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ABSTRACT

THE POLARIZATION PROPERTIES OF THE FINAL STATE PARTICLES

IN THE RARE RADIATIVE B-MESON DECAYS

YILMAZ, Ümit Oktay

Ph. D., Department of Physics

Supervisor: Prof. Dr. Gürsevil TURAN

May 2005, 83 pages.

A general analysis of the photon and lepton polarizations in the rare Bs → γ `+`−

decay by using the most general model independent form of the effective Hamil-

tonian is presented. The total and the differential branching ratios for these

decays, when photon is in the positive and negative helicity states, are stud-

ied. The sensitivity of ”photon polarization asymmetry” and the longitudinal,

transverse and normal polarization asymmetries of final state leptons, as well as

lepton-antilepton combined asymmetries in Bs → γ `+`− decay to the new Wilson

coefficients are also investigated.

It is shown that all these physical observables are very sensitive to the exis-

tence of new physics beyond SM and their experimental measurements can give

valuable information about it.

Keywords: Flavor Changing Neutral Current, Semileptonic Decay, Rare Radia-

tive Decay, Photon Polarization, Lepton Polarization
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ÖZ

NADİR IŞINIMLI B-MESON BOZUNUMLARINDA ORTAYA ÇIKAN

PARÇACIKLARIN POLARİZASYON ÖZELLİKLERİ

YILMAZ, Ümit Oktay

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Gürsevil TURAN

Mayıs 2005, 83 sayfa.

Etkin Hamiltonun modelden bağımsız en genel formunu kullanarak nadir Bs →
γ`+`− bozunmasındaki foton ve lepton polarizasyonlarının genel bir çözümlemesi

sunuldu. Bu bozunmaların, fotonun pozitif ve negatif helisite durumundaki toplam

ve difransiyel dallanma oranları çalışıldı. Ayrıca Bs → γ`+`− bozunmasında ”fo-

ton polarizasyon asimetrisinin” ve son durum leptonlarının paralel, çapraz ve

dik polarizasyon asimetrileri, bunun yanı sıra lepton-antilepton birleşik asimetri-

lerinin yeni Wilson katsayılarına hassasiyetleri incelendi.

Tüm bu fiziksel gözlenebilirlerin SM ötesinde var olan yeni fiziğe hassas olduk-

ları ve deneysel ölçümlerinin değerli bilgiler verebileceği gösterildi.

Anahtar Sözcükler: Çeşni Değiştiren Nötr Akımlar, Yarıleptonik Bozunum, Nadir

Işınımlı Bozunma, Foton Polarizasyonu, Lepton Polarizasyonu.
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CHAPTER 1

INTRODUCTION

The ”Standard Model” (SM) of elementary particle physics [1], which is a renor-

malizable relativistic quantum field theory based on non-Abelian gauge symmetry

of the gauge group SU(3)C×SU(2)L×U(1)Y , leads the progress of understanding

the weak, electromagnetic, and strong interactions in the past half-century. It

has been very successful phenomenologically and all experiments confirm its pre-

dictions within the existing experimental and theoretical uncertainties, with the

exception of neutrino oscillations. Therefore, in the experimental sense there is

not much motivation for moving beyond the SM. However, there are some concep-

tual problems with the structure of the SM, such as, number of free parameters,

the origin of mass and Higgs sector of the theory, the ”hierarchy” problem, not

including the gravity, origin of CP violation, etc. Therefore, it is widely believed

that when the precision of experiments and also theoretical tools improve, signals

of new physics beyond the SM will appear. There are several classes of extended

models which address the conceptual open questions of the SM, such as the min-

imal supersymmetric model (MSSM), the two Higgs doublet model (2HDM),

left-right symmetric models, fourth generation models, extra dimensions, etc.

Rare B decays have always a special place for providing the essential informa-

tion about the structure of the SM and particle physics in general. By rare decays,

it is meant decays which do not include the release of a c quark into the final

state. These may include both the so-called Cabibbo-suppressed decays, such as

those mediated by the transition b → uW− and flavor changing neutral current

(FCNC) decays; that is, decays via the currents that change the flavor but not

the charge of the quark. In the SM, the neutral currents are mediated through

the gauge bosons Z0, γ, g, and do not change flavor. Therefore, FCNC processes
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are absent in the SM at tree level. However, they may appear at the loop level

through the box and penguin diagrams. These loop effects are sensitive to the

masses and other properties of the internal particles. Other massive particles

which are not present in the SM , like a fourth generation fermions, supersym-

metric particles, or others, may also contribute to these decays in the same way

therefore can be studied in a rare B decay at energies which are much lower than

the direct production energies of such particles. Then, it becomes possible to

compare the SM predictions for such a rare B decay with the experimental result.

Any possible discrepancy between them signals the existence and the structure

of the new physics beyond the SM. Thus, rare B-decays are very useful tools for

extracting new physics beyond SM, as well as providing the essential information

about the poorly studied aspects of it, particularly Cabibbo-Kobayashi-Maskawa

(CKM) matrix elements, leptonic decay constants, etc.

The experimental situation concerning rare B decays is also quite promising.

Some rare decays have already been measured. CLEO [2], BaBar [3] and BELLE

[4] experiments determined the inclusive B → Xsγ and the exclusive B → K∗γ

channels with the world average branching ratio (BR) [5, 6]

BR(B → Xsγ) = (3.34 ± 0.38) × 10−4 ,

BR(B0 → K∗0γ) = (4.17 ± 0.23) × 10−5 , (1.1)

BR(B+ → K∗+γ) = (4.18 ± 0.32) × 10−5 .

More recently, both BELLE [7] and BaBar [8] have announced a clear evidence

of the B → Xs`
+`− and B → K(∗)`+`− decays, whose average BRs are [6]

BR(B → Xs`
+`−) = (6.2 ± 1.1) × 10−6 ,

BR(B → K`+`−) = (5.85 ± 0.4) × 10−7 , (1.2)

BR(B → K∗`+`−) = (10.2 ± 1.2) × 10−7 ,

Among the rare B-meson decays, the semileptonic Bs → γ `+`− (` = e, µ, τ)

decays are especially interesting due to their relative cleanliness and sensitivity

to new physics. Bs → γ `+`− decay is induced by B → `+`− one, which can
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in principle serve as a useful process to determine the fundamental parameters

of the SM since the only non-perturbative quantity in its theoretical calculation

is the decay constant fBs
, which is reliably known. However, in the SM, matrix

element of B → `+`− decay is proportional to the lepton mass and therefore

corresponding branching ratio will be helicity suppressed. Although ` = τ channel

is free from this suppression, its experimental observation is quite difficult due

to low efficiency. In the radiative Bs → γ`+`−decay, photon emitted from any

of the charged lines in addition to the lepton pair makes it possible to overcome

the helicity suppression which in turn makes its branching ratio to be larger

than purely leptonic modes. For that reason, the investigation of the Bs →
γ`+`−decays becomes interesting.

The main tool to calculate rare B decays by including the perturbative QCD

corrections is the effective Hamiltonian, Heff ∼
∑

Ci Oi, method. In this program

starting with an operator product expansion (OPE) and performing a renormal-

ization group equation (RGE) analysis, the heavy degrees of freedom, W±, H, t

quark, are integrated out [9]-[17]. In this way it becomes possible to factorize low

energy weak processes in terms of perturbative short-distance Wilson coefficients

Ci from the long-distance operator matrix elements < Oi >.

In this work, we will investigate the new physics effects in the Bs → γ`+`−decay.

In rare B-meson decays, the new physics effects can appear in two different ways:

one way is through new contributions to the Wilson coefficients that are already

present in the SM, and the other is through the new operators in the effective

Hamiltonian, which is absent in the SM. Here, we use the most general effective

Hamiltonian that combines both these approaches and includes the scalar and

tensor type interactions as well as the vector types.

As an exclusive process, the theoretical calculation of Bs → γ`+`−decay re-

quires the additional knowledge about the decay form factors. These are the

matrix elements of the effective Hamiltonian between the initial B and final pho-

ton states, when a photon is released from the initial quark lines, which give rise

to the so called ”structure dependent” (SD) contributions to the amplitude, and

3



between the B and the vacuum states for the ”internal Bremsstrahlung” (IB)

part, which arises when a photon is radiated from final leptons. Finding these

hadronic transition matrix elements is related to the nonperturbative sector of the

QCD and should be calculated by means of a nonperturbative approach. Thus,

their theoretical calculation yields the main uncertainty in the prediction of the

exclusive rare decays. The form factors for B decays into γ and a vacuum state

have been calculated in the framework of light-cone QCD sum rules in [18, 19]

and in the framework of the light front quark model in [20]. In addition, a model

has been proposed a model in [21] for the B → γ form factors which obey all the

restrictions obtained from the gauge invariance combined with the large energy

effective theory.

In this work, we have mainly focused on polarization properties of the final

state particles, namely photon and lepton pairs in Bs → γ`+`−decay, and their

effects to the observable quantities of the same decay. In this connection, we have

studied the photon and lepton polarization asymmetries as well as the polarized

branching ratios of Bs → γ`+`−decay as a function of various new Wilson coef-

ficients. Along this line, the polarization asymmetries of the final state lepton in

Bs → γ`+`− decays have been studied in MSSM in [22] and concluded that they

can be very useful for accurate determination of various Wilson coefficients.

The thesis is organized as follows: In Chapter 2, after a brief overview of the

SM, we present an introduction to rare B decays. There, we have also briefly

discuss the effective Hamiltonian theory. In Chapter 3, we start our model in-

dependent analysis of the radiative rare Bs → γ`+`−decay. After presenting

the most general effective Hamiltonian, we give the hadronic matrix elements

and then calculate some analytical expressions like the decay rate, etc., that are

necessary in the next two chapters. In Chapter 4, we consider the photon po-

larizations in Bs → γ`+`−decay and calculate the differential decay width and

the photon polarization asymmetry for this decay when the photon is in positive

and negative helicity states. In Chapter 5, a general analysis of the lepton po-

larizations in the rare Bs → γ `+`− decay is given. We mainly investigate the

4



sensitivity of the longitudinal, transverse and normal polarizations of final state

leptons, as well as lepton-antilepton combined asymmetries, on the new Wilson

coefficients. Finally, Chapter 6 is devoted to a summary and the conclusion of

the thesis.
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CHAPTER 2

RARE B-MESON DECAYS

In this chapter we first outline the structure of the SM. We discuss the CKM

mixing matrix and the importance of studying FCNC transitions. We then dis-

cuss the motivation and the method for studying the rare B-meson decays and

introduce the effective Hamiltonian as a necessary tool to include QCD pertur-

bative corrections in weak decays. Finally, we give the explicit form of the ef-

fective Hamiltonian and the corresponding Wilson coefficients for the quark level

b → s`+`− transition in the SM together with a discussion about the possible

long distance effects.

2.1 The Structure of Standard Model

The Standard model [1] is a renormalizable relativistic quantum field theory

based on non-Abelian gauge symmetry of the gauge group SU(3)C × SU(2)L ×
U(1)Y . It has two sectors: The first is Quantum Chromodynamics (QCD)[23],

which is a vector gauge theory describing the SU(3)C color interactions of quarks

and gluons. The second sector is the Electroweak Theory (EW) describing the

electromagnetic and weak interactions of the quarks and leptons as a non-Abelian

weak isospin (T) and an Abelian hypercharge (Y) gauge symmetry SU(2)L ×
U(1)Y .

The strong interaction part is described by the Lagrangian

LQCD = −1

4
F i
µνF

iµν +
∑

r

q̄rαi 6Dα
β qβr , (2.1)

where gs is the QCD gauge coupling constant and

F i
µν = ∂µG

i
ν − ∂νG

i
µ − gsfijk Gj

µ Gk
ν , (2.2)

6



Table 2.1: The SU(3)C matrices.

λ1 =

(
τ1 0
0 0

)
λ2 =

(
τ2 0
0 0

)
λ3 =

(
τ3 0
0 0

)

λ4 =




0 0 1
0 0 0
1 0 0


 λ5 =




0 0 −i
0 0 0
i 0 0


 λ6 =




0 0 0
0 0 1
0 1 0




λ7 =




0 0 0
0 0 −i
0 i 0


 λ8 = 1√

3




1 0 0
0 1 0
0 0 −2




is the field strength tensor for the gluon fields Gi
µ, i = 1, · · · , 8 where the structure

constants fijk (i, j, k = 1, · · · , 8) are defined by

[λi, λj] = 2ifijkλ
k, (2.3)

and the SU(3)C λ matrices are defined in Table 2.1.

The F ·F term in Eq.(2.1) leads to three and four-point gluon self-interactions.

In the second term in LQCD, qr is the rth quark flavor, α, β = 1, 2, 3 are color

indices, and

Dα
µβ = (Dµ)αβ = ∂µδαβ + igs Gi

µ Li
αβ, (2.4)

is the gauge covariant derivative for the quarks. Here, the quarks transform

according to the triplet representation matrices, λi/2. The color interactions are

diagonal in the flavor indices, but in general, change the quark colors. They are

purely vector and therefore parity conserving. There are no mass terms for the

quarks in Eq. (2.1). These would be allowed by QCD alone, but are forbidden

by the chiral symmetry of the electroweak part of the theory. The quark masses

will be generated later by spontaneous symmetry breaking.

Let us now review the essential elements of the SU(2)L × U(1)Y electroweak

theory [24]-[27]. The matter fields of the SM, which are the leptons and quarks

7



carrying spin-1/2, are classified as left-handed (LH) isospin doublets and right-

handed (RH) isospin singlets:

`L =




νe

e




L

,




νµ

µ




L

,




ντ

τ




L

, `R = eR , µR , τR ,

qL =




u

d




L

,




c

s




L

,




t

b




L

, qR = uR , dR , cR .

(2.5)

As the gauge sector, there are four vector bosons as carriers of the electroweak

force, and the corresponding spin-1 gauge vector fields are the SU(2)L isotriplet,

W 1
µ , W 2

µ , W 3
µ and U(1)Y hypercharge Bµ. The SU(2)L × U(1)Y group has then

four generators, three of which are the SU(2)L generators, Ti = τi
2
, where τi are

Pauli matrices with i = 1, 2, 3, and the fourth one is the U(1)Y generator, Y
2
. The

commutation relations for the total group are:

[Ti, Tj] = iεijkTk ; [Ti, Y ] = 0 ; i, j, k = 1, 2, 3

where εijk is totally antisymmetric symbol. The fermion quantum numbers are

as in Tables 2 and 3, and the relation

Q = T3 +
Y

2

is also incorporated in the SM.

Table 2.2: Lepton quantum numbers

Lepton T T3 Q Y
νL

1
2

1
2

0 −1
eL

1
2

−1
2

−1 −1
eR 0 0 −1 −2

The building of the SM Lagrangian is done by following the same steps as

in any gauge theory. In particular, the SU(2)L × U(1)Y symmetry is promoted

from global to local by replacing the derivatives of the fields by the correspond-

ing covariant derivatives. For a generic fermion field f , its covariant derivative

8



Table 2.3: Quark quantum numbers

Quark T T3 Q Y
uL

1
2

1
2

2
3

1
3

dL
1
2

−1
2

−1
3

1
3

uR 0 0 2
3

4
3

dR 0 0 −1
3

−2
3

corresponding to the SU(2)L × U(1)Y gauge symmetry is,

Dµf =
(
∂µ − ig ~T . ~Wµ − ig′Y

2
Bµ

)
f , (2.6)

where g(g′) is the SU(2)L(U(1)Y ) gauge coupling. For example, the covariant

derivatives for a left-handed and a right-handed electron are respectively,

DµeL =

(
∂µ − ig

~σ

2
. ~Wµ + ig′1

2
Bµ

)
eL,

DµeR = (∂µ + ig′Bµ) eR . (2.7)

The SM total Lagrangian can be written as,

LSM = Lf + LG + LSBS + LYW ,

where the fermion Lagrangian is given by

Lf =
∑

f=l,q

fi 6Df , (2.8)

while the Lagrangian for the gauge fields has the form

LG = −1

4
W i
µνW

µν
i − 1

4
BµνB

µν , (2.9)

which is written in terms of the field strength tensors

W i
µν = ∂µW

i
ν − ∂νW

i
µ + gεijkW j

µW
k
ν ,

Bµν = ∂µBν − ∂νBµ . (2.10)

The last two terms, LSBS and LYW , are the Symmetry Breaking Sector La-

grangian and the Yukawa Lagrangian, respectively, which are needed in order to
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provide the wanted gauge boson masses mW and mZ and fermion masses mf .

For spontaneous breaking of the SU(2)L × U(1)Y symmetry leaving the electro-

magnetic gauge subgroup U(1)em unbroken, a single complex scalar doublet field

with hypercharge Y = 1

Φ(x) =




φ+(x)

φ0(x)


 (2.11)

is coupled to the gauge fields. Then the spontaneous symmetry breaking and the

Higgs Mechanism provide indeed this mass generation through the scalar part of

the SM Lagrangian:

LSBS = (DµΦ)+(DµΦ) − V (Φ), (2.12)

where

V (Φ) = µ2Φ+Φ + λ(Φ+Φ)2 ,

and the Higgs-fermion Yukawa couplings are given by

LYW = λe ¯̀LΦeR + λuq̄LΦ̃uR + λdq̄LΦdR + h.c + 2nd and 3rdfamilies. (2.13)

The following steps summarize the procedure to get the spectrum from LSM :

1. A non-symmetric vacuum must be fixed. Let’s choose

< Φ >0≡< 0 | Φ | 0 >=




0

v√
2


 . (2.14)

2. The physical spectrum is built by performing small oscillations around this

vacuum. These are parameterized by

Φ(x) = exp


 i~ξ(x) · ~σ

v







0

v+H(x)√
2


 , (2.15)

where ~ξ(x) is a small field and H(x) describes the neutral Higgs boson.
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3. The unphysical field ~ξ(x) is eliminated through the following gauge trans-

formation

Φ
′

= U(ξ)Φ =




0

v+H√
2


 , (2.16)

where

U(ξ) = exp


−i

~ξ · ~σ
v


 . (2.17)

The fermion and the gauge fields are transformed accordingly;

`
′

L = U(ξ)`L , e
′

R = eR ,

q
′

L = U(ξ)qL , u
′

R = uR , d
′

R = dR ,

~σ · ~W
′

µ

2
= U(ξ)

(~σ · ~Wµ

2

)
U−1(ξ) − i

g
(∂µU(ξ))U−1(ξ) ,

B
′

µ = Bµ , (2.18)

and we rewrite the Lagrangian for them in a new gauge.

The physical bosons consist of the charged particles W±
µ and the neutrals Zµ

and Aµ (the photon). The latter are taken as a linear combinations of W 3
µ and

Bµ. Thus, one can set

W±
µ =

1√
2
(W 1

µ ± iW 2
µ) ,

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2 , Aµ =

g′W 3
µ + gBµ√
g2 + g′2 . (2.19)

It is possible to relate the coupling constants of SU(2)L and U(1)Y to the so-called

the Weinberg angle θW by using the definition g/g′ = tan θW ,

sin θW =
g′

√
g2 + g′2 , cos θW =

g√
g2 + g′2 . (2.20)

The photon field Aµ couples via the electric charge e =
√

4πα to the electron,

thus e can be expressed in term of the gauge couplings in the following way

e =
gg′

√
g2 + g′2 or e = g sin θW = g′ cos θW . (2.21)
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It is now easy to read the masses from the following terms of LSM :

DµΦ
′DµΦ

′

=
g2v2

4
W+
µ W µ− +

1

2

(g2 + g′2)v2

4
Zµ + ....

V (Φ′) =
1

2
2µ2H2 + ....

LYW = λe
v√
2
e′Le

′
R + λu

v√
2
u′
Lu

′
R + λd

v√
2
d′
Ld

′
R + .... (2.22)

and get finally the tree level predictions

mW =
gv√

2
, mZ =

√
g2 + g′2

2
v , mH =

√
2µ ,

me = λe
v√
2

, mu = λu
v√
2

, md = λd
v√
2

, (2.23)

where

v =

√
µ2

λ
, (2.24)

and photon remains massless, mA = 0.

The SM does not predict a numerical value for mW and mZ but provides

some relations among the relevant parameters. Then it is possible to obtain

their numerical values in terms of three experimentally well known quantities;

namely the fine structure constant α−1 = (e2/4π)−1 = 137.035, the Fermi cou-

pling constant GF = 1.166 × 10−5 GeV−2, and the weak mixing angle θW given

by sin2 θW = 0.231± 0.014. In particular, the following relations hold in the SM:

GF√
2

=
g2

8m2
W

=
1

2v2
⇒ v = 2−1/4G

−1/2
F = 246 GeV . (2.25)

Then,

m2
W =

e2υ2

4 sin2 θW
'
(

πα

sin2 θW

)
υ2 '

(
37.2 GeV

sin θW

)2

mW ∼ 80 GeV , (2.26)

m2
Z '

(
37.2

sin θW cos θW
GeV

)2

⇒ mZ ' 90 GeV , (2.27)

which are in a good agreement with the experimentally measured masses [28].
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The mass of the Higgs boson is determined by the coupling in the self energy

part of the potential

mH =
√

2µ =
√

2v2λ (2.28)

and it can not be predicted in the SM either since the coupling λ is an unknown

parameter. Therefore, mH can take any value in the SM. However, there are

some arguments to constrain the Higgs mass that comes from the consistency of

the theory, that is from unitarity, triviality, and vacuum stability arguments:

• Unitarity of the scattering matrix together with the elastic approximation

for the total cross-section and the Optical Theorem imply certain elastic

unitarity conditions for the partial wave amplitudes. These, in turn, when

applied in the SM to scattering processes involving the Higgs particle, imply

an upper limit on the Higgs mass, mH < 860 GeV.

• If we want the SM to be a sensible effective theory, we must keep all the

renormalized masses ≈ the cut-off in the renormalized coupling at one-loop

level, Λ ∼ 1 TeV. Since we want to keep the Higgs mass below the physical

cut-off, it implies an upper bound, mH < 1 TeV.

• A different perturbative upper limit on mH can be found by analysing the

renormalization group equations in the SM to one-loop. By requiring the

theory to be perturbative (i.e. all the couplings be sufficiently small) at all

energy scales below some fixed high energy, one finds a maximum allowed

mH value [29]. For instance, by fixing this energy scale to 1016 GeV and for

mt = 170 GeV one gets: mH < 170 GeV.

• A lower bound on the Higgs mass is obtained by the requirement of the

stability of the Higgs potential when quantum corrections are taken into

account. By the assumptions that the SM is valid up to an energy scale of

Λ ∼ 1 TeV, it may be established that mH ≥ 55 GeV. This is for mt = 175

GeV.
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• Finally, the direct Higgs boson searches in the e+e− → H0Z0 process at

CERNs LEP experiment constrains the Higgs mass from below [30], and

indicates that mH > 114 GeV. A new machine at CERN, Large Hadron

Collider, is expected to operate in 2005 and its main goal is to search for

the Higgs particles.

2.1.1 Flavor Mixing

In the SM quarks acquire mass through a gauge invariant way called Yukawa

coupling of the quarks with the Higgs field, Φ, whose Lagrangian is given by

Eq.(2.13). After spontaneous symmetry breaking, by inserting the vacuum ex-

pectation values of Φ and Φ̃, we obtain mass terms for the quarks,

Lmass = Mu
ij u′

Li u
′
Rj + Md

ij d
′
Lid

′
Rj + h.c. , (2.29)

where the superscript ′ denote the quark fields in the weak interaction basis,

and Mu = (v/
√

2) λu and Md = (v/
√

2) λd stand for the mass matrices for up-

and down-type quarks, respectively. To obtain the physical mass eigenstates, we

must diagonalize the matrices M d and Mu. As any complex matrix, they can be

diagonalized by two unitary matrices, UL,R and DL,R, respectivelly:

Mu
diag ≡ UL Mu U †

R ,

Md
diag ≡ DL Md D†

R . (2.30)

One can rewrite the up-quarks mass term from Eq. (2.29) as

u′
Li M

u
ij u′

Rj + h.c. ≡ u′
L U+

L ULM
uU+

RUR u′
R + h.c.

= uL Mu
diag uR + h.c. = u Mu

diag u ,

where the mass eigenstates uL and dR are identified according to the following

formulas:

uL = ULu
′
L , uR = URu′

R . (2.31)

Applying the same procedure to matrix M d, we observe that it becomes diagonal

as well in the new rotated basis:

dL = DLd
′
L , dR = DRd′

R . (2.32)
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In summary, starting from the quark fields in the weak interaction basis it is

found that they should be rotated by four unitary matrices UL, UR, DL and DR

in order to obtain mass eigenstates with diagonal masses. Since kinetic energies

and interactions with the vector fields W 3
µ , Bµ and gluons are diagonal in the

quark fields, these terms remain diagonal in the new basis, too. The only term in

the SM Lagrangian LSM where the matrices U and D show up is charged current

interaction with the emission of W-boson:

LCC = − g

2
√

2
(JµWW−

µ + Jµ†W W+
µ ) (2.33)

where

Jµ†W = (νe, νµ, ντ ) γµ(1 − γ5)




e−

µ−

τ−


+ (u′, c′, t

′
) γµ(1 − γ5)




d′

s′

b′


 ,

which becomes in the new basis

Jµ†W = (νe, νµ, ντ ) γµ(1 − γ5)




e−

µ−

τ−


+ (u, c, t) γµ(1 − γ5)VCKM




d

s

b


 ,

where the unitary matrix VCKM ≡ U+
L DL is called the Cabibbo-Kobayashi-Maskawa

(CKM) quark mixing matrix [26], which appears due to the mismatch between

the weak and the Yukawa interactions. With two quark generations, VCKM is de-

fined by a single real parameter, the Cabbibo angle θ. However, with three quark

generations, four parameters are required. The real rotations may be taken to be

three Euler angles, and the remaining extra parameter is an irreducible complex

phase. This phase is the only source of CP violation in flavor changing transitions

in the SM.

In the ”standard parametrization” [31] recommended by the Particle Data

Group [32], the three-generation CKM matrix takes the form

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb
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=




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13


 ,

where cij = cos θij and sij = sin θij. It has been observed experimentally that the

CKM matrix has a hierarchical structure reflected by

s12 = 0.22 � s23 = O(10−2) � s13 = O(10−3). (2.34)

Thus, if in the standard parametrization above, we introduce new parameters λ,

A, ρ and η by imposing the relations

s12 ≡ λ = 0.22 , s23 ≡ Aλ2 , s13e
−iδ ≡ Aλ3(ρ − iη), (2.35)

we arrive at

VCKM =




1 − 1
2
λ2 λ Aλ3(ρ − iη)

−λ 1 − 1
2
λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1


+ . . . . (2.36)

This is the ”Wolfenstein parametrization” of the CKM matrix [33], and is valid

to order λ4.

Concerning the test of the CKM picture of CP violation, the central targets

are the unitarity of the CKM matrix, which is described by

V †
CKM · VCKM = VCKM · V †

CKM = 1̂ , (2.37)

imposes the following conditions on the matrix elements:

3∑

j=1

|Vij|2 = 1 ,
3∑

i=1

|Vij|2 = 1 ,
3∑

k=1

V ∗
ik Vkj = 0 . (2.38)

It is very convenient to discuss the predictions of the unitarity by using the

unitarity triangle, which is just a geometrical representation of the relation in

Eq.(2.38) which equals zero in the complex plane. The most commonly used

unitarity triangle is obtained from the constraint

VubV
∗
ud + VcbV

∗
cd + VtbV

∗
td = 0 .
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i j i i i i i i

W± Z0 γ G

W+
W− W+ W− G G

G

G

Z0 γ G G

G

Figure 2.1: The basic vertices representing the interactions of the quarks with
the gauge bosons. The labels i and j represent the flavour quantum number
(i, j = u, d, c, s, t, b).

The B- system provides an excellent ground for measuring many aspects of this

triangle. The present situation about the knowledge of the element of the CKM

matrix can be summarized by [34]

|Vus| = λ = 0.2196 ± 0.0026 , |Vcb| = (41.2 ± 2.0) × 10−3 ,

|Vub|
λ|Vcb|

= 0.40 ± 0.08 , |Vub| = (35.7 ± 3.1) × 10−4 ,

implying

A = 0.85 ± 0.04 .

2.1.2 Neutral Current and Flavor Changing Neutral Current

In addition to charged-current interactions, SU(2)L × U(1)Y model also pre-

dicts neutral current weak interactions. The relevant Lagrangian is

LNC = −
√

g2 + g′2

2
JµZ
(
− sin θWBµ + cos θWW 3

µ

)
, (2.39)
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where the weak neutral current is given by

JµZ =
∑

j

[
ūLjγ

µuLj − d̄Ljγ
µdLj + ν̄Ljγ

µνLj − ēLjγ
µeLj

]
− 2 sin2 θWJµQ . (2.40)

Here j is for the various flavors of quarks and leptons, and JµQ is the electro-

magnetic current. Like the electromagnetic current JµZ is flavor-diagonal in the

SM, so the form is not affected by the unitary transformations that relate the

mass and weak bases. It was for this reason that the GIM mechanism [25] was

introduced into the model, along with its prediction of the charm quark and the

orthogonality of the quark-mixing matrix VCKM . Without it the d and s quarks

would not have had the same SU(2)L × U(1)Y assignments, and flavor-changing

neutral currents (FCNC) would have resulted. Thus, it follows from the LCC ,

LNC and LQCD parts of the LSM that interactions in the SM can be represented

by the elementary vertices in Fig. (2.1).

FCNC transitions only occur in the loop level in the SM and they are rep-

resented by the penguin and the box diagrams with virtual electroweak bosons

and quarks in the loop. Examples of penguin and box diagrams contributing to

the FCNC process b → s are given by Figs (2.2) and (2.3). For example, if all

u, c, t

b s

W

Z0, γ

(a)

u, c, t

b s
W W

Z0, γ

(b)

u, c, t

b s

W

G

(c)

Figure 2.2: Examples of penguin diagrams which contribute to the FCNC process
b → s. Diagrams (a) and (b) are electroweak penguins graphs, and diagram (c)
is a gluonic penguin graph.

up-type quarks had identical masses, mu = mc = mt, the only difference between

graphs with different up type quarks would be the coupling to the W boson via
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s W

W

b

b s

u, c, t u, c, t

s b

b s

WW

u, c, t

u, c, t

Figure 2.3: Examples of box diagrams.

the CKM matrix elements. The sum of the three possible diagrams would then

be proportional to

VubV
∗
us + VcbV

∗
cs + VtbV

∗
ts ,

which vanishes because of the unitarity of the CKM matrix. This vanishing of

the sum of the three graphs is known as the GIM mechanism. In reality, the

masses of the quarks are not equal and the result of these graphs is therefore

proportional to the mass difference of the up-type quarks. Since the top quark

is so much heavier than the up and the charm quark, the graphs with the top

quark in the loop dominate the process.

2.1.3 Unsatisfactory Features of the SM

Despite the fact that the SM is a mathematically consistent renormalizable

field theory that has been very successful in describing most of the elementary

particles phenomenology, there are several unsatisfactory features. Let us enu-

merate some of them:

• Number of free parameters: There are at least 19 physical parameters

that can not be computed in the context of the SM: 3 gauge couplings, 6

quark and 3 charged-lepton masses with 3 charged weak mixing angles and

1 CP-violating phase and 2 parameters to characterize the Higgs sector and

1 CP-violating non-perturbative vacuum angle.

• The Higgs sector of the theory: It remains unknown so far, and there

is not any fundamental reason to assume that this sector must be minimal
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i.e. only one Higgs doublet.

• The ”Hierarchy” Problem: From some theoretical arguments discussed

briefly in previous subsection we have an upper limit for the Higgs mass,

mH < 1 TeV. Within the SM, there are quantum corrections to this tree-

level Higgs mass, δm2
H ∼ Λ2, where Λ is a higher scale in the theory. If there

were no higher scale, one would simply interpret Λ as an ultraviolet cutoff

and take the view that mH is a measured parameter and its bare mass is

not an observable. However, since gravity is not included in the SM, there

is for sure another relevant scale, a scale Λ ' MPlanck ' 1019 GeV . Hence

the natural scale for mH is O(Λ), which is much larger than the expected

value.

One solution to this problem is to replace elementary Higgs fields by bound

states of fermions. Technicolor and composite Higgs models are in this

category [35]. Another possibility is supersymmetry [36], in which there

is postulated a superpartner fermion and a superpartner boson for every

fermion and boson in the theory. This solves the hierarchy problem, since

the SM diagrams generating the divergences in the Higgs mass are cancelled

by the new diagrams in which superpartners propagate in the loop.

• Gravity is not included in the SM: General relativity can be formu-

lated as a classical field theory, but attempts to quantize it yield a non-

renormalizable theory. The hope is to unify gravity with other forces in such

a way that the infinities arising in different sectors cancel among themselves,

yielding a combined renormalizable theory.

• Origin of CP violation: In the SM the only source of CP violation is

the complex Cabibbo-Kobayashi-Maskawa (CKM) matrix elements which

appears too weak to drive the observed asymmetry in nature.

• Masses of neutrinos: Experiments operated in underground sites suggest

a solid evidence for neutrino oscillations [37], which imply nonzero masses
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for neutrinos. However, it is not possible to introduce masses of neutrinos

in the SM, since there is no RH neutrino.

These and many other unsatisfactory features of the SM lead the physicists

to search for new models beyond it.

2.2 Rare B Meson Decays

The weak decays concern with all the unanswered questions of the SM sum-

marized above and their phenomenology is very rich. Among the weak decays,

the rare decays have a special place for providing the essential information about

the higher structure of the SM, and also poorly studied aspects of it, particularly

CKM matrix elements, the leptonic decay constants, etc.

By ”rare” decays, it is generally meant two classes of transitions:

1) Decays due to the b → u, which are suppressed relative to b → c modes by the

CKM factor |Vub/Vcb| ≈ 0.006. An example is the exclusive mode B → ρ`ν, with

a branching ratio of 2.5 × 10−4.

2) A second class of rare decay modes is transitions that do not arise at the tree

level in the SM, but may originate through loop effects. Consequently, rare B

decays, for example, are mediated by FCNC processes of the kind b → s or b → d,

whereas rare K decays originate from their s → d counterparts.

In comparison with kaons, the B meson system has several features which

make it well-suited to study flavor physics and CP violation. Because the top

quark in loop diagrams is neither GIM nor CKM suppressed, large CP violating

effects and large mixing are possible in the natural B systems. For the same

reason, a variety of rare decays have large enough branching fractions to allow for

detailed studies. Finally, since the b quark mass is much larger than the typical

scale of the strong interaction, long-distance strong interactions are generally less

important and are under better control than in kaon physics.

Rare B-meson decays are also sensitive to new physics beyond the SM, since

in these additional contributions to the decay rate, SM particles are replaced
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by new particles such as the supersymmetric charginos or gluinos in SUSY the-

ories, that can give contributions comparable to those of the SM. This makes

it possible to observe new physics indirectly - a strategy complementary to the

direct production of new (e.g., supersymmetric) particles and is reserved for the

planned hadronic machines such as the LHC at CERN. For the indirect search of

the particles, there are several B physics experiments successfully running : the

CLEO experiment (Cornell, USA) [38], the BaBar experiment at SLAC (Stanford,

USA) [39] and the BELLE experiment at KEK (Tsukuba, Japan) [40], hadronic

B physics program at FERMILAB (Batavia, USA) [41]. There are also inde-

pendent B physics experiments planned at the hadronic colliders: the LHC-B

experiment at CERN in Geneva [42] and the BTeV experiment at FERMILAB

[43].

2.3 The Effective Hamiltonian Theory

In order to deal with rare decays theoretically, one must first calculate the

transition amplitude M for B → f , which can get many contributions repre-

sented by different Feynman diagrams such as the one in Fig.(2.2) and (2.3).

However, these weak decays are mediated through weak interactions of quarks,

whose strong interactions bind the quarks into hadrons. Hence QCD effects must

be considered too. At short distances much smaller than h̄c/ΛQCD these effects

can be described perturbatively by the exchanges of gluons. When travelling over

a distance of order h̄c/ΛQCD, however, quarks and gluons hadronize and QCD

becomes nonperturbative. Therefore the physics from different length scales, or

equivalently, from different energy scales must be treated separately. The theoret-

ical tool for this is the operator product expansion (OPE). In OPE, the transition

amplitude M for B → f decay may be expressed as

M =
GF√

2

∑

i

V i
CKM Ci(µ,mheavy) 〈f |Oi(µ)|B〉

[
1 + O

( m2
b

m2
W

)]
, (2.41)

where Oi are local operators and Ci are the Wilson coefficients. Both Oi and

Ci depend on the QCD renormalization scale µ, and Ci depends on mass of
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the W boson and other heavy particles such as the top quark as well. The

expansion in Eq. (2.41) is very convenient. The non-perturbative QCD effects

are contained in the matrix elements of the operators Oi, which are independent

of the large momentum scale of heavy particles. The Wilson coefficient functions

Ci are independent of the states f and B and can be calculated in perturbation

theory. Thus, OPE allows for a separation of an amplitude of the B-meson decay

process into two distinct parts; the long distance contributions contained in the

operator matrix elements and the short-distance physics described by the Wilson

coefficients. The renormalization scale µ separating these two regimes is chosen by

requiring that the strong coupling constant is low enough to make meaningful the

perturbative calculations. For the decays of D and B mesons, a common choice is

usually µ = O(mc) and µ = O(mb), respectively. Since physical amplitudes can

not depend on µ, the µ- dependence in the operators Oi(µ) is cancelled by that

in the Wilson coefficients Ci(µ).

The 〈f |Oi(µ)|B〉 includes long-distance effects and can not be evaluated from

perturbation theory. In principle such quantities can be evaluated using sophis-

ticated non-perturbative methods such as lattice calculation or QCD sum rules.

In case of certain B-meson decays, the Heavy Quark Effective Theory (HQET)

[44] is also a useful tool. However, all these non-perturbative methods have some

limitations and consequently in weak decays of mesons, hadronic matrix elements

constitute the dominant theoretical uncertainties.

In contrast to the long-distance contributions, due to the asymptotic freedom

of QCD the strong interaction effects at short distances are calculable in pertur-

bation theory in the strong coupling αs(µ). Wilson coefficients are determined

by matching the full theory onto a five quark effective theory. In this process

W±, Z0, the top-quark and generally all heavy particles with masses higher than

mW are integrated out. The matching in question is achieved using the following

procedure:

• Calculation of the amplitude in the full theory, Mfull, from all relevant

Feynman diagrams with quarks and gluons,

23



• Calculation of the operator matrix elements,

• Extraction of Ci(µ) from Mfull = Meff .

The resulting Ci(µ)s depend generally on the masses of the heavy particles which

have been integrated out and are in the form of an expansion in αs(µ):

Ci =
∑

n

an αns (µ) . (2.42)

Although αs(µ) is small enough in the full range of relevant short-distance scales of

O(1GeV) to serve as a resonable expansion parameter, the expansion in Eq. (2.42)

typically shows the appearance of large logarithms of the kind αs(µ) ln(mW/µ),

where µ = O(1GeV), so that even when αs(µ) is a good expansion parameter,

this product in the calculation of the coefficients Ci(µ) spoils the validity of the

usual perturbation series. It is therefore necessary to replace the usual pertur-

bation theory by a renormalized-group improved perturbation theory that allows

an efficient summation of logarithmic terms to all orders in perturbation the-

ory. The leading term in this case comes from the resummation of the terms
[
αs(µ) ln(mW/µ)

]n
, the so-called leading log approximation. Generally speaking,

it is often insufficient to stop at the leading log approximation, and the next-to-

leading order corrections should be included, which may exhibit some interesting

features absent in leading log approximation.

An important feature of the OPE in Eq. (2.41) is the universality of the

coefficients Ci: they are independent of the external states; that is, their numerical

value is the same for all final states f . Therefore one can view the Ci’s as effective

coupling constants and the Oi’s as the corresponding interaction vertices. Thus

one can set up the effective Hamiltonian as

Heff =
GF√

2

∑

i

V i
CKM Ci(µ,mheavy) Oi(µ) + h.c . (2.43)

Typical penguin and box diagrams for b → s transitions are displaced in Figs.

(2.4). The amplitude M is the sum over all internal up-quarks

M =
∑

i=u,c,t

VibV
∗
is Mi. (2.44)
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Using the unitarity of CKM matrix, which implies that

∑

i=u,c,t

VibV
∗
is = 0 (2.45)

together with the smallness of Vub implying VubV
∗
us << VtbV

∗
ts, we arrive at

M = VtbV
∗
ts(Mt −Mc) + VubV

∗
us(Mu −Mc) ' VtbV

∗
ts(Mt −Mc). (2.46)

Keeping in mind this and the general steps necessary to build an effective

Hamiltonian summarized above, let us write explicitly the effective Hamiltonian

describing semileptonic weak decays of B mesons in the quark level in the SM:

Heff (b → s`+`−) = −4 GF√
2

VtbV
∗
ts

10∑

i=1

Ci(µ)Oi(µ) , (2.47)

where the operator basis is given as follows [9]-[11]
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c s
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q q
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q q
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b u, c, t s

γ, Z
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γ, Z

` `

t t

(f)

Figure 2.4: Typical leading logarithmic order penguin and box diagrams in the
SM.

Current-current operators (Fig. 2.4(a)):

O1 = (s̄LαγµcLβ)(c̄Lβγ
µbLα)

O2 = (s̄LαγµcLα)(c̄Lβγ
µbLβ), (2.48)
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QCD-penguin operators (Fig. 2.4(b)):

O3 = (s̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄Lβγ
µqLβ)

O4 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄Lβγ
µqLα),

O5 = (s̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄Rβγ
µqRβ)

O6 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄Rβγ
µqRα), (2.49)

Electroweak-penguin operators (Fig. 2.4(c)):

O7 =
3

2
(s̄LαγµbLα)

∑

q=u,d,s,c,b

eq(q̄Rβγ
µqRβ) ,

O8 =
3

2
(s̄LαγµbLβ)

∑

q=u,d,s,c,b

eq(q̄Rβγ
µqRα),

O9 =
3

2
(s̄LαγµbLα)

∑

q=u,d,s,c,b

eq(q̄Lβγ
µqLβ) ,

O10 =
3

2
(s̄LαγµbLβ)

∑

q=u,d,s,c,b

eq(q̄Lβγ
µqLα). (2.50)

Magnetic-penguin operators (Fig. 2.4(d)):

O7γ =
e

16π2
s̄ σµν(mbR + msL)b Fµν ,

O8G =
gs

16π2
s̄αT

a
αβbβσ

µν(mbR + msL)Ga
µν , (2.51)

∆S = 2 and ∆B = 2 operators (Fig. 2.4(e)):

O(∆S = 2, ∆B = 2) = (s̄LαγµbLα)(s̄Lβγ
µbLβ) . (2.52)

Semi-leptonic operators (Fig. 2.4(f)):

O9 =
e

16π2
(s̄LγµbL)(¯̀γµ`) ,

O10 =
e

16π2
(s̄LγµbL)(¯̀γµγ5`) (2.53)

where L(R) = (1 ∓ γ5)/2, σµν = i
2
[γµ, γν ], α, β are SU(3) colour indices and

T a, a = 1 . . . 8 are the generators of QCD. Here Fµν and Ga
µν are the field strength

tensors of the electromagnetic and strong interactions, respectively.
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The coupling strength of the introduced effective vertices Oi is given by the

Wilson coefficients Ci(µ). Their values at a large scale µ = mW are obtained

from a “matching” of the effective with the full theory. In the SM, the Ci(mW )s

read as follows [10, 12, 13]

C1,3...6(mW ) = 0 ,

C2(mW ) = 1 ,

C7(mW ) =
3x3

t − 2x2
t

4(xt − 1)4
ln xt +

−8x3
t − 5x2

t + 7xt
24(xt − 1)3

,

C8(mW ) =
−3x2

t

4(xt − 1)4
ln xt +

−x3
t + 5x2

t + 2xt
8(xt − 1)3

,

C9(mW ) =
4

9
+

1

sin2 θW

(
− B(xt) + (1 − 4 sin2 θW )(C(xt) − D(xt))

)
,

C10(mW ) =
1

sin2 θW

(
B(xt) − C(xt)

)
, (2.54)

with x = m2
t/m

2
W and

B(xt) =
xt

4(xt − 1)2
ln xt +

xt
4(xt − 1)

,

C(xt) =
xt(3xt + 2)

8(xt − 1)2
ln xt +

xt(xt − 6)

8(xt − 1)
,

D(xt) =
x2
t (5x

2
t − 2xt − 6)

18(xt − 1)4
ln xt −

4

9
ln xt +

−19x3
t + 25x2

t

36(xt − 1)3
. (2.55)

The leading logarithmic (LL) order diagrams in the SM are subject to QCD

corrections, which are proportional to the powers of αs(mW ) ln(m2
W/m2

b) and too

large to be an expansion parameter. Therefore, to calculate them, one applies the

renormalization group equation (RGE) for the Wilson coefficients, which looks

like

µ
d

dµ
Ci(µ) =

∑

i

γji Cj(µ) , (2.56)

where γ, called the anomalous dimension matrix, indicates that in general the

operators mix under renormalization. Eq. (2.56) can be solved in perturbation

theory and this solution gives the running of the Wilson coefficients under QCD

from µ = mW (a larger scale) down to the low scale µ ≈ mb, which is a relevant

scale for B-decays. After these matching and the RGE evaluation steps, the Ci(µ)s
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can be decomposed into a leading logarithmic (LL), next-to-leading logarithmic

(NLL) and next-next-to-leading logarithmic (NNLL), etc., parts according to

Ci(µ) = C
(0)
i (µ) +

αs
4π

C
(1)
i (µ) +

α2
s

(4π)2
C

(2)
i (µ) + O(α3

s) . (2.57)

The initial values of the above RGE are the C
(0)
i (mW ), which in the lowest order in

the SM are given by Eq. (2.54). In the LL approximation, the Wilson coefficients

for the operators O1, ..., O8 are given by [13]-[17]

C
(0)
i (µ) =

8∑

j=1

kij ηaj (i = 1, ..., 6) ,

C
(0)eff
7 (µ) = η

16

23 C
(0)
7 (mW ) +

8

3

(
η

14

23 − η
16

23

)
C

(0)
8 (mW ) +

8∑

j=1

hj ηaj , (2.58)

with

η =
αs(mW )

αs(µ)
, (2.59)

where

αs(µ) =
4π

β0 ln(µ2/Λ2
QCD)

[
1 − β1 ln ln(µ2/Λ2

QCD)

β2
0 ln(µ2/Λ2

QCD)

]
, (2.60)

with β0 = 23/3 and β1 = 116/3 when number of flavors are five. The numbers

aj, kij and hj are given as

aj =
(14

23
,
16

23
,

6

23
,−12

23
, 0.4086,−0.8994, 0.1456

)
,

k1j =
(
0, 0,

1

2
,−1

2
, 0, 0, 0, 0

)
,

k2j =
(
0, 0,

1

2
,
1

2
, 0, 0, 0, 0

)
,

k3j =
(
0, 0,− 1

14
,
1

6
, 0.0510,−0.1403,−0.0113, 0.0054

)
, (2.61)

k4j =
(
0, 0,− 1

14
,−1

6
, 0.0984, 0.1214, 0.0156, 0.0026

)
,

k5j =
(
0, 0, 0, 0,−0.0397, 0.0117,−0.0025, 0.0304

)
,

k6j =
(
0, 0, 0, 0, 0.0335, 0.0239,−0.0462,−0.0112

)
,

hj =
(
2.2996,−1.088,−3

7
,− 1

14
,−0.6494,−0.038,−0.0186,−0.0057

)
.
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Table 2.4: Values of the SM Wilson coefficients at µ ∼ mb scale.

C1 C2 C3 C4 C5 C6 Ceff
7 C9 C10

−0.248 1.107 0.011 −0.026 0.007 −0.031 −0.313 4.344 −4.624

The coefficient C8(µ) does not enter the formula for b → s`+`−, and its analytic

expression can be found in ref.[14]. Since O10 does not renormalize under QCD

its coefficient C10 does not depend on µ.

Using the parameters listed in Appendix A, the numerical values of the Wilson

coefficients in the LL approximation is given in Table (2.4).

Finally, including LL as well as NLL we have

Ceff
9 = C9

+ h(u, s)
(
3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)

)

− 1

2
h(1, s)

(
4C3(µ) + 4C4(µ) + 3C5(µ) + C6(µ)

)
(2.62)

− 1

2
h(0, s)

(
C3(µ) + 3C4(µ)

)
+

2

9

(
3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)

)
,

where

h(u, s) = −8

9
ln

mb

µ
− 8

9
ln u +

8

27
+

4

9
x (2.63)

−2

9
(2 + x)|1 − x|1/2





(
ln
∣∣∣
√

1−x+1√
1−x−1

∣∣∣− iπ
)
, for x ≡ 4u2

s
< 1

2 arctan 1√
x−1

, for x ≡ 4u2

s
> 1,

h(0, s) =
8

27
− 8

9
ln

mb

µ
− 4

9
ln s +

4

9
iπ , (2.64)

with s = (p`+ + p`−)2/m2
b and u = mc

mb
. In addition, several groups has recently

evaluated the NNLL level contributions to the Wilson coefficients [45]-[52]. For

a detailed discussion of the present status of the b → s`+`− transition one can

look at ref. [53].

It should be noted here that the value of the Wilson coefficient Ceff
9 above

corresponds only to the short-distance (SD) contributions. Ceff
9 also receives

long-distance (LD) contributions due to conversion of the real c̄c into lepton pair

`+`− i.e., with the reaction chain B → γ + V (cc̄) → γ`+`−. This additional
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Table 2.5: Charmonium (c̄c) masses and widths [32].

Meson Mass (GeV) BR(V→ `+`−) Γ (MeV)

J/Ψ(1s) 3.097 6.0 × 10−2 0.088

Ψ(2s) 3.686 8.3 × 10−3 0.277

Ψ(3770) 3.770 1.1 × 10−5 23.6

Ψ(4040) 4.040 1.4 × 10−5 52

Ψ(4160) 4.159 1.0 × 10−5 78

Ψ(4415) 4.415 1.1 × 10−5 43

contributions appear as exclusive modes for which the momentum scale of the

intermediate quarks is a strong interaction scale and not the short distance scale

mW . This forces us to view the intermediate states as hadrons rather than quarks.

To calculate this LD contributions, an effective Lagrangian Lres corresponding to

these kind of cc resonances is added to the original effective Lagrangian for the

process B → γ`+`−. The resulting structure of Lres is the same as that of the

operator O9 in (2.53). It is then convenient to include the resonance contribution

by simply making the replacement

Ceff
9 (µ) → Ceff

9 (µ) + Yres . (2.65)

It is possible to parametrize the resonance c̄c contribution Yreson in Eq.(2.65)

using a Breit-Wigner shape with normalizations fixed by data given by [54]

Yres(s) = − 3

α2
em

κ
∑

Vi=J/ψ,ψ,,...

πΓ(Vi → `+`−)mVi

sm2
B − mVi

+ imVi
ΓVi

×[(3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ))] . (2.66)

There are six known resonances in the c̄c system that can contribute to the decay

modes Bs → γ`+`−. Their properties are summarized in Table (2.5).

The phenomenological parameter κ in Eq. (2.66) is usually taken as ∼ 2.3.
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CHAPTER 3

MODEL INDEPENDENT ANALYSIS OF BS → γ `+`− DECAYS

It is well known that the rare B meson decays, as being FCNC processes, are

sensitive to the structure of the standard model (SM), and its possible exten-

sions. Therefore, these decays may serve as an important tool to investigate the

new physics prior to any possible experimental clue about it. The experimental

situation concerning B physics is promising too. In addition to several experi-

ments running successfully, like the BELLE experiment at KEK and the BaBar

at SLAC, new facilities will also start to explore B physics in a near future, like

the LHC-B experiment at CERN and BTeV at FERMILAB.

Among the rare B-meson decays, the semileptonic Bs → γ `+`− (` = e, µ, τ)

decays are especially interesting due to their relative cleanliness and sensitivity

to new physics. Bs → γ `+`− decay is induced by B → `+`− one, which can

in principle serve as a useful process to determine the fundamental parameters

of the SM since the only non-perturbative quantity in its theoretical calculation

is the decay constant fBs
, which is reliably known. However, in the SM, matrix

element of B → `+`− decay is proportional to the lepton mass and therefore

corresponding branching ratio will be suppressed. Although ` = τ channel is free

from this suppression, its experimental observation is quite difficult due to low

efficiency. In this connection, it has been pointed out [55]-[62] that the radiative

leptonic B+ → `+ ν` γ (` = e, µ) decays have larger branching ratios than purely

leptonic modes. It has been shown [19, 63] that similar enhancements take place

also in the radiative decay Bs → γ`+`−in which the photon emitted from any of

the charged lines in addition to the lepton pair makes it possible to overcome the

helicity suppression. For that reason, the investigation of the Bs → γ`+`−decays

becomes interesting.
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As an exclusive process, the theoretical calculation of Bs → γ`+`−decay re-

quires the additional knowledge about the decay form factors. These are the

matrix elements of the effective Hamiltonian between the initial B and final pho-

ton states, when a photon is released from the initial quark lines, which give rise

to the so called ”structure dependent” (SD) contributions to the amplitude, and

between the B and the vacuum states for the ”internal Bremsstrahlung” (IB)

part, which arises when a photon is radiated from final leptons. Finding these

hadronic transition matrix elements is related to the nonperturbative sector of the

QCD and should be calculated by means of a nonperturbative approach. Thus,

their theoretical calculation yields the main uncertainty in the prediction of the

exclusive rare decays. The form factors for B decays into γ and a vacuum state

have been calculated in the framework of light-cone QCD sum rules in [18, 19]

and in the framework of the light front quark model in [20]. In addition, it has

been proposed a model in [21] for the B → γ form factors which obeys all the

restrictions obtained from the gauge invariance combined with the large energy

effective theory.

Various kinematical distributions of the Bs → γ`+`−decays have been studied

in many earlier works. The analysis in the framework of the SM can be found in

[19, 20, 59, 63]. The new physics effects in these decays have been studied in some

models, like minimal supersymmetric Standard model (MSSM) [22],[64]-[66] and

the two Higgs doublet model (2HDM) [67]-[70], and shown that different observ-

ables, like branching ratio, forward-backward asymmetry, etc., are very sensitive

to the physics beyond the SM. In Bs → γ`+`−decay, in addition to the branching

ratio and lepton pair forward-backward asymmetry, it is possible to study some

other experimentally observable quantities associated with the final state leptons

and photon, such as the photon and lepton polarization asymmetries. Along this

line, the polarization asymmetries of the final state lepton in Bs → γ`+`− decays

have been studied in MSSM in [22] and concluded that they can be very useful

for accurate determination of various Wilson coefficients.

In this work, we will investigate the new physics effects in the photon and
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lepton polarization asymmetries in the Bs → γ`+`−decay. In rare B meson de-

cays, the new physics effects can appear in two different ways: one way is through

new contributions to the Wilson coefficients that is already present in the SM,

and the other is through the new operators in the effective Hamiltonian which is

absent in the SM. In this work we use a most general model independent effective

Hamiltonian that combines both these approaches and contains the scalar and

tensor type interactions as well as the vector types (see Eq.(3.2) below).

This chapter is organized as follows: In Sec. 3.1, we give the most general

effective Hamiltonian for the quark level process b → s`+`−. In Sec. 3.2, we first

give the definitions of the form factors, and then introduce the corresponding

matrix element. Finally, we calculate the decay rate of the process Bs → γ`+`−.

3.1 Effective Hamiltonian

The effective Hamiltonian for b → s`+`− transition in the SM can be written

as

Heff =
αGF√

2π
VtsV

∗
tb

{
(Ceff

9 − C10) (s̄γµ L b ¯̀γµL`)

+ (Ceff
9 + C10) s̄γµ L b ¯̀γµR` − 2C7

mb

q2
s̄iσµνq

ν R b ¯̀γµ`

}
, (3.1)

where q is the momentum transfer. It is seen from Eq. (3.1) that it is not in-

cluded the right handed components of the related wave function into the effective

Hamiltonian. This follows from the fact that in the SM only left handed parts

of the wave functions enter into the weak interactions. However, to construct

a more general effective Hamiltonian going beyond the SM, one must take into

account the right handed components of the leptons and quarks together with the

left handed ones. In this way the effective Hamiltonian for b → s`+`− transition

can be written in terms of twelve model independent four-Fermi interactions as

follows [71]:

Heff =
Gα√
2π

VtsV
∗
tb

{
CSL s̄iσµν

qν

q2
L b ¯̀γµ` + CBR s̄iσµν

qν

q2
R b ¯̀γµ`

+Ctot
LL s̄LγµbL ¯̀

Lγ
µ`L + Ctot

LR s̄LγµbL ¯̀
Rγµ`R + CRL s̄RγµbR ¯̀

Lγ
µ`L
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+CRR s̄RγµbR ¯̀
Rγµ`R + CLRLR s̄LbR ¯̀

L`R + CRLLR s̄RbL ¯̀
L`R

+CLRRL s̄LbR ¯̀
R`L + CRLRL s̄RbL ¯̀

R`L + CT s̄σµνb ¯̀σµν`

+iCTE εµναβ s̄σµνb ¯̀σαβ`

}
. (3.2)

In the equation above, CX are the coefficients of the four–Fermi interactions

with X = LL,LR,RL,RR describing vector, X = LRLR,RLLR,LRRL,RLRL

scalar and X = T, TE tensor type interactions. We note that several of the

Wilson coefficients in Eq. (3.2) do already exist in the SM: CLL and CLR are in

the form Ceff
9 −C10 and Ceff

9 +C10 for the b → s`+`− decay in the SM, while the

coefficients CSL and CBR correspond to −2msC
eff
7 and −2mbC

eff
7 , respectively.

Therefore, writing

Ctot
LL = Ceff

9 − C10 + CLL ,

Ctot
LR = Ceff

9 + C10 + CLR ,

we see that Ctot
LL and Ctot

LR contain the contributions from the SM and also from

the new physics.

3.2 Matrix Elements and the Decay Rate

Having established the general form of the effective Hamiltonian, next step is

calculation of the matrix element of the Bs → γ `+`− decay, which can be obtained

as a sum of the structure-dependent, MSD, and internal Bremsstrahlung, MIB,

parts ,

M = MSD + MIB. (3.3)

This exclusive decay can receive short-distance contributions from the box,

Z, and photon penguin diagrams for b → s transition by attaching an additional

photon line to any internal or external lines. As pointed out before [19, 58],

contributions coming from the release of the free photon from any charged internal

line are strongly suppressed by a factor of m2
b/m

2
W and neglected in the following

analysis. Moreover, from helicity arguments, the contributions of the diagrams

where photon is emitted from the final charged lepton lines must be proportional
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to the lepton mass m` (` = e, µ, τ). Hence, the main contributions to this decay

come from diagrams, when photon is attached to the initial and final fermions.

When a photon is released from the initial quark lines it contributes to the so-

called ”structure dependent” (SD) part of the amplitude, MSD. Then, it follows

from Eq. (3.2) that, in order to calculate MSD, the matrix elements needed and

their definitions in term of the various form factors are as follows [58, 63]:

〈γ(k) |s̄γµ(1 ∓ γ5)b|B(pB)〉 =
e

m2
B

{
εµνλσε

∗νqλkσg(q2)

± i
[
ε∗µ(kq) − (ε∗q)kµ

]
f(q2)

}
, (3.4)

〈γ(k) |s̄σµνb|B(pB)〉 =
e

m2
B

εµνλσ
[
Gε∗λkσ + Hε∗λqσ + N(ε∗q)qλkσ

]
, (3.5)

〈γ(k) |s̄(1 ∓ γ5)b|B(pB)〉 = 0 , (3.6)

〈γ |s̄iσµνqνb|B(pB)〉 =
e

m2
B

i εµναβq
νεα∗kβG , (3.7)

and

〈γ(k) |s̄iσµνqν(1 + γ5)b|B(pB)〉 =
e

m2
B

{
εµαβσ εα∗qβkσg1(q

2)

+ i
[
ε∗µ(qk) − (ε∗q)kµ

]
f1(q

2)
}

, (3.8)

where ε∗µ and kµ are the four-vector polarization and four-momentum of the pho-

ton, respectively, pB is the momentum of the B meson, and G, H and N can

be expressed in terms of the form factors g1 and f1 by using Eqs. (3.5), (3.7)

and (3.8). To make some numerical predictions, we need the explicit forms of

the form factors g, f, g1 and f1. They are calculated in framework of light–cone

QCD sum rules in [63, 58], and also in [21] in terms of two parameters F (0) and

mF . In our work, we have used the results of [58] in which q2 dependencies of the

form factors are given by

g(q2) =
1 GeV

(
1 − q2

5.62

)2 , f(q2) =
0.8 GeV
(
1 − q2

6.52

)2
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g1(q
2) =

3.74 GeV 2

(
1 − q2

40.5

)2 , f1(q
2) =

0.68 GeV 2

(
1 − q2

30

)2 .

The matrix element describing the structure–dependent part can be obtained

from Eqs. (3.4)–(3.8)as

MSD =
αGF

4
√

2 π
VtbV

∗
ts

e

m2
B{

¯̀γµ(1 − γ5)`
[
A1εµναβε

∗νqαkβ + i A2

(
ε∗µ(kq) − (ε∗q)kµ

)]

+ ¯̀γµ(1 + γ5)`
[
B1εµναβε

∗νqαkβ + i B2

(
ε∗µ(kq) − (ε∗q)kµ

)]
(3.9)

+ i εµναβ ¯̀σµν`
[
Gε∗αkβ + Hε∗αqβ + N(ε∗q)qαkβ

]

+ i ¯̀σµν`
[
G1(ε

∗µkν − ε∗νkµ) + H1(ε
∗µqν − ε∗νqµ) + N1(ε

∗q)(qµkν − qνkµ)
]}

,

where

A1 =
1

q2

(
CBR + CSL

)
g1 +

(
Ctot
LL + CRL

)
g ,

A2 =
1

q2

(
CBR − CSL

)
f1 +

(
Ctot
LL − CRL

)
f ,

B1 =
1

q2

(
CBR + CSL

)
g1 +

(
Ctot
LR + CRR

)
g ,

B2 =
1

q2

(
CBR − CSL

)
f1 +

(
Ctot
LR − CRR

)
f ,

G = 4CTg1 , N = −4CT
1

q2
(f1 + g1) ,

H = N(qk) , G1 = −8CTEg1 ,

N1 = 8CTE
1

q2
(f1 + g1) , H1 = N1(qk) .

When photon is radiated from the lepton line we get the so-called ”internal

Bremsstrahlung” (IB) contribution, MIB. Using the expressions

< 0 | s̄γµγ5b | B(pB) > = − ifBpBµ ,

< 0 | s̄σµν(1 + γ5)b | B(pB) > = 0 ,

and conservation of the vector current, we get

MIB =
αGF

4
√

2 π
VtbV

∗
tsefBi

{
F ¯̀

(
6ε∗ 6pB
2p1k

− 6pB 6ε∗
2p2k

)
γ5`

+ F1
¯̀
[
6ε∗ 6pB
2p1k

− 6pB 6ε∗
2p2k

+ 2m`

(
1

2p1k
+

1

2p2k

)
6ε∗
]
`

}
, (3.10)
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where

F = 2m`

(
Ctot
LR − Ctot

LL + CRL − CRR

)
+

m2
B

mb

(
CLRLR − CRLLR − CLRRL + CRLRL

)
,

F1 =
m2
B

mb

(
CLRLR − CRLLR + CLRRL − CRLRL

)
. (3.11)

The next task is the calculation of the decay rate of Bs → γ `+`− decay, which is

determined from the following expression:

Γ =
(2π)4

2EB

∫ d3~p1

(2π)32E1

d3~p2

(2π)32E2

d3~k

(2π)32Eγ

|M|2 δ4(q − p1 − p2) (3.12)

where M is the matrix element of the decay. When the final state polarizations

are not measured, we must sum over their spin states by making use of the

following projection operators

∑

spin

`(p1)¯̀(p1) = p1/ − m` ,

∑

spin

`(p2)¯̀(p2) = p2/ + m` ,

∑

spin

εµε
∗
ν = −gµν (3.13)

In the center of mass (c.m.) frame of the dileptons `+`−, where we take z = cos θ

and θ is the angle between the momentum of the Bs-meson and that of `−, double

differential decay width is found to be

dΓ

dx dz
=

1

(2π)364
x v mB |M|2 , (3.14)

where x = 2Eγ/mB, v =
√

1 − 4r
1−x , r = m2

`/m
2
B and

|M|2 = C
(
|MSD|2 + |MIB|2 + 2Re(MSDM∗

IB)
)

(3.15)

with C =
∣∣∣ αGF

4
√

2π
VtbV

∗
ts e
∣∣∣
2

and

|MSD|2 =
16

mB
4

{
8 (|G1|2 + |G|2) (p1 · k) (p2 · k) + 2 m`

[
(Im[A1 G∗

1] − Im[B1 G∗
1])

(
(p1 · k) − (p2 · k)

)
+
(
Re[A2 G∗] − Re[B2 G∗]

) (
(p1 · k) − (p2 · k)

)

−
(
Im[A2 G∗

1] + Im[B2 G∗
1]
) (

(p1 · k) + (p2 · k)
)
−
(
Re[AG∗

1] + Re[B G∗
1]
)

37



(
(p1 · k)(p2 · k)

)]
(k · q) + 2

(
Re[A1 A∗

2] − Re[B1 B∗
2 ]
) (

(p1 · q) (p2 · k)

− (p1 · k) (p2 · q)
)

(k · q) + 3 m`

[(
Re[A2 H∗] − Re[B2 H∗]

) (
(p1 · q) − (p2 · q)

)

−
(
Im[A2 H∗

1 ] + Im[B2 H∗
1 ]
) (

(p1 · q) + (p2 · q)
)

(k · q) + m`

(
− Re[A2 N∗]

+ Re[B2 N∗]
)] (

(p1 · q) − (p2 · q)
)

(k · q)2 + m`

[
2 m` Re[A1 B∗

1 ]

+ 2 m` Re[A2 B∗
2 ] +

(
Im[A2 N∗

1 ] + Im[B2 N∗
1 ]
) (

(p1 · q) + (p2 · q)
)]

(k · q)2

+ 2 Re[G1 H∗
1 ]
[
2 (p1 · q) (p2 · k) + 2 (p1 · k) (p2 · q) +

(
3 m2

` − (p1 · p2)
)

(k · q)
]

+ 2 Re[GH∗]
[
2 (p1 · q) (p2 · k) + 2 (p1 · k) (p2 · q) −

(
3 m2

` + (p1 · p2)
)

(k · q)
]

+ |H1|2
[
4 (p1 · q) (p2 · q) +

(
3 m2

` − (p1 · p2)
)
q2
]
+ |H|2

[
4 (p1 · q) (p2 · q)

−
(
3 m2

` + (p1 · p2)
)
q2
]
+
(
− 2 Re[G1 N∗

1 ] − |N1|2 q2
) [

(k · q)
(
2 (p1 · q) (p2 · k)

+ 2 (p1 · k) (p2 · q) +
(
m2
` − (p1 · p2)

)
(k · q)

)
− 2 (p1 · k) (p2 · k) q2

]

+
(
|A1|2 + |A2|2 + |B1|2 + |B2|2

) [
(p1 · q) (p2 · k) (k · q) + (p1 · k)

(
(p2 · q) (k · q) − (p2 · k) q2

)]
+
(
G∗ N + GN ∗ + |N |2 q2

)

[
− 2 (p1 · q) (p2 · k) (k · q) +

(
m2
` + (p1 · p2)

)
(k · q)2 + (p1 · k)

(
− 2 (p2 · q) (k · q) + 2 (p2 · k) q2

)]
+ 2 m`

[(
− Im[A1 H∗

1 ] + Im[B1 H∗
1 ]
)

[(
(p1 · q) − (p2 · q)

)
(k · q) +

(
− (p1 · k) + (p2 · k)

)
q2
]

+
(
− Re[A1 H∗] + Re[B1 H∗]

)

[(
(p1 · q) + (p2 · q)

)
(k · q) −

(
(p1 · k) + (p2 · k)

)
q2
]]}

, (3.16)

|MIB|2 =
4

(p1 · k)2 (p2 · k)2
fB

2

{
(|F1|2 − |F |2) m2

`

[
m2
` (p1 · k)2 − 2 (p1 · p2)

(p1 · k) (p2 · k) + m2
` (p2 · k)2

]
+ (|F1|2 + |F |2)

[
− m2

` (p1 · k)2
(
(p1 · p2)

+ (p1 · k)
)

+ (p1 · k)
[
2 (p1 · p2)

2 −
(
m2
` − 2 (p1 · p2)

)
(p1 · k)

+ (p1 · k)2
]
(p2 · k) −

(
m2
` − 2 (p1 · k)

) [
(p1 · p2) + (p1 · k) (p2 · k)2

−
(
m2
` − (p1 · k)

)
(p2 · k)3

]]}
, (3.17)

and

2 Re|MIBM∗
SD| =

−8

(p1 · k) (p2 · k) m2
B

fB

{
−
[[

3 (p1 · k)2 (p2 · q)
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+ (p2 · k)
[
3 (p1 · q) (p2 · k) + (p1 · p2)

(
2 (p1 · q) − (k · q)

)
+
(
− 2 (p2 · q)

+ 3 (k · q)
)
m2
`

]
+ (p1 · k)

[
2 (p1 · p2) (p2 · q) + (p2 · k) (p2 · q) − (p1 · p2) (k · q)

+ 3 (k · q) m2
` + (p1 · q)

(
(p2 · k) − 2 m2

`

)]]
Im[F1 H∗

1 ]

]
+

[
2 (p1 · q)2 (p2 · k)2

+ (p1 · q) (p2 · k)
[
3 (p2 · k) (k · q) + (p1 · k)

(
− 4 (p2 · q) + (k · q)

)]

+ (p1 · k)2
(
2 (p2 · q)2 + 3 (p2 · q) (k · q) − 2 (p2 · k) q2

)

+ (p2 · k) (k · q)2
(
(−p1 · p2) + m2

`

)
+ (p1 · k)

[
(p2 · k) (p2 · q) (k · q)

− 2 (p2 · k)2 (q · q) + (k · q)2
(
(−p1 · p2) + m2

`

)]]
Im[F1 N∗

1 ]

−
(
(p1 · k) + (p2 · k)

)
(k · q) m`

[(
(p1 · k) + (p2 · k)

)
Re[A∗

1 F ]

+
(
(p1 · k) + (p2 · k)

)
Re[B∗

1 F ] +
(
(p1 · k) − (p2 · k)

)(
Re[A∗

1 F1] − Re[B∗
1 F1]

)]

+ m`

[[
−
[(

(p1 · k) + (p2 · k)
) [

−
(
(p1 · q) (p2 · k)

)
+ (p1 · k) (p2 · q)

]]

+
(
(p1 · k) − (p2 · k)

)
(k · q)

(
(p1 · p2) + (p1 · k) + (p2 · k) + m2

`

)]

(
Re[A∗

2 F ] − Re[B∗
2 F ]

)
+

[(
(−p1 · k) + (p2 · k)

)

[
−
(
(p1 · q) (p2 · k)

)
+ (p1 · k) (p2 · q)

]

+
(
(p1 · k) + (p2 · k)

)
(k · q)

(
(p1 · p2) + (p1 · k) + (p2 · k) − m2

`

)] (
Re[A∗

2 F1]

+ Re[B∗
2 F1]

)]
+ 2

[
− 2 (p1 · k) (p2 · k)

(
(p1 · p2) + (p2 · k)

)
+ (p2 · k)2 m2

`

+ (p1 · k)2
(
− 2 (p2 · k) + m2

`)

] (
Im[F1 G∗

1] − Re[F ∗ G]
)

−
[
− 3 (p1 · k)2 (p2 · q) + (p1 · k)

[
−
(
(p1 · q) (p2 · k)

)
− 2 (p1 · p2) (p2 · q)

− (p2 · k) (p2 · q) + (p1 · p2) (k · q) + 2 (p1 · q) m2
` + 3 (k · q) m2

`

]

+ (p2 · k)
[
− 3 (p1 · q) (p2 · k) + (p1 · p2)

(
− 2 (p1 · q) + (k · q)

)

+
(
2 (p2 · q) + 3 (k · q)

)
m2
`

]]
Re[F ∗ H] +

[
− 2 (p1 · q)2 (p2 · k)2

+ (p1 · q) (p2 · k)
[
4 (p1 · k) (p2 · q) −

(
(p1 · k) + 3 (p2 · k)

)
(k · q)

]

+ (p1 · k)2
(
− 2 (p2 · q)2 − 3 (p2 · q) (k · q) + 2 (p2 · k) q2

)

+ (p2 · k) (k · q)2
(
(p1 · p2) + m2

`

)
+ (p1 · k)

[
−
(
(p2 · k) (p2 · q) (k · q)

)
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+ 2 (p2 · k)2 q2 + (k · q)2
(
(p1 · p2) + m2

`

)]]
Re[F N ∗]

}
. (3.18)

We note that |MIB|2 term has infrared singularity due to the emission of soft

photon. In order to obtain a finite result, we follow the approach described in

[19] and impose a cut on the photon energy, i.e., we require Eγ ≥ 25 MeV, which

corresponds to detect only hard photons experimentally. This cut requires that

Eγ ≥ δ mB/2 with δ = 0.01. So, we have calculated the necessary formulae for

the study of the polarization properties of the final state photon and leptons in

Bs → γ`+`−decay to which our next two chapters are devoted.
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CHAPTER 4

PHOTON POLARIZATIONS IN BS → γ `+`− DECAY

In a radiative decay mode, like ours, the final state photon can emerge with a

definite polarization and provide another kinematical variable to study the new

physics effects [66]. Here, the rare Bs → γ `+`− decay will be studied by taking

into account the photon polarization. Although experimental measurement of

this variable would be much more difficult than that of e.g., the polarization of

the final leptons in Bs → γ `+`− decay, this is still another kinematical variable for

studying radiative decays. Therefore, it is important to investigate the sensitivity

of such ”photon polarization asymmetry” in Bs → γ `+`− decay to the new Wilson

coefficients in addition to studying the total and differential branching ratios with

polarized final state photon.

We note that in a recent work [72] it has been considered the related mode

Bs → γνν̄ with a polarized photon in a similar way and showed that the spectrum

is sensitive to the types of the interactions so that it is useful to discriminate the

various new physics effects.

In Sec.1 of this chapter, we calculate the differential decay width and the

photon polarization asymmetry for the Bs → γ `+`− decay when the photon is in

positive and negative helicity states. Sec. 2 is devoted to the numerical analysis

and discussion of our results.

4.1 Photon Polarization

In a radiative decay, when the final state photon emerges with a definite

polarization there follows the question of how sensitive the branching ratio is to

the new Wilson coefficients when the photon is in the positive or negative helicity
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states. To find an answer to this question for Bs → γ `+`− decay, we evaluate

dΓ(ε∗=ε1)
dx

and dΓ(ε∗=ε2)
dx

in the c.m. frame of `+`−, in which four-momenta and

polarization vectors, ε1 and ε2, are as follows:

PB = (EB, 0, 0, Ek) , k = (Ek, 0, 0, Ek) ,

p1 = (p, 0, p
√

1 − z2,−pz) , p2 = (p, 0,−p
√

1 − z2, pz) ,

ε1 = (0, 1, i, 0)/
√

2 , ε2 = (0, 1,−i, 0)/
√

2 , (4.1)

where EB = mB(2 − x)/2
√

1 − x, Ek = mBx/2
√

1 − x, and p = mB

√
1 − x/2.

Using the above forms, we obtain

dΓ(ε∗ = εi)

dx
=

∣∣∣∣∣
αGF

4
√

2 π
VtbV

∗
ts

∣∣∣∣∣

2
α

(2 π)3

π

4
mB ∆(εi) , (4.2)

where

∆(ε1) =
vx

3

{
4 x
(
(8r + x) |H1|2 − (4r − x) |H|2

)

− 6m` (1 − x)2Im[(A2 + A1 + B2 + B1)G
∗
1]

+
2

x
(1 − x)2(2r + x)

(
|G1|2 + |G|2 + 2Im[−G1G

∗]
)

− 12m`(1 − x)xIm[(A2 + A1 + B2 + B1)H
∗
1 ] + 4(1 − x)

(
(8r + x)Im[GH∗

1 ]

+ (4r − x)Im[G1H
∗]
)

+ 6m2
`(1 − x)2Re[(A1 + A2)(B1 + B2)]

+ m2
B(1 − x)2(x − r)

(
|A1|2 + |A2|2 + |B1|2 + |B2|2 + 2+ Re[A1A

∗
2 + B1B

∗
2 ]
)

− 6m`(1 − x)2Re[(A2 + A1 + B2 + B1)G
∗]

+ 4(1 − x)
(
(8r + x)Re[G1H

∗
1 ] − (4r − x)Re[GH∗]

)}

+
2x

(1 − x)2
f 2
B

{(
− 2vx + (1 − 4r + x2)ln[u]

)
|F |2

+ 2(1 − x)
(
2vx − (1 − 4r + x)ln[u]

)
Re[FF ∗

1 ]

+
[
2vx(4r − 1) +

(
1 + 16r2 + x2 − 4r(1 + 2x)

)
ln[u] |F1|2

]}

+ 2xfB

{(
vx + 2rln[u]

)
Im[−FH∗

1 ]

+ m` (1 − x)ln[u]Re[(A2 + A1 + B2 + B1)F
∗]

− m`

(
2vx + (1 − 4r − x)ln[u]

)
Re[(A2 + A1 + B2 + B1)F

∗
1 ]

42



− 2(v − 2rln[u]) Im[(−F1 + F )(G∗
1 + G∗)] + 2(vx − 2rln[u])Re[F1H

∗]

+
2

(1 − x)

[(
vx(1 + x) + 2r(1 − 3x)ln[u]

)
Im[F1H

∗
1 ]

− (1 + x)(vx − 2rln[u])Re[F1H
∗]
]}

, (4.3)

and

∆(ε2) =
vx

3

{
4 x
(
(8r + x) |H1|2 − (4r − x) |H|2

)

− 6m`(1 − x)2Im[(A2 − A1 + B2 − B1)G
∗
1]

+
2

x
(1 − x)2(2r + x)

(
|G1|2 + |G|2 − 2Im[−G1G

∗]
)

− 12m`(1 − x)xIm[(A2 − A1 + B2 − B1)H
∗
1 ] − 4(1 − x)

(
(8r + x)Im[GH∗

1 ]

+ (4r − x)Im[G1H
∗]
)

+ 6m2
`(1 − x)2Re[(A1 − A2)(B1 − B2)]

+ m2
B(1 − x)2(x − r)

(
|A1|2 + |A2|2 + |B1|2 + |B2|2 − 2Re[A1A

∗
2 + B1B

∗
2 ]
)

− 6m`(1 − x)2Re[(A2 − A1 + B2 − B1)G
∗]

+ 4(1 − x)
(
(8r + x)Re[G1H

∗
1 ] − (4r − x)Re[GH∗]

)}

+
2x

(1 − x)2
f 2
B

{
(−2vx + (1 − 4r + x2)ln[u]) |F |2

− 2(1 − x)(2vx − (1 − 4r + x) + ln[u])Re[FF ∗
1 ]

+
(
2vx(4r − 1) + (1 + 16r2 + x2 − 4r(1 + 2x))ln[u] |F1|2

)}

+ 2xfB

{
− (vx + 2rln[u])Im[−FH∗

1 ]

− m`(1 − x)ln[u] + Re[(A2 − A1 + B2 ± B1)F
∗]

− m`

(
2vx + (1 − 4r − x)ln[u]

)
+ Re[(A2 − A1 + B2 − B1)F

∗
1 ]

− 2(v − 2rln[u])Im[(−F1 − F )(G∗
1 − G∗)] − 2(vx − 2rln[u])Re[F1H

∗]

+
2

(1 − x)

(
(vx(1 + x) + 2r(1 − 3x)ln[u])Im[F1H

∗
1 ]

− (1 + x)(vx − 2rln[u])Re[F1H
∗]
)}

, (4.4)

where u = 1 + v/1 − v.

The effects of polarized photon can also be studied through a variable ”photon
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polarization asymmetry” [66]:

H(x) =
dΓ(ε∗=ε1)

dx
− dΓ(ε∗=ε2)

dx
dΓ(ε∗=ε1)

dx
+ dΓ(ε∗=ε2)

dx

=
∆(ε1) − ∆(ε2)

∆0

, (4.5)

where

∆(ε1) − ∆(ε2) =
4

3
x2v

{
2x(1 + 2r − x)

(−1 + x)
Im[G1G

∗] − 3m`x
(
Im[(A1 + B1)G

∗
1]

+ Re[(A2 + B2)G
∗]
)
− 6m`(1 − x)((Im[(A1 + B1)H

∗
1 ]) + 2

(
(1 + 8r − x)

Im[GH∗
1 ] − (1 − 4r − x)Im[G1H

∗]
)

+ m2
Bx
(
3r(Re[A2B

∗
1 + A1B

∗
2 ]

+ (1 − r − x)Re[B1B
∗
2 + A1A

∗
2]
)}

+ 8f 2
B

(
2v(1 − x) − (2 − 4r − x)ln[u]

)

+ 4fBx

{
2(v(x − 1) − 2rln[u])Im[FH∗

1 ] + m`xln[u]Re[(A2 + B2)F
∗]

+ m`

(
2v(x − 1) + (4r − x)ln[u]

)
Re[(A1 + B1)F

∗
1 ] + 2(v − 2rln[u])Re[F1G

∗]

− Im[FG∗
1] + 2(v(1 − x) − 2rln[u])Re[F1H

∗]

}
, (4.6)

and

∆0 = x3v

{
4m` Re[(A1 + B1)G

∗] − 4m2
BrRe[A1B

∗
1 + A2B

∗
2 ] − 4

(
|H1|2 (1 − x)

+ Re[G1H
∗
1 ]x
)(1 + 8r − x)

x2
− 4

(
|H|2 (1 − x) + Re[GH∗]x

)(1 − 4r − x)

x2

+
1

3
m2
B

(
2 Re[GN ∗] + m2

B |N |2 (1 − x)
)
(1 − 4r − x)

+
1

3
m2
B

(
2 Re[G1N

∗
1 ] + m2

B |N1|2 (1 − x)
)
(1 + 8r − x)

− 2

3
m2
B

(
|A1|2 + |A2|2 + |B1|2 + |B2|2

)
(1 − r − x)

− 4

3

(
|G|2 + |G1|2

)(1 + 2r − x)

(1 − x)
+ 2m` Im

(
[A2 + B2][6H

∗
1 (1 − x)

+ 2G∗
1x − m2

B N∗
1 x(1 − x)]

)1

x

}
+ 4fB

{
2v
[
Re[FG∗]

1

(1 − x)
− Re[FH∗]

+ m2
B Re[FN ∗] + m` Re[(A2 + B2)F

∗
1 ]
]
x(1 − x)

+ ln[u]
[
m` Re[(A2 + B2)F

∗
1 ] x(x − 4r) + 2 Re[FH∗]

(
1 − x + 2r(x − 2)

)

− 4rx Re[FG∗] + m2
B Re[FN ∗] x(x − 1) − m` Re[(A1 + B1)F

∗] x2
]}

+ 2

[
m2
BIm[F1N

∗
1 ]
(
v(1 − x) + (x − 1 − 2rx)ln[u]

)
+ Im[F1H

∗
1 ]
[
v(x − 1)
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+
1 − x − 4r(2x − 1)ln[u]

x

]
+ Im[F1G

∗
1](v − 2rln[u])

]

+ 4f 2
B

{
2v
(
|F |2 + (1 − 4r) |F1|2

)(1 − x)

x
+ ln[u]

[
|F |2

(
2 +

4r

x
− 2

x
− x

)

+ |F1|2
[
2(1 − 4r) − 2 (1 − 6r + 8r2)

x
− x

]]}
. (4.7)

The expression in Eq. (4.6) agrees with [66] for the SM case with neutral Higgs

contributions.

4.2 Numerical Analysis and Discussion

We present here our numerical analysis of the branching ratio (BR) and photon

polarization asymmetries (H) for Bs → γ`+`−decays with ` = τ, µ. We use the

input parameters given in Appendix A.

As for the values of the new Wilson coefficients, which are responsible for the

new physics beyond the SM, they are the free parameters in this work. However,

it is possible to establish ranges out of experimentally measured branching ratios

of the semileptonic rare B-meson decays B → K `+`− and B → K∗ `+`− , recently

announced by BaBar and BELLE Collaboration (See Eq. (1.2)). In addition, it is

now available an upper bound of pure leptonic rare B-decays in the B0 → µ+µ−

mode [73]:

BR(B0 → µ+µ−) ≤ 2.0 × 10−7 .

Using these available experimental data we find that the right order of magnitude

for the new Wilson coefficients is in the range −4 ≤ CX ≤ 4, assuming that they

are real. We further note that some of the new Wilson coefficients in Eq. (3.2)

appear in some well known models beyond the SM, like some MSSM scenarios,

and in literature there exists studies to establish ranges out of constraints under

various precision measurements for these coefficients (see, e.g., [74]). Our choice

for the range of the new Wilson coefficients above are also in agreement with

these calculations.
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We present the results of our analysis in a series of figures. Before their

discussion we give our SM predictions for the unpolarized BRs without LD effects

for reference:

BR(Bs → γµ+µ−) = 1.52 × 10−8 ,

BR(Bs → γτ+τ−) = 1.19 × 10−8 ,

which are in good agreement with the results of ref. [59].

In Figs. (4.1) and (4.2), we present the dependence of the BR(1) and BR(2)

for Bs → γµ+µ− decay on the new Wilson coefficients, where the superscripts

(1) and (2) correspond to the positive and negative helicity states of photon,

respectively. From these figures we see that BR(1) and BR(2) are more sensitive

to all type of the scalar interactions as compared to the vector and tensor types;

receiving the maximum contribution from the one with coefficient CRLRL and

CLRLR, respectively. From Fig. (4.2), we also observe that dependence of BR(2)

on all the new Wilson coefficients is symmetric with respect to the zero point,

while for BR(1), this symmetry is slightly lifted for the vector type interactions

(Fig.(4.1)). It follows that BR(2) decreases in the region −4 ≤ CX ≤ 0 and

tends to increase in between 0 ≤ CX ≤ +4. BR(1) exhibits a similar behavior,

except for the vector interactions with coefficients CLL, CRL and CLR: it is almost

insensitive to the existence of vector CLR type interactions and slightly increases

with the increasing values of CLL and CRL, receiving a value lower than the SM

one between −4 and 0.

Differential branching ratio can also give useful information about new physics

effects. Therefore, in Figs. (4.3)-(4.8) we present the dependence of the differ-

ential branching ratio with a polarized photon for the Bs → γ µ+µ− decay on

the dimensionless variable x = 2Eγ/mB at different values of vector, tensor and

scalar interactions with coefficients CLL, CTE and CRLRL. We observe that tensor

(scalar) type interactions change the spectrum near the large (small)-recoil limit,

x → 1 (x → 0), as seen from Figs.(4.5)-(4.6) (Figs.(4.7)-(4.8)). However, the

vector type interactions increase the spectrum in the center of the phase space
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and do not change it at the large or small-recoil limit (Figs.(4.3), (4.4)). We

also see from Figs. (4.3) and (4.4) that when CLL > 0, the related vector in-

teraction gives constructive contribution to the SM result, but for the negative

values of CLL the contribution is destructive. Therefore, it is possible to get the

information about the sign of new Wilson coefficients from measurement of the

differential branching ratio.

From Figs. (4.1)-(4.8), we also see that the branching ratios with a positive

helicity photon are greater than those with a negative helicity one. To see this

we rewrite Eq. (4.3)-(4.4) for the SM in the limit m` → 0,

∆(εi) =
m2
B

3
x2(−1 + x)2

{∣∣∣∣∣(C
eff
9 − C10)(g ± f) − 2C7

(1 − x)m2
B

mb(g1 ± f1)

∣∣∣∣∣

2

+

∣∣∣∣∣(C
eff
9 + C10)(g ± f) − 2C7

(1 − x)m2
B

mb(g1 ± f1)

∣∣∣∣∣

2}
, (4.8)

where +(−) is for i = 1(2). It obviously follows that BR(1) > BR(2). We note

that this fact can be seen more clearly from the comparison of the differential BRs

for (1) and (2) cases for the vector interactions with the coefficient CLL, given in

Figs. (4.3) and (4.4), where dBR(1)/dx is larger about four times compared to

dBR(2)/dx.

In addition to the total and differential branching ratios, for radiative decays

like ours, studying the effects of polarized photon may provide useful information

about new Wilson coefficients. For this purpose, we present the dependence of

the integrated photon polarization asymmetry H for Bs → γ µ+µ− decay on the

new Wilson coefficients in Figs. (4.9) and (4.10). We see from Fig. (4.9) that

spectrum of H is almost symmetrical with respect to the zero point for all the

new Wilson coefficients, except the CRL. The coefficient CRL, when it is between

−2 and 0, is also the only one which gives the constructive contribution to the

SM prediction of H, which we find H(Bs → γ µ+µ−) = 0.74. This behavior is

also seen from Fig. (4.10), in which we plot the differential photon polarization

asymmetry H(x) for the same decay as a function of x for the different values

of the vector interaction with coefficients CRL. From these two figures, we can

conclude that performing measurement of H at different photon energies can
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give information about the signs of the new Wilson coefficients, as well as their

magnitudes.

Note that the results presented in this work can easily be applied to the

Bs → γ τ+τ− decay. For example, in Figs. (4.11) and (4.12), we present the

dependence of the BR(1) and BR(2) for Bs → γτ+τ− decay on the new Wilson

coefficients. We observe that in contrary to the µ+µ− final state, spectrum of

BR(1) and BR(2) for τ+τ− final state is not symmetrical with respect to zero point,

except for the coefficient CTE. Otherwise, we observe three types of behavior for

BR(2) from Fig. (4.12): as the new Wilson coefficients CLRRL, CRLLR, CLL and

CRR increase, BR(2) also increases. This behavior is reversed for coefficients

CLRLR, CRLRL, CLR and CRL, i.e., BR(2) decreases with the increasing values of

these coefficients. However, situation is different for the tensor type interactions:

BR(2) decreases when CT and CTE increase from −4 to 0 and then increases in

the positive half of the range. We also observe from Fig. (4.11) that spectrum

of BR(1) is identical to that of BR(2) for the coefficients CLRLR, CLRRL, CRLLR,

CLL, CRR and CTE in between −4 ≤ CX ≤ +4. For the rest of the coefficients,

namely CRLRL, CLR, CT , it stands slightly below and almost parallel to the SM

prediction in the positive half of the range, although its behavior is the same as

BR(2) when −4 ≤ CX ≤ 0.

Finally, we present two more figures related to the photon polarization asym-

metry H for Bs → γ τ+τ− decay. Fig. (4.13) shows the dependence of the

integrated photon polarization asymmetry H on the new Wilson coefficients. We

present the differential photon polarization asymmetry H(x) for the same decay

as a function of x for the different values of the scaler interactions with coefficients

CLRRL in Fig. 5(4.14). We see from Fig. (4.13) that in contrary to the µ+µ− final

state, spectrum of H for τ+τ− final state is not symmetrical with respect to zero

point. It also follows that when 0 ≤ CX ≤ 4 the dominant contribution to H for

Bs → γ τ+τ− decay comes from CRLRL and CLR. However, for the negative part

of the range H receives constructive contributions mostly from CLRRL, as clearly

seen also from Fig. (4.14).

48



In summary, by using a most general model independent effective Hamiltonian,

which contains both scalar and tensor type interactions as well as the vector

types, the total and the differential branching ratios of the rare Bs → γ `+`−

decay have been studied by taking into account the polarization effects of the

photon. In addition, the sensitivity of ”photon polarization asymmetry” in this

radiative decay to the new Wilson coefficients has been investigated. It has been

shown that all these physical observables are very sensitive to the existence of

new physics beyond SM and their experimental measurements can give valuable

information about it.
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Figure 4.1: The dependence of the integrated branching ratio for the Bs →
γ µ+µ− decay with photon in positive helicity state on the new Wilson coefficients
with LD effects .
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Figure 4.2: The dependence of the integrated branching ratio for the Bs →
γ µ+µ− decay with photon in negative helicity state on the new Wilson coefficients
with LD effects .

50



CLL = 2
CLL = 4
CLL = 0

CLL = −2
CLL = −4

x

10
8
×

d
B

R
(1

) (
B

→
γ

µ
+

µ
−

)/
d
x

0.90.80.70.60.50.40.30.20.10

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 4.3: The dependence of the differential branching ratio for the Bs →
γ µ+µ− decay with photon in the positive helicity state on the dimensionless
variable x = 2Eγ/mB at different values of vector interaction with coefficient
CLL without LD effects.
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Figure 4.4: The same as Fig.(4.3), but with photon in the negative helicity state.
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Figure 4.5: The dependence of the differential branching ratio for the Bs →
γ µ+µ− decay with photon in the positive helicity state on the dimensionless
variable x = 2Eγ/mB at different values of tensor interaction with coefficient
CTE without LD effects.
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Figure 4.6: The same as Fig.(4.5), but with photon in the negative helicity state.
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Figure 4.7: The dependence of the differential branching ratio for the Bs →
γ µ+µ− decay with photon in the positive helicity state on the dimensionless
variable x = 2Eγ/mB at different values of scalar interaction with coefficient
CRLRL without LD effects.
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Figure 4.8: The same as Fig.(4.7), but with photon in the negative helicity state.
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Figure 4.9: The dependence of the integrated photon polarization asymmetry for
the Bs → γ µ+µ− decay on the new Wilson coefficients with LD effects.
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Figure 4.10: The dependence of the differential photon polarization asymmetry
for the Bs → γ µ+µ− decay on the dimensionless variable x = 2Eγ/mB for
different values of CRL without LD effects.
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Figure 4.11: The dependence of the integrated branching ratio for the Bs →
γ τ+τ− decay with photon in the positive helicity state on the new Wilson coef-
ficients with LD effects.
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Figure 4.12: The same as Fig.(4.11), but with photon in negative helicity state.
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Figure 4.13: The dependence of the integrated photon polarization asymmetry
for the Bs → γ τ+τ− decay on the new Wilson coefficients with LD effects.
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Figure 4.14: The dependence of the differential photon polarization asymme-
try for the Bs → γ τ+τ− decay on the dimensionless variable x = 2Eγ/mB for
different values of CLRRL without LD effects.
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CHAPTER 5

LEPTON POLARIZATIONS IN BS → γ `+`− DECAY

In the Bs → γ `+`− decay, like the effects of polarized photon, effects of the polar-

ization asymmetries of the final state leptons can also be very useful for accurate

determination of various Wilson coefficients. The final state leptons in this decay

can have longitudinal PL, transverse PT and normal PN polarizations. Here, PT

is the component of the polarization lying in the decay plane and PN is the one

that is normal to the decay plane. Since these three components contain different

combinations of Wilson coefficients they may provide independent information

about the further investigations of the SM and its possible extensions.

In this chapter, starting again with the most general model independent form

of the effective Hamiltonian given by (3.2), we calculate the analytical expressions

of the various lepton polarization asymmetries and lepton-antilepton combined

asymmetries in the next two sections. The last section is devoted to the numerical

analysis and discussion of results.

5.1 Lepton Polarization Asymmetry

We first introduce the spin projection operators given by

P− =
1

2
(1 + γ5 6S−

j ) ,

P+ =
1

2
(1 − γ5 6S+

j ) , (5.1)

for `− and `+, respectively. Here, j = L, T,N denotes the longitudinal, transverse

and normal components of the polarizations, respectively. The four vectors S±
µ j,

which satisfy

S− · p1 = S+ · p2 = 0 and S− · S− = S+ · S+ = −1, (5.2)
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are defined in the rest frame of `− and `+, respectively as

S−µ
L ≡ (0, ~e−

L ) =

(
0,

~p1

|~p1|

)
,

S−µ
N ≡ (0, ~e−

N ) =

(
0,

~k × ~p1

|~k × ~p1|

)
,

S−µ
T ≡ (0, ~e−

T ) =

(
0, ~e−

N × ~e−
L

)
,

S+µ
L ≡ (0, ~e+

L ) =

(
0,

~p2

|~p2|

)
,

S+µ
N ≡ (0, ~e+

N ) =

(
0,

~k × ~p2

|~k × ~p2|

)
,

S+µ
T ≡ (0, ~e+

T ) =

(
0, ~e+

N × ~e+
L

)
. (5.3)

The longitudinal unit vector SL is boosted to the CM frame of `+`− by Lorentz

transformation:

S−µ
L,CM =

(
|~p1|
m`

,
E` ~p1

m`|~p1|

)
,

S+µ
L,CM =

(
|~p1|
m`

,− E` ~p1

m`|~p1|

)
, (5.4)

while PT and PN are not changed by the boost since they lie in the perpendicular

directions.

PL, PT and PN in the Bs → γ`+`−decay are defined as

P∓
i (x) =

dΓ
dx

(~n∓ = ~e∓
i ) − dΓ

dx
(~n∓ = −~e∓

i )
dΓ
dx

(~n∓ = ~e∓
i ) + dΓ

dx
(~n∓ = −~e∓

i )
, (5.5)

where P∓ represents the charged lepton `∓ polarization asymmetry for i =

L, T, N . For any spin direction ~n∓ of `∓, the differential decay rate of the

Bs → γ`+`−decays can be written as

dΓ

dx
(~n∓) =

1

2

(
dΓ

dx

)

0

[
1 +

(
P∓
L ~e∓

L + P∓
T ~e∓

T + P∓
N~e∓

N

)
· ~n∓

]
, (5.6)

where

(
dΓ
dx

)

0

is the decay rate when the final state polarizations are not measured

and it is equivalent to ∆0 in Eq. (4.7).
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After some lengthy algebra, we obtain the following expressions for the polar-

ization components of the `± leptons in Bs → γ`+`−decays:

P+
L =

1

6v ∆0

{
xv3

[
m3
Bx2(1 − x)

(
12r + (1 − x)(v2 − 1)

)
Im[(A2 − B2)N

∗
1 ]

√
r

+ 4m2
Bx2(1 − x)

(
(|A1|2 + |A2|2 − |B1|2 − |B2|2) − Im[GN ∗

1 ] + Im[G1N
∗]
)

− 24x(1 − x)
(
Im[G1H

∗] − Im[GH∗
1 ]
)

+ 4(1 − x)2
(
− 12Im[H1H

∗]

+ m4
Bx2Im[N1N

∗]
)

+ 16x2Im[(−G − mB

√
rA2)G

∗
1]

+
mBx2

(
− 12r + (1 − x)(v2 − 1)

)(
Im[B2G

∗
1] − Re[(−A1 + B1)G

∗]
)

√
r

−
mBx2

(
12r + (1 − x)(v2 − 1)

)(
Im[(A1 + B1)G

∗
1] + Re[(A2 + B2)G

∗]
)

√
r

+ 24mB

√
r(1 − x)(−x)

(
− 2Im[(B2 − A2)H

∗
1 ] + Re[(A2 + B2)H

∗]
)

− m3
Bx2(1 − x)2(v2 − 1)Re[(A2 + B2)N

∗]√
r

]

−
48f 2

B

(
1 + (1 − x)2 − 4r(2 − x)

)(
(1 − x)v + (2r − 1 + x)ln[u]

)
Re[F1F

∗]

(−x)(1 − x)

+ 24fBln[u]

[
2
(
− 1 + x + 2r(2 − x)

)
Im[FH∗

1 ] − ml

(1 − x)
(2r − 1 + x)x2

(
Re[(A1 − B1)F

∗] − Re[(A2 − B2)F
∗
1 ]
)

+
2mlr

(1 − x)
x
(
− xRe[(A1 + B1)F

∗
1 ]

+ (2 − x)Re[(A2 + B2)F
∗]
)

+
4r

(1 − x)
x
(
Im[FG∗

1] + (4r − 1)Re[F1G
∗]
)

− 2(4r − 1)(1 − x)v2Re[F1H
∗] − m2

Bx
(
(−1 + x)Im[FN ∗

1 ]

+
(
1 − x − 2r(2 − x)

)
Re[F1N

∗]
)]

+ 24fBv

[
− 2xIm[F (G1

+ m2
BN1 − (1 − x)H1)

∗] − mlx
2Re[(A1 − A2 + B1)F

∗
1 ]

− mlx
2Re[A1F

∗ + B2F
∗
1 ] − x

(
− 2(1 − 4r)Re[F1G

∗]

+ mlRe[
(
− (2 − x)A2 − xB1

)
F ∗]

)
+ x

(
ml(2 − x)Re[B2F

∗]

− 2(1 − x)v2Re[F1H
∗] + 2m2

B

(
(1 − x) − 2r(2 − x)

)
Re[F1N

∗]

)]}
, (5.7)

P−
L =

1

6v ∆0

{
xv3

[
−

m3
Bx2(1 − x)

(
12r + (1 − x)(v2 − 1)

)
Im[(A2 − B2)N

∗
1 ]

√
r
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+ 4m2
Bx2(1 − x)

(
− (|A1|2 + |A2|2 − |B1|2 − |B2|2) − Im[GN ∗

1 ]

+ Im[G1N
∗]
)
− 24x(1 − x)

(
Im[G1H

∗] − Im[GH∗
1 ]
)

+ 4(1 − x)2

(
− 12Im[H1H

∗] + m4
B(−x)2Im[N1N

∗]
)

+ 16(−x)2Im[(−G + mB

√
rA2)G

∗
1]

−
mB(−x)2

(
− 12r + (1 − x)(v2 − 1)

)(
Im[B2G

∗
1] − Re[(−A1 + B1)G

∗]
)

√
r

−
mBx2

(
12r + (1 − x)(v2 − 1)

)(
Im[(A1 + B1)G

∗
1] + Re[(A2 + B2)G

∗]
)

√
r

− 24mB

√
rx(1 − x)

(
2Im[(B2 − A2)H

∗
1 ] + Re[(A2 + B2)H

∗]
)

− m3
Bx2(1 − x)2(v2 − 1)Re[(A2 + B2)N

∗]√
r

]

−
48f 2

B

(
1 + (1 − x)2 − 4r(2 − x)

)(
(1 − x)v + (2r − 1 + x)ln[u]

)
Re[F1F

∗]

(−x)(1 − x)

+ 24fBln[u]

[
2
(
− 1 + x + 2r(2 − x)

)
Im[FH∗

1 ] +
ml

(1 − x)
(2r − 1 + x)x2

(
Re[(A1 − B1)F

∗] − Re[(A2 − B2)F
∗
1 ]
)

+
2mlr

(1 − x)
x
(
− xRe[(A1 + B1)F

∗
1 ]

+ (2 − x)Re[(A2 + B2)F
∗]
)

+
4r

(1 − x)
x
(
Im[FG∗

1] + (4r − 1)Re[F1G
∗]
)

− 2(4r − 1)(1 − x)v2Re[F1H
∗] − m2

Bx

(
(−1 + x)Im[FN ∗

1 ]

+
(
(1 − x) − 2r(2 − x)

)
Re[F1N

∗]

)]
+ 24fBv

[
− 2xIm[F

(
G1 + m2

BN1

− (1 − x)H1

)∗
] − mlx

2Re[(A1 − A2 + B1)F
∗
1 ]

+ mlx
2Re[A1F

∗ + B2F
∗
1 ] − x

(
− 2(1 − 4r)Re[F1G

∗]

+ mlRe[
(
− (2 − x)A2 + xB1

)
F ∗]

)
+ x

(
ml(2 − x)Re[B2F

∗]

− 2(1 − x)v2Re[F1H
∗] + 2m2

B

(
(1 − x) − 2r(2 − x)

)
Re[F1N

∗]

)]}
, (5.8)

P+
T =

1

∆0

{(
2
√

r −
√

(1 − x)
)

(1 − x)v
xfBmBπ

[
(1 − x)v2(2 − x)Re[(A1 − B1)F

∗]

− x
(
4r + (1 − x)

)
Re[(A2 + B2)F

∗] +
(
4r(−2 + 3x)

)

+ (1 − x)(2 − x)Re[(A1 + B1)F
∗
1 ] − (1 − x)v2xRe[(A2 − B2)F

∗
1 ]

− 8
√

r
[
Im[F

(
− G1x − 2(1 − x)H1

)∗
] − (1 − 4r)Re[F1G

∗]
]
/mB

]
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+
πv

4
√

(1 − x)
x2

[
8
√

r Im[(−G1x + 2sH1)G
∗] + 2mB(1 − x)

(
− (4r + 1 − x)

Im[(A1 + B1)H
∗
1 ] − (4r − 1 + x))Re[(A1 − B1)H

∗]
)
− 2m2

B

√
r(−x)(1 − x)

Re[(A1 + B1)(A2 + B2)
∗] + mB(−x)

(
− (1 − x − 4r)(Im[(A2 − B2)G

∗
1]

+ Re[(A1 − B1)G
∗]) + (4r + 1 − x)(Im[(A1 + B1)G

∗
1] + Re[(A2 + B2)G

∗])
)]

+ 4πvf 2
B(4r − 1)Re[F1F

∗]

}
, (5.9)

P−
T =

1

∆0

{(
2
√

r −
√

(1 − x)
)

(1 − x)v
xfBmBπ

[
(x − 1)v2(2 − x)Re[(A1 − B1)F

∗]

− x
(
4r + (1 − x)

)
Re[(A2 + B2)F

∗] +
(
4r(−2 + 3x)

)
+ (1 − x)(2 − x)

Re[(A1 + B1)F
∗
1 ] + (1 − x)v2xRe[(A2 − B2)F

∗
1 ]

− 8
√

r
[
Im[F

(
− G1x − 2(1 − x)H1

)∗
] − (1 − 4r)Re[F1G

∗]
]
/mB

]

+
πv

4
√

(1 − x)
x2

[
8
√

r Im[(−G1x + 2sH1)G
∗] + 2mB(1 − x)

(
(−4r − 1 + x)Im[(A1 + B1)H

∗
1 ] + (4r − 1 + x)

)
Re[(A1 − B1)H

∗])

+ 2m2
B

√
rx(1 − x)Re[(A1 + B1)(A2 + B2)

∗]

− mBx
[
1 − x − 4r

(
Im[(A2 − B2)G

∗
1]

+ Re[(A1 − B1)G
∗]
)

+ (4r + 1 − x)
(
Im[(A1 + B1)G

∗
1]

+ Re[(A2 + B2)G
∗]
)]]

+ 4πvf 2
B(4r − 1)Re[F1F

∗]

}
, (5.10)

P+
N =

π

4∆0

x

{
x
√

(1 − x)v2

[
− 2m2

B

√
rx
(
Im[A1B

∗
2 ] + Im[A2B

∗
1 ]
)

+ 8
√

r
(
Im[GH∗]

− Im[G1H
∗
1 ]
)
− 2mB(1 − x)

(
Im[(A1 + B1)H

∗] + Re[(A1 − B1)H
∗
1 ]
)

− mBx
(
Im[(A1 − A2 + B1 + B2)G

∗] − Re[(−A1 + A2 + B1 + B2)G
∗
1]
)]

− 4
(
2
√

r −
√

(1 − x)
)
mBfB

[
(2 − x)Im[(A1 + B1)F

∗]

+ (2 − x − 8r)Im[(A1 − B1)F
∗
1 ] − xIm[(A2 − B2)F

∗] − xIm[(A2 + B2)F
∗
1 ]

+ 8
√

r
(
Im[F (G − H)∗] + Re[F1H

∗
1 ]
)
/mB

]}
, (5.11)
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and

P−
N =

π

4∆0

x

{
x
√

(1 − x)v2

[
2m2

B

√
rx
(
Im[A1B

∗
2 ] + Im[A2B

∗
1 ]
)

+ 8
√

r
(
Im[GH∗]

− Im[G1H
∗
1 ]
)
− 2mB(1 − x)

(
Im[(A1 + B1)H

∗]

− Re[(A1 − B1)H
∗
1 ]
)
− mBx

(
Im[(A1 + A2 + B1 − B2)G

∗]

− Re[(A1 + A2 − B1 + B2)G
∗
1]
)]

− 4
(
2
√

r −
√

(1 − x)
)
mBfB

[
(2 − x)

Im[(A1 + B1)F
∗] − (2 − x − 8r)Im[(A1 − B1)F

∗
1 ]

+ xIm[(A2 − B2)F
∗] − xIm[(A2 + B2)F

∗
1 ]

+ 8
√

r
(
Im[F (G − H)∗] + Re[F1H

∗
1 ]
)
/mB

]}
, (5.12)

where u = 1 + v/1 − v.

From Eqs. (5.7)-(5.12), we see that in the limit m` → 0, longitudinal polar-

ization asymmetry for the Bs → γ`+`−decay is only determined by the scalar

and tensor interactions, while transverse and normal components receive contri-

butions mainly from the tensor and scalar interactions, respectively. Therefore,

experimental measurement of these observables may provide important hints for

the new physics beyond the SM.

5.2 Lepton Anti-lepton Combined Asymmetries

One can also obtain useful information about new physics by performing a

combined analysis of the lepton and antilepton polarizations. In an earlier work

along this line, the combinations P−
L +P+

L , P−
T −P+

T and P−
N +P+

N were considered

for the inclusive B → Xsτ
+τ− decay [75], because it was argued that within the

SM P−
L +P+

L = 0, P−
T −P+

T ≈ 0 and P−
N +P+

N = 0 so that any deviation from these

results would be a definite indication of new physics. Later same discussion was

done in connection with the exclusive processes B → K (∗)`+`− and shown that

within the SM the above-mentioned combinations of the `+ and `− polarizations

vanish only at zero lepton mass limit [76]. In [65], the same combinations of the

lepton and antilepton polarizations were analyzed in for Bs → γ`+`−decay within
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the MSSM model and concluded that the results quoted in earlier works that these

quantities identically vanish in the SM was a process dependent statement.

Now, we would like to analyze the same combinations of the various polar-

ization asymmetries in a model independent way and discuss the possible new

physics effects through these observables.

For P−
L + P+

L , we find from Eq. (5.7) and (5.8) that

P−
L + P+

L =
1

3v ∆0

{
xv3

(
4m2

Bx2(1 − x)
(
Im[G1N

∗] − Im[GN ∗
1 ]
)

− 24x(1 − x)(Im[G1H
∗] − Im[GH∗

1 ]) + 4(1 − x)2(−12Im[H1H
∗]

+ m4
Bx2Im[N1N

∗]) + 16x2Im[−GG∗
1]

− mBx2(12r + (1 − x)(v2 − 1))(Im[(A1 + B1)G
∗
1] + Re[(A2 + B2)G

∗])√
r

+ 24mB

√
r(−x)(1 − x)Re[(A2 + B2)H

∗]

+
m3
Bx2(1 − x)2(v2 − 1)Re[(A2 + B2)N

∗]√
r

)

− 48f 2
B(1 + (1 − x)2 − 4r(2 − x))((1 − x)v + (2r − 1 + x)ln[u])Re[F1F

∗]

−x(1 − x)

+ 24fBln[u]

(
2(−1 + x + 2r(2 − x))Im[FH∗

1 ] +
4r

(1 − x)
x(Im[FG∗

1]

+ (4r − 1)Re[F1G
∗]) +

2mlr

(1 − x)
x
(
− xRe[(A1 + B1)F

∗
1 ]

+ (2 − x)Re[(A2 + B2)F
∗]
)
− 2(4r − 1)(1 − x)v2Re[F1H

∗]

− m2
Bx(−(1 − x)Im[FN ∗

1 ] + ((1 − x) − 2r(2 − x))Re[F1N
∗])

)

+ 24fBv((1 − x) − 1)

(
2Im[F (G1 + (1 − x)(m2

BN1 − H1))
∗]

+ mlxRe[(A1 + B1)F
∗
1 ] − 2

(
(1 − 4r)Re[F1G

∗] − (1 − x)v2Re[F1H
∗]
)

− ml(2 − x)Re[(A2 + B2)F
∗] − 2((1 − x) − 2r(2 − x))m2

BRe[F1N
∗]

)}
.(5.13)

We now consider P−
T − P+

T . It reads from Eq. (5.9) and (5.10) as

P−
T − P+

T = −2πv

∆0

mBx

{(
2
√

r −
√

(1 − x)
)
fB
[
(2 − x)

Re[(A1 − B1)F
∗] − xRe[(A2 − B2)F

∗
1 ]
]

− 1

4
√

(1 − x)
x

[
2(1 − x)(4r − 1 + x)Re[(A1 − B1)H

∗]
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− x
[
(1 − x − 4r)

(
Im[(A2 − B2)G

∗
1] + Re[(A1 − B1)G

∗]
)]]}

. (5.14)

Finally, for P−
N + P+

N , we get from Eq, (5.11) and (5.12)

P−
N + P+

N = − π

2∆0

xmB

{
− x

√
(1 − x)v2

[
8
√

r
(
Im[GH∗]

− Im[G1H
∗
1 ]
)
/mB − 2(1 − x)

(
Im[(A1 + B1)H

∗]
)

− x
(
Im[(A1 + B1)G

∗] − Re[(A2 + B2)G
∗
1]
)]

− 4
(
2
√

r −
√

(1 − x)
)
fB

[
(2 − x)Im[(A1 + B1)F

∗] − xIm[(A2 + B2)F
∗
1 ]

+ 8
√

r
(
Im[F (G − H)∗] + Re[F1H

∗
1 ]
)
/mB

]}
. (5.15)

We can now easily obtain from Eq. (5.13)-(5.15) that sum of the longitudinal

and normal polarization asymmetries of `+ and `− and the difference of transverse

polarization asymmetry for Bs → γ`+`−decay do not vanish in the SM, but given

by

(P−
L + P+

L )SM =
64fB

(1 − x)v
m2
`(2 − x)x

(
(1 − x)v

− 2rln[u]
)
Re
[
C10

(
Ceff

9 f − 2Ceff
7 mb

q2
f1

)∗]
,

(P−
T − P+

T )SM = 16fBπm`v
(
1 − (1 − x)2

)(
2
√

r −
√

(1 − x)
)
|C10|2 g ,

(P−
N + P+

N )SM = 16fBπ mBm`(2 − x)(−x)
(
2
√

r −
√

(1 − x)
)

Im
[
C10

(
Ceff

9 g − 2Ceff
7 mb

q2
g1

)∗]
, (5.16)

which do not coincide with those given in [65], although our conclusion that

within the SM, P−
L +P+

L = 0, P−
T −P+

T ≈ 0 and P−
N +P+

N = 0 at only zero lepton

mass limit, does.

Before giving our numerical results and their discussion, we like to note a

final point about their calculations. As seen from the expressions of the lepton

polarizations given by Eqs. (5.13)-(5.15), they are functions of x as well as the

new Wilson coefficients. Thus, in order to investigate the dependencies of these

observables on the new Wilson coefficients, we eliminate the parameter x by

performing its integration over the allowed kinematical region. In this way we
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obtain the average values of the lepton polarizations, which are defined by

〈Pi〉 =

∫ δ
1−(2m`/mB)2 Pi(x) dΓ

dx
dx

∫ δ
1−(2m`/mB)2

dΓ
dx

dx
. (5.17)

As we noted in Sec. 3.2, the part of dΓ/dx in Eqn. (5.17) which receives contri-

bution from the |MIB|2 term has infrared singularity due to the emission of soft

photon. To obtain a finite result from these integrations, we follow the approach

described in [19] and impose a cut on the photon energy, i.e., we require Eγ ≥ 25

MeV, which corresponds to detect only hard photons experimentally. This cut

implies that Eγ ≥ δ mB/2 with δ = 0.01.

5.3 Numerical Analysis

We present the results of our analysis in a series of figures. We use the input

parameters given in Appendix A. Before the discussion of these figures, we give

our SM predictions for the longitudinal, transverse and the normal components

of the lepton polarizations for Bs → γ`+`−decay for µ (τ) channel for reference:

< P−
L > = −0.850 (−0.227) ,

< P−
T > = −0.065 (−0.190) ,

< P−
N > = −0.014 (−0.061) .

In Figs. (5.1) and (5.2), we present the dependence of the averaged lon-

gitudinal polarization < P−
L > of `− and the combination < P−

L + P+
L > for

Bs → γµ+µ− decay on the new Wilson coefficients. From these figures we see

that < P−
L > is strongly dependent on scalar type interactions with coefficient

CRLRL and CLRRL, and quite sensitive to the tensor type interactions, while the

combined average < P−
L +P+

L > is mainly determined by scalar interactions only.

The fact that values of < P−
L > becomes substantially different from the SM

value (at CX = 0) as CX becomes different from zero indicates that measurement

of the longitudinal lepton polarization in Bs → γµ+µ− decay can be very useful

to investigate new physics beyond the SM. We note that in Fig. (5.2), we have
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not explicitly exhibit the dependence on vector type interactions since we have

found that < P−
L + P+

L > is not sensitive them at all. This is what is already

expected since vector type interactions are cancelled when the longitudinal polar-

ization asymmetry of the lepton and antilepton is considered together. We also

observe from Fig. (5.2) that < P−
L +P+

L > becomes almost zero at CX = 0, which

confirms the SM result, and its dependence on CX is symmetric with respect to

this zero point. It is interesting to note also that < P−
L + P+

L > is positive for

all values of CRLRL and CLRRL, while it is negative for remaining scalar type

interactions .

Figs. (5.3) and (5.4) are the same as Figs. (5.1) and (5.2), but for the

Bs → γτ+τ− decay. Similar to the muon case, < P−
L > is sensitive to scalar type

interactions, but all type. It is an decreasing (increasing) function of CRLRL and

CRLLR (CLRRL and CLRLR). The value of < P−
L > is positive when CRLRL

<∼ −1,

CRLLR
<∼ −2, CLRRL

>∼ 1 and CLRLR
>∼ 2. As seen from Fig. (5.4) that the

behavior of the combined average < P−
L +P+

L > for Bs → γτ+τ− decay is different

from the muon case in that it changes sing for a given scalar type interaction:

e.g., < P−
L + P+

L >> 0 when CRLRL, CRLLR
<∼ 0, while < P−

L + P+
L >< 0 when

CRLRL, CRLLR
>∼ 0. Therefore, it can provide valuable information about the new

physics to determine the sign and the magnitude of < P−
L > and < P−

L + P+
L >.

In Figs. (5.5) and (5.6), the dependence of the averaged transverse polariza-

tion < P−
T > of `− and the combination < P−

T −P+
T > for Bs → γµ+µ− decay on

the new Wilson coefficients are presented. We see from Fig. (5.5) that < P−
T >

strongly depends on the scalar interactions with coefficient CRLRL and CLRRL

and quite weakly on the all other Wilson coefficients. It is also interesting to note

that < P−
T > is positive (negative) for the negative (positive) values of CLRRL,

except a small region about the zero values of the coefficient, while its behavior

with respect to CRLRL is opposite. As being different from < P−
T > case, in the

combination < P−
T −P+

T > there appears strong dependence on scalar interaction

with coefficients CRLLR and CLRLR too, as well as on CRLRL and CLRRL. It is

also quite sensitive to the tensor interaction with coefficient CT .
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Figs. (5.7) and (5.8) are the same as Figs. (5.5) and (5.6), but for the

Bs → γτ+τ− decay. As in the muon case, for τ channel too, the dominant

contribution to the transverse polarization comes from the scalar interactions,

but it exhibits a more sensitive dependence to the remaining types of interactions

as well than the muon case. As seen from Fig. (5.8) that < P−
T −P+

T > is negative

for all values of the new Wilson coefficients, while < P−
T > again changes sign

depending on the change in the new Wilson coefficients: e.g., < P−
T >> 0 only

when CLRRL
<∼ −2 and CRLRL, CLR

>∼ 2. Remembering that in SM in massless

lepton case, < P−
T >≈ 0 and < P−

T −P+
T >≈ 0, determination of the sign of these

observables can give useful information about the existence of new physics.

In Figs. (5.9) and (5.10), we present the dependence of the averaged normal

polarization < P−
N > of `− and the combination < P−

N + P+
N > for Bs → γµ+µ−

decay on the new Wilson coefficients. We observe from these figures that behavior

of both < P−
N > and < P−

N + P+
N > are determined by tensor type interactions

with coefficient CTE. They are both positive (negative) when CTE
<∼ 0 (CTE

>∼ 0).

Figs. (5.11) and (5.12) are the same as Figs. (5.9) and (5.10), but for the

Bs → γτ+τ− decay. As being different from the muon case, < P−
N > for τ channel

is also sensitive to the vector type interaction with coefficient CLL, as well as the

tensor types and it is negative for all values of the new Wilson coefficients. As

for the combination < P−
N + P+

N > for τ channel, it is negative too for all values

of CX , except for CTE
<∼ −2.

In summary, by using the general model independent form of the effective

Hamiltonian, the sensitivity of the longitudinal, transverse and normal polar-

izations of `±, as well as lepton-antilepton combined asymmetries, on the new

Wilson coefficients have been investigated. It has been shown that all physical

observables discussed are very sensitive to the existence of new physics beyond

SM and their experimental measurements can give valuable information about it,

as in the photon case given in Chapter 4.
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Figure 5.1: The dependence of the averaged longitudinal polarization < P−
L > of

`− for the Bs → γ µ+µ− decay on the new Wilson coefficients .

CRLLR

CRLRL

CLRLR

CLRRL

CTE

CT

CX

<
P

− L
+

P
+ L

>
(B

→
γ

µ
+

µ
−

)

420-2-4

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

Figure 5.2: The dependence of the combined averaged longitudinal lepton polar-
ization < P−

L + P+
L > for the Bs → γ µ+µ− decay on the new Wilson coefficients

.
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Figure 5.3: The same as Fig.(5.1), but for the Bs → γ τ+τ− decay .
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Figure 5.4: The same as Fig.(5.2), but for the Bs → γ τ+τ− decay.
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Figure 5.5: The dependence of the averaged transverse polarization < P−
T > of `−

for the Bs → γ µ+µ− decay on the new Wilson coefficients. The line convention
is the same as before.
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Figure 5.6: The dependence of the combined averaged transverse lepton polar-
ization < P−

T −P+
T > for the Bs → γ µ+µ− decay on the new Wilson coefficients.

The line convention is the same as before.
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Figure 5.7: The same as Fig.(5.5), but for the Bs → γ τ+τ− decay.
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Figure 5.8: The same as Fig.(5.6), but for the Bs → γ τ+τ− decay.
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Figure 5.9: The dependence of the averaged normal polarization < P−
N > of `−

for the Bs → γ µ+µ− decay on the new Wilson coefficients .
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Figure 5.10: The dependence of the combined averaged normal lepton polariza-
tion < P−

N + P+
N > for the Bs → γ µ+µ− decay on the new Wilson coefficients.

72



CRLLR

CRLRL

CLRLR

CLRRL

CLR

CRL

CRR

CTE

CT

CLL

CX

<
P

− N
>

(B
→

γ
τ

+
τ
−

)

420-2-4

0

-0.025

-0.05

-0.075

-0.1

Figure 5.11: The same as Fig.(5.10), but for the Bs → γ τ+τ− decay.
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Figure 5.12: The same as Fig. (5.10), but for the Bs → γ τ+τ− decay.
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CHAPTER 6

DISCUSSION AND CONCLUSION

It has been realized for a long time that rare B-meson decays induced by the

FCNC are one of the most promising fields in particle physics. They comprise

very useful probes for obtaining information about the fundamental parameters of

the SM and testing its predictions at loop level. At the same time rare decays can

also serve as good probes for establishing new physics beyond the SM, such as the

2HDM, minimal supersymmetric extension of the SM, etc., since the contributions

from these new models and the SM arise at the same order in perturbation theory.

The experimental situation concerning B-physics is also drastically changing

since the first observation of radiative penguin mediated processes, in both the

exclusive B → K∗γ [77] and inclusive B → Xsγ [78] channels. There are now

several B physics experiments running and, in the upcoming years, new facilities

will start to measure the decays we have discussed in this work and several others

with increasing sensitivity.

Within this thesis, we have studied the radiative rare Bs → γ`+`− decay

by using the most general model independent effective Hamiltonian. Our work

mainly consists of two parts: In the fist part, we have studied Bs → γ`+`− decay

by taking into account the polarization of final photon. We have investigated the

sensitivity of photon polarization asymmetry H(x) to the new Wilson coefficients,

in addition to the study of the total and differential branching ratios when the

photon is in the positive and negative helicity state, BR(1,2) and dBR(1,2)(x)/dx.

The second part of the thesis has been devoted to the study of the possible new

physics effects in the lepton polarization asymmetries in the Bs → γ`+`− decay.

The sensitivity of the longitudinal, transverse and normal polarizations of the

leptons, as well as lepton-antilepton combined asymmetries, on the new Wilson
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coefficients have been investigated. The main conclusions that can be extracted

from our analysis can be summarized as follows:

• BR(1) and BR(2) are more sensitive to all type of the scalar interactions as

compared to the vector and tensor types; receiving the maximum contribu-

tion from the one with coefficient CRLRL and CLRLR, respectively. Depen-

dence of BR(2) on all the new Wilson coefficients is symmetric with respect

to the zero point, while for BR(1), this symmetry is slightly lifted for the

vector type interactions.

• Tensor (scalar) type interactions change the spectrum of dBR(1,2)(x)/dx

near the large (small)-recoil limit, x → 1 (x → 0). However, the vector

type interactions increase the spectrum in the center of the phase space

and do not change it at the large or small-recoil limit. When CLL > 0, the

related vector interaction gives constructive contribution to the SM result,

but for the negative values of CLL the contribution is destructive. Therefore,

it is possible to get the information about the sign of new Wilson coefficients

from measurement of the differential branching ratio.

• Spectrum of H is almost symmetrical with respect to the zero point for all

the new Wilson coefficients, except for CRL. The coefficient CRL, when it is

between −2 and 0, is also the only one which gives the constructive contri-

bution to the SM prediction of H, which we find H(Bs → γ µ+µ−) = 0.74.

This behavior is also seen in the differential photon polarization asymmetry

H(x) for the different values of the vector interaction with coefficients CRL.

From these considerations we can conclude that performing measurement

of H at different photon energies can give information about the signs of

the new Wilson coefficients, as well as their magnitudes.

• < P−
L > is strongly dependent on scalar type interactions with coefficients

CRLRL and CLRRL, and quite sensitive to the tensor type interactions, while

the combined average < P−
L +P+

L > is mainly determined by scalar interac-

tions only. The fact that values of < P−
L > become substantially different
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from the SM value (at CX = 0) as CX becomes different from zero indicates

that measurement of the longitudinal lepton polarization in Bs → γµ+µ−

decay can be very useful to investigate new physics beyond the SM. In ad-

dition we have found that < P−
L + P+

L > is not sensitive on vector type

interactions at all. This is what is already expected since vector type in-

teractions are cancelled when the longitudinal polarization asymmetry of

the lepton and antilepton is considered together. We have also noted that

< P−
L + P+

L > becomes almost zero at CX = 0, which confirms the SM

result, and its dependence on CX is symmetric with respect to this zero

point. It is interesting to note also that < P−
L + P+

L > is positive for all

values of CRLRL and CLRRL, while it is negative for remaining scalar type

interactions .

• Similar to the muon case, for τ channel < P−
L > is sensitive to scalar type

interactions also, but all type. It is an decreasing (increasing) function of

CRLRL and CRLLR (CLRRL and CLRLR). The value of < P−
L > is positive

when CRLRL
<∼ −1, CRLLR

<∼ −2, CLRRL
>∼ 1 and CLRLR

>∼ 2. The behavior

of the combined average < P−
L + P+

L > for Bs → γτ+τ− decay is different

from the muon case in that it changes sing for a given scalar type interaction:

e.g., < P−
L + P+

L >> 0 when CRLRL, CRLLR
<∼ 0, while < P−

L + P+
L >< 0

when CRLRL, CRLLR
>∼ 0. Therefore, it can provide valuable information

about the new physics to determine the sign and the magnitude of < P−
L >

and < P−
L + P+

L >.

• For τ channel, < P−
T > strongly depends on the scalar interactions with

coefficient CRLRL and CLRRL and quite weakly on all the other Wilson

coefficients. It is also interesting to note that < P−
T > is positive (negative)

for the negative (positive) values of CLRRL, except a small region about

the zero values of the coefficient, while its behavior with respect to CRLRL

is opposite. As being different from < P−
T > case, in the combination

< P−
T − P+

T > there appears strong dependence on scalar interaction with
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coefficients CRLLR and CLRLR too, as well as on CRLRL and CLRRL. It is

also quite sensitive to the tensor interaction with coefficient CT .

• As in the muon case, for τ channel too, the dominant contribution to the

transverse polarization comes from the scalar interactions, but it exhibits

a more sensitive dependence to the remaining types of interactions as well

than the muon case. < P−
T − P+

T > is negative for all values of the new

Wilson coefficients, while < P−
T > again changes sign depending on the

change in the new Wilson coefficients: e.g., < P−
T >> 0 only when CLRRL

<∼

−2 and CRLRL, CLR
>∼ 2. Remembering that in SM in massless lepton case,

< P−
T >≈ 0 and < P−

T − P+
T >≈ 0, determination of the sign of these

observables can give useful information about the existence of new physics.

• Behavior of both < P−
N > and < P−

N +P+
N > are determined by tensor type

interactions with coefficient CTE for τ channel. They are both positive

(negative) when CTE
<∼ 0 (CTE

>∼ 0).

In conclusion, it has been shown that all these physical observables are very

sensitive to the existence of new physics beyond the SM and their investigation

can give valuable information about its parameters.
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[58] T. Aliev, A. Özpineci and M. Savci, Phys. Lett. B393 (1997) 143.

[59] T. M. Aliev, N. K. Pak, and M.Savcı, Phys. Lett. B 424 (1998) 175.

[60] C. Q. Geng, C. C. Lih and W. M. Zhang, Phys. Rev. D57 (1998) 5697.

[61] C. C. Lih, C. Q. Geng and W. M. Zhang, Phys. Rev. D59 (1999) 114002.

[62] G. P. Korchemsky, Dan Pirjol and Tung-Mow Yan, Phys.Rev. D61 (2000)
114510.
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APPENDIX A

INPUT PARAMETERS

mB = 5.28 GeV

mb = 4.8 GeV

mµ = 0.105 GeV

mτ = 1.78 GeV

fB = 0.2 GeV

|VtbV ∗
ts |= 0.045

α−1 = 137

GF = 1.17 × 10−5 GeV −2

τBs
= 1.54 × 10−12 s .
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