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ABSTRACT

THE MODULI OF SURFACES ADMITTING GENUS TWO FIBRATIONS

OVER ELLIPTIC CURVES

Karadoğan, Gülay

Ph. D., Department of Mathematics

Supervisor: Prof. Dr. Hurşit Önsiper

May 2005, 30 pages

In this thesis, we study the structure, deformations and the moduli spaces of

complex projective surfaces admitting genus two fibrations over elliptic curves.

We observe that, a surface admitting a smooth fibration as above is elliptic

and we employ results on the moduli of polarized elliptic surfaces, to construct

moduli spaces of these smooth fibrations. In the case of nonsmooth fibrations,

we relate the moduli spaces to the Hurwitz schemesH(1, X(d), n) of morphisms

of degree n from elliptic curves to the modular curve X(d), d ≥ 3. Ultimately,

we show that the moduli spaces, considered, are fiber spaces over the affine

line A1 with fibers determined by the components of H(1, X(d), n).

Keywords: Moduli spaces, fibrations, Hurwitz schemes
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ÖZ

ELİPTİK EĞRİLER ÜSTÜNDE CİNS İKİ EĞRİLERLE LİFLENEN

YÜZEYLERİN MODÜL UZAYLARI

Karadoğan, Gülay

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hurşit Önsiper

Mayıs 2005, 30 sayfa

Bu tezde eliptik eğriler üstünde cins iki eğrilerle liflenen karmaşık projek-

tif yüzeylerin yapısını, deformasyonlarını ve modül uzaylarını inceledik. Bu

şekilde düzgün liflenme kabul eden yüzeylerin eliptik olduklarını gözlemledik

ve bu düzgün liflenmelerin modül uzaylarını kurmak için kutuplaşmış eliptik

yüzeylerin modül uzayları hakkındaki sonuçları kullandık. Düzgün olmayan

liflenmelerin modül uzaylarını ise eliptik eğrilerden modüler eğri X(d)’ye olan

n dereceli morfizmaların Hurwitz şemaları, H(1, X(d), n), ile ilişkilendirdik.

Sonuç olarak, incelediğimiz modül uzaylarının afin doğru A1 üstünde, lifleri

H(1, X(d), n)’nin bileşenleri ile belirlenmiş olan lif uzayları olduklarını gösterdik.

Anahtar Kelimeler: Modül uzayları, liflenmeler, Hurwitz şemaları
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CHAPTER 1

INTRODUCTION

The aim of this thesis is to work out the structure, deformations and the

moduli spaces of complex projective surfaces admitting genus two fibrations

over elliptic curves.

In the literature, the cases of albanese fibrations with fiber genus two over

arbitrary base curves and nonalbanese fibrations over curves of genus g ≥ 2

have been studied extensively ([14], [15] for the former type and [9], [8], [10]

for the latter). We aim at complementing these results by examining the case

of fibrations with irregularity q(S) = 2 over elliptic curves. These fibrations

are of nonalbanese type and have Kodaira dimension κ(S) = 1 (respectively

2) in case the given fibration is smooth (respectively non-smooth). Thus as a

by product of our results on the corresponding moduli spaces we will observe

the well-known contrast between the behavior of elliptic surfaces and that of

surfaces of general type; to construct moduli spaces for elliptic surfaces, one has

to impose a choice of polarization on the surfaces. This leads to, as expected,

a weaker result on the moduli problem.

We work over the complex numbers C and use the following standard no-
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tation:

S is a smooth projective surface.

c1(S), c2(S) denote the first and the second chern classes of S, respectively.

κ(S), q(S) are the Kodaira dimension and the irregularity of S, respec-

tively.

K(S), χ(S) are the canonical class and the holomorphic Euler character-

istic of S.

For fixed K2 and χ, M(g,K2, χ) is the moduli space of surfaces of general

type admitting genus two fibration with irregularity q = g + 1 and slope λ

which satisfies the slope formula K2 = λχ + (8− λ)(g − 1).

In the first section of the thesis we study the structure of the surfaces under

consideration and we obtain the following results:

Lemma 1.1. Let π : S → C be a smooth genus two fibration. Then π is

isotrivial, say with monodromy group G and fiber F . Moreover, we have

(i) If q(S) = g(C) + 2, then S → C is trivial.

(ii) If q(S) ≤ g(C) + 1, then S admits a second fibration ϕ : S → F/G.

(iii) If q(S) = g(C) + 1, then E ′′ = F/G is an elliptic curve and ϕ is smooth

with fiber C ′ except for two double fibers of the form 2.C. Here C ′ is the

Galois étale cover of C with group G.

Corollary 1.2. Let π : S → E be a smooth genus two fibration over an elliptic

curve E with q(S) = 2. Then S admits an elliptic fibration with two double

fibers of the form 2.E. All other fibers are smooth and are isomorphic to E ′

2



(the double cover of E corresponding to the monodromy representation arising

from π).

Lemma 1.3. Let S → T be a deformation of S. Then there exists an elliptic

curve E ′′ → T and two sections s1, s2 : T → E ′′ such that S → T factors

through E ′′. Furthermore, S → E ′′ is smooth outside s1(T ) ∪ s2(T ) and for

each t ∈ T the restriction of S → E ′′ induces an elliptic fibration St → E ′′t with

precisely two double fibers (over s1(t), s2(t)).

We have the following converse of Lemma 1.1, which will be crucial in

relating the moduli spaces of our surfaces to the moduli of elliptic surfaces.

Lemma 1.4. An elliptic surface with exactly two double fibers admits a smooth

genus two fibration.

As for the nonsmooth fibrations π : S → E with q(S) = 2, we first recall

the following fundamental result which is a special case of ([16], Théorème

3.10, p.44)

Theorem 1.5. Let E be an elliptic curve, d an integer ≥ 3. There exists a

genus two fibration of type (E, d)

Φ : S(E, d) → X(d)

on the modular curve X(d) which is universal in the following sense: any genus

two fibration π : S → C with slope λ = 7− 6

d
and with E as the fixed part of the

Jacobian fibration corresponding to π (i.e., π is of type (E, d)) is the minimal

desingularization of the pullback f ∗(S(E, d)) via a surjective holomorphic map

X(d).
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Remark: Given f : C → X(d), the surface f ∗(S(E, d)) has singularities only

if f ramifies over some points in the singular locus of Φ : S(E, d) → X(d). A

singular fiber of Φ is either an elliptic curve with a single node or two smooth

elliptic curves intersecting transversally at a single point ([16], Lemme 3.11,

Théorème 3.16). Hence singularities of f ∗(S(E, d)) are all type Ak for some k

depending on the singular point.

We prove

Lemma 1.6. For a fibration π : S → C over a curve C of genus ≥ 1 arising

from a map f : C → X(d) of degree n we have c2(S) > 0 and K2 = c1
2(S) > 0.

In particular, since S is minimal, it is a surface of general type.

Lemma 1.7. S with such a fibration over an elliptic curve exists if and only

if K2 and χ have the following values:

λ K2 χ

5 5n n

11/2 11n 2n

29/5 29n 5n

6 36n 6n

where n ≥ 2 in the first three rows and n ≥ 1 in the last row.

Corollary 1.8. (i) The fibration on S is unique up to isomorphism of fibered

surfaces.

(ii) Let S → T be a family of surfaces admitting genus two fibrations with λ

as above, over elliptic curves. For t ∈ T , let ft be the map onto X(d)
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inducing the fibration on St. If T is connected, then deg(ft) is constant.

With these results on the structure and deformations of the surfaces con-

sidered available, in Chapter 2 we proceed with the construction of the moduli

spaces.

a) The smooth case:

We use the results of Seiler ([12], [13]) on the moduli of elliptic surfaces.

We first observe that the type ([13], Definition, p.210) of our surfaces is given

by τ = (1, 0; 2, 2, 2; 2, 1). Then we consider the moduli problem for surfaces S

of type τ as given. We obtain

Proposition 1.9. The corresponding functor is coarsely represented by an

irreducible scheme M of dimension 3.

To get a more natural description of this functor we observe the following.

Roughly, forgetting τ , the moduli of the surfaces we consider is closely related

to the moduli of isogenies of degree two of elliptic curves (the base curves)

and the moduli of smooth genus two curves C admitting an elliptic subcover

C → E of degree two. The functor corresponding to the first moduli is coarsely

represented by affine modular curve Y0(2). The functor corresponding to the

latter one is an open subscheme H of A2,1(X(2)×X(2))/SL2(Z) ([4], p.210).

Proposition 1.10. There exists a natural surjective morphism φ : M→H.

b) The non-smooth case:

We see that a surface S admitting a fibration of type (E ′, d) induced by a

map f : C → X(d) can be deformed in two ways; we can deform E ′ to other
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elliptic curves and we can deform the map f . Therefore, in describing the

moduli spaces of surfaces under consideration, we need to clarify the relation

of these moduli spaces to the Hurwitz spaces H(g, X(d), n) of morphisms of

degree n from curves of genus g to the modular curve X(d).

We fix an elliptic curve E ′ and we consider the morphism

ΨE′ : H(g,X(d), n) →M(g, K2, χ)

which corresponds to the morphism of functors mapping f ∈ H(g, X(d), n)(T ) to

the family over T , obtained from f ∗(S(E ′, d)) by simultaneous desingulariza-

tion.

Even though our main interest is in fibrations over elliptic curves, since we

will adopt the methods used in [9], we will quote the essential part of [9] which

will not be published. As a by product, we will obtain the following algebraic

version of the main result in [10] describing the structure of the moduli spaces

of surfaces fibered over curves of genus g ≥ 2. We note that the result for base

curves of genus g ≥ 2 is stronger than the result in the case of g = 1. This is

due to the fact that we can not prove Lemma 2.9 in full strength when g = 1.

Theorem 1.11. Let K2, χ and g ≥ 2 be given and let H(g, X(d), n) be the

Hurwitz scheme of morphisms of degree n from curves of genus g onto X(d).

Then we have morphisms Φ : M(g,K2, χ) → A1 and ΨE′ : H(g, X(d), n) →

M(g, K2, χ) for any elliptic curve E ′ such that

(i) ΨE′ establishes a one-to-one correspondence between the components Hi

of H(g, X(d), n) and the components Mi of M(g,K2, χ),
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(ii) Φ : Mi → A1 is a fibration with ΨE′(Hi) as the fiber over [E ′] ∈ A1.

Applying the same methods we obtain the following weaker result:

Theorem 1.12. Let Mi be a connected component of M(1, K2, χ). Then we

have a morphism Φ : Mi → A1 (given on closed points by [X] → [E] if X is

of type (E, d)) such that the fiber over [E] ∈ A1 is a disjoint union

⊔
j

ΨE(H(1, X(d), n)j).

In the appendix we discuss some questions which arise naturally in the

context of the problems studied in this thesis. These are related to

(i) moduli problem for genus two fibrations over P1,

(ii) the moduli spaces in the d = 2 case of nonsmooth genus two fibrations

and

(iii) the compactification of the moduli spaces via “minimal” degenerations

of the surfaces studied.
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CHAPTER 2

STRUCTURE OF GENUS TWO FIBRATIONS

Let π : S → C be a connected genus two fibration on a projective minimal

smooth surface over a smooth curve C. It is well-known that g(C) ≤ q(S) ≤

g(C) + 2. For reasons explained in the introduction we will consider the fol-

lowing cases: C is an elliptic curve and q(S) = 3 or 2, i.e., the given fibration

is of nonalbanese type.

First we discuss the case of smooth fibrations. Occasionally we will include

proofs of some basic results which are well-known and hold true for base curves

of arbitrary genus. In the special case of smooth nontrivial fibrations over

elliptic curves, we will see that such surfaces admit elliptic fibrations and this

observation will play a crucial role in the discussion of the moduli of these

surfaces.

Lemma 2.1. Let π : S → C be a smooth genus two fibration over a curve C

of arbitrary genus. Then we have:

(i) If q(S) = g(C) + 2, then S → C is trivial.

(ii) If q(S) ≤ g(C) + 1, then S admits a second fibration ϕ : S → F/G.
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(iii) If q(S) = g(C) + 1, then E ′′ = F/G is an elliptic curve and ϕ is smooth

with fiber C ′ except for two double fibers of the form 2.C. Here, C ′ is the

Galois étale cover of C with group G.

Proof. (i) Since M2, the moduli space of genus two curves, is affine the mod-

ulus map C → M2 induced by π is constant. Hence π is an analytic fiber

bundle say with fiber F . As Aut(F ) is a finite group, this fiber bundle corre-

sponds to a (monodromy) representation ρ : π1(C) → Aut(F ) and we obtain

a normal unramified cover C ′ → C with covering group G = Im(ρ) from the

exact sequence

0 → Kernel(ρ) → π1(C) → Im(ρ) → 0.

Clearly the smooth fibration S ′ = S ×C C ′ → C ′ has trivial monodromy and

therefore is trivial. To prove the statement we show that G is trivial. For this

we calculate q(S) using the Galois cover C ′ × F = S ′ → S ∼= S ′/G to get

q(S) = dimH0(S, Ω)

= dimH0(C ′ × F, Ω)G

= dim(H0(C ′, Ω)G ⊕H0(F, Ω)G)

= dim(H0(C, Ω)⊕H0(F/G, Ω)

= g(C) + g(F/G).

Therefore, if q(S) = g(C) + 2 , then g(F/G) = 2 and we obtain F/G ∼= F

(using Riemann-Hurwitz formula), i.e., G is trivial.

(ii) If q(S) ≤ g(C) + 1, then by the calculation in (i), we see that G is not
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trivial. Therefore, the trivial fibration C ′ × F → F induces a second fibration

S ∼= (C ′ × F )/G → F/G.

(iii) If q(S) = g(C) + 1, then by the calculation in (ii), F/G is an elliptic

curve, say E ′′. Then G ⊂ Aut(F ) is cyclic of order two ([16], Proposition 2.12,

p.30) and F → E ′′ ramifies precisely over two points p1, p2 ∈ E ′′ (by Riemann-

Hurwitz formula). Hence the composite map C ′ × F → F → E ′′ induces a

natural fibration S → E ′′ with generic fiber C ′ and with two double fibers of

the form 2.(C ′/G) = 2.C over p1, p2. This proves (iii).

As an immediate result of Lemma 2.1(iii) we have

Corollary 2.2. Let π : S → E be a smooth genus two fibration over an elliptic

curve E with q(S) = 2. Then S admits an elliptic fibration with two double

fibers of the form 2.E. All other fibers are smooth and are isomorphic to E ′

(the double cover of E corresponding to the monodromy representation arising

from π).

Remarks:

1) Lemma 2.1(i) says that S ′ = C ′ × F is a Galois cover of S. Then S is

algebraic, since S ′ is algebraic.

2) Since P1 has no nontrivial étale covers, Lemma 2.1(i) shows that over P1

all smooth genus two fibrations are trivial.

3) Lemma 2.1(i) is known to be valid more generally, for smooth fibrations

with hyperelliptic fibers.

4) Lemma 2.1(ii) is a special case of a more general statement: If π : S → C is

10



a fibration with fiber of genus g ≥ 2 and if q(S) = g(C) + g, then π is trivial.

5) Lemma 2.1(iii) can also be generalized; see ([2], E.8.6, p.151).

Now we consider the case of smooth fibrations S → E over elliptic curves

with q(S) = 2. By Lemma 2.1(iii), we know that S admits an elliptic fibration

S → E ′′ with two double fibers of the form 2.E and smooth fibers all isomor-

phic to E ′ which is the double cover of E corresponding to the monodromy

representation. In particular, we see that κ(S) = 1 ([1], Proposition 12.5(iii),

p.215).

Lemma 2.3. Let ψ : S → T be a deformation of S. Then there exists an

elliptic curve E ′′ → T and two sections s1, s2 : T → E ′′ such that S → T

factors through E ′′. Furthermore, S → E ′′ is smooth outside s1(T )∪ s2(T ) and

for each t ∈ T the restriction of S → E ′′ induces an elliptic fibration St → E ′′t

with precisely two double fibers (over s1(t), s2(t)).

Proof. By standard results in deformation theory, we know that for all t ∈ T ,

St is a minimal surface and κ(St) = 1. Furthermore, each St admits an elliptic

fibration exactly of the same type as S ([6], Proposition 7.1, p.111) and it

follows from ([6], Proposition 7.11(iii), p.128) that there exists an elliptic curve

E ′′ → T through which S → T factors. Since each surface St is an “elliptic

surface of general type” in the terminology of [3] (i.e., P (n) ≥ 2 for some n),

Proposition 10 in [3] applies to prove the existence of two sections s1, s2 : T →

E ′′ ([13], Lemma 1.9) with the properties stated in the Lemma.

11



Remarks:

1) The existence of E ′′ over T can be proved simply by observing that the fi-

brations in the family S are induced from m-th canonical map for m sufficiently

large ([13], p.194). More precisely, we take P(ψ∗ω⊗m
S/T ) over T and the morphism

S → P(ψ∗ω⊗m
S/T ) induced by the homomorphism ψ∗(ψ∗ω⊗m

S/T ) → ω⊗m
S/T → 0. E ′′

is the image of this m-th canonical map.

2) Lemma 2.3 indicates a relation between the moduli of smooth genus two

fibrations over elliptic curves with irregularity q = 2 and the moduli of elliptic

surfaces. In order to apply the results on the latter ([12], [13]), we need the

following observation:

Lemma 2.4. An elliptic surface with exactly two double fibers admits a smooth

genus two fibration.

Proof. If π : S → E ′′ is an elliptic fibration over an elliptic curve E ′′ with two

double fibers over p1, p2 ∈ E ′′. The j-invariant of the fiber is bounded and

therefore constant. Indeed, jS : E ′′−{p1, p2} → C is defined by jS(t) = j(E ′)

for all t ∈ E ′′−{p1, p2}, where E ′ is the general fiber of π. Let πJ : B = J(S) →

E ′′ be the Jacobian fibration and B′ = E ′ × E ′′ → E ′′ be the trivial elliptic

fibration. Both, B and B′, are elliptic fibrations with sections. Since the

associated j-invariants of them are equal and constant, we can find isomorphic

compatible lifts ρ and ρ′ defined by B and B′, respectively ([6], p.41). Hence

the Jacobian surface J(S) of S is trivial, being isomorphic to B′ = E ′ × E ′′

([6], Theorem 3.14(ii), p.45). Moreover, R1π∗OS
∼= R1(πJ)∗OJ(S) is trivial and
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so L = (R1π∗OS)∨ is trivial. Therefore, χ(OS) = degL = 0 ([6], Proposition

3.18, p.48), pg(S) = g(E ′′) = 1 ([6], Proposition 3.22(i), p.49) and so q(S) =

1 + pg(S) − χ(OS) = 2. Then π : S → E ′′ is of nonalbanese type and by

the universal property of albanese varieties there is a morphism Alb(S) → E ′′.

Hence Alb(S) is a reducible abelian variety and by the complete reducibility

property of abelian varieties ([7], Theorem 1, p.173) it has a projection to an

elliptic curve E, π1 : Alb(S) → E, which restricts to a nonconstant morphism

from E ′. The pullback S ×E E ′ ∼= F × E ′ where F is the general fiber of

π′ = π1 ◦α : S → E and α : S → Alb(S) is the albanese map ([2], E.8.6, p151).

g(F ) = 2 since F is a double cover of E ′′, ramified at two points.

Remark: Combining the results in Corollary 2.2, Lemma 2.3 and Lemma

2.4, we see that a surface S admitting a smooth genus two fibration deforms

only to surfaces of the same type.

Next, we consider the case of nonsmooth fibrations. Let π : S → C be

a nonsmooth genus two fibration with q(S) = g(C) + 1. Then there is a

unique rational number λ = λ(π), which is called the slope of π, such that

K2 = λχ+(8−λ)(g(C)− 1), and one has 2 ≤ λ ≤ 7 for nontrivial nonsmooth

fibrations ([16], p.22). Let F be a fiber of π and J(F ) its Jacobian. We have

an injection tF : F → J(F ) that is uniquely determined up to translation and

a projection pF : J(F ) → E onto the fixed part of the connected fibers. There

is a morphism τF = pF ◦ tF : F → E ([16], p.34). Let d be the degree of τF .

Then d is called the degree associated to π and π : S → C is said to be of type

13



(E, d). In particular, we have λ = 7 − 6

d
([16], Corollaire 2, p.50). Since we

will consider only semistable fibrations, we have d ≥ 3 ([16], Corollaire, p.47).

As an immediate result of ([16], Théorème 3.10, p.44) we have

Theorem 2.5. Let E be an elliptic curve, d an integer ≥ 3. There exists a

genus two fibration of type (E, d)

Φ : S(E, d) → X(d)

over the modular curve X(d) which is universal in the following sense: any

genus two fibration π : S → C with slope λ = 7 − 6

d
and with E as the fixed

part of the Jacobian fibration corresponding to π (i.e., π is of type (E, d))

is the minimal desingularization of the pullback f ∗(S(E, d)) via a surjective

holomorphic map f : C → X(d).

Remarks:

1) Since g(X(d)) ≥ 3 for d ≥ 7, it follows that fibrations over elliptic curves

have d ∈ {3, 4, 5, 6}. We recall that X(d) ∼= P1 for d = 3, 4, 5 and X(6) is the

elliptic curve with j(X(6)) = 0.

2) There exists a genus two fibration of type (E, d) with base C if and only if

one has a surjective morphism C → X(d) ([16], Corollaire, p.46).

Given f : C → X(d), the surface f ∗(S(E, d)) has singularities only if f

ramifies over some points in the singular locus of Φ : S(E, d) → X(d). A

singular fiber of Φ is either an elliptic curve with a single node or two smooth

elliptic curves intersecting transversally at a single point ([16], Lemme 3.11,
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Théorème 3.16). Hence singularities of f ∗(S(E, d)) are all type Ak for some k

depending on the singular point.

As a consequence of this observation we see that we can apply simultaneous

desingularization to a family of surfaces obtained via a family of surjective

morphisms onto X(d).

Lemma 2.6. For a fibration π : S → C over a curve C of genus ≥ 1 arising

from a map f : C → X(d) of degree n we have c2(S) > 0 and K2 = c1
2(S) > 0.

In particular, since S is minimal, it is a surface of general type.

Proof. Let φ : S(E ′, d) → X(d) be the corresponding fibration. Then c2(S) =

−ndeg(R1φ∗OS(E′,d)) > 0. Using the relations c2
1(S) = λχ(S)+(8−λ)(g(C)−1)

and 12χ(S) = c2
1(S) + c2(S), we have c2

1(S) > 0.

Lemma 2.7. Let Si → Ci, i = 1, 2 be two fibrations of the same type (E, d),

corresponding to morphisms fi : Ci → X(d). Then

(i) Si have the same invariants K2, χ if and only if deg(f1) = deg(f2),

(ii) S1 and S2 are isomorphic as surfaces if and only if C1 = C2 and there

exist automorphisms α ∈ Aut(C1), β ∈ Aut(X(d)) such that f1 ◦ α =

β ◦ f2.

Proof. (i) This is Lemma 1 in [10].

(ii) That C1 = C2 follows from the uniqueness of such a fibration on a given

surface ([10], Lemma 2(i)). Then the rest of the statement is a consequence of

the minimality of the surfaces S1 and S2, since the given condition is necessary

and sufficient for the surfaces f ∗i (S(E, d)) to be birationally equivalent.
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Lemma 2.8. S with such a fibration over an elliptic curve exists if and only

if K2 and χ have the following values:

λ K2 χ

5 5n n

11/2 11n 2n

29/5 29n 5n

6 36n 6n

where n ≥ 2 in the first three rows and n ≥ 1 in the last row.

Proof. For n ≥ 2 and for any elliptic curve E we have morphisms E → P1 of

degree n and for any such a map, using the formulae in the proof of Lemma 2.6

and observing that −deg(R1φ∗OS(E′,d)) = 7, 13, 31 for d = 3, 4, 5, respectively,

([16], p.52), we find the values of K2 and χ given in the first three rows of the

table.

Since X(6) is an elliptic curve, by the same computation, this time using

the existence of isogenies of any order and the fact that−deg(R1φ∗OS(E′,6)) = 6

we obtain the last row.

We will need the following Lemma ([10], Lemma 2).

Lemma 2.9. Let ψ : S → T be a deformation over a connected base, of a

surface S admitting a genus 2 fibration with slope λ over a curve C of genus

g ≥ 2. Then

(i) each fiber St of ψ admits such a fibration St → Ct which is unique,

(ii) the slope λ is constant on T ,
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(iii) the degree of the map Ct → X(d) inducing the fiber space St → Ct is

constant.

In case of elliptic base curves (ii) and (iii) of Lemma 2.9 remain unchanged

when we consider a family S → T of surfaces having a fibration of the given

form. Moreover, the fibration over any such curve is also unique. However, we

do not know if (i) holds, too.
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CHAPTER 3

MODULI PROBLEM OF GENUS TWO FIBRATIONS

In Chapter 2, we have seen that if a surface S admits a smooth genus two

fibration then it is algebraic and it deforms only to algebraic surfaces of the

same type. In the study of the corresponding moduli space, we will use a

natural polarization on these surfaces and apply the consequences of Seiler’s

work ([12], [13]).

Let π : S → E be a smooth genus two fibration with fiber F and π′ : S →

E ′′ be the corresponding elliptic fibration with two double fibers. In fact, these

double fibers are sections of π, say s1, s2. Consider the divisor s1(E) + F on

S. We have

(s1(E) + F )2 = 2s1(E).F = 2 > 0

and for any irreducible curve C in S

(s1(E) + F ).C = s1(E).C + F.C > 0.

Hence s1(E) + F is an ample divisor on S, by Nakai’s ampleness criterion, so

is the corresponding line bundle. Let η be the numerical equivalence class of

the line bundle corresponding to this ample divisor in Num(S) (the group of
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numerical equivalence classes of line bundles on S). Then

d := η2 = (s1(E) + F )2 = 2

and

e := η.f = (s1(E) + F ).E ′ = F.E ′ = 1

where f is the class of the general fiber E ′ of π1. Hence our surfaces are of

type τ = (1, 0; 2, 2, 2; 2, 1) according to the generalized definition of polarized

elliptic surfaces given in ([13], p.210). Moreover, any surface of type τ is one

of our surfaces. Then we consider the moduli problem for surfaces of type τ

as given. We consider the functor Gτ : Sch → Sets defined by Gτ (T ) = set of

all isomorphism classes of families of polarized elliptic surfaces of type τ over

T . We have

Proposition 3.1. Gτ is coarsely represented by an irreducible scheme M of

dimension 3.

Proof. Existence of M follows from ([13], Theorem 2.15, p.211). The proof of

this theorem shows that there is a finite map M→ Y ′′, where Y ′′ is an open

subscheme of Y ′ = E1,0 ×A1 M1,2. Here E1,0 denotes the moduli scheme for

Weierstrass surfaces with base genus g = 1 and χ = 0 which exists by [12], and

M1,2 is the moduli scheme for elliptic curves with two distinguished points. E1,0

splits into a disjoint union of irreducible subschemes En
1,0 for n = 1, 2, 3, 4, 6

([12], p.182) where each En
1,0 represents the subfunctor corresponding to Weier-

strass surfaces for which the order of the module L = (R1p∗O)∨ is n. Let S be

an elliptic surface of type τ . Since all fibers of the elliptic fibration on S are
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irreducible, the Weierstrass fibration associated to S is the Jacobian fibration

of S ([13], p.191). In the proof of Lemma 2.4, we have seen that the Jacobian

of such a surface is a trivial product of two elliptic curves. So the relevant

part of E1,0 is E1
1,0 which corresponds to trivial L. Hence Y ′′ is an open sub-

scheme of E1
1,0 ×A1 M1,2. By ([12], Lemma 10, p.182) E1

1,0
∼= A2. Therefore

dim(M) = dim(E1
1,0 ×A1 M1,2) = 3.

In the preceding chapter we have observed that the moduli of the surfaces

we consider is closely related to the moduli of isogenies of degree two of elliptic

curves (the base curves) and the moduli of smooth genus two curves C admit-

ting an elliptic subcover C → E of degree two. The functor Y0 corresponding

to the first moduli is coarsely represented by affine modular curve Y0(2). As for

the latter, we have the affine surface A2,1 = (X(2)×X(2))/SL2(Z) ([4], p.210)

which coarsely represents the functor associated to the triplets {(A, Θ, E)}

where A is an abelian surface, Θ is a principal polarization, E is an elliptic

subgroup of A and deg(Θ|E) = 2. Let C be a curve of genus two with Jacobian

JC and canonical polarization Θ. Then there is a bijective correspondence be-

tween the set of isomorphism classes of (minimal) elliptic subcovers f : C → E

of degree deg(f) = 2 and the set of elliptic subgroups E ≤ JC of JC of degree

degΘ(E) = 2 ([4], Theorem 1.9, p.202). Therefore, the functor M′
2 of iso-

morphism classes of pairs (C, E) of (relative) smooth curves of genus two and

elliptic subcovers (C → E) of degree two is coarsely represented by the open

subscheme H = Φ−1(t(M2)) of A2,1, where t : M2 → A2 is the Torelli map
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which associates to a curve its polarized Jacobian and Φ : A2,1 → A2 is the

map which forgets E in the triplets.

Proposition 3.2. There exists a natural surjective morphism φ : M→H.

Proof. Consider an object in Gτ (T ) for some T ; i.e. a family S → T which

factors over E ′′ (Lemma 2.3). Let f1, f2 ∈ OE ′′/T such that (fi) = si(T ), i =

1, 2. Then the natural injection f : OE ′′/T → OE ′′/T [
√

f1f2 ] gives a double

cover (f) : F/T → E ′′/T over T ramified along (f1) ∪ (f2) = s1(T ) ∪ s2(T ),

where F = Spec (OE ′′ [t]/(t2− f1f2)). Moreover, since for any t ∈ T , Ft → E ′′t

is a double cover ramified at two points, we have g(Ft) = 2 by Riemann-

Hurwitz formula and so Ft is a smooth genus two curve. Hence the pair

(F , E ′′) corresponds to a point in H(T ). By functoriality of this construction,

we obtain natural morphism φ : M→H.

Next we consider moduli of surfaces with nonsmooth genus two fibrations

of nonalbanese type. In Chapter 2 we have seen that a surface of type (E ′, d)

is the desingularization of f ∗(S(E ′, d)) for some morphism f : C → X(d).

Hence such a surface S can be deformed in two ways; we can deform E ′ to

other elliptic curves and we can deform the map f . Therefore, in describing

the moduli spaces of such surfaces under consideration, we need to clarify the

relation of these spaces to the Hurwitz spaces H(g, X(d), n) of morphisms of

degree n from curves of genus g to the modular curve X(d).

Theorem 3.3. Let K2, χ and g ≥ 2 be given and let H(g,X(d), n) be the

Hurwitz scheme of morphisms of degree n from curves of genus g onto X(d).
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Then we have morphisms Φ : M(g,K2, χ) → A1 and ΨE′ : H(g, X(d), n) →

M(g, K2, χ) for any elliptic curve E ′ such that

(i) ΨE′ establishes a one-to-one correspondence between the components Hi

of H(g,X(d), n) and the components Mi of M(g, K2, χ),

(ii) Φ : Mi → A1 is a fibration with ΨE′(Hi) as the fiber over [E ′] ∈ A1.

This result is a consequence of Lemma 3.4 and Lemma 3.5.

Lemma 3.4. There exists a morphism Φ : M(g, K2, χ) → A1 which maps the

class [S] ∈ M(g, K2, χ) to the class [E] ∈ A1 of the elliptic curve associated

to the fibration on S. Φ is surjective on each component of M(g,K2, χ).

Proof. Let M(g, λ) : Sch/C→ Sets be the functor defined by M(g, λ)(T ) =

isomorphism classes of families of surfaces over T admitting genus 2 fibrations

over curves of genus g, with slope λ. To prove the lemma, it suffices to construct

a morphism of functors M(g, λ) → hA1 as described in the lemma. This, on

the other hand, follows once we prove that for any T ∈ Sch/C and for a given

family of surfaces S → T , the map T → A1 defined by t 7→ [Et] where [Et]

is the fixed part of the jacobian fibration on St, is a morphism.

This last claim being local over the base, we assume that S → T is

projective and we consider the relative albanese morphism α : S → AlbS/T ;

the image E = α(S) is a family of smooth isotrivial elliptic surfaces over T

and the base of the fibration on Et is Ct = the base of the fibration on St . It

is well known that for such a family of elliptic surfaces, the base curves glue

to give a relative curve C and the map E → T factors over C. Since the fibres
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of Et → Ct are constant, the morphism C → A1 corresponding to the elliptic

curves E/C coincides with the map T → A1 defined above, which completes

the proof of the claim.

To prove the surjectivity of Φ, we take any connected component of

M(g, K2, χ) and a surface S of type (E, d) corresponding to a point in this

component. We let f : C → X(d) be the map inducing the fibration on S. For

any family of elliptic curves E → T , we have a genus two curve F → HE/T,d,−1,

where HE/T,d,−1 is an open subscheme of X(d)×C T , universal for normalized

genus two covers ([1], Definition on p.13) of degree d of E/T ([1], Thm. 1.1).

From (f, id) : C×T → X(d)×CT we obtain a T -morphism F : U → HE/T,d,−1

where U is an open subscheme of C × T . Completing the family of genus two

curves F ∗(F)/U to a family over C × T , and then applying simultaneous

desingularization we get a family of smooth surfaces S → T ′ where T ′ → T is

a finite Galois base extension. Since S contains S as one of the fibers, its

moduli lies in the same component of M(g, K2, χ) as the modulus of S. For

an arbitrary elliptic curve E ′, choosing E → T as a deformation of E to E ′,

we see that Φ restricted to this moduli has [E ′] ∈ A1 in its image. This

completes the proof of the lemma.

Let C → T be a family of smooth curves of genus g and let F : C →

X(d)× T be a family of morphisms of degree n. For a fixed elliptic curve E ′,

applying simultaneous desingularization to the family of surfaces F ∗(S(E ′, d))

we obtain a family of fibered surfaces S → T ′ over a Galois extension T ′ → T
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with group G, which defines a morphism α : T ′ → M(g,K2, χ). α, being

G-invariant, descends to a morphism T → M(g, K2, χ). Clearly, this con-

struction is functorial and by the defining property of coarse moduli spaces we

get a morphism ΨE′ : H(g, X(d), n) → M(g, K2, χ). To a given connected

component Hi of H(g, X(d), n) we assign the component Mi of M(g, K2, χ)

which contains ΨE′(Hi).

Lemma 3.5. The above assignment induces a one-to-one correspondence be-

tween the connected components of M(g, K2, χ) and those of H(g,X(d), n).

Morever, we have ΨE′(Hi) = Φ−1|Mi
([E ′]).

Proof. Since by Lemma 3.4, each component Mi of M(g, K2, χ) contains the

modulus of a surface of type (E ′, d), it suffices to check that in each Mi we

have the image under ΨE′ of a unique component of H(g, X(d), n).

Let Mi be the component of M(g, K2, χ) which contains ΨE′(Hi). Fix

[S1] ∈ ΨE′(Hi) and let [S2] ∈Mi be an arbitrary point and let Ci, j = 1, 2 be

the base curves of the corresponding fibrations. Then, the surfaces S1 and S2

deform to each other. Since deformations of the surfaces under consideration

are induced from deformations of the fibrations (proof of Lemma 3.4), it follows

that f1 : C1 → X(d) deforms to a morphism f 2 : C2 → X(d). Therefore

f1, f 2 belong to H(g,X(d), n)i. On the other hand, by (Lemma 2.7 (ii)), f2

and f 2 satisfy a relation of the form f2◦α = β◦f 2 for some α ∈ Aut(C1), β ∈

Aut(X(d)). Therefore, f2 and f 2, hence f1 and f2 lie in Hi. This proves the

first part of the lemma. The second statement is obvious.
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In the case of elliptic base curves we can not prove that a given deformation

of our surfaces S → T arises from the deformation of the associated maps

ft : Ct → X(d), t ∈ T . Therefore, by exactly the same proof we obtain the

following weaker result:

Theorem 3.6. Let Mi be a connected component of M(1, K2, χ). Then we

have a morphism Φ : Mi → A1 (given on closed points by [X] → [E] if X is

of type (E, d)) such that the fiber over [E] ∈ A1 is a disjoint union

⊔
j

ΨE(H(1, X(d), n)j).

Remarks :

1) When λ = 6, one can prove that M(g,K2, χ) =
N⊔

i=1

A1
i where N is the

number of distinct étale covers of degree n of the elliptic curve X(6) ([5],

Theorem 2.3).

2) Another shortcoming of the result in case of base genus g = 1 is that we do

not know if each Mi is a connected component of the corresponding moduli

space MK2,χ of surfaces of general type.
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APPENDIX

In this appendix, we discuss some problems relevant to the moduli of genus

two fibrations, which are not studied in the literature.

Problem 1: Fibrations over P1

In this case, since the monodromy is trivial, all smooth fibrations are trivial

products. Hence we see that the moduli space of smooth genus two fibrations

over P1 is M2 which is the moduli space of curves of genus two.

For nonsmooth fibrations we have q(X) = 1 and d = 3, 4, 5. Using the

same analysis as in the case of elliptic base curves, one obtains the analog of

Theorem 3.6 and also the values of the invariants for which the corresponding

moduli space is nonempty (cf. Lemma 2.8 in Chapter 2). We note that in this

case we have a second fibration, namely the albanese fibration on the given

surface; geometry of this fibration and applications to the study of the moduli

spaces seems to be an interesting problem.

Problem 2: d = 2 case

This is the main missing case in all the relevant work in the literature.

The difficulty of the analysis of this case stems basically from the following

phenomena.

(1) We do not have a universal surface S(E, 2) on X(2). This is related to

the fact that the curves of genus two with elliptic quotients of degree d = 2 do
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not have a fine moduli space.

(2) One does not know if a genus two fibration with d = 2 is a semistable

fibration.

(3) d = 2 case is the only case where we have isotrivial fibrations.

Problem 3: Compactification of the moduli spaces

This problem requires understanding the degenerations of the surfaces con-

sidered. Hence is related to the singularities of surfaces. Even though a general

choice of “minimal” degenerations to compactify the moduli spaces of surfaces

is not available, in this case one may try using special degenerations where

each component is either rational or a surface fibered over a base curve of

genus ≤ initial base genus ([11]).
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