of alternatives. Malakooti (1989) uses quasi-concave non-linear multi-

attribute utility functions to rank multiple criteria alternatives, and shown that pair 

comparison questions  can be used to generate partial information on the weights.  

Another type of problem is the assignment of alternatives into predefined groups, 

which is referred to as classification or sorting problems. While both classification 

and sorting refer to the assignment of a set of alternatives into predefined groups, 

they differ with respect to the way that the groups are defined. Classification 

refers to the case where the groups are defined in a nominal way. On the contrary, 

sorting refers to the case where the groups are defined in an ordinal way starting 

from those including the most preferred alternatives to those including the least 

preferred alternatives. 

 

Earlier work on classification can be traced back to Fisher (1936), whose work 

was on the linear discriminant analysis. Some other statistical approaches was 

developed following Fisher (Bliss 1934, Berkson 1944, McFadden 1974), which 

was later on criticized for their statistical assumptions (Altman et al. 1981). 

 

Recent research on developing classification and sorting models is mainly based 

on operations research and artificial intelligence. Compared to other approaches, 

multi-criteria decision aiding research (MCDA) does not focus solely on 

developing automatic procedures for analyzing an existing data set in order to 

construct a classification/sorting model. MCDA researchers also emphasize on the 

development of efficient preference modeling methodologies that will enable the 

decision analyst to incorporate the decision maker’s preferences in the developed 

classification/sorting model (Zopounidis, C., Doumpos, M., 2002). 

 

Outranking relation and utility function are the most widely used criteria 

aggregation models in MCDA literature, which are also employed for 

classification and sorting purposes. The most widely used sorting method based 

on outranking relations is the ELECTRE TRI method (Yu 1992, Roy and 
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Bouyssou 1993). An alternative approach for outranking relation, the utility 

theory framework, is used in UTADIS for sorting purposes (Jacquet-Lagreze 

1995, Zopounidis and Doumpos 1999). 

 

Köksalan and Ulu (2001, 2003), developed an interactive procedure for 

partitioning the alternatives into preference classes regarding different forms of 

utility functions of the DM. Dominance, weight space reduction and direct DM 

placement techniques are used to place alternatives. 

 

More recently significant research has been conducted on the use of the rough set 

approach as a methodology of preference modeling in multi-criteria decision 

problems (Greco et al. 1999, 2000). The rough approximations of decision classes 

involve dominance relation, instead of indiscernibility relation considered in the 

basic rough sets approach. They are built of reference alternatives given in the 

sorting example. Decision rules derived from these approximations constitute a 

preference model. Also, the dominance-based rough set approach is able to deal 

with sorting problems involving both criteria and regular attributes (whose 

domains are not preference ordered), (Greco et al., 2002), and missing values in 

the evaluation of reference alternatives (Greco et al., 1999, 2000b). 

 

The use of neural networks is another interesting approach that can be used for 

preferential modeling purposes in multi-criteria classification and sorting 

problems. Neural networks enable the modeling of highly complex non-linear 

behaviors of decision-makers. Main disadvantage of the neural networks is that, 

the results of a neural networks are difficult to interpret in terms of the given 

inputs to the network. The major advantage on the other hand is that, neural 

networks can be used to assess utility functions, without posing any assumptions 

or restrictions on their particular structure or properties. Arhcer and Wang (1993) 

showed that neural networks can provide an efficient mechanism for preference 

modeling in sorting problems. 

 

It is important to note that, the development of decision support systems that will 
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enable decision-makers to take advantage of the capabilities that the classification 

and sorting approaches provide. Several multi-criteria decision support systems 

have been developed over the past decade implementing MCDA classification and 

sorting methods. The most characteristic are the RANGU system developed by 

Stam and Ungar (1995), the PREFDIS system of Zopounidis and Doumpos 

(2000a), the ELECTRE TRI-Assistant system of Mousseau et al. (2000), the 

ROSE system of Predki et al. (1998) and the 4eMka system of Greco et al. 

(1999a) (Zopounidis, C., Doumpos, M., 2002). 

 

1.3 Even Swaps 

 

Even Swaps (Hammond et al. 1998, 1999) is a multi-criteria decision making 

method based on value trade-offs which are called even swaps. Performing 

sensible trade-offs is one of the most important and difficult challenges in 

decision making (Keeney and Raiffa 1976; Keeney 2002). The even swaps 

method is developed in order to fill the gap of clear, easy-to-use and rational 

trade-off methodology. It provides a practical way of making trade-offs among 

any set of objectives across a range of alternatives. It is a form of bartering that 

forces the decision maker to think about the value of one objective in terms of 

another. The even swap method does not argue that it provides a mechanism 

which makes complex decisions easy, but what it does provide is a reliable 

mechanism for making trades and consistent framework in which to make them. 

 

In an even swap, the value of an alternative in one attribute is changed and this 

change is compensated with a preferentially equal value change in some other 

attribute. The new alternative with these revised values is equally preferred to the 

initial one and thus it can be used instead. The aim of the method is to carry out 

even swaps that make either attributes irrelevant, in the sense that all the 

alternatives have equal values on this attribute, or alternatives dominated, in the 

sense that some other alternative is at least as good as this alternative on every 

attribute. Such attributes and alternatives can be eliminated, and the process 

continues until one alternative, i.e. the most preferred one, remains.  
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The main requirement for using the Even Swaps method is to understand the idea 

of an even swap. The decision maker (DM) does not need to have a mathematical 

background to use the method. Hammond et al. (1998, 1999) emphasize on the 

practical aspects of the process, and let the DM to focus on the most important 

work of decision making: deciding the real value to him/her. 

 

The general flow of the even swap framework is provided in Figure 1: 

 

Figure 1. An overall flow of the Even-Swap framework 

 

At the problem initialization step, a consequence table is constructed in order to 

have a clear picture of the alternatives and their consequences for each criterion. 

The important thing when constructing consequence tables is to use consistent 

Problem Initialization 

Eliminate Irrelevant 
Attributes 

Eliminate Dominated 
Alternatives 

Most preferred alternative 
found 

NO 

YES 

Make an Even Swap 

Determine alternatives and criteria 
to perform even swap on them 

Determine the required change 

Assess the required change on the 
other criterion for compensation 

Perform the swap 
More than one remaining 

alternative? 



 

 

 

9 

 

terms for each criterion. Once the consequences table is constructed and criterion 

values for each alternative is mapped, look for opportunities to eliminate one or 

more alternatives. If an alternative A is better than alternative B in some criteria 

and not worse than B in all other criteria, alternative B can be eliminated from 

consideration (alternative B is dominated by alternative A).  Another issue is to 

eliminate irrelevant criteria with an obvious tenet; if every alternative is rated 

equally on a given criterion, that criterion can be ignored while making decisions. 

Now, the challenge is to choose the most proper even-swap to perform among 

numerous choices. This selection shall be made considering the information that 

will be provided after the swap. Even-swaps that can lead to a possible 

“dominance” or “irrelevant criteria” shall be preferred. 

 

Determining the relative value of different criterion values is hard. The originators 

of the even-swap approach, Hammond, Keeney and Raiffa, quoted some 

suggestions to make sound trade-offs (Hammond et al. 1998, 1999). 

 

There are few reported applications of even-swaps in the literature; where one of 

them is on strategy selection in a rural enterprise (Kajanus et al. 2001) and another 

one on environmental planning (Gregory and Wellman 2001). Despite of the 

simplicity of the method, the lack of use may be due to insufficient computational 

help provided. Recently Mustajoki and Hämäläinen (2004) developed a decision 

support system for even swap approach, which is supported by Preference 

Programming. Preference programming is a framework for modeling incomplete 

information within multi-attribute value theory. 

 

1.4 Even –Swap Example 

To illustrate the above discussed methodology, a small example is given below. 

The problem is about selecting a second-hand car among a number of alternatives. 

Alternatives are evaluated on three criteria (of course, there should be more, but 

three of them are selected for simplicity), these are: 

• Age of the car (given by model year) 

• Mileage of the car (given in kilometers) 
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• Price of the car (in YTL.) 

 

Model year of the car is a higher the better type criterion. But the last two, 

mileage and price are lower the better. 

 

The alternatives are selected from a popular car sales web-site from Turkey. The 

alternatives and their values on three criteria are given in Table 2 (this is the 

consequence table for the DM): 

 

Table 2. Even Swap Example - Consequence Table 

 Toyota 

Corolla GL 

Peugeot 

206 XR  

Opel 

Corsa Swing 

Honda 

Civic HB 

Ford 

Fiesta 

Model 1999 2000 1999 2000 2000 

Mileage 77000 km 55000 km 91000 km 130000 km 64000 km 

Price 14500 YTL 16000 YTL 15750 YTL 14750 YTL 15000 YTL 

 

Now, we will look for opportunities to eliminate one or more alternatives by 

dominance. It can be observed that, “Opel” is dominated by both “Ford” and 

“Toyota”, so it can be eliminated for further consideration, (see Table 3).  

 

Table 3. Even-Swap Eample - Eliminated Alternative by Dominance 

 Toyota 

Corolla GL 

Peugeot 

206 XR  

Opel 

Corsa Swing 

Honda 

Civic HB 

Ford 

Fiesta 

Model 1999 2000 1999 2000 2000 

Mileage 77000 km 55000 km 91000 km 130000 km 64000 km 

Price 14500 YTL 16000 YTL 15750 YTL 14750 YTL 15000 YTL 

 

Now, we will perform an even-swap on “Toyota” and ask the DM “How much 

will you increase the price, for an increase in the model from 1999 to 2000?”. The 

DM says “I will increase the price from 14500 YTL to 15250 YTL”. The new 

consequence table is given below (Table 4), the swapped values are highlighted. 
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All alternatives score the same on “Model” criterion, so this alternative is now 

irrelevant and can be eliminated; furthermore, “Toyota” is now dominated by 

“Ford”, so it can be eliminated from the alternative set, these are also shown in 

Table 4. 

 

Table 4. Even-Swap Example - A Criterion and Alternative Eliminated 

 Toyota 

Corolla GL 

Peugeot 

206 XR  

Honda 

Civic HB 

Ford 

Fiesta 

Model 2000 2000 2000 2000 

Mileage 77000 km 55000 km 130000 km 64000 km 

Price 15250 YTL 16000 YTL 14750 YTL 15000 YTL 

 

The consequence table is reduced to a much smaller form than the original table. 

But, three alternatives are left, so we need more swaps and propose the DM 

another one on “Ford”: “How much will you increase the price, for a decrease in 

the mileage from 64000 to 55000?”. The DM says “I will increase the price from 

15000 YTL to 15500 YTL”. Now, “Peugeot” is dominated by “Ford” and 

eliminated for further consideration (Table 5). 

Table 5. Even-Swap Example - Eliminated Alternative 

 Peugeot 

206 XR  

Honda 

Civic HB 

Ford 

Fiesta 

Mileage 55000 km 130000 km 55000 km 

Price 16000 YTL 14750 YTL 15500 YTL 

 

Two alternatives are left, one more swap is required, the following question is 

asked to DM, for performing an even-swap on “Honda”: “How much will you 

increase the price, for a decrease in the mileage from 130000 to 55000?”. The DM 

says “I will increase the price from 14750 YTL to 16500 YTL”. Finally “Honda” 

is dominated by “Ford”, and eliminated. This reveals “Ford” to be the preferred 

alternative for the DM (Table 6). 
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Table 6. Even-Swap Example - Final Table 

 Honda 

Civic HB 

Ford 

Fiesta 

Mileage 55000 km 55000 km 

Price 16500 YTL 15500 YTL 

 

1.5 The Evolution of the algorithm 

This study is based on different approaches developed in the field of multi-criteria 

decision making and sorting problems literature; and proposes a new interactive 

approach for multi-criteria sorting problems. The weight space reduction ideas 

generated in Köksalan and Ulu (2001, 2003) are utilized, but LPs used for weight 

space reduction are different in order to be more efficient. Even-Swaps 

methodology (Hammond et al. 1998, 1999) is included in the algorithm both for 

eliciting information from the DM and for placing the alternatives. Even-Swaps 

approach is originally proposed for selecting the best alternative among a set of 

alternatives, however, in this study it is used for sorting a set of alternatives to 

preference classes. 

 

The following chapter discusses the approaches developed in each step of the 

proposed algorithm. The third chapter presents the algorithm step by step, and 

illustrates a manual example. The fourth chapter introduces the developed 

automation for the algorithm, and presents some results, which are obtained by 

using the algorithm. The final chapter gives a summary of the study, presents 

some conclusions and proposes some possible future work, which can be 

performed as extensions to this study. 
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CHAPTER 2 

 

 

DEVELOPMENT OF THE MODEL 

 
This chapter discusses the approach developed in each step of the algorithm. A 

detailed flow of the algorithm is given in Appendix A. 

 

The proposed algorithm is two phased, the initialization phase and then the 

selecting alternatives phase. At the initialization phase an initial estimation of the 

DM’s underlying utility function is made, using the information gained from an 

Even-Swap which is proposed to DM by selecting two alternatives from the 

alternative set. At the placing alternatives phase, initially an alternative is selected 

to be placed, among the set of unplaced alternatives.  The algorithm tries to place 

the selected alternative into a preference class either using dominance relations, 

convex combinations or weight space reduction techniques. If the alternative 

cannot be placed, an Even-Swap is performed on the alternative for swapping to a 

dummy alternative, which can be placed by convex combinations. If the 

alternative has not been placed yet, the DM is asked to place the alternative 

among the range of possible preference classes. Following sections discusses all 

the approaches developed in the algorithm. 

 

2.1 Some Notation and Assumptions 

 

Following list defines some notation that will be used in this study,  

• thi alternative that is to be placed in preference classes is represented as 

iX  

• ),....,,...,,( ,,2,1, pijiiii xxxxX =  where jix ,  is the score of the thi  alternative 
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in the thj  criterion 

• iC  is the thi class that the alternatives can be placed in; 1C  being the “best” 

class and tC being the “worst”, where there exist k classes. 

 

Other notation will be introduced when they are defined in the flow of the 

algorithm. 

 

The model assumes that the DM has a linear utility function. That is, the utility of 

alternative iX  is given by: 

 ∑=
j

jijji xUXU )()( ,λ  

where )( , jij xU  is the criterion score of iX  on criterion j , and jλ  is the weight of 

criterion j . 

 

It is assumed that the DM is consistent with his/her responses and can place 

alternatives consistently whenever s/he I asked. One other assumption is that, at 

least one of the criteria is ordinal and continuous. This assumption is required to 

enable performing the swap on that criterion. The model assumes that jλ s –

criteria weights- are not known, and tries to generate an estimated region for jλ s 

using DM’s responses. 

 

A consistency index, α , is used when evaluating the Even-Swap information. 

This is for evaluating the DM’s swap response within a precision bound, the 

discussions on this α  value will be given in the following sections. 

 

2.2 Even Swaps 

At the initialization phase of the approach, an Even-Swap is performed. The intent 

of the Even-Swap is to have an idea about the DM’s underlying utility function. 

This early information on the utility function provides the infrastructure for the 

latter steps. Following sections discuss: the selection of the alternatives that will 
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be taken into consideration when performing the Even-Swap, performing the 

Even-Swap, and the case when there exists more than two criteria for the 

alternatives. 

 

2.2.1 Selecting the alternatives for the even swap 

 
Two alternatives will be selected to perform the Even-Swap. Selecting the 

alternatives is crucial since we want to make the best use of the DM’s response 

while performing the swap. The original Even-Swap methodology is utilized for 

generating possible dominance relationships among alternatives which do not 

dominate each other. So, the selected alternatives shall not be dominating each 

other. Another concern in alternative selection is the ease of the swap. If the 

criterion values of the alternatives are too far, it will be hard for the DM to make 

such a big swap, and as the size of the swap increases, the size of the error may 

increase. 

 

The two alternatives are selected among the alternatives in such a way that  

i. they do not dominate each other 

ii. they have the smallest Euclidean distance 

The selected alternatives are presented to the DM. 

 

2.2.2 Performing the Even-Swap 

 
The Even-Swap will be performed with the motivation discussed in section 1.3. 

Following steps will be followed while performing the swap: 

• Take one of the selected alternatives as the base (call it the base 

alternative); the swap will be performed on the other alternative (swapped 

alternative).  

• Select one of the criteria (call it fixed criterion) and equate the value of the 

swapped alternative on that criterion to that of the base alternative. 

• Ask the DM, how much he/she wants to swap on the other criterion, which 

is not fixed, to compensate the change on the fixed criterion. 
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Even swap is illustrated on a two criteria example: 

Assume that we have two alternatives A and B having the following scores on two 

criteria (Table 7): 

Table 7. Even-Swap example - alternatives 

 Alternative A Alternative B 

Criterion 1 45 60 

Criterion 2 78 58 

 

Let the DM make a swap on alternative A, and alternative B is selected as the base 

alternative. Then, we equate the first criterion value of alternative A to that of 

alternative B, and ask the DM how much he/she is willing to decrease on criterion 

2 value, to compensate the increase in criterion 1 (Table 8): 

Table 8. Even-Swap example - the swap 

 Alternative A Alternative Aswapped 

Criterion 1 45    60 

Criterion 2 78    ??? 

 

Say the DM is willing to decrease the value of the second criterion from 78 to 65, 

to compensate the increase in the first criterion from 45 to 60. So the alternative 

Aswapped becomes (60, 65). Initially no dominance relations are apparent between 

alternatives A and B. However, now alternative Aswapped dominates alternative B. 

So, BAf . This example is show graphically in Figure 2. 
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Figure 2. Even-Swap example - graphical representation of the swap 

 

2.2.3 Even-Swap on more than two criteria 

 

As discussed in section 1.3. the Even-Swap method is originally proposed to be 

performed on two criteria. However, we use the approach for comparing two 

alternatives, and alternatives can have more than two criteria. For that reason, the 

method is expanded to enable the comparison possible for alternatives having 

more than two criteria. This is done by performing consecutive swaps. The idea is 

illustrated on a four criteria example below: 

 

Illustration:  

Let iX and jX be the selected alternatives, having the criterion values 

respectively: ),,,( 4,3,2,1, iiiii xxxxX =  and ),,,( 4,3,2,1, jjjjj xxxxX = . Let iX  be the 

fixed alternative and the Even-Swap be performed onjX . The following steps 

will be used: 

• Initially choose the first criterion to be the fixed criterion 

Alt. A 

Alt. A 
swapped 

Alt. B 

Even-Swap 
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• Equate the first criterion value of jX  to that of iX  

• Swap the second criterion value of jX  to compensate the change in the 

first criterion, say the swapped value is s
jx 2,  

• Equate the second criterion value of jX , that is s
jx 2, , to that of iX  

• Swap the third criterion value of jX  to compensate the change in the 

second criterion, say the swapped value is s
jx 3,  

• Continue in the same manner 

 

The approach discussed above is pictured in Figure 3, where dashed squares 

represent the Even-Swaps, arrows representing the swaps. c
jX1 , c

jX 2 , '
jX  are all 

equivalent alternatives to jX , which are generated after the Even-Swaps. 

In c
jX1 , the DM chooses the value 2,j

sx  such that, in the first two criteria, the DM 

is indifferent between ( 1,jx , 2,jx ) and ( 1,ix , 2,j
sx ). Then the DM chooses 3,j

sx  

such that s/he is indifferent between (1,jx , 2,jx , 3,jx ) and ( 1,ix , 2,ix , 3,j
sx ). Finally, 

the DM choose 4,j
sx  such that  ),,,( 4,3,2,1, jjjjj xxxxX =  and 

),,,( 4,3,2,1,
'

j
s

iiij xxxxX = . It would be beneficial to leave the easier swap to the last 

step, since all the changes on the other criteria will be compensated by this swap. 
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3,ix  

 

4,ix  

 

jX  

 

1,jx  

 

2,jx  
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c
jX1  
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2,ix  
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3,ix  
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Figure 3. Even-Swap on more than two criteria 

 

2.2.4 Estimating the utility function using the Even-Swap 

 
An LP is constructed, in order to make an estimation of the DM’s underlying 

utility function, using the information obtained from the swaps made in the 

previous step.  In fact the Even-Swap implies a direct ratio relationship between 

the weights of the criteria on which it is performed. However, the developed LP 

evaluates this direct relationship within a consistency interval, depending on the 

precision of the DM; the size of the interval can be changed.  

There are two constraints coming from each performed Even-Swap and one from 

the implied preference relationship after the swaps. These constraints are 

elaborated below: 

 

Constraints obtained from the swap:  

Assume that the DM performs the swap on alternative i  and the Even-Swap will 

be performed on criterion 1 and criterion 2, where both criteria are higher the 

better type. The values of the alternative on these pair of criteria which the swap is 

performed are 1,ix  and 2,ix . Again assume that the DM makes a swap from 2,ix  to 
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2,i
sx , to compensate the change for going from 1,ix  to 1,i

sx . Where, if 1,ix  is 

greater than 1,i
sx , 2,ix  shall be smaller than 2,i

sx ; and if 1,ix  is smaller than 1,i
sx , 

2,ix  shall be greater than 2,i
sx , that is the swap shall be performed in the reverse 

direction. By this swap, the DM implies the following ratio between the weights 

of criterion 1 and 2 (for simplicity jix ,  is used instead of  uj( jix , )): 

2,2,

1,1,

1

2

i
s

i

ii
s

xx

xx

−
−=

λ
λ

 

 

However, as mentioned above, the response of the DM is evaluated within a 

consistency interval. Let α  represent the consistency index for the DM’s implied 

ratio on the criterion weights. Then, the relationship becomes: 

2,2,

1,1,

1

2

2,2,

1,1,
)1()1(

i
s

i

ii
s

i
s

i

ii
s

xx
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This relationship gives two constraints for the weight space: 

0)1( 2
2,2,

1,1,

1 ≥−
−
−+ λαλ

i
s

i

ii
s

xx

xx
 

and 

0)1(
2,2,

1,1,

12 ≥
−
−−−

i
s

i

ii
s

xx

xxαλλ  

 

Constraints obtained from the preference relation on the initial alternatives:  

After the swap a dominance relation appears between the swapped alternative and 

the base alternative, since all but one of the criteria values are equalized. That 

unequal criterion value determines the direction of the dominance.  

 

Let’s assume that, the criterion value of the swapped alternative is higher than that 

of the base alternative. Then the swapped alternative dominates the base 

alternative. Since the swapped alternative is assumed to have the same utility 

value with its original state and all the intermediate alternatives generated during 
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the Even-Swap (when there exist more than two criteria), all these alternatives are 

preferred to the base alternative. Then, corresponding constraints are added to 

constrain the weight space. If the swapped alternative is dominated by the base 

alternative, all preference relations are reversed. 

 

The preference relation is represented with “f ” or “ p ”. For all implied 

preference relation the following constraint is added: 

( ) rqrq XXwhereXX f        ελ ≥−  

 

With the constraints generated from the performed Even-Swap, the following 

initial model is developed to define the weight space for a two criteria example: 
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All the constraint are written to be greater than a value of ε , which is to be 

maximized, to force the LP to find a weight set which is most distant to the 

nearest bound. 

 

Solving the LP, an estimated weight set of the criteria is obtained, which will be 

used in the following stages of the approach. Each time when a new preference 

relation is implied by DM placement, a new constraint is added to the model, and 

the estimated criterion weights are recalculated. 
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2.3 Alternative Selection 

 
The model utilizes some set of rules to select the alternative that will be treated in 

the algorithm for placing it in a preference class. Alternative selection is very 

crucial for the performance of the algorithm, since a good selection of alternatives 

will reduce the DM’s effort. To provide such a good selection, the model uses the 

estimated utility function, obtained from the initially performed Even-Swap, and 

some set of rules. The rules for alternative selection are given below: 

1. If the bounds for all preference classes are not defined 

The bounds for the preference classes are determined using the estimated 

utility function. For a preference class, among the previously placed 

alternatives to that class, the one having the highest estimated utility is the 

upper bound for that preference class, and the one having the lowest 

estimated utility is the lower bound. For the best class, if only one 

alternative is placed previously, than that defines the lower bound, 

similarly if only one alternative is placed in the worst class than that 

defines the upper bound for that class. If one of the following conditions is 

satisfied, there is no way of determining all the bounds for the problem. 

i. No alternatives placed in the best class: 

ii. No alternatives placed in the worst class 

iii. Less than two alternatives placed in an intermediate class 

1. No alternatives placed in that intermediate class 

2. One alternative is placed in that intermediate class 

Initially number of alternatives in each class is calculated, considering the 

number of all alternatives and the number of preference classes, and 

assuming there is approximately equal number of alternatives in each 

class. Then the alternatives are sorted according to the estimated utility 

function. This sorting will give an estimated grouping of the alternatives. 

Finally, following decisions are made for the alternative selection, for the 

above stated cases: 

i. Select the alternative which has the minimum estimated 
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utility value in the “estimated best class” (note that 

“estimated best class” term is used, since no alternatives are 

actually placed in this class yet, the selection is based on 

the sorting made using estimated utility function) 

ii. Select the alternative which has the maximum estimated 

utility value in the “estimated worst class” 

iii. Again the selection will be based on the estimated sorting 

of the alternatives 

a) Select the alternative having the maximum 

estimated utility value, among the estimated set of 

alternatives for that intermediate class, this 

alternative is expected to form the upper bound 

for that class. 

b) Select the alternative having the minimum 

estimated utility value, among the estimated set of 

alternatives for that intermediate class, this 

alternative is expected to form the lower bound 

for that class. (note that if there is only one 

alternative actually placed in that class, that 

alternative will be forming the upper bound for 

that class since the algorithm tries to place the 

alternatives having higher estimated utility values 

first) 

2.  If the bounds for all preference classes are defined 

The unplaced alternatives, which are out of bounds defined by the 

estimated utility values, have precedence when selecting the alternative to 

place. So, once the bounds for all alternatives are defined, the algorithm 

searches for the existence of alternatives which are out of the estimated 

bounds.  

i. If there exists some alternatives that fall out of the defined 

estimated boundaries, among those alternatives, select the 

one which is most distant from the closest boundary in 
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terms of estimated utility. The reason for selecting the most 

distant alternative is to maximize the benefit of the 

information that will be obtained from the placement of that 

alternative. The bound defined by estimated utilities is 

enlarged to the maximum extent possible by either placing 

that alternative to the better class or the worse class. 

ii. If there are no alternatives falling outside the estimated 

boundaries, select the alternative which is closest to the 

closest boundary. 

 

2.4 Determining Best and Worst Classes 

 

Along the execution of the algorithm, the best and worst possible classes that the 

selected alternative can belong to, are utilized. The intent is to narrow down the 

range of possible classes that the alternative may be placed, and whenever best 

possible class is the same as the worst possible class, the algorithm places the 

alternative to that class. 

 

Initially, best class index for all alternatives is set to 1 and worst class index for all 

alternatives is set to t (number of classes). Then, as alternatives are placed to 

preference classes, going over the previously placed alternatives, alternatives that 

are dominated by the selected alternative are searched. Among the dominated 

alternatives set, ones that have the smallest class index (lower the index, better the 

class), determines the worst class that selected alternative may belong to, and it 

will be denoted by W
kX . Similar approach is followed for determining the best 

class that the selected alternative may belong to. Going over the previously placed 

alternatives, the alternatives that dominate the selected alternative are searched. 

Among the dominating alternatives set, ones that have the largest class index 

(higher the index, worse the class), determines the best class that the selected 

alternative may belong to, and it is denoted byB
kX .  
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The alternative set is traced to identify dominance relationships. For each 

alternative, set of dominating alternatives and set of dominated alternatives are 

constructed. These sets are useful when the alternative is placed in the 1st class 

(best class) or tth class (worst class). If the alternative is placed in the 1st class, 

then all the alternatives dominating that alternative can be safely placed to the 1st 

class. Similarly if the alternative is placed in the tth class, then all the alternatives 

dominated by that alternative can be safely placed to the tth class. 

 

2.5 Convex Combination Check 

 

If the selected alternative can be expressed as a convex combination of 

alternatives belonging to the same class, then the selected alternative also belongs 

to that class. The following LPs are used to decide whether the selected alternative 

is a convex combination, wherekX is the selected alternative and tC  is the class 

under consideration. 1e , 2e  are vectors such that [ ],,...,..., 1111 εεε=e  and 

[ ],,...,..., 2222 εεε=e , where 1ε  and 2ε  are scalars. 
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Starting from the best class that the selected alternative may belong to, the above 

LPs are solved. By looking at the values of 1ε  and 2ε a decision is made about the 

class that the selected alternative shall belong to. If either 1ε  or 2ε  is zero, that 

means the selected alternative can be expressed as a convex combination, so it 

belongs to tC . If both 1ε  and 2ε  are greater than zero, that means there exist two 

convex combinations where the first one dominates the selected alternative, and 

the other is dominated by the selected alternative; so the alternative belongs to tC . 

If 1ε  is greater than zero but 2ε  is smaller than zero, that means there exist some 

convex combinations that dominates the selected alternative, but no convex 

combination is dominated by the selected alternative; so this is the best class that 

the alternative may belong to. If  2ε is greater than zero but 1ε  is smaller than 

zero, that means there exist some convex combinations that are dominated by the 

selected alternative, but no convex combination dominates the selected 

alternative; so this is the worst class that the alternative may belong to. If both 1ε  

and 2ε  are smaller than zero, that means there are no convex combinations either 

dominating or dominated by the selected alternative. This result gives no 

information on the possible class of the selected alternative. All this discussion is 

summarized in the below table. 

Table 9. Decisions for different values of decision variables 

  1ε  

  < 0 =0 > 0 

< 0 No info tk CX ∈  t
B
k CX =  

=0 tk CX ∈  tk CX ∈  tk CX ∈  2ε  

> 0 t
W
k CX =  tk CX ∈  tk CX ∈  

 

 

Going over all classes that the selected alternative may belong to, the alternative is 

either placed or its best or worst possible class index is updated. 
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Figure 4 provides a two dimensional graphical example to the above discussion. 

Suppose that, alternatives 1, 2 and 3 belong to the same class (say, class f), and 

other alternatives are evaluated with above LPs: 

• As it can be observed graphically alternative 4 can be represented as a 

convex combination of alternatives 1, 2 and 3. So, for alternative 4, both 

01 >ε  and 02 >ε   and alternative 4 also belongs to class f. 

• For alternative 5, 01 >ε  and 02 <ε , that means class f  is the best possible 

class alternative 5 can belong to. 

• For alternative 6, 01 <ε  and 02 >ε , that means class f  is the worst 

possible class alternative 6 can belong to. 

• For alternatives 7 and 8, both 01 <ε  and 02 <ε , and no information 

provided. 

• For alternatives on the lines bounding the shaded region, either 01 =ε  and 

02 =ε , that can be expressed as a convex combination. Alternative 9 is 

such an alternative, and it also belongs to class f. 

Figure 4. Graphical representation of the example 
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2.6 Utilizing LPs for best and worst classes 

 
As mentioned above, the algorithm tries the narrow the range of possible classes 

that the selected alternative can be placed in. Two similar LPs are used to check 

the possibility of the placement of the selected alternative in preference classes 

with respect to the defined weight space. The developed LPs are similar to those 

developed by Köksalan and Ulu (2003), where each alternative in a certain class is 

considered separately. Here all alternatives in a class is considered in one LP. The 

reasoning behind this is that, to decide whether the class is the worst/best class 

that the selected alternative can belong to there should not exist any feasible 

weight set that makes the selected alternative worse/better than “all” alternatives 

in that certain class. 

 

Starting with the initial utility estimation, weight space is defined. New 

constraints are added (weight space will be reduced) in either of the following 

cases: 

• whenever a preference relation is implied by an Even-Swap 

• whenever an alternative is placed to a class, and there are alternatives in 

worse classes which that alternative is not dominating. This implies a 

preference relation. If there exist some alternatives in better classes which 

are not dominating that alternative, this will also imply a preference 

relation. 

 

The following LP is used for determining the best class that the selected 

alternative may belong to with respect to the defined weight space where “S”  

represents the defined weight space.  
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The above LP is solved for each class tC  starting from the worst possible class 

until the worst possible class the selected alternative may belong to. If 0<ε or the 

LP is infeasible, it is concluded that there is no weight set in the defined weight 

space which makes the selected alternative, kX , better than all alternatives in that 

class under consideration. So, the class is marked to be the best class that kX  may 

belong to, B
kX . If the LP is feasible, consider the next class. 

 

A Similar approach is followed to determine the worst class. The following LP is 

constructed for that purpose: 

 

S
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The above LP is solved for each class tC  starting from the best possible class until 

the worst possible class the selected alternative may belong to. If 0<ε or the LP 

is infeasible, it is concluded that there is no weight set in the defined weight space 

which makes the selected alternative,kX , worse than all alternatives in that class 

under consideration. So, the class is marked to be the worst class that kX  may 

belong to, W
kX . If the LP is feasible, consider the next best class. 

 

Whenever, W
k

B
k XX =  the selected alternative can safely be placed in that 

preference class. 

 

2.7 Finding equivalent dummy points 

 
As mentioned in Section 2.5 if the selected alternative can be expressed as a 

convex combination of alternatives belonging to the same class, that selected 

alternative also belongs to that class. The following LP is constructed in order to 
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check for a dummy point that dominates a convex combination of alternatives of a 

class, and is dominated by another convex combination of the same class and 

equivalent to the selected alternative in terms of estimated utility value. Since the 

dummy point is both dominating and dominated by two different convex 

combinations, it will be a member of that class. 
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Figure 5 shows an example of the case where this step can be used. Here, the 

“dummy” alternative can be expressed as a convex combination of alternatives 1, 

2 and 3, which belong to same class. And using the estimated utility function, it 

can be said that alternative 5 and the “dummy” alternative has the same utility 

value. The DM is asked to perform an even-swap on alternative 5, to come around 

the “dummy alternative”. If the swapped point can also be expressed as a convex 

combination – it is expected because of the estimated utility function – we can 

place alternative 5 in the same class. 
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Figure 5. Step 6 shown graphically 

 

Starting from the best class that the selected alternative may belong to, the above 

LP is solved. If a feasible dummy point can be found, an Even-Swap will be 

performed on the selected alternative, to generate a swapped alternative around 

the dummy point. Since the dummy alternative will be a member of that class, the 

swapped alternative is a close candidate to be a member. But before placing 

dominance relations with the convex combinations will be checked, since the 

dummy point is found using the estimated weights, so the swapped point can be 

slightly different. 

 

2.8 Decision maker placement 

 
If the selected alternative cannot be placed to a preference class with one of the 

above procedures, then the DM will be asked to place the alternative to a 

preference class between WkX  and B
kX . 

 

Let the DM place the alternative to a preference class. If there exists some 
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alternative dX belonging to a worse class but not dominated by kX , a constraint 

will be added to the weight space indicating dk XX f , that is 0)( ≥− dk XXλ . If 

there exists some alternative bX belonging to a better class but not dominating 

kX , a constraint will be added to the weight space indicating kb XX f , that is 

0)( ≥− kb XXλ . (Koksalan, M.M., Ulu, C., 2003). 

 

Figure 6, is a graphical example of how dominance and weight space reduction is 

utilized for alternative placements (Koksalan, M.M., Ulu, C., 2003). Suppose, DM 

places kX  to the worst class, the alternatives in the dashed rectangle are 

dominated by kX , and they also belong to the worst class. Assume that, it is 

known by weight space reduction constraints that slope of the DM’s underlying 

utility function lies between 1l  and 2l . Then, the alternatives which are marked 

with a “*”, will also belong to same class by weight space reduction. 

crit 1
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2 kX

1l

2l

 

Figure 6. Graphical representation of dominance and weight space reduction 
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CHAPTER 3 

 

THE ALGORITHM 

 

3.1 Summary of the Algorithm 

 
The algorithm used for sorting can be divided into two phases: 

• initialization 

• placing alternatives 

At the “initialization phase” two alternatives are selected from the alternative set 

and an Even-Swap is performed on them. Utilizing the information coming from 

the Even-Swap, constraints are generated and an estimation of the DM’s utility 

function is made. An overall flow of the initialization phase is given in Figure 7 

(for the detailed flow, look at Appendix A): 

 

 

Figure 7. Flow of the initialization phase 

 

At the “placing alternatives phase”, first the alternative to be placed is selected 

among the unplaced alternatives. Then according to dominance relations, best and 

worst classes for the alternatives are determined. The next step is to check the 

selected alternative for convex combinations of the preference classes. Then 

utilizing generated LPs and the reduced weight space, possible range of classes 

that the selected alternative may belong to is narrowed down. Then an equivalent 

dummy alternative, which belongs to a preference class, in terms of estimated 

utility is searched and an even swap on the selected alternative is performed to 

Select two 
alternatives 

Perform an 
Even-Swap on 

them 

Generate constraints 
& define weight 

space 

Estimate the 
utility function
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come around the dummy alternative. Whenever it is found that the possible best 

and worst classes are the same for the selected alternative, during the execution of 

the steps of the algorithm, the alternative is placed to that class. If this does not 

happen, DM is asked to place the alternative to a class among the range of classes 

that the alternative may belong to.  An overall flow of the “placing alternatives 

phase” is given in Figure 8 (for the detailed flow, look at Appendix A): 

 

Figure 8. Flow of the "placing alternatives phase" 

 
3.2 The Algorithm 

 
INITIALIZATION 
 
Step 0.  

Define X to be the set of all alternatives, and let there be n alternatives, define 

each as iX . Then },...,,{ 21 nXXXX = . 

Define the thj criterion value of the alternative iX  as jix , , and let there be p 

criteria, then ),....,,...,,( ,,2,1, pijiiii xxxxX = . 

Let B
kX  be the index of the best class that kX  can belong to; W

kX  be the index of 

the worst class that kX  can belong to; and C
kX  be the index of the class that kX  

belongs to, when it is placed. 

Let iC  be the set of alternatives that belong to thi class; and let there be t 

preference classes where 1C   represents the “best” class and tC represents the 

Select an 
alternative to 

place 

Determine best 
and worst classes 

by dominance 

Check for 
convex 

combinations 

Search for 
best class with 

WSR 

Search for 
worst class 
with WSR 

Find an 
equivalent 
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“worst”. 

Go to next step. 

 

 

Step1. 

Select two alternatives from the alternative set X. Among the alternative pairs 

which do not dominate each other, the closest one, in terms of Euclidean distance 

is selected. Let the selected alternatives be, qX  and rX . 

Go to next step. 

 

Step 2. 

Ask the DM to perform Even-Swap on the selected alternatives. Let the 

alternative to be swapped be qX . If criteria k and l are considered, equate the thk  

criterion value of qX  to that of rX , and ask the DM how much  s/he wants to 

swap on the thl  criterion. Let the DM swap from lrx ,  to lr
sx , . 

)( ,,, kq
s

krkq xxx >−−  

)?( ,, lr
s

lr xx >−−  

 

After this swap, qX  becomes ),....,,,...,( ,,,1, pqlq
s

kq
s

q
c
q xxxxX = . Perform all the 

swaps on all criteria. Finally qX  becomes ),....,,,...,( ,,,1, pq
s

lq
s

kq
s

q
s

q
s xxxxX =  

where all criterion values except the last are equal to that of rX ’s. 

Go to next step. 

 

Step 3. 

One of  q
sX  or rX  dominates the other depending on the value of their last 

criterion. Let q
sX  dominate rX , write a preference constraint between qX  and 

rX  to constrain the weight space: 

rq XX f   
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Write couple of constraints for each swap performed, using previously defined 

consistency index α : 

0)1(
,,

,, ≥−
−
−+ k

kq
s

kq

lqlq
s

l xx

xx λαλ  

and 

0)1(
,,

,, ≥
−
−−−

kq
s

kq

lqlq
s

lk xx

xxαλλ  

 

Step 4. 

Solve the following LP, and find an estimate of the DM’s utility function. 

( )

0

0

1
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)1(

..

max

,,

,,

,,

,,

≥
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=

∀≥−

≥
−
−−−

≥−
−
−+

∑

ε
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ε
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rqrq
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s

ki

lili
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k
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s
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lili
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XXXX
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xx
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Go to next phase. 

 

PLACING ALTERNATIVES 

 

Step 5. (initializing all alternatives) 

Initially equate all best possible class indexes for all alternatives to best class, that 

is 1=B
kX ; and equate all worst possible class indexes for all alternatives to worst 

class, that is tXW
k = . Equate all class indexes for all alternatives to zero, 0=C

kX , 

that means they do not belong to any class yet. 

Go to next step. 

 

For each swap performed 



 

 

 

37 

 

Step 6. (select one alternative) 

Select an alternative among those currently unplaced. Let the selected alternative 

be kX . 

Go to next step. 

 

 

Step 7. (decide best and worst classes) 

Look for the set of alternatives that dominatekX , let }{D kX denote the set of 

alternatives dominating kX . Looking at the class indexes (CX ) of all alternatives 

in the dominating set, assign the highest class index as the best possible class 

index of kX ; }D{in index  class maximum k
B
k XX = . 

 

Look for the set of alternatives that are dominated by kX , let }{D '
kX  denote the 

set of alternatives that are dominated by kX . Looking at the class indexes (CX ) 

of all alternatives in the dominating set, assign the lowest class index as the worst 

possible class index of kX ; }{Din index  class minimum '
k

W
k XX = .  

If yXX W
k

B
k == , then place kX  to class y. Go to Step13 

Go to next step. 

 

Step 8. (convex combination check) 

Starting from class B
kX  to W

kX  solve the following LP couple to check whether 

kX  can be expressed as a convex combination of alternatives that belong to same 

class. 
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LP1 (where [ ],,...,..., 1111 εεε=e ) 

0

1

  0 

s.t.

  max

i

1
X

1

i

≥

=

≥−−

∑

∑
∈

i

k
C

ii XX
t

µ
µ

µ

ε

e  

 

LP2 (where [ ],,...,..., 2222 εεε=e ) 

0

1

  0 

s.t.

  max

i

2
X

2

i

≥

=

≥−−

∑

∑
∈

i

C
iik

t

XX

µ
µ

µ

ε

e  

 

If both 1ε  and 2ε  are positive for class y, then place kX  to class y, go to Step 13. If 

either 1ε  or 2ε  is equal to zero, again placekX  to class y, and go to Step 13. 

 

If 01 >ε  and 02 <ε  for class y, then equate best possible class index of kX  to y, 

yX B
k = ; if 01 <ε  and 02 >ε  for class y, then equate worst possible class index of 

kX  to y, yXW
k = ; if both 01 <ε  and 02 <ε  for class y, this gives no information; 

go on with the next class. 

 

If there are less than two previously placed alternatives in a class under 

consideration, skip that class and consider the next. 

 

When all classes are considered go to next step. 

 

Step 9. (check for best class with WSR) 
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Starting from the worst class that kX  can belong to, W
kX , solve the following LP 

for all possible classes, where S representing the weight space. 

LP3 

S

CXXX ihhk

∈
∈∀≥−

λ
ελ

ε

       )(

s.t.

  max

 

 

If the problem is infeasible or 0≤ε  in the optimal solution, then class i is the best 

class that kX  can belong to, that is iX B
k = , terminate this step. If yXX W

k
B
k == , 

then place kX  to class y, go to Step 13. If W
k

B
k XX ≠ , go to Step 10.  

If the problem is feasible and 0>ε in the optimal solution, go on with the next 

worst class, loop this step till the class just before the best possible class, 1+B
kX , 

is considered.  

 

If there are no previously placed alternative in a class under consideration, skip 

that class and consider the next. 

 

When all classes are considered go to Step 10. 

 

Step 10. (check for worst class with WSR) 

Starting from the best class that kX  can belong to, B
kX , solve the following LP for 

all possible classes, where S representing the weight space. 

LP4 

S

CXXX ihkh

∈
∈∀≥−

λ
ελ

ε

    )(

s.t.

  max

 

 

If the problem is infeasible or 0≤ε  in the optimal solution, then class i is the 

worst class that kX  can belong to, that is iXW
k = , terminate this step. If 
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yXX W
k

B
k == , then place kX  to class y, go to Step 13. If W

k
B
k XX ≠ , go to Step 

10.  

 

If the problem is feasible and 0>ε in the optimal solution, go on with the next 

best class, loop this step till the class just before the worst possible class, 1−W
kX , 

is considered.  

 

If there are no previously placed alternative in a class under consideration, skip 

that class and consider the next. 

 

When all classes are considered go to Step 11. 

 

Step 11. <find a dummy equivalent alternative> 

Starting from the best possible class that kX  can belong to, solve the following 

LP.  

LP5 

0;0;0;0

1

1

0)(

..

max

≥≥≥≥

=

=

≥−

≥−
=−

∑

∑

∑

∑

∈

∈

εβµ
β

µ

εβ

εµ
λ

ε

dumii

i

i

i
CX

idum

dumi
CX

i

kdumest

X

XX

XX

XX

ts

ti

ti

 

 

If a feasible dummy point, dumX , can be found for class y, perform an Even-Swap 

on kX  to compare with dumX . That is step-by-step equatingkX ’s criterion values 

to that of dumX ’s, and performing the swap. After the Even-Swap check the 

swapped point, s
kX , if it can be expressed as convex combination of the 

alternatives of the class under consideration, go to Step 8. 
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If no feasible solution can be found, consider the next best class. Loop this step 

till all possible classes are considered. 

 

If there are less than two previously placed alternatives in a class under 

consideration, skip that class and consider the next. 

 

When all classes are considered and no feasible solution obtained, go to next step. 

 

Step 12. (ask DM to place) 

Ask the DM to place kX to a preference class among the range of classes B
kX  to 

W
kX . If the DM chooses class y, go to Step 13. 

Go to next step. 

 

Step 13. (assignments, placement by dominance, update best & worst classes) 

Assign kX  to class y, that is yX C
k = . 

If the alternative is placed directly by the decision maker: add a constraint to the 

weight space showing dk XX f , that is 0)( ≥− dk XXλ , for all dX belonging to a 

worse class and not dominated by kX . Update the estimated utility function. 

 

If the alternative is placed directly by the decision maker: add a constraint to the 

weight space showing kb XX f , that is 0)( ≥− kb XXλ , for all bX belonging to a 

better class and not dominating kX . Update the estimated utility function.  

 

If 1=y , that is the best class, then all alternatives dominating kX , }{D kX , shall 

also belong to class 1; place those alternatives to class 1. Recursively, the set of 

alternatives that are dominating these alternatives shall also be in class 1, check 

dominating sets for all placed alternatives. 

 

If ty = , that is the worst class, then all alternatives that are dominated bykX , 
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}{D '
kX , shall also belong to class t; place those alternatives to class t. 

Recursively, the set of alternatives that are dominated by these alternatives shall 

also be in class t, check sets of dominated alternatives for all placed alternatives. 

 

If y is an intermediate class, the best possible class index for the set of alternatives 

that are dominated by kX  shall be at least (lower the better) equal to y; if there 

exist some alternatives having best possible class index lower than y, in the 

dominated alternatives set, equate their index to y, that is yX B = . 

Again, if y is an intermediate class, the worst possible class index for the set of 

alternatives that are dominating kX  shall be at most (higher the worse) equal to y; 

if there exist some alternatives having best possible class index lower than y, in 

the dominating alternatives set, equate their index to y, that is yXW = . 

 

If all the alternatives are placed, exit the algorithm and present the preference 

classes to the DM. If there are some unplaced alternatives left, go to Step 6. 

 

An Example 

The algorithm is illustrated on an example, with 20 alternatives having values on 

two criteria. Assume that more is better in both criteria. The DM tries to sort these 

20 alternatives in three preference classes. The consistency index is selected to be, 

05.0=α . The alternatives are presented in Figure 9, and the alternative IDs and 

criterion values are tabulated in Table 10.  

 

While executing the algorithm for this example, two settings are made to simulate 

DM’s responses: 

• a linear underlying utility function of 2,1, *3.0*7.0)( iii XXXU +=  is 

set, and DM’s responses are declared accordingly.  

• DM’s boundaries between preference classes are set like the following: 

o If 650.0)( >iXU  then place iX  to class 1, 1CX i ∈  

o If 650.0)(250.0 ≤< iXU  then place iX  to class 2, 2CX i ∈  
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o If 250.0)( ≤iXU  then place iX  to class 3, 3CX i ∈  
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Figure 9. Example - Alternatives graphically represented 

 

Table 10. Example - List of alternatives and their criteria values 

Alt ID crit.1 crit.2  Alt ID crit.1 crit.2 

1 0.1717 0.4979  11 0.3957 0.8499 

2 0.8292 0.7750  12 0.0942 0.1718 

3 0.0871 0.1286  13 0.5979 0.6971 

4 0.7129 0.5627  14 0.1362 0.3332 

5 0.0440 0.2792  15 0.8576 0.7886 

6 0.4681 0.0143  16 0.0821 0.6767 

7 0.8454 0.7674  17 0.0373 0.3582 

8 0.8860 0.3096  18 0.3130 0.4497 

9 0.2425 0.1729  19 0.1013 0.7660 

10 0.6970 0.9681  20 0.9571 0.7373 

 

Step 1. 

Euclidean distance between all alternatives are calculated, the closest alternatives 

which are not dominating each other are alternatives 2 and 7. These two 

alternatives are selected for initial Even-Swap. 
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Step 2. 

An Even-Swap will be performed on alternative 2 (0.8292, 0.7750) and alternative 

7 (0.8454, 0.7674). Let the swap be performed on alternative 2. For alternative 2: 

Crit 1:  0.8292 � 0.8454 

Crit 2:  0.7750 � ? 

 

Assume that asking the DM to make the swap to compensate the change, the 

following response is taken: “the increase in the first criterion from 0.8292 to 

0.8454 is equal to a decrease in the second criterion from 0.7750 to 0.7372” 

 

Step 3. 

Then, alternative '2  becomes (0.8454, 0.7372), and this swapped alternative is 

dominated by alternative 7. Then it can be said that 7X  is preferred to 2X , and 

following constraint can be written: 

27 XX f  

 

Following two constraints can be generated from the swap performed and using 

the consistency indexα : 

0)05.01( 2
2,22,2

1,21,2

1 ≥−
−
−+ λλ

s

s

xx

xx
 which gives 0450.0 21 ≥− λλ  

and 

0)05.01(
2,22,2

1,21,2

12 ≥
−
−−−

s

s

xx

xxλλ  which gives 0407.0 12 ≥− λλ  

 

Step 4. 

The following LP will be solved to make an estimation of the DM’s criteria 

weights: 
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Initial estimated weights are found to be: 7075.01 =λ and 2925.02 =λ . 

 

Step 5. 

All best possible class indexes are equalized to 1 ( 1=B
iX  for all i), all worst 

possible class indexes are equalized to 3 ( 3=W
iX  for all i) and all class indexes 

are equalized to zero, since no alternatives have been placed yet ( 0=C
iX for all i).  

 

Step 6. 

Alternative 4 is selected to be placed. Since all the preference classes are initially 

empty, none of the steps give results till Step 12; the algorithm steps forward to 

Step 12 (DM placement).  

 

Step 12. 

The DM is asked to place4X , and he places 4X  to class 1. Step forward to Step 

13. 

 

Step 13. 

14 =CX , and all alternatives dominating 4X  will also be placed in class 1, these 

are alternatives 2, 7, 15, 20. Then, 1201572 ==== CCCC XXXX . Select a new 

alternative and continue. Step forward to Step 6. 
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Step 6. 

Alternative 13 is selected to be placed. Since some preference classes are empty, 

none of the steps give results till Step 12; the algorithm steps forward to Step 12 

(DM placement).  

 

Step 12. 

The DM is asked to place13X , and he places 13X  to class 2. Step forward to Step 

13. 

 

Step 13. 

213 =CX , update possible worst class indexes for all unplaced alternatives 

dominating 13X  to class 2, there is only one10X ,  210 =WX . Update possible best 

class indexes for all unplaced alternatives dominated by 13X  to class 2, there are 

10 alternatives dominated by 13X , 

2181716141296531 ========== BBBBBBBBBB XXXXXXXXXX . 

 

Since 13X  is not dominated by 4X  but in a worse class, a preference relation is 

implied, 134 XX f , and the following constraint is added to weight space: 

0)( 134 ≥− XXλ  

 

Solving the LP for estimated utility function again with the new constraint, it is 

seen that the estimated weights do not change. Select a new alternative and 

continue. Step forward to Step 6. 

 

Step 6. 

Alternative 16 is selected to be placed. Since some preference classes are empty, 

none of the steps give results till Step 12; the algorithm steps forward to Step 12 

(DM placement).  
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Step 12. 

The DM is asked to place16X , and he places 16X  to class 2. Step forward to Step 

13. 

 

Step 13. 

216 =CX , update possible worst class indexes for all unplaced alternatives 

dominating 16X  to class 2, there are two unplaced dominating alternatives,  

21911 == WW XX . Update possible best class indexes for all unplaced alternatives 

dominated by 16X  to class 2, there are 2 alternatives dominated by 16X , 

alternatives 5 and 17, but their worst class index is already 2, no update required. 

 

Since 16X  is not dominated by 4X  but in a worse class, a preference relation is 

implied, 164 XX f , and the following constraint is added to weight space: 

0)( 164 ≥− XXλ  

 

Solving the LP for estimated utility function again with the new constraint, it is 

seen that the estimated weights do not change. Select a new alternative and 

continue. Step forward to Step 6. 

 

Step 6. 

Alternative 9 is selected to be placed. Since some preference classes are empty 

none of the steps give results till Step 12; the algorithm steps forward to Step 12 

(DM placement).  

 

Step 12. 

The DM is asked to place9X , and he places 9X  to class 3. Step forward to Step 

13. 
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Step 13. 

39 =CX , and all alternatives dominated by 9X  shall also be placed in class 3, 

these are alternatives 3 and 12. Then, 3123 == CC XX .  

 

Since 9X  is not dominated by 16X  but in a worse class, a preference relation is 

implied, 916 XX f , and the following constraint is added to weight space: 

0)( 916 ≥− XXλ  

 

Solving the LP for estimated utility function again with the new constraint, it is 

seen that the estimated weights do not change.  

 

Currently 10 alternatives are placed, and the algorithm status is shown in Table 

11, highlighted alternatives are placed: 

Table 11. Example - Current status of the alternatives (1) 

Alternative ID class  best worst   Alternative ID class  best  worst  

1 0 2 3  11 0 1 2 

2 1 1 1  12 3 3 3 

3 3 3 3  13 2 2 2 

4 1 1 1  14 0 2 3 

5 0 2 3  15 1 1 1 

6 0 2 3  16 2 2 2 

7 1 1 1  17 0 2 3 

8 0 1 3  18 0 2 3 

9 3 2 3  19 0 1 2 

10 0 1 2  20 1 1 1 
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Select a new alternative and continue. Step forward to Step 6. 

 

Step 6. 

Alternative 8 is selected to be placed. 

 

Step 7. 

18 =BX  and 38 =WX . 

 

Step 8. 

Starting from best class that 8X  can belong to, that is class 1; convex combination 

check will be performed, by solving LP1 and LP2. For the first class LP1 gives 

01 >ε  and LP2 gives 02 <ε ; this implies 18 =BX . For the second class, both 

01 <ε  and 02 <ε ; no information gained. For the third class 01 <ε  and 02 >ε ; 

this implies 38 =WX . 

Step forward to next step. 

 

 

Step 9. 

Starting from worst class that 8X  can belong to, that is class 3; LP3 will be 

solved. For both class 3 and 2 LP3 gives feasible and positive solutions; so, no 

updates to BX8 . Step forward to next step. 

 

classes 

1 2 3 

2 13 3 

4 16 9 

7  12 

15   

20   
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Step 10. 

Starting from best class that 8X  can belong to, that is class 1; LP4 will be solved. 

For class 1, LP4 gives a feasible solution, but 0<ε ; so the worst class that 8X  

can belong to is updated, 18 =WX .  

Now, 188 == WB XX , then place 8X  to class 1. Go to Step 13.  

 

 

 

Step 13. 

18 =CX , no updates needed for best and worst possible class indexes of other 

alternatives due to dominance relations. 

 

Select a new alternative and continue. Step forward to Step 6. 

 

Step 6. 

Alternative 11 is selected to be placed. 

 

Step 7. 

111 =BX  and 211 =WX . 

 

Step 8. 

Starting from best class that 11X  can belong to, that is class 1; convex 

combination check will be performed, by solving LP1 and LP2. For the first class 

LP1 gives 01 <ε  and LP2 gives 02 <ε ; no information gained. For the second 

class, both 01 <ε  and 02 >ε ; this implies 211 =WX . 

 

Step 9. 

Starting from worst class that 11X  can belong to, that is class 2; LP3 will be 

solved. For both class 2 LP3 gives feasible solution, but 0<ε ; so the best class 

that 11X  can belong to is updated, 211 =BX . 
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Now, 21111 == WB XX , then place 11X  to class 2. Go to Step 13. 

 

Step 13. 

211 =CX , update possible best class indexes for all unplaced alternatives 

dominated by 11X  to class 2, there is only one unplaced alternative dominated by 

11X , alternative 19, 219 =BX . 

Now, 21919 == WB XX , then place 11X  to class 2. 19X  will be placed to class 2. 

 

Go to Step 13 to place alternative 19. 

 

Step 13. 

219 =CX , no updates required for best and worst possible indexes of classes.  

Select a new alternative and continue. Step forward to Step 6. 

 

Step 6. 

Alternative 10 is selected to be placed. 

 

Step 7. 

110 =BX  and 210 =WX . 

 

Step 8. 

Starting from best class that 10X  can belong to, that is class 1; convex 

combination check will be performed, by solving LP1 and LP2. For the first class 

LP1 gives 01 <ε  and LP2 gives 02 <ε ; no information gained. For the second 

class, 01 <ε  and 02 >ε ; this implies 210 =WX . 

Step forward to next step. 

 

Step 9. 

Starting from worst class that 10X  can belong to, that is class 2; LP3 will be 
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solved. Solving for both class 2, LP3 gives feasible positive solution, so no update 

to BX10  Go to Step 10. 

 

Step 10. 

Starting from best class that 10X  can belong to, that is class 1; LP4 will be solved. 

For class 1, LP4 gives a feasible solution, but 0<ε ; so the worst class that 10X  

can belong to is updated, 110 =WX .  

Now, 11010 == WB XX , then place 10X  to class 1. Go to Step 13.  

 

Step 13. 

110 =CX , no updates required for best and worst possible indexes of classes, and no 

preference relations implied. Select a new alternative and continue. Step forward 

to Step 6. 

 

Step 6. 

Alternative 14 is selected to be placed. 

 

Step 7. 

214 =BX  and 314 =WX . 

 

Step 8. 

Starting from best class that 14X  can belong to, that is class 2; convex 

combination check will be performed, by solving LP1 and LP2. For class 2 LP1 

gives 01 >ε  and LP2 gives 02 <ε ; this implies 214 =BX . For the second class, 

01 <ε  and 02 >ε ; this implies 314 =WX . 

Step forward to next step. 

 

Step 9. 

Starting from worst class that 14X  can belong to, that is class 3; LP3 will be 
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solved. For class 3 LP3 gives feasible solution, but 0<ε ; so the best class that 

14X  can belong to is updated, 314 =BX .  

Now, 31414 == WB XX , then place 14X  to class 3. Go to Step 13. 

 

Step 13. 

314 =CX , no updates required for best and worst possible indexes of classes. 

Select a new alternative and continue. Step forward to Step 6. 

 

Step 6. 

Alternative 1 is selected to be placed. 

 

Step 7. 

21 =BX  and 31 =WX . 

 

Step 8. 

Starting from best class that 1X  can belong to, that is class 2; convex combination 

check will be performed, by solving LP1 and LP2. For class 2 LP1 gives 01 >ε  

and LP2 gives 02 <ε ; this implies 21 =BX . For class 3, 01 <ε  and 02 >ε ; this 

implies 31 =WX . 

Step forward to next step. 

 

Step 9. 

Starting from worst class that 1X  can belong to, that is class 3; LP3 will be 

solved. For class 3 LP3 gives feasible positive solution, so no update on BX1 . 

 

Step 10. 

Starting from best class that 1X  can belong to, that is class 2; LP4 will be solved. 

For class 1, LP4 gives a feasible solution, but 0<ε ; so the worst class that 1X  

can belong to is updated, 21 =WX . Now, 211 == WB XX , then place 1X  to class 2. 
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Go to Step 13.  

 

Step 13. 

21 =CX , no updates required for best and worst possible indexes of classes. 

  

Currently 16 alternatives are placed, and the algorithm status is shown in the 

below table, highlighted alternatives are placed: 
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Table 12. Example - Current status of the alternatives (2) 

Alternative ID class  best worst   Alternative ID class  best  worst  

1 2 2 2  11 2 2 2 

2 1 1 1  12 3 3 3 

3 3 3 3  13 2 2 2 

4 1 1 1  14 3 3 3 

5 0 2 3  15 1 1 1 

6 0 2 3  16 2 2 2 

7 1 1 1  17 0 2 3 

8 1 1 1  18 0 2 3 

9 3 2 3  19 2 2 2 

10 1 1 1  20 1 1 1 

 

classes 

1 2 3 

2 13 3 

4 16 9 

7 11 12 

15 19 14 

20 1  

8   

10   

 

Remaining four alternatives are also placed by weight space reduction. 5X  and 

17X  are placed to class 3, 6X  and 18X  are placed to class 2. The final placements 

are given in the below table (Table 13), and shown graphically in Figure 10. 

Table 13. Example - Final status 

classes 

1 2 3 

2 13 3 

4 16 9 

7 11 12 

15 19 14 

20 1 5 

8 6 17 

10 18  
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Figure 10. Example - Final status represented graphically 

 

Below table shows how the alternatives are placed, weight space reduction 

(WSR), dominance (DOM) or DM placement (DM). 9 placements are made by 

WSR, 7 placements are by DOM and 4 by DM placements. Looking at the 

alternatives that are placed by DM, it is observed that these are the alternatives 

which constitute the boundary for the classes, this proves the effectiveness of 

selecting alternatives for placement technique; all other alternatives are placed 

either by WSR or DOM. Only one even-swap is required, which was at the 

initialization phase of the algorithm. 

Class 1  

Class 2  

Class 3 
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Table 14. Example - Means of placements 

WSR DOM DM 

Alternative 

ID 

Class ID Alternative 

ID 

Class ID Alternative 

ID 

Class 

ID 

8 1 2 1 4 1 

11 2 7 1 13 2 

10 1 15 1 16 2 

14 3 20 1 9 3 

1 2 3 3   

6 2 12 3   

18 2 19 2   

17 3 5 3   
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CHAPTER 4 

 

 

AUTOMATED APPROACH AND EXPERIMENTATION 

 

An automation of the proposed algorithm is developed for bi-criteria problems in 

order to provide an infrastructure for DMs to implement the algorithm. The 

developed automation is also used to test and interpret the behavior of the 

algorithm to problems with certain characteristics. The extension of the 

automation to more than two criteria problems may result in longer run-times to 

execute and some complications especially dealing with Even-Swaps. 

 

4.1 Development of the Automation and User Screens 

The automation is developed using Visual Basic with MS Excel, and utilizes 

Excel Solver for the LPs in the algorithm. The alternatives are read from a 

worksheet and model parameters - number of alternatives to be considered and the 

consistency index - are taken interactively. The following snapshots show 

interaction screens; Figure 11 for inserting number of alternatives and Figure 12 

for inserting consistency index. 
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Figure 11. Inserting number of alternatives to be considered 

 

 

 

 

Figure 12. Inserting the consistency index 

Two other interaction points with the DM are: 

• Performing the Even-Swap : Step 2 at the initialization phase and Step 

11 at the placing alternatives phase. 

• Placing alternatives directly : Step 12 at the placing alternatives phase. 

The first one requires DM to perform even swaps. Whenever an Even-Swap is 

required, the screen shown in Figure 13 appears and asks the DM the decrease or 

increase in the value of one criterion to compensate the change in the other 

criterion. The criteria values for the both alternatives, and the change in the other 

criterion is presented to the DM, and s/he is expected to make the swap. 
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Figure 13. Even Swap Screen 

If none of the former steps can place the selected alternative, the algorithm asks 

the DM to place the alternative to a class in between its possible best and worst 

classes. These best and worst possible class indexes, and the criteria values of the 

alternative is presented to the DM in the screen shown in Figure 14, and s/he is 

expected to place the alternative in one class. 
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Figure 14. DM Placement 

Entering correct info is crucial, so some checks are done in order to reject 

erroneous data entry, error messages appear when one of the following cases 

occur: 

• Consistency index not between 0 and 1. (Figure 15) 

• When swap is done in the wrong direction. (Figure 16) 

• When DM tries to place the alternative out of the presented best and 

worst possible class indexes bound. (Figure 17) 

The following error messages appear, and the algorithm continues when the error 

is corrected. 

 

 

Figure 15.  Consistency index not valid 
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Figure 16. Swap done in the wrong direction 

 

 

Figure 17. DM placed the alternative to a wrong class 

 

4.2 Experimentation 

The proposed algorithm is experimented with the developed automation, in order 

to analyze the behavior of the algorithm to alternative sets with different 

characteristics. Four different parameters can be considered when testing the 

algorithm: 

• number of classes: this parameter is fixed at 3 for all runs, the 

implementation may be extended to handle more classes, but currently 

it places alternatives to three preference classes 

• number of alternatives: three different sizes of alternative sets are used, 

sets with 20, 50 and 100 alternatives are considered  

• weights of the utility function: two different weight sets are used, 

“weight1 / weight2” ratio of the first one is 0.7/0.3 and the other one is 

0.1/0.9.  

• consistency index value, alpha: three different consistency indexes are 

used, these are; 0.05, 0.15 and 0.30. 

The following table summarizes the runs made, with their run codes and run 

parameters (Table 15): 
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Table 15. Run codes and Run parameters 

Run 
Codes 

# of 
Classes  

# of 
Alternatives 

Utility 
(weight 1 / weight 2) Alpha 

Run001 3 20 0,7 / 0,3 0.05 

Run002 3 20 0,7 / 0,3 0.15 

Run003 3 20 0,7 / 0,3 0.30 

Run004 3 20 0,1 / 0,9 0.05 

Run005 3 20 0,1 / 0,9 0.15 

Run006 3 20 0,1 / 0,9 0.30 

Run007 3 50 0,7 / 0,3 0.05 

Run008 3 50 0,7 / 0,3 0.15 

Run009 3 50 0,7 / 0,3 0.30 

Run010 3 50 0,1 / 0,9 0.05 

Run011 3 50 0,1 / 0,9 0.15 

Run012 3 50 0,1 / 0,9 0.30 

Run013 3 100 0,7 / 0,3 0.05 

Run014 3 100 0,7 / 0,3 0.15 

Run015 3 100 0,7 / 0,3 0.30 

Run016 3 100 0,1 / 0,9 0.05 

Run017 3 100 0,1 / 0,9 0.15 

Run018 3 100 0,1 / 0,9 0.30 
 

During the runs, the DM’s responses for direct placements and Even-Swaps are 

given using the underlying utility function of the DM. It is assumed that all 

preference classes are approximately of the same size. Three different alternative 

sets of sizes 20 alternatives, 50 alternatives and 100 alternatives are used, whose 

criteria values are randomly generated. The alternative sets and their criteria 

values are given in Appendix B. How each alternative is placed - either by convex 

combinations, weight space reduction, Even-Swaps, direct DM placement or 

dominance - is tracked and documented. Results of all runs are given in Appendix 

B. The Following table (Table 16) summarizes the results obtained from all runs. 
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Table 16. Run Results Summary 

Number of alternatives placed with different tools 
 # of 

Classes 
# of 

Alternatives 
Utility 

(weight1/ weight2) 
Alpha 

Convex 
Combination  WSR Even Swaps DM Placement Dominance 

Run001 3 20 0,7 / 0,3 0.05   8   4 8 
Run002 3 20 0,7 / 0,3 0.15   7 1 4 8 
Run003 3 20 0,7 / 0,3 0.30 1 5 2 4 8 
Run004 3 20 0,1 / 0,9 0.05   5   4 11 
Run005 3 20 0,1 / 0,9 0.15   5   4 11 
Run006 3 20 0,1 / 0,9 0.30   5   4 11 
Run007 3 50 0,7 / 0,3 0.05 5 18   5 22 
Run008 3 50 0,7 / 0,3 0.15 4 15 4 5 22 
Run009 3 50 0,7 / 0,3 0.30 7 9 6 7 21 
Run010 3 50 0,1 / 0,9 0.05 6 14   4 26 
Run011 3 50 0,1 / 0,9 0.15 6 14   4 26 
Run012 3 50 0,1 / 0,9 0.30 6 10 3 5 26 
Run013 3 100 0,7 / 0,3 0.05 32 18 8 4 38 
Run014 3 100 0,7 / 0,3 0.15 24 22 3 6 45 
Run015 3 100 0,7 / 0,3 0.30 35 9 16 6 34 
Run016 3 100 0,1 / 0,9 0.05 21 30 0 6 43 
Run017 3 100 0,1 / 0,9 0.15 21 29 1 6 43 
Run018 3 100 0,1 / 0,9 0.30 28 25 2 6 39 

 



 

 

 

65 

 

Some graphs are plotted using the above tabulated results, to enable the 

interpretation of the results graphically. The averages are taken by grouping the 

runs according to “number of alternatives”, and Figure 18 is plotted. This figure 

shows the average percent of the cases an alternative is placed by a certain 

placement method.  
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Figure 18.  Averages with differing alternative set sizes 

By looking at the alternatives placed by direct DM placement, we can observe a 

decreasing trend. The average percent for Even-Swaps increases as the number of 

alternatives considered increases, however, if we sum up the average percentages 

for DM placement and Even-Swaps the following decreasing trend can be 

observed; 22.50%, 14.33% and 10.67% for alternative sets of sizes 20, 50 and 100 

respectively. Thus, we can conclude that with larger alternative sets the algorithm 

requires relatively less DM effort. 

 

Another observation from this graph is that, the percent of alternatives that are 

placed by WSR decreases whereas the percent of alternatives that are placed by 
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convex combinations increases as the size increases. This can be due to increasing 

number of convex combination relationships among all alternatives with the 

increase in the number of alternatives. 

 

The consistency index is set at the beginning of the algorithm; the information 

coming from the Even-Swaps is evaluated within the range defined by this 

consistency index. The average percentages for way of placing the alternatives, 

under different consistency indexes are plotted in Figure 19. As expected, when 

the consistency index increases, the required DM input increases, if we sum up the 

average percentages for DM placement and Even-Swaps the following increasing 

trend can be observed; 12.67%, 14.50% and 20.33% for consistency index values 

of 0.05, 0.15 and 0.30 respectively. 
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Figure 19. Averages with differing consistency indexes 

 

 

The results are grouped according to the number of alternatives considered, and 



 

 

 

67 

 

three graphs are plotted for alternative sets of sizes 20, 50 and 100. Figure 20 

illustrates the runs for the alternative set having 20 alternatives. The most 

interesting observation from this graph is that, number of alternatives that are 

placed by direct DM placement stays constant at 4, with different utility functions 

and consistency indexes. These four alternatives are the ones that constitute the 

boundaries for preference classes; one for the best class, one for the worst and two 

for the middle class. The step for placing the alternative by an Even-Swap is 

invoked only three times; the reasoning behind this is that, since the number of 

alternatives dealt is small, the case when it is feasible to perform an Even-Swap is 

less probable. Another observation from Figure 20 is that, for runs using the 

utility function weight ratio “0.1/0.9”, (these are the runs 4, 5 and 6) the results are 

stable for different consistency indexes. 
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Figure 20. Results for 20 alternatives 

Figure 21 and Figure 22, summarize the runs for 50 and 100 alternatives. It can be 

observed that; as the consistency index increases, the number of DM placements 

and number of placements by Even-Swaps increases, whereas the number of 

alternatives that are placed by either WSR or convex combination relations 

decreases. The results are more stable with the runs that use utility function with 
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weights 0.1 and 0.9 for criterion 1 and criterion 2 respectively than the runs that 

use weights 0.7 and 0.3.  

 

Although we double the size of the alternative set from 50 to 100, we observe just 

a slight increase in the number of placements made directly by the DM, so 

relatively it is decreasing. 

5

18

5

22

4

15

4

5

22

7

9

6

7

21

6

14

4

26

6

14

4

26

6

10

3

5

26

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run007 Run008 Run009 Run010 Run011 Run012

50 Alternatives

Dominance

DM Placement

Even Swaps

WSR

Convex Combination

 

Figure 21. Results for 50 alternatives 
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Figure 22. Results for 100 alternatives 

The algorithm requires some computational effort; runs with alternative sets 

having 100 alternatives, required execution of 277 LPs on the average. Run 15, 

with 0.7/0.3 utility weight ratio and 0.30 consistency index, required execution of 

348 LPs. It takes couple of minutes to complete a run. 



 

 

 

70 

 

 

 

 

 

CHAPTER 5 

 

 

SUMMARY AND CONCLUSION 

 

An interactive model for the problem of sorting alternatives to preference classes 

in the existence of multiple criteria is proposed in this study. 

 

It is assumed that the DM’s underlying utility function is linear; the model tries to 

generate an estimated region for the criteria weights using DM’s responses and 

place the alternatives to preference classes either utilizing weight space reduction 

or dominance wherever possible. 

 

A two-phased approach is proposed for the problem. The first phase initializes the 

placement algorithm, starts with the selection of two alternatives from the 

alternative set and an even swap is performed on these two alternatives. Then, 

utilizing the information gained from this swap, an estimation of the DM’s 

underlying utility function is made. This is done by the help of an LP which 

constrains the weight space of the DM. 

 

With the estimated utility function, the algorithm steps forward to second phase. 

This phase loops until all alternatives in the preference set are placed to a 

preference class. The first step in this phase, is selecting an alternative placement. 

Then, by looking at dominance relations with formerly placed alternatives, its 

possible best and worst classes are determined. Next, it is checked whether the 

selected alternative can be expressed as a convex combination of alternatives that 

are already assigned to a given class. This check is conducted for all possible 
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classes the selected alternative may belong to. When it is proved that the 

alternative can be expressed as a convex combination of alternatives of a given 

class, it is placed to that class. Otherwise, the information gained is utilized and 

the algorithm tries to place the alternative using weight space reduction with two 

LPs. If this cannot be possible, the next step tries to find an equivalent dummy 

point –in terms of estimated utility value- which can be expressed as a convex 

combination of the alternatives of a class. Then an even swap is performed on the 

selected alternative to swap around the dummy alternative, and it is expected that 

the swapped alternative can also be expressed as a convex combination of 

alternatives in that class. If no feasible dummy alternative can be found, then the 

selected alternative is presented to the DM, and he/she is asked to place the 

alternative to one of the possible preference classes. 

 

In each step of the algorithm; whenever information is gathered from the DM, the 

weight space is updated accordingly. The weight space is reduced during the 

execution of the algorithm. So, although not guaranteed, it is expected and 

observed that the DM’s estimated utility function improves as the algorithm 

iterates. As more alternatives are placed to preference classes, the algorithm 

becomes more effective. That is, as the number of alternatives placed by 

dominance and weight space reduction increases, the required DM involvement 

for placements decreases. 

 

At the last step of the algorithm the DM is asked to directly place the selected 

alternative to a preference class. But before that step, if appropriate, the DM is 

asked to place the alternative by performing an Even-Swap using the dummy 

alternative approach. In some cases, performing the Even-swap can be harder than 

directly placing the alternative. That depends on many factors: the characteristic 

of the problem, scaling of the criteria, number of criteria to be considered, the 

DM’s value judgments, the amount of the swap required, etc. For example if the 

number of criteria to be considered is five, the DM has to make four iterations to 

perform the Even-Swap; s/he would rather prefer directly placing the alternative. 

However, evaluating the criteria and making the placement may also be difficult, 
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especially when the number of criteria is large. 

 

The algorithm appears to be more effective especially when the number of 

alternatives in the alternative set is large and the number of criteria to be 

considered is not too many. Without a proper mechanism, it would be hard for the 

DM to consider and place too many alternatives; the model provides automatic 

placements by making inferences. The problem with too many criteria is due to 

the increase in the number of swaps required. 

 

An automated approach for the proposed algorithm is developed. Utilizing the 

automation, the model is solved with various alternative sets having different 

characteristics, and the results are discussed in Chapter 4.  

 

Possible Future Work 

It was assumed that, the DM is consistent with his/her responses; it will be 

interesting to analyze cases when there exists inconsistency, beyond the amount 

considered by the consistency index. In the same way the consistency index, α, 

can be defined dynamically as a function of DM’s responses. 

 

A real life application of the algorithm can be performed; the possible application 

areas are listed in the literature survey section. 

 

The Even-Swaps method is originally proposed for finding the best alternative 

among a small number of alternatives, however, utilizing the ideas developed in 

this study it can be possible to use the method to find the best alternative among a 

large number of alternatives, which is a special case of the sorting problem 

studied in this thesis. 
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APPENDIX A – Detailed flow of the algorithm 

Initializing Phase 
 

 

Step 4. Estimate the utility function

Take number of alternatives

Take the consistency index

Read all alternatives

Initialize preference classes

Identify alternative pairs which do not
dominate each other

Calculate Euclidean distances

Find the minimum Euclidean distance

Select the pair having the minimum
distance

Equate two alternatives on one criterion

Perform the swap on the other criterion

Generate two constraints from the swap,
using consistency index

Generate one constraint from the
implied preference

Solve the generated LP, to find the mid-
point of the weight space

Step 0. Initialize the problem

Step 1. Select two alternatives

Step 2. Perform Even-Swap

Step 3. Define the weight space

Take the solution as the estimated utility
function
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Placing Alternatives Phase 
 

 

Set all best class indexes to 1

Set all worst class indexes to t

Set all class indexes to 0 (not placed)

Step 5. Initialize alternatives

Identify unplaced alternatives

Identify those, which are out of bounds

Select the one, which is far from the
nearest boundary

Select the one, which is closest to the
nearest boundary

Step 6. Select an alternative to place

No alternatives out of
bounds

YES NO

Look for the class indexes dominating
alternatives, which are placed

Set the smallest class index as the best
class index of the selected alternative

Step 7. Decide best and worst classes

Look for the class indexes dominated
alternatives, which are placed

Set the largest class index as the worst
class index of the selected alternative

Solve LP1 to obtain E1

Step 8. Convex Combination check

Solve LP2 to obtain E2

Check whether
E1  =  E2  =  0

OR
E1 > 0   ;  E2 > 0

Check whether
E1 < 0   ;  E2 > 0

Check whether
E1 > 0   ;  E2 < 0

Start from the worst possible class

Solve LP3

Step 9. Check for best class with WSR

Set best possible class index to the
class

Consider the next worst class

If
"Infeasible" or E <= 0

All classes except the best, are
considered

NO

YES
NO

Start from the best possible class

Solve LP4

Step 10. Check for worst class with WSR

Set worst possible class index to the
class

Consider the next best class

If
"Infeasible" or E <= 0

All classes except the worst, are
considered

NO

YES
NO

YES

Start from the best possible class

Solve LP5

Step 11. Find a dummy equivalent alternative

Consider the next best class

If
"Infeasible"

All classes are considered?

NO

YES

NO

Perform an Even-Swap to come around
dummy alternative

Set worst class index to current class

Set best class index to current class

Swapped point can be expresses as
a convex combination?

Go to next step

NO

NO

NO

Ask DM to place the alternative to a class,
in between best and worst classes

Step 12. Ask DM to place the alternative

Set class index to current class

Step 13. Place the alternative

For each alternative in a better class, but not
dominating, add a preference constraint to

weight space

For each alternative in a worse class, but not
dominated, add a preference constraint to

weight space

Reestimate the utility function

There exists unplaced alternatives

Document Results
"STOP"

check whether
 best class index = worst class index

Go to next step

NO

YES

stop this  step

stop this  step

YES
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APPENDIX B – Experimentation 

Experimentation with 20 alternatives: 
 
Alternative 

ID 
Criterion 1 

value 
Criterion 1 

value 
1 0.1717 0.4979 
2 0.8292 0.7750 
3 0.0871 0.1286 
4 0.7129 0.5627 
5 0.044 0.2792 
6 0.4681 0.0143 
7 0.8454 0.7674 
8 0.886 0.3096 
9 0.2425 0.1729 

10 0.6970 0.9681 
11 0.3957 0.8499 
12 0.0942 0.1718 
13 0.5979 0.6971 
14 0.1362 0.3332 
15 0.8576 0.7886 
16 0.0821 0.6767 
17 0.0373 0.3582 
18 0.313 0.4497 
19 0.1013 0.7660 
20 0.9571 0.7373 

 
Class1 Class2 Class3 

Alt 
ID Crit1 Crit2 

Alt 
ID Crit1 Crit2 

Alt 
ID Crit1 Crit2 

2 0.8292 0.775 1 0.1717 0.4979 3 0.0871 0.1286 
4 0.7129 0.5627 6 0.4681 0.0143 5 0.044 0.2792 
7 0.8454 0.7674 11 0.3957 0.8499 9 0.2425 0.1729 
8 0.886 0.3096 13 0.5979 0.6971 12 0.0942 0.1718 

10 0.697 0.9681 16 0.0821 0.6767 14 0.1362 0.3332 
15 0.8576 0.7886 18 0.313 0.4497 17 0.0373 0.3582 
20 0.9571 0.7373 19 0.1013 0.766    
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RUN 1: 

Run Parameters 
# of Alternatives 20 
Consistency Index 0.05 
Underlying Utility Function 
(weight 1 / weight 2) 

0.7 / 0.3 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

 1  4 2 
 6  9 3 
 8  13 5 
 10  16 7 
 11   12 
 14   15 
 17   19 
 18   20 
     
 8  4 8 

 
RUN 2: 

Run Parameters 
# of Alternatives 20 
Consistency Index 0.15 
Underlying Utility Function 
(weight 1 / weight 2) 

0.7 / 0.3 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

 6 1 4 2 
 8  9 3 
 10  13 5 
 11  16 7 
 14   12 
 17   15 
 18   19 
    20 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Class 1

Class 2

Class 3
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 7 1 4 8 

 
RUN 3: 

Run Parameters 
# of Alternatives 20 
Consistency Index 0.30 
Underlying Utility Function 
(weight 1 / weight 2) 

0.7 / 0.3 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

18 8 1 4 2 
 10 6 9 3 
 11  13 5 
 14  16 7 
 17   12 
    15 
    19 
    20 
     

1 5 2 4 8 
 
RUN 4: 

Run Parameters 
# of Alternatives 20 
Consistency Index 0.05 
Underlying Utility Function 
(weight 1 / weight 2) 

0.1 / 0.9 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

 4  13 1 
 6  14 2 
 8  17 3 
 9  19 5 
 20   7 
    10 
    11 
    12 
    15 
    16 
    18 
 5  4 11 

 
RUN 5: 

Run Parameters 
# of Alternatives 20 
Consistency Index 0.15 
Underlying Utility Function 
(weight 1 / weight 2) 

0.1 / 0.9 
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# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

 4  13 1 
 6  14 2 
 8  17 3 
 9  19 5 
 20   7 
    10 
    11 
    12 
    15 
    16 
    18 
 5  4 11 

 
RUN 6: 

Run Parameters 
# of Alternatives 20 
Consistency Index 0.30 
Underlying Utility Function 
(weight 1 / weight 2) 

0.1 / 0.9 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

 4  13 1 
 6  14 2 
 8  17 3 
 9  19 5 
 20   7 
    10 
    11 
    12 
    15 
    16 
    18 
 5  4 11 
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Experimentation with 50 alternatives: 
 
Alternative 

ID 
Criterion 1 

value 
Criterion 1 

value 
 Alternative 

ID 
Criterion 1 

value 
Criterion 1 

value 
1 0.3900 0.3296  26 0.3129 0.6086 
2 0.1763 0.0446  27 0.1698 0.7177 
3 0.1925 0.3864  28 0.1126 0.665 
4 0.9750 0.7850  29 0.1379 0.1646 
5 0.6266 0.1859  30 0.4732 0.1023 
6 0.9751 0.8548  31 0.9704 0.7103 
7 0.4504 0.3621  32 0.8698 0.0837 
8 0.2843 0.4652  33 0.9333 0.2587 
9 0.1218 0.3370  34 0.5299 0.958 

10 0.6526 0.9496  35 0.6433 0.5016 
11 0.2514 0.3081  36 0.9242 0.653 
12 0.2035 0.8757  37 0.2897 0.8537 
13 0.8618 0.3790  38 0.7000 0.9630 
14 0.8026 0.3312  39 0.7228 0.6429 
15 0.3876 0.5087  40 0.9595 0.8013 
16 0.6889 0.6848  41 0.7171 0.8152 
17 0.7401 0.3371  42 0.3404 0.8831 
18 0.0472 0.0847  43 0.0084 0.5419 
19 0.3137 0.2180  44 0.5986 0.1639 
20 0.8961 0.0827  45 0.6055 0.1965 
21 0.0523 0.7838  46 0.7369 0.7613 
22 0.7899 0.9992  47 0.5571 0.6226 
23 0.8131 0.3521  48 0.2759 0.1641 
24 0.9899 0.6320  49 0.2366 0.9427 
25 0.4817 0.8905  50 0.8195 0.472 

 
Class1 Class2 Class3 

Alt 
ID Crit1 Crit2 

Alt 
ID Crit1 Crit2 

Alt 
ID Crit1 Crit2 

4 0.975 0.785 5 0.6266 0.1859 1 0.39 0.3296 
6 0.9751 0.8548 7 0.4504 0.3621 2 0.1763 0.0446 

10 0.6526 0.9496 12 0.2035 0.8757 3 0.1925 0.3864 
13 0.8618 0.379 14 0.8026 0.3312 8 0.2843 0.4652 
16 0.6889 0.6848 15 0.3876 0.5087 9 0.1218 0.337 
22 0.7899 0.9992 17 0.7401 0.3371 11 0.2514 0.3081 
23 0.8131 0.3521 20 0.8961 0.0827 18 0.0472 0.0847 
24 0.9899 0.632 25 0.4817 0.8905 19 0.3137 0.218 
31 0.9704 0.7103 32 0.8698 0.0837 21 0.0523 0.7838 
33 0.9333 0.2587 34 0.5299 0.958 26 0.3129 0.6086 
36 0.9242 0.653 35 0.6433 0.5016 27 0.1698 0.7177 
38 0.7 0.963 37 0.2897 0.8537 28 0.1126 0.665 
39 0.7228 0.6429 42 0.3404 0.8831 29 0.1379 0.1646 
40 0.9595 0.8013 44 0.5986 0.1639 30 0.4732 0.1023 
41 0.7171 0.8152 45 0.6055 0.1965 43 0.0084 0.5419 
46 0.7369 0.7613 47 0.5571 0.6226 48 0.2759 0.1641 
50 0.8195 0.472 49 0.2366 0.9427    
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RUN 7: 

Run Parameters 
# of Alternatives 50 
Consistency Index 0.05 
Underlying Utility Function 
(weight 1 / weight 2) 

0.7 / 0.3 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

17 1  12 2 
35 5  14 3 
37 7  23 4 
46 10  26 6 
47 15  34 8 
 16   9 
 20   11 
 21   13 
 22   18 
 27   19 
 30   24 
 32   25 
 33   28 
 38   29 
 39   31 
 41   36 
 44   40 
 45   42 
    43 
    48 
    49 
    50 
     

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Class 1

Class 2

Class 3
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5 18  5 22 
 
RUN 8: 

Run Parameters 
# of Alternatives 50 
Consistency Index 0.15 
Underlying Utility Function 
(weight 1 / weight 2) 

0.7 / 0.3 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

17 1 7 14 2 
35 5 12 15 3 
46 10 16 20 4 
47 22 34 23 6 
 30  26 8 
 32   9 
 33   11 
 37   13 
 38   18 
 39   19 
 41   21 
 42   24 
 44   25 
 45   27 
 49   28 
    29 
    31 
    36 
    40 
    43 
    48 
    50 
     

4 15 4 5 22 
 
RUN 9: 

Run Parameters 
# of Alternatives 50 
Consistency Index 0.30 
Underlying Utility Function 
(weight 1 / weight 2) 

0.7 / 0.3 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

1 10 5 7 2 
17 22 12 16 3 
25 30 14 20 4 
35 32 15 23 6 
37 33 34 26 8 
42 38 45 44 9 
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47 39  49 11 
 41   13 
 46   18 
    19 
    21 
    24 
    27 
    28 
    29 
    31 
    36 
    40 
    43 
    48 
    50 
     

7 9 6 7 21 
 
RUN 10: 

Run Parameters 
# of Alternatives 50 
Consistency Index 0.05 
Underlying Utility Function 
(weight 1 / weight 2) 

0.1 / 0.9 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

8 1  3 2 
15 10  7 4 
17 12  16 5 
25 14  36 6 
26 21   9 
37 23   11 
 24   13 
 27   18 
 28   19 
 33   20 
 34   22 
 42   29 
 43   30 
 49   31 
    32 
    35 
    38 
    39 
    40 
    41 
    44 
    45 
    46 
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    47 
    48 
    50 
     

6 14  4 26 
 
RUN 11: 

Run Parameters 
# of Alternatives 50 
Consistency Index 0.05 
Underlying Utility Function 
(weight 1 / weight 2) 

0.1 / 0.9 

# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

8 1  3 2 
15 10  7 4 
17 12  16 5 
25 14  36 6 
26 21   9 
37 23   11 
 24   13 
 27   18 
 28   19 
 33   20 
 34   22 
 42   29 
 43   30 
 49   31 
    32 
    35 
    38 
    39 
    40 
    41 
    44 
    45 
    46 
    47 
    48 
    50 
     

6 14  4 26 
 
RUN 12: 

Run Parameters 
# of Alternatives 50 
Consistency Index 0.05 
Underlying Utility Function 
(weight 1 / weight 2) 

0.1 / 0.9 
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# of Classes 3 
Convex 

Combination  
WSR Even 

Swaps 
DM Placement Dominance 

8 9 3 1 2 
15 10 27 7 4 
17 12 33 14 5 
25 21  16 6 
26 24  36 11 
37 28   13 
 34   18 
 42   19 
 43   20 
 49   22 
    23 
    29 
    30 
    31 
    32 
    35 
    38 
    39 
    40 
    41 
    44 
    45 
    46 
    47 
    48 
    50 
     

6 10 3 5 26 
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Experimentation with 100 alternatives: 
 
Alternative 

ID 
Criterion 1 

value 
Criterion 1 

value 
 Alternative 

ID 
Criterion 1 

value 
Criterion 1 

value 
1 0.832473245 0.955980422  51 0.992663346 0.921394289 
2 0.947412859 0.895050087  52 0.15805215 0.224635798 
3 0.753019334 0.49822847  53 0.441496201 0.359501055 
4 0.614207422 0.313134137  54 0.14552186 0.871191621 
5 0.3424168 0.501686154  55 0.381511131 0.184240931 
6 0.08671645 0.27104183  56 0.032140635 0.641507591 
7 0.853584041 0.113141229  57 0.864506978 0.457378111 
8 0.260190032 0.37133937  58 0.534361588 0.121757557 
9 0.537626481 0.135279453  59 0.17648324 0.992295065 

10 0.241000145 0.790835886  60 0.453230764 0.541160228 
11 0.073750323 0.010561168  61 0.390657796 0.945923677 
12 0.513245474 0.932553728  62 0.861542781 0.127758741 
13 0.795130693 0.821487671  63 0.422980653 0.929919058 
14 0.189861305 0.041740431  64 0.304323174 0.94639595 
15 0.839206625 0.144101518  65 0.96922068 0.765952414 
16 0.059594292 0.432333708  66 0.927623558 0.629982704 
17 0.486867394 0.160671516  67 0.402291509 0.271459831 
18 0.735999703 0.166290046  68 0.116232643 0.218325976 
19 0.464406083 0.345865531  69 0.732117643 0.39074074 
20 0.143466196 0.956707613  70 0.33869598 0.676134621 
21 0.192836693 0.036797936  71 0.544549909 0.529443227 
22 0.060492734 0.603855139  72 0.235980527 0.873259861 
23 0.310464731 0.672643931  73 0.776084535 0.49642373 
24 0.285450622 0.24737219  74 0.137548599 0.588775218 
25 0.621882788 0.653604652  75 0.076118645 0.572746004 
26 0.722183838 0.262613704  76 0.772543958 0.149830007 
27 0.778799285 0.340517335  77 0.365535945 0.691822652 
28 0.799103113 0.432074287  78 0.13984392 0.601592939 
29 0.202996158 0.612900643  79 0.618469837 0.455577213 
30 0.836595514 0.508538558  80 0.203597813 0.435135888 
31 0.415871906 0.568507938  81 0.745445192 0.680887682 
32 0.48931535 0.527788795  82 0.228557863 0.209255101 
33 0.777378849 0.625081627  83 0.878099092 0.305676716 
34 0.848999086 0.137990519  84 0.022508035 0.262350081 
35 0.231353816 0.416213454  85 0.262733829 0.751476624 
36 0.337151451 0.843661416  86 0.520259 0.463249447 
37 0.375724187 0.810093271  87 0.674965013 0.784149458 
38 0.198571633 0.137345423  88 0.042721452 0.343153696 
39 0.383331991 0.080726606  89 0.778707712 0.323776414 
40 0.914814546 0.027321941  90 0.899764948 0.019489158 
41 0.604987791 0.540104749  91 0.802880389 0.614349849 
42 0.796419794 0.580064143  92 0.299628367 0.741196774 
43 0.850124341 0.021273596  93 0.861517464 0.504841037 
44 0.282483332 0.139310251  94 0.174336644 0.255147571 
45 0.480130608 0.377300004  95 0.371507941 0.015617171 
46 0.574024729 0.674663997  96 0.790817614 0.587568157 
47 0.708192047 0.086445481  97 0.831112809 0.718197646 
48 0.365422299 0.19239134  98 0.570222766 0.630412933 
49 0.023728097 0.686680671  99 0.369114938 0.496737817 
50 0.244962971 0.102200394  100 0.289137679 0.673427969 
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Placements 
 

Class 1  Class 2  Class 2 
Alt ID Crit1 Crit2  Alt ID Crit1 Crit2  Alt ID Crit1 Crit2 

1 0.8325 0.956  4 0.6142 0.3131  5 0.3424 0.5017 
2 0.9474 0.8951  9 0.5376 0.1353  6 0.0867 0.271 
3 0.753 0.4982  10 0.241 0.7908  8 0.2602 0.3713 
7 0.8536 0.1131  18 0.736 0.1663  11 0.0738 0.0106 

12 0.5132 0.9326  19 0.4644 0.3459  14 0.1899 0.0417 
13 0.7951 0.8215  23 0.3105 0.6726  16 0.0596 0.4323 
15 0.8392 0.1441  26 0.7222 0.2626  17 0.4869 0.1607 
25 0.6219 0.6536  31 0.4159 0.5685  20 0.1435 0.9567 
27 0.7788 0.3405  32 0.4893 0.5278  21 0.1928 0.0368 
28 0.7991 0.4321  36 0.3372 0.8437  22 0.0605 0.6039 
30 0.8366 0.5085  37 0.3757 0.8101  24 0.2855 0.2474 
33 0.7774 0.6251  41 0.605 0.5401  29 0.203 0.6129 
34 0.849 0.138  45 0.4801 0.3773  35 0.2314 0.4162 
40 0.9148 0.0273  47 0.7082 0.0864  38 0.1986 0.1373 
42 0.7964 0.5801  53 0.4415 0.3595  39 0.3833 0.0807 
43 0.8501 0.0213  58 0.5344 0.1218  44 0.2825 0.1393 
46 0.574 0.6747  59 0.1765 0.9923  48 0.3654 0.1924 
51 0.9927 0.9214  60 0.4532 0.5412  49 0.0237 0.6867 
57 0.8645 0.4574  61 0.3907 0.9459  50 0.245 0.1022 
62 0.8615 0.1278  63 0.423 0.9299  52 0.1581 0.2246 
65 0.9692 0.766  64 0.3043 0.9464  54 0.1455 0.8712 
66 0.9276 0.63  70 0.3387 0.6761  55 0.3815 0.1842 
69 0.7321 0.3907  71 0.5445 0.5294  56 0.0321 0.6415 
73 0.7761 0.4964  72 0.236 0.8733  67 0.4023 0.2715 
81 0.7454 0.6809  76 0.7725 0.1498  68 0.1162 0.2183 
83 0.8781 0.3057  77 0.3655 0.6918  74 0.1375 0.5888 
87 0.675 0.7841  79 0.6185 0.4556  75 0.0761 0.5727 
89 0.7787 0.3238  85 0.2627 0.7515  78 0.1398 0.6016 
90 0.8998 0.0195  86 0.5203 0.4632  80 0.2036 0.4351 
91 0.8029 0.6143  92 0.2996 0.7412  82 0.2286 0.2093 
93 0.8615 0.5048  98 0.5702 0.6304  84 0.0225 0.2624 
96 0.7908 0.5876  99 0.3691 0.4967  88 0.0427 0.3432 
97 0.8311 0.7182  100 0.2891 0.6734  94 0.1743 0.2551 

        95 0.3715 0.0156 
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RUN 13: 

Run Parameters 
# of Alternatives 100 
Consistency Index 0.05 
Underlying Utility Function (weight 1 / 
weight 2) 

0.7 / 0.3 

# of Classes 3 
Convex 

Combination 
WSR Even 

Swaps 
DM Placement Dominance 

3 9 5 10 1 
4 12 20 17 2 
7 18 26 46 6 
15 19 43 76 8 
23 40 58  11 
25 45 98  13 
27 47 99  14 
28 57 100  16 
29 59   21 
30 61   22 
31 62   24 
32 63   35 
33 64   36 
34 66   37 
41 72   38 
42 83   39 
53 90   44 
54 93   48 
60    49 
67    50 
69    51 
70    52 
71    55 
73    56 
77    65 
79    68 
85    74 
86    75 
89    78 
91    80 



 

 

 

B-14 

 

92    81 
96    82 
    84 
    87 
    88 
    94 
    95 
    97 
     

32 18 8 4 38 
* 291 LPs Executed 
 
RUN 14: 
 

Run Parameters 
# of Alternatives 100 
Consistency Index 0.15 
Underlying Utility Function (weight 1 / 
weight 2) 

0.7 / 0.3 

# of Classes 3 
Convex 

Combination 
WSR Even Swaps DM Placement Dominance 

3 1 17 5 2 
4 9 20 10 6 
8 12 46 43 7 
15 13  67 11 
23 18  76 14 
26 19  100 16 
27 25   21 
28 33   22 
29 42   24 
30 47   31 
34 58   32 
35 59   36 
41 61   37 
45 63   38 
53 64   39 
54 69   40 
73 72   44 
79 81   48 
80 87   49 
85 89   50 
86 90   51 
96 91   52 
97    55 
99    56 
    57 
    60 
    62 
    65 
    66 
    68 
    70 
    71 



 

 

 

B-15 

 

    74 
    75 
    77 
    78 
    82 
    83 
    84 
    88 
    92 
    93 
    94 
    95 
    98 
     

24 22 3 6 45 
* 261 LPs Executed 
 
RUN 15 
 

Run Parameters 
# of Alternatives 100 
Consistency Index 0.30 
Underlying Utility Function (weight 1 / weight 
2) 

0.7 / 0.3 

# of Classes 3 
Convex 

Combination 
WSR Even Swaps DM Placement Dominance 

3 2 7 5 1 
4 18 9 10 6 
8 47 15 12 11 
13 51 17 26 14 
19 57 20 59 16 
23 61 28 67 21 
25 65 34  22 
27 66 40  24 
29 93 43  31 
30  46  32 
33  58  36 
35  63  37 
41  69  38 
42  76  39 
45  83  44 
53  90  48 
54    49 
62    50 
64    52 
70    55 
72    56 
73    60 
79    68 
80    71 



 

 

 

B-16 

 

81    74 
85    75 
86    77 
87    78 
89    82 
91    84 
92    88 
96    94 
97    95 
99    98 

100     
     

35 9 16 6 34 
* 348 LPs Executed 
 
RUN 16: 
 

Run Parameters 
# of Alternatives 100 
Consistency Index 0.05 
Underlying Utility Function (weight 1 / weight 
2) 

0.1/ 0.9 

# of Classes 3 
Convex 

Combination 
WSR Even Swaps DM Placement Dominance 

5 8  4 1 
12 10  19 2 
25 15  42 3 
33 16  56 6 
36 18  88 7 
37 20  96 9 
46 22   11 
53 23   13 
60 26   14 
61 29   17 
63 30   21 
64 31   24 
67 34   27 
74 35   28 
76 40   32 
78 41   38 
81 49   39 
87 54   43 
92 57   44 
98 59   45 
99 62   47 
 70   48 
 72   50 
 75   51 
 77   52 



 

 

 

B-17 

 

 80   55 
 83   58 
 85   65 
 93   66 
 100   68 
    69 
    71 
    73 
    79 
    82 
    84 
    86 
    89 
    90 
    91 
    94 
    95 
    97 
     

21 30 0 6 43 
* 250 LPs Executed 
 
RUN 17: 
 

Run Parameters 
# of Alternatives 100 
Consistency Index 0.15 
Underlying Utility Function (weight 1 / weight 
2) 

0.1/ 0.9 

# of Classes 3 
Convex 

Combination 
WSR Even Swaps DM Placement Dominance 

5 8 26 4 1 
12 10  19 2 
25 15  42 3 
33 16  56 6 
36 18  88 7 
37 20  96 9 
46 22   11 
53 23   13 
60 29   14 
61 30   17 
63 31   21 
64 34   24 
67 35   27 
74 40   28 
76 41   32 
78 49   38 
81 54   39 
87 57   43 



 

 

 

B-18 

 

92 59   44 
98 62   45 
99 70   47 
 72   48 
 75   50 
 77   51 
 80   52 
 83   55 
 85   58 
 93   65 
 100   66 
    68 
    69 
    71 
    73 
    79 
    82 
    84 
    86 
    89 
    90 
    91 
    94 
    95 
    97 
     

21 29 1 6 43 
* 255 LPs Executed 
 
RUN 18: 
 

Run Parameters 
# of Alternatives 100 
Consistency Index 0.30 
Underlying Utility Function (weight 1 / weight 
2) 

0.1/ 0.9 

# of Classes 3 
Convex 

Combination 
WSR Even Swaps DM Placement Dominance 

5 8 26 4 1 
12 10 49 42 2 
19 15  56 3 
25 16  83 6 
32 18  88 7 
33 20  96 9 
35 22   11 
36 23   13 
37 29   14 
45 30   17 
46 31   21 



 

 

 

B-19 

 

53 34   24 
57 40   27 
60 41   28 
61 54   38 
63 59   39 
64 62   43 
67 70   44 
71 72   47 
74 75   48 
76 77   50 
78 80   51 
81 85   52 
86 93   55 
87 100   58 
92    65 
98    66 
99    68 
    69 
    73 
    79 
    82 
    84 
    89 
    90 
    91 
    94 
    95 
    97 
     

28 25 2 6 39 
* 257 LPs Executed 
 


