A FUZ7Y PETRI NET MODEIL FOR INTELLIGENT DATABASES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOIL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAT, UNIVERSITY

BY

BURCIN BOSTAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR. OF PHILOSOPHY
IN

COMPUTER ENGINEERING

MARCH 2005

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Ozgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Doctor of Philosophy.

Prof. Dr. Ayse Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. Adnan Yazic

Examining Committee Members

Prof. Dr. Ozgiir Ulusoy (Bilkent University)

Prof. Dr. Adnan Yazici (METU, CENG)
Assoc. Prof. Dr. Ismail Hakki Toroslu ~ (METU, CENG)
Assoc. Prof. Dr. Nihan Kesim Cigekli (METU, CENG)

Assist. Prof. Dr. Halit Oguztiiziin (METU, CENG)

Supervisor

I hearby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required, I have fully cited and referenced all material and results that

are not original to this work.

Name, Lastname : Burcin Bostan

Signature

ABSTRACT

A FUZ7ZY PETRI NET MODEL FOR INTELLIGENT DATABASES

Bostan, Burc¢in
Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan Yazia

March 2005, 181 pages

Knowledge intensive applications require an intelligent environment, which can
perform deductions in response to user queries or events that occur inside or
outside of the applications. For that, we propose a Fuzzy Petri Net (FPN) model
to represent the knowledge and the behavior in an intellicent object-oriented
database environment, which integrates fuzzy, active and deductive rules with
database objects. By gaining intelligent behaviour, the system maintains objects
to perceive dynamic occurences and user queries. Thus, objects can produce new
knowledge or keep themselves in a consistent, stable, and upto-date state.

The behavior of a system can be unpredictable due to the rules triggering or
untriggering each other (non-termination). Intermediate and final database states
may also differ according to the order of rule executions (non-confluence). In order
to foresee and solve problematic behavior patterns, we employ static rule analysis
on the FPN structure that provides easy checking of the termination property
without requiring any extra construct. In addition, with our proposed inference
algorithm, we guarantee confluent rule executions.

The techniques and solutions provided in this study can be utilized in var-

ious complex systems, such as weather forecasting applications, environmental

information systems, defense applications, video database applications, etc. We
implement a prototype of the model for the weather forecasting of the Central

Anatolia Region.

Keywords: object-oriented database, knowledge-base, fuzziness, active database,

fuzzy Petri net, static rule analysis, termination, confluence.

Y/

AKILLI VERITABANLARI ICIN BULANIK BIR PETRI NET
MODELI

Bostan, Burcin
Doktora, Bilgisayar Miihendisligi Bolumu
Tez Yomneticisi: Prof. Dr. Adnan Yazne

Mart 2005, 181 sayfa

Bilgi yogun uygulamalar kullanici sorgulamalarindan ya da uygulamanin
icinde va da disinda gerceklesen olaylardan cikarimlar yapabilen akillli ortam-
lara ihtivac¢ duyarlar. Bu nedenle, bilgiyi gostermek ve davranisi modellemek
icin bulanik, aktif, cikarimsal kurallarin veritabani nesneleri ile birlestigi nesneye
yvonelik akilli bir veritabani ortaminda Bulanik Petri Net modeli oneriyoruz. Bu
modelle akilli davranis kazanan sistem, nesnelerin dinamik olaylar: ve kullanici
sorgulamalarini algilayabilmesini saglar. Boylece nesneler yeni bilgi iiretebilir, ve
kendilerini tutarli, dayanikli, giincel tutabilirler.

Bir sistemin davranisi kurallarin birbirini tetiklemesi ya da engellemesi (son-
lanamama) nedeniyle tahmin edilemez olabilir. Ara ve nihai veritaban durumlari
da kurallarin iglenme sirasina gore degisiyor olabilir (tutarsizlik). Bu problemli
davranis sekillerini onceden gorerek cozumleyebilmek icin Bulanik Petri Net’ler
uzerinde sonlanma oOzelliginin ek vapi ihtiyaci dogurmadan kolayca kontroliinii
saglayan statik kural analizi calistiriyoruz. Apyrica, onerdigimiz ¢ikarim algorit-

masi ile tutarli kural islenisini garanti ediyoruz.

Vi

Bu calismada saglanan teknikler ve coziim yollar: hava tahmini uygulamalari,
cevre bilgi sistemleri, savunma uygulamalari, gorunti veritabani uygulamalar:
gibi cesgitli kompleks uygulamalarin modellenmesinde kullanilabilir. Modelin pro-

totipi I¢ Anadolu Bolgesinin hava tahmini icin gerceklestirilmistir.

Anahtar Kelimeler: nesneye-yonelik veritabani, bilgi-tabani, bulaniklik, aktif ver-

itabani, bulanik Petri net, statik kural analizi, sonlanma, tutarlilik

Vil

To my parents, Berrin - Ahmet Bostan

and

my lovely grandmother, Afife Timer

Vil

ACKNOWLEDGMENTS

First of all, I am honored to present my special thanks to my supervisor, Prof.
Dr. Adnan Yazia1 for his encouragement and guidance throughout this study.
His continuous support and insight made this thesis possible.

I would like to thank to my thesis jury members Prof. Dr. Ozgur Ulusoy,
Assoc. Prof. Dr. Nihan Kesim Cicekli, Assist Prof. Dr. Halit Oguztiiziin and
Assoc. Prof. Dr. Ismail Hakki Toroslu for their valuable comments and guidance.

I would like to thank to Mehmet Yayvan, weather forecast expert from the
Turkish State Meteorological Service, who helped me to learn the weather events
and extract the commonsense riles of Weather Forecast.

I would like to thank to my colleagues in Central Bank of Turkey. Being
in the same environment and same situation, Arzu Sisman Yilmaz, Aziz Sozer
and Cemil Ulu, we all motivated each other for the success of our Phd. studies.
Thanks to them for those encouraging and reassuring chats. I also would like to
thank to Selma Erbay, Turgut Tathdil and Ilker Durusoy for their patience and
continions motivation.

At last, but not the least, I would like to thank to my family for their patience,
love and belief in me. I am especially grateful to my beloved husband Ibrahim
and brother Yalcin, who provided everything I needed. Without their patience,
continuous assistance and long-time friendship, I would not have had the strength

to complete this work.

TABLE OF CONTENTS

PLAGTARISM i

ABSTRACT v

OF vi

DEDICATION viii

ACKNOWLEDGMENTS ix

TABLE OF CONTENTS X

LIST OF TABLES Xiv

LIST OF FIGURES XV

LIST OF ABBREVIATIONS xvii
CHAPTER

1 INTRODUCTIONo .. 1

1.1 Scopeofthe Study oL 1

1.2 Power of Petri Net within Alternatives 6

1.3 Summary of Contributions 7

1.4 Organization of the Thesis 8

2 BACKGROUND AND RELATED WORK 9

2.1 Basic Concepts of Fuzzy Logic 9

2.1.1 Fuzzy Logic in Database Systems 13

2.1.1.1 Approaches for Representing Impre-

cise Attribute Valunes 13

2.1.1.2 Partial Membership in a Relation . . 14

2.2 Object-oriented Database Model 15

2.2.1 Fuzzy Logic in Object-oriented Database Model 16

2.3 Aspects of Active Databases
2.4 Petri Nets o . . L
2.4.1 Regular Petri Nets
2.4.2 Colored Petri Nets
2.4.3 Fuzzy Petri Nets

2.4.3.1 Fuzzy Petri Nets for Dealing with Fuzzy

Deductive Rules

2.5 Static Rule Analysis

2.5.1 Termination Analysis

2.5.2 Confluence Analysis

2.6 Previous Studies and Contribution of This Study

2.6.1 Active Studieso 0L

2.6.1.1 Active Object-Oriented Databases . .

2.6.1.2 Fuzziness in Active Databases

2.6.1.3 Our Study vs Active Studies

2.6.2 Fuzzy Petri Nets and Static Rule Analysis. . . .

2.6.2.1 Fuzzy Petri Nets

2.6.2.2 Static Rule Analysis

2.6.2.3 Our Study vs Other Studies on FPNs

INCORPORATING FUZZINESS INTO ACTIVE RULES

3.1 Inter-rule Fuzziness via Scenarios

3.2 Incorporating Fuzzy Inference into Active Rules
3.3 A model for the Similarity of the Rule to the Scenario

3.4 Example - An Overheating Alarm Generation in a Drive
System of a Couple of Motors

FU7Z7Y PETRI NETS FOR MODELING FUZZY RULE-BASED
REASONING

4.1 Fuzzy Petri Nets for Fuzzy Rules
4.1.1 Mapping Fuzzy Rules to Fuzzy Petri Net
4.1.2 Constructing the FPN
4.1.3 Example 1 - An Overheating Alarm (Generation

in a Drive System of 1 Motor (active rule example)

4.1.4 Example 2 - Automatic Selection of Washing Cy-

cle for a Washing Machine (deductive rule example)

X1

17
19
19
20
21

21

37

44
14
46
49

USING FUZ7ZY PETRINETS FOR STATTC ANATLYSIS OF RUILE-

BASES . . . 60
5.1 An Algorithm for Static Analysis on the FPN 60
5.1.1 How to Determine Cycles and True cycles. . . . 62
5.1.2 Example 63

5.1.3 The Algorithm for Determining the True Cycles 64
5.2 Guaranteeing Confluent Executions in Our FPN Model . 66

IMPLEMENTATION o . 70
6.1 Architecture of the system using FPN based inference mech-
anism L L e 7()
6.2 Implementation Platform 71
6.3 Module Structure of the Prototype System 72
6.3.1 Fuzzy Definitions 72
6.3.2 Class Operations 75
6.3.2.1 Derived Attributes 77
6.3.3 Object Operations 78
6.3.4 Rules 79
6.3.5 Queries &0
6.3.6 Computational Complexities of the Algorithms . &6
6.3.6.1 Construction of the FPN 86
6.3.6.2 Determining true cycles 90
6.3.6.3 Checking the Confluence 91
6.3.6.4 Inference Algorithm 91
AN APPLICATTION EXAMPILE:
WEATHER FORECASTING 94
7.1 What is Included in Our Forecast 94
7.1.1 Season Scenarios 96
7.2 What ”Weather Lore” iso 96
7.3 Why Fuzzy Logic is Suitable for Predicting the Weather . 97
7.4 Active Rules and FPN Construction 98
7.4.1 15" Level Rules - Rules for Forecasting the Weather 98
7.4.2 2 Tevel Rules 102

7.4.2.1 Rules for Forecasting the Weather Event 102

X1l

7.4.2.2 Rules for Forecasting the Tempera-

ture Change 104

7.5 Deductive Rules and FPN Construction 107
7.5.1 Rules for querying the weather forecast 107

7.5.2 Rules for querying the weather event forecast . . 109

7.5.3 Rules for querying the temperature change forecast111

7.6 Examples 112

7.6.1 Forecasting the Weather - Active Rule Example(1)119
7.6.2 Querying the Weather Forecast - Deductive Rule

Example (1), 121
7.6.3 Forecasting the Weather Event - Active Rule Ex-
ample (2) 122
7.6.4 Querying the Temperature Change Forecast - De-
ductive Rule Example (2) 125
8 CONCLUSION AND FUTURE WORK 129
REFERENCES 133
APPENDICES 140
A CLASS DEFINITIONS AND FUZZY DOMAINS OF METEO-
ROLOGICAL DATA 140
B APPLICATION 1.LOG FOR THE EXAMPLES 146
B.1 Forecasting the Weather - Active Rule Example(1) 146
B.2 Querying the Weather Forecast - Deductive Rule Example
(1) . o e 153
B.3 Forecasting the Weather Event - Active Rule Example (2) 161
B.4 Querying the Temperature Change Forecast - Deductive
Rule Example (2) 167
¢ TTASCA OBJECT DATABASE SYSTEM 173
C.1 Overview L 173
VITA 180

X111

LIST OF TABLES

2.1 Similarity Matrix for Age Attribute

3.1 Similarity Matrix for Temperature
3.2 Similarity Matrix for AlarmNotification
3.3 Similarity Matrix for Quantifiers

7.1 Season Scenarios Lo
7.2 Abbreviations used in the Petri Net Diagram
7.3 Sensor Values at times t; & to and their fuzzification results ac-
cording to the linguistic terms used in the event/condition parts
of therules L.
7.4 Sensor Values at times ty & t3 (to < t3) and their fuzzification
results according to the linguistic terms used in the event /condition
partsof therules o

A.1 Membership Functions for pressure value attribute
A.2 Membership Functions for pressure change velocity attribute

A.3 Membership Functions for pressure change direction attribute

A.4 Membership Functions for temperature value attribute
A.5 Membership Functions for temperature change velocity attribute
A.6 Membership Functions for temperature change direction attribute
A.7 Membership Functions for humidity value attribute
A.8 Membership Functions for humidity change velocity attribute . . .
A.9 Membership Functions for humidity change direction attribute . .
A.10 Membership Functions for wind value attribute
A.11 Membership Functions for wind value change velocity attribute . .
A.12 Membership Functions for wind direction attribute
A.13 Membership Functions for wind direction change velocity attribute
A.14 Membership Functions for cloud cover attribute
A.15 Membership Functions for cloud base attribute
A.16 Membership Functions for cloud base change direction attribute
A.17 Membership Functions for cloud base change velocity attribute . .
A.18 Membership Functions for cloud orientation attribute

X1V

LIST OF FIGURES

2.1 Membership Graph of Temperature Attribute
2.2 Possibility distribution of the fuzzy set young
2.3 Phases of rule execution L. L.
2.4 Firing a Regular Petri Net
2.5 Firing a Fuzzy Petri Net
2.6 A knowledge base and its triggering and activation graph.

2.7 Rule execution by means of rule execution sequences
2.8 Commutativity ofarulepair.

4.1 Firing the Fuzzy Petri Net.
4.2 Modeling Fuzzy Inference using the Fuzzy Petri Net.
4.3 Construct_FPN Algorithm
4.4 Place types used in the FPN
4.5 Modeling alarm treatment in an industrial drive control system by

using FPN e

4.6 Modeling washing cycle selection in a washing machine by using
FPN . o

5.1 Static Analysis Algorithm
5.2 Dependencies and the Triggering Graph for the Example
5.3 FPN constructed for the Example
5.4 Determine_true_cycles Algorithm
5.5 Check_Confluence Algorithm
5.6 Inference Algorithm

6.1 Architecture of the System
6.2 'The implementation platform of the prototype system
6.3 Module Structure of the prototype system
6.4 Fuzzy type definitiono
6.5 Similarity matrix definition
6.6 Membership function definition
6.7 Class creation (1)
6.8 Attribute Definition - Class Creation(2)
6.9 Derived Attribute Definition - Class Creation(3)
6.10 Object creation e
6.11 Object update
6.12 Rule operations (1)

XV

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23

8.1
8.2

Active Rule Definition - Rule operations (2) 81

Deductive Rule Definition - Rule operations (3) 82
Scenario Rule Definition - Rule operations (4) 82
Updating Current Scenario - Rule operations (5) 83
Class browser Lo &3
Object browser e 84
Steps in Evaluation of a User Query 84
Simple Query e e 89
A Query Requiring Fuzzy Inference on FPN 85
Construct_FPN Algorithm 87
Examine_Event Algorithm 88
Examine_Condition Algorithm &9
Examine_Action Algorithm 90
Construct_Fuzzy_Inference_Groups Algorithm 92
Construct_Transitions Algorithm 93
FPN constructed for the weather forecasting 105
FPN constructed for the weather forecasting (cont) 106
FPN constructed for the weather forecasting (cont) 107
FPN constructed for the weather forecasting 112
FPN constructed for the weather forecasting (cont) 113
FPN constructed for the weather forecasting (cont) 113
Termination Analysis for the example rules 114
Confluence Analysis for the example rules 115
Petri Net (1) o o 115
Petri Net (2) o 116
Petri Net (3) 116
Petri Net (4) 117
Petri Net (5) o 117
Petri Net (6) o 118
Petri Net (7) o o 118
FPN used for forecasting the weather 121
Dynamic occurences (1) 122
FPN used for querying the weather forecast 123
A query requiring fuzzy inference on FPN (1) 124
FPN constructed for forecasting the weather event 126
Dynamic occurences (2) 127
FPN used for querying the temperature change forecast 128
Query requiring Petri Net execution 128
Active Studies: A comparison. 130
Fuzzy Petri Nets: A comparison. 131

XVI

LIST OF ABBREVIATIONS

PN Petri Net,

FPN Fuzzy Petri Net
CPN Colored Petri Net
TG Triggering Graph
AG Activation Graph

XVII

CHAPTER 1

INTRODUCTION

1.1 Scope of the Study

Up to now, the object oriented database model has been very successful in mod-
elling complex applications |4, 32, 43|. However, powerful database modeling
features of object oriented databases do not suffice for modeling the complexities
of knowledge intensive applications such as spatio-temporal databases, multi-
media databases, workflow applications, defense applications, which require an
intelligent environment that can perform deductions [49]|. In such an environ-
ment, there can be two reasons for deduction; one of them is user queries and the
other is events occurring inside or outside of the system.

In an object-oriented database, incorporation of knowledge for perceiving state
changes and answering queries with deductive capabilities can be handled via
two different ways. One of them is polling the system periodically for interesting
occurrences of events |17, 10|. However, the problem with the polling approach
is that either the database will be overloaded with queries that will fail most ot
the time, or dynamic occurrences of events may be missed. The other approach
is embedding some intelligent code into method bodies |6, 45|. However, this
solution leads the applications to lose their modularity, which makes them harder
to validate and difficult to maintain. Due to the weaknesses of both approaches,

active object oriented databases are developed as a solution to perceive dynamic

behavior by including event-driven facilities that are necessary for implementing

system reactions by integrating rules within a database |17, 35, 37, 63|.

Most of the existing database models, including the active object-oriented ones
are designed under the assumptions of precision. However, knowledge intensive
applications often involve complex information with uncertainty. In general, data
and information kept in databases may be uncertain for the following reasons:
(1) If data is obtained from different sources, due to possible semantic differences
it may not be feasible to represent such data in a precise way. Otherwise, either
true data is lost, or false and useless information is obtained. (2) Decision making
in many knowledge-intensive applications usually involves various forms of uncer-
tainty. (3) Information sometimes represents subjective opinions and judgments,
which is inherently both complex and uncertain. (4) When conveying vague in-
formation in natural languages, numerous linguistic terms with modifiers (e.g.
"very”, "more or less”, etc.) and quantifiers (e.g. "many”, "few”, "most”, etc.)

are used.

In our research effort, different parts of which are included in |11, 12, 13|,
we propose a Fuzzy Petri Net model for an intelligent object-oriented database
environment, [49, 12| in order to fulfill the requirements of knowledge-intensive
applications. For this, we integrate fuzzy, active and deductive rules together
with an inference mechanism in a fuzzy object-oriented database environment.
Our architecture fulfills the requirements of complex real world applications such
as weather forecasting, environmental monitoring, defense applications, multi-
media database applications |38, 2|. In a weather forecasting application there
exists huge amounts of data related to the atmospheric elements, such as pressure,
temperature, humidity, coming from sensors connected to weather stations. Since
a couple of changes taking place at the same time are the indications of some
forthcoming events, the system needs to perform deductions in order to deter-
mine the possible results of these changes in the environment. For example, high
temperature, low pressure and high humidity in certain location and time may
trigger heavy rain, which can be represented as a fuzzy rule in our system. A

particular value change on an atmospheric element often triggers multiple fuzzy

rules, which should be executed concurrently to generate result representing the
deduction of all the relevant rules, which require a fuzzy inference mechanism.
In addition there could be state changes in the application environment, such as
seasonal changes. In winter, we expect weather events like snow, freeze etc., while
in spring we expect rain, hail or shower. T'he application should be intelligent
enough to handle these state changes, i.e., give more importance to some rules or
prune some others according to the state. There may also be user queries which
require deductions. These queries may be on the current values of the elements
of the application domain. For example, in a weather forecasting application,
we can have a query like "Which cities are in emergency state with respect to
the heavy snow?”. We may also want to know the future trends of the elements
of the application domain. For example, we may ask queries like ”Which cities
are expected to be affected very highly from the coming storm?” or ”What s the
expected weather event in Paris these days?”. We can increase such examples
for many other real world applications. In order to satisfy the requirements of
such knowledge intensive applications, we integrate fuzzy, active and deductive
rules with database objects. That is, our intelligent database environment allows
objects to perceive dynamic occurrences or user queries after which they produce
new knowledge or keep themselves in a consistent, stable, and up-to-date state;

thus, performing intellicent behavior.

In literature, it has been argued that integration of active and deductive
paradigms into a unique homogeneous framework is an important and challeging
goal |81]. There have been a number of studies dealing with the problem of defin-
ing a unified semantics for deductive and active rules. In that, there exist two
research directions for integration: some of them |81, 9| try to extend deductive
databases to support active behavior, while others [20] study how deductive rules
can be implemented by means of active rules. For example, Zanilo |81] uses a
non-monotonic extention of logical clauses, which includes negation and aggre-
gates under XY-stratification semantics. In that, active rules are expressed by
means of built-in predicates which implement basic update operations. Bayer et

al. 19| specify a framework for supporting triggers in the context of deductive

databases. While event specification is defined on insertion or deletion of facts to
predicates and on their composition, condition specification uses extended data-
log with negation and built-in predicates. A different line of research is presented
by Ceri et al. |20], which uses production rules to physically maintain intentional
data defined by the deductive rules. In that study, active rules are derived au-
tomatically in order to maintain intentional data when extensional relations are
updated by users. In our study, users can express active and deductive rules
independently in their traditional form. However, we consider deductive rules as
special cases of active rules, where we use abstract kind of events. Therefore, in-
ternally all rules are of active kind and their processing is modelled with a Fuzzy
Petri net.

In our study, we use Fuzzy Petri Nets (FPNs) to represent knowledge and
model the behavior of the system. Also, we check the properties of the system,
i.e., perform static rule analysis, using our FPN. Petri Nets, in general, are con-
sidered as a graphical and mathematical modeling tool. They are powertful in
describing and studying information processing systems that are characterized as
being concurrent, asynchronous, distributed, parallel and nondeterministic [54].
Several kinds of Petri Nets, such as FPNs, CPNs |44|, have been investigated as
tools for representing rules in knowledge-based systems. The main advantage of
using Petri nets in rule-based systems is that they provide a structured knowledge
representation in which the relationships among the rules in the knowledge base
are easily understood, and they render a systematic inference capability |24|.

Using PNs to model rule based reasoning provides a couple of advantages:

e PNs in general are good at describing and analyzing the flow of information
and control in systems, particularly systems that may exhibit sequentiality,

concurrency or synchronization of events |65];

e PNs’ graphical representation, using a few types of elements, can help to

understand the model, and construct and modify rule bases;

e Since PNs can be used to represent events in a top-down fashion, they

can be used to model a composite event hierarchically from simpler event

4

models;

e They can model the dynamic behavior of rule-based reasoning. Evaluation
of markings is used to simulate the dynamic behavior of the system. The
explanation of how to reach conclusions is expressed through the movements
of tokens in PNs. At any time during the interpretation process, position of
tokens in the PN summarize what happened in the past and predict what

will happen in the future providing an incremental composition of events;

e PNs’ analytic capability can help with checking properties of a modeled

system to gain deeper insights into the system.

In order to represent uncertain and imprecise knowledge existing in various
knowledge-intensive applications, the degree of truth of rules and facts repre-
sented in a knowledge base is expressed as a real number in interval |0,1|. Fuzzy
Petri Nets (FPNs) are formed to handle such fuzzy expressions |24|. FPNs elimi-
nate the need to scan all the rules. They improve the efficiency of fuzzy rule-based
reasoning by using transitions and arcs to connect fuzzy rules as a net-based
structure. There have been a couple of approaches on alternative formulations
of FPNs to model the behavior of a system. However, due to the unstructured
and unpredictable nature of rule processing, rules can be difficult to program and
the behavior of a system can be complex and sometimes unpredictable. In an
active database, rules may trigger and untrigger each other, and the intermedi-
ate and final states of the database can depend upon which rules are triggered
and executed in which order. In order to determine these nndesirable hehavior
patterns of the rule base, static rule analysis should be performed |1|. Such an
analysis involves identifying certain properties of the rule base at compile-time,
which gives the programmer an opportunity to modify the rule base.

Two important and desirable properties of active rule behavior are termination
and confluence |1]. These properties are defined for user-defined changes and

database states in a given rule set.

o Termination: A rule set is guaranteed to terminate if, for any database

state and initial modification, rule processing does not continue forever (i.e.

rules do not activate each other indefinitely).

e Confluence: A rule set is confluent if, for any database state and initial
modification, the final database state after rule processing is unique, i.e., it

is independent of the order in which activated rules are executed.

Static rule analysis techniques only give sufficient conditions for guaranteeing
the property searched for. For example, the identification of potential non-
termination in a set of rules indicates the possibility of infinite loops at run time,
while the identification of potential non-confluence indicates that a rule base may

exhibhit. nondeterministic behavior.

1.2 Power of Petri Net within Alternatives

The success of any model is due to two factors: its modeling power and its
decision power |65|. Modeling power refers to the ability to correctly represent
the system. Decision power refers to the ability to determine properties of the
modeled system. These two factors generally work at opposite direction; for
example, when we increase modeling power (also complexity of the models and
the modeled systems), ability to algoritmically determine the properties of the
models is generally decreased.

Two subclasses of Petri Nets generally considered are finite state machines
and marked graphs. Finite state machines are Petri Nets which are restricted so
that each transition has exactly one input and one output place. A marked graph,
on the other hand, is a Petri Net in which each input place has exactly one input
transition and one output transition. Both of them have high decision power,
but less modeling power compared to Petri Nets. An attempt to use automata
has been made in Ode |36] based on the observation that event expressions are
equivalent to regular expressions if they are not parameterized. This means that,
Finite Automata are not sufficient in case of event parameters have to be sup-

ported. They have to be extended with a data structure that remembers the

event parameters of the primitive events from the time of their occurence to the

time at which the composite event gets signalled.

1.3 Summary of Contributions
The main contributions of this thesis can be summarized as follows:

e Incorporation of fuzziness in defining data, attributes, objects, classes, rules

and their inference in an active database model;

e Introducing a model for tuzzy inference in fuzzy active rules where a model

for scenario concept is developed:

e Development of a Fuzzy Petri Net model for fuzzy rule-based reasoning
where:
— Event and condition compositions are modeled;

— Functionalities of transitions are enhanced to make them capable of
performing fuzzification, event/condition composition, concurrent ex-

ecution and combination in addition to the sup-min composition;

— Parameter passing is provided which provides values of conditions and

actions to be calculated from the parameters of events:
— An algorithm for fuzzy rule-based inference is provided.

e Performing static rule analysis on the constructed FPN to check the prop-

erties of the modeled system, where:

— A termination analysis algorithm, which also considers event /condition
compositions, is provided to determine the true cycles; and

— Confluent rule executions are guaranteed with the provided tuzzy in-
ference algorithm.

e Implementing the whole environment resulting in a prototype system;

e Applying our proposed environment into an application, weather forecast-

ing, for proot of concept.

1.4 Organization of the Thesis

This thesis is organized as follows: Chapter 2 gives some background informa-
tion, which includes fuzzy logic, object-oriented database model, active databases,
Petri nets, static rule analysis, to form a basis for this thesis. This chapter also
contains the summary of the previous work related to the concepts that we study
together with the contribution of this study. Chapter 3 describes how we incor-
porate fuzziness into active rules. Our FPN model for fuzzy rule-based reasoning
is presented in Chapter 4. Chapter 5, explains how we check the properties of the
modeled system by using FPN. The description of the prototype implementation
of our model is given in Chapter 6. Chapter 7 presents an example application,
which is weather forecasting, chosen as the case study of the model developed in

this thesis. Finally, Chapter 8 gives the conclusion and states the future work.

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, an introduction to the basic concepts of this study is given. We
explain some background information on fuzzy concepts in Section 2.1. We give an
overview of object-oriented database model in Section 2.2. Basic aspects of active
database systems is given in Section 2.3. We describe Petri Nets in Section 2.4.
These are followed by a brief summary of the assumptions and understandings in
Static Rule Analysis in Section 2.5. Finally, we give a summary of the previous
work related to the concepts that we study together with the contribution of this

study in Section 2.6.

2.1 Basic Concepts of Fuzzy Logic

Since information is usually inexact and imprecise, trying to reduce every sort of
data into a precise form causes something to be missed. Also, in case of the lack of
precise information it is often the case that some relevant information is available.
In these cases, it may be advantageous to design methods for impreciseness by
which this information can be stored, manipulated and retrieved.

Fuzziness is a term that expresses an ambiguity that can be found in the
definition of a concept or the meaning of a word or phrase. The term young or
tall can be qualified as fuzzy. The process of solving problems that deal with

ambiguous data using multivalued logic to represent crisp logic system is called

[P]

u

on

g —L— 0 - N e e

o \\ /

= N J

& A .//

5] N d

Re) RN LN

= N /

9 \\ //

= | - . | :

15 20 25 30 35

cold chill warm hot

‘I'emperature (Celcius Degrees)

Figure 2.1: Membership Graph of Temperature Attribute

fuzzy logic. Fuzzy logic considers that all things are a matter of degree.

Fuzzy logic is based on four main concepts: fuzzy sets, linguistic variables,
possibility distribution and fuzzy if-then rules |78|.
Fuzzy Sets: The theory of Fuzzy sets was introduced by Zadeh [80] in order
to handle imprecise, vague notions. Fuzzy set is a set with a smooth boundary,
where classical set theory is generalized to allow partial membership. The degree
of membership in such a set is expressed by a real number between 0 and 1; 0
means entirely not member of the set, 1 means completely member of the set, and
a number in between means partially member of the set. Membership function
maps objects in a domain of concern to their membership value. The membership
function of a fuzzy set A is denoted as 4 and the membership value of x in A is
denoted as pa(x). The domain of membership function is called the universe of

drscourse.

Let U denotes the universe of discourse, and A is a fuzzy set on U. Membership

function p4 is defined as follows:

pra(z) : U — [0,1] (2.1)

All elements of A belong more or less to A with a degree p4(x), where pa(x) > 0.

Assume that we have a universe of discourse U for the temperature attribute
values. Membership functions of fuzzy sets cold, chill, warm and hot are shown

graphically in Figure 2.1.

10

Within them, membership function of hot, pp. (), can be defined as:

0, if + < 25
phot(2) = § (x —25)/5, if 25 < x < 30 (2.2)
1, if > 30

As shown in Figure 2.1, the fuzzy sets defined on a universe of discourse U may
overlap each other and cover all the U. There may not be sudden switching from
one set to another. A temperature of 28°C' is a ” hot weather” with a membership
degree of 0.6. On the other hand, it is a "warm weather” with a membership
degree of 0.4. Calculation of the membership functions of the union, intersection

and difference of two fuzzy sets is explained in |78|.

Linguistic Variables: Like a conventional set, a fuzzy set can be used to de-
scribe the value of a variable. For example, the sentence ” The height of Hasan
1s tall’ uses a fuzzy set tall to describe the height of Hasan. The variable height
in this example demonstrates another important concept of tuzzy logic: the lin-
guistic variable. A linguistic variable enables its value to be described both qual-
itatively by a linguistic term and quantitatively by a corresponding membership

function.

Possibility Distributions: In a crisp set, assigning a linguistic variable con-
strains the value of a variable with a sharp boundary between possible versus
impossible values. However, fuzzy logic generalizes the binary distinction be-
tween possible vs. impossible to a matter of degree called the posstbility. For
instance, if we assign the fuzzy set young to the age of a person, whose member-
ship function is given in Figure 2.2, we obtain a distribution about the possibility
degree of an age. II denotes a possibility distribution of age and x is a variable
representing a person’s age. In general, when a fuzzy set A is assigned to a vari-
able X, the assignment results in a possibility distribution of X, which is defined

by A’s membership function:

Iy (x) = pa(x) (2.3)

11

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Age

Figure 2.2: Possibility distribution of the fuzzy set young

Fuzzy Rules: A fuzzy rule is a knowledge representation schema for capturing
knowledge that is imprecise and inexact by nature. A fuzzy rule has two compo-
nents: an if-part (antecedent) and a then-part (consequent):

IF <antecedent> THEN <consequent>
The structure of a fuzzy rule is identical to that of a conventional rule. However,
the antecedent of a fuzzy rule describes an elastic condition while the antecedent

of a conventional rule describes a rigid condition.

Fuzzy rule-based inference is a generalization of modus ponens, where the
inferred conclusion of modus ponens is modified by the degree to which the an-
tecedent is satisfied. It consists of a set of fuzzy rules. Fuzzy rule-based inference
has three major feature: First it enables a rule that partially matches the input
data to make an inference. Second, it typically infers the possibility distribution
of an output variable from that of input variable. Third, there exists a set of
fuzzy rules with partially overlapping conditions. Therefore, a particular input
to the system often triggers multiple tuzzy rules, inferred conclusions of which are
combined to form an overall conclusion. The steps of fuzzy rule-based inference

is given below:

1. Fuzzy Matching: Calculates the degree to which the input data matches the

condition of the fuzzy rules.

2. Inference: Calculates the rule’s conclusion based on its matching degree.

3. Combination: Combines the conclusions inferred by all fuzzy rules into a

final conclusion.

4. Defuzzification (optional): Converts a fuzzy conclusion into a crisp one. It

is generally performed in control systems.

2.1.1 Fuzzy Logic in Database Systems

Fuzzy logic has been used to extend database systems to capture imprecise in-
formation. This provided storing, manipulating and querying imprecise data
|47, 59, 60, 78|. Imprecise information in a database system can be classified into
two types: (1) imprecise attribute values in a tuple, and (2) partial membership

of a tuple in a relation.

2.1.1.1 Approaches for Representing Imprecise Attribute Values

There are two approaches for representing fuzzy data in database systems as

similarity-based approach and possibility-based approach.

Similarity-based Fuzzy Relations:
In this approach, similarity matrix is used to show the relationships of the fuzzy
linguistic terms within a fuzzy domain with one another. A fuzzy relation S on

domain X is a similarity relation for x, y, z € X if the following conditions hold:
1. Reflexivity: ps(z,xz) =1
2. Symumetry: ps(z,y) = ps(y,)

3. Transivity: mazyex (minus(z,y), ns(y, 2))) < ps(, 2)

An example similarity relation for age attribute is shown in Table 2.1. It
satisfies the properties stated above.
If a query is executed to find ” people who are young with a stmilarity of 0.6”,

the ones which are child or young are returned as an answer.

13

Table 2.1: Similarity Matrix for Age Attribute

Age ‘ child young middle-aged old
child 1 0.7 0.2 0.2
young 0.7 1 0.2 0.2
middle-aged | 0.2 0.2 1 0.9
old 0.2 0.2 0.9 1

Possibility-based Fuzzy Relations:

The possibility-based approach is based on the possibility distribution theory. A
possibility-based fuzzy relation generalizes a relation by allowing the value of an
attribute A to be a possibility distribution I14(¢) of the attribute’s domain.

Suppose that in a crime, the possibility distribution of the age of the suspect

[oge(suspect) = 0.5/20 4+ 1/25 + 0.8/30
Suppose also that the membership function of the fuzzy set young is defined as a
discrete fuzzy set as follows:

young = 0.1/15 + 1/20 + 0.8/25 + 0.4/30
Then the possibility degree for the suspect to satisfy the condition young is cal-
cilated as:

Possibility(young| e (suspect)) = Max (Min(0.5,1), Min(1,0.8), Min(0.8,0.4)

= Max(0.5,0.8,0.4) = 0.8

2.1.1.2 Partial Membership in a Relation

The second type of imprecise information in a database is the partial membership
of a tuple in a relation. Membership in a relation is either 0 or 1 in a conventional
database. However, there are relations whose membership has a gray area. For
example, the relation endangered_species may include wild animals whose quan-
tity has been significantly decreasing over the years but have not been officially
declared as endangered species. These animals can be considered as somewhat

endangered, hence a partial membership of the endangered_species relation.

14

2.2 Object-oriented Database Model

All entities and concepts in the real world are modeled as objects. Conceptually
a unique object identifier (oid) is assigned to each object and this association
between oid and class remains fixed even it attributes of the object change in time.
The use of objects and oids permit OODBSs to share information gracefully; an
object o can be shared by many objects simply by referencing the oid of 0. So
objects are nested through the referencing mechanism. An object has intrinsic
characterizing properties called attributes. An object stores data in attributes
in order to save its state, and responds to instructions for carrying out specific
operations on its attributes when a request for that operation, message, is received

by the object.

All objects which have the same attributes and methods are grouped into a
higher level object, called a class. An object is called an instance of its class. An

object created in one class belongs to all of its superclasses.

OODB models permit the organization of classes into a hierarchy called isa
relationship. The objective of organizing objects in a hierarchy of classes is to
share properties of objects in useful, economical and meaningful ways. Properties
of a superclass can be inherited by its subclasses. However, selective inheritance
occurs when a subclass inherits only some of the properties of a superclass. Also
an inherited attribute or a method from a superclass can be overridden by the
subeclass via redefinition.

Multiple inheritance in a class hierarchy occurs when a class is a subclass of
two (or more) different classes and hence inherits the attributes and methods of
both superclasses from which the subclass inherits may have distinct attributes or
methods of the same name, creating an ambiguity. There are several techniques
for dealing with ambiguity in multiple inheritance. One solution is to have the
system check for ambiguity when the subclass is created, and to let the user ex-
plicitly choose which function (attribute or method) is to be inherited at that
time. Another solution is to use system default. A third solution is to disallow

multiple inheritance if ambiguity occurs.

15

The concept of providing an interface to objects through which all legal meth-
ods are visible (structural encapsulation), and of localizing the implementation
of the methods to the objects (behavioral encapsulation) is known as encapsu-
lation. Encapsulation enhances implementation independence, modularity and
abstraction. To encourage encapsulation, an operation is defined in two parts.
The first part, called the signature or interface of the operation, specifies the
operation name and the arguments. The second part, called the method or body,
specifies the implementation of operation. Operations can be invoked by pass-
ing a message to an object, which includes operation name and the parameters.
The object then executes the method for that operation. The determination of
what implementation is associated with a given method name and class is called
method resolution. A method is invoked with respect to an object o, and the class
to which o belongs determines which implementation to be used. This policy is

called dynamic binding.

2.2.1 Fuzzy Logic in Object-oriented Database Model

Imprecise information in an object-oriented database can be classified into three
categories |78|: imprecision of the data encapsulated in the object, partial class
membership, and fuzzy class/superclass membership.

Imprecision of the data: In this category data encapsulated within an object
is imprecise. The techniques, similarity measures or possibility distributions,
explained in Section 2.1.1 can be used to handle this kind of imprecision.
Partial class membership: This is the imprecision in the membership of an
object to a class. This may happen when an object of a class holds a value
that is different from the range of values that property can have in the class.
An example to this can be given from university departments. Suppose that a
computer engineering department gives more emphasis on the faculty members
who study on Theory or Database. In this department a faculty member who
studies Al will have less membership to the department, say 0.5.

Fuzzy class/superclass membership: In crisp logic a class is a subclass of an-

other if and only if all objects in the subclass are also a member of the superclass.

16

In fuzzy logic this relationship changes. If we have two fuzzy classes, the degree
of being subclass/superclass changes according to a fuzzy subsethood measure.
Consider again the university example. Suppose there is an establishment of a
new program called informatics, which will be a combination of the programs
mathematics, computer engineering and industrial engineering, with the impor-
tance levels of 0.1, 0.9, 0.5 respectively. The degree of the membership of a
faculty member to the new program gets determined by the importance of the
faculty member’s first level program (either matematics, computer engineering
or industrial engineering) within the newly established program together with
the membership of the faculty member to its first level program. So, the faculty
member that studies Al belongs to the new department with a membership of
0.5%0.9=0.45. Instead of product operator any other conjunction operator, such

as men, can also be used.

2.3 Aspects of Active Databases

The production rule concept in Expert Systems was extended in the context of
active rules, where it is possible to specity database events triggering the rules
|66|. The distinguishing feature of an active database system compared to an
deductive (passive) one is that it is able to respond automatically to situations
(events) that arise inside and outside the database. Active rules can be used to
define automated responses to constraint violations, specifying corrective actions
or alerting the user of undesirable conditions. Active rules can also be used to
monitor events and conditions of specific interest that are not necessarily associ-
ated with constraints and to trigger associated actions and notifications within
the application. Active rules are especially useful for the dynamic maintenance
of integrity constraints as database updates occur. The active behaviour of a
database is generally described using rules which most commonly have three
components, an event, a condition and an action. A rule with such components

is known as an event-condition-action rule (ECA rule) |27|.

17

Event V Event Triggered Evaluated] (Selected\ :
Source | Signaling Occurences Triggering Rules Evaluation Rules JScheduling LRules J Execution

Figure 2.3: Phases of rule execution

- Fvents can be database accesses for retrieval and manipulation (like creation
of new facts, updating an attribute, accessing an attribute or invocation of
an operation). The user should be able to selectively define events and the

system should be responsible for detecting them efficiently.

- Bach condition is a query formula, or test to be evaluated in the state after

the event gets generated but before the activation of the action.

- Each action is a chain of one or more procedure calls, which can perform any
computation in the database. Actions may update the database, inform the
user, or may take some alternative course of actions like causing the creation

of a new fact.

An ECA rule lies silent until an occurrence of the event that it is monitoring, when
the rule is said to be triggered. The condition of a triggered rule is subsequently
evaluated, and if true, then the action of the rule is scheduled for execution.

The type of an event can be primitive or composite. Composite events are
raised by some combination of primitive or composite events using a range of event
constructors. Most common event constructors are disjunction, conjunction and
sequellce.

The execution model specifies how a set of rules is treated at run-time. Fig-
ure 2.3 illustrates phases of rule execution. Rule execution is affected by the
coupling modes. Event-condition coupling mode determines when the condition
is evaluated relative to the event that triggers the rule, while condition-action
coupling mode indicates when the action is to be executed relative to the eval-
uation of condition. The options for coupling modes most frequently supported
are immediate, deferred and detached. Scheduling phase of rule evaluation deter-

mines what happens when multiple rules are triggered at the same time. Rules

18

can be scheduled sequentially or parallel.

2.4 Petri Nets

2.4.1 Regular Petri Nets

A regular Petri net is defined with a structure (P, T, A,My) where:

i. P is a finite set of places.

i. T is a finite set of fransitions.

iii. A C (PxT U TxP) is a finite set of arcs denoting connections between

places and transitions.
iv. Mg:P—{0,1,2,...} is the initial marking of places.

Petri nets are represented as directed arcs with two type of nodes (places and
transitions) connected by arrows that specify the direction of information flow.
An arbitrary assignment of tokens to places is called marking. A particular mark-
ing specifies the state of a system being modeled with a Petri net. In classical
Petri nets, a token represents a typeless fragment of information. A black dot
symbolizes a single token. Tokens are used to define the execution of a Petri
net. Places represent storage for input or output. Transitions represent activities
(transformations). Every time an input place of the Petri net is marked, whether
ot not the corresponding transition(s) can fire has to be checked. A transition
can fire if and only if all of its input places are marked. The firing of a transi-
tion leads to the marking of all output places. Thus, when transition ¢ fires, the

subsequent marking satisfies the following equation:

M(p)+1, V p € output places
M (p) =4 M(p)—1, V p € input places (2.4)
M(p), otherwise

Figure 2.4 shows what a regular Petri net looks like before and after a transition

gets fired.

19

P
0

3®
(3

Pn+1

(a) before firing a transition (b) after firing a transition

Figure 2.4: Firing a Regular Petri Net

2.4.2 Colored Petri Nets

To facilitate the formal specification and analysis of the structure, information
flow, control and computation on systems, Colored Petri Nets (CPNs) have been

introduced [54|. Formally a CPN is a structure (P,T,A,C,CF,E,G) where:
i. P,T,A are the same as those in regular Petri nets.
ii. C is a finite set of data types (called colour types).

iii. CF: P — C,isa token type (colour) function. It maps each place to a token

type in C.

iv. E:A — Expression E(a) of type C(p(a)), is the arc function. It maps

each arc to an expression called an arc expression.

v. G:T — Boolean expression, is a guard function. It maps each transition

to a boolean expression (called a guard expression).

In contrast to regular Petri nets, CPNs can carry complex information. They
provide data typing (color sets) and sets of values of a specified type for each
place. The expression E(p,t) is the name of a variable associated with the arc
from input place p to transition ¢, and the expression E(t,p) is associated with
the transformation performed by transition ¢ on its inputs to produce an output
for place p. A guard is a boolean expression on a transition ¢ which must be

satisfied before # can fire.

20

2.4.3 Fuzzy Petri Nets

In FPNs, all components of a Petri net (transitions, places, tokens and arcs) are
fuzzified.

Fuzzy Token : The token has a linguistic value, such as low, medium, high,
defined as membership functions for a linguistic variable. A membership function
determines the degree of membership in a particular place, or the truth value of
a proposition.

Fuzzy Place : Each place has a predicate or property associated with it. A
token in that place is characterized by that property and a level to which it pos-
sesses that property or belongs to that place. Fuzzy places hold fuzzy propositions
or conclusions.

FPuzzy Transition : This corresponds to if then fuzzy production rules and is
realized by tuzzy inference algorithms.

Fuzzy Arc : This specifies the required value of a corresponding input/output

token. Fuzzy arcs carry tuzzy tokens.

2.4.3.1 Fuzzy Petri Nets for Dealing with Fuzzy Deductive Rules

A FPN is capable of modeling fuzzy deductive rules. These rules are of the type:
IF d; THEN dj, with Certainty Factor p;

Each place may contain a token associated with a truth value of a proposition,

which is quantified as numbers in the unit interval. Each transition is associated

with a certainty factor taking values from the unit interval. This model of FPN

is defined as a tuple (P,T,D,I,0,f,«,3) where

i. P and T are same as before.

ii. D={dy,....,d,} is a finite set of propositions .

. I: P — T is an nput mapping.

iv. 0: T — P is an output mapping.

21

S L o NG
1 |
W —t—y, ") »

p; t Px P; i Py

(a) before firing (b) after firing

Figure 2.5: Firing a Fuzzy Petri Net

v. £: T — [0,1] is a mapping to a certainty factor (u;) .
vi. a: P — [0,1] is a mapping to a truth value of a token .
vii. #: P — D is a mapping from places to propositions.

A token value in place p; € P is denoted by a(p;) € 10, 1|. If a(p;) = vi, y; € [0, 1]
and [(p;) = d;, this then states that the degree of the truth of proposition d;
is y;. A transition ¢; is enabled if Vp; € I(t;), a(p;) > A, where X is a threshold
value in the unit interval. If this transition is fired, then tokens are removed from
their input places and a token is deposited onto each of its output places. The
truth value of the output tokens are computed through some aggregation function
7, (e = T(L(t;), pi), where yj, is a(O(1;))).

Example: The fuzzy deductive rule:

IF d; THEN dy, with Certainty Factor p;
can be modeled as shown in Figure 2.5. In this example, the truth value of the

output token is calculated via the algebraic product, yr = vy, * ;.

2.5 Static Rule Analysis

2.5.1 Termination Analysis

Termination for a rule set is guaranteed if rule processing always reaches a state in
which no rule is triggered. Several methods have been proposed in the literature
to perform termination analysis. One of them is building a triggering graph by
considering the type of triggering events and events generated by the execution

of the rule actions |1, 19, 46|.

Formally, a triggering graph (TG) |1| is a directed graph {V, E'}, where each
node in V' corresponds to a rule in the rule base and each edge r; — r; in £
means that the action of the rule r; generates events that trigger r;. If there
are no cycles in the triggering graph, then processing is guaranteed to terminate.
TG, however, fails to take into account the details of the interaction between the
conditions and the actions of potentially non-terminating rules. That is, although
TG has a cycle, it may be the case that, when a rule in the cycle gets triggered,
the condition of that rule is not true. As a result, the rule is not executed and

the cyclic chain is broken. Consider, for example, the following rule:

R1:
ON update to attribute A of T
IF new value A > 10

THEN set A of T to 10

The TG for the rule base involving R; contains a cycle, as the action of R updates
the attribute A of T, which in turn triggers R;. However, non-termination does
not result as the action of R; assigns A a value for which the condition of I;
never hecomes true. It is to overcome this limitation in T(3s that activation
graphs have been introduced.

An activation graph (AG) |3| is built upon the semantic information contained
in the rule conditions and actions. It is a directed graph {V, E'}, where each node
in V' corresponds to a rule in the rule base, each edge r; — r; (¢ # j) in £ means
that the action of the rule r; may change the truth value of the condition of r;
from false to true, and each edge r; — r; means that the condition of r; may be
true after the execution of its own action. If there are no cycles in the AG, then
processing is guaranteed to terminate. Some studies |7| rely mostly on the AG
while making termination analysis.

Other studies |3] try to detect potential non-termination by using both TG
and AG together where a rule set can only exhibit nonterminating behavior when
there are cycles in both the triggering and the activation graphs that have at least

one ritle in common.

23

I T
1event:U(D) 3 event: U(D)

condition: A=() condition: C=()
action: A=1, B=0, C=0 action:C=1, E=1

2 event: U(E)
condition: B=()
action: A=0, B=1,D=1

Figure 2.6: A knowledge base and its triggering and activation graph.

Returning to the example given above, the AG for rule R; contains no cycle,
because its condition can’t be true atter the execution of its action. Thus, even

though the T'G contains a cycle, the execution of the rule terminates.

Example: Figure 2.6 illustrates a small knowledge base. T'he extensional database
consists of a single class C' having attributes A, B, C, D, E; the type of these at-
tributes is restricted to the set of values 0, 1. The rule set consists of three rules
r1,72,73. Rule events are update operations on the attributes, conditions are
predicates; actions are sequences of update operations. The TG and AG corre-
sponding to the above rules are illustrated in Figure 2.6. T'G arcs are represented

by solid lines and AG arcs are represented by dashed lines.

2.5.2 Confluence Analysis

On each execution of the scheduling phase of rule processing, multiple rules may
be triggered, and hence be eligible for execution. A rule set is confluent if the
final state of the database does not depend on which eligible rule has been chosen

for execution.

24

Figure 2.7: Rule execution by means of rule execution sequences

The rule execution process can be described by the notions of rule execution
state and rule execution sequence. Consider a rule set E. A rule execution state
S has two components: 1. a database state d, and 2. a set of triggered rules
Ry C R. When Rr is empty, no rule is triggered and the rule execution state is
quiescent. A rule execution sequence consists of a series of rule execution states
linked by (executed) rules. A rule execution state is complete if its last state is
quiescent.

In Figure 2.7, two rule execution sequences for the rule set R = {ry, 79,73}
are represented. The initial state .S; is characterized by database state db; and
triggered rule set Ry = {ri,r2} and the (unique) final state is characterized by
a database state dby and an empty triggered rule set. Each state transition is
labeled with the rile whose execution caused the transition.

Confluence can be defined in terms of execution sequences. A rule set is
confluent if, for every initial execution state S, every complete rule execution
sequence beginning with S reaches the same quiescent state. Then confluence
analysis requires the exhaustive verification of all possible execution sequences
for all possible initial states. This technique is clearly unfeasible even for a small
rile set.

A different approach to confluence analysis is based on the commutativity of
rule pairs. I'wo rules r; and r; commute if, starting with any rule execution state
S, executing r; followed by r; produces the same rule execution state as executing
r; followed by r;; this is shown in Figure 2.8.

If all pairs of rules in a rule set R commute, any execution sequences with

2h

Figure 2.8: Commutativity of a rule pair

the same initial state and executed rules have the same final state. Furthermore,
again under the assumption of commutativity, two sequences with the same initial
execution state must have the executed rules. Based on these properties, it is
possible to state a sufficient condition to guarantee confluence of a rule set: A
rule set R is confluent if all pairs of rules in R commute |6].

Confluence may be guaranteed by imposing a total ordering on the active
rule set [3|. Consider a prioritized rule set R. If a total ordering is defined
on the rules in R, when multiple rules are triggered only one rule at a time
is eligible for evaluation. Then, rule processing is always characterized by a
single rule execution sequence, which vields a unique final state, and confluence

is guaranteed.

2.6 Previous Studies and Contribution of This Study

2.6.1 Active Studies
2.6.1.1 Active Object-Oriented Databases

There have been a couple of projects, such as HIPAC |28|, EXACT [29]|, NAOS |25/,
Chimera |26|, Ode |36], SAMOS |31]|, Sentinel |21|, Reach |82|, developing active
object-oriented databases. These are all evaluated for a couple of dimensions
|62, 63|. Here we only mention three of them, which are Ode |36], Samos [31| and
Sentinel |21|. The reason we choose them is that they handle event composition.

In the Ode object-oriented database |36, two different types of rules, con-

26

straints and triggers, are associated with the objects. Since these rules are de-
fined at the class level, they can be inherited. Only object updates caused by
public member functions are considered as events, and events are not specified
explicitly. Constraint and trigger rules defined at |36/ are logically different. Con-
straint rules, which are concerned with the consistency of the object state, atfect
all instances of a class and are defined permanently. However, triggers are fired
whenever the specified conditions become true and are explicitly activated on
particular objects. In addition, although constraint actions are executed as part
of a transaction violating the object constraints, trigger actions are initiated as
separate transactions. For all kinds of rules, only immediate coupling mode is

supported in event-condition (EC) coupling.

In SAMOS |31], not only method but also time, transaction and abstract
kinds of events are supported. As for the scope of the method events, both the
class and object level method events are supported, as the case in Ode. As far
as the event consumption mode is concerned, only chronicle one exists. However,

all coupling modes are supported (immediate, deferred and detached).

As far as Sentinel [21] is concerned, it supports method, transaction and time
events. As the case in both Ode and SAMOS, Sentinel also provides class and
object level method events. In Sentinel, some objects are extended with an event
interface to enable them to designate some of their methods as primitive event
generators. The objects including these event interfaces are termed as reactive
objects. If a reactive object detects the occurrence of an event, it signals/informs
some other objects called notifiable objects (event and rule objects). These noti-
fied objects then take appropriate measures by evaluating conditions and execut-
ing actions. Perhaps the most significant feature of Sentinel is that it supports
a diverse set of event consumption modes, such as recent, chronicle, continuous
and cumulative. For the coupling modes, immediate and deferred modes are
supported between event and condition, while only immediate coupling mode is

supported between condition and action.

27

2.6.1.2 Fuzziness in Active Databases

Although the incorporation of fuzziness into active databases introduces much
flexibility, only a couple of researchers incorporated fuzziness in their systems. In
|14|, Bouaziz et al. propose a condition-action (CA) fuzzy trigger , where fuzziness
is introduced in the CA part of an ECA rule. In a later work by Bouaziz et al.
|16], authors extend the concept of CA trigger to a fuzzy ECA rule by introducing
the notion of fuzzy events. In fuzzy ECA rules an event may fire a set of rules.
Bouaziz et al. |16] define fuzzy events as fuzzy sets and use linguistic hedges like
high, low and strong. Formally, a primitive fuzzy event is represented as a tuple
< eq,er > where e, is a crisp event and ey is a fuzzy event predicate. When a
crisp event is signalled, the value produced upon the operation causing the crisp
event is fed into the membership function of e;. The output of the membership
function is called the event match factor, and the fuzzy event is signalled only it
the event match factor is greater than zero |16|. Upon the signalling of the fuzzy
event, the corresponding rules are fired and their conditions (which are fuzzy
predicates on the database) are checked. The action of a rule is started executing
depending on the result of condition evaluation.

In a study by Saygin et al. |68]|, fuzziness is incorporated into rule execution
via fuzzy coupling modes and scenarios. Fuzzy primitive events are combined
to form fuzzy composite events. In |68|, fuzzy concepts are also used in rule
scheduling. Saygin et al.’s approach divides the whole set of rules in the system
into subsets. Each of those subsets is actually a group of fuzzy sets and represents
a particular scenario like emergency or normal. In that study, rules belong to a
scenario with a degree of membership of that scenario. Saygin et al. |68] also

study similarity-based event detection.

2.6.1.3 Our Study vs Active Studies

Our study differs from the previous research efforts mentioned above in a num-
ber of respects. First, the active object-oriented database systems Ode |36],

Samos |31| and Sentinel |21] aim only at designing a full-fledged active database

28

system and they do not consider the intelligent behaviour required to handle
deductive queries. However, in our study we not only integrate active rules but
also deductive rules so that the intelligent behaviour required to handle deductive
queries is also an integrated part of objects. Second, we consider the uncertainty
and vagueness inherent in knowledge-intensive applications in defining data, at-
tributes, objects, classes, rules (either ECA rules or deductive rules) and in their
inference mechanisms. On the other hand, active object-oriented database sys-
tems |36, 31, 21| assume crisp domains and ignore uncertainty in their applica-
tions. That is, attributes, objects, classes and rules are defined with a high degree
of crispness. Third, although Bouaziz et al. [14, 15, 16| introduce fuzziness in
their ECA rules via using linguistic terms and provide a fuzzy inference mecha-
nism, the way they associate fuzzy events with fuzzy CA rules in the inference
mechanism is different from ours. That is, they use a technique called squeezing
to associate fuzzy events with fuzzy CA rules by squeezing the result of the fuzzy
CA rule set with the event match factor. If the event match factor is lower, there
is a more movement towards less significant actions. However, in our approach
the effect of fuzzy event on fuzzy inference is smoother, i.e. the action chosen at
the end still comes from the possible actions before the effect of event is applied.
The details of our fuzzy inference mechanism is given in Section 3.2. Fourth, we
aim at modeling the detection and inference of fuzzy composite events, which to
the best of our knowledge has not yet been studied before. Although Bouaziz
et al. |16| study fuzzy events, they do not give a general model of fuzzy events
that capture event composition. On the other hand, although the active object-
oriented databases mentioned above model composite event detection, (Ode |36]
uses finite state automata, SAMOS |31] uses colored petri-nets, and Sentinel |21|
uses query graphs for this purpose), none of them considers fuzziness. Finally, in
our study, we develop a model for the membership of fuzzy rules to the scenar-
ios, which we use in fuzzy inference during the calculation of event match factor.
However, in the study by Saygin et al. |68, although scenario concept is intro-
duced, the way of calculating membership values of fuzzy rules to the scenarios

is not specified.

29

2.6.2 Fuzzy Petri Nets and Static Rule Analysis
2.6.2.1 Fuzzy Petri Nets

There have been a number of studies using FPNs. Chen et al. |23| consider a
representation of fuzzy production rules with certainty factors. The reasoning
algorithm used in that study determines whether there exists an antecedent-
consequence relationship between two propositions. If this is the case, the degree
of truth of the consequent proposition is evaluated from that ot antecedent propo-
sitions. In a later work by Chen et al. |22, the authors extend their previous work
with a Weighted Fuzzy Petri Net (WFPN) model, where certainty factors, truth
values of propositions and weights of propositions are represented by fuzzy num-
bers. However, in all their work |23, 22| only exact matching is allowed. A similar
approach taken by Manoj et al. |55 modify Chen et al.’s |23| fuzzy reasoning al-
gorithm after finding out that it does not work with all types of data. Chun
et al. |24] study algebraic forms of a state equation of the FPN, which are sys-
tematically derived using a matrix representation. They use state equations to
perform both forward and backward reasoning. However, they change the firing
rule of conventional Petri nets. A different FPN model is studied by Bugarin et
al. [18|, who present the execution of a knowledge base by using a data driven
strategy based on the sup-min compositional rule of inference. However, since the
arrangement of the linking transitions and the applied algorithm depend on the
initial marking, their work is not appropriate for large systems. Finally, Scarpelli
et al. |67] propose a High Level Fuzzy Petri Net (HLFPN) for modeling fuzzy
reasoning based on compositional rule of inference. Their forward reasoning al-
gorithm consists of the extraction of a subnet from an entire net. However, after

extracting the subnet, it is not allowed to have concurrent inference.

2.6.2.2 Static Rule Analysis

While T'G arcs are syntactically derivable, it is very difficult to determine precisely
the arcs of an AG. In Baralis et al. |3|, it is assumed that conditions and actions

are both represented by relational algebra expressions. Unfortunately, for the

30

host languages that are not based on relational algebra or relational calculus, it
is diflicult to infer the truth value of a condition from the imperative code of a
rule’s action |30]. Due to this fact, most of the studies [30, 46, 74, 58| including
ours consider only triggering graph information during termination analysis.
Most of the existing studies on rule analysis only deal with simple rule lan-
guages; i.e., languages that support only a limited set of constructs for specifying
active behavior. If the rules become complex (like having composite events, sup-
porting complex conditions/actions, etc), their analysis also becomes complex.
The reason is that there are additional elements on which the triggering of a rule
depends. For example, a rule defined on a complex event is triggered only when
all component events occur. Therefore, compared to a simple rule language, it is
more difficult to decide when rules may generate an infinite loop during execution.
That is, in a system having only primitive events, an edge in the triggering graph
indicates that one rule can generate an event that can in turn trigger another.
However, when a rule r has a composite event, it may be that no other single rule
in the rule base can trigger r, but that a subset of the rules together may be able
to trigger . Vaduva et al. |74| and Dinn et al. [30| consider compositions while

performing termination analysis.

2.6.2.3 Our Study vs Other Studies on FPNs

In this study, we propose an extended Fuzzy Petri Net for modeling fuzzy rule-
based reasoning. Compared to the previous studies existing in literature, we
add a couple of new features to FPNs. First, we can model any rule type (ac-
tive or deductive), unlike the previous works, which do not model active rules.
Second, we not only model the composition of conditions but also the compo-
sition of events. In contrast, since previous studies using FPNs cannot model
active rules, they do not consider event composition. Additionally, we extend
the functionalities of transitions. That is, we render them capable of performing
fuzzification, event/condition composition, concurrent execution, and combina-
tion in addition to the sup-min composition. Fourth, since we use the features of

Colored Petri Nets, which support a rich set of token types, we provide parame-

31

ter passing through the FPN. This provides values of conditions and actions to
be calculated tfrom the parameters of events. Fifth, we check the properties of
our system using the FPN structure. This is not considered by any other study
that utilizes FPNs. Our FPN structure already contains the Triggering Graph
information and supports the static analysis of the rule base. That is, we can
perform the termination analysis easily by just using the FPN. Therefore, there
is no need to do extra work to construct Iriggering Graph as required by other
studies |1, 19, 30, 46, 74|, which use structures other than FPN for studying
rule analysis. In addition, while performing termination analysis, we also handle
event and condition compositions, and eliminate false cycles. Finally, we guaran-
tee confluent rule execution with our fuzzy inference algorithm that we introduce

in Chapter 5.

32

CHAPTER 3

INCORPORATING FUZZINESS INTO
ACTIVE RULES

In this chapter, we describe how we incorporate fuzziness into active rules. In
Section 3.1, we explain the scenario concept. In Section 3.2, we show how we
perform fuzzy inferences in an active rule-base. This is followed by our model
for the similarity of a rule to the scenario in Section 3.3. Finally in Section 3.4,
we describe our approach for handling fuzziness in active rules in an application,

which is the alarm treatment in an industrial drive control system.

3.1 Inter-rule Fuzziness via Scenarios

A scenario is a set of rules of a database state. We partition the rule space and
call each partition a scenario. There can be only one active scenario at a time.
Switching between the scenarios is determined by the user. During the tuzzy
inference cycle, each rule has a firing threshold which is used to decide if a rule
will be fired or not. For that, we calculate the strength of events for the rules
fired. This calculation is affected by the current active scenario. If the result is

greater than or equal to the threshold value, then the rule is fired.

The concept of scenarios on rules is studied in |68]. In that study, strength of

33

an event e, for rule r within the scenario s is calculated using the formula:
strength < e,r,s >= g(r) * e, (value(e.)) (3.1)

which uses scalar multiplication, where value(e.) is the value of the event (either
fuzzy or crisp) detected, p.s is the membership function of the fuzzy event e; and
1s(r) is the similarity of the rule r to the current scenario s.

In [68] how the membership functions of scenarios for the fuzzy rules in the
system found is unclear; it is only said that this can be determined according to
the results of priori simulations. However, in Section 3.3 we develop a model for

membership calculations of fuzzy rules to the scenarios.

3.2 Incorporating Fuzzy Inference into Active Rules

Since a fuzzy rule-based system comnsists of a set of fuzzy rules with partially
overlapping antecedents, a particular input to the system often "triggers” multi-
ple fuzzy rules (more than 1 (one) rule matches the input to a nonzero degree).
In those cases, we need a fuzzy inference mechanism. At this point, it is ap-
propriate to define the nature of antecedents and consequents of a fuzzy active
rule. Antecedent part is constructed from the events and conditions, whereas the
consequent part is constructed from the actions. Fuzzy inference becomes very
important in the cases where the activation of an event fires a couple of rules
whose action part do the same thing but with different fuzzy linguistic terms.
These rules are grouped to evaluate in case of a suitable event invocation. If
the event is invoked, there needs to be a mechanism for determining the total
outcome (or action) of these rules. It is more appropriate to take a unique action
(which is the most suitable action for the current situation) from the possible
actions list instead of executing each action one by one.

We define our rules, which can be either active or deductive type, in the

following form:

< ON event 1list <event threshold> >
IF condition list <EC coupling>

THEN action/conclusion <CA coupling>

34

where the parts inside the <> means they are optional. If the ON part is omitted,
it hecomes a deductive rule. We use the abstract kind of events for the deductive
rules so that internally all rules are of active type. If a rule defined is an active
one and event threshold is omitted, then exact matching with a value of 1(one)
is assumed. If coupling modes are omitted in an active rule, they are assumed as

immediate. Here all coupling modes are assumed as immediate.

The structure of concurrent active rules are as follows:

Ri: ON x; is A;; AND/OR x5 is Ays < event_thresholdgr, >
IF Y1 is B11 AND/OR Y2 is Blg

THEN z is Gy

Ro: ON x; is Ay AND/OR xo is Ay < event_thresholdg, >
IF Y1 is B21 AND/OR Y2 is B22

THEN z is Co

R,: ON x; is A,; AND/OR x5 is A,s < event_thresholdg, >
IF V1 is Bnl AND/OR Y2 is Bng

THEN z is C,

It the facts for which we are doing inferencing are g, oo for event, and y1g, Y20
for condition, we perform the following tuzzy inference steps to find the appro-

priate action:

Fuzzy Event Matching:

In this step, matching factor for the event part of the rules gets calculated using
the strength of the event formula given by Equation 3.1. Before that, we tuzzity
the event, i.e., calculate the value of p.,(value(e.))) in order to determine the

membership value of the fuzzy event detected. For that either min (for conjunc-

35

tions of events) or max (for disjunctions of events) operator is used.
strength < e,r,s >= g(r) * e, (value(e.))
where
pep(value(ec)) = paandjoras (T10, T20) = min/maz(fia, (T10), fa, (T20)) (3.2)

It strength<e,r;,s> > event_threshold,,, the rule r; gets fired.
Fuzzy Condition Matching:
In this step, matching factor for the condition part of the rules gets calculated

using min operator for the conjuntion of conditions and maz operator for the

disjunction of conditions.

[Biyand/or Biz (Y10, Y20) = min/maz(pp, (Y10)s 1B, (Y20)) (3.3)
If 1B,y andjorBis (Y10, Y20) > 0, we go to the next step.
Fuzzy Inference:

Total value of the matching factor for antecedent (event and condition together)

of each rule gets calculated using the product operator.

pa,, = product(strength < e,ri,s >, [, and/orB,; (Y10: Y20)) (3.4)

Then, we do clipping on the action part of each rule according to this fuzzy

antecedent matching value.

fig () = min(pa,,, pe,(2)) (3.5)

Combination:
This is done by superimposing all fuzzy conclusions about an action. This is
based on applying the max fuzzy disjunction operator to multiple possibility

distributions of the output variable.
e (2) = maa(piey (2), oo e (2) (3.6)

36

3.3 A model for the Similarity of the Rule to the Scenario
Any active rule can be written as:
C: —Al,AQ,...,An (37)

which is equivalent to

where antecedent (A;’s) is composed of events and conditions, and consequent
(C') is an action. In order to determine whether a rule can be fired within the
current scenario, similarity of the rule to the scenario rules should be calculated.
We use the following formula while evaluating the similarity of any rule R; in the

rile set to the current scenario S

pis(r) = maz([min(max(u(As, Ar)), max(u(Cs, Cp))) * RLVes/RLViee|) (3.9)

where A, € S, VA, € R;, Cs € S, VC, € R;, RLV,,, RLV,,,,, € S. As is the
antecedent of a current scenario meta rule and A, is the antecedent of R; (the
rule to be evaluated), C is the consequent of a meta rule in the scenario and C,
is the consequent of the rule to be evaluated, RLV,, is the relevance value of the
meta rule to the current scenario and RLV,,,, is the maximum of those relevance

values.

3.4 Example - An Overheating Alarm Generation in a

Drive System of a Couple of Motors

We take this example rules from Bouaziz et al. |16]. It is an application of how to
generate an alarm notification in a system of more than 1(one) motor where there

may be a motor overheating. Here is the set of rules grouped for this inference:

R1:
ON there is a change on any motor temperature
AND motor.temperature is hot 0.1

IF some motors hot AND most deltas big_positive

37

R2:

R3:

R4 :

Rb:

R6:

THEN alarmnotification is low

ON there is a change on any motor temperature
AND motor.temperature is hot 0.1
IF some motors very_hot AND some deltas big_positive

THEN alarmnotification is low

ON there is a change on any motor temperature
AND motor.temperature is hot 0.1
IF some motors very_hot AND most deltas big_positive

THEN alarmnotification is medium

ON there is a change on any motor temperature
AND motor.temperature is hot 0.1
IF most motors hot AND some deltas big_positive

THEN alarmnotification is medium

ON there is a change on any motor temperature
AND motor.temperature is hot 0.1
IF most motors hot AND most deltas big_positive

THEN alarmnotification is high

ON there is a change on any motor temperature
AND motor.temperature is hot 0.1
IF most motors very_hot

THEN alarmnotification is high

On the above rule set, the event generated is the update on the motor temper-
ature and the new value of the temperature being hot and conditions check the
delta differences (temperature difference divided by the previous temperature)

and action parts produce alarm notification with different linguistic terms.

38

Assume that in the drive system of motors we have emergency scenario with

the following meta_rules (protoforms):

Remergencyl:
UON there is a change on any motor temperature
AND motor.temperature is hot
IF most motors hot AND most deltas big_positive
THEN alarmnotification is high
Remergency?2:
ON there is a change on any motor temperature
AND motor.temperature is hot
IF most motors very_hot

THEN alarmnotification is high

According to the above meta rules, emergency scenario is Remergencyt V Remergency2.
This means that any rule similar to either Repmergencyt OF Remergency2 can be fired
when the emergency scenario is on. So what needs to be calculated is the simi-
larities of the rules in the system to the meta_rules in the emergency scenario.
Assume that we have two motors. At time t; for the motors m; and ms, the
temperatures measured were 62.5°C and 160°C and at time ty they are measured
as 125°C and 160°C respectively. Assume also that for the active rule evaluation

following membership functions and similarity relations are used:

temperature;

normal trapezoidal(0,0,120,140)

hot trapezoidal(120,140,300,300)
very_hot trapezoidal(145,160,300,300)

delta;

negative trapezoidal(-1,-1,-0.4,-0.2)
big_negative trapezoidal(-1,-1,-0.8,-0.6)
small_negative trapezoidal(-0.8,-0.6,-0,4,-0.2)

39

zero trapezoidal(-0.4,-0.2,0.2,0.4)
small_positive trapezoidal(0.2,0.4,0.6,0.8)
big_positive trapezoidal(0.6,0.8,1,1)
positive trapezoidal(0.2,0.4,1,1)

alarmseverity:

zero trapezoidal(0,0,0.5,1.0)

low trapezoidal(0.5,1.0,1.5,2.0)
medium trapezoidal(1.5,2.0,2.5,3.0)
high trapezoidal(2.5,3.0,4.0,4.0)

fuzzy quantifiers:

few triangular(0,0.2,0.3)
some triangular(0.2,0.45,0.7)
most triangular(0.6,0.8,1)

Table 3.1: Similarity Matrix for Temperature

Temperature ‘ normal hot very_hot

normal 1 04 O
hot 0.4 1 0.9
very_hot 0 09 1

Table 3.2: Similarity Matrix for AlarmNotification

Alarmnotification | zero low medium high

Zero 1 0.7 0.5 0
low 0.7 1 0.7 0.5
medium 0.5 07 1 0.7
high 0 0.5 0.7 1

Fuzzy Event Matching Phase:
Fuzzify the event:
After we fuzzify the event, we find pp0(125) = 0.25. Since pipe(125) > 0 all the

rules get fired.

40

Table 3.3: Similarity Matrix for Quantifiers

quantiﬁer| few some most

few 1 0.5 0
some 0.5 1 0.5
most 0 0.5 1

Calculate the strength of event and check it with the rule threshold:

For this ug(r;) values for the rules are calculated using the Formula 3.9. Also
assume that following relevance values are used:

RLV (Remergeney1,Emergency) = 1, RLV(Remergencyz, Emergency) = 1.5

Using the similarity matrices, emergency scenario meta_rules and relevance val-
ues, femergency(T1), i.€. relatedness of Ry to the emergency scenario, is calculated

as follows:

Max [Min (i, (hot ,hot), e (mosSt,some),
Lbsim (hot ,hot) , g (moSt,most),
Lsim (big_positive,big_positive),
lsim (high,low)) * 1/1.5,
Min (g (hot ,hot), ftem (most,some), tgiym (very_hot,hot),
Usim (high,low)) *1.5/1.5]=
Max[Min(1, 0.5, 1, 1, 1, 0.5) * 1/1.5,
Min(1, 0.5, 0.9, 0.5) * 1.5/1.5] =
Max(0.5%1/1.5 , 0.5%1.5/1.5) =
Max(0.33, 0.5) = 0.5

Applying the same approach following values are calculated for the similarities of
the rules to the current scenario emergency:

femergency (B2)=0.5, ftemergency(F3)=0.5

ftemergency(124)=0.7, ftemergency(15)=0.9

Hemergency(Fl6)=1

and using the Equation 3.1, event strengths are calculated as:
for Ry ; 0.5 upe(125) = 0.5 * 0.25 = 0.125
for Ry ; 0.5 upe(125) = 0.5 * 0.25 = 0.125

41

for Ry ; 0.5 * jipor(125) = 0.5 * 0.25 = 0.125
for Ry ; 0.7 * ppor(125) = 0.7 * 0.25 = 0.175
for Rs ; 0.5 * upet(125) = 0.9 * 0.25 = 0.225
for Rg ; 1.0 * jiper(125) = 1.0 * 0.25 = 0.25

Threshold values for the rules are given as 0.1, therefore all the rules succeed.

Fuzzy Condition Matching Phase:

Fvaluate Ry :

”Motors are hot” with degrees 0.25 and 1. Their average is 0.625. ”Some motors
are hot” evaluates to fisome(0.625) = 0.3. Delta values are 1 ((125-62.5)/62.5)
and 0 respectively. ”Deltas are big positive” with degrees fipig_positive(1) = 1 and
tbig_positive(0) = 0. Their average is (1 + 0)/2= 0.5. "Most deltas are big posi-
tive” evaluates to fimest(0.5) = 0. ”Some motors are hot and most deltas are big

positive” evaluates to min(0.3,0) = 0. Since condition match factor is 0, Ry fails.

Evaluate Ro:

” Motors are very_hot” with degrees 0 and 1. Their average is 0.5. ”Some motors
are very_hot” evaluates to fisome(0.5) = 0.8. Delta values are 1 ((125-62.5)/62.5)
and 0 respectively. "Deltas are big positive” with degrees (g _positive(1) = 1 and
Ibig_positive(0) = 0. Their average is (1 + 0)/2= 0.5. "Some deltas are big posi-
tive” evaluates to fisome(0.5) = 0.8. ”Some motors are very_hot and some deltas
are big positive” evaluates to min(0.8,0.8) = 0.8. Since condition match factor is

0.8, Ry succeeds.

Evaluate Ry:

” Motors are very_hot” with degrees 0 and 1. Their average is 0.5. ”Some motors
are very_hot” evaluates to fisome(0.5) = 0.8. Delta values are 1 ((125-62.5)/62.5)
and 0 respectively. "Deltas are big positive” with degrees (g _positive(1) = 1 and
Ubig_positive(0) = 0. Their average is (1 + 0)/2= 0.5. "Most deltas are big positive”
evaluates to fimost(0.5) = 0. ”"Some motors are very_hot and most deltas are big

positive” evaluates to min(0.8,0) = 0. Since condition match factor is 0, R3 fails.

42

Fvaluate Ry:

”Motors are hot” with degrees 0.25 and 1. Their average is 0.625. ”Most motors
are hot” evaluates to fimes(0.625) = 0.125. ”Some deltas are big positive evalu-
ates to fisome(0.5) = 0.8. "Most motors are hot and some deltas are big positive”
evaluates to min(0.125,0.8) = 0.125. Since condition match factor 0.125 > 0, R4

succeeds.

Fvaluate Rs:

” Motors are hot” with degrees 0.25 and 1. Their average is 0.625. ”Most mo-
tors are hot” evaluates to fim0s(0.625) = 0.125. "Most deltas are big positive
evaluates t0 fim0s:(0.5) = 0. "Most motors are hot and most deltas are big pos-

itive” evaluates to min(0.125,0) = 0. Since condition match factor is 0, Rs fails.

Fvaluate Rg:
”Motors are very_hot” with degrees 0 and 1. Their average is 0.5. ”Most motors
are very_hot” evaluates to flmes(0.5) = 0. ”Most motors are very_hot” evaluates

to min(0) = 0. Since condition match factor is 0, Rg fails.

Fuzzy Inference:

Upto this point only Ry and R4 succeed. Their antecedent matching degrees are
for Ry, product(0.125,0.8) = 0.1.

for Ry, product(0.175,0.125) = 0.022.

So clipping value of 0.1 is used for the action part of Ry, which is an alarm notifi-
cation of low and clipping value of 0.022 is used for the action part of R4, which

is an alarm notification of medium .
Combination:

Maximum of the clipping values are taken, since we have Ry and Ry, max(0.1,0.022)

= ().1. This means an alarm notification of low needs to be sent.

43

CHAPTER 4

FUZZY PETRI NETS FOR MODELING
FUZZY RULE-BASED REASONING

We use Fuzzy Petri Nets to represent the knowledge and model the behavior of
the system. In this Chapter, we present our FPN model for fuzzy rule-based
reasoning. More specifically, we show how we map the fuzzy rules to FPN and
how we construct the FPN. We give two example applications; alarm treatment
in an industrial drive control system |16], and selection of the washing cycle in a

washing machine |78|.

4.1 Fuzzy Petri Nets for Fuzzy Rules

We introduce the following Fuzzy Petri Net (FPN) structure to model the fuzzy
rules; (P,P,,P.,T, TF, TRTF, A, I, 0, TT, TTF, AEF, PR, PPM, TV) where:

i. P is a finite set of fuzzy places. Each place has a property associated with

it, in which

- P, C P is a finite set of input places for primitive events.

- P, C P is a finite set of output places for actions or conclusions.

Each place is identified with a unique place 1d.

44

ii. T is a finite set of fuzzy transitions. Each transition is identified with a

unique transition id.

iii. TF is a finite set of transition functions, which perform activities of fuzzy

inference.

iv. TRTF: T — TF is transition type function, mapping each transition € T' to

a transition function € T'F.

v. A C (PxT U TxP) is a finite set of arcs for connections between places and
transitions, where
- I: P — T is an wnput mapping.
- 0: T — P is an output mapping.
vi. TT is a finite set of fuzzy token (color) types. Each token has a linguistic

value (i.e. low, medium and high), which is defined with a membership

funection.

vii. TTF:P — TT is token type function, mapping each fuzzy place € P to a
fuzzy token type € TT. A token in a place is characterized by the property

of the place and a level to which it possesses that property.

viii. AEF: Arc — expression, is arc expression function mapping each arc to

an expression, which carries the information (token value).

ix. PR is a finite set of propositions, corresponding to either events or conditions

or actions/conclusions.
x. PPM: P — PR, is a fuzzy place to proposition mapping, where | PR |=| P |.

xi. TV: P— [0,1] is truth values of tokens (u;) assigned to places. It holds

the degree of membership of a token to a particular place.

A token value in place p; € P is denoted by TV (p;) € (0, 1]. If TV (p;)=p, p; €
|0, 1| and PPM (p;)=d;. This states that the degree of the truth of proposition d;
is p;. A transition t; is enabled if V p; € I(t;), pu; > 0. If this transition ¢; is fired,

45

"®e_
ek
15 »

(a) before firing a transition (b) after firing a transition

Figure 4.1: Firing the Fuzzy Petri Net.

tokens are removed from input places I(t;) and a token is deposited onto each of
the output places O(t;). Since we provide parameter passing, the token value of
an output place py € O(t;) is calculated from that of the input places I(¢;) using
the transition function T'F;, where TF,=TRTF(t;). This token’s membership
value to the place pg, (i.e up=TV (p)), is part of the token and gets calculated
within the transition function T'F;, where up= TF;(I(t;)).

Example: The fuzzy deductive rule [F d; and d; THEN dj, can be modeled as
shown in Figure 4.1. In this example, PP M (p;)=d;, PPM (p;)=d;, PP M (py)=d,
TV (pi)=p; and TV (p;)=p,. Suppose that p; > 0 and p; > 0. This means that
transition t,, is enabled and fired. Tokens are removed from I(t;), which are p; and
p;, and deposited onto O(t;), which is pg. Suppose that the transition function
of t,, which is TF,, = TRTF(t,), is defined as an algebraic product function.

Then the truth value of the output token (membership degree) is calculated as

TV (pr)=TFn(I(tn))=pix 1=k

4.1.1 Mapping Fuzzy Rules to Fuzzy Petri Net

We define our rules, which can be either active or deductive type, in the following

form:

Ri:
< ON ei <event threshold> >
IF ci

THEN ai

46

where e; corresponds to either a primitive or a composite event. If it is a com-
posite one, it can be constructed from conjunctions and/or disjunctions of prim-
itive/composite events. The same applies to ¢;, which can either be a primitive
or a composite condition. On the other hand, the action/conclusion part a; can
only contain a primitive action.

We place the constituents of our rules onto the FPN places and transitions.

Here is the list of items that we consider while doing this mapping:

1. PR={pry,prs, ..., pr,} is a finite set of propositions. A proposition can

be any of the following:

o

. primitive events,
b. tuzzy primitive events,

c. fuzzy composite events (conjunctions/disjunctions of fuzzy primitive/composite

events),
d. similarities of rules to the current scenario.

e. fuzzy primitive conditions,

f. fuzzy composite conditions (conjunctions/disjunctions of fuzzy primi-

tive/composite conditions).
g. clipped actions/conclusions, and
h. for each concurrent rule set:

- a combined action, and

- a fuzzy action.

2. PPM: P — PR, is a mapping from places to propositions where |PR| = |P].
For each proposition pr;, i=1,...,n, let p; be a place in the FPN. Some of

these places are specialized as F, and £..

a. P, C P is a finite set of input places corresponding to primitive events.

They are the starting places in the fuzzy inference mechanism.

47

b. P, C P is a finite set of output places, which correspond to fuzzified
actions/conclusions. They are the final places in the fuzzy inference

mechanism.

3. T={tq1,t2, ..., tm,} is a finite set of transitions. While executing transi-
tions, we go through the inference steps. Transitions use the values provided
by input places and produce values for output places by using the specific
purpose functions. Their functionalities can be listed as:

a. tuzzification of primitive events,
b. fuzzification of primitive conditions,

c. providing fuzzy event /condition composition (conjunctions/disjunctions

of fuzzy primitive/composite events/conditions),
d. providing a pass from event to condition evaluation;

- calculates strengths of events.
- checks the rule threshold,

- provides input for the condition evaluation,

e. finding clipping values for the individual rules by using the event and

condition match factors of each rule,
f. combining the outcome of concurrent actions/conclusions, and
g. determining the overall fuzzy action.
h. triggering events (marking primitive event places).

4. A C (PxT U TxP) is a finite set of arcs for connections between places and
transitions. Connections between the input places and transitions (PxT")
and connections between the transitions and output places (TxP) are pro-
vided by arcs. Arcs can be expressed in matrix forms. For this, output

and input incidence matrices are used. Since the number of arcs between a

transition and a place is either 1 or 0, both matrices are binary matrices.

5. AEF:A — expression, is a mapping for each arc to an expression, which

can be one of the following:

48

a. an input arc expression for arcs € Px1, consisting of the variables of
the input place of the arc, which carries information of an input place

token.
b. output arc expression for arcs € T'xF consisting of variables to be

assigned to output places.

6. TV:P — [0,1] is a mapping for the truth values of propositions (u) as-
signed to places. It can be any of the following (only one of them for each
place):

a. 1 (one) for the crisp event,

b. truth values of the fuzzy primitive events/conditions,
c. truth values of the composite events/conditions,

d. similarities of rules to the current scenario,

e. strengths of events,

f. clipping values for actions/conditions,

g. 1 (one) for the combined actions, and

h. a truth value for the overall fuzzy action/conclusion.
7. TT is a finite set of token(color) types.

8. TTF:P — TT is a token type function, mapping each place € P to a token
type € 1"l

Figure 4.2 shows how we realize the steps of fuzzy inference using the FPN struc-

ture.

4.1.2 Constructing the FPN

First the rule definitions are obtained from the user. For each rule, a rule object is
created, and the event, condition and action parts of a rule are examined. While
doing this, FPN places are created. Then, the fuzzy inference groups, which are

the concurrent rule sets that get triggered at the same time, are determined.

49

event generating transition

fuzzy primitive

(marked everytime)
events

primitive events,

S
(start places) . i
] - conjunctively connecte
fuzzy composite
by, event

i — I strengthened events
L2 g () .
. transitions for = K§ 1 (marked everytime)
: — fuzzifying events E disjunctively connected
H o fuzzy composite
Z
g event
=
wn
8 L~
s trengthened events L |
3 j .y T
o] — transitions for ~ UZZy primitive
Ps trancitiong for L. . N conditiong
" I é . = WIZECLIY COlUIUULS
— calculating strengths of events
— checking the rule thresholds
conjunctively ¢ ed
— fuzzy composite
condition .
—2 combined
o fuzzy actions/conclusions
E (end places)
a . / P
Z : ——|~\>
|8 disjunctivel ed P,
: isjunctively connecte ¢
: [.
T35 fuzzy composite . po—"
-~ Z it H ransitions
S condition H — for fuzzy action
E :
8 P,
2o
: et L
o} - . combined actions/conclusions
actions/conclpsions
arcs from f-'—,
fuzzy primitive transitions for
conditions

transitions for — combining concurrent actions/conclusions

— finding clipping values

Petri Net Structure used for conjunction Petri Net Structure used for disjunction

Figure 4.2: Modeling Fuzzy Inference using the Fuzzy Petri Net.

Finally, transitions are constructed over these FPN places. The pseudecode of

the algorithm is given in Figure 4.3.

The construction of the FPN considers the ninification of condition and action

calls with event specifications. In this way, we can decide which action execution

or condition evaluation generates new events. For these cases, a transition is

added from related condition/action FPN places to the generated primitive event

in the FPN (event generating transition). Our unification principle at FPN con-

struction depends on having the same fuzzy attributes of the same fuzzy domain

n()

Begin

while there are still some riles do
Create a rule object
Examine Event, Condition, Action parts

for each one of them do

Create related FPN places

end for
end while
Construct fuzzy inference groups
Construct, transitions

End

Figure 4.3: Construct_FPN Algorithm

in the related FPN places. But they may have different fuzzy linguistic terms.

The rules in the same fuzzy inference group are determined according to their
action parts. Rules are in the same fuzzy inference group if action parts unify
(their fuzzy attribute domains are the same but they may use different fuzzy
linguistic terms). For each fuzzy inference group a combined action and a fuzzy

action FPN places are created.

During the FPN construction, the attributes of the rule objects are updated
to hold the related links on FPN. These attributes are PN _primitiveevent,
PN _fuzzyprimitiveevent, PN _fuzzycompositeevent, PN _event, PN _rule, PN
_strenghtnedevent, PN _fuzzyprimitivecondition, PN _fuzzycompositecondition,
PN _condition, PN _clippedaction, PN _combineaction and PN _fuzzyaction. In
addition, each rule object holds the list of rules in the same fuzzy inference group
in its fuzzyinferencegroup attribute. Also, each FPN place has a rule_set at-

tribute in order to hold the rule objects that uses the FPN place.

Figure 4.4 shows the place types that we use in the FPN. In that figure

nl

primitive event o

Hoviaine
fuzzydomain

fuzzy primitive event

".Mum
fuzzydomain
fuzzytermlist

fuzzy composite event
l"mnlm!un
composition_type
component_places

place

rule set

object id

place_type[¥
PN _index

fuzzy primitive condition

l“m&vﬂla
“ewm«mh
fuzzydomain
fuzzytermlist

fuzzy composite condition

I"%utimlu
“avantslrmnth

composition_type

’ rule

strengthened event
Hcenario

threshold

“mnwmh

I clipped action
“ﬂlwlunvnlua

fuzzydomain
fuzzyterm

combined action

{ "‘cllppimllm
fuzzydomain

fuzzytermliat}

component_places

fuzzy action

Hoippingvave

Figure 4.4: Place types used in the FPN

highlighted items are the token variables, whose values are calculated and passed

as a parameter during the fuzzy inference.

4.1.3 Example 1 - An Overheating Alarm Generation in a Drive Sys-

tem of 1 Motor (active rule example)

We take this example rules from Bouaziz et al. [16|. The list of the rules in the

system:

R1:

ON there is a change in any motor temperature
AND motor temperature is normal 0.2,

IF delta is small positive

THEN alarm notification is low,

R2:
ON there is a change in any motor temperature

H2

AND motor temperature is hot 0.2,
IF delta is positive
THEN alarm notification is medium,
R3:
ON there is a change in any motor temperature
AND motor temperature is very hot 0.2,
IF delta is big positive

THEN alarm notification is high
Assume that a typical rule in emergency scenario is:

Remergency:
ON there is a change in any motor temperature
AND motor temperature is very hot,
IF delta is big positive

THEN alarm notification is high

Suppose that at time t; the measured temperature of the motor was 77°C and it

has increased to 132°C at time to.

Steps of the Inference Mechanism

1. Fuzzify the event
Ufnormal(132) = 04, Hfhot(132) = 06, Nveryhot(132)=0

2. Calculate the strength of event and check 1t with the rule threshold
Using Equation 3.9 in Section 3.3, following values are calculated for the
similarity of rules to the current scenario emergency:
temergency(11)=0.6, flemergency(R2)=0.7, ftemergency(I3)=1
and using the formula (1), event strengths are calculated as:
for Ry 5 0.6 ™ Ltnormar(132) = 0.6 *0.4 = 0.24
for Ry 5 0.7 * ppet(132) = 0.7 ¥0.6 = 0.42
for R3 5 1% pterynot(132) = 1 %0 = 0
Threshold values for the rules are given as 0.2, therefore R; and Ry succeed

(0.24 > 0.2 and 0.42 > 0.2 respectively)

n3

fuzzif fuzzy primitive condition
uzziry H [
X event motor temp is normal strengthened events
crisp event — @

detected

(primitive eve
Py,

fuzzy clipped action
1

| E—
stops execution Q — trigger condition —
(M yery nor (132)=0) fuzzyrales |, find clipping
— — calculate strenght of event values
fuzzy primitive — check rule threshold

events
tuzzy clipped action

@ calculate the fuzzy
action/conclusion
— fuzzy
YR | action/conclusion

(o2
Q“j ' \}/ I 049 (end place)

Pe

combine concnrrent ——! 1

actions/conclusions comhined concurrent
actions/conclusions

Figure 4.5: Modeling alarm treatment in an industrial drive control system by
using FPN

3. Find the condition match factor
for R1; tsmatipositive(0.7) = 0.5, min(0.5) = 0.5 = match factor = 0.5
for Ra; fpositive(0.7) = 1, min(1) = 1 = match factor = 1

4. Find the clipping values
For this, the condition match factor is multiplied by the strength of event
for R1;0.24 % 0.5 = 0.12 (clipping value for the alarm level of low)
for Ry;0.42 % 1 = 0.42 (clipping value for the alarm level of medium)

5. Find the combined fuzzy action
We take the maximum of the clipped actions: max(0.12,0.42) = 0.42, which

means an alarm level of medium is sent.

Figure 4.5 shows how this example problem is solved using FPN.
4.1.4 Example 2 - Automatic Selection of Washing Cycle for a Wash-
ing Machine (deductive rule example)

We take this example rules from Yen et al. |78|. List of rules in the system:

R1:
IF Laundry quantity is large

AND Laundry softness is hard

h4

THEN washing cycle is strong
R2:
IF Laundry quantity is medium
AND Laundry softness is normal hard
THEN washing cycle is normal
R3:
IF Laundry quantity is small
AND Laundry softness is soft
THEN washing cycle is delicate
R4 :
IF Laundry quantity is medium
AND Laundry softness is soft
THEN washing cycle is light
Rb:
IF Laundry quantity is large
AND Laundry softness is soft
THEN washing cycle is normal
R6:
IF Laundry quantity is small
AND Laundry softness is normal soft
THEN washing cycle is light
R7:
IF Laundry quantity is medium
AND Laundry softness 1is normal soft
THEN washing cycle is normal
R8:
IF Laundry quantity is large
AND Laundry softness 1is normal soft
THEN washing cycle is normal
R9:

IF Laundry quantity is small

AND Laundry softness is normal hard
THEN washing cycle is light
R10:
IF Laundry quantity is large
AND Laundry softness is normal hard
THEN washing cycle is strong
R11:
IF Laundry quantity is small
AND Laundry softness is hard
THEN washing cycle is light
R12:
IF Laundry quantity is medium
AND Laundry softness is hard

THEN washing cycle is normal

The rules related to washing cycle are converted to the following ECA rules

internally, whose events are abstract kind.

R1:
ON raise(washing_cycle)
IF Laundry quantity is large
AND Laundry softness is hard
THEN washing cycle is strong
R2:
ON raise(washing_cycle)
IF Laundry quantity is medium
AND Laundry softness is normal hard

THEN washing cycle is normal

etc

Suppose that at time t; a query comes like washing_cycle(X).

nb

fuzzy primitive tuzzy composite tuzzy clipped
trigger conditions condition conclusion
condition

composition

04 clipping

abstract eve!
detected,

NO

@ obtain

combined fuzzy conclusion
conclusion

(=95,

combine fuzzy conclusion
@ concurrent conclusions

Figure 4.6: Modeling washing cycle selection in a washing machine by using FPN

Steps of Inference Mechanism:

Inference of a deductive rule group starts from evaluation of condition part.

1. Find the condition match factor
for R1; tiarge(laundry_quantity) = 0.4,
Uhard(laundry_softness) = 0.2,
min(0.4,0.2) = 0.2 = match factor = 0.2
for Ro; tmedium (laundry_quantity) = 0.6,
Unormal _hard(laundry_so ftness) = 0.8,
min(0.6,0.8) = 0.6 = match factor = 0.6
for Rs; prsman(laundry_quantity) = 0,
Usort(laundry_softness) = 0.
min(0,0) = 0 = Rj fails.
for Ry; tmedium (laundry_quantity) = 0.5,
Usort(laundry_softness) = 0.
min(0.5,0) = 0 = Ry fails.
for Rs; thiarqe(laundry_quantity) = 0.5,
Usort(laundry_softness) = 0.
min(0.5,0) = 0 = Rj fails.

h7

for Rg; tsman(laundry_quantity) = 0,
Hnormal_soft(laundry_so ftness) = 0,
min(0,0) = 0 = Rg fails.

for Rz; tmedium (laundry_quantity) = 0.6,
tnormat ot (laundry_softness) = 0,
min(0.6,0) = 0 = Ry fails.

for Rs; tharqe(laundry_quantity) = 0.4,
Hnormat_sope(laundry_softness) = 0,
min(0.4,0) = 0 = Ry fails.

for Rg; peman(laundry_quantity) = 0,
Unormal _hard(laundry_so ftness) = 0.8,
min(0,0.8) = 0 = Ry fails.

for Rio; fiarge(laundry_quantity) = 0.4,
Unormal _hard(laundry_so ftness) = 0.8,
min(0.4,0.8) = 0.4 = match factor = 0.4
for Ri1; ptsmau(laundry_quantity) = 0,
Uhard(laundry_softness) = 0.2,
min(0,0.2) = 0 = Ry, fails.

for Ris; tmedium (laundry_quantity) = 0.6,
Uhard(laundry_softness) = 0.2,
min(0.6,0.2) = 0.2 = match factor = 0.2

. Find the clipping values

For this, the condition match factor is multiplied by the strength of event.
For the abstract kind of events fieyent_strenqgth 1S always 1.

for R1;1 % 0.2 = 0.2 (clipping value for the washing cycle of strong)

for Ry;1 % 0.6 = 0.6 (clipping value for the washing cycle of normal)

for Rig;1% 0.4 = 0.4 (clipping value for the washing cycle of strong)

for Ry; 1% 0.2 = 0.2 (clipping value for the washing cycle of normal)

. Find the combined fuzzy action

We take the maximum of the clipped actions: max(0.2,0.6,0.4,0.2) = 0.6,

ng

which means washing cycle of normal is chosen. Figure 4.6 shows part of

the FPN used for this problem.

n9

CHAPTER 5

USING FUZZY PETRI NETS FOR STATIC
ANALYSIS OF RULE-BASES

In this Chapter, we check the properties of the system modeled using the FPN.
In Section 5.1, we explain the details of how we perform termination analysis
on our FPN. Our FPN provides easy checking of this property since it already
contains triggering graph information. In Section 5.2, we explain how we guaran-
tee confluence with our fuzzy inference algorithm. For that, we make use of the
scenario concept in order to provide a total order for rule executions. We also

provide theoretical proofs of our algorithms.

5.1 An Algorithm for Static Analysis on the FPN

Before we check the termination and confluence properties of the system, we con-
struct the FPN, and during the transition construction, we obtain the triggering
graph information from the event generating transitions. Note that an event
generating transition is an indication of one rule triggering another.

We use the algorithm given in Figure 5.1 for static analysis on FPN. It first
finds the true cycles and informs the user. Once the algorithm detects a cyclic
path, it may not be a true cycle due to one or more rules in the cycle having
composite events. That is, not all composing events of a composite event may

be triggered. These type of false cycles are eliminated in our termination anal-

60

Begin

/*Construct_FPN maps rules to FPN in which
unification is nsed. The constructed FPN

also holds the triggering graph information.*/

Construct_FPN();

/*determine_true_cycles function calculates
the cyclic paths, it eliminates the false
cycles via considering event compositions™®/

if (NULL == (true_cycle_list = determine_true_cycles())) then

Termination quaranteed;

else

inform_user(true_cycles_list);

end if

/*check_confluence function controls whether
the rules of the different rule sets
guarantee confluent rule executions™/

if (NULL == (interfering_rule_sets = check_confluence())) then

Confluent Rule Execution Guaranteed;

else

inform_user(interfering_rule_sets);
end if

End

Figure 5.1: Static Analysis Algorithm

61

ysis. Next, it checks the interference between the different inference groups to
see whether an attribute value written by an inference group is read in another
inference group. If this is the case, user is informed about the interfering rule

sets.

5.1.1 How to Determine Cycles and True cycles.

For this, we use the following data structures:

a. D is an m x m matrix of rules. Each of its |i||j| entries holds the connec-
tivity information between rules r; and r; (or whether there exists an event
generating transition from r; to r;). Dli|[j]| is 1, if rule r; is connected to

rule 7; with one event generating transition.

b. L is an m x m matrix of rules. Each of its |i|[j| entries holds a linked list

of rules that are in the path from rules r; to r; inclusive.

We calculate the transitive closures of the T) matrix. Fach of them holds the
connectivity information at k edges (or event generating transitions) distance.
If the ¢'" diagonal at D, holds a value greater than 0(zero), there is a cycle in k
steps (or k event generating transitions distance). By the time these D matrices
have been calculated, a linked list of rules which have been gone through the path
is held in the L matrix. This means that [;|¢||7| holds a linked list of rules which
is passed through the path from rules r; to r;. If the " diagonal at Dy holds
a value greater than 0(zero), we can obtain the cyclic path elements at [|é||].
Now it is easy to find true cycles by checking the |i||¢| entry of L. If all the rules
in the path have only primitive events, this is certainly a true cycle. Otherwise
(if any of them has a composite event) the rule set of the primitive events of the
rules is examined. If they are all included in the cycle, again the cycle is a true
cycle. Otherwise it is not a true cycle. If there is at least one true cycle, the user
is informed about the situation together with the rules taking place inside the
cycle. Then it is the user’s choice to change the definitions of these rules. After

that, the termination analysis is repeated.

62

Ri(el1 and €21, al) R2(el2, c2, a2 VR~ TSR2
§\~ /./'/

b h
a) b)

Figure 5.2: Dependencies and the Triggering Graph for the Example

5.1.2 Example

Suppose there are the following two rules:

R1:
ON (ell and e21)
IF c1
THEN a1l
R2:
ON el12
IF c2

THEN a2

In these rules a; unifies with crisp event e; (which has e;; and ey as its fuzzy
primitive events) and as unifies with crisp event ey (which has eg; as its fuzzy
primitive event). The dependencies and the triggering graph are shown in Fig-
ure 5.2. Dashed arcs show the partial triggering due to composite events and solid
arcs show the total triggering. Figure 5.3 shows the FPN constructed according
to this rule set.

For this example, D; and L; are as follows:

11 L1 1,2
D, = L, =
1 0 2,1 0

Since Dq|1||1] entry has the value 1, this means that there is a cycle. After
checking r1.PN_primitiveevent.rule_set, rules r; and r2 are found. Since the
cyclic set {1,1} does not contain 72, this is not a true cycle. Therefore it is

excluded. Then D, is calculated and at the same time Lo is obtained:

63

fuzzitying el & pl)
event
@ event cl

ol \\composition

@ P clalculate P

Q ell and e21 strength trigger
eh n(r2) condition
\p2 - c2
~ el2

cl

event generation

c2 a2
»l - -l -
14 @
event generation

Figure 5.3: FPN constructed for the Example

- - fuzzy action

obtain
fuzzy action

clipping

combine
concurrent actions

fuzzy action

2 1 1,1,1;1,2,1 1,1,2
DQ = L2 =

1 1 2, 17 1 27 1? 2
Since Ds|1||1] entry has a value greater than 0(zero), there is a possibility of a
cycle. r1.PN _primitiveevent.rule_set is the rules r; and ry. Since the cyclic set
{1,2,1} contains both r; and 79, it is a true cycle. The user is informed about
the cyclic situation together with the rules taking place in the cycle. The rules
inside the cycle are r; and ry. So, termination analysis returns the rules r; and

r9. This means that they are part of the cycle and need to be changed in order

to break the cycle.

5.1.3 The Algorithm for Determining the True Cycles

Lemma 5.1.3.1: Let there be k rules in the rule base. The algorithm determining
the true cycle decides on termination i at most k steps.

Proof: If we have k rules in the rule base, we can have at most k distinct edges

64

Begin
calculate L

Initralize k to 1

while ((Dy, # 0) and (k < number of rules)) do
for each rule r; do
//iis the index of the rule r; in the D matrix
if Dylilli| > 1 then
if rules in the Lg|i||i| are distinct then
if none of the rules contains composite event then

return cyclic rules (Ly|i||i],

else

if all rule sets of the primitive events of the rules (which have
composite event) are included in the Lyi|i]|i| then

return cyclic rules (Lg|i||i|)

end if
end if
end if
end if
end for
Increment k by 1
calculate Dy

calculate Ly
end while
return no cycle

End

Figure 5.4: Determine_true_cycles Algorithm

to go through if there is cyclicity. This is due to the fact that if there are k
nodes, there may be at most k£ edges connecting these nodes in a circular path
(considering that the nodes nq, ng, ..., ng_1), Nk, N1 can be gone through and this

path has k edges)

Lemma 5.1.3.2: Let there be k rules in the rule base and all rules have primitive
events. If there is no cyclic behavior, D, matriz becomes 0(zero) at finite number
of steps which s at most k.

Proof: TIf we have k riles in the rile base and at the same time if all rules
have primitive events, there can be at most k£ — 1 distinct edges to go through
it there is no cyclicity. This is due to the fact that if there are k nodes, there
may be at most k£ — 1 edges connecting these nodes (considering that the nodes
N1, N, ..., Nk—1), Nk can be gone through and this path has k — 1 edges). In these

cases k' edge goes nowhere and the D,, matrix becomes 0(zero).

Lemma 5.1.3.3: Let rule r; have a composite event. Although the D,li||i| entry
is not 0(zero) at some steps, it does not guarantee non-termination.

Proof: If r; has a composite event, although the D,|i||7| entry is not 0(zero)
(there is a cyclic triggering of the r;), all the rules related to triggering the events
of the r; may not be taking place in the cyclic path. If this is the case, there is

actually no true cycle.

5.2 Guaranteeing Confluent Executions in Our FPN Model

After the FPN gets constructed, the system checks whether the defined rules nat-
urally guarantees confluent rule executions or not by controlling the interference
of rule sets in different inference groups (Algorithm given in Figure 5.5).

If a rule set reads in its event part or condition part whatever is written
in action part of another rule set, this means that the system may not provide
confluent executions. In those cases, we put another mechanism for confluent
executions, which is explained below.

Betfore explaining how to guarantee confluent executions on FPN, we shall give

66

Input: Inference groups on FPN
Output: Interfering inference groups In
Begin
for (each inference group inf;) do
for (each inference group inf;) do
if (read_set(inf;) == write_set(inf;)) then
add wnf; and inf; to Ip
end if
end for
end for
return lp

End

Figure 5.5: Check_Confluence Algorithm

the pseudecode of our fuzzy inference algorithm based on the FPN in Figure 5.6.

In that, we use some data structures for the internal representation of the FPN.

a. M is an m x 1 column vector of places p;, where =1, ..., m. Each of its

entries holds a data structure of three elements:

- 1% element holds the place id.
- 2" element holds the object id which uses the place,

- 3" glement holds the token value.

b. current_places is a linked list. Each of its entries holds a data structure of

two elements:

- 1% element holds the place id.

- 2 element holds the index of place id in M vector.

67

Begin
find the index of the start place Py in M, put a token to there and mark it
it the rules triggered are in the same inference group then
set the active inference group to the inference group of the rules
else
order the triggered rules according to their scenario similarity
set the linked list of active inference groups according to this order
end if
while linked list of active inference groups is not consumed yet do
matialize the current places list with primitive events of active inference group
while there are some current places do
if head of current places list cpi is used by active inference group then
for each of the transitions where current place cpi is an input do
if the rule(s) using the transition is in active inference group then
if other input places of the transition also have tokens then
fire the transition, mark the output places in M using c;,
add the marked output place to the tail of the current places list
end if
end if
end for
end if
if the current place cpt 1s an end place then
add the cpt to the reached end places list P,
end if
remove the current place cpi from the current places list
end while
update the head of the linked list of active inference groups to the next
end while
return P,

End

Figure 5.6: Inference Algorithm

68

c. N is an n x 1 column vector of transitions ¢;, where j=1,...,n. Each of
its entries holds a transition function. Each transition function nses the
elements of the input places token_values and produces an output for the

output places token_values.

d. C*t=(cf;) and C~=(c;;) represent the output incidence matrix and input
incidence matrix respectively, where ¢; is 1 if there is an arc from the
transition ¢; to place p; and ¢;; is 1 if there is an arc from the place p; to

the transition ¢; and their values are 0(zero) if there is no connection.

Lemma 5.2.1: The inference algorithm based on FPN quarantees confluent rule
execution via providing a total order between different rule sets.

Proof: In the inference algorithm that we give above, if the rules triggered are
in the same fuzzy inference group, their execution is carried out at the same time
and the total outcome is computed. On the other hand, if the rules triggered
are not in the same fuzzy inference group, total ordering is achieved (i.e. rules
are executed in an order) according to their ug(r) (the similarity to the current

scenario) values. Therefore, the confluent rule execution is guaranteed.

69

CHAPTER 6

IMPLEMENTATION

6.1 Architecture of the system using FPIN based inference

mechanism

Figure 6.1 shows the architecture of the system using FPN based inference mech-
anism. In that:

User Interface receives the rule definitions and query requests from the user.
It provides user the output of the queries or information/alarm actions due to a
dynamic occurence.

Rule Controller is responsible for the storage and retrieval of the event/rule
definitions. It also provides the construction of FPN after all the rules get de-
fined. In addition, each time a query comes or an event occurs, the rule controller
triggers the Inference Engine for execution.

Primitive Event Detector is responsible from the detection of primitive events,
and informs the Rule Controller about the occurrence of primitive events. We
consider some attribute changes made by user, which affect the active rule eval-
uation, as if they come from the sensor.

Fuzzy Petri Net Based Inference Engine collects primitive event occurences
after which it decides the right time for the execution on the FPN. After the

execution on FPN, it sends the output to the user interface.

70

[u Intert:)
L ser Interface J

Rule/Event

Definitions Query Requests

Answers to queries
Information/Alarm Actions

Signal Primitive Events
[Primitive Event Detector Jﬁ [Rule Controller

Trigger Rule

Construct Petri Net Fuzzy Petri Net Based Inference Mechanism]

Retrieval of data

Detect Primitive Events

Storage and retrieval of Event/Rule Definitions

External sources of events

il |

Update/Insert/Delete Action

Data/Rulebase

Figure 6.1: Architecture of the System
6.2 Implementation Platform

We implemented a prototype system of the Intelligent Database architecture.
We used ITASCA for the implementation of the object-oriented database and
Borland C++ Builder for the implementation of the user interface and application
servers, which are FPN constructor, tuzzy processor and inference engine. The
implementation platform is shown in Figure 6.2.

The main reason for using ITASCA Object Database Management System
was its availability. In addition, it supports our main requirements for an object
oriented database management system. ITASCA Object Database Management
System is integrated into the application via C++ API library.

Borland C+-+ is used for the implementation of the graphical user interface
of the system. User is able to create, modify and delete fuzzy types, similarity
matrices, membership functions, classes, objects, rules and scenarios through the
user interface. The FPN constructor and inference engine is also implemented by
using Borland C++.

A front-end processor is developed to provide the fuzzy processor functional-
ity. It maps requests from the user interface to the appropriate format for the
object-oriented database or vice versa. It also handles the requests of FPN based

inference engine from the object-oriented database.

71

o

Figure 6.2: The implementation platform of the prototype system

A catalog is held to keep necessary information as a short look up table about
the application. The information stored in the catalog is about the classes, fuzzy
attributes, derived attributes, rules, scenarios and some information related to the
constructed FPN. The inference on the FPN runs according to the information

stored in the catalog.

6.3 Module Structure of the Prototype System

We have 5(five) modules in our prototype system. The interaction between these

modules are given in Figure 6.3.

6.3.1 Fuzzy Definitions

In this module, user defines fuzzy types, similarity matrices and membership
functions. Fuzzy type of a domain should be defined before similarity matrices
and membership functions of the domain. A fuzzy type definition of a domain

should include:

72

| User Interface ‘

\

Fuzzy definitions Class operations Object Operations Rules Queries

Fuzzy Types Define Insert Active Rules Browse class
Similarities Update Delete Deductive Rules Browse Object
Membeship Functions Delete Update Scenarios SQL-Like queries

-

ITASCA ODBMS [C ATALOGJ

Figure 6.3: Module Structure of the prototype system

fuzzy type name,

crisp type,

e semantic, and

fuzzy terms

For the example, direction of a wind can be defined as a fuzzy type. Let its fuzzy
type name be fuzzywinddr, its crisp type be real. It has a fuzzyOR semantic, and
it contains the fuzzy terms north, northwest, west, southwest, south, southeast,
east and northeast. An object attribute defined with this type will have either a
real value or a set of fuzzy values specified in the definition. Figure 6.4 shows the
screen used for fuzzy type definitions.

Since our application domain require a sensor to be connected to feed the
system with input data, we think that those object attributes will have crisp
values. However, our rules all include fuzzy terms. Therefore, each attribute is
defined with a fuzzy type, and fuzzified before being used by a rule.

In the similarity matrix definition phase, it is asked to define similarities for
all pairs of attributes. Reflexivity and symmetry properties of similarity matrices
are considered during the similarity definitions. Figure 6.5 shows the screen used

for similarity definitions.

73

i e _ Write fuzzy terms from &\\

__lower to higher

Figure 6.4: Fuzzy type definition

Select the domain to define the similarity martrix

\Q -,

T SRR S SRR

r winddr narth northiest 05
§ fuzzpwinddr north west 0
§ fuzzywinddr north southwest
§ fuzzywinddr narth zauth
§ fuzzywinddr niarth southeast
§ fuzzywinddr riorth east
§ fuzzywinddr north natrheast

o

§ fuzzywinddr

horthwest

west

§ fuzzywinddr

northwest

southwest

§ fuzzywinddr

northwest

FoLth

L § fuzzywinddr

northwest

southeast

22
oo mmo o o

74

Figure 6.5: Similarity matrix definition

for membership definitions.

ssssssssssssss

Q\&&\\\\\\\\\\\\\\\\\m&\\\\\\\\\\\\\\\\\\\\\\\m \%\ \§
wind_value fuzzy i calm breeze mediumstrong stroi 1 b

3 <

\

Relevance 1

Add 1 Delets 1

Figure 6.8: Attribute Definition - Class Creation(2)

76

Once a class is defined (Figures 6.7 to 6.9), its definition is inserted into
ITASCA object database system. Also some required information is stored in the

application catalog. User can delete class definitions.

6.3.2.1 Derived Attributes

Derived attributes are defined during the class definition. First, user should define
simple attributes (i.e. not the derived attributes) as shown in Figure 6.8. Then
user can define derived attributes from these attributes. Definition of a derived

attribute includes:
e attribute name for the deriving attribute
e attribute name for the derived attribute
e when to derive (either before or after)
e method name

e method code

Derived attributes are updated automatically when there is an update to
the deriving attribute. If the derived attribute uses the previous value of the
deriving attribute, when should be before, and attribute gets derived just before
the update on deriving attribute. If the derived attribute needs the new value of
the deriving attribute then when should be after. An ITASCA method is used
for the derivation. Method code is a zero or more lisp forms, which is defined by
the user. This is the only way of defining methods in ITASCA at run_time. In
the method code, self is the variable referencing the object to which the method
will be applied. Derived attributes can also be of fuzzy type.

Derived attributes are stored as any attribute in ITASCA class schema. How-
ever, we don’t allow them to be updated by the user. Their update is controlled
by the system. We keep information related to the derived attributes in the
catalog. This information is used by the system for their update.

Consider the weather forecasting application given in Chapter 7. In that, wind

should have attributes like wind_value, prev_wind_value and wind_ch_vel etc. In

7

Haadat § A&nhu fes | | Inherited fuzey atidbutes. | Detived Aitrbutes

- e

update_wind_ch_vel abs (- fwind_value self)

Add § Delete]

Figure 6.9: Derived Attribute Definition - Class Creation(3)

this example, prev_wind_value is of a before type derived attribute, which should
be updated before the wind_value gets updated. However, wind_ch_vel is of an
after type derived attribute, which should be updated after the wind_value gets
updated. Figure 6.9 shows how the derived attributes of wind gets defined.

6.3.3 Object Operations

User can create, update and delete objects of any class. An object is defined

with:
e object id,
e class name, and
e attribute values which may be of fuzzy type.

During the object creation, once the user selects a class, all the attributes ot
the class are listed for their value enterance. Note that derived attributes of the

class are not visible at this point. Since objects are stored in the database, this

78

ObjectID_ [

\\\\§\\\\\\\\\\\\\\\\\\

&

humidity_cl

. -
e

wind wind_cl

T
.

.-

...

.

..

W\\\

.-

...

B i

Figure 6.10: Object creation

operation is related with ITASCA object database system. Figures 6.10 and 6.11

show the parts of the user interface dealing with objects.

6.3.4 Rules

Users are allowed to define, active, deductive and scenario rules (Figures 6.12
to 6.15). However, all the rules are mapped to an active type internally. Rule
definitions include the class name that it is applied, rule id, event (if an active or
a scenario rule), condition, action parts and an event threshold (if active rule).
Once a rule object is defined, its related FPN places are automatically created,
and related links to these FPN places are set in the attributes of the rule. Rule
definitions are stored in catalog. Information for constructing the FPN and pro-
viding a fuzzy inference mechanism on that is also stored in the catalog.

After the rule definitions, system automatically performs static analysis of the
rule base. In that termination and confluence properties are checked. Also, Petri
Net constructed by the system can be viewed at any time. Related screens for
these are shown in Chapter 7 at Figures 7.7, 7.8, and Figures 7.9 to 7.15 for the
example rules of the weather forecasting application.

Once the scenario rules are defined current scenario can be updated at any

79

e i

)

-

B
Object 1D

.

.

e

i

.

S

i

%

Figure 6.11: Object update

time (Figure 6.16). On each scenario update, similarities of active rules to the

selected scenario is calculated and stored in catalog automatically.

6.3.5 Queries

The system provides three different query facilities: class browser, object browser
and SQL-like queries. User can access the objects of any class using the class
browser. If specific objects are requested, object browser should be used with
the filters to set criteria to select specific objects. Screens of class and object
browsers can be seen in Figures 6.17 and 6.18.

SQL-like queries are of select-from-where type. Users can formulate queries
with fuzzy predicates. This type of queries can be related to the data stored in
ITASCA or deductive rules. If the query is related to attributes (either derived
or not) stored in ITASCA, simply the objects satisfying the query are filtered.
However, if the query requires the fuzzy inference of a deductive rule, it is assumed
as it an abstract event is generated. Then inference is performed on the FPN,
whose result then becomes the result of the SQL-like query. For example, if the

hum_value of the humidity attribute of a city object is inquired, it is a simple

80

Class List

L

T

Figure 6.12: Rule operations (1)

. .
o ITheelBeew . leondbien
forecast. weath il

7 0.1 eather(cloudedstable) O0wind stemperature temp
4
lets of”
Rule D |9 Rule Threshald -

ffffffff sweather(cloudedstable)

RULE TYRE
. BCENARID

wind.wind_value{calm breeze)
FRREN

Figure 6.13: Active Rule Definition - Rule operations (2)

81

.

Aftnbutes Object Attributes Fuzzy Terms

Figure 6.14: Deductive Rule Definition - Rule operations (3)

e

forecast.weather(cloudedstable),00wind.+termperature.temp.
4

wf

RULE TYRE
& SCENARID
L AcThVE
* DEDUCTIVE

Rulep |71 Rule Theeshold §

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

ccccc

T WM
Seat NRITE

e

- EE

Figure 6.15: Scenario Rule Definition - Rule operations (4

82

Close 1

Figure 6.18: Object browser

eeeeeeeeeeeeee
E

eeeeeeeeeeeeeee

evaluations

%///////////////%/

j/

i
+57.000000

R R D

Figure 6.20: Simple Query

g’\‘séggg el &X.lurecast, weather

g&;g‘igm} E

. city_name(ankara)

Where
D aiihaeivaine el

- |

-

Figure 6.21: A Query Requiring Fuzzy Inference on FPN

89

query and just needs to access the attributes of the related object (Figure 6.20.
However, if the weather attribute of the forecast attribute of a city is queried,
this requires evaluation of deductive rules using fuzzy Petri Net based inference

mechanism (Figure 6.21). Figure 6.19 shows the steps in evaluation of a user

query.

6.3.6 Computational Complexities of the Algorithms
6.3.6.1 Construction of the FPN

In Algorithm given at Figure 6.22, first, n number of rules are processed. In
each of them, event, condition and action parts get examined (Figures 6.23, 6.24
and 6.25). Suppose that average number of patterns in the event part is p, and
in the condition part is p.. We all have 1(one) action. It is negligible. Possible
number of operations in this part is: n x (p. + pe).

Then, we construct fuzzy inference groups (Figure 6.26). First, we determine
the rules which are in the same fuzzy inference group. For that, for each rule, we
go over the other rules, which requires n? operations. Then we create primitive
events for each rule. Let’s say we have p, average number of patterns in the event
part of a rule. This requires n x p. number of operations. Then for each distinct
fuzzy inference group we create a combined action place, a fuzzy action place, and
for each rule in the group set a link to these places. Let’s say we have g number
of distinct inference group, and in the average we have n, number of rules in each
inference group. This requires takes 2 x g x n, number of operations. Possible
number of operations in this part is: n* + n x p. + 2 x g x n,

Finally, we construct transitions (Figure 6.27). For each primitive event, we
check the fuzzy primitive events of the rule it belongs. If we have e, number
of primitive events, and we have n number of rules they belong, each one of
them having p. average number of patterns in their event part, this operation
requires e, X n X p, operations. Then, for each fuzzy composite condition, we
initiaize related links. If we have c, number of composite events, each having p,

number of component places at the worst case, this requires c. x p. operations.

86

Input: rules entered by the user

Output: a set of FPN places and transitions

Begin

while (there are still some rules) do
// attrlist contains the attributes event_text, condition_text, ac-
tion_text,
// threshold, fuzzyinferencegroup and the links on the FPN

create_rule(rule_type, class_name, rule_id, attrlist)

examine_event(rule_id, rule_classname, event_text)
examine_condition(rule_id, rule_classname, condition_text)
examine_action(rule_id, rule_classname, action_text)

end while

construct_fuzzy_inference_groups()

construct _transitions()

End

Figure 6.22: Construct_FPN Algorithm

87

Input: rule_id r;, rule_classname, event_text
Output: a fuzzycompositeevent place and its component
fuzzyprimitievent places
Begin
tokenize(event_text,tokecount,tokenarray)
if (tokencount > 1) then
matialize tempcount to 0
create a new place object of type fuzzycompositeevent
put an entry in the place list for this place
update the attributes of the related FPN place
update the attributes of the related rule
while (tempcount < tokencount) do
if (NULL == unifies(tokenarray|tempcount|)) then
create a new place object of type fuzzyprimitiveevent
put an entry in the place list for this place
end if
update the attributes of the related FPN place
update the attributes of the related rule
ncrement tempcount
end while
else
if (tokencount == 1) then
if (NULL == unifies(tokenarray|tempcount|)) then
create a new place object of type fuzzyprimitiveevent
put an entry in the place list for this place
end if
update the attributes of the related FPN place
update the attributes of the related rule
end if
end if

End

Figure 6.23: Examine_Event Algorithm
88

Input: rule_id r;, rule_classname, condition_text
Output: a fuzzycompositecondition place and its component
fuzzyprimiticondition places
Begin
tokenize(condition_text,tokencount,tokenarray)
if (tokencount > 1) then
mitialize tempcount to 0
create a new place object of type fuzzycompositecondition
put an entry in the place list for this place
update the attributes of the related FPN place
update the attributes of the related rule
while (tempcount < tokencount) do
create a new place object of type fuzzyprimitivecondition
put an entry in the place list for this place
update the attributes of the related F'PN place
update the attributes of the related rule
mncrement tempcount by 1
end while
else
if (tokencount == 1) then
create a new place object of type fuzzyprimitivecondition
put an entry in the place list for this place
update the attributes of the related FPN place
update the attributes of the related rule
end if
end if

End

Figure 6.24: Examine_Condition Algorithm

&89

Input: rule_id r;, rule_classname, action_text
Output: a fuzzyclippedaction place

Begin

create a new place object of type fuzzyclippedaction
put an entry in the place list for this place

update the attributes of the related FPN place
update the attributes of the related rule

End

Figure 6.25: Examine_Action Algorithm

As for the composite conditions, applying the same approach, we require ¢, x
Pe operations. For each rule, we create trigger condition transitions to the fuzzy
primitive conditions of the rule. This takes n x p. number of operations in the
worst case. For each rule in an inference group, we set the related links from their
action part to the combined action. ‘l'his takes g x n, operations. In order to
create event generating transitions, we check each fuzzy primitive condition with
the primive events and we check each tuzzy action with the primive events. In
worst case, this takes e, x (p.+ n) operations. Therefore, a possible number of
operations in this part is :

€p XN XPe+ CeXPe+ CXPe+NXPe+ gXNy+e€ X (petn)

6.3.6.2 Determining true cycles

In Algorithm given at Figure 5.4 in Chapter 5, in worst case, we have to process
the while loop n times (n is the number of rules). In each cycle, we have to
obtain the matrix multiplications of two matrices each of which is n by n. Matrix
multiplication requires n® operations. So totally determining true cycles requires

n* operations, O(n*).

90

6.3.6.3 Checking the Confluence

In Algorithm given at Figure 5.5 in Chapter 5, in worst case, each rule constitutes
a different inference group, so resulting with n number of inference groups (n is
the number of rules). Checking inference groups with each other (2 for loops)

requires n“ operation, O(n?).

6.3.6.4 Inference Algorithm

In Algorithm given at Figure 5.6 in Chapter 5, in worst case, we have 1(one) rule
in each inference group, and each rule gets triggered. So, the outermost while
loop should be performed n times. In each cycle we go over the transitions (let
we have t number of transitions), and for each transition, we go over the places
2(two) times, one for the input places, one for the output places. So a total of 2

X 1 X t X p operations gets performed. Which is O(ntp).

91

Begin
for (each rule r;) do
for (each rule r;) do
if r; unifies with r; then theyre in the same inference group
end for
if (fuzzy inference group of r; not processed) then
for (each different fuzzy domain in the event of r;) do
create a new place object of type primitive event
put an entry in the place list for this place
update the attributes of the related FPN place
end for
create a new place object of type combined action
put an entry in the place list for this place
update the attributes of the related FPN place
for (each rule ry in the fuzzy inference group of r;) do
set a link to the created place
end for
create a new place object of type fuzzy action
put an entry in the place list for this place
update the attributes of the related FPN place
for (each rule ry in the fuzzy inference group of r;) do
set a link to the created place
end for
end if
create a new place object of type strengthened event
put an entry i the place list for this place

update the attributes of the related FPN place

end for

End

Figure 6.26: Construct_Fuzzy_Inference_Groups Algorithm

92

Begin
for (each primitive event p;) do
for (each fuzzy primitive event p;) do
if they are related then create fuzzify event, update links
end for
end for
for (each fuzzy composite event p;) do
create composition transition, update the links
end for
for (each fuzzy composite condition p;) do
create composition transition, update the links
end for
for each rule r; do create strength transition, update the links
for (each fuzzy primitive condition p; of r;) do
create trigger condition transition, update the links
end for
create clipping transition, update the links
if (fuzzy inference group of r; is not processed) then
create combine concurrent actions transition, update the links
for (each rule r; in the r;’s fuzzy inference group do
create obtain fuzzy action transition, update the links
end for
end if
for (each place pi either a fuzzy action or fuzzy primitive condition) do
for (each primitive event p;) do
if they are related then create event generating transition
end for
end for

End

Figure 6.27: Construct_Transitions Algorithm
93

CHAPTER 7

AN APPLICATION EXAMPLE:
WEATHER FORECASTING

The Weather forecasting is chosen as a case study for implementation of the model
developed in this thesis. Therefore, weather forecasting is intoduced shortly in

this chapter.

7.1 What is Included in Qur Forecast

We have interviewed the weather forecast experts from the ” Turkish State Mete-
orological Service” to understand the domain of weather forecasting application
and draw its requirements |76|. What they say is that it is very hard and com-
plicated to device a forecast system covering all parts of Turkey due to Turkey’s
diverse geographical features. Therefore, we have concentrated on some part of
Turkey and studied on the ”"weather lore” for the Central Anatolia.

The atmospheric elements we consider are:

e Pressure,

Temperature,

Relative Humidity (we’ll simply call it humidity).

Wind, and

94

e (Cloudiness.

Our rules consider the change on the above parameters, such as value changes,
direction changes or velocity changes, etc. There exists two level forecast in our

model. In the first level we forecast weather, which could be one of the followings:

e clear,

e clear few,

e clouded instable, or

e clouded stable.

In the second level, we forecast the weather event according to the output of
the first level forecast together with the newly changing parameters on the at-
mospheric elements. In this level, forecasted weather event can be any of the

followings:

® railll,

e shower,

® SIIOW,

hail, or

e fog.

Temperature change is also forecasted in the second level. It is again determined
from the first level forecast results together with the newly changing parameters
on the atmospheric elements. The forecasted temperature change can be any ot

the followings:

e increase on temperature,

e decrease on temperature, or

e no change on temperature.

7.1.1 Season Scenarios

In order to put the effect of seasons, we partition our rules of weather according
to seasons. That is, each season functions like a scenario (Section 3.1) for us. By
this way, we give more emphasis on some rules according to the season. Table 7.1
partitions our rules of weather, weather event and temperature change, according

0 seasons.

Table 7.1: Season Scenarios

Scenario Weather Weather Event Temperature Change
Summer Clear, - Increase
Clear few
Winter Clouded stable Rain, Fog, Snow Decrease
Spring, Fall Clouded instable Rain, Hail, Shower Increase

7.2 What ”Weather lLore” is

The experts who forecast weather based on the direct observation are the real
experts of the weather forecasting. These experts are the people who live perma-
nently in the country or whose livehood depend on their ability to predict chang-
ing local weather like anglers, hunters, farmers, sailors, mountaineers, campers,
ballonists. Many of their insights have been passed from one generation to an-
other as weather lore and collected in varions weather almanacs.

An advantage of weather lore is that it is expressed in terms of set of rules of
thumb that embody fuzzy input-output relationships |39|. |48| gives the following
example:

When the barometer falls fast, temperature is less than -1°C, wind is blowing

from south and east, snow 1s expected within 12 to 24 hours.

96

This type of commonsense rules related to the atmospheric conditions may be
valid only in one locale, or during one season of the year, or only at sea.

Two sorts of applications of tfuzzy logic in weather prediction are expert sys-
tems and case based reasoning systems. As far as the fuzzy expert systems for
weather prediction are considered, Maner et al. |53| build a weather prediction
system called WXSYS, which uses the simple weather prediction rules from ex-
perts and weather almanacs, and implement these using fuzzy logic rule base.
Systems build by Sujthjorn et al. |70| and Murtha |61 predict fog at an airport.
Hansen |41] build a system for critiquing marine forecasts, which is called SIG-
MAR. Instead of processing a series of fuzzy rules, it measures the similarity
between a current marine forecast and the actual marine observations to amend
marine forecasts. Hadjimicheal et al. |40| build a fuzzy system called MEDEX,
for forecasting gale force winds in the mediterranean. Shao et al [69] build an au-
tomated wire-ice prediction model to provide short-period forecasts on the wires.
As for the fuzzy case based reasoning systems for weather prediction are con-
cerned, Tag et al. |72| and Bardossy et al. |8] use fuzzy logic to automate the
recognition of patterns of upper air wind flow. Hansen et al. [42| study ceiling
and visibility at airport. In that, given a present incomplete weather case to
predict for, they use a fuzzy k-nn algorithm to find similar past weather cases in
a huge weather archive to make predictions from.

Our study resides on the side of fuzzy expert systems for weather prediction.
However, the above studies on the same category differ from us on a couple of
aspects. First, type of the rules used by other systems are not active. Also they
do not put the effect of seasonal changes in their inference. In addition some
forecasts may be occasionally self contradicting. i.e., forecasting both wet and

dry weather at the same time without giving an order |53].

7.3 Why Fuzzy Logic is Suitable for Predicting the Weather

Language used in conventional forecasts are inherently and intentionally fuzzy.
Consider, these commonly occuring phrases: "mostly clear”, ”"toward midnight”,

"becoming cooler overnight”, ”"winds becoming westerly”, "light to moderate

97

snow”, "increasing high cloudiness”, etc. All of these values can be naturally
represented by fuzzy sets. The weather domain meets the general conditions

under which fuzzy solution is thought to be appropriate. It is a domain where:
e approximate solutions are acceptable.

e the value and range of important variables, such as wind direction, amount

of cloud cover, temperature, are represented numerically.

e input-output relationships exist but may not be well-defined or even not
consistent. Depending on the season and local geography, the same input

weather conditions can lead to different output weather forecasts.

e cither no mathematical formula is available that can produce the desired
result or there is a formula but it is too complex to produce results in real
time. It is probably fair to say that, the best algorithms, when applied to
reasonable computational models of the atmosphere, probably exceed the

capacity of all but the largest and fastest computers [53].

e there is a wish to make more use of available information, but doing so

would make an crisp algoritmic solution too complex.

7.4 Active Riules and FPN Construction

7.4.1 1% Level Rules - Rules for Forecasting the Weather
For that we use the following rules:

R1: (CLEAR WEATHER)

ON pressure.pres_ch_dir(increasing),
wind.wind_dr (west northwest),
humidity.hum_ch_dir(decreasing),
cloud.cover (brokensky),
cloud.base_ch_dir(increasing)

IF pressure.pres_ch_vel(fast),

wind.prev_wind_dr(south),

98

humidity.hum_ch_vel(fast),
cloud.prev_cover(overcast),
cloud.base ch vel(fast)

THEN forecast.weather(clear)

R2: (CLEAR FEW WEATHER)

ON pressure.pres_ch_dir(increasing),
cloud.cover(brokensky few),
cloud.base_ch_dir(increasing),
humidity.hum_ch_dir(decreasing),
wind.wind_dr(north northwest)

IF pressure.pres_ch_vel(slow),
wind.wind_value(breeze),
wind.prev_wind_dr(south southwest),
cloud.prev_cover(overcast cloudy)

THEN forecast.weather(clearfew)

R3: (CLOUDED_INSTABLE WEATHER)

ON pressure.pres_ch_dir(decreasing),
humidity.hum_ch_dir(increasing),
wind.wind_value(mediumstrong strong),
cloud.orient(vertical),
cloud.base_ch_dir(decreasing),
temperature.temp_ch_dir(increasing)

IF pressure.pres_ch_vel(fast),
humidity.hum_ch_vel(fast),
wind.prev_wind_value(breeze mediumstrong)

THEN forecast.weather(cloudedinstable)

R4: (CLOUDED STABLE WEATHER)

ON pressure.pres_ch_dir(decreasing),

99

humidity.hum_ch_dir(increasing),
temperature.temp_ch_dir(increasing),
cloud.base_ch_dir(decreasing),
cloud.orient(horizontal)

IF pressure.pres_ch_vel(slow),
humidity.hum_ch_vel(slow),
temperature.temp_ch_vel(slow),
cloud.base_ch_vel(slow),
wind.wind dr(southeast south)

THEN forecast.weather(cloudedstable)
The properties of forecasting the weather is listed below:

e These rules track the changes on the following atmospheric elements: wind
value, wind direction, cloud orientation, cloud base, cloud cover, humidity
value, temperature value and pressure value. We consider attribute changes

made by user as if they come from sensor.

e Individual changes on the above elements has no meaning. Only if a couple
of changes happening together can allow us to determine the forthcoming
weather. For example, only if pressure is increasing, cloud cover is changing
to broken sky or few, cloud base is increasing, humidity is decreasing and
wind direction is changing to north or northwest, we can say that these are
an indication of a possible clear few weather. Therefore, we wait for all the
changes to occur, i.e. we collect the changes on the attributes that the rules

Ry to R4 use.

e If all changes occur, rules R to R4 are triggered at the same time. They

should be executed concurrently using a fuzzy inference mechanism.

e In that fuzzy inference, the effect of the season (i.e. current scenario) should
also be considered. Season determines the state of the application environ-
ment, gives more importance to some rules and prunes some others. This is

found with similarities of rules to the current season or scenario. In Winter,

100

for example, we expect a clouded stable weather, however, in Summer we

expect a clear or clear few weather.

More concretely, we perform the following steps during the fuzzy inference:

Stepl

Step2

Step3

Step4

Stepb

Step6

Step7

Step8

Once we have the values of atmospheric elements, which take part in trig-
cgering the rules R; to R4, we tuzzify them, and obtain fuzzy primitive
events. For example, if we have the value of wind changing from 6 to 6.5,
we need to find to what degree it is becoming medium or medium strong as

R; requires.

We perform the composition of events, which are fuzzified at Stepl.
For that we use min for AND and max for OR operator and obtain the

composite event.

Using the similarity of each rule and the composite events calculated at

Step2, we obtain the event strenghts for each rule.

We calculate the condition matching degrees for each primitive condition.
For that we fuzzify the attribute values which are checked in condition
parts. For example, R3 checks whether the previous wind value was breeze

or medium strong.

We perform the composition of conditions, which are fuzzified at Step4.
For that we use min for AND and max for OR operator and obtain the

composite condition.

Using the event strenghts calculated at Step3d and composite conditions

calculated at Stepd, we calculate the clipping value for each rule.

We combine the clipping values of all rules calculated at Step6.

We find the overall fuzzy action within the combined actions in Step7,
who has the maximum clipping value within others. For example, we fore-

cast a clear weather with a level of 0.5.

These FPN execution items are all shown on top of the FPN figures drawn.

101

7.4.2 2" Tevel Riules

7.4.2.1 Rules for Forecasting the Weather Event

R5: (RAIN)

ON forecast.weather(cloudedstable),
wind.wind_dr(south southwest),
wind.wind_value(mediumstrong),
cloud.color(grey)

IF temperature.temp_value(chill warm hot),
wind.prev_wind_dr(north),
wind.wind_dr_ch_vel(slow),
wind.prev_wind_value(breeze),
wind.wind_ch_vel(slow),
cloud.prev_color(white)

THEN forecast.weather event(rain)

R6: (SHOWER)
ON forecast.weather(cloudedinstable),
cloud.color(darkgrey)
IF wind.prev_wind_value(calm),
cloud.prev_color(grey)

THEN forecast.weather event(shower)

R7: (SNOW)

ON forecast.weather(cloudedstable),
wind.wind_dr(north),
cloud.color(grey)

IF temperature.temp_value(cold),
wind.prev_wind_dr(south),
cloud.prev_color(white)

THEN forecast.weather_event(snow)

102

R8:
ON

IF

(HAIL)
forecast.weather(cloudedinstable),
cloud.color(dark)
temperature.temp_value(hot),
wind.prev_wind_value(breeze),

cloud.prev_color(grey)

THEN forecast.weather_event(hail)

R9:
ON
IF

(FOG®)
forecast.weather(cloudedstable)

wind.wind_value(calm breeze)

THEN forecast.weather_event(fog)

The properties of forecasting the weather event is listed below:

These rules track the changes on the following atmospheric elements: wind
value, wind direction, cloud color and pressure value together with a weather
being forecasted with rules R; to Ry4. Therefore, without rules R; to R4
forecasting a weather, these atmospheric changes has no meaning. Or we
can say that there is an early indication of a weather event to forecast using

rules Rs to Rg with a weather forecasted using rules R; to Ry.

Individual changes on the above elements has no meaning. Only if a couple
of changes happening together can allow us to determine the forthcoming
weather event. Again, we wait for all the changes to occur, i.e. we collect

the changes on the attributes that the rules Rs to Rg use.

It all changes occur, rules Rs to Rg are triggered at the same time. They

should be executed concurrently using a fuzzy inference mechanism.

In that fuzzy inference, the effect of the season (i.e. current scenario) is

again considered. In Winter, for example, we expect a rain, fog or snow as

103

a weather event, however, in Spring or Fall we expect Rain, Hail or Shower

as a weather event.

The steps performed in fuzzy inference are same as the ones performed during

forecasting a weather. However, what is forecasted now is a weather event.

7.4.2.2 Rules for Forecasting the Temperature Change

R10: (TEMPERATURE INCREASE)
ON forecast.weather(clear clearfew cloudedinstable),
pressure.pres_ch_dir(decreasing),
wind.wind dr(south southwest)
IF wind.prev_wind_dr(north northwest northeast)

THEN forecast.temperature_change(increase)

R11: (TEMPERATURE DECREASE)

ON forecast.weather(cloudedstable),
pressure.pres_ch_dir(increasing),
wind.wind dr (north northwest northeast)

IF wind.prev_wind_dr(south southwest)

THEN forecast.temperature_change(decrease)

R12: (NO TEMPERATURE CHANGE)
ON forecast.weather(clear clearfew cloudedinstable cloudedstable)
IF pressure.pres_ch_dir(nochange),
wind.wind_dr(west),
wind.wind value(breeze)

THEN forecast.temperature_change(nochange)

Figures 7.1, 7.2, 7.3 show the parts of the FPN constructed for these active rules

of weather forecasting.

104

fuzzy primitive condition

prim_event . pres_ch_dir_tast
ne fuzzy_rule O

strengthened_event

v_cloyd__cover_overcast/cloudy

hum ch di ! pres_ch_vel_fast

atte_by&ye/medium

hum_ch_yel_fast

pres_ch_vel_slow

Hra
um,c® /—)O/H

s

forecasted 4
weather

e A
dar’
cloud ol 3

"

Figure 7.1: FPN constructed for the weather forecasting

105

temperature chill/warm/hot clipped action

| M
streW 'U/ /\’\/ rain

wind_dr_ch_vel-stow composite condition

¢ breeze

strengthned event r6
loud_color_white

v_wind_value_calm

\ %wer
/

strengthned event r7

—
ey

\J _color_white

strengthned event r8

alue_very_high

strengthned event r9 prev_wind_value_calm/breeze
ree
prev_wind_dr_n/nw/ne temperature increase
strengthned event r10 erature !

temperature decrease

strengthned eyent rl1 v_wind_dr_s/sw \

prev_wind_dr_no_change

no temperature change

O/

strengthned event r12,

e ~O

Figure 7.2: FPN constructed for the weather forecasting (cont)

106

primitive events /—clippedm

clear weather

clear few wegther

event generating transition /
clouded_instable weather \

combined concurrent actions

7y action
(for weather)

clouded_stable_weather

fuzzy action
(for weather event)

snow 7
—CO
fog
—0
Lemperature_increase
Y fuzzy action
(for temp change)

temperature decrease

—s()
no temperature change

Figure 7.3: FPN constructed for the weather forecasting (cont)

7.5 Deductive Rules and FPN Construction

Deductive rules are the ones having no event part. However, internally all rules
are of active kind. Therefore, system converts the deductive rules to active rules

having an abstract kind of event.

7.5.1 Rules for querying the weather forecast

RO1: (CLEAR WEATHER)

IF pressure.pres_ch_dir(increasing),
wind.wind_dr(west northwest),
humidity.hum_ch_dir(decreasing),
cloud.cover (brokensky),
cloud.base_ch_dir(increasing)
pressure.pres_ch_vel(fast),

wind.prev_wind_dr(south),

107

humidity.hum_ch_vel(fast),
cloud.prev_cover(overcast),
cloud.base ch vel(fast)

THEN forecast.weather(clear)

RO2: (CLEAR FEW WEATHER)

IF pressure.pres_ch_dir(increasing),
cloud.cover(brokensky few),
cloud.base_ch_dir(increasing),
humidity.hum_ch_dir(decreasing),
wind.wind_dr(north northwest)
pressure.pres_ch_vel(slow),
wind.wind_value(breeze),
wind.prev_wind_dr(south southwest),
cloud.prev_cover(overcast cloudy)

THEN forecast.weather(clearfew)

R32: (CLOUDED_INSTABLE WEATHER)

IF pressure.pres_ch_dir(decreasing),
humidity.hum_ch_dir(increasing),
wind.wind_value(mediumstrong strong),
cloud.orient(vertical),
cloud.base_ch_dir(decreasing),
temperature.temp_ch_dir(increasing)
pressure.pres_ch_vel(fast),
humidity.hum_ch_vel(fast),
wind.prev_wind_value(breeze mediumstrong)

THEN forecast.weather(cloudedinstable)

R42: (CLOUDED STABLE WEATHER)

IF pressure.pres_ch_dir(decreasing),

108

humidity.hum_ch_dir(increasing),
temperature.temp_ch_dir(increasing),
cloud.base_ch_dir(decreasing),
cloud.orient(horizontal)
pressure.pres_ch_vel(slow),
humidity.hum_ch_vel(slow),
temperature.temp_ch_vel(slow),
cloud.base_ch_vel(slow),

wind.wind dr(southeast south)

THEN forecast.weather(cloudedstable)

For example, deductive rule Rgy; is converted to the following active rule, which

has an abstract kind of event

RO1: (CLEAR WEATHER)

ON raise(forecast.weather)

IF pressure.pres_ch_dir(increasing),
wind.wind_dr(west northwest),
humidity.hum_ch_dir(decreasing),
cloud.cover (brokensky) ,
cloud.base_ch_dir(increasing)
pressure.pres_ch_vel(fast),
wind.prev_wind_dr(south),
humidity.hum_ch_vel(fast),
cloud.prev_cover(overcast),
cloud.base ch vel(fast)

THEN forecast.weather(clear)

7.5.2 Rules for querying the weather event forecast

R52: (RAIN)
IF forecast.weather(cloudedstable),

wind.wind_dr(south southwest),

109

wind.wind_value(mediumstrong),
cloud.color(grey)
temperature.temp_value(chill warm hot),
wind.prev_wind_dr(north),
wind.wind_dr_ch_vel(slow),
wind.prev_wind_value(breeze),
wind.wind_ch_vel(slow),
cloud.prev_color(white)

THEN forecast.weather event(rain)

R62: (SHOWER)

IF forecast.weather(cloudedinstable),
cloud.color(darkgrey)
wind.prev_wind_value(calm),
cloud.prev_color(grey)

THEN forecast.weather event(shower)

R72: (SNOW)

IF forecast.weather(cloudedstable),
wind.wind_dr(north),
cloud.color(grey)
temperature.temp_value(cold),
wind.prev_wind_dr(south),
cloud.prev_color(white)

THEN forecast.weather_event(snow)

R82: (HAIL)
IF forecast.weather(cloudedinstable),
cloud.color(dark)
temperature.temp_value (hot),

wind.prev_wind_value(breeze),

110

cloud.prev_color(grey)

THEN forecast.weather event(hail)

R92: (FOG®)
IF forecast.weather(cloudedstable)
wind.wind value(calm breeze)

THEN forecast.weather_event (fog)

7.5.3 Rules for querying the temperature change forecast

R102: (TEMPERATURE INCREASE)
IF forecast.weather(clear clearfew cloudedinstable),
pressure.pres_ch_dir(decreasing),
wind.wind dr(south southwest)
wind.prev_wind_dr(north northwest northeast)

THEN forecast.temperature_change(increase)

R112: (TEMPERATURE DECREASE)

IF forecast.weather(cloudedstable),
pressure.pres_ch_dir(increasing),
wind.wind dr (north northwest northeast)
wind.prev_wind_dr(south southwest)

THEN forecast.temperature_change(decrease)

R122: (NO TEMPERATURE CHANGE)
IF forecast.weather(clear clearfew cloudedinstable cloudedstable)
pressure.pres_ch_dir(nochange),
wind.wind_dr(west),
wind.wind value(breeze)

THEN forecast.temperature_change(nochange)

111

primitivecondition clippedaction

4’_~,, \-presehilic (ncressing) compositecondition ruzzyaction
primitiveevent 4k’—>f; Jwinddr (west northwest) 9=) puip() combinedaction
Y, ° — > weather,
a4 H — o (clear)
/S Py e
y | chasechvel(fast) ot
Vs // 1"— > - ia‘“

v et : \‘
v P g -ccover (brokensky fewt) — i A

S \ weather \
‘/prevccoverl(overcast cloudy) ‘ (clearfew)

e
w— B} preschdir (decreasing) p'?oe:a - oA *
W[) humichdir (increasing) Sty S > AY

V/ /4 iy - ()
abstractevent, % |~)wind (mediumstrong strong weather s 4 /

J

-)
detected :f/ . 7 I corient (veriié%" - ~ (°|°u‘:e!§|’:5:a$3 ‘
— /" cbasechdir (decreasin - /
> (g) > /
e S , tempchdir (increasing) /

\
weather e 7) Preschivel (fast) - “31"5
LN) humehvel (fast) p““ /
L‘ N) wind (breeze mediumstrong) “s"‘
A\) preschdir (decreasing) payy, s L 4
A\ ») _humchdir (Increasing) >
LN |l tempchdir (increasing) LA ol
“ B |cbasechdir (decreasing) (dnr::;:f;ble)
B Jcorient (horlzontal)
“ » /preschvel (slow)
N P humchvel (slow)
‘ > | tempchvel (slow)
| | cbasechvel (slow)

44Uy

jwinddr (south south)

Figure 7.4: FPN constructed for the weather forecasting

Figures 7.4, 7.5, 7.6 show the parts of the FPN constructed for these deductive

rules of weather forecasting.

7.6 Examples

In order to keep the system simple, we have defined the rules Rs, R4, R5, R7, Ry,
Ras, Rus, Rig2, Ri12, Rioe. After the definition of these rules, system performs
termination and confluence analysis. The result of these analysis for the example
rules are shown in Figures 7.7 and 7.8. Petri Net drawn for the example rules in
the application program is shown in Figures 7.9 to 7.15. Places corresponding to
deductive rules start with a d letter while the ones corresponding to active ones
start with a p letter. Each place is shown with its place type and rules using that

place. Table 7.2 lists the abbreviations used for the place types.

112

primitivecondition clippedaction

4 y

fuzzyaction

primitiveevent u/} combinedaction
revecolor(white)
weather event \
(shower) 4
v
G
abstractevent, weather event S
detected] N (snow) \
=T
\ . . jprevecolori(white) —» ,e/
- i\ —a7's /
weather o7 n /
AN
event A4 /
A > ' / ‘
N () weather(cloudedinstable)
L@ lor(dark) >‘ ! ‘
: ccolor(dark) < ~) i v
a ° ‘
| M prevccolori(grey) R32's > weat(nhear"n)avent
Pagy, J
N weather(cloudedstable)
»
4 " wind_value(caim breeze) 1 () S
f -~ > LaSPs ol o
> weather event
RO2's (fog)
path

Figure 7.5: FPN constructed for the weather forecasting (cont)

primitiveevent primitivecondition

tempchdir
(inc[ej\se)

e T —

— (north northwest northeat

\

Wééther(eloudeﬂ;llalg)

T el i)—»\» Do

abstract evel
detected

{

preschdir (increasing)

g@nmtfﬂﬁé&/nonheast) 4 ‘H'

PN tempchdir temperature
*f)’—b{ rprveInddr(south southwest) (decrease) / change
temperature N /

change

weather (clear clearfew
_—Ccloudedinstable cloudedstable) RI 22,
— ——Sp,

tempchdir

“7—N lf—wlrrd(ﬁre?ﬁi‘ B (nochange)

Figure 7.6: FPN constructed for the weather forecasting (cont)

113

Table 7.2: Abbreviations used in the Petri Net Diagram

Abbreviation Place Type

pme primitive event

fpe fuzzy primitive event

fce fuzzy composite event
rlp rule place

ste strenghtened event

fpc fuzzy primitive condition
fec fuzzy composite condition
cpa clipped action

cma combined action

fza fuzzy action

Header Create Rules | Update Scenario | Draw Peatr Net |

Ruleld iRule Seenann (ThredEvent Condition
Rueid|Ruie[Scenario [Fhrefevert 0000 |

ety i
Rute 10]mw Rule Threshold] &

RULE TYRE
ON EVENT] © SCENARIO
O oacTivE

IF CONDITION

|

H——

i

Figure 7.7: Termination Analysis for the example rules

114

\\\\\\\E\\\\\\\E\\\\\\\\\\\\\\\\\\\\\\\\\\\\W\\\\\\ ——
K R it R

\\ B \\\\\\\\\ \ s R

wind
CREATE CANCEL 1

Figure 7.8: Confluence Analysis for the example rules

N |

et Y

&

\

Figure 7.9: Petri Net (1)

115

\\\\\\

d104 cra-r102 12 122
- d85 fpc-r122
- 36 fpc-r122

dB7 fpe-r122
= d90 pre-r32 rd2
) d49 fpc-r32

d48 foe-r32
d58 cpa-r32
= d106 cma-f, 32 142
d107 fza-r32 rd2

d50 fpe-r32
- d51 fpc-r32
- d52 fac-r
d53 fpc- r32
d54 fpc 32

Figure 7.10: Petri Net (2)

s

i

Draw §

CREATE] CANCEL 1

Figure 7.11: Petri Net (3)

116

)

4

(

Net

Figure 7.12: Petri

7
7 - .
L

7
|
|
[
7
.
[
[o

& 1 . .

Figure 7.13: Petri Net (5)

& o
Teld TITT
B S bbb
= o oo

— = 0y
ooooo oo
P

117

Figure 7.14: Petri Net (6)

Figure 7.15: Petri Net (7)

118

Table 7.3: Sensor Values at times t; & to and their fuzzification results according
to the linguistic terms used in the event/condition parts of the rules

Fuzzification Results
Sensor Values for event / condition evaluation

Attribute at time t; at time ty R; R4
Wind Value 6 6.5 0.5/- -/ -
Cloud Orientation 0 135 0.5/- 0.5/ -
Cloud Base 7200 1600 1/- 1/05
Wind Direction 255 165 -/ - -/ 0.66
Humidity 50 57 1/- 1/05
Temperature value -4.5 -1 1/- 1/05
Pressure value 1003.5 1000 1/- 1/05

7.6.1 Forecasting the Weather - Active Rule Example(1)

Suppose that we are in the Winter season and we have the sensor values for
times t; and t, given at Table 7.3 for the weather related attributes of a city,
where t; < to. We use the membership functions given in Appendix A for this
weather forecasting application. The results after the fuzzification of these values
considering the fuzzy linguistic terms taking place inside the event/condition

parts of the rules are also listed in the table.

Steps of the Inference

1. FPuzzify the event
Evaluate Ra:
Hpressure_change_direction_decreasing (—3. 5) =1L
Mhumidity _change_direction _increasing (+7) =1
Hwind_value_medium_strong/strong (6 5) = 0.5.
Heloud_orientation _vertical (135) = 0.5.
Heloud_base _change_direction _decreasing (- 5600) = 1.

Uftemperature _change_direction_increasing (+3 . 5) = 1 .

min(1, 1, 0.5, 0.5, 1, 1) = 0.5. Since 0.5 > 0, R3 gets fired.
Evaluate Ry:

119

Upressure_change_direction_decreasing (—3. 5) = 1.
Hhumidity _change_direction_increasing (+ 7) =1
Htemperature _change_direction_increasing (+3 . 5) =1
Heloud_base_change_direction_decreasing (- 5600) =1

ufcloud_orientation_horizontal(135) = 0.5.

min(1, 1, 1, 1, 0.5) = 0.5. Since 0.5 > 0, R4 gets fired.

. Cualculate the strength of event and check it with the rule threshold

For this fryinter (7;) values for the rules are calculated using the Formula 3.9.
Hwinter(3)=0, Hwinter(Ra)=1

and using the Equation 3.1, event strengths are calculated as:

for R3 ; 0 * 0.5 = 0.

for R4 ;1*05=0.5

Threshold values for the rules are given as 0.1, therefore only R4 succeed

this step.

. Fand the Condition Match Factor

Evaluate Ry:

Um’essure_chan_qe_velocity_slow(_3-5) = 0.5.
ufhumidity_chan_qe_velocity_slow(+7) = 0.5.
uftemperature_chan_qe_velocity_slow(+3~5) = 0.5.
Ucloud_base_chanqe_velocity_slow(_5600) = 0.5.

ufwind_direction_southeast/south(210) = 0.66.
So min(0.5, 0.5, 0.5, 0.5, 0.66) = 0.5. Since 0.5 > 0 R4 passes this step.

. Find the clipping values

Upto this point only R4 succeed. lts antecedent matching degree is

0.5 *% 0.5 = 0.25.

So clipping value of 0.25 is used for the action part of R4, which is an

forecasted weather of cloudedstable.

. Find the fuzzy action

Maximum of the clipping values are taken, since we have R4, max(0.25) =

120

fuzzyprimitiveeventevent strenghtenedevent

primitiveevent i pr
rhasechdir
(po1.-mst(p5 | P'gsa"s’;‘)’e'
»ip9 |
vertical (57) 4‘ hur:chvel weather
corient "D“ ‘\ (fast) A (cloudedinstable)
v V‘ »(p10; v »(pg) mlp(p9)
(po3) ~ horizontal } »p108) prevwind
‘h: 14) (breeze mediumstrong)
& » 0 | A 4
humchdir \ p p
increasing 1 preschvel <
(pod)-wtm(p2) X (slow)
A X 4 ") (p100)—B»—p>p101)
preschdirr decreasing /| A 93‘99 humchvel 4
v Y\ |
(po5)- ot -(p1 | v ‘ h(s ow‘)
/ (p18, (
N tempchvel
tempehdi i1 creading j > p13) (slow)
v ﬁ P09} gl o) »-(p8 i p(p9)
(pos) (p6)7
P H s cbasechvel
(slow) (cloudedstable)
(p15)/ ﬂ » 000
mediumstrong strong p20)
/ R, winddr
wind | wP3) s D, (southeast South)
v 3ty | [
(pos) a mediumstrong »
‘blpZG‘

Figure 7.16: FPN used for forecasting the weather

0.25. This means a weather forecast of cloudedstable

Figure 7.16 shows part of the FPN used for this inference. And, Figure 7.17
shows the screen which appears suddenly due to this dynamis(active) rule firing.
Section B.1 gives the application log for this inference. It shows movement ot

token values through the FPN.

7.6.2 Querying the Weather Forecast - Deductive Rule Example (1)

Suppose that after time ty a query comes like X.forecast.weather. We use the
values given at Table 7.3 for evaluation of this query.
Note that, since deductive rules are fired, evaluation of this inference starts from

conditions.

1. Find the condition match factor
Evaluate Rao:
min(1, 1, 0.5, 0.5, 1, 1, 0.5, 0.2, 1) = 0. R3p fails.

Bvaluate Ryo:

121

Lancel

Figure 7.17: Dynamic occurences (1)

min(1, 1, 1, 1, 0.5, 0.5,0.66,0.5,0.5) = 0.5. Since 0.5 > 0, R4 gets fired.

2. Find the clipping values
For this, the condition match factor is multiplied by the strength of event.
For the abstract kind of events fieyentstrengtn 15 always 1.

for R49;1% 0.5 = 0.5 (for the expected weather of clouded stable)

3. Find the combined fuzzy action
We take the maximum of the clipped actions: maz(0.5) = 0.5, which means

expected weather of clouded stable is answered.

Figure 7.18 shows part of the FPN used for this example. Figure 7.19 shows the

result of the query. B.2 gives the application log for this inference.

7.6.3 Forecasting the Weather Event - Active Rule Example (2)

Suppose that some more changes occur after this forecast as listed in the Table 7.4.

122

primitiveevent primitivecondition

> da9) preschdir (decreasing)
(450} humchdir (increasing)

» wind (mediumstrong. stron weather
a5y (9 9) (cloudedinstable)

P dag) pel B d58)

»
> ds54) tempchdir (increasing) 4

» d52) corient (vertical)
»d53) cbasechdir (decreasing)

ot
P! d55)-Preschvel (fast) va,ts V' \
(d106) B p-d107)
p! d57) wind (breeze mediumstrong)R 4

4215
P> d60)-preschdir (decreasing) Path

abstractevent detected
(d90 -
AR
weather \\

! d56) humchvel (fast)

v

> d61) _humchdir (Increasing) >
»{ d62) tempchdir (increasing) ? w-(d59- B d70)

n weather
P 463 cbasechdir (decreasing) (cloudedstable)
- d64)corient (horizontal)

> de5) preschvel (slow)

PP PP V7YY VU XU LU

P (d66/humchvel (slow)

4
4
Y

>(d67) tempchvel (slow)
(d68) cbasechvel (slow)
P deg) winddr (south south)

Figure 7.18: FPN used for querying the weather forecast

Steps of the Inference

1. Fuzzify the event
Evaluate Rs:

Mexpected_weather _clouded_stable = 0.25.
Uwind_direction_south/southwest(22~5) = 0.

[wind_value_medium_strong(6) = 0.
Wcloud_color _grey(4) = 0.5.
min(0.25,0,0,0.5) = 0, Ry fails.
Evaluate Ry:

Peapected_weather _clouded_stable = U.29.
wind_direction_north (337.5) = 0.5.

ufcloud_color__qrey(4) = 0.5.
min(0.25, 0.5, 0.5) = 0.25. Since 0.25 > 0 R gets fired.
FEvaluate Ry:

Hexpected_weather _clouded_stable = 0.25.

min(0.25) = 0.25. Since 0.25 > 0 Ry gets fired.

123

{%ﬁ:‘&?&ggmm}

rrom
{lasstvn

Where oty
OV st feale e

T

{l

f

Figure 7.19: A query requiring fuzzy inference on FPN (1)

2. Calculate the strength of event and check 1t with the rule threshold
For this pryinter () values for the rules are calculated using the Formula 3.9.
Huwinter (B7)=1, fwinter(R9)=1
and using the Equation 3.1, event strengths are calculated as:
for R; ;1 *0.25 =0.25
for Rg ; 1 *0.25 =0.25
Threshold values for the rules are given as 0.1, therefore R; and Ry succeed

the event_matching phase.

3. Find the condition match factor
Evaluate Rr:
Itemperature_below_0(—1) = 1.
Iprev_wind_direction_south (210) = 0.66.

Mprev_cloud_color_white(3) = 0.5.
So min(1, 0.66, 0.5) = 0.5. Since 0.5 > 0, R7 passes this step.
Evaluate Ry:

Ufwind_value_calm/breeze(6) =L

124

Table 7.4: Sensor Values at times ty & t3 (t2 < t3) and their fuzzification results
according to the linguistic terms used in the event/condition parts of the rules

Sensor Values

Fuzzification Results
for event / condition evaluation

So min(1) = 1. Since 1 > 0 Ry passes this step.

4. Find the clipping values:

Attribute at time to at time t3 R; R~ Ry
Weather - cloudedstable | 0.25 / - 0.25 / - 0.25 / -
Wind Direction 165 22.5 0/- 0.5 / 0.66 -/-
Wind Value 6.5 6 0/- -/ - -/ 1
Cloud Color 3 4 0.5/ - 0.5/0.5 -/-
Pressure Value 1000 1003.5 -/ - -/1 -/-

Upto this point only R7 and Rg succeed. Their antecedent matching degrees

are

for Ry, 0.25 * 0.5 = 0.125.
for Rg, 0.25% 1 = 0.25.

So clipping value of 0.125 is used for the action part of R;, which is an

expected weather event of snow and clipping value of 0.25 is used for the

action part of Rg, which is an expected weather event of fog.

5. Find the fuzzy action

Maximum of the clipping values are taken, since we have R; and Rg,

max(0.125,0.25) = 0.25. This means an expected weather event of fog

is forecasted.

Figure 7.20 shows part of the FPN used for this inference. Figure 7.21 shows the

screen for this execution.

Section B.3 gives the application log for this inference.

7.6.4 Querying the Temperature Change Forecast - Deductive Rule

Example (2)

Steps of the Inference

125

fuzzyprimitiveeventevent
primitiveevent

strenghtenedevent

ceotor grey

(92t p27) (pas)

(p112)
‘(

>
h
weather RrO'S pa®

(p28)

cloude}gstable
(po7)-mot B p24]- |

adY &

} »p110)

\ \ A
\

south southwest \

\
winddr" V< pESJ \\

EAGTER
(p99) nol {—N/ —~ O\
A s 37

)‘(PBS) — \p37/

L (pay

v p31)

AURTRN
ANRY
\
A
A
A
A

\ \
\

> //(F

< (south)” /
lp111) (pa2) /

wind
(calm breeze)

> (P46

temp
(chill warm hot)
4\ »{p30)

winddr
(north)

winddrchvel

=y
wind/ / |
(bree/zey ’,’
‘(ij\/ /
7

\ windchivel/

1 (slow) |

L

\

p34) |
\ ccdlor’,’
‘ (white;
‘ B (p3s)
terrip
(cold)
Lt i
winddrl

Pac
ccolor/

(white)

S

Q (slow) /
‘\ k‘ >

weather_event
(fog)

a7)

weather_event
(rain)

> p29) gl p(p36)

/
/
/

/
N)
_w-(pa0-pp(pag)
weather_event
(snow)

~

»/

2\

p102)

> »-p103,

Figure 7.20: FPN constructed for forecasting the weather event

1. Find the condition match factor

Bvaluate Rina:

Mexpected_weather _clear /clear _few/clouded_instable =0.9

Hpressure_change_direction_decreasing (3

5) = 0.

ufwind_direction_south/southwest(337-5) = 0.

Hprev_wind_direction_north/northwest /northeast (33 7. 5) = 0.

min(0.5,0,0,0) = 0, Rypo fails.
Bvaluate Rqi19:

1.

Hexpected_weather _clouded_stable =

Um’essure_chan_qe_direction_increasin_q (3

5) = 1.

Uwind_direction_north/northwest/northeast(337-5) = 0.5.

Uprev_wind_direction_south/southwest(337-5) = 0.67.

min(1, 1, 0.5, 0.67) = 0.5. Since 0.5 > 0 Ry gets fired.

Evaluate Ri99:

Hexpected_weather _clear /clear _few/clouded_instable /clouded _stable =

Upressure_change_direction_nochange (35) =0.

126

aq
S

. sty of Sk fog S ———

Ok } (‘:anwl’

Figure 7.21: Dynamic occurences (2)

ufwind_direction_west(337~5) = 0.

/Lwind_value_breeze(6) = L.

min(1,0,0,1) = 0. Rygp fails.

2. Find the clipping values
For this, the condition match factor is multiplied by the strength of event.
For the abstract kind of events fieyentstrength 15 always 1.

for Ri12;1% 0.5 = 0.5 (for the temperature change of decrease)

3. Find the combined fuzzy action
We take the maximum of the clipped actions: maz(0.5) = 0.5, which means

a temperature change of decrease is answered.

Figure 7.22 shows part of the FPN used for this example. Figure 7.23 shows the

result of this inference. Section B.4 gives the application log for this inference.

127

primitiveevent primitive
P >4 rfew cloudedi)
¢ (a3 reasing)
7 tem
v > 47 est) (inc
w—— »{d7s)prevwi E > > >
ast) A
’ >
S path \
v eweather(cloudedstable)
P 7 presehdi (increasing) ﬁ >Ld77) Bt B2 > >
event detecte: | dr (t northeast)
d9o) d8; ri northea tempchdi
mmmmmmmm S »! > dg1) dr(s) 22 (decrease; change
mmmmmmmm Sp,
r (cle: rfey at#
A\ instal able) RIZZ
>(dB aty
A g preschdi (o -
2 »(> dsg)
A‘ »ds dr E‘ >
, tempchdi
\\ > d87; breeze, (nochang

Figure 7.22: FPN used for querying the temperature change forecast

.

Figure 7.23: Query requiring Petri Net execution

128

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, we introduce a FPN model for fuzzy rule-based reasoning. This
includes the transtormation of fuzzy rules into FPN, together with their reasoning.
We can model active and deductive rules using the study introduced here. In
addition, we can model all kinds of compositions (either event or condition) in
our FPN. Besides, the functionalities of transitions are extended so that they
are capable of performing some required computations in addition to the sup-
min composition provided by other studies. Since we employ colored Petri nets,
parameter passing is provided through the Petri net. This provides the values of

conditions and actions to be calculated from the parameters ot events.

By constructing the FPN, we inherently contain the triggering graph infor-
mation. Therefore, without performing additional work, we can easily check the
termination property of our system. When the assumptions and theories regard-
ing the termination analysis were put forward, event and condition compositions
were neglected by the previous studies |1, 3, 6, 19, 46|. On the other hand, we
can handle event and condition compositions easily by the structures already
provided by our FPN. In addition, our fuzzy reasoning algorithm working on
onr FPN assures conflient, riile execntions. This assurance comes from the fact
that our reasoning algorithm provides a total order within the rules, using the

similarity of the rules to the current active scenario.

129

[14] [36] [21] [31]
Tempo Fuzzy | oge Sentinel Samos Ours
Triggers

Composition of No Yes Yes Yes Yes
events?
Uncertainty/

. 1ty Yes, No No No Yes
Fuzziness?
Is parameter No No Yes Yes Yes
passing
available?
Used method - Finite Query Colored Fuzzy Colored
for . .
event State Graphs Petri Nets | Petri Nets
composition? Automata
Rul itioning?

e partitioning No NA NA NA Yes

(scenario)
Different
Fuzzy Terms in
Events of No NA NA NA Yes
Concurrent Rules?
Object—oriented? No Yes Yes Yes Yes

Figure 8.1: Active Studies: A comparison.

Developing a full-fledged active object-oriented database environment is be-
yond the scope of this thesis. The point we consider is that, although there are
a lot of studies on active databases, only few of them investigates fuzziness. On
the other hand, the ones investigating fuzziness do not consider event/condition

compositions. Figure 8.1 compares the previous active studies with ours.

There are also a couple of studies using FPNs. However, they do not model
active rules. Also, they do not investigate the properties of their systems by
using the FPNs. We aim to fill these gaps and propose a Fuzzy Petri net model
to represent the knowledge and the behavior in an intellicent object-oriented
database environment which integrates fuzzy, active and deductive rules with
database objects. Figure 8.2 compares the previous studies using FPNs with

OlIrSs.

Using the FPN model and the reasoning algorithm introduced in this study, a

number of complex applications, such as weather forecasting applications, envi-

130

ronmental information systems, defense applications, workflow applications, etc.,
can be modeled. Furthermore, the techniques and solutions provided in this study
for the static analysis of rule bases can be utilized to eliminate the undesirable
behaviors of the modeled systems.

A prototype of the system is implemented by using ITASCA Object Database
Management System and Borland C++ Builder. We have implemented the model
using a weather forecasting application which uses the commonsense rules of the

Central Anatolia Region.

Our work on Fuzzy Petri Nets can be extended in several ways. The followings

Figure 8.2: Fuzzy Petri Nets: A comparison.

are some research issues that can be studied as future work:

e In our current model, switching between the scenarios is determined by the

user. However, a model can be developed for automatic switching between

the scenarios.

131

22 24 (18 67 50
Chen[] Chun (24 Bugarm[] Scarpélli] Lee 101 Ours

Is partial No No Yes Yes Yes Yes

matching

permitted?

Where is the Places, Places, Places, Places Places Places

fuzziness? Tokens Tokens Tokens Tokens Tokens Tokens,
Transitions

Is parameter No No No Yes No Yes

passing

availabie?

Which parts Condition |Condition |Condition | Condition |Condition | Event,

of a rule is Condition

modeled for

composition?

Which rule types | peductive |[Deductive |Deductive |Deductive |Deductive | Deductive,

are modeled? Active

Does fuzzy No No Yes Yes Yes Yes

inference?

Transition - - sup—min | sup—min | sup—min | sup—min,

functionalities fuzzification,
composition,
concurrency,
combination

performs

static rule No No No No No Yes

analysis?

We assume all coupling modes being as immediate. Underlying aspects
of the ITASCA DBMS (such as transaction manager) can be investigated

whether it allows the imlementation of other coupling modes.
Temporal dimension can be incorporated within the model.

Performance of the FPN based inference can be improved via incorporating

the RETE algorithm |33, 71| within the model.

Validation of the weather forecasting rules that we defined here can be

performed.

The techniques developed here can be used for the implementation of video

database applications.

132

1]

6]

7]

9]

REFERENCES

Aiken A., Hellerstein J. and Widow J., ”Static Analysis Techniques for
predicting the Behavior of Active Database Rules”, ACM Transactions on
Database Systems (ACM TODS’95), 20(1):3-41, March 1995.

Al-Khatib W. and Ghafoor A.,” An Approach for Video Meta-Data Modeling
and Query Processing”, in ACM Multimedia, pp.215-224, Orlando Florida,
USA, 1999.

Baralis E., Ceri S. and Paraboschi S., ”Improved Rule Analysis by Means
of Triggering and Activation Graphs”, in Timos Sellis, editor, in Proceedings
of Second Workshop on Rules in Database Systems, LNCS 985, pp.165-181,
Greece, September 1995.

Bancilhon F., Delobel C. and Kanellakis P., Building an Object-Oriented
Database System, Morgan Kaufmann Publishers inc., 1992.

Baralis E. "Rule Analysis”, in Norman Paton, editor, Active Rules in
Database Systems, pp.51-67, 1999.

Baralis E. and Widow J., ” An Algebraic Approach to Rule Analysis in Expert
Database Systems”, in Proceedings of the 20" International Conference of
Very Large Databases, (VLDB’9/), pp.475-486, Chile, September 1994.

Baralis E. and Widow J., ”An Algebraic Approach to Static Analysis of
Active Database Rules”, in ACM Transactions on Database Systems, Vol.25,
No.3, pp.269-332, 2000.

Bardossy A., Duckstein L., and Bogardi 1., ”Fuzzy Rule-based Clssification
of Atmospheric Circulation Patterns”, International Journal of Climatology,
Vol. 15, pp.1087-1097.

Bayer P. and Jonker W., ” A Framework for Supporting Triggers in Deduc-
tive Databases”, in Proceedings of 15 International workshop on Rules in
Database Systems, pp.316-330, Edinburg, Scotland, August 1993.

Berndtsson M., "Reactive Object-Oriented Databases and CIM”, in Pro-
ceedings of the 5" International Conference on Database and Expert System
Applications (DEXA’94), pp.769-778, Athens, Greece, September 1994.

133

|11] Bostan B. and Yazici A., "Fuzzy Inference Mechanism in Fuzzy ECA
Rules”, in Proceedings of 10" International Fuzzy System Association World
Congress, (IFSA’03), Istanbul, Turkey, June 29-July 2, 2003.

|12| Bostan-Korpeoglu B. and Yazici A., ” An Active Object-Oriented Database
Approach”, in Proceedings of 13"IEEE International Conference on Fuzzy
Systems, (FUZZ-IEEE’0}), Budapest, Hungary, 25-29 July, 2004.

|13| Bostan-Korpeoglu B. and Yazici A., ” Using Fuzzy Petri Nets for Static Anal-
ysis of Rule-Bases”, to appear in Proceedings of 19" International Sympo-
sium on Computer and Information Sciences, (ISCIS’0/4), Antalya, Turkey,
27-29 October, 2004.

|14| Bouaziz T., Karvoven J., Pesonen A. and Wolski A., ”Design and implemen-
tation of tempo fuzzy triggers”, Technical Report, VI'T Information Tech-
nology, 1997.

|15] Bouaziz T., Wolski A., "Incorporating Fuzzy Inference into Database Trig-
gers”, Research Report, VI'T Information Technology, November 1996.

|16] Bouaziz T. and Wolski A., ” Applying fuzzy events to approximate reasoning
in active databases”, in Proceedings of 6" IEEE International Conference on
Fuzzy Systems, (FUZZ-IEEE’97), Barcelona, Catalonia, Spain, July 1997.

|17| Buchmann A., ” Active Object Systems”, In Asuman Dogac, M. Tamer Ozsu,
Alex Biliris, and Timos Sellis, editors, Advances in Object-Oriented Database
Systems, pp.201-224, Spring-Verlag, 1994.

|18| Bugarin A. and Barro S., ” Fuzzy Reasoning supported by Petri Nets”, IEEE
Transactions on Fuzzy Systems, 2(2), pp.135-150,1994.

[19] Ceri S. and Widow J., ”"Deriving Production Rules for Constraint Mainte-
nance”, in Proceedings of the 16 International Conference of Very Large
Databases, (VLDB’90), pp.566-577, Austria, August 1990.

|20] Ceri S. and Widom J., " Deriving Incremental Production Rules for Deductive
Data”, in Information Systems, Vol.16, No.6, 1994.

|21| Chakravarthy S., "SENTINEL: An Object-Oriented DBMS With Event-
Based Rules”, SIGMOD Conference, pp.572-575, 1997.

|22| Chen S., "Weighted Fuzzy Reasoning Using Weighted Fuzzy Petri
Nets”, Transactions on Data FEngineering, (TKDE’2002), Vol.14, No.2,
March/April 2002.

|23] Chen S., Ke M., Chang J., "Knowledge Representation using Fuzzy Petri
Nets”, Transactions on Data Engineering, (TKDE’90), 2(3), pp.311-319,
1990.

134

|24]

|25]

|26]

127]

28]

31]

132]

133]

|34]

35]

|36]

Chun M. and Bien Z., ”Fuzzy Petri Net Representation and Reasoning Meth-
ods for Rule-Based Decision Making Systems”, IECE Trans. Fundamentals,
Vol.E76-A, No.6, June 1993.

Collet C., "NAOS”, in Active Rules in Database Systems, pp.279-296, 1999.

Ceri S., Fraternali P.,; Paraboschi S., Tanca L., ” Active Rule Management
in Chimera Active Database Systems”, Triggers and Rules For Advanced
Database Processing pp.151-176, 1996.

Dayal U., ”Active Database Management Systems”, in Proceedings of the
3¢ International Conference on Data and Knowledge Bases, pp.150-1609,
Jerusalem, June 1988.

Dayal U., Buchmann A., Chakravarthy S., "The HiPAC Project Active
Database Systems”, in Triggers and Rules For Advanced Database Process-
g, pp.177-206, 1996.

Diaz O., Jaime A., "EXACT: An Extensible Approach to Active Object-
Oriented Databases”, in VLDB Journal, 6(4), pp.282-295, 1997.

Dinn A., Paton N. and Williams H., ” Active Rule Analysis in the Rock and
Roll Deductive Object-Oriented Database”, Information Systems, Vol.24,
No.4, pp.327-353, 1999.

Dittrich K., Fritschi H., Gatziu S., Geppert A., Vaduva A., "SAMOS in
hindsight: experiences in building an active object-oriented DBMS”, in In-
formation Systems, 28(5), pp.369-392, 2003.

Elmasri R. and Navathe S.B., Fundamentals of Database Systems, The Ben-
jamin/Cumming Publishing Com., 2000.

Forgy C.L., "RETE: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem”, in Artificial Intelligence, Vol.19, pp.17-37, 1982.

Gatziu S. and Dittrich K., ”Detecting Composite Events in Active Database
Systems using Petri Nets”, in Proceedings of 4 International Workshop on
Research issues in Data Engineering: Active Database Systems, Houston,
Texas, February 1994.

Gatziu S., Geppert A., Dittrich K.R., Fritschi H., Vandau A., ” Architec-
ture and Implementation of the Active Object-Oriented Database Manage-
ment System SAMOS”, Technical Report, Institut fur Informatik, Universi-
tat Zurich, October 1995.

Gehani N., Jagadish H., ” Active Database Facilities in Ode Active Database
Systems”, Triggers and Rules For Advanced Database Processing, pp.207-
232, 1996.

135

|37| Gehani N. H. and Jagadish V., "Ode as an Active Database: Constraints
and Triggers”, in Proceedings of 17" International Conference on Very Large
Data Bases (VLDB’91), pp.327-336, Barcelona, Spain, September 1991.

|38] Ghanem N., DeMenthol D., Doermann D. and Davis L., ” Representation and
Recognition of Events in Surveillance Video Using Petri Nets”, Conference

on Computer Vision and Pattern Recognition Workshop, Vol.7, Washington
D.C., USA.

|39| Goldsack P., Weatherwise, Newton Abbot, North Pomfret, Vermont, 1986.

|40| Hadjimicheal M., Kuciamuskas A., Tag P., ”A meteorelogical fuzzy expert
system incorporating subjective user input”, Knowledge and Information
Systems, Vol.4, No.3, pp.250-269, July 2002.

|41] Hansen B., "SIGMAR: A fuzzy expert system for critiquing marine fore-
casts”, Al Applications, Vol.11, No.1, pp.59-68, 1997.

|42| Hansen B., ”Analog Forecasting of Ceiling and visibility using fuzzy sets”,
2nd Conference on Artificial Intelligence, American Meteorological Society,
pp.1-7, 2000.

|43] Harrington J.L., Object-Oriented Database Design, Morgan Kaufmann Pub-
lishers inc., 2000.

|44] Kwon O., Modeling and Generating Context-aware Agent-based Applica-
tions with Amended Colored Petri Nets, Fzpert Systems with Applications
27 (2004) 609-621.

|45| Kappel G. and Schrefl M., ”Modeling Object Behaviour: To Use Methods or
Rules or Both?”, In Roland R. Wagner, Helmut Thoma (eds.): Proceedings
of the 7" International Conference on Database and Expert Systems Appli-
cations, (DEXA’96), Zurich, Switzerland, September 1996,, LNCS Vol.1134,
pp.H834-602, 1996.

|46] Karadimce A. and Urban S., "Refined Triggering Graphs: A Logic-Based
Approach to Termination Analysis in an Object-Oriented Database”, in Pro-
ceedings of 12" International Conference on Data Engineering, pp.384-391,
New Orleans, February 1996.

|47] Kerry R., "Integrating Knowledge-Based and Database Management Sys-
tems”, Ellis Horwood Limited, 1990.

|48| Kilig A., "Herkes i¢in Meteoroloji”, Doga Arastirmalar: ve Sporlart Dernegi
(DASK), http://www.dask.org.tr/bilmek_istedikleriniz/meteoroloji/genel -
sayta.htm, May, 2004.

|49] Koyuncu K. and Yazici A., ”IFOOD: An Intelligent Fuzzy Object-oriented
Database Architecture”, IEEE Transactions on Knowledge and Data Engi-
neering, Vol.15, No.5, pp.1137-1154, 2003.

136

|50| Lee J., Liu K. and Chiang W., ”Fuzzy Petri Nets for modelling rule-based
reasoning”, International Journal on Artificial Intelligence Tools, 1998.

|51| Lee J., Liu K. and Chiang W., "High Level Fuzzy Petri Nets as a basis for
Managing Smbolic and Numerical information”, International Journal on
Artificial Intelligence Tools, Vol.9, No.4, pp.569-588, 2000.

|52] Lee J., Liu K. Wang Y. and Chiang W., "Possibilistic Petri Nets as a basis
for agent service description language”, Fuzzy Sets and Systems, 114, pp.105-
126, 2004.

|53| Maner W., Joyse S., "WXSYS: Weather Lore + Fuzzy Logic = Weather
Forecasts”, presented in CLIPS Virtual Conference, 1997.

|54| Murata T., ”"Petri Nets: Properties, Analysis and Applications”, in Proceed-
mgs of IEEE, Vol.77, pp.541-540, April, 1989.

|55] Manoj T., Leena J. and Soney R., ”Knowledge Representation using Fuzzy
Petri Nets- Revisited”, Transactions on Data Engineering, (TKDE’98),
Vol.10, No.4, July/August, 1998.

|56|] Montesi D., and Torlone R., ”Analysis and Optimisation of Active
Databases”, Data and Knowledge Engineering, Vol.40, pp.241-271, 2002.

|57 Montesi D., Bagnato M. and Dallera C. ”Termination Analysis in Active
Databases”, International Database Engineering and Applications Sympo-
stum, Montreal, 1999.

|58 Montesi D., Bertino E. and Bagnato M., "Refined Rules Termination Anal-
ysis through Transactions”, Information Systems, Vol.28, pp.435-456, 2003.

|59] Motro A., ” Accomodating Imprecision in Database Systems: Issue and So-
lutions”, in Sigmod Record, Vol.19, No.4, pp.69-74, 1990.

|60] Motro A., ”Imprecision and Uncertainty in Database Systems”, in Fuzzi-
ness wn Database Management Systems edited by P. Boch and J. Kacprzyk,
Physica Verlag, pp.3-22, 1995.

|61] Murtha J., Applications of fuzzy Logic in operational meteorology, NewsLet-
ter, Canadian Forces Weather Service, pp.42-54, 1995.

|62| Paton N., Diaz O., Williams M., Campin J., Dinn A. and Jaime A., ”Di-
mensions of Active Behavior”, in Proceedings of 1% International Workshop
on Rules in Database Systems, pp.40-47, 1994.

|63| Paton N. and Diaz O., ”Active Database Systems”, ACM Computing Sur-
veys, 31(1): pp.1-29, 1999.

|64| Pessonen A. and Wolski A., ”Quantified and Temporal Fuzzy Reasoning for
Active Monitoring in RapidBase”, Symposium on Tool Environments and
Development Methods for Intelligent Systems (TOOLMET’2000), Finland,
April 2000.

137

|65]

|66]

|67]

68|

|69]

|72]

|75]

|76]

|77]

Peterson J.L., "Petri Nets”, ACM Computing Surveys, Vol.4, pp.223-252,
1977.

Stonebraker M., "The Integration of Rule Systems and Database Systems”,
IEEE Transactions on Knowledge and Data Engineering, Vol.4, No.5, Octo-
ber, 1992.

Scarpelli H., Gomide F. and Yager R., ”A Reasoning Algorithm for High
Level Fuzzy Petri Nets”, IEEE Transactions on Fuzzy Systems, 4(3), pp.282-
294, 1996.

Saygin Y., Ulusoy O. and Yazici A., " Dealing with Fuzziness in Active Mobile
Database Systems”, Information Sciences (International Journal), Vol.120,
No.1-4, pp:23-44, December 1999.

Shao J., Laux S.J., Trainor B.J., Pettifer R., ” Nowcast of temperature and ice
on overhead transmission wires”, Meteorological Applications, Vo.10, pp.123-
133, Cambridge University Press, 2003.

Sujitjorn S., Sookjaras P., Wainikorn W., ”An expert system to forecast
visibility in Don-Muang Air Force Base”, IEEE International Conference on
Systems, Man and Cybernetics, pp.2528-2531, NY, USA, October 1994.

Sosnowski Z.A., 7 Activation of Fuzzy Rules in RETE Network”, in Proceed-
mgs of the 4th International Conference on Flexible Query Answering Sys-
tems (FQAS’2000), Advances in Soft Computing, Physica-Verlag, pp.200-
209, Warsaw, Poland, October 2000.

Tag P., Hadjimicheal M., Brody L., Kuciauskas A. and Bankert R., ”Au-
tomating the subjective recognition of wind Patterns as input to a meteo-
rological forecasting system”, in Proceedings of 15th Conference on weather
analysis and forecasting, American Meteorological Society, pp.347-350, 1996.

Tryfona N., "Modeling Phenomena in Spatiotemporal Dababases: Desider-
ata and solutions”, in Proceedings of 9" International Conference on
Database and FExpert Systems Applications, (DEXA’98), pp.155-165, 1998.

Vaduva A., Gatziu S. and Dittrich K., ”Investigating Termination in Ac-
tive Database Systems with Expressive Rule Languages”, Technical Report,
Institut fiur Informatik, April 1997.

Wolski A. and Bouaziz T., " Fuzzy Triggers: Incorporating Imprecise Reason-
ing into Active Databases”, in Proceedings of 14" International Conference
on Data Engineering (ICDE’98), February 1998.

Yayvan M., Weather Forecast Expert, in Turkish State Meteorological Ser-
vice, Interview, May 2004.

Yazici A., George R. and Aksoy D., "Design and Implementation Issues in
the Fuzzy Object-oriented Data (FOOD) Model”, Information Sciences (Int.
Journal), Vol.108, 1998.

138

|78| Yen J. and Langari R., Fuzzy Logic, Intelligence, Control and Information,
New Jersey, USA, 1999.

|79 Zimmer D., Meckenstock A. and Unland R., ”"Using Petri Nets for Rule
Termination Analysis”, Workshop on Databases: Active and Real-time,
Rockville, Maryland, November 1996.

|I80| Zadeh L.A., ”Fuzzy Sets”, Information and Control, Vol.8, No.3, pp.338-353,
1965.

|81] Zaniolo C., "On the Unification of Active and Deductive Databases”, in
Advances in Databases 11" British National Conference on Databases, pp.23-
39, Springer-Verlag LNCS 696, 1993.

|I82| Zimmermann J., Buchmann A., "REACH”, Active Rules in Database Sys-
tems, pp.2063-277, 1999.

139

APPENDIX A

CLASS DEFINITIONS AND FUZZY
DOMAINS OF METEOROLOGICAL DATA

Class Pressure{

attribute tuzzyPres value ;

attribute fuzzyPres prev_value ;
attribute fuzzyPreschdir change_direction ;

attribute fuzzyPreschvel change_velocity ;}

Class Temperature{

attribute fuzzyTemp value :

attribute fuzzyTemp prev_value ;
attribute fuzzyTempchdir change_direction :

attribute fuzzyTempchvel change_velocity ;}

Class Humidity{

attribute fuzzyHum value ;

attribute fuzzyHum prev_value ;
attribute fuzzyHumchdir change_direction ;

attribute fuzzyHumchvel change_velocity ;}

140

Class Wind{

attribute fuzzyWind value ;

attribute tuzzyWind prev_value ;
attribute fuzzyWindchvel change_velocity :
attribute fuzzyWinddr direction ;
attribute fuzzyWinddr prev_direction;

attribute fuzzyWinddrchvel direction_change_velocity ;}

Class Cloud{

attribute fuzzyCcover cloud_cover;

attribute fuzzyCcover prev_cloud_cover;

attribute fuzzyCbase cloud_base;

attribute tuzzyCbase prev_cloud_base;

attribute fuzzyCbasechdir cloud_base_change_direction;
attribute fuzzyCbasechvel cloud_base_change_velocity;
attribute fuzzyOrient cloud_orientation;

attribute fuzzyColor cloud_color ;}

Class Forecast{
attribute fuzzyWeather expected_weather;
attribute tuzzyWeatherEvent expected_weather_event;

attribute fuzzyTemperatureChange expected_temperature_change;}

Class City{

attribute Pressure pressure;
attribute Temperature temperature;
attribute Humidity humidity;
attribute Wind wind;

attribute Cloud cloud;

attribute Forecast forecast;}

141

Table A.1: Membership Functions for pressure value attribute

‘ fuzzy term ‘ function ‘ arguments |
low trapezoidal | 992 | 992 | 1008 | 1024
high trapezoidal | 1008 | 1024 | 1040 | 1040

Table A.2: Membership Functions for pressure change velocity attribute

‘ fuzzy term | function | arqguments ‘
nochange | trapezoidal {0 | 0 | 1 |2
slow trapezoidal | 1 |2 |3 | 4
fast trapezoidal | 3|4 |5 |5

Table A.3: Membership Functions for pressure change direction attribute

‘ fuzzy term ‘ function ‘ arguments ‘
decreasing | trapezoidal | -5 | -5 | -3 | -1
nochange | trapezoidal | -3 | -1 | 1 | 3
increasing | trapezoidal | 1 | 3)

Table A.4: Membership Functions for temperature value attribute

‘ fuzzy term | function | arqguments ‘
cold trapezoidal | -5 | -5 | 5 | 10
chill trapezoidal | 5 | 10 | 15 | 20
warm trapezoidal | 15 | 20 | 25 | 30
hot trapezoidal | 25 | 30 | 35 | 35

Table A.5: Membership Functions for temperature change velocity attribute

‘ fuzzy term | function | arguments ‘
nochange | trapezoidal | 0 |0 | 1|2
slow trapezoidal | 1 |2 |3 |4
fast trapezoidal | 3|4 |5 | b

‘ fuzzy term ‘ function ‘ arqguments ‘
decreasing | trapezoidal | -5 | -5 | -3 | -1
nochange | trapezoidal | -3 |-1| 1 | 3
increasing | trapezoidal | 1 | 3 5

142

Table A.6: Membership Functions for temperature change direction attribute

Table A.7: Membership Functions for humidity value attribute

fuzzy term ‘ function ‘ arqguments ‘
low trapezoidal | O | 0 | 20 | 40
ideal trapezoidal | 20 | 40 | 60 | 80
high trapezoidal | 60 | 80 | 100 | 100

Table A.8: Membership Functions for humidity change velocity attribute

‘ fuzzy term ‘ function ‘ arguments ‘
nochange | trapezoidal |0 [0 | 2 | 4
slow trapezoidal |2 |4 | 6 | 8
fast trapezoidal | 6 | 8 | 10 | 10

Table A.9: Membership Functions for humidity change direction attribute

‘ fuzzy term | function | arguments ‘
decreasing | trapezoidal | -10 | -10 | -6 | -2
nochange | trapezoidal | -6 | -2 | 2 | 6
increasing | trapezoidal | 2 6 |10] 10

Table A.10: Membership Functions for wind value attribute

| fuzzy term ‘ function | arguments ‘
calm trapezoidal | 0 | 0 | 3 | 4
breeze trapezoidal | 3 | 4 | 6 | 7
medium_strong | trapezoidal | 6 | 7 | 15| 16
strong trapezoidal | 15 | 16 | 30 | 31
storm trapezoidal | 30 | 31 | 50 | 50

Table A.11: Membership Functions for wind value change velocity attribute

‘ fuzzy term ‘ function ‘ arqguments
nochange | trapezoidal | 0 |0 | 2 | 4
slow trapezoidal | 2 | 4| 6 | 8
fast trapezoidal | 6 | 8 | 10 | 10

143

Table A.12: Membership Functions for wind direction attribute

‘ fuzzy term ‘ function | arqguments |
north triangular | -45 | 0 | 45
northwest | triangular | 0 | 45 | 90
west triangular | 45 | 90 | 135
southwest | triangular | 90 | 135 | 180
south triangular | 135 | 180 | 225
southeast | triangular | 180 | 225 | 270
east triangular | 225 | 270 | 315
northeast | triangular | 270 | 315 | 360

Table A.13: Membership Functions for wind direction change velocity attribute

‘ fuzzy term | function | arqguments ‘
nochange | trapezoidal | 0 | 0 | 18 | 36
slow trapezoidal | 18 | 36 | b4 | 72
fast trapezoidal | 54 | 72 | 90 | 90

Table A.14: Membership Functions for cloud cover attribute

fuzzy term ‘ function | arquments ‘
clear triangular |0 |0 | 1] -
few trapezoidal | 0 | 1|2 |3
broken_sky | trapezoidal | 2 |3 |4 |5
cloudy trapezoidal |4 [5|6 |7
overcast | trapezoidal | 6 | 7 | 8 | 8

Table A.15: Membership Functions for cloud base attribute

‘ fuzzy term ‘ function ‘ arguments |
low trapezoidal 0 0 2000 | 3000
medium | trapezoidal | 2000 | 3000 | 5000 | 6000
high trapezoidal | 5000 | 6000 | 8000 | 8000

Table A.16: Membership Functions for cloud base change direction attribute

| fuzzy term | function | arguments ‘
decreasing | trapezoidal | -8000 | -8000 | -4800 | -1600
nochange | trapezoidal | -4800 | -1600 | 1600 | 4800
increasing | trapezoidal | 1600 | 4800 | 8000 | 8000

144

Table A.17: Membership Functions for cloud base change velocity attribute

‘ fuzzy term‘ function ‘ arguments |

nochange | trapezoidal | 0 0 1600 | 3200
slow trapezoidal | 1600 | 3200 | 4800 | 6400
fast trapezoidal | 4800 | 6400 | 8000 | 8000

Table A.18: Membership Functions for cloud orientation attribute

|fuzzy term| function | arqguments ‘

vertical | triangular | 45 | 90 ‘ 145 ‘
| horizontal | triangular | -45 | 0 ‘ 45 ‘

145

APPENDIX B

APPLICATION LOG FOR THE EXAMPLES

B.1 Forecasting the Weather - Active Rule Example(1)

INFERENCE GROUP O FIRED FOR EXECUTION

CURRENT_PLACES FOR USE: p91 p93 p94 p95 p96 p98
PLACE FOR USE NOW: p91, TRANSITION FOR USE NOW: O
I am in TRANSITION O now, which does FUZZIFICATION.
I mark the OUTPUT place pb, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place pb:
Ubject id: cb, Ubject attr value: -5600.000000, Domain: fuzzycbasechdir,

Fuzzytermlist: decreasing, Membership: 1.00

CURRENT_PLACES FOR USE: p93 p94 p95 p96 p98 pb
PLACE FUR USE NOW: p93, TRANSITION FOR USE NOW: 2
I am in TRANSITION 2 now, which does FUZZIFICATION.
I mark the OUTPUT place p4, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p4:
Object id: cb, Object attr value: 135.000000, Domain: fuzzycorient,

Fuzzytermlist: vertical, Membership: 0.50

CURRENT_PLACES FUR USE: p93 p94 p95 p96 p938 pbd p4
PLACE FOR USE NOW: p93, TRANSITION FOR USE NOW: 3

146

I am in TRANSITION 3 now, which does FUZZIFICATION.
I mark the UOUTPUT place pl4, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place pl4:
Object id: cb, Object attr value: 135.000000, Domain: fuzzycorient,

Fuzzytermlist: horizontal, Membership: 0.50

CURRENT_PLACES FOR USE: p94 p95 p96 p98 pb p4 pl4
PLACE FOR USE NOW: p94, TRANSITION FOR USE NOW: 4
I am in TRANSITION 4 now, which does FUZZIFICATION.
I mark the OUTPUT place p2, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p2:
UObject id: cb, Ubject attr value: 7.000000, Domain: fuzzyhumchdir,

Fuzzytermlist: increasing, Membership: 1.00

CURRENT_PLACES FOR USE: p95 p96 p98 pb p4 pl4 p2
PLACE FOR USE NOW: p95, TRANSITION FOR USE NOW: 5
I am in TRANSITION 5 now, which does FUZZIFICATION.
I mark the OUTPUT place pl, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place pl:
Object id: c¢b, Object attr value: -3.500000, Domain: fuzzypreschdir,

Fuzzytermlist: decreasing, Membership: 1.00

CURRENT_PLACES FOR USE: p96 p98 pb p4 pl4 p2 pl
PLACE FOR USE NOW: p96, TRANSITION FOR USE NOW: 6
I am in TRANSITION 6 now, which does FUZZIFICATION.
I mark the OUTPUT place p6, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p6:
UObject id: cb, Ubject attr value: 3.500000, Domain: fuzzytempchdir,

Fuzzytermlist: increasing, Membership: 1.00

CURRENT_PLACES FOR USE: p98 pb p4 pl4 p2 pl p6

PLACE FOR USE NOW: p98, TRANSITION FOR USE NOW: 8

I am in TRANSITION 8 now, which does FUZZIFICATION.

147

I mark the OUTPUT place p3, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p3:
Object id: c¢b, Object attr value: 6.500000, Domain: fuzzywind,

Fuzzytermlist: mediumstrong strong, Membership: 0.50

CURRENT_PLACES FOR USE: p98 pb p4 pl4 p2 pl p6 p3

PLACE FOR USE NOW: p98, TRANSITION FOR USE NOW: 9

I am in TRANSITION 9 now, which does FUZZIFICATION.

Since TRANSITION 9 DUES NOT WORK for INFERENCE GROUP O, I am not using it.
CURRENT_PLACES FOR USE: p5 p4 pl4 p2 pl p6 p3

PLACE FOR USE NOW: p5, TRANSITION FOR USE NOW: 43

I am in TRANSITION 43 now, which does CUOMPUSITION.

I mark the OUTPUT place pO, which is added to the tail of

CURRENT places list

TOKEN VALUE put in OUTPUT place pO:

UObject id: cb, Membershipl: 0.50, Membership2: 0.00

CURRENT_PLACES FOR USE: pb p4 pl4 p2 pl p6 p3 pO

PLACE FUR USE NOW: pb5, TRANSITIUN FOR USE NOW: 44

I am in TRANSITION 44 now, which does CUOMPUSITION.

I mark the OUTPUT place pl3, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place pl3:

UObject id: cb, Membershipl: 0.50, Membership2: 0.00

CURRENT_PLACES FOR USE: p4 pl4 p2 pl p6 p3 p0 pl3
PLACE FOR USE NOW: p4, TRANSITION FOR USE NOW: 43

Since transition 43 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: pl4 p2 pl p6 p3 p0 pl3
PLACE FOR USE NOW: pl4, TRANSITION FOR USE NOW: 44

Since transition 44 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: p2 pl p6 p3 pO pl3

PLACE FOR USE NOW: p2, TRANSITION FOR USE NOW: 43

Since transition 43 is consumed before, do not fire it again.

148

CURRENT_PLACES FOR USE:

PLACE FOR USE NOW: p2,

Since transition 44 is

CURRENT_PLACES FOR USE:

PLACE FOR USE NOW: p1l,

Since transition 43 is

CURRENT_PLACES FOR USE:

PLACE FOR USE NOW: pil,

Since transition 44 is

CURRENT_PLACES FOR USE:

PLACE FOR USE NOW: p6,

Since transition 43 is

CURRENT_PLACES FOR USE:

PLACE FOR USE NOW: p6,

Since transition 44 is

CURRENT_PLACES FOR USE:

PLACE FOR USE NOW: p3,

Since transition 43 is

CURRENT_PLACES FOR USE:

PLACE FOR USE NOW: pO,

p2 pl p6 p3 pO pl3
TRANSITION FOR USE NOW:

consumed before, do not

prl p6 p3 pO pl3
TRANSITION FOR USE NOW:

consumed before, do not

prl p6 p3 pO pl3
TRANSITION FOR USE NOW:

consumed before, do not

P6 p3 pO pl3
TRANSITION FOR USE NOW:

consumed before, do not

P6 p3 PO pl3
TRANSITION FOR USE NOW:

consumed before, do not

P3 PO pl3
TRANSITION FOR USE NOW:

consumed before, do not

PO pl3
TRANSITION FOR USE NOW:

I am in TRANSITION 56 now, which does STRENGTH

Since strength result is 0, rule r3 is removed

CURRENT_PLACES FOR USE:

PLACE FOR USE NOW: p13,

pl3

TRANSITION FOR USE NOW:

I am in TRANSITION 61 now, which does STRENGTH

44

fire

43

fire

44

fire

43

fire

44

fire

43

fire

56

it

it

it

it

it

it

again.

again.

again.

again.

again.

again.

calculation.

from the inference.

61

calculation.

I mark the OUTPUT place pl09, which is added to the tail of

CURRENT places list

TOKEN VALUE put in OUTPUT place pl09:

Object id:

cb, Membershipl: 0.50.

149

CURRENT_PLACES FOR USE: p109
PLACE FUOR USE NOW: p109, TRANSITION FOR USE NOW: 62
I am in TRANSITION 62 now, which does TRIGGERING condition.
I mark the OUTPUT place pl7, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place pl7:
Object id: c¢b, Object attr value: 3.500000, Domain: fuzzypreschvel,

Fuzzytermlist: slow, Membershipl: 0.50, Membership2: 0.50

CURRENT_PLACES FOR USE: pl109 pl7
PLACE FOR USE NOW: pl109, TRANSITION FOR USE NOW: 63
I am in TRANSITION 63 now, which does TRIGGERING condition.
I mark the UOUTPUT place pl8, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place pl8:
UObject id: cb, Ubject attr value: 7.000000, Domain: fuzzyhumchvel,

Fuzzytermlist: slow, Membershipl: 0.50, Membership2: 0.50

CURRENT_PLACES FOR USE: pl09 pl7 pil8
PLACE FUOR USE NOW: p109, TRANSITION FOR USE NOW: 64
I am in TRANSITION 64 now, which does TRIGGERING condition.
I mark the OUTPUT place pl9, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place pl9:
Object id: cb, Object attr value: 3.500000, Domain: fuzzyhumchvel,

Fuzzytermlist: slow, Membershipl: 0.75, Membership2: 0.50

CURRENT_PLACES FOR USE: pl109 pl7 pl8 pl9
PLACE FOR USE NOW: pl109, TRANSITION FOR USE NOW: 65
I am in TRANSITION 65 now, which does TRIGGERING condition.
I mark the UOUTPUT place p20, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p20:
Object id: cb, Ubject attr value: 5600.000000, Domain: fuzzycbasechvel,

Fuzzytermlist: slow, Membershipl: 0.50, Membership2: 0.50

150

CURRENT_PLACES FOR USE: pl109 pl7 pl8 pl9 p20
PLACE FOR USE NOW: pl109, TRANSITION FOR USE NOW: 66
I am in TRANSITION 66 now, which does TRIGGERING condition.
I mark the OUTPUT place p2l1, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p21:
Object id: cb, Ubject attr value: 165.000000, Domain: fuzzywinddr,

Fuzzytermlist: southeast south, Membershipl: 0.67, Membership2: 0.50

CURRENT_PLACES FOR USE: pl7 pl8 pl9 p20 p21

PLACE FOR USE NOW: pl7, TRANSITION FOR USE NOW: 48

I am in TRANSITION 48 now, which does COMPOSITION.

I mark the UOUTPUT place pl6, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place pl6:

Object id: cb, Membershipl: 0.50, Membership2: 0.50

CURRENT_PLACES FOR USE: p18 pl19 p20 p21 pl6
PLACE FOR USE NOW: p18, TRANSITION FOR USE NOW: 48

Since transition 48 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: pl19 p20 p21 pl6
PLACE FOR USE NOW: pl19, TRANSITION FOR USE NOW: 48

Since transition 48 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: p20 p21 pl6
PLACE FOR USE NOW: p20, TRANSITION FOR USE NOW: 48

Since transition 48 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: p21 pl6
PLACE FOR USE NOW: p21, TRANSITION FOR USE NOW: 48

Since transition 48 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: pl6
PLACE FOR USE NOW: pl16, TRANSITION FOR USE NOW: 67
I am in TRANSITION 67 now, which does CLIPPING.

I mark the OUTPUT place p22, which is added to the tail of

151

CURRENT places list
TOKEN VALUE put in OUTPUT place p22:

Ubject id: cb, Membershipl: 0.25

CURRENT_PLACES FOR USE: p22

PLACE FOR USE NOW: p22, TRANSITION FOR USE NOW: 90

I am in TRANSITION 90 now, which does CUMBINATION.

I mark the OUTPUT place pl00, which is added to the tail of
CURRENT places list

CLIPPED TOKEN VALUE put in OUTPUT place pl0O0:

Object id: c¢b, Fuzzytermlist: cloudedstable, Clipping value: 0.25

CURRENT_PLACES FOR USE: p100

PLACE FUOR USE NOW: p100, TRANSITION FOR USE NOW: 91

I am in TRANSITION 91 now, which finds the overall FUZZY ACTION.
I mark the OUTPUT place pl01l, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place pl0O1:

Object id: c¢b, Fuzzytermlist: cloudedstable, Overall Clipping value: 0.25

CURRENT_PLACES FOR USE: p101

PLACE FOR USE NOW: p101, TRANSITION FOR USE NOW: 103

I am in TRANSITION 103 now, which GENERATES EVENT.

I mark the UOUTPUT place p97, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place p97:

Ubject id: cb, Membership: 0.25

152

B.2 Querying the Weather Forecast - Deductive Rule Ex-

ample (1)
INFERENCE GROUP 3 FIRED FOR EXECUTTION

CURRENT_PLACES FOR USE: d90
PLACE FUOR USE NOW: d90, TRANSITION FOR USE NOW: 24
I am in TRANSITION 24 now, which does TRIGGERING condition.
I mark the OUTPUT place d49, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d49:
Object id: cb, Object attr value: -3.500000, Domain: fuzzypreschdir,

Fuzzytermlist: decreasing, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 25
I am in TRANSITION 25 now, which does TRIGGERING condition.
I mark the UOUTPUT place db50, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d50:
Ubject id: cb, Ubject attr value: 7.000000, Domain: fuzzyhumchdir,

Fuzzytermlist: increasing, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 db0
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 26
I am in TRANSITION 26 now, which does TRIGGERING condition.
I mark the OUTPUT place dbl, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place dbl:
Object id: cb, Object attr value: 6.500000, Domain: fuzzywind,

Fuzzytermlist: mediumstrong strong, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 450 db51

PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 27

I am in TRANSITION 27 now, which does TRIGGERING condition.
I mark the UOUTPUT place db52, which is added to the tail of

CURRENT places list

153

TOKEN VALUE put in OUTPUT place db2:
UObject id: cb, Ubject attr value: 135.000000, Domain: fuzzycorient,

Fuzzytermlist: vertical, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 d50 db51 db2
PLACE FUOR USE NOW: d90, TRANSITION FOR USE NOW: 28
I am in TRANSITION 28 now, which does TRIGGERING condition.
I mark the OUTPUT place db3, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place db3:
Object id: cb, Object attr value: -5600.000000, Domain: fuzzycbasechdir,

Fuzzytermlist: decreasing, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 db50 db1l db2 dbh3
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 29
I am in TRANSITION 29 now, which does TRIGGERING condition.
I mark the UOUTPUT place db54, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place db4:
UObject id: cb, Ubject attr value: 3.500000, Domain: fuzzytempchdir,

Fuzzytermlist: increasing, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 d50 d51 d52 d53 db4
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 30
I am in TRANSITION 30 now, which does TRIGGERING condition.
I mark the OUTPUT place db5, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place dbb:
Object id: cb, Object attr value: 3.500000, Domain: fuzzypreschvel,

Fuzzytermlist: fast, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 d50 db1 db2 db3 db4 dbb

PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 31

I am in TRANSITION 31 now, which does TRIGGERING condition.

I mark the OUTPUT place db6, which is added to the tail of CURRENT places list
TOKEN VALUE put in OUTPUT place d56:

Object id: cb, Object attr value: 7.000000, Domain: fuzzyhumchvel,

154

Fuzzytermlist: fast, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 db50 db1l db2 db3 db4 dbb dh6
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 32
I am in TRANSITION 32 now, which does TRIGGERING condition.
I mark the UOUTPUT place db57, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place db7:

Object id: cb, Object attr value: 6.000000, Domain: fuzzywind,

Fuzzytermlist: breeze mediumstrong, Membershipl: 0.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 d50 d51 d52 d53 db4 d55 db6 db7
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 33
I am in TRANSITION 33 now, which does TRIGGERING condition.
I mark the OUTPUT place d60, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d60:
Object id: cb, Object attr value: -3.500000, Domain: fuzzypreschdir,

Fuzzytermlist: decreasing, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 db0 db1l db2 db3 db4 dbb dh6 db7 d60
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 34
I am in TRANSITION 34 now, which does TRIGGERING condition.
I mark the UOUTPUT place d61, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d61:
Ubject id: cb, Ubject attr value: 7.000000, Domain: fuzzyhumchdir,

Fuzzytermlist: increasing, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 d50 d51 d52 d53 d54 db5 db6 db7 d60 d61
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 35
I am in TRANSITION 35 now, which does TRIGGERING condition.
I mark the OUTPUT place d62, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d62:
Object id: cb, Object attr value: 3.500000, Domain: fuzzytempchdir,

Fuzzytermlist: increasing, Membershipl: 1.00, Membership2: 1.00

155

CURRENT_PLACES FOR USE: d90 d49 db0 db1l dbh2 dbh3 db4 dbb dh6 db7 d60 d61 d62
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 36
I am in TRANSITION 36 now, which does TRIGGERING condition.
I mark the OUTPUT place d63, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d63:
Object id: cb, Object attr value: -5600.000000, Domain: fuzzycbasechdir,

Fuzzytermlist: decreasing, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 d50 d51 d52 d53 d54 d55 db6 db7 d60 d61 d62 d63
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 37
I am in TRANSITION 37 now, which does TRIGGERING condition.
I mark the OUTPUT place d64, which is added to the tail of CURRENT places list
TOKEN VALUE put in OUTPUT place d64:

Object id: c¢b, Object attr value: 135.000000, Domain: fuzzycorient,

Fuzzytermlist: horizontal, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 d50 d51 d52 d53 d54 d55 db6 db57 d60 d61 d62 d63 d64
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 38
I am in TRANSITION 38 now, which does TRIGGERING condition.
I mark the OUTPUT place d65, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d65:
UObject id: cb, Ubject attr value: 3.500000, Domain: fuzzypreschvel,

Fuzzytermlist: slow, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 db0 db1l dbh2 dbh3 db4 dbb dh6 db7 d60 d61 d62 d63 d64 d6h
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 39
I am in TRANSITION 39 now, which does TRIGGERING condition.
I mark the UOUTPUT place d66, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d66:
Object id: cb, Object attr value: 7.000000, Domain: fuzzyhumchvel,

Fuzzytermlist: slow, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 450 d51 d52 d53 db54 d55 db6 d57 d60 d61 d62 d63

156

d64 d6b5 d66
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 40
I am in TRANSITION 40 now, which does TRIGGERING condition.
I mark the OUTPUT place d67, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d67:
Ubject id: cb, Ubject attr value: 3.500000, Domain: fuzzytempchvel,

Fuzzytermlist: slow, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 db0 db1l db2 dbh3 db4 dbb dh6 db7 d60 d61 d62 d63
d64 d65 d66 d67
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 41
I am in TRANSITION 41 now, which does TRIGGERING condition.
I mark the UOUTPUT place d68, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d68:
Object id: cb, Ubject attr value: 5600.000000, Domain: fuzzycbasechvel,

Fuzzytermlist: slow, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d90 d49 db0 db1l db2 db3 db4 dbb dh6 db7 d60 d61 d62 d63 d64
deb d66 d67 d6e8
PLACE FOR USE NOW: d90, TRANSITION FOR USE NOW: 42
I am in TRANSITION 42 now, which does TRIGGERING condition.
I mark the UOUTPUT place d69, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d69:
Object id: cb, Ubject attr value: 165.000000, Domain: fuzzywinddr,

Fuzzytermlist: southeast south, Membershipl: 0.67, Membership2: 1.00

CURRENT_PLACES FOR USE: d49 d50 d51 d52 d53 db54 dbb5 db6 d57 d60 d61 d62 d63 d64 d65
d66 d67 d68 d69

PLACE FOR USE NOW: d49, TRANSITION FOR USE NOW: 51

I am in TRANSITION 51 now, which does COMPOSITION.

Since composition result is 0, rule r32 is removed from the inference.

CURRENT_PLACES FOR USE: db50 db1l d52 d53 db4 dbb db6 db7 d60 d61 d62 d63 d64 d65 d66

d67 d68 d69

157

PLACE FOR USE NOW: d50, TRANSITION FOR USE NOW: 51

Since transition 51 is consumed before, do not fire

CURRENT_PLACES FOR USE: dbl db2 d53 d54 dbb db6 db7
d68 d69
PLACE FOR USE NOW: d51, TRANSITION FOR USE NOW: 51

Since transition 51 is consumed before, do not fire

CURRENT_PLACES FOR USE: db2 db3 db54 455 db6 db7 d60
d68 de9g
PLACE FOR USE NOW: d52, TRANSITION FOR USE NOW: 51

Since transition 51 is consumed before, do not fire

CURRENT_PLACES FOR USE: dbh3 db4 dbhbh db6 db7 d60 d61
d68 d69
PLACE FOR USE NOW: d53, TRANSITION FOR USE NOW: 51

Since transition 51 is consumed before, do not fire

CURRENT_PLACES FOR USE: db4 db55 d56 d57 d60 d61 d62
d68 de9g
PLACE FOR USE NOW: d54, TRANSITION FOR USE NOW: 51

Since transition 51 is consumed before, do not fire

CURRENT_PLACES FOR USE: dbhb db6 dbh7 d60 d61 d62 d63
PLACE FOR USE NOW: d55, TRANSITION FOR USE NOW: 51

Since transition 51 is consumed before, do not fire

CURRENT_PLACES FOR USE: dbh6 db7 d60 d61 d62 d63 d64
PLACE FOR USE NOW: d56, TRANSITION FOR USE NOW: 51

Since transition 51 is consumed before, do not fire

CURRENT_PLACES FOR USE: dbh7 d60 d61 d62 d63 d64 d6b
PLACE FOR USE NOW: d57, TRANSITION FOR USE NOW: 51

Since transition 51 is consumed before, do not fire

CURRENT_PLACES FOR USE: d60 d61 d62 d63 d64 d65 d66

PLACE FOR USE NOW: d60, TRANSITION FOR USE NOW: 52

158

it again.

d60 d61 d62

it again.

d61 d62 d63

it again.

d62 d63 d64

it again.

d63 d64 d6b

it again.

d64 d65 d66

it again.

deb d66 d67

it again.

d66 d67 d68

it again.

d67 d68 d69

d63

d64

d6b

d66

a67

d68

d69

d64

d65

d66

de67

d68

d69

d6b d66 d67

d66 de7

a67

d69

I am in TRANSITION 52 now, which does COMPOSITION.

I mark the UOUTPUT place db59, which is added to the tail of

CURRENT places list

TOKEN VALUE put in OUTPUT place d59:

Object id: c¢b, Membershipl: 0.50, Membership2: 1.

CURRENT_PLACES FOR USE: d61 d62 d63 d64 d65 d66 d67
PLACE FOR USE NOW: d61, TRANSITION FOR USE NOW: 52

Since transition 52 is consumed before, do not fire

CURRENT_PLACES FOR USE: d62 d63 d64 d65 d66 d67 d68
PLACE FOR USE NOW: d62, TRANSITION FOR USE NOW: 52

Since transition 52 is consumed before, do not fire

CURRENT_PLACES FOR USE: d63 d64 d65 d66 d67 d68 d69
PLACE FOR USE NOW: d63, TRANSITION FOR USE NOW: 52

Since transition 52 is consumed before, do not fire

CURRENT_PLACES FOR USE: d64 d65 d66 d67 d68 d69 db9
PLACE FOR USE NOW: d64, TRANSITION FOR USE NOW: 52

Since transition 52 is consumed before, do not fire

CURRENT_PLACES FOR USE: d6b5 d66 d67 d68 d69 db9
PLACE FOR USE NOW: d65, TRANSITION FOR USE NOW: 52

Since transition 52 is consumed before, do not fire

CURRENT_PLACES FOR USE: d66 d67 d68 d69 dh9
PLACE FOR USE NOW: d66, TRANSITION FOR USE NOW: 52

Since transition 52 is consumed before, do not fire

CURRENT_PLACES FOR USE: d67 d68 d69 dh9
PLACE FOR USE NOW: d67, TRANSITION FOR USE NOW: 52

Since transition 52 is consumed before, do not fire

CURRENT_PLACES FOR USE: d68 d69 dbh9
PLACE FOR USE NOW: d68, TRANSITION FOR USE NOW: 52

Since transition 52 is consumed before, do not fire

159

d68 d69 dh9

it again.

d69 db59

it again.

db9

it again.

it again.

it again.

it again.

it again.

it again.

CURRENT_PLACES FOR USE: d69 d5h9
PLACE FOR USE NOW: d69, TRANSITION FOR USE NOW: 52

Since transition 52 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: db9

PLACE FOR USE NOW: d59, TRANSITION FOR USE NOW: 85

I am in TRANSITION 85 now, which does CLIPPING.

I mark the OUTPUT place d70, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place d70:

Object id: c¢b, Membershipl: 0.50

CURRENT_PLACES FOR USE: d70

PLACE FOR USE NOW: d70, TRANSITION FOR USE NOW: 101

I am in TRANSITION 101 now, which does COMBINATION.

I mark the UOUTPUT place d106, which is added to the tail of
CURRENT places list

CLIPPED TOKEN VALUE put in OUTPUT place d106:

Ubject id: cb, Fuzzytermlist: cloudedstable, Clipping value: 0.50

CURRENT_PLACES FOR USE: d106

PLACE FOR USE NOW: d106, TRANSITION FOR USE NOW: 102

I am in TRANSITION 102 now, which finds the overall FUZZY ACTION.
I mark the UOUTPUT place d107, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place di107:

Ubject id: cb, Fuzzytermlist: cloudedstable, Uverall Clipping value: 0.50

160

B.3 Forecasting the Weather Event - Active Rule Exam-

ple (2)
TINFERENCE GROUP 1 FIRED FOR EXECUTION

CURRENT_PLACES FOR USE: p92 p97 p98 p99
PLACE FUOR USE NOW: p92, TRANSITION FOR USE NOW: 1
I am in TRANSITION 1 now, which does FUZZIFICATION.
I mark the OUTPUT place p27, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p27:
Object id: c¢b, Object attr value: 4.000000, Domain: fuzzyccolor,

Fuzzytermlist: grey, Membership: 0.50

CURRENT_PLACES FOR USE: p97 p98 p99 p27
PLACE FOR USE NOW: p97, TRANSITION FOR USE NOW: 7
I am in TRANSITION 7 now, which does FUZZIFICATION.
I mark the UOUTPUT place p24, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p24:
Ubject id: cb, Ubject attr value: cloudedstable, Domain: fuzzyweather,

Fuzzytermlist: cloudedstable, Membership: 0.25

CURRENT_PLACES FOR USE: p98 p99 p27 p24
PLACE FOR USE NOW: p98, TRANSITION FOR USE NOW: 8
I am in TRANSITION 8 now, which does FUZZIFICATION.
Since TRANSITION 8 DOUOES NOT WORK for INFERENCE GROUP 1, I am not using it.
CURRENT_PLACES FOR USE: p98 p99 p27 p24
PLACE FOR USE NOW: p98, TRANSITION FOR USE NOW: 9
I am in TRANSITION 9 now, which does FUZZIFICATION.
I mark the OUTPUT place p26, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p26:
Object id: cb, Object attr value: 6.000000, Domain: fuzzywind,

Fuzzytermlist: mediumstrong, Membership: 0.00

CURRENT_PLACES FOR USE: p99 p27 p24 p26

161

PLACE FOR USE NOW: p99, TRANSITION FOR USE NOW: 10
I am in TRANSITION 10 now, which does FUZZIFICATION.
I mark the UOUTPUT place p25, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p25:
UObject id: cb, Ubject attr value: 22.500000, Domain: fuzzywinddr,

Fuzzytermlist: south southwest, Membership: 0.00

CURRENT_PLACES FOR USE: p99 p27 p24 p26 p25
PLACE FUOR USE NOW: p99, TRANSITION FOR USE NOW: 11
I am in TRANSITION 11 now, which does FUZZIFICATION.
I mark the OUTPUT place p38, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p38:
Object id: cb, Object attr value: 22.500000, Domain: fuzzywinddr,

Fuzzytermlist: north, Membership: 0.50

CURRENT_PLACES FOR USE: p27 p24 p26 p25 p38
PLACE FOR USE NOW: p27, TRANSITION FOR USE NOW: 45
I am in TRANSITION 45 now, which does COMPUSITION.

Since composition result is 0, rule rb5 is removed from the inference.

CURRENT_PLACES FOR USE: p27 p24 p26 p25 p38

PLACE FOR USE NOW: p27, TRANSITION FOR USE NOW: 46

I am in TRANSITION 46 now, which does CUOMPUSITION.

I mark the OUTPUT place p37, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place p37:

Object id: cb, Membershipl: 0.25, Membership2: 0.00

CURRENT_PLACES FUR USE: p24 p26 p25 p38 p37
PLACE FOR USE NOW: p24, TRANSITION FOR USE NOW: 45

Since transition 45 is consumed before, do not fire it again.

CURRENT_PLACES FUR USE: p24 p26 p25 p38 p37

PLACE FOR USE NOW: p24, TRANSITION FOR USE NOW: 46

Since transition 46 is consumed before, do not fire it again.

162

CURRENT_PLACES FOR USE: p24 p26 p25 p38 p37

PLACE FUR USE NOW: p24, TRANSITION FOR USE NOW: 81

I am in TRANSITION 81 now, which does STRENGTH calculation.
I mark the OUTPUT place pll2, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place pl1l2:

Object id: c¢cb, Membershipl: 0.25.

CURRENT_PLACES FOR USE: p26 p25 p38 p37 plil2
PLACE FOR USE NOW: p26, TRANSITION FOR USE NOW: 45

Since transition 45 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: p25 p38 p37 pl12
PLACE FOR USE NOW: p25, TRANSITION FOR USE NOW: 45

Since transition 45 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: p38 p37 pll2
PLACE FOR USE NOW: p38, TRANSITION FOR USE NOW: 46

Since transition 46 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: p37 pl12

PLACE FOR USE NOW: p37, TRANSITION FOR USE NOW: 76

I am in TRANSITION 76 now, which does STRENGTH calculation.
I mark the UOUTPUT place plll, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place plll:

Ubject id: cb, Membershipl: 0.25.

CURRENT_PLACES FOR USE: pl112 pli1l
PLACE FUOR USE NOW: p112, TRANSITION FOR USE NOW: 82
I am in TRANSITION 82 now, which does TRIGGERING condition.
I mark the OUTPUT place p46, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p46:
Object id: cb, Object attr value: 6.000000, Domain: fuzzywind,

Fuzzytermlist: calm breeze, Membershipl: 1.00, Membership2: 0.25

163

CURRENT_PLACES FOR USE: plll p46
PLACE FUOR USE NOW: p111, TRANSITION FOR USE NOW: 77
I am in TRANSITION 77 now, which does TRIGGERING condition.
I mark the OUTPUT place p4l, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p4l:
Object id: cb, Object attr value: -1.000000, Domain: fuzzytemp,

Fuzzytermlist: cold, Membershipl: 1.00, Membership2: 0.25

CURRENT_PLACES FOR USE: pl1ll p46 p41l
PLACE FOR USE NOW: pl111, TRANSITION FOR USE NOW: 78
I am in TRANSITION 78 now, which does TRIGGERING condition.
I mark the UOUTPUT place p42, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p42:
Object id: cb, Ubject attr value: 165.000000, Domain: fuzzywinddr,

Fuzzytermlist: south, Membershipl: 0.67, Membership2: 0.25

CURRENT_PLACES FOR USE: plll p46 p4l p4?2
PLACE FUOR USE NOW: p111, TRANSITION FOR USE NOW: 79
I am in TRANSITION 79 now, which does TRIGGERING condition.
I mark the OUTPUT place p43, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place p43:
Object id: c¢b, Object attr value: 3.000000, Domain: fuzzyccolor,

Fuzzytermlist: white, Membershipl: 0.50, Membership2: 0.25

CURRENT_PLACES FOR USE: p46 p4l p42 p43

PLACE FOR USE NOW: p46, TRANSITION FOR USE NOW: 83

I am in TRANSITION 83 now, which does CLIPPING.

I mark the UOUTPUT place p47, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place p4T7:

Ubject id: cb, Membershipl: 0.25

CURRENT_PLACES FOR USE: p4l1 p42 p43 p47

164

PLACE FOR USE NOW: p41, TRANSITION FOR USE NOW: 50

I am in TRANSITION 50 now, which does CUOMPUSITION.

I mark the UOUTPUT place p40, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place p40:

Ubject id: cb, Membershipl: 0.50, Membership2: 0.25

CURRENT_PLACES FOR USE: p42 p43 p47 p40
PLACE FOR USE NOW: p42, TRANSITION FOR USE NOW: 50

Since transition 50 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: p43 p47 p40
PLACE FOR USE NOW: p43, TRANSITION FOR USE NOW: 50

Since transition 50 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: p47 p40

PLACE FUOR USE NOW: p47, TRANSITION FOR USE NOW: 94

I am in TRANSITION 94 now, which does COMBINATION.

I mark the OUTPUT place pl02, which is added to the tail of
CURRENT places list

CLIPPED TOUKEN VALUE put in OUTPUT place pl02:

Object id: c¢b, Fuzzytermlist: fog, Clipping value: 0.25

CURRENT_PLACES FOR USE: p40 p102

PLACE FOR USE NOW: p40, TRANSITION FOR USE NOW: 80

I am in TRANSITION 80 now, which does CLIPPING.

I mark the UOUTPUT place p44, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place p44:

Object id: c¢b, Membershipl: 0.12
CURRENT_PLACES FOR USE: pl102 p44
PLACE FOR USE NOW: p102, TRANSITION FOR USE NOW: 95
I am in TRANSITION 95 now, which finds the overall FUZZY ACTION.

I am waiting for the other clipped actions to be combined

CURRENT_PLACES FOR USE: p44 pl02

165

PLACE FOR USE NOW: p44, TRANSITION FOR USE NOW: 93

I am in TRANSITION 93 now, which does CUMBINATION.

I mark the UOUTPUT place pl02, which is added to the tail of
CURRENT places list

CLIPPED TOKEN VALUE put in OUTPUT place pl02:

Ubject id: cb, Fuzzytermlist: snow, Clipping value: 0.12

CURRENT_PLACES FOR USE: p102

PLACE FOR USE NOW: pl102, TRANSITION FOR USE NOW: 95

I am in TRANSITION 95 now, which finds the overall FUZZY ACTION.
I mark the OUTPUT place pl03, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place pl03:

Ubject id: cb, Fuzzytermlist: fog, UOverall Clipping value: 0.25

166

B.4 Querying the Temperature Change Forecast - Deduc-

tive Rule Example (2)
INFERENCE GROUP 2 FIRED FOR EXECUTION

CURRENT_PLACES FOR USE: d89
PLACE FOR USE NOW: d89, TRANSITION FOR USE NOW: 12
I am in TRANSITION 12 now, which does TRIGGERING condition.
I mark the OUTPUT place d72, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d72:
Object id: cb, Object attr value: cloudedstable, Domain: fuzzyweather,

Fuzzytermlist: clear clearfew cloudedinstable, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72
PLACE FOR USE NOW: d89, TRANSITION FOR USE NOW: 13
I am in TRANSITION 13 now, which does TRIGGERING condition.
I mark the UOUTPUT place d73, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d73:
Ubject id: cb, Ubject attr value: 3.500000, Domain: fuzzypreschdir,

Fuzzytermlist: decreasing, Membershipl: 0.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72 d73
PLACE FUOR USE NOW: d89, TRANSITION FOR USE NOW: 14
I am in TRANSITION 14 now, which does TRIGGERING condition.
I mark the OUTPUT place d74, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d74:
Object id: cb, Object attr value: 22.500000, Domain: fuzzywinddr,

Fuzzytermlist: south southwest, Membershipl: 0.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72 473 d74

PLACE FOR USE NOW: d89, TRANSITION FOR USE NOW: 15

I am in TRANSITION 15 now, which does TRIGGERING condition.
I mark the UOUTPUT place d75, which is added to the tail of

CURRENT places list

167

TOKEN VALUE put in OUTPUT place d75:
Object id: cb, Ubject attr value: 165.000000, Domain: fuzzywinddr,

Fuzzytermlist: north northwest northeast, Membershipl: 0.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72 d73 d74 475
PLACE FOR USE NOW: d89, TRANSITION FOR USE NOW: 16
I am in TRANSITION 16 now, which does TRIGGERING condition.
I mark the OUTPUT place d78, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d78:
Object id: cb, Object attr value: cloudedstable, Domain: fuzzyweather,

Fuzzytermlist: cloudedstable, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72 d73 d74 d7b5 d78
PLACE FOR USE NOW: d89, TRANSITION FOR USE NOW: 17
I am in TRANSITION 17 now, which does TRIGGERING condition.
I mark the UOUTPUT place d79, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d79:
UObject id: cb, Ubject attr value: 3.500000, Domain: fuzzypreschdir,

Fuzzytermlist: increasing, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72 d73 d74 d75 d78 d79
PLACE FUOR USE NOW: d89, TRANSITION FOR USE NOW: 18
I am in TRANSITION 18 now, which does TRIGGERING condition.
I mark the OUTPUT place d80, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d80:
Object id: cb, Object attr value: 22.500000, Domain: fuzzywinddr,

Fuzzytermlist: north northwest northeast, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72 d73 d74 d7b d78 d79 d80
PLACE FOR USE NOW: d89, TRANSITION FOR USE NOW: 19

I am in TRANSITION 19 now, which does TRIGGERING condition.
I mark the UOUTPUT place d81, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place d81:

168

Object id: cb, Object attr value: 165.000000, Domain: fuzzywinddr,

Fuzzytermlist: south southwest, Membershipl: 0.67, Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72 d73 d74 475 d78 479 d80 d81

PLACE FOR USE NOW: d89, TRANSITIUON FOR USE NOW: 20

I am in TRANSITION 20 now, which does TRIGGERING condition.

I mark the OUTPUT place d84, which is added to the tail of

CURRENT places list

TOKEN VALUE put in OUTPUT place d84:
Object id: cb, Object attr value: cloudedstable, Domain: fuzzyweather,
Fuzzytermlist: clear clearfew cloudedinstable cloudedstable, Membershipl: 1.00,

Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72 d73 d74 475 d78 d79 d80 d81 d84
PLACE FOR USE NOW: d89, TRANSITION FOR USE NOW: 21
I am in TRANSITION 21 now, which does TRIGGERING condition.
I mark the OUTPUT place d85, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d85:
UObject id: cb, Ubject attr value: 3.500000, Domain: fuzzypreschdir,

Fuzzytermlist: nochange, Membershipl: 0.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d89 d72 d73 d74 d7b5 d78 d79 d80 d81 d84 d8h
PLACE FOR USE NOW: d89, TRANSITIUON FOR USE NOW: 22
I am in TRANSITION 22 now, which does TRIGGERING condition.
I mark the UOUTPUT place d86, which is added to the tail of
CURRENT places list
TOKEN VALUE put in OUTPUT place d86:
Object id: c¢b, Object attr value: 22.500000, Domain: fuzzywinddr, F

uzzytermlist: west, Membershipl: 0.00, Membership2Z2: 1.00

CURRENT_PLACES FOR USE: d89 d72 d73 d74 475 d78 d79 d80 d81 d84 d85 d86
PLACE FOR USE NOW: d89, TRANSITION FOR USE NOW: 23

I am in TRANSITION 23 now, which does TRIGGERING condition.

I mark the OUTPUT place d87, which is added to the tail of

CURRENT places list

169

TOKEN VALUE put in OUTPUT place d87:
UObject id: cb, Ubject attr value: 6.000000, Domain: fuzzywind,

Fuzzytermlist: breeze, Membershipl: 1.00, Membership2: 1.00

CURRENT_PLACES FOR USE: d72 d73 d74 475 478 d79 d80 d81 d84 485 d86 d87
PLACE FOR USE NOW: d72, TRANSITION FOR USE NOW: 53
I am in TRANSITION 53 now, which does CUOMPUSITION.

Since composition result is 0, rule r102 is removed from the inference.

CURRENT_PLACES FOR USE: d73 d74 d7h d78 479 d80 d81 d84 d8b d86 d87
PLACE FOR USE NOW: d73, TRANSITION FOR USE NOW: 53

Since transition 53 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: d74 d7b d78 d79 480 d81 d84 d8b d86 d87
PLACE FOR USE NOW: d74, TRANSITION FOR USE NOW: 53

Since transition 53 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: d75 d78 d79 480 d81 d84 d85 d86 d87
PLACE FOR USE NOW: d75, TRANSITION FOR USE NOW: 53

Since transition 53 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: d78 d79 d80 d81 d84 d85 d86 d87
PLACE FOR USE NOW: d78, TRANSITION FOR USE NOW: 54

I am in TRANSITION 54 now, which does CUOMPUSITION.

I mark the OUTPUT place d77, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place d477:

UObject id: cb, Membershipl: 0.50, Membership2: 1.00

CURRENT_PLACES FOR USE: d79 d80 d81 d84 d85 d86 d87 477
PLACE FOR USE NOW: d79, TRANSITION FOR USE NOW: 54

Since transition 54 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: d80 d81 d84 d85 d86 d87 d77

PLACE FOR USE NOW: d80, TRANSITION FOR USE NOW: 54

Since transition 54 is consumed before, do not fire it again.

170

CURRENT_PLACES FOR USE: d81 d84 d85 d86 d87 d77

PLACE FOR USE NOW: d81, TRANSITION FOR USE NOW: 54

Since transition 54 is consumed before, do not fire it again.

CURRENT_PLACES FOR USE: d84 d85 d86 d87 477

PLACE FOR USE NOW: d84, TRANSITION FOR USE NOW: 55

I am in TRANSITION 55 now, which does CUOMPUSITION.

Since composition result is 0, rule r122 is removed from the inference.

CURRENT_PLACES FOR USE: d8b d86 d87 477
PLACE FOR USE NOW: d85, TRANSITION FOR USE

Since transition 55 is consumed before, do

CURRENT_PLACES FOR USE: d86 d87 477
PLACE FOR USE NOW: d86, TRANSITION FOR USE

Since transition 55 is consumed before, do

CURRENT_PLACES FOR USE: d87 d77
PLACE FOR USE NOW: d87, TRANSITION FOR USE

Since transition 55 is consumed before, do

CURRENT_PLACES FOR USE: 477

PLACE FOR USE NOW: d77, TRANSITION FOR USE

I am in TRANSITION 87 now, which does CLIPPING.

NOW:

not

NOW:

not

NOW:

not

NOW:

I mark the OUTPUT place d82, which is added to

CURRENT places list
TOKEN VALUE put in OUTPUT place d82:

Ubject id: cb, Membershipl: 0.50

CURRENT_PLACES FOR USE: d82

55

fire it again.

55

fire it again.

55

fire it again.

87

the tail of

PLACE FOR USE NOW: d82, TRANSITION FOR USE NOW: 97

I am in TRANSITION 97 now, which does CUMBINATION.

I mark the OUTPUT place d104, which is added to the tail of

CURRENT places list

CLIPPED TOUOKEN VALUE put in OUTPUT place d104:

Object id: c¢b, Fuzzytermlist: decrease, Clipping value: 0.50

171

CURRENT_PLACES FOR USE: d104

PLACE FUOR USE NOW: d104, TRANSITION FOR USE NOW: 99

I am in TRANSITION 99 now, which finds the overall FUZZY ACTION.
I mark the OUTPUT place d105, which is added to the tail of
CURRENT places list

TOKEN VALUE put in OUTPUT place d105:

Ubject id: cb, Fuzzytermlist: decrease, Uverall Clipping value: 0.50

172

APPENDIX C

ITASCA OBJECT DATABASE SYSTEM

C.1 Overview

ITASCA employs distributed architecture with private and shared objects spread
across multiple nodes on a local-area network. The ITASCA model follows the
object-oriented view thjat uniformly models any real-world entity as an object.
Each object has a unique identifier along with a state and behavior. Attributes
represent the state of an object while methods define th behavior. A class col-
lects objects that share the same set of attributes and methods. Subclasses derive
firom existing classes. The resulting schema, or database definition, is the class
hierarchy. Each subclass inherits all the attributes and methods of its super-
classes. ITASCA supports multiple inheritance, so a subclass may derive from
more than one class.

Dynamic Schema Modification: ITASCA has a rich capability to change the
schema or datbase definition dynamically. This provides flexibility for application
development, maintenance, and modification. ITASCA class definitions, inher-
itance structure, attribute specifications and methods can be modified without
requiring application shutdown, databse shutdown or off-loading of data. Dy-
namic schema modification can significantly reduce costs. It is also useful in
environments where changes to data definitions are normal or relatively frequent.

ITASCA stores and executes method code in the database. Methods are

173

managed as a part of the ITAASCA schema. The code executes within the

database opposed to in the application. This allows:

e Modification of method code without recompilation of application code.

e Reuse of objects among multiple programming languaages.

e Reuse of server methods among programming languages.

Language Independence: C++, C, CLOS, Smalltalk and Lisp applications can
access and update the objects and invoke the same methods stored in ITASCA.
The capability of storing methods in the database eliminates any restriction
on programming languages. This provides increased flexibility for development,
maintenance and modification.

Extensible Architecture: TTASCA allows the refinement of kernel methods
at the class level. This allows customizing the behavior for making instances,
deleting instances, checking objectsin and out of the shared database, making
new instance versions. This extensibility simplifies modification and maintenance
of systems. Existing applications do not need to be modified when new behavior
is added to a kernel method.

Object Data Model: ITASCA supports accepted object-oriented principles,
including data abstraction, encapsulation, inheritance, object identification and
classes. Itasca incorporates these principles into the persistent and shared envi-
ronment of a distributed database manager.

Data Abstraction: ITASCA supports data abstraction, i.e. the capabilirt to
define data structures composed of a variety of data types. It allows the use of
abstract data structures such as binary trees, stacks, queues, graphs and so on.
Encapsulation: Encapsulation of data and operations is similar to the software
engineering concept of information hiding. This concept states that modules
should contain or hide information (code and data). It also states that all oper-
ations on the data must use an external interface. Modules in an object databse
are objects that contain both methods and attributes. Operations on objects are

performed by sending messages to the objects. An object reacts to the message

174

by executing the corresponding method or by retaining the appropriate attribute
value. A method can be as simple as editing a data value or it can be a complex
algorithm. A method in ITASCA can also call existing C or Lisp code directly.
An ITASCA object encapsulates all the data as well as the methods that affect
the data. TTASCA stores hoth the data and the methods in the database.
Inheritance: ITASCA users derive new classes from existing classes. The new
class is a subclass and inherits all the attributes and methods of the existing class.
In ITASCA, a class can have more than one superclass (multiple inheritance). In-
heritance provides explicit support for reusable code and data. Refining inherited
methods adds new functionality to the existing code or methods.

Object Identifier: ITASCA assigns each object a system-supplied unique ob-
ject identifier. ITASCA supports uniqueness of data but such data does not
need to have a self-contained unique identifier. This allows the construction ot
an abstract data structure without requiring the application to manufucture un-
necessary unique keys. ITASCA automatically supplies a unique identifier for
absrract structures and stores them in the database. The ITASCA OID encodes
the private database where each class and instance is created.

Class: All objects that share the same set of attributes and methods are grouped
in a class. An instance object may belong to only one class. The relation be-
tween an instance object and its class is the instance-of-relationship. A class is
anologues to an abstract data type. A class may also be primitive, meaning that
has associated instances but does not have associated attribntes.

Persistence: ITASCA stores complex data structures directly without conver-
sion to a different storage representation. It is transparent to the application/user
whether a referenced object is in memory or on disk. An object persists by de-
fault. Existence of an object can be dependent upon the existence of one or other
objects.

Multiple Servers: A server can service multiple clients with one server process
per machine. Servers maintain a page buffer and an object buffer; objects in the
page buffer move to the object buffer. The server maintains an object buffer for

concurrency control and locking,

175

Multiple Clients: A single client can access multiple servers with one client
process per machine and multiple concurrent sessions per client process. Clients
maintain an object buffer for objects in local memory. It is possible to have
thousands of frequently used objects cached in the local object buffer.

No single point of failure: ITASCA does not rely on central services for class
naming, resource allocation, deadlock detection, or schema information. The
loss of any machine on the network will not cause to entire system to become
unavailable. Only the failed machine’s data becomes unavailable. Restoring the
machine to service makes the data available. Work in both the shared and private
databases associated with other machines can continue it the nmavailablae data
has no impact on the work. Even changes to replicated objects (such as the
schema) can occur because the ITASCA spools such chanages for later use by the
recovering site.

Communication Subsystem: ITASCA uses the TCP/IP protocol over UNIX
sockets. It supports multicast and broadcast through remote procedure calls with
immediate return (i.e. without blocking). Multiple applications can participate
in the same transaction through the use of shared sessions.

Shared Database: ITASCA handles all aspects of managing objects in the dis-
tributed database. One partition of the distributed databse exists on each server
site. The user or application does not need to know the location af a targeted ob-
ject in the database: the in-memory movement of objects is transparent. ITASCA
also supports explicitly moving objects from one site to another.

Dynamic Configuration: A user can create, migrate, or destroy distributed
sites at any time given proper authorization. There is no need to halt any pro-
cessing to reconfigure the distributed database system.

Private Databases: Multiple private databases can exist at a server site and
data can be moved between the shared database and those private databases.
Enhanced locality of reference in a private database can convert a possible dis-
tributed transaction to a local transaction. This rednces the need for anthoriza-
tion, concurrency control and locking. Authorization is at tahe private databse

level for objects in the private database and not at the object level. A work group

176

may also share a private database. Private databases are part of long-duration
transactions.

Transaction Management: Long-duration transactions start with a checkout
followed by multiple commits or aborts in the private database and end with
check-in. The methods for check-out and check-in can be refined to perform
additional application specific actions.

Short Transactions: A short transaction is a sequence of operations grouped
into an atomic or indivisible operation. Short transactions are atomic, consis-
tent, independent and durable. If a transaction aborts, or fails to complete, none
of the changes appear in the persistent database. When multiple transactions
are executing concurrently, the databse maintains a consistent state. This pre-
vents changes by one transaction from interacting in an uncontrolled manner with
changes by another transaction. If multiple users are sharing the database, each
users transaction is independent of the other users’ transactions. Process or stor-
age media falures do not affect completed transactions. Completed transactions
are durable.

Concurrency Control: Pessimistic concurrency control implements serializabil-
ity, allowing simultaneous, independent transactions to execute in parallel. This
allows transactions to request a lock for concurrent access on the same objects.
A transaction may wait for a lock to become available until ITASCA detects a
deadlock. The length of the deadlock time out can be specified by the user. When
ITASCA detects a deadlock, control is passed back to the user/application indi-
cating the last action was cancelled. The user application can decide to reexecute
or abort the transaction.

Two-phase Commit: ITASCA uses a two-phase commit protocol to ensure
that every distributed databse transaction is atomic and durabale.
Long-duration Transactions: Checking out an object from the shared database
to a private database starts a long duration transaction for that object. Checking
the object into the shared database ends the long duration transaction for the
object. Long duration transactions can last any length of time. Any number of

short duration transactions can occur between any given check-out and check-in.

177

Any number of checkouts can occur before a check-in. Any number of checkins
can occur after a single checkout. Check-in/check-out can be done with a general
query as well as by identifying specific objects. Composite objects’ checkin check-
out is in the same way as simple single objects. Non-versioned objects physically
move between shared and private databases during checkout/checkin. Versioned
objects have new versions made in the target private database at checkout time
leaving the parent object in the shared database. Refinement of check-in/checkout
methods allow additional class specific operations.

Concurrency Control Goals: There are several concurrency control goals in
ITASCA’s architecture. First, object distribution is invisible to the user as much
as possible. Second, the system strives for maximal autonomy. Third, ITASCA
shields each private database from all other private databases. Fourth, transac-
tions involving only objects in a private database may be committed locally.
Sessions: A session encapsulates a sequence of transactions. Multiple indepen-
dent sessions may exist on the same workstation in ITASCA. Multiple applica-
tions may share the same session. Shared sessions in ITASCA allow multiple
processes to share a transaction. Multiple applications participating in the same
session share the same locks.

Cooperative Transactions: ITASCA allows multiple users to participate in
the same transaction for cooperative work. The users have the option of being in
the same or seperate sessions. Seperate sessions enforce locking.

Locking: ITASCA uses two-phase locking for the shared database at the object
instance level of granularity. Locks change dynamically. Composite objects are
not a single logical entity for locking. The components of a composite object may
be in several partitions of the shared databse on different sites. ITASCA shields
private databases from each other and from the shared database.

CPU Failure Recovery: A reliable form of logging for a distributed databse
environment, ITASCA uses undo logging for implementation simplicity, log space
and update pattern of ITASCA applications. CPU failure recovery uses undo
logging, which keeps the inverse of changes in an incremental log. ITASCA applies

this log to the database at recovery time. Recovery goes backwards from the state

178

at the time of the faailure to a consistent databse state. The undo operation will
roll back incomplete transactions to get the end of the last completed transaction.
When a transaction commits, the system flushes all updated objects from the
object buffer to the page buffer. Log and data pages are then forced to disk.
Media Failure Recovery: Optional mirror wrting of data provides for protec-
tion against media failure. Upon a primary or backup disk failure, ITASCA issues
a warning and sends electronic mail to the system manager warning of the failure.
Since a method executes this action, changing the method will allow additional
actions at the warning of a disk failure.

Single Schema: ITASCA uses one schema for the entire distributed database,
and each private database has a corresponding subschema. Each site in the
distributed database has a copy of the shared database schema, including the code
for methods. At execution time only data moves among sites. This dramatically

improves application performance.

179

VITA

Burcin Bostan was born in Aksehir on June 15, 1972. She received her B.S.
degree in Computer Engineering from Middle East Technical University in July
1994. She received her M.S. degree from the same department in January 1997.
She worked at the Computer Engineering Department of Middle East Technical
University as a teaching assistant between 1994-1997. Since 1997 she has been
working at Payment Systems Department of the Central Bank of Turkey. She has
participated in analysis, design and development of the 2"¢ generation Electronic
Funds Transfer System (EFT) and the Electronic Securities Transfer System of
Turkey at Logica CMG UK, London between April 1998 and June 1999. Her
research interests include fuzzy logic, object-oriented databases and knowledge

base systems.

Publications

1. Bostan-Korpeoglu B. and Yazici A., ”Incorporating Fuzziness into Active
Rules”, submitted for publication in International Journal of Uncertainty

Fuzziness and Knowledge-Based Systems, 24 October 2004.

2. Bostan-Korpeoglu B. and Yazici A., ”A Fuzzy Petri Net Model for Intel-
ligent Databases”, submitted for publication in Data ¢ Knowledge Engi-
neering Journal, 16 October 2004.

3. Bostan-Korpeoglu B. and Yazici A., "Using Fuzzy Petri Nets for Static

Analysis of Rule-Bases”, in Proceedings of 19" International Symposium on

180

Computer and Information Sciences, (ISCIS’04), (Springer Verlag LNCS
3280), Antalya, Turkey, 27-29 October, 2004.

. Bostan-Korpeoglu B. and Yazici A., ” An Active Object-Oriented Database
Approach”, in Proceedings of 13" IEEE International Conference on Fuzzy
Systems, (FUZZ-IEEE’04), Budapest, Hungary, 25-29 July, 2004.

. Bostan B. and Yazici A., " Fuzzy Inference Mechanism in Fuzzy ECA Rules”,
in Proceedings of 10" International Fuzzy System Association World Congress.

(IFSA’°03), Istanbul, Turkey, June 29-July 2, 2003.

. Bostan B. and Yazici A., "Fuzzy Deductive Object-Oriented Database Model”,

in Journal of Elektrik published by TUBITAK (Research Institute of Sci-
ence and Technology of Turkey), July 1998.

. Bostan B. and Yazici A., ” A Fuzzy Deductive Object-Oriented Data Model”.
in Proceedings of " IEEE International Conference on Fuzzy Systems, (FUZZ-
IEEE’98), Vol.2, pp. 1361-1366, Alasca, USA, May 1998.

. Bostan B. and Yazici A., "UDOOM: Uncertainty in Deductive Object-
Oriented Data Model”, in Proceedings of 11" International Symposium
on Computer and Information Sciences, (ISCIS’96), pp.113-122, Antalya,
Turkey, November 1996.

181

