

MEMETIC ALGORITHMS FOR TIMETABLING PROBLEMS
IN PRIVATE SCHOOLS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DENİZ ALDOĞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the
degree of Master of Science.

Prof. Dr. Ayşe Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is
fully adequate, in scope and quality, as a thesis for the degree of Master
of Science.

Assistant Prof. Dr. Ender Özcan Assoc. Prof. Dr. Ferda N. Alpaslan
 Co-Supervisor Supervisor

Examining Committee Members

Assoc. Prof. Dr. Ferda N. Alpaslan(METU,CENG)

Assoc. Prof. Dr. Nihal K. Çiçekli (METU,CENG)

Assoc. Prof. Dr. Ali Doğru (METU,CENG)

Dr. Ayşenur Birtürk (METU,CENG)

Assistant Prof. Dr. Ender Özcan (Yeditepe Uni.)

 iii

I hereby declare that all information in this document has been

obtained and presented in accordance with academic rules and

ethical conduct. I also declare that, as required by these rules and

conduct, I have fully cited and referenced all material and results

that are not original to this work.

 Name, Last name : Deniz Aldoğan

Signature :

 iv

ABSTRACT

MEMETIC ALGORITHMS FOR TIMETABLING PROBLEMS
IN PRIVATE SCHOOLS

Aldoğan, Deniz

M.S., Department of Computer Engineering

Supervisor : Associate Prof. Ferda Nur Alpaslan

Co-Supervisor : Assistant Prof. Ender Özcan

June 2005, 156 pages

The aim of this study is to introduce a real-world timetabling problem

that exists in some private schools in Turkey and to solve such problem

instances utilizing memetic algorithms.

Being a new type of problem and for privacy reasons, there is no real

data available. Hence for benchmarking purposes, a random data

generator has been implemented. Memetic algorithms (MAs) combining

genetic algorithms and hill climbing are applied to solve synthetic

problem instances produced by this generator.

Different types of recombination and mutation operators based on the

hierarchical structure of the timetabling problem are proposed. A

modified version of the violation directed hierarchical hill climbing method

(VDHC), introduced by A. Alkan and E. Ozcan, coordinates the process of

12 different low-level hill climbing operators grouped in two distinct

arrangements that attempt to resolve corresponding constraint violations.

VDHC is an adaptive method advocating cooperation of hill climbing

operators. In addition, MAs with VDHC are compared with different

versions of multimeme algorithms and pure genetic algorithms.

 v

Experimental results on synthetic benchmark data set indicate the

success of the proposed MA.

Keywords: Evolutionary Computing, Memetic Algorithms, Timetabling
Problems

 vi

ÖZ

ÖZEL OKULLARDAKİ ZAMAN ÇİZELGELEME PROBLEMİ İÇİN
MEMETİK ALGORİTMALAR

Aldoğan, Deniz

Y. Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doçent Ferda Nur Alpaslan

Ortak Tez Yöneticisi : Yardımcı Doçent Ender Özcan

Haziran 2005, 156 sayfa

Bu çalışmanın amacı, Türkiye’de bazı özel okullarda var olan gerçek bir

zaman çizelgeleme problemini tanıtmak ve memetik algoritmalardan

yararlanarak bu tip problem örneklerini çözmektir.

Yeni bir problem tipi olmasi ve gizlilik nedenleri dolayısıyla kullanilabilir

gerçek data mevcut değildir. Bu nedenle, karşılaştırma amaçları için

rastgele veri yaratan bir program gerçekleştirilmiştir. Genetik

algoritmaları ve tepe-tırmanmayı birleştiren memetik algoritmalar, bu

programla üretilmiş sentetik örnekleri çözmek için uygulanmıştır.

Zaman çizelgeleme probleminin hiyerarşik yapısına dayanan farklı

rekombinasyon ve mutasyon operatörleri önerilmiştir. A. Alkan ve E.

Ozcan tarafından tanıtılan bozulma güdümlü hierarşik tepe tırmanma

yönteminin(VDHC) değişik bir versiyonu, iki farklı düzenleme ile

gruplanmış, ilişkin kısıtlama bozulmalarını çözmeye çalışan 12 değişik

aşağı seviye tepe tırmanma operatörlerini koordine eder. VDHC, tepe-

tırmanma operatörlerinin işbirliğini koruyan uyarlanabilir bir yöntemdir.

Ek olarak, VDHC ile beraber memetik algoritmalar multimeme

algoritmalarin değişik versiyonlari ve saf genetik algoritmalar ile

karşılaştırılmıştır.

 vii

Sentetik ölçüm verileri kümesi üzerindeki deneysel sonuçlar önerilen

memetik algoritmanin başarısını göstermektedir.

Anahtar Kelimeler: Evrimsel Hesaplama, Memetik Algoritmalar, Zaman
Çizelgeleme Problemleri

 viii

To Nejla, Ulaş and Şahin Aldoğan

 ix

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my supervisor, Ferda N.

Alpaslan for guidance and sound advice throughout the course of my

study.

I am also deeply grateful to Ender Özcan for devoting a vast amount of

hours to guidance, advice, insight, discussion, always being very open-

minded and equally patient.

I would like to thank to Alpay Alkan for providing me with various

constraint specifications for private school timetabling.

I finally would like to thank to the administration in the Computer

Engineering Department of Yeditepe University for offering the utilization

of the department's labs during the experiments of this study.

 x

TABLE OF CONTENTS

PLAGIARISM..iii

ABSTRACT...iv

ÖZ..vi

DEDICATION..viii

ACKNOWLEDGMENTS..ix

TABLE OF CONTENTS...x

LIST OF TABLES..xv

LIST OF FIGURES...xvii

CHAPTER

1. INTRODUCTION...1

 1.1 The Timetabling Problem..2

2. THE TIMETABLING PROBLEM FOR PRIVATE SCHOOLS
 IN TURKEY...5

2.1 The Need for Private Schools –OSYM................................5

2.2 Private Schools In Turkey...6

2.3 The Private School Timetabling Problem...........................9

2.4 Private School Constraints..10

 2.4.1 Unary Constraints...10

 2.4.2 Binary Event Constraints......................................10

 2.4.3 Event-spread Constraints.....................................11

 2.4.4 Instructor Constraints..12

2.5 How Difficult is Private School Timetabling........................13

 2.5.1 The Effect of Instructors......................................13

 xi

 2.5.2 The Effect of Students...14

 2.5.3 The Effect of Course Section Meetings15

 2.5.4 The Effect of Constraints......................................15

 2.5.5 Conflict Density Analysis......................................16

3. LITERATURE REVIEW FOR HIGH SCHOOL TIMETABLING............19

3.1 Constraint-Programming...20

3.2 Local Search..21

 3.2.1 Simulated Annealing..21

 3.2.2 Tabu Search Techniques.......................................22

3.2.2.1 Hybrid Local Search Employing Hill Climbing
 and Tabu Search...................................25

 3.3 Evolutionary Approach..26

 3.3.1 Genetic Algorithm with Local Search.......................26

3.3.2 Hybrid Evolutionary Algorithm With a Timetable Builder
 and Local Search..28

 3.3.3 Constructive Evolutionary Approach........................31

4. INTRODUCTION TO EVOLUTIONARY ALGORITHMS....................33

 4.1 Overview of Genetic Algorithms......................................33

 4.2 Reproduction...34

 4.2.1 Generational Reproduction...................................35

 4.2.2 Steady-State Reproduction..................................35

 4.3 Selection...35

 4.3.1 Fitness-proportionate Selection.............................37

 4.3.2 Tournament Selection...37

 4.3.3 Rank Selection...37

 4.4 Genetic Operators..37

 xii

 4.4.1 Crossover...38

 4.4.1.1 One-point Crossover................................38

 4.4.1.2 Two-point Crossover................................38

 4.4.1.3 Uniform Crossover..................................39

 4.4.2 Mutation...39

 4.5 Fitness Function..39

 4.6 Parameters..40

 4.7 The Schemata Theorem...40

5. LITERATURE REVIEW ON MEMETIC ALGORITHMS.....................41

 5.1 Overview of Memetic Algorithms.....................................41

 5.2 Design of Memetic Algorithms for Timetabling
 Problems..45

 5.2.1 Hyper-heuristics...47

 5.3 Memetic Algorithms for Timetabling................................49

5.3.1 Mutation Operators of Varied Complexity
 and a Hill Climber for University
 Exam Timetabling...49

5.3.2 Improving Evolutionary Timetabling
 with Delta Evaluation and
 Directed Mutation..51

 5.3.3 Violation Directed Hierarchical
 Hill Climbing For Timetabling54

6. INTRODUCTION TO MULTIMEME ALGORITHMS.........................58

 6.1 Meme Transmision...59

 6.2 Self-generating Memetic Algorithms................................61

7. PROPOSED MEMETIC ALGORITM FRAMEWORK
 FOR PRIVATE SCHOOL TIMETABLING.......................................63

 7.1 Representation..63

 7.1.2 Direct vs. Indirect Representation........................64

 xiii

 7.1.2 Determination of a Gene and Its Allele..................64

 7.2 Initialization..67

 7.3 Constraints..67

 7.3.1 Exclusion and Preset Constraints..........................69

 7.3.2 Edge Constraints...70

 7.3.3 Event-spread Constraints...................................71

 7.3.4 Instructor Constraints..71

 7.4 Fitness Function...72

 7.4.1 Fast Fitness Evaluation.......................................72

 7.5 Genetic Operators..74

 7.6 Mate Selection and Replacement Strategies.....................78

 7.7 Low-order Local Search Operators(Hill Climbers)..............78

 7.8 The VDHC Method..83

8. MULTIMEME ALGORITHM FOR PRIVATE SCHOOL TIMETABLING..89

9. RANDOM DATA GENERATION FOR PRIVATE SCHOOL
 TIMETABLING..91

 9.1 Overview of a Possible Random Data Generation Method...91

 9.2 The Process of Generating Random Data for
 Private School Timetabling..91

9.2.1 Creation of a Global Curriculum.............................92

9.2.2 Determination of Problem Size...............................93

9.2.3 Definition for Temporal Structure...........................93

9.2.4 Slot and Instructor Assignments for the Events........94

9.2.5 Creation of Constraints...94

 9.2.5.1 Unary Event Constraints............................95

 9.2.5.2 Binary Event Constraints...........................95

 9.2.5.3 Event-spread Constraints..........................96

 xiv

 9.2.5.4 Instructor Constraints...............................97

 9.3 Assumptions for the RDG..98

 9.4 Parameters for the RDG...99

 9.5 Pseudocode for the RDG...100

 9.6 Output for the RDG..100

10. EXPERIMENTS AND DISCUSSION...102

 10.1 Test Data...102

10.2 Experimental Settings...104

10.3 Results..106

10.3.1 Results for Memetic Algorithms..........................106

10.3.2 Results for Pure Genetic Algorithms....................127

10.3.3 Results for Multimeme Algorithms......................129

11. CONCLUSION..140

REFERENCES...142

APPENDIX 147

A.1 Parameters for RDG..147

A.2 Output for the RDG...151

 xv

LIST OF TABLES

TABLES

Table 2.1 Calculation of Conflict Density for Edge Constraints..............16

Table 4.1 The Basic Genetic Algorithm..36

Table 5.1 The Basic Memetic Algorithm...42

Table 6.1 Algorithm for SIM..

Table 7.1 New Mutation Operators in the Framework..........................76

Table 7.2 New Crossover Operators in the Framework........................77

Table 7.3 Generic Algorithm of a Hill Climber in the Framework...........81

Table 7.4 Algorithm for Choosing a Hill Climber in VDHC....................86

Table 7.5 The VDHC Method...87

Table 7.6 Function That Restricts the Portion of Current
 Chromosome in VDHC Method..88

Table 8.1 The Hill Climbing Process for the Multimeme Algorithm........90

Table 9.1 The Algorithm for RDG...101

Table 10.1 Analysis of Test Data..103

Table 10.2 Results for new mutation operators when used with

 traditional crossover operators..107

Table 10.3 Results for new crossover operators when used with

 VD_GRADE_MT mutation operator..................................115

Table 10.4 Results for memetic algorithm utilizing uniform

 crossover and traditional mutation along with VDHC
 Method...118

Table 10.5 Results for memetic algorithm without crossover operator

 while still utilizing VDHC method....................................118

 xvi

Table 10.6 Results for memetic algorithm without VDHC operator while
 traditional genetic operators are employed......................118

Table 10.7 Results for Pure Genetic Algorithm..................................127

Table 10.8 Results for multimeme algorithm with 1 meme in an
 individual..131

Table 10.9 Results for multimeme algorithm with 12 memes in
 individual..131

Table 10.10 Results for multimeme algorithm utilizing SIM

 with 1 meme in individual..132

Table 10.11 Results for multimeme algorithm utilizing SIM
 with 12 memes in individual...132

Table A.1 Parameters of Problem Instance Size for RDG...................147

Table A.2 Curricular Parameters for RDG..148

Table A.3 Instructor Parameters for RDG..148

Table A.4 Temporal Parameters for RDG..149

Table A.5 Parameters of Constraint Density for RDG........................150

Table A.6 Representation of Initial Points in the Problem Instance.....151

Table A.7 Representation of Curricular Information in the Problem
 Instance...152

Table A.8 Representation of Temporal Structure in the Problem
 Instance...153

Table A.9 Representation of Instructor Assignments in the Problem

 Instance..154

Table A.10 Representation of Exclusions and Specifications in the Problem

 Instance..154

Table A.11 Representation of Event-spread Constraints in the Problem
 Instance...155

Table A.12 Analysis of the Randomly Generated Data......................156

 xvii

LIST OF FIGURES

FIGURES

Figure 1.1 Equivalence of Timetabling Problems with Edge Constraints

 and Graph Coloring...3

Figure 2.1 The Organization of a private school...................................8

Figure 5.1 Diagramatic Representation of a Memetic Algorithm............43

Figure 5.2 Memetic Algorithms’ Search over the Subspace of Local

 Optima..43

Figure 7.1 Individual Representation..66

Figure 10.1 Comparison of best mutation operators
 among their group for test case 6.................................113

Figure 10.2 Comparison of results for different combinations

of VDHC and crossover utilization on test case 8.............120

Figure 10.3 Best individual fitness in generations for the memetic

algorithm with VDHC method and traditional genetic
operators..122

Figure 10.4 Best individual fitness in generations for the memetic

algorithm employing traditional genetic operators without
utilizing VDHC method..123

Figure 10.5 Average success rates of first group hill climbers.............125

Figure 10.6 Average success rates of second group hill climbers.........126

Figure 10.7 Best individual fitness in generations for pure genetic
 algorithm..128

Figure 10.8 Meme concentration in first 1000 generations for multimeme

 algorithm with 1 meme on test case 1............................134

Figure 10.9 Best individual fitness in generations for multimeme
 algorithm with 1 meme in individual for test case 1..........135

Figure 10.10 Best fitness vs. generations for multimeme algorithms on
 test 8 data...137

 xviii

Figure 10.11 Best fitness vs. generations for multimeme algorithm with
 memeplex size 1 on test 8 data...................................138

 1

CHAPTER 1

INTRODUCTION

The aim of this thesis is to introduce a new timetabling problem, namely

the timetabling problem for private schools (or test preparation schools),

and to apply memetic algorithms for the solution of this problem. In

addition, different crossover and mutation operators are proposed and

compared with traditional genetic operators.

In the proposed framework, different low level hill climbing operators

specific to the considered timetabling problem instances are developed

and coordinated by a higher-order method, the VDHC method. This

method has been implemented and used for several timetabling problems

involving a single hierarchical organization in their structure. In this

study, this method has been extended to work for a different timetabling

problem that comprises two different hierarchical trees in its structure.

Accordingly, the proposed low-level hill climbers belong to one of the two

hierarchical organizations. Comparison of the proposed memetic

algorithm with multimeme algorithms and pure genetic algorithms on

synthetic benchmark data is also performed.

Chapter 1 introduces the timetabling problem. Chapter 2 presents a new

class of timetabling problems. Chapter 3 summarizes previous research

on high-school timetabling problems since they most resemble the new

timetabling problem introduced. Chapter 4 gives an overview of

evolutionary algorithms. Chapter 5 discusses the basics and possible

design methods of memetic algorithms. Sample studies on timetabling

problems with memetic algorithms are also mentioned in this chapter.

Chapter 6 gives a brief overview of multimeme algorithms. Chapter 7

 2

discusses the proposed memetic algorithm framework in detail. Chapter 8

explains the multimeme side of the framework. In chapter 9, the random

data generator for creating synthetic data for the newly introduced

timetabling problems is explained. Chapter 10 summarizes the

experiments and discusses the results. Chapter 11 summarizes the work

done and the conclusions drawn in this study.

1.1 The Timetabling Problem

The timetabling problem aims to achieve feasible assignments for a

collection of events that are required to take place within a finite period

of time such that necessary constraints are satisfied. Among all the

possible constraints that may be defined for a timetabling problem

instance, a very fundamental constraint requires that no two events

corresponding to the same resource must be scheduled at the same time.

For instance, no two different lecture hours of the same instructor can be

assigned at the same time slot for a course timetabling problem.

Generally, constraints for a timetabling problem can be classified as hard

and soft constraints. All of the hard constraints must be satisfied for a

solution instance to be feasible, i.e to be put into use, whereas soft

constraints denote preferences and their violations may be tolerated to

some extent. As a consequence, a high-quality solution for the

timetabling problem is the one that contains no hard constraint violations

and a minimum number of soft constraint violations.

The timetabling problem can be modelled in terms of various concepts

such as graph theory or integer programming. In the work of Burke et.

al. (1995c), it is mentioned that the problem of assigning events, i.e

exams in their case, to time slots is equivalent to the problem of

assigning colors to vertices in a graph. If each event in the timetabling

problem is drawn as a vertex in the graph, conflicting events, i.e events

that must not be scheduled at the same time, can be identified as

follows: an edge is created between each pair of two vertices that denote

a pair of conflicting events and vertices that have an edge between them

 3

are assigned to different colors while coloring all the vertices. If each

color represents a different period, we make sure that no conflicting

events are assigned at the same time slot with this coloring scheme.

Figure 1 displays a sample case, where different shapes for the events

indicate different colors assigned to them. In that graph, there are 8

edges, which means there are 8 pairs of conflicting events. Time slots are

assigned to events according to these edge constraints. For instance,

event 1 is assigned to a different period than the periods assigned to

event 2, 4 or 5.

In the study of Burke et. al. (1995c), several studies such as that of

Welsh et. al. (1967) that attempt to solve the timetabling problem by

means of graph coloring are referred.

Figure 1.1 Equivalence of Timetabling Problems with Edge Constraints

and Graph Coloring

Timetabling problems, which are real-world constraint optimization

problems, are NP-complete problems (Even et. al. 1976). Therefore, a

timetabling problem such as many optimization problems cannot be

solved by optimizing the value of each variable while neglecting the

others. The reason for this can be traced to the interactions between

several parameters of the problem.

Event 1

Event 3

Event 2

Event 4

Event 5

 4

There are several categories for timetabling problems such as nurse

rostering problems, university course timetabling problems, university

final exam timetabling problems and high-school timetabling problems.

In nurse rostering problems, shift assignments and rest days of the

nurses must be satisfactorily placed in the timetable. In fact, nurse

rostering is a subproblem of a broader range of timetabling problems,

namely the employee timetabling problems. University course or exam

timetabling involve scheduling a set of courses or exams given a set of

constraints. High-school timetabling problems differ from these two

problems since achieving a minimum number of gaps, i.e empty slots, is

a main requirement for such problems. This constraint is also necessary

for the newly introduced private school timetabling problem. Hence, a

literature survey on methods for solving high-school timetabling

problems becomes necessary in this study.

 5

CHAPTER 2

THE TIMETABLING PROBLEM FOR PRIVATE SCHOOLS IN TURKEY

This section aims to introduce the notion of private schools in Turkey and

outline the timetabling problem for them. Firstly, the need for such

institutions is figured out. Then, their basic organization is described.

After that, a more formal definition for the timetabling problem of private

schools is discussed along with the possible constraints that may be

involved in the problem.

2.1 The Need for Private Schools – OSYM

The universities, which are the principal higher education institutions in

Turkey, all accept their students in accordance with the results of an

examination organized by The Student Selection and Placement

Center(OSYM). OSYM aims fair access to higher education programs by

providing a centralized system for admission of students to the

institutions of higher education. The entrance examination system is

essentially based on a one-stage examination, namely the Student

Selection Examination(OSS), which is held throughout the country once a

year. So, every year the bulk of the students for undergraduate programs

of the universities(i.e., those admitting students with a high school

diploma or its equivalent) are selected and placed by this centrally

administered examination system.

OSS comprises of two tests. One of them is prepared to measure mainly

the candidates’ verbal abilities, and the other, their quantitative abilities.

After the completion of score transformations, three different composite

scores are calculated for each candidate and used in selection of those

candidates who will be considered for placement in the undergraduate

 6

programs. These scores are verbal, quantitative and equally weighted

OSS scores. Every department in all of the universities accepts students

according to a specific type of OSS scores. Hence, each student tries to

maximize one of the three types of those OSS scores to access to his/her

desired department in a university. As a result, private schools that

prepare students for OSS in Turkey generally assign their students to one

of the three different divisions, each of which prepares a student to

maximize one of his/her verbal, quantitative or equally-weighted scores.

Therefore, each division of a private school is devoted to a specific score

type.

OSS is not the only centralized examination held by OSYM. There are

many other such examinations. In accordance, there are many private

schools that prepare students to various examinations held by OSYM.

Those institutions offer several programs, each of which is dedicated to a

specific examination. In this study, a possible program for OSS of such

an institution will be introduced for illustration purposes, but a similar

description can be applied to other program instances as well.

2.2 Private Schools in Turkey

A private school has a number of instructors employed, a number of

students registered and several branches, each of which are located in

different buildings. Each branch of the private school is divided into

different grades. A grade identifies which high school class a student

attends to or whether he/she is a high school graduate. Hence, the

curriculum of a second-year high school student in a private school differs

from that of a third-year high school student. Those grades are further

divided into divisions. For instance, a private school branch that prepares

students for OSS can have three types of divisions, each of which has a

curriculum to improve one of the verbal, quantitative or equally weighted

OSS scores of students. Also, divisions are divided into sections(i.e

classes). Students in each section attend to lectures for a number of

hours on a number of days in a week. All the students in a section have

 7

the same weekly timetable. In addition, a specific timetable for every

section that the private school offers must be constructed. There are a

number of courses offered to students of a private school. Courses are

divided into course-sections, each of which is assigned to a specific

section of a private school. Therefore, the number of course-sections of a

course is equal to the number of sections whose students must attend to

the course. In addition, the weekly number and length of meetings for

each of those course-sections are given. Usually, the number and length

of meetings for a course-section(i.e total hours for a course-section)

increase with the difficulty of the course. These predefined values are

generally the same among all sections of the same division since a

discrimination among them is often avoided.

A section must be assigned to several course-sections according to its

division. To illustrate, a section for third-year high school students that

are in the quantitative division take mathematics courses, courses in

natural sciences and Turkish language courses. All the students that are

in the verbal or equally weighted divisions take courses in social sciences

such as geography or history as well as mathemathics and Turkish

language courses. However, the number and lenght of meetings that

must be assigned to the sections of different divisions can differ. To

illustrate, a section of the equally weighted division may have 4 meetings

of Geography lectures, whereas a section of verbal division may have 6

meetings of Geography assigned.

The students of each section are registered to a specific branch and

attend their courses only in that location. However, instructors may give

lectures at several different branches of the institution. The organization

of a private school is displayed in Figure 2.1.

 8

Figure 2.1 The Organization of a private school

Course sections in each
section

Divisions in a grade

Sections in each division

Grades in
a branch

Branch 1

Grade 1

Division 1

Section 1

Branches Branch B

Grade T

Division D

Section TS

Course Section CS

Grade j

Course Section 1

Division k

Branch i

Section t

Course Section c

 Meeting 1 Meeting 2 Meeting 3 Meeting 4 Meeting 5

 9

2.3 The Private School Timetabling Problem

Generally, a timetable problem can be described as in the work of Corne

(1994). There is a finite set of events E= {e1, e2, ..., ev}, a finite set of

potential fixed-length periods for these events T= {t1, t2, ..., tn}, a finite

set of places where the events can occur P= {p1, p2, ..., pn} and a finite

set of agents A= {a1, a2, ..., am} that act in a subset of the events. In the

private school timetabling problem, events correspond to meetings of

each course-section, periods are the available teaching hours defined by

the private school, places are the classrooms belonging to a specific

branch and agents are the instructors. Here, it should be noted that the

set of events in private school timetabling cover all the course-sections

that are offered for all the sections in the branches of the private school.

Each specific course-section meeting has a length and each classroom

has a capacity. In addition, travelling times between classrooms in

different branches must be considered.

An assignment in the timetabling problem is an ordered 4-tuple (a,b,c,d),

where a Є E, b Є T, c Є P, d Є A. The interpretation of this assignment in

terms of private school timetabling problem is: “Course-section meeting

a starts at time b in room c, and is taught by instructor d”. So, the

private school timetabling problem is to produce a feasible timetable, a

collection of assignments one per course-section meeting, with minimum

number of constraint violations.

Since each course section is offered for a particular section, i.e a class,

we needn’t produce assignments of course-sections to sections in the

timetabling problem. Also, instructor assignments for each course-section

meeting of all courses is usually given in advance. Therefore, the problem

generally boils down to figuring out feasible time assignments for each of

the events.

In order to solve the private school timetabling problem, the timetables

for all the sections must be produced by assigning their course-section

 10

meetings to time periods. The timetables for each specific section cannot

be solved in isolation from the other sections. Otherwise, there is no way

of controlling whether an instructor is assigned to two or more course-

sections at the same time period.

2.4 Private School Constraints

The types of constraints for the timetabling problem of a private school

can be listed as follows.

2.4.1 Unary Constraints

Unary constraints involve just one event and appear in the form of preset

or exclusion constraints. An exclusion indicates which of the resources

are unavailable for an event, whereas a preset constraint represents the

predefined allocation of a resource(or resources). Constraints in this

group are:

1) Meetings of course-sections can be assigned to predefined hours in

predefined days(CS_PRE).

2) Meetings of course-sections should be assigned to allowable hours of

the corresponding sections(S_PRE, S_EXC).

2.4.2 Binary Event Constraints

Binary constraints appear because of the restrictions involving the

assignments of a pair of events. Constraints of this type can be

summarized as juxtaposition or ordering constraints that restrict the

order and time gap between two events. A subset of juxtaposition

constraints are the edge constraints, which require that no overlapping of

resources must occur for the assignments of two events. These are the

most crucial constraints that contribute to the feasibility of a timetable.

Such constraints are:

 11

1) Each section is assigned to at most one course-section at a given time

period(EC1).

2) Each instructor is assigned to at most one course-section at a given

time period(EC2).

3) Each classroom is assigned to at most one course-section at a given

time period(EC3).

2.4.3 Event-spread Constraints

Event-spread constraints restrict how events should be spread out in the

timetable. Below are such constraints:

1) Each meeting of a course-section should be assigned to different days

 in a week (ES1).

2) An even distribution of verbal and quantitative courses should be

achieved by assigning minimum and maximum hours for each course

type in a day for the sections. These constraints are named as

S_DIVMAXWL, daily maximum workload of all the courses from a

specific division, and S_DIVMINWL, daily minimum work of all the

courses from a specific division, respectively. To illustrate, these

constraints can be defined for a section as follows: Students of section

Si can have maximum 6, minimum 3 hours of courses offered from

the verbal division in a day.

3) There should be a minimum number of gaps between course-sections

assigned to a section in a day unless stated otherwise(i.e there can be

a one-hour lunch break). Hence, compactness of the daily timetable

for a section should be achieved(S_MINGAP).

4) Course-sections assigned to an instructor in a day should be

consecutive and should contain a minimum number of gaps. This

constraint is necessary so that instructors who are paid for each

lecture hour can finish their work at the private school in a shorter

period. So, compactness of the instructor daily timetables can also be

required(I_MINGAP).

 12

5) Number of hours of course-sections assigned to a section in a day

should be within predetermined minimum and maximum

hours(S_MAXWL, S_MINWL). For example, we can define these

constraints as follows: Students of section Si can have maximum 6,

minimum 3 hours of courses in a day.

6) Courses requiring more intellectual activity should be placed earlier in

the timetables than the ones that are generally accepted as being

rather easier. For example, courses of natural sciences should be held

earlier in the morning, whereas a Turkish language course can be

placed in the afternoon or evening according to the predefined

available hours. We can take this constraint as an ordering constraint

as well(ES2).

2.4.4 Instructor Constraints

Finally, there are some instructor constraints as described below.

1) The specifications involving allowable hours of instructors should be

satisfied (I_EXC).

2) Since a private school can have several branches each in different

buildings, travelling times of instructors between these buildings should

be minimized. In private schools, this is generally achieved by restricting

the number of different branches at which an instructor lectures in a day

(I_MAXLOC).

3) Number of hours of course-sections assigned to an instructor in a day

should also be within predetermined minimum and maximum

hours(I_MINWL, I_MAXWL).

4) Travelling times of instructors should also be considered when

assigning course-sections to them in a day. To illustrate, there should be

at least one hour travelling time left between two course-sections that

will be offered to sections of different branches in different locations by

the same instructor(I_TRAVEL).

 13

2.5 How Difficult is Private School Timetabling?

The factors that contribute to the difficulty of a specific timetabling

problem, namely the examination timetabling, have been revealed in a

survey by Burke et.al (1995b). In this survey, they intended to bring

together all variations of the exam timetabling problem in British

Universities, which was stated to be the first step of the unification of all

timetabling problems.

They considered how several aspects such as the number and length of

exams, number of students, number of departments, number and length

of periods, availability of rooms and invigilators affected the difficulty of

exam timetabling. In addition, they figured out the average importance

of common constraints of the problem. As in any timetabling problem,

the difficulty brought about by the variables boils down to the constraints

defined in the private school timetabling problem. Hence, we cannot

estimate the complexity of any timetabling data without regarding the

constraints.

The difficulty of solving a private school timetabling data can be altered

by the values and ratios of the variables in the problem. The interactions

of such variables are considered by the aid of several such ratios defined

in the following sections.

2.5.1 The Effect of Instructors

It becomes more difficult to achieve feasible assignments of course

sections to available time periods as the ratio of average number of

instructors for a course over the average number of course sections for a

course decreases. The reason is that there is more possibility of assigning

two course sections with the same instructor to the same time slot. In

fact, the number of course sections for a specific course is exactly equal

to the summation of number of sections that take the course according to

the curriculum of their divisions. Hence the ratio above can also be stated

 14

as the average number of instructors for a course over the average

number of sections that take the course.

To be more specific, the total number of meetings or hours for course

sections can replace the denominator of the described ratio. This is

because the actual events to be assigned to time slots are course section

meetings in the private school timetabling.

Another ratio involving the number of instructors can be stated as

follows: the number of branches over the number of instructors. If we

keep the total number of instructors constant, assignments of instructors

to course sections held at different branches will be inevitable as the

number of branches, therefore the number of course sections at these

branches, increases. Therefore, the number of travelling instructors will

be increased, which will put more burden on achieving the feasibility of

the timetable while more travelling times to be considered are

introduced.

In conclusion, average number of assigned time slots for an instructor

gives us insight to reveal the difficulty of the current problem since there

will be more event clashes due to instructor assignments if the average

workload of an instructor increases. This ratio, i.e total number of course

meeting hours over total number of instructors, is defined as the average

occupancy for instructors in the study of Alkan et. al. (2003).

2.5.2 The Effect of Students

The number of students registered in a branch of a private school

determine how many sections will be offered at that branch. As the

number of sections increases, figuring out feasible assignments of

course-sections for these sections to time slots will get harder since

accomodation of sections will also be a problem as well.

 15

2.5.3 The Effect of Course Section Meetings

Increasing the total number of meetings for course sections will make it

more difficult to construct the timetables of corresponding sections. This

is simply because the number of events to be scheduled will increase.

Therefore, an increase in the ratio of number of meetings for all courses

over the number of time slots will cause more difficulties in the time

assignments of events.

Besides, the average number of assigned hours for a section can be used

to figure out the difficulty of the problem instance since there will be

more event clashes due to section assignments if the average workload

of a section increases.

2.5.4 The Effect of Constraints

The density of conflicting events in the timetabling problem gives us

insight to reveal the difficulty of the problem. In the private school

timetabling case, the most crucial constraints that must be satisfied for

the feasibility of the solution are the edge constraints. They make sure

that no two course section meetings that are assigned to the same class,

i.e section, or instructor should overlap. So, if two events in the private

school timetabling have the same instructor assigned or if they belong to

the same section, they are in fact two conflicting events.

All the events defined in a private school timetabling problem have the

possibility of conflicting due to instructor assignments. For instance, a

course section offered for second grade students may conflict with

another course for third grade students if the same instructor is assigned

to both of the course sections. Therefore, while deriving the density of

conflicting events in the private school timetabling, we need to consider

all the events in the problem.

 16

Assuming there are N events, i.e course section meetings, for the

problem instance, there can be at most N(N – 1)/2 conflicting events. By

counting the number of conflicting course section meetings and dividing

them by the total number of conflicts that may exist, we acquire edge-

constraint density(Table 2.1).

Table 2.1 Calculation of Conflict Density for Edge Constraints

Conflict Density Calculation (ParameterSet p)
p->ConflictCount =0
//p->EventNo gives the number of course section meetings, i.e events
for i=0 to p->EventNo do
 for j=i+1 to p->EventNo do
 if p->CourseSections[i].InstructorID==p->CourseSections[j].InstructorID
 OR
 p->CourseSections[i].SectionID==p->CourseSections[j].SectionID
 then
 p->Conflict_Count++;
 end if
 end for
end for
p->ConflictDensity = p->ConflictCount/((p->EventNo)(p->EventNo - 1)/2);

2.5.5 Conflict Density Analysis

Assume that there are totally N sections in a private school timetabling

problem. Then, the conflict density for EC1 becomes:

 N

 Σ Ms (Ms - 1)(1/2)

 s=1

 _________________________ (2.1)

 E (E - 1)(1/2)

where Ms is the number of meetings for section s and E is the total

number of meetings in the problem. Furthermore, let M denote the

 17

average number of course section meetings, i.e events, assigned to a

section. The total number of events in this problem is then approximately

NM. Therefore, the maximum number of edge constraints defined for

sections, say EC1_MAX, can be defined as follows:

 EC1_MAX ≈ (N M)(N M-1)(1/2) (2.2)

Since each section with M events introduce M(M-1)(1/2) EC1 constraints,

the number of EC1 constraints will infact be approximately

NM(M-1)(1/2). Hence, the conflict density of EC1 constraints will

generally be approximately (M-1)/(NxM-1) which is always lower than

1/(N-1) for (N+M)>2 , since (NM-1)+2-(N+M) equals to (N-1)(M-1). As a

result, for problems where section number is reasonably large, i.e N>10,

conflict density of EC1 constraints will always be less than 0.1 and thus

the density of those constraints are bounded.

A similar analysis can be performed for bounding EC2 constraint density.

This time, assume that there are totally P instructors, where the average

number of course section meetings assigned to an instructor is Q. In this

case, the total number of events in this problem will be approximately

PQ. Therefore, there can be at most (PQ)(PQ-1)(1/2) edge constraints

defined for instructors(EC2). Since each instructor with Q events

introduce Q(Q-1)(1/2) EC2 constraints, the number of EC2 constraints is

infact PQ(Q-1)(1/2). Hence, the conflict density of EC2 constraints will

generally be approximately (Q-1)/(PQ -1) which is always lower than

1/(P-1) for (P+Q)>2 again since (PQ-1)+2-(P+Q) equals to (P-1)(Q-1).

As a result, for problems where number of instructors is reasonably large,

i.e P>10, conflict density of EC2 constraints will always be less than 0.1

and thus the density of those constraints are bounded. To conclude, the

conflict density due to edge constraints in a private school problem

instance will generally be less than 0.2. However, this does not indicate

that private school problems are rather trivial timetabling problems since

 18

many other constraints contribute to the difficulty of the problem such as

minimum gap or workload constraints.

 19

CHAPTER 3

LITERATURE REVIEW FOR HIGH SCHOOL TIMETABLING

This thesis aims to solve the timetabling problem for a private school.

The nature of such a problem resembles the high school timetabling

problem more than university or exam timetabling problem due to

several reasons. Firstly, both private schools and high school students

are grouped in classes. Generally, these groups of students are disjoint.

Each student belonging to a class takes the courses that are listed in the

fixed curriculum of this class. Therefore, these students do not have the

freedom for selecting most of their courses, whereas university students

do. Secondly, compactness of the resulting timetable for each class and

achieving a timetable for teachers with a minimum number of gaps are

also crucial constraints for both private institutions and high schools.

Therefore, this section is devoted to the summaries of previous work on

high school timetabling.

In the early studies on the automation of high school timetabling, it is

observed that lectures are sorted from the most constrained lecture, the

most difficult lecture to place on the timetable, to the least constrained

one. Then those lectures are placed on the timetable succesively

beginning from the most constrained lecture up to the least constrained

one by applying certain heuristics. In the work of Schaerf (1996), all such

techniques are called direct heuristics and sample studies are illustrated

(Schmidt 1979, Junginger 1986). Successive augmentation, the method

of extending a partial timetable until all lectures are placed on it, has also

been improved by the addition of local search and backtracking (Müller

2002).

 20

Many techniques such as constraint programming, simulated annealing,

tabu search, genetic algorithms and hybrid approaches have been applied

to the problem of high school timetabling.

3.1 Constraint-Programming

Marte (2003) described and experimented with several constraint-based

solvers in his work to solve the timetabling problem at German secondary

schools of the gymnasium type. As stated in the work of Marte (2000),

the details about constraint programming can be found in the study of

Hentenryck et. al. (1997).

As Marte (2003) summarizes, a study that combines constraint

propagation with a greedy algorithm along with local repair was carried

out for the timetabling problem at Japanese high schools and was

reported in [Yoshikawa 96].

In his statement of high school timetabling problem, the number of

classes is low and each class has its own room. Hence, there is no need

for the determination of room assignment except for lessons that require

physical education equipment, science labs, etc. It is also assumed that

all the lessons are taught in one building, which causes travelling times to

be neglected.

Marte (2003) mentions that gymnasiums resemble high schools in the

lower grades and universities in the higher grades although compactness

should still be achieved.

In the study of Marte (2003), the fundamental aim is to transform the

high-level timetabling problem into constraint models in terms of finite

constraint networks, especially by the use of global constraints. As input

data, a problem generator was developed and fed with the detailed

school descriptions of ten schools, which caused a sample of 1000

problems to be generated for each school.

 21

Constraint programming requires defining constraints over variables to

solve a combinatorial problem. These constraints restrict the values that

subsets of variables can take simultaneously. After achieving a constraint

model with constraints and variables to describe a problem, a search

strategy is employed. Assigning a depth-first manner during the search

leads to chronological-backtracking, where search nodes represent partial

assignments to decision variables. In the application for the timetabling

problem, Marte (2003) describes that at each such node, a task is chosen

and scheduled and rooms are allocated.

Constraint propagation is also combined with this search technique to

reduce the computational cost of the search. It takes place after each

commitment that is issued to the constraint solver and is performed in a

fixed-point manner (Marte 2003).

In the work of Marte (2003), a track parallelization problem was

examined and two reductions for this problem inference in school

timetabling was proposed. This helped to modify the existing model

generator and to produce enhanced constraint models. The model

generator was combined with a suitable timetabling engine to form a

problem solver giving statistically reliable and practically relevant results.

3.2 Local Search

Local search techniques basically aim to improve the current problem

instance iteratively until a stopping condition is met or a satisfying result

is reached. However, they don’t guarantee to find the optimal solution for

the problem at hand.

3.2.1 Simulated Annealing

Simulated annealing is a local search technique that simulates the cooling

of a collection of hot vibrating atoms. In simulated annealing, a random

solution is created initially. Then the algorithm enters a loop to navigate

 22

the search space. This navigation is guided by a parameter called

temperature. At the beginning, temperature is set to a high value and it

decreases in each iteration, which is called the cooling scheme. At each

step of the algorithm, a move that will modify the current solution is

generated and it is executed according to the following rule: If the move

improves the current solution, it is accepted. Otherwise, it is accepted

according to the time decreasing probability, i.e the temperature. When

the temperature decreases to a value very close to 0, a move that

worsens the current solution has approximately no chance to be

executed. The system then enters a so-called frozen state and the

solution at that state is a local optimum solution. Abramson (1991a)

applied simulated annealing to school timetabling problem. In the study

of Schaerf (1996), it is reported that experiments were carried out with

simulated annealing and tabu search for the high-school timetabling

problem and the results of those experiments can be found in the study

of Schaerf et. al. (1995). Those results showed that the performance of

tabu search for high-school timetabling had a quite clear dominance over

that of simulated annealing.

3.2.2 Tabu Search Techniques

Tabu search algorithm starts with an initial solution on the search space

and it enters a loop to navigate the search space. At each step of the

loop, it explores a portion of the neighbourhood of the current solution.

The exploration of a neighbour solution is performed via a move, i.e. a

modification that transforms the current solution to the neighbour

solution. The examined neighbour with the best value of the objective

function is assigned as the current solution.

A tabu list, which contains moves that are forbidden to make, is

maintained at each step to prevent the algorithm from cycling. This list is

implemented as a fixed-size queue where a predefined number of the last

accepted moves are kept in reverse order. When a new accepted move is

 23

added to the queue, the oldest move of the queue is discarded and it can

again be used for further exploration of the algorithm.

The maintenance of a tabu list may prevent good moves from being

made. Therefore, a movement is allowed to loose its tabu status if

improves the best solution found so far. This option is enabled by the

application of an aspiration function. In addition, despite the use of a

tabu list, the search process may become trapped in certain regions of

the search space. Schaerf (1996) uses adaptive relaxation, where costs

involved in the objective function are dinamically altered to navigate the

search process to unexplored regions of the search space. Some other

extensions for tabu search can be found in the work of Schaerf et. al.

(2001).

In the study of Schaerf (1996), the results of application of tabu search

algorithm to high-schools were compared with a hybrid algorithm

employing both tabu search and randomized non-ascendent

method(RNA). In RNA, a random neighbour solution is chosen at each

step of the search algorithm, if it is better or equal to the current

solution. The experiments showed that the use of RNA greatly improves

the performance of the algorithm, even more significantly for larger

schools. The authors report that their algorithm was able to find a

feasible solution in a reasonable amount of time in all practical cases. The

details of this hybrid algorithm can be found in the next subsection.

Santos et. al. (2004) applied a new tabu search heuristic with memory

based diversification strategies to the timetabling problem in Brazilian

high schools. They experimented with the set of instances originated

from the work of Souza et. al. (2003).

They used a requirements matrix, where each element rij of the matrix

indicates the number of lessons that teacher i shall teach for a class j. In

their instances, compactness of the timetable is mandatory for all

classes, whereas it is a desired feature for teachers. As another hard

 24

constraint, teachers should be assigned lectures only on their available

periods. Totally, Santos et.al. (2004) define 4 hard constraints and 3 soft

constraints. Their objective function is calculated by the aid of weights

that reflect the relative importance of their constraints.

Before the tabu search, they use a greedy randomized constructive

procedure to create the initial solution to commence tabu search. They

apply the principle of placing the most urgent lessons to the most

appropriate periods during the constructive process (Santos et. al. 2004).

After the construction phase, tabu search with a short-term memory, i.e.

the tabu list, an aspiration criteria and a long-term memory is employed.

The long-term memory contains the frequency of moves involving a given

teacher and class. Each move, which is a swap of two values in the

timetable of a teacher, resembles the atomic moves explained in the

work of Schaerf (1996). The frequency of these moves are stored to be

used in the diversification strategy for stimulating the execution of few

explored moves. As a second diversification strategy, they also consider

the teacher workload to bias moves involving teachers whose timetable

changes can produce bigger modifications in the current solution.

The authors report three sets of experiments carried out in the work of

Santos et. al. (2004). The implementation in the first set of experiments

lacks a diversification strategy. The implementation in the second set of

experiments only takes into account the frequency ratio of transitions,

whereas the implementation in the third set of experiments also

considers the workload of teachers for the diversification strategies. The

second and third set of experiments outperformed the first set of

experiments and the previous results on the same data, which were

reported in the work of Souza et. al. (2003). Hence, the addition of

informed diversification strategies to tabu search brought about a simple

design, while it produced better results and performed faster than the

hybrid algorithm proposed in the study of Souza et. al. (2003).

 25

3.2.2.1 Hybrid Local Search Employing Hill Climbing and Tabu

Search

Schaerf (1999) applied local search techniques such as hill climbing and

tabu search to several versions of the educational timetabling problems.

Among all, a technique employing hill climbing and tabu search one after

another in a cycle and executing this tandem search in a specified

number of cycles performed best over real world high-school data.

Hill climbing approach suffers from the possibility of getting stuck in a

local optimum point in the search space since the cost function of an

instance is always improved or left unchanged after each iteration. The

notion of worsening the moves is introduced in simulated annealing and

tabu search techniques, each of which are explained with possible

extensions in the study of Schaerf et. al. (2001).

Schaerf et.al. (2001) examine school, course and examination

timetabling problems. Among these problems, the school timetabling

problem has additional constraints such as combining lectures of two or

more classes, two or more teachers participating in a lecture and

compactness of class schedule. Compactness of a class schedule requires

that the timetable created for that class must not involve gaps between

lectures. This is an extremely hard constraint to satisfy and is one of the

aspects that make school timetabling different from university course or

exam timetabling.

Schaerf et.al. report the results of the work of Schaerf (1999), where

they experimented with local search techniques for the high school

timetabling problem, in their work (Schaerf et. al. 2001). They assume

that the timetable is an integer-valued matrix, in which rows represent

different teachers and columns represent the weekly periods. Each entry

contains the index of the class the teacher is teaching at that period.

 26

Schaerf uses a mutation like swapping operator called an ‘atomic move’,

which swaps the classes assigned to two different periods of a teacher

(Schaerf 1996). Also, a ‘double move’, which is the application of two

atomic moves sequentially, is defined on the directly represented

timetable instance. In this operator, the second move tries to resolve the

infeasibility created by the application of the first move.

The hybrid search strategy, which applies hill climbing and tabu search

one after another and which is used in the work of Schaerf (1999), is

explained in the work of Schaerf et.al. (2001). In this strategy, firstly,

random initialization of the timetable occurs, while considering the

requirement matrix. Then, hill climbing search uses double moves on the

timetable instance during a predefined number of iterations until no

further improvement is achieved. After hill climbing search is over, tabu

search is carried out by using atomic moves. Once it makes a given

number of moves without improving, it stops and the hybrid search

algorithm continues with hill climbing. This cycle involving both search

techniques can be repeated until a stopping criteria is met.

This hybrid search starts with hill climbing instead of tabu search since

hill climbing produces good solutions within a shorter time. Hill climbing

is also used after tabu search since it modifies the solution in a way even

if it cannot improve it. Therefore, tabu search achieves a different

direction to improve the solution. Schaerf et. al. state that their

application of local search techniques worked well with high school

timetabling problems, the details of which can be found in the study of

Schaerf (1999).

3.3 Evolutionary Approach

3.3.1 Genetic Algorithm with Local Search

Colorni et. al. (1990) used genetic algorithms with local search for the

timetabling problem at a Italian high-school. They represented the

 27

individuals of the genetic algorithm as matrices. They applied their

versions of generalized genetic operators on those matrices. They

compared their algorithm with various versions of tabu search and

simulated annealing and concluded that genetic algorithm with local

search outperformed simulated annealing and genetic algorithm without

local search, whereas their results on the given data were competing with

those of tabu search with relaxation.

An individual in their GA was represented as a matrix where each row

corresponds to a teacher and each column corresponds to an hour. Each

element of this matrix was defined as a gene, whose allele could take

values among the set of jobs specific to the teacher. They defined the

infeasibilities of a timetable and used a filtering algorithm to totally or

partially remove the infeasibilities caused by the application of their

genetic operators.

In the work of Colorni (1990), a hierarchical structure for the objective

function is achieved by dividing the constraints into three levels, i.e

feasibility conditions, management conditions, single teachers conditions.

User defined weights were assigned to the three levels of constraint

violations according to their relevance in the objective function. During

calculation, individuals with infeasibilities were given high penalties to

use selective pressure to reduce the number of individuals with

infeasibilities.

Their GA performs a fitness-based selection for mating. They defined a

crossover operator suitable for their matrix representation. During

crossover, they calculate local fitness functions, each of which evaluates

the fitness of a single row of the timetables contained in the parents.

Then, they take the fitter rows of the fitter parent and fill the remaining

timetable of the new individual with rows from the latter parent. The

second son is created using the remaining unused rows from both

parents.

 28

Their first mutation operator, called mutation of order k, swaps two sets

of k contiguous genes found in a single row and performs this operation

for each row of the timetable. The second mutation operator, day

mutation, swaps the two days belonging to a teacher in the timetable.

Finally, they introduce a local search operator that swaps hours and days

in the timetable to move it to a local optimum point in the search space.

They conducted experiments with different probabilities for mutation and

crossover operators, with and without local search and with high or low

penalty values for infeasibilities. They reported that GA with local search

and with low infeasibility penalties is definitely superior to the other

versions tested. Low infeasibility penalties are preferred since they allow

more infeasible timetables to exist in the population and broaden the

search region by maintaining more diversity among individuals.

3.3.2 Hybrid Evolutionary Algorithm With a Timetable Builder and

Local Search

Bufe et. al. (2001) used a hybrid evolutionary approach that also

employs local search techniques in the form of specific mutation

operators to solve the timetabling problem at a German high school.

In their definition of the high school timetabling problem, an event (i.e. a

course meeting) has a number of weekly hours and must be assigned a

room and a time period for each of these required hours.

Two seperate events may be participated by the pupils of the same class

and therefore should be scheduled within the same time periods. So,

event groupings are introduced to allow such occurings. Also, more than

one teacher may participate in an event. When constraints are defined,

these two cases are taken into consideration.

 29

In the study of Bufe et. al. (2001), Bufe et. al classify constraints as hard

and soft constraints. Hard constraints require that each class, teacher

and room must be assigned to at most one event per time slot. The

unavailabilities of teachers, classes and rooms for certain periods are

kept and dealt with as hard constraints. Infact, these hard constraints are

what we generally come across as exclusion or preset constraints. There

are also 6 soft constraints defined.

Bufe et. al. state that a feasible timetable must meet all the hard

constraints. In addition, they point out that using direct representation

for the individuals of the evolutionary algorithm leads to infeasible

timetables. And the application of a genetic repair function on those

timetable instances lowers the correlation between the parent timetables

and the offsprings. Hence, Bufe et. al. employ a timetable builder to

create a feasible timetable from the permutations of events stored in an

individual. The individual contains the permutations of the events in its

first half and the created timetable in its second half. The deterministic

placing algorithm within the timetable builder also attempts to satisfy the

soft constraints and may produce valid but partial timetables.

In the hybrid approach, some mutation operators act on the high-level

representation of the timetables in the timetable builder, whereas some

others are applied to the individuals in the population of event

permutations.

The evolutionary algorithm has a swap mutation and a partial matching

crossover. The high-level mutation operators in the timetabler builder are

applied after the timetable is created from an individual and before it is

placed in the second half of the individual. Those operators don’t harm

the feasibility of the timetable produced but may violate soft constraints.

They aim to place the unplaced events after unplacing, placing or

replacing an event or part of an event in the timetable. The authors claim

that those operators perform an extensive parallel hill climbing search on

the better individuals.

 30

The evolutionary algorithm applies uniform parental selection and

replaces the worst 40 percent of the population in each generation.

The fitness function tries to minimize the number of unplaced events, the

number of violations for the soft constraints and the standard deviation

concerning the soft constraints. Only soft constraints are considered in

this function since the timetable builder algorithm produces only feasible

timetables that meet all the hard constraints and the high-level mutation

operators applied thereafter may only violate soft constraints.

In their experiments (Bufe et. al. 2001), Bufe et. al. created 4000

generations each time and kept a population size of 20. They had to

suffer from an 12-hour long computation time due to their expensive

fitness function. They carried out three types of experiments. In the first

type of experiments, they only used the genotype operations of the

evolutionary algorithm. In the second type, they employed the genotype

only operations in the first 1200 generations and used only the

phenotype mutations of the timetable builder in the next generations. In

the last type, they only experimented with phenotypic mutation

operators. The second type of experiments reached the best results. In

these results, best fitness values, zero number of unplaced events,

minimum number of gaps in class’ and teachers’ timetables were

achieved. Bufe et. al. commented that the initial usage of genotype

operations in the experiments results in better starting points stored in

the individuals for the timetable builder, whereas the application of

phenotype mutations helps to place almost all events and fills the gaps in

the timetables. Hence, the hybrid approach used in the second type of

experiments appears to be more useful, while still not good enough to be

used in daily school practice as stated by the authors of Bufe et. al.

(2001).

 31

3.3.3 Constructive Evolutionary Approach

Filho et. al. (2001) attempted the timetabling problem for public schools

in Brazil by a constructive genetic algorithm. As stated in the work of

Filho et. al. (2001), the details of constructive genetic algorithm can be

found in the study of Furtado et. al (1998).

In their list of constraints, compactness of room usage is stated as

necessary. Therefore, they require that all rooms are occupied at any

time slot. In addition, teachers should have minimum number of gaps in

their timetables, which is identified as a soft constraint in their study. As

other soft constraints, they define preset constraints for the teacher

timetables. They assign and experiment with different weight values for

those soft constraints. Furthermore, they divide the teachers into three

priority levels according to their number of classes and overall time

dedicated to school. Teachers in a higher level has a more chance of

having their constraints satisfied.

Filho et. al. (2001) state the high school timetabling problem as a

clustering problem to apply constructive genetic algorithm. They aim to

map valid teacher-class pairs to each of the time slots. They represent

those pairs as binary columns. In addition, they use schemata to

represent individuals of the genetic algorithm, where the length of these

strings is equal to the number of possible teacher-class pairs. Their

genetic operators and evaluation functions work directly on the schemata

represetation of individuals. The initial population contains 100 schemata

that are generated randomly.

Filho et. al. (2001) claim that their results were promising for the real

world high school data they experimented with. This data contained 4

problems: morning, afternoon, evening timetables for Gabriel school and

a morning timetable for Massaro high school. There were 5x5, 5x5, 5x4,

5x4 timeslots and 220,377,386,122 preference constraints for the

problems respectively. The satisfaction of total preferences was

 32

approximately between %80 and %90 in the resulting timetables. The

number of windows, i.e gaps in teacher timetables, was very low for the

teachers in the first level as well.

 33

CHAPTER 4

INTRODUCTION TO EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are inspired from the biological

observations beginning from Charles Darwin’s discoveries in the 19th

century. According to Darwin’s findings, biological organisms evolve as

they breed new generations, which causes them to adapt to their

environment. EAs try to mimic this procedure to solve optimization

problems.

EAs search through a solution space by using a population of possible

solutions and by evolving them to determine the optimal solution. In this

way, an optimization problem can be transformed into a search of the

best individuals within a population by encoding potential solutions of the

problem on simple chromosome-like data structures(i.e individuals of the

population). This encoding is called the representation.

4.1 Overview Of Genetic Algorithms

Genetic algorithms (GAs), which were introduced in the study of Holland

(1975), are specific instances of evolutionary algorithms. The GA begins

with the random creation of a set of possible solutions. Each individual in

this population is commonly called a chromosome. Atomic elements that

make up a chromosome are called genes. The value a gene can take is

called the allele of that gene.

After initialization phase, each individual in the population is evaluated

according to the quality of the solution it encodes. Then, better

individuals in the population are stochastically chosen to be mated to

 34

create new individuals with recombined genetic material. Those newly

created individuals can further be mutated with a certain probability. As

the size of the population increases in size, a process that mimics natural

selection takes place so that fitter individuals have more chance to

survive. This sequence of actions are iterated in a cycle.

The fitness of each individual in GA is explicitly determined by the

application of a fitness function over the individual. Hence, how good a

possible solution in the form of an individual is calculated. This step of

calculations take place in the beginning of the evolutionary cycle

mentioned above. Then, the reproduction operator, which allows fitter

individuals to mate, is applied to the population. Therefore, the

recombination of genes achieved by mating is performed among

chromosomes that contribute most to the overall fitness. After the

application of the reproduction operator, crossover and mutation

operators, which create new individuals from old ones, are used. All the

processes in GA aim to perform a search on the solution space by means

of modifying the content of the population and to move the population to

the areas of the search space where better solutions, i.e fitter individuals,

can be found.

The generic GA with selection, crossover and mutation can be described

in pseudocode as in Table 4.1. Below, the main components of GA are

described in more detail.

4.2 Reproduction

After the mating of individuals occurs within an iteration of the GA, the

population size is increased by the addition of newly produced offsprings.

Generally, the GA tends to keep the population size constant not to

increase its computational cost. Therefore, a reproduction scheme is

applied to decide who will survive in the next generation among the

current crowded population. Two common reproduction techniques used

are generational reproduction and steady state reproduction.

 35

4.2.1 Generational Reproduction

Generational reproduction allows merely offsprings to be alive in the next

generation at each iteration. Therefore, the whole population is replaced

by the offsprings. If GA produces two new offsprings after each mating of

two individuals, this mating process should be carried on as much as half

the population size. Hence, an offspring pool is created to replace with

the old generation. Elitism, which is allowing some of the fittest

individuals of each generation to survive, may be used with this

reproduction scheme. This prevents the loss of the best individuals in the

old generation by replacement.

4.2.2 Steady-State Reproduction

In steady-state reproduction, only the individuals with the worst

performance are replaced. More specificly, the family created after

mating of two individuals is added to the current generation and the

worst two individuals are destroyed.

4.3 Selection

In GAs, determining which individuals will be selected for mating has

resulted in several different selection techniques. Since the whole

operation of GA is infact a search of the best individual(i.e. the best

solution) in the space of possible individuals, it should both explore new

areas of this search space and try to improve better individuals. This

trade-off between exploration and exploitation of the search space must

be dealt with by the selection method. Individual performance, its rank

among the population or its spatial ordering may be respected for

selection and decide the direction for the search. The following

subsections summarize the main selection methods.

 36

Table 4.1 The Basic Genetic Algorithm

//Initialize a population P of p chromosomes by choosing an allele for each
//gene in each chromosome
For i=1 to p do

Pi = GenerateChromosome(i);

//Evaluate fitness value fi of each chromosome i in P

For i=1 to p do

 fi= FitnessFunction(Pi);

//Continue the evolutionary cycle until the stopping criterion is met

while (max {f1,..,fp} < FitnessThreshold) do

//Probabilistically select s<p members of P to create a subpopulation

//P’ where fitter chromosomes have higher chance for being selected

For i=1 to s do

 P’i= SelectChromosome(P);

//Probabilistically select (p-s)/2 pairs of chromosomes from P

//where fitter chromosomes have higher chance for being selected

 For i=1 to (p-s)/2 do

 Begin

 c1= SelectChromosome(P);

 c2= SelectChromosome(P);

 //For each selected pair of chromosomes, generate two

 //offsprings by the application of a recombination operator, i.e

 //crossover

 //Add the new chromosomes to the subpopulation P’

P’s+i = ApplyCrossover(c1,c2).FirstOffspring;

 P’s+i+1 = ApplyCrossover(c1,c2).SecondOffspring;

 End

 //Probabilistically select a fraction m of p chromosomes in P’

//for mutation

 For i=1 to m.p do

 ApplyMutation(SelectChromosome(P’));

 //Update the current population

 P = P’

 //Evaluate fitness value fi of each chromosome i in P’

 For i=1 to p do

 fi= FitnessFunction(Pi)

end while

 37

4.3.1 Fitness-proportionate Selection

In fitness-proportionate selection, which also appears as fitness-based

selection or roulette-wheel selection, each individual has a chance of

mating directly proportional to its performance, i.e fitness. If we think of

individuals of GA as slots in a roulette-wheel, this approach resembles

selecting a slot by spinning this roulette-wheel, where the size of each

slot is proportional with its fitness. The fitness values of individuals

should be scaled so that the range of fitness values do not have a

negative effect in the selection (Fang 1994).

4.3.2 Tournament Selection

The basic idea of tournament selection is to choose randomly a

predefined number of individuals among the population and to select the

best of them for mating with a high probability. Choosing merely among

a portion of the population aims to decrease the computational cost of

the selection procedure.

4.3.3 Rank selection

Instead of using the absolute fitness values for selection and coping with

scaling them, the individuals of the population may be ranked according

to their fitness values and their chance of mating becomes directly

proportional with their ranking among the population. The study of Fang

(1994) reports that Whitley (1989) introduced a bias term, which can be

applied to increase the effect of ranking so that the fittest members have

much more chance for mating then before. Also, in this way, the chance

of less fit individuals for mating becomes lower.

4.4 Genetic Operators

The two traditional global search operators of a genetic algorithm are

crossover and mutation operators, both of which are explained below.

 38

4.4.1 Crossover

Crossover operator adjusts the genetic inheritance of the mating process.

It decides how segments of parent chromosomes will be distributed over

offspring chromosomes. During crossover, the genes of parent

chromosomes are passed on to offsprings without distortion. The aim of

crossover is both to preserve and combine the genes causing high fitness

and create new individuals with different gene combinations to maintain

diversity.

4.4.1.1 One-point Crossover

As the name implies, a point is chosen randomly over the parents’

chromosomes. The first offspring inherits the first portion of the first

parent’s chromosome up to the seperation point and the second portion

of the second parent’s chromosome. The second offspring inherits the

other uninherited portions of the parents’ chromosomes. As the length of

the chromosome increases, the diversity brought about by this operation

decreases. Therefore, merely using such a crossover operator with a low

mutation rate may not lead to an efficient search on the search space of

possible individuals.

4.4.1.2 Two-point Crossover

In two-point crossover, two points are chosen this time over the parents’

chromosomes. The first offspring inherits the first and last portion of the

first parent’s chromosome and the middle portion of the second parent’s

chromosome. The second offspring again inherits the uninherited portions

of the parents’ chromosomes. More generally, instead of two points, GA

can choose up to a predefined number of points and follow a similar

procedure to distribute parents’ chromosome portions over the

offsprings.

 39

4.4.1.3 Uniform Crossover

The basic unit of inheritance in uniform crossover is a gene. Each gene of

the first offspring is chosen among one of its parents’ genes in the same

place probabilistically. The second offspring inherits the genes not chosen

for the first offspring. So, whether a gene of a parent will be transmitted

to the first child will be determined by a probability p, where the gene of

the latter parent has a probability of being passed (1-p). Uniform

crossover is able to produce more diversed individuals, which improves

the exploration capability of the GA. However, it may also disrupt gene

segments causing high fitness, which may become an obstacle for further

exploiting areas of the search space with fitter solutions. This

disadvantage can be overcome by employing smart operators for local

search of such areas.

4.4.2 Mutation

Generally, mutation operator chooses a gene and assign it a new allele,

i.e a new value for that gene. In this way, individuals can obtain the

alleles that do not appear in the initial population or alleles that were lost

during selection. Mutation is often applied after crossover with a low

probability. Assigning probabilities to the application of genetic operators

enables non-deterministic search through the solution space. With the

application of mutation operator, no subspace of the search space can

have zero probability of being investigated. However, as stated in the

study of Miranda et. al. (1999), a high probability of mutation(i.e a

mutation probability of 0.5) can be harmful since it always leads to

random search independently of crossover operator.

4.5 Fitness Function

The fitness function generally arises from the objective function of the

optimization problem. For instance, in a timetabling problem, fitness

function can be calculated by summing the frequency of violated

 40

constraints. Then, the fitness function descreases with the desirability of

the solutions.

4.6 Parameters

Population size, probabilities assigned to genetic operators, number of

individuals selected, etc. are all crucial parameters whose settings

determine the performance of the GA to a great extent. It is commonly

accepted that a low population number, high crossover and low mutation

probabilities offer better solutions.

4.7 The Schemata Theorem

A schema is a template to describe similar subsets of genes at certain

chromosome positions. From the schemata theorem, we can infer that a

particular schema is replicated in the next generation with respect to its

relative average fitness function value in the population. So, new

generations will have more copies of fitter schemata, whereas they will

be comprised of less copies of schemata with average fitness below the

population average. The survival of a schemata under recombination and

mutation operators is also dependent upon whether their average fitness

values are below or above population average. The schemata theorem

arises from the building block hypothesis, which states that highly fit

(and with short defining length) schemata form partial solutions to a

problem and a GA will combine these building blocks leading to a better

performance and to the optimum of the problem (Miranda et. al. 1999).

 41

CHAPTER 5

LITERATURE REVIEW ON MEMETIC ALGORITHMS

5.1 Overview Of Memetic Algorithms

The term, memetic algorithm, was first used by Moscato et. al. (1992) to

describe evolutionary algorithms that employ local improvement of

individuals heavily for fine tuning the search, which is essential especially

in complex combinatorial spaces. The basic idea that inspires memetic

algorithms can be traced to the difference between a meme and a gene.

Genes of an individual pass to the next generation according to the

application of genetic operators such as reproduction, crossover and

mutation without being processed or refined by the individual. However,

the existance of memes bring about the adaptation of units of

information by the individual during its life-time. This individual

optimization or learning is achieved by intensive local refinement in

memetic algorithms.

The concept of learning for an individual can be categorized into two

main approaches. The first one is Lamarckian learning, where the genetic

content of an individual can be modified by local optimization during its

lifetime. In the second approach, local optimization is carried out merely

to bias the search without changing the genetic material of individuals

directly.

Memes, i.e local search operators, can be static, adaptive or self-

generating. In the first case, the local search always performs the same

operations, whereas in the latter case its parameters can be adapted. As

a last option ,a meme can be generated from stratch.

 42

The most basic MA can be pseudocoded as in the work of Krasnogor

(2002b), which is shown in table 5.1.

Table 5.1 The Basic Memetic Algorithm

Memetic_Algorithm()
Begin
 t=0 /*Initialize generations*/
 Generate an initial population P(t)
 Repeat Until (Termination Criteria is met)
 Begin
 Recombine
 Mutate
 Improve by Local Search
 Select for Next Generation
 t=t+1
 End Repeat
 Return the Best Solution(s)
End

In memetic algorithms, a local optimizer can be applied to every offspring

before it is inserted into the population. Or, local search can be

performed before or after mutation as displayed in figure 5.1 taken from

the study of Krasnogor (2003b).

In this way, if an offspring is outside the subspace of local optima, it can

be repaired by the local search operator so that it lies at a local optimum

(Radcliffe et. al. 1994). Figure 5.2 has been taken from the study of

Radcliffe et.al. After recombination of parents X and Y, the child Z’ lies

outside the subspace of local optima. Therefore, a local optimizer is

employed to repair the child and modify it so that it becomes Z, which

lies at a local optima. This constitutes the basic idea of memetic

algorithms.

 43

Figure 5.1 Diagramatic Representation of a Memetic Algorithm

Figure 5.2 Memetic Algorithms’ Search over the Subspace of Local

Optima

 44

Employing local search operators enable EAs to zoom-in good solutions

by increasing their exploitation capabilities. However, MAs can suffer

from premature convergence since local search may end up focusing a

few good solution instances.

There are various strategies such as choosing which individuals to apply

local search instead of applying it to whole population or using special

operators to maintain diversity among the population.

The most crucial aspect to keep in mind when employing memes along

with an evolutionary algorithm is that the act of memes and genes should

be synergistic not detriemental.

In the work of Radcliffe et. al. (1994), a representation-independent form

of a memetic algorithm along with N-point crossover, patching and hill

climbing operators was introduced. Their simulation based on the

application of the memetic algorithm to travelling salesman problem

performed very well, whereas genetic algorithms were unsuccessful in

solving the problem instances.

The main design issues for MAs, which are taken from the work of

Krasnogor (2002a), can be listed as below:

1) When will we apply local search?

2) Which individuals will be applied local search? In the study of

Krasnogor (2002b), it is pointed out that it could be a waste to apply

local search operators to individuals far away from a global optimum.

3) How long will the local search be?

4) What acceptance criteria will the local search use?

5) How will the standard genetic operators be integrated with local

search?

6) Shall we use a Balwinian or Lamarckian model for optimization?

7) How will we cope with multi-objective problems?

8) How can be avoid premature convergence?

 45

The answers for these questions are discussed in the next section.

5.2 Design Of Memetic Algorithms For Timetabling Problems

In the work of Burke et. al. (2004), several frequently used strategies

that can be applied to design memetic algorithms for timetabling and

scheduling problems are discussed. Memetic algorithms speed up the

process of exploitation with the aid of local search. The trade-off between

this intensification and further exploration is achieved by maintaining a

population in the algorithm.

Timetabling and scheduling problems are very difficult to solve because

of several factors such as having huge search spaces, being highly

constrained and difficult to represent and suffering from very-time

consuming fitness evaluation. Therefore, the notion of self-improvement

brought about by local search along with effective exploration owing to

keeping a population of candidate solutions may help to cope with the

difficulties of such problems.

As a first step in memetic algorithm design, Burke et.al discuss the

decision of whether to allow infeasible solution instances or not. As stated

in Erben's study (1995) they refer, genetic and local search operators

that create only feasible instances or an eloborate representation such as

representing groups of events in a gene can be employed if the first

approach is chosen. However, they also mention that only working on the

feasible regions of the search space may limit the explorative ability of

the memetic algorithm.

As another way of dealing with infeasibility, repairing heuristics that are

easy to implement and that do not reverse the changes made by other

operators of the algorithm can be applied. As a last strategy to follow

when infeasible solutions can be created by the genetic and local search

operators, they mention heavily penalising infeasible solutions by a

penalty allocating fitness function. Hence, such solutions have much less

 46

chance to survive and thus to reproduce in the population. By referencing

their previous studies (Burke et. al. 2001a, Burke et. al. 2001b), Burke

et.al. claim that relatively low penalties for infeasibility should be

assigned to prevent local search from recovering feasibility first and

causing a potential increase in the violation of soft constraints. They also

illustrate that penalty values can be adapted, i.e increased with the

number of hard constraint violations.

In the work of Burke et. al. (2004), the authors discuss multi-phased

strategies, delta evaluation for fitness functions and fitness landscape

analysis for memetic algorithm design. They also emphasize that the

application of genetic and local search operators should be balanced so

that these two different sets of operators work in cooperation instead of

working against each other. They figure out three main perspectives to

adjust such a balance. These perspectives are listed as follows: the

complexity of genetic and local search operators with respect to each

other, the selection of solutions to apply each such group of operators

and the execution time dedicated to each of those groups. For instance,

their local search operators in their previous work, (Burke et. al. 2001b)

were not powerful enough to improve newly created solutions since their

recombination operators combined large parts from the parents. On the

contrary, a local search that is too powerful can dominate the search and

limit exploration. To overcome this, it can be decided to apply local

search operators only on some better individuals or only after a number

of generations.

Burke et.al also discuss that acceptance probability of solutions can be

altered adaptively during the search. To illustrate, this probability can be

dynamically adjusted as in the study of Burke et. al. (2001a) so that it

decreases as the solutions in the population are more diversed and

increases otherwise, i.e when the population converges. In this way, only

better solutions are accepted when the spread of fitness is maintained

whereas more non-improving solutions are accepted to cause

diversification in case the population converges. Therefore, both

 47

improvement on the fitness of individuals and prevention from premature

convergence of population can be achieved.

By referencing the work of Alkan et. al. (2003), Burke et. al. state that

different local search operators can be designed for each specific

constraint or group of constraints. In addition, probability of applying a

local search operator can be adapted dynamically according to the

success of its previous progress. Moreover, a hyper-heuristic that

determines the application of low-order heuristics can be assigned to

decide which heuristic to use during the search.

Another idea for memetic algorithm design that Burke et. al. discuss is

called the cooperative local seach which was proposed in the study of

Landa Silva (2003). In this approach, each individual performs local

search until it gets stuck and then recombines with some parts from the

gene pool. Therefore, the notion of reproduction within generations is

replaced by the self-improving life cycle of individuals, which also

employs asynchronous cooperation, i.e recombination, between

individuals.

Another study, (Burke et. al. 2003) discusses the usage of hyper-

heuristics, which may be used to guide the low-order local search

operators in a memetic algorithm.

5.2.1 Hyper-heuristics

In their work (2003), Burke et. al discuss the usage of hyper-heuristics

as a way to handle a wider range of problem domains instead of

customizing heuristics for a particular subset of problem instances.

Hyper-heuristics operate at a higher level of abstraction with no

knowledge of the domain and act on lower-level heuristics by deciding

which heuristics to employ in a given situation. In this way, new problem

 48

domains can be attempted by replacing the set of low level heuristics

provided that an efficient hyper-heuristic algorithm has been developed.

The authors state that traditional meta-heuristics are either too simple to

perform well or too knowledge-intensive to implement easily. However,

it is the application of heuristics that bring about speed by narrowing the

search space. The concept of hyper-heuristics arises from the idea of

combining different heuristics in a way so that each of them compensates

for the weaknesses of others.

Burke et. al references the work of Terashima et. al. (1999), which

applies hyper-heuristic approach to large-scale university exam

timetabling problems. In this work, they assumed a two-phase

timetabling building algorithm. Genetic algorithms were employed to

evolve the choices of heuristics used in the underlying algorithm and the

condition that determines when to switch to a different phase of the

timetable construction. The method was reported to solve even very

large exam timetabling problems.

Another hyper-heuristic approach that Burke et. al discussed used an

adaptive heuristic to improve on an initial heuristic ordering for exam

timetabling problem. Initially, a solution was constructed by scheduling

exams as determined by the original heuristic. If it was the case that an

exam cannot be scheduled properly, it was scheduled by the order in a

sunsequent construction. The process continued until all exams were

acceptably scheduled or until a predefined time limit. The method could

improve the quality when compared to the original heuristic.

Burke et.al conclude their work by commenting that employing the

genetic algorithm for searching for a good algorithm might be better than

employing it for searching a specific solution to a specific problem in

timetabling.

 49

5.3 Memetic Algorithms For Timetabling

Memetic algorithms have been successfully applied to various timetabling

problems. Sections below summarize the most highlighting examples.

5.3.1 Mutation Operators of Varied Complexity and a Hill Climber

for University Exam Timetabling

In the study of Burke et. al.(1995a), a memetic algorithm is used for

university exam timetabling. In their study, they state that memetic

algorithms can be more advantageous than genetic algorithms. As they

illustrate, a possible solution instance, which was mutated to be brought

in the scope of a local optima, can further be improved to reach local

optima by the application of local search. They claim that the

computational expense brought about by the execution of local search

can be compensated by the reduction in the search areas that must be

explored to reach a local optimum.

In their work, a timetable instance in the population is comprised of

memes, each of which holds which exams are placed in each room in a

period. In addition, there is a last meme that contains the unscheduled

events since feasible but incomplete timetables can exist in the

population.

They use the term meme instead of gene to refer to the unit of

information on the chromosome. They state that memes are adapted by

the individual whereas genes are passed unaltered. Since the units of a

chromosome are altered by a hill climber after the application of genetic

operators in their memetic algorithm, they do not use the term gene in

their chromosome representation. They used heuristics along with

random assignment to create an initial population that contains feasible

instances with less penalties while maintaining sufficient diversity for the

GA.

 50

In their algorithm, light and heavy random mutations, i.e small and large

scale alterations, are directly followed by a hill climbing operator. There is

no recombination operator used. Instead, one of the two mutation

operators is chosen to be applied on the individual. The light mutation

operator picks a number of events from any period at random to

reschedule them at other legal periods. The heavy mutation operator

randomly reschedules all the exams in some periods of a timetable

instance. This operator reveals well constructed periods and leaves them

intact while considering each period of the instance in turn. Their

deterministic hill climbing operator applies to each period of the timetable

instance in a loop. At each step of the loop, the penalty of scheduling

each event of the current period to every other period is calculated

unless the scheduling causes any hard constraint violations. After that,

each event is placed in the period causing least penalty. This operator

also tries to schedule the unscheduled events.

Mutation and hill climbing operators are applied to create new individuals

until the population expands to a specific size. Then, classic roulette-

wheel selection is employed to choose individuals to generate a new

population from the old expanded one. The fitness of each individual is

directly proportional with the number of scheduled events and inversely

proportional with the number of unscheduled events and conflicts

between periods, which causes students to have exams one after another

in the same day.

They experimented with real-life data taken from several universities.

They observed that local search introduced to GA helps to find better

solutions more quickly than random descent method. However, they also

point out that the algorithm they proposed performs worse on more

constrained problems.

 51

5.3.2 Improving Evolutionary Timetabling with Delta Evaluation

and Directed Mutation

In their study, Ross et. al (1994a) present a class of violation-directed

mutation operators as main operators for memetic algorithms. In this

work, they also describe the delta evaluation and how to measure the

computational complexity of a timetabling EA in terms of what they call

“evolutionary equivalents” instead of number of evaluations. In the study

of Ross et. al. (1994a), they ignore constraints involving agents or places

since they are easy to handle once the events/times timetable has been

constructed in the exam timetabling case. However, they refer their work

(Ross et. al. 1994b) for lecture timetabling, where such constraints

become crucial.

Ross et. al. (1994a) use direct representation and a penalty-allocating

fitness function. A penalty assigned for a constraint violation increases

with the importance of the corresponding constraint. Ross et. al claim

that delta evaluation employed during the fitness function calculations

causes a significant speed up. In delta evaluation, the fitness function of

a solution, i.e timetable th, is calculated by using an already-evaluated

fitness belonging to one of its parents tg (or a single parent if only

mutation was used) and weighted sums of constraints involving a set of

events whose assignments differ in tg and th.

In their EA configuration, they always kept a population of size 1000. At

each cycle of reproduction, they selected a parent and applied mutation

on it. The new individual replaced the least fit one in the population

provided that it was fitter than the worst among the population. With a

probability of 0.2, they employed simple gene-wise mutation on the

selected individual. This meant to consider each gene of the individual in

turn and randomly reassign an allele to it with a very low probability

(0.02). With probability 0.8, they applied their violation-directed

mutation operator with a tournament size of 6.

 52

Violation-directed mutation operators presented by Ross et. al. maintain

violation scores for each event and its allele during fitness evaluation.

This helps to reveal which events (alleles) in a timetable cause (would

cause) more constraint violations and contribute (would contribute) more

to the decrease in the overall fitness of the timetabling instance. Their

directed mutation operators each choose a single event to mutate and an

allele to mutate to. In case of events, this selection can either be

choosing randomly among the worst events (i.e best candidates for

mutation) or a probabilistic selection that is biased towards genes with

higher violation scores. If the event is purely randomly selected, the

directedness is expected to be achieved by allele selection. Allele

selection can be made by using tournament selection among a set of k

alleles to avoid the computational complexity brought about by other

selection schemes.

The application of violation-directed mutation operators was held on a

real-world examination timetabling data taken from a university. The

problems involved assignments of events to available timeslots and the

following constraints: exclusions, edge constraints and event-spread

constraints. They also generated random problems both from random

complete timetables and from real timetabling problems. To generate

random problems from stratch, they initially construct a random

complete timetable of 50 events scheduled within a predefined set of

slots. Then, they generate edge and exclusion constraints that are

satisfied in the timetable at hand. Finally, they construct the resulting

problem by filtering some of the constraints generated.

In their study, Ross et.al (1994a) experimented with several variants of

violation-directed mutation operators in a typical real-world exam

timetabling problem and evaluated the performance of best such variants

in randomly-generated problems as the number of constraints in the

problem varied.

 53

The results of experiments showed that choosing the allele in a

stochastically biased way in directed mutation was obviously superior to

applying other variants. This biased probabilistic allele selection turned

out to give directed mutation its real power and effect, whereas the event

selection need not be directed at all. In their experiments, the EA with

directed mutation operators greatly overwhelmed the version with

uniform crossover operator.

In their work, Ross et.al (1994a) describe the general

examination/lecture timetabling problem and apply evolutionary

algorithms on 5 real-world and 32 randomly generated timetabling data.

For the timetabling problem, they again use direct representation, where

an assignment for each event is denoted by three consecutive genes on

the chromosome. These three genes refer to time, place and agent

assignments of the corresponding event. Their fitness function is

inversely proportional with the weighted sum of occurences of constraint

violations for each constraint type.

They suggest that constraints should be decomposed into lower order

constraints (i.e constraints involving one or two events only) to prevent

the fitness landscape from flattening. To illustrate, they point out that the

constraint “no two exams that share common students should class”

should be decomposed into seperate constraints as many as pairs of

exams that share students. In addition, the penalty for each of those

constraints must be arranged according to the number of students

sharing the given exams.

Throughout their fitness evaluations, they use delta evaluation (Ross et.

al. 1994a), which considers an already-evaluated similar timetable and

changes in-between when calculating the fitness function of a new

timetable. They employed a variant of violation-directed mutation

operators examined in the study of Ross et. al. (1994a). In this operator,

an event is randomly chosen and a new allele is assigned to it according

 54

to the result of a tournament selection among 10 alleles for the event.

The fitness of each allele in this tournament is assigned with respect to

the degree to which they reduce the constraint violations on the event.

Their highly constrained real-world timetabling problems arise from

examinations at two universities. Each of those problems had more than

400 edge-constraints on the average, while some of them also had a

similar amount of event-spread or exclusion constraints. The EA

configuration was the same as that explained in the work of Ross et. al.

1994a).

Ross et. al. (1994a) report the results of experiments with the particular

EA they described. Those results reveal that their algorithm quickly finds

perfect timetables for each of the real examination timetabling problems.

They also emphasize the importance of their randomly-generated data as

highly-constrained benchmark problems, especially for comparing

techniques all of which have been successful in the real-world problems.

5.3.3 Violation Directed Hierarchical Hill Climbing For Timetabling

In [Alpay 03], memetic algorithms including violation directed mutations,

crossovers and a violation directed hierarchical hill climbing(VDHC)

method have been applied to the university course timetabling problem.

Those new operators were introduced to prevent premature convergence

that had occured in their real-world data. They considered only time

assignments of course sections along with 7 types of constraints whose

overall sum reaches up to approximately 3000. Each of those constraint

types are one of the exclusion, preset constraints, edge-constraints or

event-spread constraints.

They used direct representation, where each gene identifies a course

section. In the chromosome, a hierarchical structure involving all course

sections meetings grouped with respect to their courses, terms and

finally departments is represented. Their fitness function allocates

 55

weighted penalties multiplied by the occurences of constraint violations

for each constraint in each constraint type. The initial population involves

randomly created individuals all of which obey all the preset, exclusion

and a specific type of event-spread constraints defined for course

sections.

They named and experimented with new violation directed mutation

operators in addition to the traditional mutation operator. Those directed

mutation operators choose a term by rank selection, where the fitness of

each term is based on the number of violations it contains. Then

traditional mutation is applied on the term chosen. A variant of these

operators uses rank selection to choose the allele for the gene to mutate,

where the fitness of each allele is based on the number of violations it

would cause in the term.

Since their timetable representation involved a hierarchy, they defined

one-point and uniform crossover operators that treated certain blocks of

genes (i.e a term) as a single gene in addition to the traditional crossover

operators. Besides, they defined an operator that applied crossover only

inside a single term. That single term was again chosen by rank selection

and traditional crossover operators were applied to it once it was

selected. Hence, they introduced several violation directed crossover

operators that acted on different groupings of genes for their hierarchical

representation.

The VDHC method proposed employs different operators for four of the

constraint types. To apply the method on an individual, one of the four

operators is chosen by a selection strategy biased towards those whose

constraint type has more violations in the individual. Then the chosen

operator attempts to resolve its corresponding violations with respect to

the current resolution level of the VDHC method. The initial level of

resolution requires that all the violations due to the related type of

constraint be removed, whereas the second level considers violations in a

selected block of genes and the third level merely attempts a single gene

 56

in a block of genes. The selection scheme for those blocks is again biased

towards ones causing more violations due to the constraint type of the

operator. The resolution level is narrowed each time the operator fails to

produce a better individual on the current resolution level. If the

application of the VDHC method succeeds, it is reapplied on the

individual.

In their EA configuration, they used elitism so that maximum fitness of

the population can never reduce in next generations. On the real-world

university timetable data, they experimented with different sets of their

MA oparators by using both steady-state and trans-generational

approaches. In this way, they aimed to figure out the best replacement

strategy as well as the best set of MA operators. According to their

results, the traditional crossover operator performed best among others,

while the violation directed mutation operator that applied traditional

mutation operator on a term rather than the individual overwhelmed its

variants. Trans-generational approach for replacement produced much

better results, where the average number of violations in the final

generations of all runs was decreased to 0.2-0.3 with the best set of MA

operators. Although the steady-state approach was rather successful with

the VDHC, it couldn’t find a solution in any of the runs without the VDHC

operator no matter how many different strategies such as crowding,

using weights during initialization were practised.

In the study of Ozcan et. al. (2005a), VDHC method was successfully

applied to university final examination scheduling. In their application,

there were three types of constraints defined. The first of these

constraints required that no student should have conflicting

examinations. The second type of constraints required that there must be

a free slot between two examinations of a student when these two

examinations are assigned on the same day. The last constraint imposed

that maximum seat capacity must not be exceeded during a period. In

the memetic algorithm proposed in the work of Ozcan et. al. (2005a),

 57

random initialization of population, traditional one-point crossover,

random mutation and swap operators are employed.

In the first stage experiments, Ozcan et.al. revealed that tournament

mate selection, random mutation and trans-generational replacement

strategy produce the best results when compared to their alternatives,

which are ranking strategy, swap operator and steady-state replacement

strategy respectively.

Having obtained the most successful configuration, the authors test the

VDHC method on more data and report averaged success rates per run of

approximately 100 percent for 10 different test cases.

 58

CHAPTER 6

 INTRODUCTION TO MULTIMEME ALGORITHMS

Memetic algorithms are evolutionary algorithms that employ an additional

local search strategy as well as the common genetic operators such as

crossover and mutation during the evolutionary cycle. Multimeme

algorithms differ from memetic algorithms in that they self-adaptively

choose which local search operator to use from the set of local searchers

for different stages of the search or individuals in the population.

Multimeme evolutionary algorithms were introduced in the work of

Krasnogor et. al. (2001). In this study, they show how their multimeme

algorithm is able to learn the best local search operator to apply to the

individuals at different stages of the search. So, the optimum local search

operator to apply is learnt during the evolutionary process. They also

employ their algorithm to figure out which mutation operators to apply to

individuals, where they regard their algorithm as an adaptive GA

algorithm. In the work of Krasnogor et. al. (2001), they experiment with

One-Max, NK-Landscapes and Travelling Salesman Problems(TSP). For

the first two of these problems, their multimeme algorithm adaptively

decides which mutation operators to use. For the last problem, optimum

local search strategy is learnt by the algorithm.

In a multimeme algorithm, an individual comprises of both its genetic

content and its memetic content. The genetic content represents a

possible solution for the problem instance as in traditional evolutionary

algorithms with direct representation. At any time during the evolutionary

cycle of the multimeme algorithm, an individual also carries its own

meme. The memes of an individual carry information that specifies which

local improvement operators will be applied to the individual. They may

 59

also specify the probability and/or the number of times for the application

of such operators. All these composed memes in the individual make up

the memeplex (Krasnogor 2002b). In the work of Krasnogor et. al.

(2001), they also included the acceptance strategy to be employed in the

local searcher in the meme for the multimeme algorithm solving the TSP

problem. The acceptance strategy embedded in the meme of an

individual can be one of the first-improvement or best-improvement

acceptance strategies. In the best-improvement acceptance strategy, the

local search operator is applied on the whole chromosome gene after

gene, whereas the first-improvement strategy ceases once unsuccess

occurs. The best-improvement strategy, however, takes backs its moves

and continues with the next gene in case of unsuccess. In a multimeme

algorithm, crossover and mutation operators are applied for genetic

exchange and variety. Moreover, these operators also affect the memetic

content of individuals as well as their genetic content. So, crossover

operators of multimeme algorithms enable meme transmission, while

their mutation operators can override the meme of an individual and

assign a random local searcher among the set of available local search

operators. During mutation, the frequency of this meme mutation is

determined by a parameter, namely the innovation rate(IR) parameter. If

this parameter is set to 0, a meme lost during meme transmission can

never be re-introduced in the population. Therefore, IR value is set to a

small value in the range [0,1] to guarantee a minimum level of

exploration of the memetic space.

6.1 Meme Transmission

There are several ways of meme transmission in a population maintained

by a multimeme algorithm as described in the work of Krasnogor

(2002b). The first main way of meme transmission is called as vertical

transmission or simple inheritance mechanism(SIM), where the offsprings

inherit the memes of their fitter parent. algorithm for this process is

given in the study of Krasnogor et. al. (2001) as in Table 6.1.

 60

Table 6.1 Algorithm for SIM.

Individual_Level_Crossover(Parent p1, Parent p2, Offspring o1,
Offspring o2)
Begin
 CrossParentsGeneticMaterial(p1,p2,o1,o2)
 If EqualMemes(p1->meme,p2->meme)) then
 begin
 CopyMeme(o1->meme, p1->meme)
 CopyMeme(o2->meme, p1->meme)
 End
 Else if p1->fitness==p2->fitness then
 Begin
 If FlipCoin() then
 Begin
 CopyMeme(o1->meme, p1->meme)
 CopyMeme(o2->meme, p1->meme)
 End
 Else
 Begin
 CopyMeme(o1->meme, p2->meme)
 CopyMeme(o2->meme, p2->meme)
 End
 End
 Else if (p1->fitness > p2->fitness) then
 Begin
 CopyMeme(o1->meme, p1->meme)
 CopyMeme(o2->meme, p1->meme)
 End
 Else
 Begin
 CopyMeme(o1->meme, p2->meme)
 CopyMeme(o2->meme, p2->meme)
 End
End

 61

If the fitness of the parents are comparable and their memes differ, a

random selection is made. In the second way, which is named

longitudinal transmission, offsprings obtain memes from the individuals

other than their parents. However, those memes can possibly bring about

harm to their genetic content. The memes of an individual have an effect

on its genes since they determine the application of local search

operators on them.

6.2 Self-Generating Memetic Algorithms

In MAs, the local search operators can either pre-exist or be created and

co-evolved by the MA (Krasnogor et. al 2003a). In the latter case, not

only chromosomes, which represent possible solution instances as in any

other EAs, but also local search operators, i.e memes, are evolved. In the

work of Krasnogor et. al. (2003a), Krasnogor et.al. experiment with

Maximum Contact Map Overlap Problem(MAX-CMO) to demonstrate the

performance of self-generating memetic algorithms. In their study, they

aim to provide local search with a new role: not merely a fine-tuner but a

supplier of building-blocks.

The contact map they refer is an undirected graph that represents a

protein's 3D fold, where each element that makes up the protein is a

node and there is an edge between two nodes if they are neighbors. The

problem they study, i.e MAX-CMO, tries to maximize the overlap number

of two contact maps, which arises from an alignment between the two

contact maps.

In order to figure out a metaheuristic that creates from scratch the

appropriate local searcher to use under different circumtances, they

explore the space of all possible memes by using a formal grammer that

describes memeplexes. They also use genetic programming to evolve

sentences generated from that grammer. In their study, they conclude

that the success of their algorithm can be traced to a continuous supply

 62

of building blocks and thus providing a more cooperative operation of

local searchers and genetic operators.

 63

CHAPTER 7

PROPOSED MEMETIC ALGORITHM FRAMEWORK

FOR PRIVATE SCHOOL TIMETABLING

In this section, the details of the components for the memetic

algorithm(MA) framework are explained. The main components of the MA

that determine its success to solve an optimization problem are the

representation of solution instances, initialization heuristics, the

evaluation of violations for each type of constraints, a penalty-allocating

fitness function, a replacement strategy, a mate selection method along

with choices for other parameters and finally a set of useful local

searchers in addition to the genetic operators. This last component

mentioned is the main additional mechanism of memetic algorithms and

it introduces a kind of intelligence to the search process. Basically, there

can be only one local search method that is employed during a memetic

algorithm. In this framework, there are 12 different local search

operators, i.e hill climbers, that are applied to all the individuals of the

population after mutation. In the proposed framework, local optimizers

are controlled by a violation-directed hierarchical hill climbing

operator(VDHC) as introduced in the studies of Alkan et.al. (2003) and

Ozcan et. al. (2005a).

7.1 Representation

The application of evolutionary algorithms(EA), i.e genetic algorithms or

memetic algorithms, to an optimization problem requires the appropriate

choice of representation for the individuals in the population. In the

below subsections, aspects that effect this choice in the proposed

framework are discussed.

 64

7.1.1 Direct vs. Indirect Representation

For the private school timetabling problem, this representation can be

direct or indirect. When we use direct representation, each individual

denotes a timetable. Hence, the genetic algorithm performs a search in

the space of possible timetables directly. In the indirect representation,

we can assign parameters to individuals to construct a timetable and

then employ a timetable builder to create feasible timetables by using the

individuals. In this framework, direct representation is used to avoid from

the computational cost brought about by employing a timetable builder.

The usage of direct representation for any timetabling problem introduces

two different choices. Each gene in the chromosome can refer to either a

time slot or an event. If a gene refers to a timeslot and contains an event

identification as an allele, we need genes as many as time slots in the

chromosome. However, we then have the risk of losing or even

duplicating certain events after the application of genetic operators.

Hence, the individuals of the population tend to contain partial or invalid

timetables, which causes a repair process to be employed. Fang (1994)

addresses the problem of losing events in the timetables as label

replacement problem and references (Abramson et. al. 1991b). In the

proposed framework of this study, each course section meeting, i.e an

event of the private school timetabling problem, is assigned to a place on

the chromosome and has a value indicating its time slot mapping.

7.1.2 Determination of a Gene and Its Allele

In private school timetabling, the set of all course section meetings of the

problem instance, i.e the set of all the events, is considered as a variable

set. As stated before, private school timetabling problem is to assign

feasible time mappings to each of those events while achieving a

minimum number of constraint violations. As proposed in the study of

Alkan et. al. (2003), the chromosome presents a hierararchical structure

by preserving groupings within groupings. Course section meetings are at

 65

the lowest level of this hierarchy. They are grouped with respect to their

course sections, sections, divisions, grades and then branches (Figure

7.1). We can think each of those groupings as a classifier (Ozcan et. al.

2005a). With this hierarchical structure of the chromosome in mind, the

content of a gene should be determined. A gene may be composed of all

the course section meetings for a specific course section or merely a

course section meeting. In this study, the first choice is applied to

improve the performance of initialization heuristics as well as genetic

operators.

The pair of each gene and its allele in the chromosome denotes the time

slot assignments for meetings of a specific course section.

Either binary or integer values can be used to denote time mappings in

the chromosome. This study chooses the latter approach since integer

usage and operators defined accordingly have shown no deficiency when

compared to those of binary values.

If we consider only time slots and neglect other resources such as rooms

for any timetabling problem, the allele of each gene can be chosen

among valid time slots. However, the need to assign available rooms to

events as well as time slots causes a new dilemma. As a first method,

each gene for an event mapping can contain a time-room tuple. In this

way, supposing there are T time slots in a week and R rooms in a

building, there are T x R possible mappings for an event. So, the allele of

each gene is chosen among the set of integers beginning from 0 up to

TxR-1. Hence, the computational cost is aimed to be reduced by dealing

with only one integer instead of a tuple for an event. As a second

method, we can alternatively divide the chromosome into two segments.

In this second method, the first of the segments contains the time slot

mappings for events, whereas the second half is comprised of room

mappings for the events whose genes are allocated in the same order.

Since room assignments do not cause significant problems in private

school timetabling, they have been ignored in this study.

 66

Figure 7.1 Individual Representation.

Course sections
in a section

Divisions in a
grade

Sections in
each division

Grades in
a branch

Branch 1

Grade 1

Division 1

Section 1

Branches Branch B

Grade T

Division D

Section S

Course Section CS

Gene

7 23 17 39 42

Grade j

Course Section 1

Division k

Branch i

Section t

Course Section c

 Meeting 1 Meeting 2 Meeting 3 Meeting 4 Meeting 5

 67

7.2 Initialization

At the beginning of the MA, a population that is comprised of possible

timetable solutions for the problem instance is created. Individuals in the

population are constructed by the initialization heuristics. According to

those heuristics, individuals obey all kinds of preset and exclusion

constraints(CS_PRE, S_EXC, S_PRE, I_EXC) as well as the first event-

spread constraint(ES1), which requires that all meetings of a course

section should be held at different days.

Firstly, a domain of available time slots for each course section is

determined by examining its preset constraints, preset and exclusion

constraints of its section, i.e its class, along with exclusions of its

instructor. The allele assignment for a course section in the chromosome

is then made by using its corresponding domain. Therefore, exclusion

constraints for instructors and sections as well as preset constraints for

sections and course sections are all met in the initial population. This is

further explained in the next section. The aim of this approach is

obviously to reduce the size of the search space, which becomes

extremely large in the timetabling problems.

After the population is created, VDHC operator is applied over all the

individuals. After that, the loop of producing next generations

commences.

3. Constraints

As in other timetabling problems, there are two types of constraints in

the private school timetabling. These are hard constraints, all of which

must be satisfied for the timetable to be feasible, and soft constraints

that denote preferences. Hard constraints for the private school

timetabling can be determined as preset constraints, exclusions, edge

constraints(EC1, EC2), the first event-spread constraint(ES1), workload

constraints and most instructor constraints(I_MAXLOC, I_TRAVEL). The

 68

remaining two constraints, namely minimum gap constraints for students

and instructors, can be set as soft constraints and their violations may be

permitted to some extent in the private school timetabling. In addition,

the random data generator that is implemented and utilized for testing

the proposed memetic framework produces problem instances that have

at least one feasible solution satisfying all kinds of constraints except the

minimum gap constraints. In other words, the solution produced by the

random data generator normally does not have any hard constraint

violations in it. However, in this solution, there may be gaps, i.e empty

slots for the instructors or students, between the meetings assigned to

them. Therefore, the MA implemented attempts to find a solution by

giving equal importance to the satisfaction of all hard constraint types,

whereas violation of minimum gap constraints may be permitted to some

extent.

The definition and representation of constraints in the framework for

timetabling greatly affects the computational burden put by the fitness

evaluation. Among many others, there are two main methods for

achieving the satisfaction of constraints. The first method assures that

individuals of the population all satisfy certain constraints such as

exclusions or preset constraints in each generation. This is guaranteed by

initialization heuristics. Furthermore, the genetic operators and local

searchers applied afterwards are designed so that they do not produce

individuals that violate these constraints. For instance, common

crossover operators such as one-point crossover or uniform crossover do

not violate preset and exclusion constraints once they are satisfied in the

initial generation. Besides, mutation operators are also designed so that

they choose new alleles among available time slots for the gene to

mutate. The second method leaves the computational burden of

constraint evaluations to a penalty-allocating fitness function. This

method is employed for edge constraints, most event-spread and

instructor constraints. Both of these methods are applied as explained

below.

 69

7.3.1 Exclusions and Preset Constraints

There may be exclusion and/or preset constraints defined for instructors,

sections or course sections. The basic idea to deal with such constraints

is to minimize the search space as much as possible by the aid of

initialization heuristics and appropriate implementation of genetic and

local search operators.

The approach used is to construct a domain of mapping, i.e a domain

that contains all the available time slots, for each course section while

removing the excluded time slots from this domain. The domain of a

course section is thus created by examining the excluded time slots of

course section's instructor, the preset and excluded time slots of the

course section's section and the course section itself. To illustrate,

suppose there is a course PHYSICS-I offered to section M-1 by the

instructor I11. Then, the pair (PHYSICS-I, M-1) denotes a specific course

section, say CS_PHYSICS_M1. If the instructor I11 excludes time slots

from si to sj and the available time slots of section M-1 are the set of time

slots from tk to tl, the domain of time slots for CS_PHYSICS_M1 becomes

{tk, ..., tl} - {si, ..., sj}.

Furthermore, the allele of the gene for each course section is made up of

time slots from the course section’s domain of mapping throughout all

the operations of the genetic algorithm such as crossover or mutation as

well as initialization, which was also applied in the study of Fang (1994).

In the work of Alkan et. al. (2003), preset constraints, exclusions and

even a type of event spread constraints were satisfied during the

initialization of the population.

This approach is supposed to work well if exclusion and preset constraints

are defined as hard constraints that are not allowed to be violated in any

case. However, if it’s not possible to create a timetable that satisfies all

the given exclusion/preset constraints as well as other hard constraints

and some of the exclusion/preset constraints appear as soft constraints,

 70

we may leave their evaluation to the fitness function by the aid of weight

assignments instead of the former direct approach. Nevertheless,

removing burden on the fitness function evaluation by restricting the

alleles for genes is considered to be a very efficient technique and is

applied throughoutly in this framework.

7.3.2 Edge Constraints

Edge constraints in private school timetabling assure that each section

(EC1) and each instructor (EC2) are assigned to at most one course-

section at a given time period. These constraints are allowed to be

violated on the individuals. If only those timetables that satisfy all the

edge constraints are kept in the population, EA performance can be

degraded. As stated in the work of Collingwood et. al. (1997), infeasible

regions in the fitness landscape can help the search by providing inclined

gradients towards good feasible solutions.

The violation of these constraints, whose number of occurings is

calculated in the evaluation function, add up to the penalty assigned to

the host individual. Therefore, the fitness of the individual is worsened,

which makes it difficult for the individual to survive and thus to

reproduce. Hence, natural selection simulated by the evolutionary

algorithm causes the population to contain individuals with less number

of violations for these constraint types.

Efficient methods to calculate the violations of these constraints are

implemented. Generally, in a timetabling problem, a constraint matrix

can be constructed to denote conflicting events, which are pairs of events

that have an edge constraint defined on them. Then each event is paired

with all the other events. If the paired events are conflicting and have the

same allele for their time mappings, then the number of edge constraint

violations is increased by one. The computational complexity of the

overall check becomes proportional to N2 if the total number of events is

N. However, in the private school timetabling problem, we can design

 71

another method whose computational complexity is proportional to N

without the use of a constraint matrix.

To illustrate, the number of EC1 violations can be checked in one pass

over the chromosome by counting the number of same time-slots used in

the allele set of each section. All EC1 constraints belonging to a section

can be satisfied if and only if every course section meeting of this section

is assigned a unique time slot among the set of assigned time slots for

this section.

The number of EC2 violations for an instructor can be found in a similar

way by counting the instructor's course section meetings that are

assigned at the same time slot.

7.3.3 Event-Spread Constraints

The first event-spread constraint (ES1), which requires that each meeting

of a course section should be assigned to different days in a week, is

satisfied during initialization of the population and after the application of

genetic and local search operators.

Other event-spread constraints are checked as follows: While the edge

constraint violations for a section are being calculated, a timetable is

constructed for the section with its current time assignments. Within this

timetable structure, all the constraint violations for the types mentioned

above can be figured out.

7.3.4 Instructor Constraints

Violations for instructor constraints can be calculated by a method similar

to the one for the other event-spread constraints. While the edge

constraint violations for an instructor are being calculated, a timetable is

constructed for the instructor with his/her current time assignments.

 72

Within this timetable structure, all the constraint violations for the types

mentioned above can be figured out.

7.4 Fitness Function

In memetic algorithms for timetabling problems, violation of constraints

contribute to a decrease in the performance of the individual. Therefore,

the performance of individuals can be calculated in terms of a penalty-

allocating fitness function. This function is computed by assigning

degrees of penalty in the form of weights for various types of constraint

violations. Therefore, different types of constraint violations are penalized

according to their relative importance. The fitness function then becomes

 N

 f(p) = 1 / (1 + Σ wi ci (p)) (7.1)

 i=1

where p is an individual, N is the number of different constraint types, wi

is the penalty assigned to the ith constraint type and ci(p) is the number

of violations for constraint type i on individual p. In the study of Fang

(1994), it is stated that assigning higher penalty settings for a constraint

type increases the artificial evolutionary pressure to remove such

constraints from the population. Hence, higher penalty values can be

assigned to hard constraints, which determine the feasibility of a solution,

whereas relatively lower values may be assigned to soft constraints.

Thus, penalty values of 1.0 are assigned for each hard constraint type

and penalty values of 0.01 are assigned for minimum gap constraints in

the proposed framework.

7.4.1 Fast Fitness Evaluation

The evaluation of individuals and the calculation of the fitness function is

the bottleneck of evolutionary algorithms especially when timetabling

problems are considered. In the timetabling problem, all the constraint

violations that take place in the solution embedded in the individual must

be figured out. In the work of Ross et. al. (1994a), delta evaluation,

 73

which simplifies the computation for finding the number of constraint

violations in the chromosome, is discussed. In their study, Ross et. al.

(1994a) explain delta evaluation by considering two timetables g and h,

which differ only in the assignments made to some subset D of the

events E. If PC(t) is the weighted sum of violations belonging to C

constraints for timetable t and CD is the subset of constraints C which

involve one or more events from the subset D of E, then P(h) can be

calculated as:

 PC(h) = PC(g) - PCD(g) + PCD(h) (7.2)

Therefore, the number of violations in timetable h can be expressed

solely in terms of number of violations in timetable g and violations

involving the D events. This idea is applied to the proposed framework as

follows: The violations of constraints in the newly created individual after

a hill climbing step can be calculated in terms of the violations in the

initial individual before hill climbing, the initial number of violations in the

portion of the chromosome to which the hill climber was applied and the

new number of violations in that portion.

As it will be explained in the proceeding sections, the VDHC algorithm

determines which hill climber will be applied to which portion of the

individual during the local search phase. So, if we keep all the constraint

violations that belong to each classifier located in the whole hierarchy, we

can reduce the number of calculations for the fitness function. For

instance, suppose the VDHC algorithm has chosen a specific instructor,

say Ij, and the chosen hill climber will be applied to merely that

instructors' genes on the current individual. After the application of the

hill climber, only the contents of the individual for instructor Ij have

changed. Let us denote the previous total number of constraint violations

for instructors by CVi(I), where i refers to a constraint type among C

constraint types, the new total number of constraint violations for

instructors after hill climbing by CVi(I)', the previous number of violations

for Ij by CVi(Ij), and the newly calculated number of violations for Ij by

 74

CVi(Ij)'. Then, the following calculation is sufficient to find out all the

constraint violations of instructors in the chromosome:

 C

 Σ CVi(I)' = CVi(I) - CVi(Ij)' + CVi(Ij) (7.3)

 i=1

As a result, owing to the VDHC operator that constrains the working area

of hill climbers, we can only evaluate constraint violations in that area

and calculate the whole number of violations by merely considering those

violations since the remainings areas were left untouched during the local

search. So, we needn't reevaluate the number of violations in those areas

for the fitness evaluation after each local search step.

7.5 Genetic Operators

The two types of traditional genetic operators, namely crossover and

mutation, are employed in the framework. The traditional crossover

operators implemented are uniform crossover, one-point and two-point

crossover operators. As explained before, they treat a course section with

all its meetings as a single gene. The mutation operator applies the same

approach. Moreover, while assigning a new allele to the randomly chosen

gene, it chooses an allele that does not violate exclusion or preset

constraints. In addition, this allele also obeys the first event-spread

constraint(ES1).

In additional to the traditional genetic operators, new types of crossover

and mutation operators have been implemented by making use of the

hierarchical organization in the chromosome as explained in the study of

Ozcan et. al. (2005a). These operators have been listed in Table 7.1 and

Table 7.2.

The basic idea that authors of Ozcan et. al. (2005a) address is that a

classifier at any level of an arrangement can be chosen as a single unit.

For instance, all the course section meetings of an instructor or all the

course section meetings of a section can be chosen as a single gene.

 75

Hence, operators can be applied on such a classifier as if it were a single

gene. In the first set of mutation operators implemented in the

framework, a static subgrouping on the chromosome, i.e a classifier, is

randomly chosen as the area of concern for the operator. To illustrate,

branches, grades, divisions, sections or instructors are each used for

these grouping of genes, i.e course section meetings or shortly events.

Then, traditional mutation is applied within that classifier of length L with

mutation rate equal to 1/L. The second set of mutation operators are

similar to the first set except that they apply traditional mutation in each

of their corresponding classifiers rather than choosing only one. The third

set of mutation operators are violation-directed. In other words, the

probability of choosing a classifier to operate on is proportional to the

number of its constraint violations in it. Firstly, the subgroup that causes

more violations is identified via a selection strategy, namely the

tournament selection, then the genetic operator is applied on only the

regions belonging to the subgrouping. For example, VD_INSTRUCTOR_MT

chooses an instructor whose course section meetings cause more number

of violations and applies traditional mutation with mutation probability

1/L on them, where L is the number of course sections that the chosen

instructor teaches.

In the new one-point crossover operators defined as violation-directed

operators, crossover points are chosen among the ones that cause more

constraint violations. In both new uniform and one-point crossover

operators listed, a grouping within the chromosome is regarded as a gene

and operators are applied accordingly. Branches, grades, divisions or

sections are used for these grouping of genes, i.e course section

meetings or shortly events. For instance, if the basic unit for uniform

crossover is chosen as a section, i.e a class, then offsprings are produced

as follows: For each section, the whole section of a probabilistically

chosen parent is copied to one of the offsprings and the corresponding

section on the other parent is copied to the other offspring. In short, this

process treats each section as a gene. A similar approach is also

implemented for other possible groupings such as branches, grades, etc.

 76

Table 7.1 New Mutation Operators in the Framework

Operator Name Single Unit Choice of a Unit Applies

to All Units

COURSESECTION_MT Course Section random yes

RAND_SECTION_MT Section random no

RAND_DIVISION_MT Division random no

RAND_GRADE_MT Grade random no

RAND_BRANCH_MT Branch random no

RAND_INSTRUCTOR_MT Instructor random no

ALL_SECTION_MT Section all units yes

ALL_DIVISION_MT Division all units yes

ALL_GRADE_MT Grade all units yes

ALL_BRANCH_MT Branch all units yes

ALL_INSTRUCTOR_MT Instructor all units yes

VD_SECTION_MT Section violation-directed no

VD_DIVISION_MT Division violation-directed no

VD_GRADE_MT Grade violation-directed no

VD_BRANCH_MT Branch violation-directed no

VD_INSTRUCTOR_MT Instructor violation-directed no

 77

Table 7.2 New Crossover Operators in the Framework. The UX suffix in

the operator name denotes that the operator is a uniform crossover and

the 1PTX suffix shows the operator is a one-point crossover.

Operator Name Single Unit CP Choice

COURSESECTION_UX Course section

COURSESECTION_1PTX Course section -

SECTION_UX Section -

DIVISION_UX Division -

GRADE_UX Grade -

BRANCH_UX Branch -

I_UX Instructor -

VD_COURSESECTION_1PTX Course Section violation-directed

VD_SECTION_1PTX Section violation-directed

VD_DIVISION_1PTX Division violation-directed

VD_GRADE_1PTX Grade violation-directed

VD_BRANCH_1PTX Branch violation-directed

VD_I_1PTX Instructor violation-directed

 78

Each of the above operator types mentioned above are implemented and

their contribution to the overall memetic framework is investigated during

the experiments.

7.6 Mate Selection and Replacement Strategies

In several studies (Alkan et. al. 2003, Ozcan et. al. 2005a), it is reported

that tournament mate selection performed better than ranking strategy

for timetabling problem instances. In addition, trans-generational

replacement strategy, where the entire population except two best

individuals is replaced with the offspring pool in each generation,

outperfomed steady-state replacement, where only two individuals are

selected and two offsprings are produced. Hence, these successful

strategies, namely the tournament mate selection method and trans-

generational replacement strategy, are used in this study.

7.7 Low-order Local Search Operators (Hill Climbers)

There are 12 different local search operators in the framework. Their

execution is controlled by the VDHC operator, which chooses one of the

hill climbers to apply on the current individual. The VDHC operator also

decides which portion of the current chromosome will be given to the hill

climber as its work area.

Each of the hill climbers attempts to resolve constraints of its type. Once

a hill climber is invoked with a part of the individual's chromosome, it

processes the course sections in the given chromosome part one by one.

It chooses the next course section, i.e gene, to consider in a random

fashion. Firstly, it counts the number of constraints belonging to its target

constraint type. For instance, if the hill climber is HC_S_MINGAP, which

tries to minimize the number of gaps between course section meetings of

a section, i.e a class, it counts the number of gaps that are next to the

meetings of the current course section. The aim here is to figure out the

contribution of the current course section to the constraint violations of

 79

the hill climber's constraint type. Then, the hill climber attempts to

resolve its corresponding constraint violations caused by the current

course section via intelligent reassignments of its meetings. After this

process, the hill climber again counts the number of constraint violations

that belong to its target constraints and that are caused by the current

course section. If the course section now causes less violations of target

constraint type for the hill climber, the moves of the hill climber on the

current gene is accepted. Otherwise, the moves are taken back and the

initial assignments for the current course section are preserved.

Afterwards, a new course section is chosen randomly and the hill climbing

moves continue to perform on the given chromosome portion. While

considering the success of a hill climber's move, overall fitness evaluation

is not performed since it would greatly increase the computational time.

The generic algorithm for the implemented hill climbers is given in table

7.3. The hill climbers all have different hill climbing moves. A naive

approach is to randomly reassing the meetings of the current course

section. However, the implemented hill climbers have far more intelligent

moves than merely random assignments.

In its hill climbing move, HC_EC1 tries to assign a course section's

meetings to empty slots on it's section's timetable if they clash with other

meetings of the the section. This operator marks all the slots that are

occupied by the other meetings of the current section and tries to assign

the meetings of the current course section to unmarked available slots

for the section. This hill climber, like all the other hill climber operators,

obeys all kinds of preset and exclusion constraints as well as the first

event-spread constraint(ES1) while performing reassignments for the

current course section. As a hill climbing move, HC_EC2 assigns a course

section's meetings to empty slots on it's instructor's timetable if they

clash with the other meetings of the instructor.

Before the reassignments for a course section, HC_S_MAXWL finds the

workload of the current course section's section for each of its days. It

 80

then sorts the section's days in increasing order according to their

workloads. Then, if a meeting of the current course section is on a day

whose daily workload exceeds the section's maximum daily workload,

that meeting is reassigned to an empty time slot on a day having less

workload on the section's timetable. Therefore, heavy workload on days

is relaxed by assigning the meetings on those days to other slots where

the workload is less for the section. HC_I_MAXWL operates in the same

way, whereas it considers the maximum workload of the current course

section's instructor.

 81

Table 7.3 Generic Algorithm of a Hill Climber in the Framework.

HillClimber(CurrentLevel)
//The Current Level indicates a specific classifier,
//a course section, a section, a division, a grade, a branch or an
//instructor

// A course section with its meetings comprise a gene.
Gene TempGene
Gene CurrentEvent

For i=0 to EventNo in current level do
 //Choose an event to consider
 CurrentEvent = ChooseEvent(CurrentLevel)

 //Count number of violations that violate hill climber's target
 //constraints and that are caused by the current event
 PreviousViolations = CountViolations(CurrentEvent);

 Copy CurrentEvent's Gene to TempGene

 //Attempt to resolve violations that violate hill climber's target
 //constraints and that are caused by the current event by heuristically
 //reassigning meetings
 HillClimbingMove(CurrentEvent)

 //Count number of violations of hill climber's target constraints
 //caused by the current event
 NewViolations = CountViolations(CurrentEvent);
 if NewViolations >= PreviousViolations then //No Improvement
 Copy TempGene to Event i's Gene
End for

 82

HC_S_MINWL also finds the daily workloads of the current course

section's section. If a meeting of the current course section is on a day

that has workload below the minimum daily workload defined for the

section, another meeting that belongs to a different course section of the

current section and that is on a day that has more daily workload is

chosen. That meeting is assigned to an available slot on the day of the

current course section's meeting. Therefore, this hill climber tries to

increase workload on days that have daily workload below minimum. The

operation of HC_S_MAXWL and HC_S_MINWL thus coorporate.

HC_I_MINWL is similar to HC_S_MINWL. However, it considers the

minimum daily workload of the current course section's instructor.

HC_S_DIVMAXWL endeavors to resolve violations of divisional maximum

daily workload constraints defined for the sections. To perform its hill

climbing move, the hill climber finds the divisional daily workload values

belonging to the division D that offers the current course section for the

section. Once those values are found, the operation is similar to that of

HC_S_MAXWL. In this case, a meeting of the current course section is

reassigned to an empty time slot on a day having less divisional workload

for D on the section's timetable if it is on a day whose total divisional

workload for D exceeds the section's maximum divisional workload for D.

For instance, suppose, in a day, a section can be assigned to at most 3

meetings of courses offered from the verbal division. If the total number

of meetings of courses offered by the verbal division for this section

exceeds 3 on a day, one of those meetings is reassigned to another day

where there are less courses from the verbal division in one move of

HC_S_DIVMAXWL.

HC_S_DIVMINWL also calculates the daily divisional workload values in

the timetable of the section that is assigned to the current course section

chosen in the hill climbing process. Again, if a meeting of this course

section offered from division D is on a day, say day 0, where the

workload belonging to its division D is low than the minimum value

 83

allowed for D, a meeting of another course section that is assigned to a

day where the workload caused by courses of D is larger is found. That

meeting is assigned to day 0.

Other hill climbers that make use of heuristics in their moves are

HC_S_MINGAP and HC_I_MINGAP, whose moves are similar to each

other. In their hill climbing move, if a meeting of the current course

section is next to a gap, i.e an empty slot for its section(or for its

instructor in HC_I_MINGAP), it is reassigned so that the gap is

removed. If the gap is below the meeting's slot, the meeting is assigned

to an earlier slot to remove the gap. If the gap is above the slot assigned

for the meeting, the meeting is assigned to a later slot, which will remove

the gap. If there is gap both below and above the meeting considered, a

random choice is made. According to this random choice, the meeting is

assigned to either an earlier or a later slot and the gap is removed.

7.8 The VDHC Method

This method is applied to all the individuals of the population after

initialization and after the application of genetic operators during each

generation. This method has been successfully applied to various

timetabling problems such as nurse rostering, final exam scheduling and

university course timetabling in many studies (Alkan et. al. 2003, Ozcan

et. al. 2005a, Ozcan et. al. 2005b). For the implementation of this

method to solve the private school timetabling problem, a hill climbing

operator, i.e a local searcher, is defined for each constraint type whose

violations are summed in the fitness function. For instance, there are

different hill climbers for EC1 and EC2 constraints. The VDHC operator,

which can be comprehended as an upper-level local search operator,

coordinates the process of lower-level hill climbers. It decides when a

specific hill climbing operator will act on the chromosome of the individual

that is being improved. It also determines the region of the chromosome

that the hill climbing operator will act on. The chosen hill climber

endeavors to resolve its type of constraints on each course section by

 84

choosing them randomly. If it is unable to resolve violations for a course

section, it takes its moves back for that course section and passes on to

the next course section. Therefore, the hill climbers in the framework

have been implemented somewhat in a random-move fashion. After the

process of the current hill climber finishes, VDHC evaluates the modified

individual. If its fitness is improved after the modification of the hill

climber, VDHC accepts this modification and the individual has changed.

Otherwise, VDHC preserves the initial individual. As a result, the

application of VDHC operator to the individual cannot reduce its overall

fitness value.

The part of the chromosome where the chosen hill climber will be applied

depends on the current resolution level of the algorithm. The initial

resolution level contains the whole chromosome. While the current hill

climber performs successfully on the individual, the algorithm stays in the

same level and endeavors to improve the whole individual. If the hill

climber fails to improve the overall fitness of the individual after it has

completed its work, the resolution level is lowered by one. Therefore, the

current resolution level now denotes a specific branch of the private

school. Thus, only that part of the chromosome is fed to the chosen hill

climber. The highest resolution level indicates the whole chromosome and

the lowest level denotes merely a course section. As a result, the chosen

local optimizer initially attempts to improve the current portion of the

chromosome. If it fails, it acts on a smaller portion and so on. A new hill

climber operator can be employed after the process of the previous

operator. In this case, a hilclimber that tries to resolve constraints that

are higher in number on the current individual is chosen.

To analyze how a hill climber is choicen for the private school timetabling

problem, we should further consider the organization of a private school

timetabling instance. In the private school timetabling problem, the 12

constraint types whose violations are allocated in the fitness evaluation

can be divided into two groups. These groups are constraints for sections

and constraints for instructors. Similarly, the 12 hill climbers used in the

 85

private school timetabling framework can be divided into two groups as

well. The first group of hill climbers all attempt to resolve violations of

constraints defined on sections. Those constraints are edge constraints,

workload constraints and minimum number of gap constraints for

sections. The second group of hill climbers try to resolve constraints

defined for the instructors such as edge constraints, workload, minimum

gap or minimum travelling times constraints. Therefore, the organization

of the chromosome infact encloses two different types of hierarchy levels.

The first of these hierarchies groups course sections into sections,

divisions, grades and branches. The second one groups course sections

into instructors. Hence, classifiers of group 0 are course sections,

sections, divisions, grades and branches. Classifiers of group 1 are course

sections and instructors. Once the organizational aspects are understood,

we can analyze the function that chooses a hill climber(Table 7.4). The

VDHC steps continue until a predefined number of iterations. Maximum

number of unsuccessful iterations is kept as 10. Maximum number of

successful iterations is kept as the chromosome length. The VDHC

algorithm is summarized in tables 10.5 and 10.6.

 86

Table 7.4 Algorithm for Choosing a Hill Climber in VDHC

HillClimber_ID ChooseHillClimber(p, temp_i, current_level)
//The choose function below performs a tournament selection
//with tour size 2.

//It chooses a constraint type that is more often violated on the
//inputted portion of the chromosome and returns its
//corresponding hill climber.

Begin
 if current_level is whole_chromosome then
 Choose a constraint type that is more often violated
 on the chromosome and return its hill climber

else if current_level is a classifier of group 0
(i.e a branch is specified) then

 begin
 if there are violations of constraints belonging to
 group 0 in current level then
 Choose a constraint type that is more often
 violated on the specified classifier and return its
 hill climber(a group 0 hill climber)
 else
 begin
 initialize current level to whole chromosome
 Choose a constraint type that is more often
 violated on the chromosome and return its
 hill climber
 end
 end

else if current_level is a classifier of group 1
(i.e an instructor is specified) then

 begin
 if there are violations of constraints belonging to
 group 1 in current level then
 begin

 Choose a constraint type that is more often
 violated on the specified classifier and
 return its hill climber (a group 1 hill climber)

 end
 else
 begin
 initialize current level to whole chromosome
 Choose a constraint type that is more often
 violated on the chromosome and return its
 hill climber
 end
 end
End

 87

Table 7.5 The VDHC Method

VDHC(Individual i, Parameters p)
begin
 CopyIndividual(i, temp_i) //Copy the individual to temp_i
 EvaluateIndividual(temp_i) //Evaluate the fitness of the individual
 previous_fitness = temp_i->fitness_value

 //The initial level of the algorithm is the highest level that
 //corresponds to the whole chromosome

 current_level = whole_chromosome
 current_successful_iterations = 0
 current_unsuccessful_iterations = 0
 max_successful_iterations = p->chromosome_length
 max_unsuccessful_iterations = 10
 while(current_successful_iterations <max_successful_iterations and
 current_unsuccessful_iterations <max_unsuccessful_iterations) do

 begin
 // Choose a HC Method that tries to resolve constraints that
 //have more violations on the current level of the individual
 CurrentHillClimbingMethod = ChooseHillClimber(p, temp_i,
 current_level)
 //Current level denotes which portion of the chromosome will be
 //attempted for optimization

 temp_i = ApplyCurrentHillClimber(p, current_level,
 CurrentHillClimbingMethod,
 temp_i)
 EvaluateIndividual(temp_i)
 if(Better(temp_i->fitness, previous_fitness)) then
 begin
 CopyIndividual(temp_i, i)
 prev_fitness = temp_i->fitness_value
 current_successful_iterations++
 end
 else
 begin
 //Current application of hill climber may have corrupted the
 //individual, so take its moves back and acquire the content of
 //the individual that has been achieved after the last successful
 //modification
 CopyIndividual(i, temp_i);
 current_unsuccessful_iterations++;
 //Find a sublevel that causes more violations for the current
 //constraint type to be improved
 //In other words, restrict the area of concern

 current_level = LowerLevelByOne(CurrentHillClimbingMethod,
 current_level);
 end
 end while
end VDHC

 88

Table 7.6 Function That Restricts the Portion of Current Chromosome in
VDHC.

LowerLevelByOne(HillClimberInfo CurrentHillClimbingMethod,
 LevelInfo current_level)
begin
 if current_level is already the lowest level(i.e a course section) then
 Assign current_level to whole chromosome
 else if CurrentHillClimbingMethod is of group 0
 (i.e a HC for a constraint defined on a section) then
 begin
 Find a classifier in current level that has more violations of
 constraints belonging to group 0.
 Assign current_level to this classifier
 end
 else if CurrentHillClimbingMethod is of group 1
 (i.e a HC for a constraint defined on an instructor) then
 begin
 Find a classifier in current level that has more violations of
 constraints belonging to group 1.
 Assign current_level to this classifier
 end
end

 89

CHAPTER 8

MULTIMEME ALGORITHM FOR PRIVATE SCHOOL TIMETABLING

Multimeme algorithms have also been implemented for the private school

timetabling problem. In the proposed framework, there are two versions

of multimeme algorithms applied. In the first implementation, each

individual carries only one meme from the pool of available memes. This

meme denotes the hill climber to apply to the individual and the number

of maximum unsuccessful iterations the hill climber will be applied to the

individual. Since there are 12 different hill climbers and the unsuccessful

iteration limit is kept between 5 and 10 during the creation of a random

meme, there are 72 different meme configurations in the meme pool.

In the second implementation, the memeplex of an individual contains as

many memes as the number of different local search operators. During

initialization, a local search operator is assigned randomly to each meme

in the memeplex. Each meme again contains information about how

many times its corresponding local search operator can be applied

unsuccessfully. As in the VDHC implementation, the maximum number of

successful iterations is kept as the chromosome length. The improvement

strategy to use for the operator and the probability of applying the local

search operator can also be embedded in meme information. However,

the random improvement strategy and a probability of 1.0 for applying

the local search operator have been chosen for the multimeme

algorithms. The memeplexes of individuals are evolved during the

evolutionary cycle with crossover and mutation operators. After mutation,

each of the individuals go through a hill climbing process (Table 8.1). In

this process, all the local searchers that are referred in the memeplex of

the individual are applied to the individual a number of times.

 90

Table 8.1 The Hill Climbing Process for the Multimeme Algorithm

MMA_HillClimb(Individual i, Parameters p)
begin
 CopyIndividual(i, temp_i) //Copy the individual to temp_i
 EvaluateIndividual(temp_i) //Evaluate the fitness of the
 //individual
 previous_fitness = temp_i->fitness_value
 for x=0 to p->NoOfMemesInIndividual do
 begin
 current_successful_iterations = 0
 current_unsuccessful_iterations = 0
 max_successful_iterations = p->chromosome_length
 max_unsuccessful_iterations =
 i->memeplex[x].HCMethod_NoOfTimes
 CurrentHillClimbingMethod =
 i->memeplex[x].HCMethod_ID
 while(current_successful_iterations
 < max_successful_iterations and
 current_unsuccessful_iterations
 <max_unsuccessful_iterations) do
 begin
 temp_i = ApplyCurrentHillClimber(p,
 whole_chromosome,
 CurrentHillClimbingMethod,
 temp_i);
 EvaluateIndividual(temp_i);
 if(Better(temp_i->fitness, previous_fitness)) then
 begin
 CopyIndividual(temp_i, i);
 prev_fitness := temp_i->fitness_value;
 current_successful_iterations++;
 end
 else
 //Current application of hillclimber may have
 //corrupted the individual, so take its moves
 //back and acquire the content of the
 //individual that has been achieved after the last
 //successful modification
 CopyIndividual(i, temp_i);
 current_unsuccessful_iterations++;
 end
 end while
 end for
end

 91

CHAPTER 9

RANDOM DATA GENERATION FOR PRIVATE SCHOOL TIMETABLING

This chapter explains the random data generator implemented to obtain

synthetic problem instances for the private school timetabling.

9.1 Overview of a Possible Random Data Generation Method

Corne et. al. implemented a random problem generator for university

exam timetabling. This program initially creates a random solution that

contains a predefined number of exams. In the solution, all the exams

are randomly assigned to available time slots. After that, all the

constraints that are satisfied in the created solution instance are defined.

In other words, if two exams are assigned different time slots in the

solution, an edge constraint is defined between them. Such edge

constraints are defined for all non-conflicting exams so that the set of

edge constraints make the solution at hand the only solution. Then, some

of those constraints are probabilistically removed to increase the number

of possible solutions for the current problem. So, the problem instance

becomes ready. In this way, it is assured that the generated problem has

at least one solution. A similar approach can be employed to create

syntatic problems for the private school timetabling.

9.2 The Process of Generating Random Data for Private

School Timetabling

The below subsections discuss the creation of random data in detail. This

process involves the determination of main aspects, namely the global

 92

curriculum, problem size, temporal structure, event assignments and

finally the constraints.

9.2.1 Creation of a Global Curriculum

During interviews with several private school authorities and instructors,

it has been revealed that a private school has one commonly used

curriculum. This curriculum is followed in all the branches belonging to

the private school. It specifies the number of possible grades that a

branch can offer, number of divisions available in each such grade and

information about courses in the curriculum of each division defined. For

instance, grades in a private school can be defined as Lycee 1, Lycee 2

and Lycee 3, while divisional choices for Lycee 1 can be the quantitative

division or the verbal division. The students from each grade and division,

i.e Lycee 2 verbal division students, have the same curriculum in all the

branches of the private school. In the random data generator (RDG) for

private school, initially a curriculum is constructed.

Each choice while generating the curriculum, i.e deciding how many

grades will be available or how many courses will be assigned to a

specific division, is made by choosing random values between realistic

minimum and maximum parameters. In this way, statistically sound

assignments can be achieved. Employing logically defined ranges in the

form of maximum and minimum parameters for determining the numbers

in the problem instance is applied throughout the RDG.

The curriculum also defines how many courses there will be for a specific

division. It determines the number and length of meetings, the division

that offers the course and the course name for each of those courses.

Students from a particular division can be assigned to courses offered

from other divisions as well. To illustrate, Lycee 2 students from verbal

division usually take natural science courses, which are offered by the

quantitative division. However, the number and length of meetings for

the corresponding course sections are rather decreased since very low

 93

coefficients are used when calculating exam scores belonging to

questions on natural sciences for students from verbal division.

9.2.2 Determination of Problem Size

After the curriculum has been established in the RDG, values that specify

the size of the problem instance are chosen. These values are listed

below:

 1. Number of branches

 2. Number of grades in each branch

 3. Number of divisions in each grade

 4. Number of sections, i.e classes, in each division

Thus, the problem instance represents a hierarchical organization.

Branches are divided into grades, grades are divided into divisions and

finally divisions are divided into many sections, i.e classes. The size of

the problem is determined by the listed values above and the curriculum.

The number of course sections for each section, the meetings of those

course sections are all determined according to the curriculum. As an

event to be assigned in terms of private school timetabling is indeed a

course section meeting, the size of the problem instance increases with

increasing number of sections and course sections assigned to them as

stated in the curriculum.

9.2.3 Definition for Temporal Structure

Each branch defines available time slots for each of its grades. Thus, a

section belonging to a specific grade of the branch uses set of the

available time slots for its grade. Although this set is same for all the

sections of a specific grade, each section is assigned to slots from a

subset of it. For instance, in a possible private school program, Lycee 2

students may attend to classes in the evenings, whereas Lycee graduates

come to the private school at the weekends. In addition, some sections of

 94

Lycee 2 students(or seventh grade students) may be attending to

lectures from 6 to 8 pm, while some other sections of Lycee 2 students

attend to lectures from 7 to 9 pm. Private schools generally provide such

options for the students.

9.2.4 Slot and Instructor Assignments for the Events

Once the curriculum, the assignment of values representing the size of

the problem and the temporal structure is ready, course sections for each

of the sections are assigned to time slots. Meanwhile, the information on

those course sections is obtained from the curriculum. After all the

meetings for a course section has been assigned to time slots, an

instructor is assigned to that course section. This instructor can be either

a newly generated instructor or a previously generated instructor whose

course sections don't have conflicts with the currently assigned course

section. So, instructors are generated as necessary course sections for

sections are created. After this process, number of instructors employed

and total number of course sections in the problem instance is available.

In addition, a possible solution for the generated problem instance that

involves all the instructor and time assignments has been created.

Furthermore, this solution involves some constraints already defined in it.

This will become more clear in the following section.

9.2.5 Creation of Constraints

In the problem instance, some constraints are satisfied while the possible

solution is being built, while some others are generated once the solution

has been created. The method of solution generation with respect to

certain constraints is not used in the sample random data generator of

Corne et. al. They randomly created the possible solution and defined

edge constraints thereafter. This approach doesn't appear to be efficient

for the private school random data generation since the number of

different constraint types is much larger.

 95

The constraints defined in the problem instance along with the approach

for generating them is listed in the next subsections.

9.2.5.1 Unary Event Constraints

1)Meetings of course-sections can be assigned to predefined hours in

predefined days(CS_PRE): There is a parameter in the RDG that specifies

the probability that a course section predefines time slots for its

meetings. After the solution has been created, a subset of course

sections are chosen probabilistically and their assigned slots in the

solution instance are given as preset time slots for the problem instance.

2) Meetings of course-sections should be assigned to allowable hours of

the corresponding sections(S_PRE, S_EXC): While each grade of a branch

is generated, allowable time slots for this grade are also generated.

During time assignments for course sections of a section that belongs to

a specific grade, time slots to assign to meetings are chosen among the

set of allowed time slots defined for the section's grade. Furthermore,

there are several parameters in the RDG that specify the probabilities

that a section excludes some time slots. Hence, a subset of sections are

chosen probabilistically and some slots that are available for their grade

but that are not used by the section in the solution at hand are given as

excluded slots for that section.

9.2.5.2 Binary Event Constraints

1) Each section is assigned to at most one course-section at a given time

period(EC1). While assigning a course section meeting for a section

during the creation of the possible solution, a time slot that has not been

used in the assignments for the events of the current section is chosen.

Therefore, all constraints of this type are satisfied during the creation of

the possible solution.

2) Each instructor is assigned to at most one course-section at a given

time period(EC2). While assigning an instructor for a course section

 96

during the creation of the possible solution, all the previously generated

instructors are checked. If there is no instructor whose assigned course

section meetings do not conflict with those of the current course section,

a new instructor is generated and the total number of instructors

increases by one. Therefore, all constraints of this type are satisfied in

the possible solution.

3) Each classroom is assigned to at most one course-section at a given

time period(EC3). The assignments of course sections to classrooms are

not considered in the RDG since classroom assignments tend to be rather

trivial due to sufficient allocation facilities in the private school

timetabling problem.

9.2.5.3 Event-spread Constraints

1) Each meeting of a course-section should be assigned to different days

in a week (ES1). While assigning time slots for each of the meetings

belonging to a course section, it is checked that this constraint is

satisfied.

2) An even distribution of verbal and quantitative courses should be

achieved by assigning minimum and maximum hours for each course

type in a day(S_DIVMINWL, S_DIVMAXWL). After the solution has been

generated, minimum and maximum hours for courses offered from each

division in the solution is calculated for a subset of sections which are

probabilistically chosen. Then, the calculated values for those sections

give the constaints for this constraint type.

3) There should be a minimum number of gaps between course-sections

assigned to a section in a day unless stated otherwise.(i.e there can be a

one-hour lunch break.) Hence, compactness of the daily timetable for a

section should be achieved(S_MINGAP). Meetings of course sections for

a section are not assigned to time slots in a way that satisfies this

constraint. Therefore, there may be gaps in timetables for sections in the

created solution instance.

4) Course-sections assigned to an instructor in a day should be

consecutive and should contain a minimum number of gaps. This

 97

constraint is necessary so that instructors who are paid for each lecture

hour can finish their work at the private school in a shorter period. So,

compactness of the instructor daily timetables can also be

required(I_MINGAP). This constraint is implemented neither while

generating the solution nor once the solution has been constructed.

Minimizing the number of gaps for instructors and sections is not

considered in the sample solution of the RDG but is dealt with in the

penalty-allocating fitness function of the proposed framework. Therefore,

the memetic algorithm implemented attempts to find a timetable with

minimum number of gaps on instructors' timetables(and on sections'

timetables as well).

5) Number of hours of course-sections assigned to a section in a day

should be within predetermined minimum and maximum

hours(S_MINWL, S_MAXWL). After the solution has been generated,

minimum and maximum values for daily assigned hours in the solution

for a subset of sections are calculated. Those sections are

probabilistically chosen. Then, the calculated values for those sections

give the constaints for this constraint type.

6) Courses requiring more intellectual activity should be placed earlier in

the timetables than the ones that are generally accepted as being rather

easier(ES6). The type of each course section is determined by the

division that offers it. Constraints of this type are not dealt with in RDG

or the proposed framework.

9.2.5.4 Instructor Constraints

1) The specifications involving allowable hours of instructors should be

satisfied (I_EXC). After the solution has been generated, a subset of

instructors are chosen probabilistically. For each such instructor, several

time slots which remain unassigned for them in the solution are again

stochastically chosen and given as excluded time slots for the instructor.

2) Since a private school can have several faculties in different buildings,

travelling times of instructors between these buildings should be

minimized(I_MAXLOC). While assigning instructors to course sections, it

 98

is always satisfied that an instructor gives lectures at maximum two

branches on a day. Since the course section assignments for branches

are performed in order, this constraint is already satisfied in the

generated solution.

3) Number of hours of course-sections assigned to an instructor in a day

should also be within predetermined minimum and maximum

hours(I_MINWL, I_MAXWL). After the solution has been generated, a

subset of instructors are chosen probabilistically. Their minimum and

maximum values for daily assigned hours in the solution is calculated.

Then, the calculated values for those instructors give the constaints for

this constraint type.

4) Travelling times of instructors should also be considered when

assigning course-sections to them in a day(I_TRAVEL). During instructor

assignments for creating the solution instance, it is satisfied that there is

at least one hour travelling time left between two course-sections that

will be offered to sections of different branches in different locations by

the same instructor.

9.3 Assumptions for the RDG

Default assumptions for the OSS program of a private school are listed

below:

1) A problem instance has a predefined number of branches, grades,

divisions and sections. Each branch has several grades. Each of

those grades are divided into divisions. Finally, each such division

has several sections, i.e classes.

2) All sections within the same division and grade, i.e all Lycee 2

students from the quantitative division, have the same curriculum.

Therefore, a global curriculum, which determines which courses a

section should attend to according to its division and grade, should

be followed in all branches of the private school. This curriculum

keeps the number and lengths of meetings for the courses as well.

 99

3) The division number and grade number pair of a section uniquely

identifies with courses the section should take. Sections from a

division may be assigned to courses from other divisions as well.

To illlustate, a section of the verbal division can have courses from

the quantitative division. This fact results from the score

calculation of the OSS examination.

4) Each grade has a set of available time slots. These time slot

assignments for the grades may vary from branch to branch.

However, all the sections belonging to a specific grade in a specific

branch have the same set of available time slots. Besides, not all

such sections may use the same time slot subset from this set.

Therefore, timetables of different sections in the same grade may

differ slightly according to their exclusion constraints defined.

5) Each instructor is assigned to a number of course sections. Each

meeting of the same course-section is always taught by the same

instructor.

These assumptions readily apply to different programs of the private

schools other than the OSS program. They stem from the interviews and

investigations on the private school in Turkey.

9.4 Parameters for the RDG

There are several parameters such as number of time slots, number of

instructors, etc. to be assigned for the problem generation. All the

parameters are assigned values that are suitable for private school

timetabling. Those values are randomly selected among a range of

statistically appropriate choices. Therefore, minimum and maximum

limits for each such parameter is given to the random data generator.

Those parameters are listed in the appendix.

 100

9.5 Pseudocode for the RDG

The pseudocode for the RDG is as displayed in Table 9.1. The RDG code

creates a synthetic problem instance and solves it by satisfying all the

edge constraints defined in the problem. Then, it defines several

additional constraints on the problem as stated before. Below is a

summary.

1) Preset constraints for course sections, exclusions for sections and

instructors, event-spread constraints about the daily workloads of

instructors and sections are set once the random solution has been

created.

2) Other constraints(edge constraints, other event-spread constraints

and other instructor constraints) are satisfied owing to heuristics

employed during time slot and instructor assignments.

9.6 Output of the RDG

The output of the RDG consists of an input file where the problem is

written with its constraints, a file containing a sample solution and a file

containing the analysis of the created problem instance. A sample input

and analysis file can be found in the appendix.

 101

Table 9.1 The algorithm for RDG

//First generate the global curriculum
Generate available grades
For each grade available
 Generate available divisions
 For each division available
 Choose available courses from own division
 courses := courses U courses from other divisions
 For each course
 Generate number and length of meetings
//Generate the sections and
//Assign the necessary course sections to a generated section
Generate a number of branches
For each branch
 Choose a number of grades
 For each grade
 Generate available time slots
 Choose a number of divisions
 For each division
 Generate a number of sections
 For each section
 Create course sections according to the curriculum
 For each course section
 Assign available time slots of its grade to
 each of the meetings of course section
 Assign an instructor available to course
section

 //Once the problem is set and its solution has been created
 Generate exclusion constraints for some instructors and sections among their
 unused time slots in the solution
 Generate workload constraints for some instructors and sections

 102

CHAPTER 10

EXPERIMENTS AND DISCUSSION

10.1 Test Data

Eight different private school problem instances have been produced by

the implemented random data generator. Table 10.1 displays the analysis

of each of those test cases. In this table, the total number of events,

sections, divisions, grades, instructors, etc. are all listed for each problem

instance. In addition, the average number(ρ) and maximum number of

total workload for instructors and sections are displayed in the table. The

values for conflict densities of edge constraints in test cases, denoted as

CF in the table, are rather small. However, this does not imply that the

problem instances are easy to solve. As explained in section 2.5.5, the

conflict density for any private school timetabling problem where more

than 10 sections and instructors are involved cannot be greater than

0.2. Therefore, achieving a minimum number of gaps, i.e empty slots

between lecture hours for students and instructors, becomes the

constraint that is most difficult to satisfy. Besides, none of the test cases

experimented with in this study have a feasible timetable solution with no

gaps for all the instructors and students involved. For all the problem

instances, there are 8 days and 10 daily hours in the timetable. In each

of these problems, percent of course sections that define preset slots is

about %5. The problem instances presented in Table 10.1 each have

different properties, i.e different number of branches, instructors or work

loads. Memetic algorithm employing violation-directed hierarchical hill

climbing and newly proposed genetic operators, pure genetic algorithm

and multimeme algorithms are experimented on the randomly generated

test cases. The following sections present and discuss the

 103

Table 10.1 Analysis of Test Data. ρ refers to the average occupancy

rate(Alkan et. al. 2003), which means the average number of assigned

hours for instructors or sections.

 Test 1 Test

2

Test

3

Test

4

Test

5

Test

6

Test

7

Test 8

Meetings 186 312 232 108 378 188 408 438

Course
sections

39 62 99 18 66 51 83 88

Sections 5 14 22 4 9 7 9 18

Divisions 5 14 22 2 6 6 9 18

Grades 2 6 9 2 6 5 3 6

Branches 1 2 3 1 2 3 1 2

Instructors 12 17 13 8 21 14 17 21

CF 0.26 0.12 0.11 0.33 0.14 0.19 0.16 0.09

ρ
(sections)

47.20 27.28 13.18 35.00 50.66 32.42 57.11 29.77

ρ
(instructors)

19.66 22.47 22.30 17.50 21.71 16.21 30.24 25.52

Max.
section

58 32 16 39 52 34 67

40

Max.
instructor

34 33 33 25 32 23 41 41

Percent of
sections
defining
workload
constraints

80.00 57.14 50.00 50.00 66.66 57.14 33.33 33.33

Percent of
instructors
defining
workload
constraints

66.66 41.17 61.53 62.50 42.85 50.00 41.17 47.61

 104

results for those algorithms and aim to figure out the algorithm with best

performance on the private school timetabling problem instances.

10.2 Experimental Settings

There are 3 sets of experiments performed in this study. The first set of

experiments were done to reveal the performance of the proposed

memetic algorithm. In this set, experiments were carried out to figure

out

1. the combination of which proposed crossover and mutation

operators perform the best with the implemented VDHC method,

2. the success of VDHC method without using the crossover operator,

3. the success of the 12 different low-level hill climbers without the

management of the VDHC method.

Once these experiments were accomplished, the results for the VDHC

method along with the best combination of crossover and mutation

operators among the set of newly proposed operators were compared

with those for pure genetic algorithms and multimeme algorithms in the

next sets of experiments.

The second set of experiments aims to reveal the performance of the

pure genetic algorithm on the problem instances. In order to compare

traditional genetic algorithm and the proposed memetic algorithm

appropriately, either maximum number of generations allowed or the

population size for the genetic algorithm must be more than those for the

memetic algorithm. If both algorithms are processed within the same

number of maximum generations allowed and the same population size,

an unfair comparison arises. The memetic algorithm searches states, i.e

different individuals or possible solutions, at least as many as maximum

number of unsuccessful hill climbing steps, say N steps, during a local

search phase for an individual. So, if there are P individuals for the

memetic algorithm with transgenerational replacement strategy, there

 105

will be at least N(P-2) states evaluated in each generation. However, the

genetic algorithm with no local optimization phase searches P-2 states in

each generation. As a result, keeping the number of generations for the

two algorithms constant and comparing best solutions thereafter would

not lead to a successful comparison in this case. Instead, it should be

maintained that the average number of evaluations per run for the

genetic algorithm must be at least as much as the number of evaluations

for the memetic algorithm. The fitness evaluation is the most time-

consuming process for evolutionary algorithms. Moreover, the memetic

algorithm implementation utilizes fast fitness evolution after each hill

climbing step by only considering the violations in the modified regions of

the chromosome. So, if the genetic algorithm performs evaluations at

least as many as the memetic algorithm, it will be allowed to execute at

least as long as the memetic algorithm and will have enough chance to

exhibit its performance.

In the third set of experiments, the multimeme algorithm is applied. In

the first phase of these experiments, the individuals in the population

each carry merely one meme that identifies the hill climber to apply to

the individual. In the second phase, again multimeme approach is applied

but this time an individual carries memes as many as the number of

different hill climbers. In one local search step, those hill climbers are

applied to the individual in the order their corresponding memes are

located in the individual's memeplex.

Transgenerational replacement strategy and tournament selection

method with a tour size of 4 for mate selection were employed in the

experiments. Maximum number of unsuccessful hill climbing steps during

the local optimization phase of an individual is kept as 10. The next

section presents and discusses the results of each set of experiments.

 106

10.3 Results

10.3.1 Results for Memetic Algorithms

The first set of experiments aims to determine the combination of which

crossover and mutation operators among the set of newly proposed

operators gives the best results for the data instances. These

experiments are performed in two steps. In the first step, the best

mutation operator is determined and it is used while identifying the best

crossover operator in the second step. Then experiments without utilizing

a crossover operator and experiments without the VDHC method are

performed to indicate the contribution of each of those methods to the

memetic algorithm.

Unless otherwise stated, an experiment in the first set of experiments

consists of 30 runs each with 2000 generations by utilizing a specific

crossover and mutation operator and the VDHC method is kept on.

Population size is 50 for test cases from 1 to 6 and 100 for the remaining

cases. In the first-step experiments, all the 16 newly introduced mutation

operators are tested both with traditional uniform crossover and

traditional one-point crossover operators. From the studies of Alkan et.

al. (2003) and Ozcan et. al. (2005a), it is known that traditional

crossover and mutation operators perform at least as well as the genetic

operators designed to act on a certain level of the hierarchy on the

chromosome rather than the whole chromosome for several timetabling

problems. Therefore, in the first step of the initial experiments, both

uniform and one-point crossover operators are used while testing all the

new mutation operators. So, 32 different experiments are performed for

each data instance in the first step of this set of experiments. The

duration of each experiment varies approximately between 70 minutes to

6,5 hours according to the size of the problem instance that is being

tested. Therefore, a duration varying between 1,5 and 8,6 days is

necessary to perform all the first-step experiments on a data instance. In

order to shorten this duration, about 40 computers with Windows ME

 107

Table 10.2 Results for new mutation operators when used with traditional

crossover operators

Test1
UX 1PTX

σ β σ β

COURSESECTION_MT 29.80 0 30.00 0
RAND_SECTION_MT 27.16 0 29.33 0
RAND_DIVISION_MT 30.60 0 30.66 0
RAND_GRADE_MT 28.60 0 30.93 0
RAND_BRANCH_MT 28.86 0 29.90 0
RAND_INSTRUCTOR_MT 31.40 0 34.96 0
ALL_SECTION_MT 198.80 0.2 177.06 0
ALL_DIVISION_MT 208.76 0.1 173.76 0
ALL_GRADE_MT 71.83 0 51.80 0
ALL_BRANCH_MT 28.80 0 32.40 0
ALL_INSTRUCTOR_MT 239.86 3.53 253.13 3.13
VD_SECTION_MT 27.16 0 29.46 0
VD_DIVISION_MT 27.56 0 28.23 0
VD_GRADE_MT 27.96 0 31.06 0
VD_BRANCH_MT 28.73 0 28.36 0
VD_INSTRUCTOR_MT 27.86 0 26.63 0

Test2
UX 1PTX

σ β σ β

COURSESECTION_MT 101.73 0 111.10 0
RAND_SECTION_MT 98.66 0 104.76 0
RAND_DIVISION_MT 104.53 0 107.40 0
RAND_GRADE_MT 97.13 0 111.20 0
RAND_BRANCH_MT 100.36 0 110.56 0
RAND_INSTRUCTOR_MT 104.70 0 109.96 0
ALL_SECTION_MT 584.10 11.4 574.80 10.56
ALL_DIVISION_MT 586.33 11.9 598.96 10.46
ALL_GRADE_MT 523.70 2.43 490.10 1.03
ALL_BRANCH_MT 166.73 0 152.10 0
ALL_INSTRUCTOR_MT 573.70 11.63 592.36 11.33
VD_SECTION_MT 100.00 0 108.90 0
VD_DIVISION_MT 99.43 0 103.80 0
VD_GRADE_MT 101.83 0 106.96 0
VD_BRANCH_MT 99.30 0 111.60 0
VD_INSTRUCTOR_MT 96.56 0 107.43 0

 108

Table 10.2 (cont’d) Results for new mutation operators when used with

traditional crossover operators

Test 3
UX 1PTX

σ β σ β

COURSESECTION_MT 22.86 0 24.20 0
RAND_SECTION_MT 23.03 0 23.66 0
RAND_DIVISION_MT 23.06 0 24.20 0
RAND_GRADE_MT 24.06 0 23.50 0
RAND_BRANCH_MT 24.13 0 24.03 0
RAND_INSTRUCTOR_MT 26.50 0 26.96 0
ALL_SECTION_MT 374.60 3.13 360.53 2.93
ALL_DIVISION_MT 374.60 3.13 382.36 3.06
ALL_GRADE_MT 345.56 0.30 305.66 0
ALL_BRANCH_MT 101.0 0 74.10 0
ALL_INSTRUCTOR_MT 374.50 1.33 353.23 0.36
VD_SECTION_MT 22.66 0 23.73 0
VD_DIVISION_MT 22.66 0 22.36 0
VD_GRADE_MT 22.16 0 23.30 0
VD_BRANCH_MT 23.03 0 22.90 0
VD_INSTRUCTOR_MT 22.03 0 23.23 0

Test 4
UX 1PTX

σ β σ β

COURSESECTION_MT 4.80 0 4.53 0
RAND_SECTION_MT 4.76 0 5.03 0
RAND_DIVISION_MT 4.93 0 3.26 0
RAND_GRADE_MT 4.03 0 4.73 0
RAND_BRANCH_MT 4.30 0 4.30 0
RAND_INSTRUCTOR_MT 7.60 0 4.96 0
ALL_SECTION_MT 56.06 0 44.33 0
ALL_DIVISION_MT 22.76 0 12.03 0
ALL_GRADE_MT 22.10 0 16.00 0
ALL_BRANCH_MT 4.16 0 3.86 0
ALL_INSTRUCTOR_MT 86.46 0 83.70 0
VD_SECTION_MT 3.50 0 3.60 0
VD_DIVISION_MT 5.20 0 5.63 0
VD_GRADE_MT 2.96 0 5.46 0
VD_BRANCH_MT 4.00 0 4.86 0
VD_INSTRUCTOR_MT 5.36 0 4.06 0

 109

Table 10.2 (cont’d) Results for new mutation operators when used with

traditional crossover operators

Test 5
UX 1PTX

σ β σ β

COURSESECTION_MT 168.93 0 183.90 0
RAND_SECTION_MT 170.76 0 182.20 0
RAND_DIVISION_MT 172.53 0 191.76 0
RAND_GRADE_MT 175.86 0 186.73 0
RAND_BRANCH_MT 171.76 0 182.43 0
RAND_INSTRUCTOR_MT 183.63 0 184.46 0
ALL_SECTION_MT 500.63 22.26 508.16 18.50
ALL_DIVISION_MT 498.20 14.66 491.33 8.86
ALL_GRADE_MT 504.06 14.70 493.36 8.73
ALL_BRANCH_MT 289.23 0 244.56 0
ALL_INSTRUCTOR_MT 524.56 27.23 511.43 26.43
VD_SECTION_MT 170.16 0 181.56 0
VD_DIVISION_MT 169.80 0 178.,63 0
VD_GRADE_MT 168.63 0 179.43 0
VD_BRANCH_MT 170.86 0 187.53 0
VD_INSTRUCTOR_MT 172.76 0 183.53 0

Test 6
UX 1PTX

σ β σ β

COURSESECTION_MT 58.00 0 62.43 0
RAND_SECTION_MT 60.70 0 59.36 0
RAND_DIVISION_MT 56.10 0 62.10 0
RAND_GRADE_MT 56.63 0 59.30 0
RAND_BRANCH_MT 55.66 0 59.20 0
RAND_INSTRUCTOR_MT 62.70 0 63.30 0
ALL_SECTION_MT 315.53 3.33 310.40 1.56
ALL_DIVISION_MT 298.16 1.90 277.90 0.73
ALL_GRADE_MT 270.93 0.63 231.83 0.1
ALL_BRANCH_MT 159.06 0 132.40 0
ALL_INSTRUCTOR_MT 337.76 8.40 324.96 7.33
VD_SECTION_MT 54.36 0 55.83 0
VD_DIVISION_MT 55.16 0 58.23 0
VD_GRADE_MT 53.00 0 60.53 0
VD_BRANCH_MT 56.53 0 56.60 0
VD_INSTRUCTOR_MT 56.80 0 56.53 0

 110

Table 10.2 (cont’d) Results for new mutation operators when used with

traditional crossover operators

Test 7
UX 1PTX

σ β σ β

COURSESECTION_MT 128.66 0 137.33 0
RAND_SECTION_MT 132.16 0 138.10 0
RAND_DIVISION_MT 123.36 0 132.40 0
RAND_GRADE_MT 126.26 0 135.63 0
RAND_BRANCH_MT 129.73 0 136.10 0
RAND_INSTRUCTOR_MT 133.10 0 136.86 0
ALL_SECTION_MT 430.20 34.60 434.93 28.56
ALL_DIVISION_MT 434.83 34.40 436.93 29.06
ALL_GRADE_MT 409.43 9.93 305.86 0.13
ALL_BRANCH_MT 129.50 0 137.33 0
ALL_INSTRUCTOR_MT 436.10 40.26 451.30 37.26
VD_SECTION_MT 124.00 0 133.26 0
VD_DIVISION_MT 126.93 0 133.73 0
VD_GRADE_MT 126.70 0 138.03 0
VD_BRANCH_MT 126.50 0 138.40 0
VD_INSTRUCTOR_MT 124.70 0 133.00 0

 Test 8
 UX 1PTX
 σ β σ β

COURSESECTION_MT 155.46 0 164.93 0
RAND_SECTION_MT 154.16 0 167.46 0
RAND_DIVISION_MT 158.76 0 163.50 0
RAND_GRADE_MT 150.73 0 167.30 0
RAND_BRANCH_MT 154.16 0 167.90 0
RAND_INSTRUCTOR_MT 165.30 0 174.16 0
ALL_SECTION_MT 793.53 26.36 776.10 25.4
ALL_DIVISION_MT 791.53 25.9 776.10 25.4
ALL_GRADE_MT 750.76 13.80 728.63 4.73
ALL_BRANCH_MT 318.06 0 248.90 0
ALL_INSTRUCTOR_MT 793.86 27 794.23 25.46
VD_SECTION_MT 148.06 0 152.36 0
VD_DIVISION_MT 148.36 0 163.73 0
VD_GRADE_MT 146.13 0 170.43 0
VD_BRANCH_MT 158.80 0 164.16 0
VD_INSTRUCTOR_MT 148.20 0 162.86 0

 111

installed and 256MB RAM utilized were used for the first and second step

experiments. Thus, different experiments for the same problem instance

were spread-out on different computers of equal capacity.

The long duration of the first-step experiments resulted in using rather

small-sized test data instances for the experiments. However, these

instances have different properties, i.e different number of branches or

conflict densities, etc. So, the results are expected to adequately reflect

the performance of the newly proposed global search operators.

Table 10.2 shows the results for all the mutation operators both with

uniform crossover(UX) and one-point crossover(1PTX) on the eight test

cases. The symbols σ and β denote the average number of soft and hard

constraint violations in the best individual found after 2000 generations.

All the results in the table are averaged over 30 runs. Results in bold

indicate the top three configurations for each test instance. From these

results, it can be inferred that the traditional mutation operator, namely

COURSESECTION_MT, performs not far worse than the newly proposed

operators. Indeed, it performs much better than the type of the new

mutation operators that apply traditional mutation to all of their

corresponding classifiers. These operators are far more destructive. To

illustrate, ALL_INSTRUCTOR_MT, which applies traditional mutation to

the genes of each instructor, can be examined. This operator randomly

chooses a course section of each instructor and mutates it. It appears as

the most destructive and also the worst-performing operator among the

set of the mutation operators.

Another type of the mutation operators, which randomly choose their

corresponding classifier and apply traditional mutation on that part of the

chromosome, are approximately as good as the traditional mutation

operator for many test cases. Besides, violation-directed mutation

operators seem to be more promising than the other types among the

newly introduced mutation operators. A violation-directed mutation

operator chooses its corresponding classifier with tournament selection

 112

and randomly mutates a gene in the chosen classifier. In the tournament

selection, a classifier's chance of being selected increases with the

number of constraint violations contained in the subsolution it represents.

When the results for random mutations and violation-directed mutations

are compared, it can be claimed that the utilization of tournament

selection for choosing a classifier slightly improves the performance of

the mutation operator for most of the test cases. Test 1, 4 and 7 contain

merely one branch in their private school organization. Therefore,

COURSESECTION_MT, RAND_BRANCH_MT and ALL_BRANCH_MT apply

the same operation on the chromosome for those instances. Since there

is one branch for those instances, RAND_BRANCH_MT and

ALL_BRANCH_MT both act on the whole chromosome just as

COUSESECTION_MT, i.e the traditional mutation operator that mutates a

gene, which is a course section including all its meetings in the proposed

framework. Corresponding results in table 10.2 indicate that the number

of soft constraint violations reached for these three types of mutation

operators are very similar for test cases 1, 4 and 7.

Mutation operators that apply traditional mutation to all of the

corresponding classifiers in the chromosome have the worst performance.

Their implementation appears rather useless but it reflects the fact that

the degree of modification for mutation must be limited not to corrupt the

individual that has already been improved to some extent by global and

local search. Traditional mutation operator, random boundary mutations,

i.e mutation operators that randomly choose a classifier to mutate one of

its genes randomly, and violation-directed mutations have very similar

outcomes. In detail, violation-directed mutations appear as slightly better

mutation operators when the overall performance of the operators for all

the instances are compared.

Figure 10.1 compares the best individuals in each generation for

VD_GRADE_MT, RAND_BRANCH_MT, traditional mutation (or

COURSESECTION_MT) and ALL_BRANCH_MT on test 6 data instance.

 113

Figure 10.1 Comparison of best mutation operators among their group for

test case 6. Solid, dashed, dotted and dashed-dotted lines represent

results for VD_GRADE_MT, RAND_BRANCH_MT, COURSESECTION_MT

and ALL_BRANCH_MT respectively.

 114

These are the best operators among their corresponding group of

mutations for this problem. For instance, VD_GRADE_MT has the best

result among the other violation-directed mutation operators for this test

case. Similarly, RAND_BRANCH_MT gives the least average soft

constraint violations among all the mutation operators that choose a

random classifier and mutates one of its gene.

ALL_BRANCH_MT appears as the least destructive and thus most

successful mutation among the set of operators that apply traditional

mutation to every classifier they correspond to. As Figure 10.1 illustrates,

VD_GRADE_MT, whose results are drawn with solid lines, performs

slightly better than RAND_BRANCH_MT and traditional mutation.

Generally, violation-directed mutations have slightly better performance.

Hence, the second-step experiments are performed by using one of

them, namely VD_GRADE_MT, as the mutation operator. VD_GRADE_MT

selects a grade that has more constraint violations on the chromosome

and mutates a randomly chosen gene in the selected grade. In other

words, it acts as if the selected grade were the whole chromosome at

hand. 13 different crossover operators are each tested on the eight data

instances. During these second-step experiments, again memetic

algorithm that employs VDHC is employed. The results that are averaged

over 30 runs are displayed in table 10.3. Again, σ and β denote the

average number of soft and hard constraint violations found in the best

individual after 2000 generations. All the results in the table are

averaged over 30 runs. The results in table 10.3 show that uniform

crossover generally perform better than the newly proposed operators.

The new operators can only compete with traditional one-point crossover

operator.

The uniform crossover operators that treat each of their corresponding

classifiers as a gene, i.e the operators that end with the UX suffix, are

not good alternatives for the traditional uniform crossover. Therefore, it

 115

Table 10.3 Results for new crossover operators when used with

VD_GRADE_MT mutation operator

Test 1 Test 2 Crossover Operator
 σ β σ β
SECTION_UX 14 29.86 0 108.46 0
DIVISION_UX 13 30.20 0 98.10 0

GRADE_UX 12 32.93 0 103.76 0

BRANCH_UX 11 X X 113.86 0
I_UX 15 30.40 0 105.86 0
VD_COURSESECTION_1PTX9 32.10 0 110.03 0
VD_SECTION_1PTX 8 31.63 0 104.96 0
VD_DIVISION_1PTX 7 33.60 0 109.80 0
VD_GRADE_1PTX 6 31.16 0 104.76 0

VD_BRANCH_1PTX 5 X X 113.06 0
VD_I_1PTX 10 30.50 0 105.83 0

Test 3 Test 4 Crossover Operator
 σ β σ β
SECTION_UX 22.43 0 3.90 0

DIVISION_UX 23.33 0 4.53 0
GRADE_UX 23.03 0 5.00 0
BRANCH_UX 23.96 0 X
I_UX 23.36 0 4.33 0

VD_COURSESECTION_1PTX 23.53 0 4.50 0

VD_SECTION_1PTX 24.06 0 5.16 0
VD_DIVISION_1PTX 24.80 0 4.93 0
VD_GRADE_1PTX 22.80 0 4.93 0
VD_BRANCH_1PTX 23.40 0 X
VD_I_1PTX 23.86 0 4.80 0

 116

Table 10.3 (cont’d) Results for new crossover operators when used with

VD_GRADE_MT mutation operator

Test 5 Test 6 Crossover Operator
 σ β σ β
SECTION_UX 180.40 0 60.33 0
DIVISION_UX 178.80 0 59.10 0
GRADE_UX 181.16 0 60.86 0
BRANCH_UX 182.70 0 60.16 0
I_UX 173.76 0 61.43 0
VD_COURSESECTION_1PTX 177.40 0 59.63 0
VD_SECTION_1PTX 179.06 0 58.36 0

VD_DIVISION_1PTX 182.06 0 59.70 0
VD_GRADE_1PTX 185.66 0 57.80 0

VD_BRANCH_1PTX 183.00 0 57.50 0

VD_I_1PTX 183.36 0 59.76 0

Test 7 Test 8 Crossover Operator
 σ β σ β
SECTION_UX 136.66 0 156.43 0

DIVISION_UX 133.06 0 156.43 0

GRADE_UX 137.76 0 166.90 0
BRANCH_UX X 174.20 0
I_UX 130.60 0 164.16 0
VD_COURSESECTION_1PTX 136.70 0 164.53 0
VD_SECTION_1PTX 138.40 0 165.46 0
VD_DIVISION_1PTX 136.90 0 169.46 0
VD_GRADE_1PTX 139.33 0 163.23 0

VD_BRANCH_1PTX X 170.83 0
VD_I_1PTX 140.13 0 169.03 0

 117

is best to keep the unit of inheritance as genes, or course sections, rather

than larger groupings such as sections or grades, etc. The violation-

directed one-point crossover operators choose their corresponding

classifier among the ones with more constraint violations via tournament

selection and take this classifier as the crossover point. To illustrate,

VD_SECTION_1PTX selects a section with more constraint violations and

assigns it as the crossover point during the recombination process. Unlike

the case in mutation, this violation-directed selection process does not

improve the results at all. BRANCH_UX and VD_BRANCH_1PTX cannot

work on data instances with only one branch. Therefore, such cases are

marked with an X symbol on table 10.3.

Table 10.4 displays the results of the memetic algorithm employing the

VDHC method and traditional genetic operators for each data instance.

These results are listed again along with the average number of

evaluations per run to identify the success brought about by VDHC

method and crossover. Tables 10.5 and 10.6 display the results of the

best individual for the memetic algorithm when only crossover operation

and only VDHC method are disabled respectively.

When crossover is not utilized, all the genes of a parent pass to one

offspring and all the genes of the second parent pass to the other

offspring. So, the genetic contents of the parents are directly copied to

the offsprings. Results in table 10.5 indicate that disabling recombination

process does not cause any hard constraint violations in the best

individual. However, the number of soft constraint violations significantly

increases for each of the test cases. Therefore, we can conclude that the

recombination operation is still necessary while VDHC method

coordinates the low-level hill climbers.

In order to state the performance improvement of the memetic algorithm

brought about by the VDHC method, hill climbers are experimented on

the

 118

Table 10.4 Results for memetic algorithm utilizing uniform crossover and

traditional mutation along with VDHC Method

Test Case Avg. No. of Soft
Constraint
Violations

Avg. No. of Hard
Constraint
Violations

Avg. No. of
Evaluations

Test 1 29.80 0 1,215,225.93
Test 2 101.73 0 1,181,180.50
Test 3 22.86 0 1,175,149.46
Test 4 4.80 0 1,230,088.16
Test 5 168.93 0 1,170,519.13
Test 6 58.00 0 1,177,595.96
Test 7 128.66 0 2,415,368.03
Test 8 155.46 0 2,396,330.70

Table 10.5 Results for memetic algorithm without crossover operator

while still utilizing VDHC method

Test Case Avg. No. of Soft
Constraint
Violations

Avg. No. of Hard
Constraint
Violations

Avg. No. of
Evaluations

Test 1 33.66 0 1,199,002.03
Test 2 116.70 0 1,170,189.80
Test 3 27.43 0 1,161,541.46
Test 4 5.46 0 1,243,200.93
Test 5 193.53 0 1,157,900.46
Test 6 70.40 0 1,166,520.76
Test 7 144.50 0 2,365,706.96
Test 8 185.26 0 2,358,542.80

Table 10.6 Results for memetic algorithm without VDHC operator while

traditional genetic operators are employed

Test Case Avg. No. of Soft
Constraint
Violations

Avg. No. of Hard
Constraint
Violations

Avg. No. of
Evaluations

Test 1 40.43 0 1,204,912,20
Test 2 220.90 0 1,170,424,70
Test 3 42.13 0 1,166,600,36
Test 4 9.80 0 1,254,634,60
Test 5 236.50 0 1,159,236,00
Test 6 81.53 0 1,180,109,90
Test 7 153.63 0 2,402,756,66
Test 8 283.36 0 2,402,954.86

 119

test cases when VDHC method is not employed and the low-level hill

climbers are randomly chosen in the local search phase. In this case, no

level, i.e work area, is specified for any hill climber and they act on the

whole chromosome.

Results in table 10.6 are clear indications for the necessity of the VDHC

method since leaving the operation of hill climbers to randomness leads

to much more soft constraint violations in each of the test cases.

Figure 10.2 displays the average best individual fitness in each

generation for different configurations of the memetic algorithm, which

are employing both VDHC method and traditional genetic operators,

disabling only the crossover operation and disabling only the VDHC

method respectively. The results belong to test case 8. Since tables 10.4,

10.5 and 10.6 show that similar graphs would be drawn for the rest of

the test cases, only the results of one data instance have been

represented as a graph for illustration purpuses.

As figure 10.2 displays, the utilization of the VDHC method greatly

enhances the memetic algorithm. In addition, memetic algorithm is

significantly enhanced by the application of recombination operation.

It can be argued that the comparison offered by tables 10.4, 10.5 and

10.6 is fair enough since the average number of evaluations per run for

each of the three configurations discussed are close to each other for

each of the test cases.

In an evolutionary algorithm, the fitness of the best individual must be

observed as generations pass since it may stop increasing and may even

start to decrease after certain number of generations. Thus, the stopping

criteria for an evolutionary algorithm must also take this into account.

Figure 10.3 displays the fitness of best individual vs. generations for the

memetic algorithm with VDHC method, uniform crossover and traditional

 120

Figure 10.2 Comparison of results for different combinations of VDHC and

crossover utilization on test case 8

 121

mutation. Number of constraint violations of the best individual after

2000 generations resulted in these experiments are listed in table 10.4.

Figure 10.3 reveals that only the best individuals for test case with the

least number of events, namely test case 4, begin to have less fitness

values even before 1000 generations. However, the fitness for best

individuals continue increasing for the remaining test cases. So, using at

least 2000 generations is necessary for them.

As figure 10.3 displays, problem instance of test case 4 is easiest to solve

for the memetic algorithm among all the test cases although its conflict

density of edge constraints is higher. Therefore, the complexity of a

problem instance for private school timetabling is highly dependant upon

the size of the data, i.e the number of meetings involved, rather than the

intensity of edge constraints. The problem instances with larger sizes,

test cases 5, 7 and 8, have all less fitness values for best individuals

during each generation when compared with other data instances.

Figure 10.4 shows similar results for the memetic algorithm in the

absence of the VDHC method. When VDHC method does not coordinate

the process of low-level hill climbers, the overall best individual fitness

values in each generation for the test cases significantly reduce. In this

case, best individual fitness values for test case 4 merely continue

improving as figure 10.4 illustrates. This shows that it will take more

number of generations for the results of this test case to reach their

maximum values and then begin falling as illustrated in figure 10.3.

As discussed in section 7.7, there are 12 different low-level hill climbers

implemented to resolve the violations of a specific constraint type for the

private school timetabling problem. The VDHC method determines which

hill climber will be applied to which portion of the current individual’s

chromosome in the local search phase. The hill climbers are divided into

two groups. The 6 hill climbers in the first group aim to resolve the

constraint violations corresponding to sections, i.e students,

 122

Figure 10.3 Best individual fitness in generations for the memetic

algorithm with VDHC method and traditional genetic operators

 123

Figure 10.4 Best individual fitness in generations for the memetic

algorithm employing traditional genetic operators without utilizing VDHC

method

 124

while the other 6 second group hill climbers attempt to resolve

instructors’ constraint violations. When the modification brought about by

a hill climber improves the fitness of the individual, the success rate of

the hill climber increases. However, if the hill climber’s process has

corrupted the individual and thus reduced its fitness value, the previous

genetic content of the individual is maintained and the success rate of the

hill climber reduces.

The success rate of each hill climber averaged over all runs is displayed

in figures 10.5 and 10.6. The success rates on each test case in figures

10.5 and 10.6 belong to first and second group hill climbers respectively.

As figure 10.5 illustrates, the hill climbers that attempt to resolve the

violations arising from maximum daily workload specifications for

sections perform the best for all the test cases. The ones resolving

minimum workload constraints have less success rates. The hill climber

that slides meetings in a section’s timetable to remove gaps is the worst

performer among the first group hill climbers. Among second group hill

climbers, the ones that aim to resolve violations of instructor daily

workload constraints again have better success rates. The hill climber

that endeavors to assign at least one empty hour for travelling time

between the lectures that are held at different branches for an instructor,

i.e HC_I_TRAVEL, and the hill climber that tries to assure that an

instructor gives lectures in at most 2 different locations, i.e branches,

have 0 success rates for test cases with only one branch. Both of the hill

climbers that slide meetings of sections and instructors to remove gaps

have the least success rates since they are the most destructive

operators. They apply the sliding process to each meeting of the course

section at hand in case the assignment of the meeting causes gaps in the

timetable of the current instructor or section. This would surely lead to

more violations of other constraint types. Thus, the overall fitness of the

current individual is reduced and the hill climber becomes unsuccessful.

 125

Figure 10.5 Average success rates of first group hill climbers

 126

Figure 10.6 Average success rates of second group hill climbers

 127

Hill climbers that resolve workload constraints reassign meetings to time

slots where daily workload is less. They apply this procedure only to a

randomly chosen meeting of the current course section. So, they are less

destructive and thus better performers.

10.3.2 Results for Pure Genetic Algorithms

In the second set of experiments, the pure genetic algorithm merely

employing standard genetic operators without local search is applied to

the problem instances. 50 runs were carried out for each test data while

allowing a maximum number of 20000 generations in each run. The

population size was taken to be 100 for test cases from 1 to 6 and 200

for test 7 and 8. Since the genetic algorithm was unable to find a

timetable with no hard constraint violations and no gaps in neither of the

runs, each run lasted for 20000 generations. Figure 10.7 shows the

average best individual fitness per run after 20000 generations for each

test case. From figure 10.7, it can be argued that allowing the genetic

algorithm to create more generations than 20000 would lead to better

results since the results for the fitness of best individuals in each

generation increases until 20000 generations. However, this many

generations allowed are sufficient to compare the genetic algorithm with

the proposed memetic method.

Table 10.7 Results for Pure Genetic Algorithm

 Avg. No. of Soft
Constraint
Violations

Avg. No.
of Hard
Constraint
Violations

Avg. No. of
Evaluations

Test 1 95.36 0.06 1,944,786.66
Test 2 199.34 0 1,944,918.54
Test 3 34.66 0 1,944,955.96
Test 4 50.80 0 1,944,935.94
Test 5 341.38 0.48 1,944,757.68
Test 6 91.70 0.06 1,944,916.10
Test 7 281.08 5.30 3,944,744.26
Test 8 275.34 0.04 3,944,591.74

 128

Figure 10.7 Best individual fitness in generations for pure genetic

algorithm

 129

Table 10.7 summarizes the results obtained from the second set of

experiments. The first and second columns give the number of soft and

hard constraint violations found in the best individual after 20000

generations. The results shown in the table are averaged over all runs.

The average number of evaluations per run are also displayed in the

table.

When tables 10.4 and 10.6 are compared, it is clear that pure genetic

algorithm performs much poorer than the memetic algorithm with VDHC

method for each test case although it is allowed to carry out much more

evaluations and thus to visit much more states than the memetic

algorithm. Therefore, the memetic algorithm with VDHC method

obviously outperforms the pure genetic algorithm, which indicates the

necessity of well managed local optimization phase.

10.3.3 Results for Multimeme Algorithms

Multimeme algorithms were experimented on 8 randomly generated test

cases. The six of these problem instances have sizes varying between

108 and 378. For them, population size is 50. The other two instances

have larger sizes, i.e total number of meetings, 408 and 438. For them,

the population size is kept as 100. These population sizes are the same

values as those kept during the experiments utilizing memetic algorithm.

Each of the experiments were carried on for 50 runs and the results to be

mentioned are averaged over the 50 runs.

In order to investigate the benefits of the utilization of the self-

inheritance mechanism(SIM), the experiments for the multimeme

algorithm are performed in two steps. In the first-step experiments, the

memes for the offsprings are chosen randomly from the memes of their

parents. In the second-step experiments, SIM, which requires that the

offsprings acquire the memes of the fitter parent, is employed during

meme crossover.

 130

Each of the first-step multimeme experiments were carried out both with

uniform and one-point crossover methods employed as global searchers.

The second-step experiments which utilize SIM employed traditional

uniform crossover since that recombination operator generally gives the

best results.

In the first group of first and second step multimeme experiments, each

individual in the population contains merely one meme. In the second

group of these experiments, each individual owns memes as many as the

number of different hill climbers. A meme in all of the mutimeme

experiments denotes the hill climber to apply to the individual and the

maximum number of unsuccessful applications of the hill climber to be

allowed on the individual. All multimeme approaches employ traditional

genetic operators during their evolutionary cycles.

In tables 10.8 and 10.9, UX and 1PTX refer to traditional uniform

crossover and one-point crossover, respectively. Tables 10.8 and 10.9

show the average number of constraint violations along with average

number of evaluations per run for the multimeme algorithm without

utilizing SIM. Tables 10.10 and 10.11 show the results obtained from the

multimeme algorithm with SIM. Tables 10.8 and 10.10 show results with

merely one meme contained in an individual. In the experiments to

obtain these results, each run continued for 5000 generations. Tables

10.9 and 10.11 show the case where an individual carries memes as

many as the number of hill climbers, i.e 12 memes. In the corresponding

experiments, each run continued for 500 generations. This less number

of generations for this version of the multimeme algorithm is necessary

since this implementation of the multimeme algorithm with memeplex

size 12 performs approximately 12 times more number of evaluation and

hill climbing steps than the multimeme algorithm with memeplex size

equal to 1. In order to compare the algorithms better, they should be

given equal chances and this is best reflected in terms of number of

evaluations performed in each run.

 131

Table 10.8 Results for multimeme algorithm with 1 meme in an individual

Avg. Soft
Constraint
Violations

Avg. Hard
Constraint
Violations

Avg. No. of Evaluations

UX 1PTX UX 1PTX UX 1PTX

Test 1 63.62 71.56 0 0 1,974,548.76 1,975,130.44
Test 2 243.94 251.68 0 0 1,974,574.90 1,969,633.68
Test 3 51.96 53.36 0 0 1,952,355.34 1,955,005.92
Test 4 23.76 27.52 0 0 1,983,440.62 1,983,951.04
Test 5 273.56 279.94 0 0 1,973,980.68 1,976,328.20
Test 6 103.22 109.04 0 0.02 1,971,461.48 1,967,877.28
Test 7 187.18 196.32 0 0 4,040,929.48 4,031,781.16
Test 8 313.14 322.70 0 0 4,025,267.64 4,019,501.58

Table 10.9 Results for multimeme algorithm with 12 memes in individual

Avg. Soft
Constraint
Violations

Avg. Hard
Constraint
Violations

Avg. No. of Evaluations

UX 1PTX UX 1PT
X

UX 1PTX

Test 1 64.88 67.80 0 0 2,083,265.88 2,072,503.00
Test 2 282.56 283.22 0 0 2,079,223.08 2,072,609.20
Test 3 86.92 91.84 0 0 2,069,506.30 2,064,981.90
Test 4 17.2 17.44 0 0 2,098,220.42 2,083,963.26
Test 5 307.30 315.48 0 0.02 2,076,575.90 2,066,322.98
Test 6 131.70 132.64 0 0 2,074,890.22 2,069,059.00
Test 7 239.32 235.08 0 0 4,268,116.20 4,218,375.50
Test 8 385.94 377.40 0 0 4,278,337.70 4,234,603.44

 132

Table 10.10 Results for multimeme algorithm utilizing SIM with 1 meme

in individual

 Avg. Soft
Constraint
Violations

Avg. Hard
Constraint
Violations

Avg. No. of Evaluations

Test 1 68.26 0 1,962,226.12
Test 2 243.10 0 1,968,741.84
Test 3 50.30 0 1,954,309.56
Test 4 22.36 0 1,987,404.34
Test 5 275.38 0 1,971,033.34
Test 6 105.54 0.02 1,972,612.30
Test 7 187.78 0 4,035,978.30
Test 8 312.34 0 4,010,079.84

Table 10.11 Results for multimeme algorithm utilizing SIM with 12

memes in individual

 Avg. Soft
Constraint
Violations

Avg. Hard
Constraint
Violations

Avg. No. of Evaluations

Test 1 68.54 0 2,085,621.96
Test 2 282.48 0 2,082,281.04
Test 3 89.86 0 2,072,443.30
Test 4 17.52 0 2,095,085.42
Test 5 314.00 0 2,074,950.94
Test 6 132.10 0 2,075,960.52
Test 7 239.06 0 4,272,457.92
Test 8 378.70 0 4,280,366.48

 133

This conclusion can also be drawn from the fact that evaluation of

individuals is the bottleneck of genetic algorithms.

The first thing to notice from the tables belonging to the multimeme

algorithm is that all versions of the multimeme algorithm implemented

have outcomes worse than those of the memetic algorithm for all the test

cases.

Secondly, the utilization of SIM for the multimeme algorithm does not

enhance the overall performance in most of the cases. The fitness of best

individuals is even slightly degraded while employing SIM. Figure 10.8

provides means for better comprehension of the meme concentration in

each generation for random and SIM versions of the multimeme

algorithm with one meme in an individual. The meme configurations with

top 5 average concentrations are displayed. All these memes denote the

hill climber HC_EC1 and they have values from 5 to 9 for the maximum

number of unsuccessful iterations. Blue lines refer to the results when

SIM is utilized, while red lines show the results for random inheritance of

memes in the population. The figure reveals that there is little difference

between the concentrations belonging to the most intensive 5 memes for

the two versions of the algorithm. The approximately equal meme

concentration gives an explanation for the approximately equal results

obtained while utilizing SIM or random meme inheritance.

Figure 10.9 shows the best individual fitness vs. generations both for SIM

utilization and random inheritance on test case 1. The slight degregation

of results brought about by SIM is clearly observed from the figure.

Therefore, for private school timetabling problem, inheriting the memes

of the fitter parent to offsprings does not improve the performance of the

algorithm. The result can be traced to the fact that memes of the parents

resemble each other as time passes.

Figure 10.10 compares the results of the multimeme experiments with 1

and 12 memes for an individual on test 8 problem instance. It displays

 134

Figure 10.8 Meme concentration in first 1000 generations for multimeme

algorithm with 1 meme on test case 1. Memes with top 5 average

concentration are displayed. Blue lines indicate utilization of SIM. Red

lines denote the results for random meme inheritance.

 135

Figure 10.9 Best individual fitness in generations for multimeme

algorithm with 1 meme in individual for test case 1.

 136

the fitness of the best individual in each generation for the two

algorithms.

When we try to compare best fitness values in terms of number of

generations passed, the multimeme algorithm where an individual has 12

memes seems to be doing better. However, this way of comparison leads

to a wrong interpretation of results. Hence, Figure 10.10 is obviously

misleading and has been intentionally put in this study to point out the

mistake of comparing two such algorithms in terms of generations.

In a generation of an evolutionary algorithm with local search, each

individual enters through a local optimization phase. In the multimeme

algorithm with memeplex size equal to 1, each individual is applied only

one hill climbing operator. However, in the other version of the algorithm

where each individual has 12 memes, each newly created individual is

applied possibly different 12 hill climbing operators. If we keep the

maximum number of unsuccessful applications of a hill climber in a

meme constant, it is clear that there will be much more individual

evaluations during a generation of the multimeme algorithm with

memeplex size equal to 12 than the multimeme algorithm with

memeplex size equal to 1. Here, it is assumed that the memeplex is

composed of the memes that the individual carry and thus its size refers

to the number of memes belonging to each individual. Therefore, the

average number of evaluations per run should be consulted for the real

performance of the two versions of multimeme algorithms.

By examining the tables for the results of the multimeme algorithm, the

following observation can be made: In the results for most of the test

instances, multimeme algorithm with memeplex size equal to 12 found

best timetables with more number of soft constraint violations although it

performed more number of evaluations than the multimeme algorithm

with memeplex size equal to 1. Therefore, increasing the number of

memes in an individual cannot lead to a performance increase in the

private school timetabling.

 137

Figure 10.10 Best fitness vs. generations for multimeme algorithms on
test 8 data.

 138

Figure 10.11 Best fitness vs. generations for multimeme algorithm with
memeplex size 1 on test 8 data.

 139

Figure 10.11 also contributes to the indication of the success of

multimeme algorithm with only one meme in each individual over the

other multimeme algorithm with memeplex size equal to 12 on test 8

problem instance. The fitness value of the best individual that the first

algorithm reaches after 5000 generations is better than that of the latter

after 500 generations. However, although the first one went through

5000 generations, the number of evaluations it performed during a run

on the average is 4,010,079.84, which is less than the number of

evaluations the latter performed, namely 4,280,366.48.

 140

CHAPTER 11

 CONCLUSION

In this study, a new timetabling problem for private schools in Turkey

have been discussed. A memetic algorithm employing VDHC method has

been designed to solve the synthetic instances of this problem. The

experiments for the randomly generated private school timetabling

problem instances have been attempted with pure genetic algorithms and

multimeme algorithms as well as the proposed memetic algorithm.

Among the new global search operators proposed, violation-directed

mutations gave slightly better results than the traditional mutation

operator. However, uniform crossover gave the best results among all

the newly proposed crossover operators.

The results obtained clearly reveal that the utilization of VDHC method

for memetic algorithms greatly enhances the results for all the test cases.

This can be traced to the fact that the success rates of the hill climbers

are most increased with the application of the VDHC method. The VDHC

method provides hill climbers with effective management and

coordination. It chooses the hill climbers whose corresponding violations

are more concentrated on the chromosome and guides them to the areas

of the chromosome where there are more violations for them to resolve.

Although the pure genetic algorithm is allowed to evaluate more states in

the search space than those for the memetic algorithm per run, it turns

out to give worse results for all the test cases.

 141

The results for multimeme algorithms are even worse than those of the

memetic algorithm where hill climbers to act on the individual are

randomly chosen without the utilization of VDHC method.

As a result, memetic algorithms come out as the best choice for the

private school timetabling problem, especially when their low-level

operators are managed by efficient hyper-heuristics.

 142

REFERENCES

Abramson, D. (1991a) "Constructing School Timetables Using Simulated
Annealing", Sequential and Parallel Algorithms, Management Science,
vol. 37, pp. 98-113.

Abramson, D. and Abela, J. (1991b) "A Parallel Genetic Algorithm for
Solving the School Timetabling Problem", Technical Report, Division of
Information Technology, C.S.I.R.O.

Alkan, A. and Ozcan, E. (2003) "Memetic Algorithms for Timetabling",
Proc. of 2003 IEEE Congress on Evolutionary Computation, pp. 1796-
1802.

Bufe’, M., Fischer, T., Gubbels, H., Hacker, C., Hasprich, O., Scheibel, C.,
Weicker, K., Weicker, N., Wenig, M. and Wolfangel, C. (2001)
"Automated Solution of a Highly Constrained School Timetabling Problem
- Preliminary Results", Proc. of the EvoWorkshops on Applications of
Evolutionary Computing, pp. 431 – 440.

Burke, E.K., Newall, J.P. and Weare, R.F. (1995a) "A Memetic Algorithm
for University Exam Timetabling", Selected papers from the First
International Conference on Practice and Theory of Automated
Timetabling, pp. 241 – 250.

Burke, E.K., Elliman, D., Ford, P. H., and Weare, R. F. (1995b)
"Examination Timetabling in British Universities: A Survey", PATAT 1995:
76-90E.

Burke, E. K., Elliman, D.G. and Weare, R.F. (1995c) "The Automation of
the Timetabling Process in Higher Education", Journal of Educational
Technology Systems, vol. 23, no 4, pp. 257-266, Baywood Publishing
Company.

Burke, E.K., Cowling, P. and Landa Silva, J.D. (2001a) “Hybrid
Population-based Metaheuristic Approaches for the Space Allocation
Problem”, Proc. of the 2001 Congress on Evolutionary Computation (CEC
2001), IEEE press, pp. 232-239.

Burke, E.K., Cowling, P., De Causmaecker, P. and Vanden Berghe, G.
(2001b) “A Memetic Approach to the Nurse Rostering Problem”, Applied
Intelligence, 15(3), pp. 199-214.

 143

Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P. and Schulenburg,
S. (2003) “Hyper-heuristics: An Emerging Direction In Modern Search
Technology”, Ch. 16 in Handbook of Meta-Heuristics, pp. 457–474,
Kluwer Academic Publishers.

Burke, E.K. and Landa Silva, J.D. (2004) “The Design of Memetic
Algorithms for Scheduling and Timetabling Problems”, Recent Advances
in Memetic Algorithms, Studies in Fuzziness and Soft Computing, vol.
166, Springer, pp. 289-312.

Collingwood, E., Ross, P. and Corne, D. (1997) “A Guide to GATT”.

Colorni, A., Dorigo, M. and Maniezzo, V. (1990) “A Genetic Algorithm to
Solve the Timetable Problem”, Technical Report 90-060, Politecnico di
Milano.

Corne, D. and Ross, P. http://www.dcs.napier.ac.uk/~peter/sw/clump.c,
Last Access Date: 06/21/2005.

Corne, D., Ross, P. and Fang, H. (1994) “Fast Practical Evolutionary
Timetabling”, Proc. of AISB Workshop on Evolutionary Computing.

Erben, W. (1995) “A Grouping Genetic Algorithm for Graph Coloring and
Exam Timetabling”, The Practice and Theory of Automated Timetabling
III: Selected Papers from the 3rd International Conference on the
Practice and Theory of Automated Timetabling (PATAT 1995), Lecture
Notes in Computer Science, 1153, pp. 198-211, Springer.

Even, S., Itai, A. and Shamir, A. (1976) “On the Complexity of Timetable
and Multicommodity Flow Problems”, SIAM J. Comput., 5(4): pp. 691-
703.

Fang, H. (1994) “Genetic Algorithms in Timetabling and Scheduling”,
Ph.D. Thesis, Department of Artificial Intelligence, University of
Edinburgh, Scotland.

Filho, G. R. and Lorena, L. A. N. (2001) “A Constructive Evolutionary
Approach to School Timetabling” , Lecture Notes In Computer Science,
vol. 2037, Proc. of the EvoWorkshops on Applications of Evolutionary
Computing, pp. 130 – 139.

Furtado, J. C. and Lorena, L. A. N. (1998) “Constructive Genetic
Algorithms for Clustering Problems”, Evolutionary Computation.

Junginger, W. (1986) “Timetabling in Germany – a Survey”, Interfaces,
vol. 16, pp. 66-74.

Hentenryck, P. V. and Saraswat, V. A. (1997) “Constraint Programming:
Strategic Directions”, Constraints Journal, vol. 2, pp. 7–33.

 144

Holland, J.H. (1975) “Adaptation in Natural and Artificial Systems”, The
University of Michigan Press.

Krasnogor, N., Smith, J.E. (2001) “Emergence of Profitable Search
Strategies Based on a Simple Inheritance Mechanism”, Proc. of the 2001
Genetic and Evolutionary Computation Conference, Morgan Kaufmann.

Krasnogor., N. (2002a) “Memetic Algorithms”, A Tutorial given in the
Seventh International Conference on Parallel Problem Solving from
Nature (PPSN VII), Granada, Spain.

Krasnogor, N. (2002b) “Studies on the Theory and Design Space of
Memetic Algorithms”, PhD Thesis, University of the West of England,
Bristol, United Kingdom.

Krasnogor, N. and Gustafson, S. (2003a) “The Local Searcher as a
Supplier of Building Blocks in Self-Generating Memetic Algorithms”,
Fourth International Workshop on Memetic Algorithms (WOMA IV)
Workshop, Proc. of the 2003 Genetic and Evolutionary Computation
Conference, GECCO 2003, Chicago, USA.

Krasnogor, N. and Gustafson, S. (2003b) “A study on the use of “Self-
Generation” in Memetic Algorithms”.

Marte., M. (2000) “Towards Constraint-based Grammar School
Timetabling”, Proc. of the 3rd International Conference on the Practice
and Theory of Automated Timetabling, pp. 222–224.

Marte, M. (2003) “Models and Algorithms for School Timetabling – A
Constraint-Programming Approach”, Doctoral thesis, Institut für
Informatik der Universität München.

Miranda, V. and Proença, L. M. (1999) “Genetic/Evolutionary Algorithms
and Application to Power Systems”, ISAP'99 - Intelligent Systems
Application to Power Systems, Tutorial Course Book.

Moscato, P. and Norman, M.G. (1992) “A `Memetic' Approach for the
Traveling Salesman Problem Implementation of a Computational Ecology
for Combinatorial Optimization on Message-Passing Systems”, Parallel
Computing and Transputer Applications, Amsterdam, pp. 187-194.

Müller, T. (2002) “Some Novel Approaches to Lecture Timetabling”,
CPDC'.

 145

Terashima-Marin, H., Ross, P.M. and Valenzuela-Rendon, M. (1999)
“Evolution of Constraint Satisfaction Strategies in Examination
Timetabling”, Proc. of the GECCO-99 Genetic and Evolutionary
Computation Conference, pp 635-642. Morgan Kaufmann.

OSYM, Selection and Placement of Students in Higher Education
Institutions in Turkey, A condensed English Version.
http://www.osym.gov.tr/BelgeGoster.aspx?DIL=1&BELGEBAGLANTIANAH
=169, Last Access Date: 06/21/2005.

Ozcan, E. and Ersoy, E. (2005a) "Final Examination Scheduler – FES”,
IEEE Congress on Evolutionary Computation, to appear.

Ozcan, E. and Ersoy, E. (2005b) "Solving Timetabling Problems Using
Memetic Algorithms", in review.

Radcliffe, N.J. and Surry, P.D. (1994) “Formal Memetic Algorithms”,
Evolutionary Computing: AISB Workshop.

Ross, P., Corne, D. and Fang, H. L. (1994a) “Improving Evolutionary
Timetabling with Delta Evaluation and Directed Mutation”, Parallel
Problem Solving from Nature III, Springer Verlag.

Ross, P., Corne, D. and Fang, H. L. (1994b) “Successful Lecture
Timetabling with Evolutionary Algorithms”, Proc. of the ECAI 94
Workshop on Applications of Evolutionary Algorithms.

Santos, H.G., Ochi, L.S and Souza, M. J. F. (2004) “An Efficient
Tabu Search Heuristic for the School Timetabling Problem”, Lecture
Notes in Computer Science, vol. 3059, , p. 468-481.

Schaerf, A. and M. Schaerf. (1995) “Local Search Techniques for High-
school timetabling”, Proc. of the 1st Intl. Conf. On the Practice an Theory
of Automated Timetabling, pp. 313-323.

Schaerf, A. (1996) “Tabu Search Techniques for Large High-School
Timetabling Problems”, Proc. of the Thirteenth National Conference on
Artificial Intelligence (AAAI'96), AAAI Press/MIT Press.

Schaerf, A. (1999) “Local Search Techniques for Large High-school
Timetabling Problems”, IEEE Transactions on Systems, Man, and
Cybernetics, 29(4), 368-377.

Schaerf, A. and Di Gaspero, L. (2001) “Local Search Techniques for
Educational Timetabling Problems”, Proc. of the 6th International
Symposium on Operational Research in Slovenia (SOR-'01), Preddvor,
Slovenia, pp.13-23.

Schmidt, G. and Strohlein, T. (1979) “Timetable construction – an
annotated bibliography”, The computer Journal, 23(4), 307-316.

 146

Souza, M. J. F., Ochi, L. S. and Maculan, N. (2003) “A GRASP-Tabu
Search Algorithm for Solving School Timetabling Problems”,
Metaheuristics: Computer Decision-Making, Kluwer Academic Publishers,
pp. 659-672.

Landa Silva, J.D (2003) “Metaheuristic and Multiobjective Approaches for
Space Allocation”, Doctoral Thesis, School of Computer Science and
Information Technology, University of Notthingham.

Welsh, D.J.A. and M.B. Powell, M.B. (1967) “An Upper Bound for the
Chromatic Number of a Graph and Its Application to Timetabling
Problems”, Comp. Jrnl. 10, pp. 85-86.

Whitley., D. (1989) “The GENITOR Algorithm and Selection Pressure”,
Proc. of the Third International Conference on Genetic Algorithms, pp.
116-121.

 147

APPENDIX A.

A.1 Parameters for RDG

Table A.1 Parameters of Problem Instance Size for RDG

Parameter Name

Description

min_grade_no

minimum number of available grades in a branch

max_grade_no

maximum number of available grades in a branch

min_div_no

minimum number of available divisions in a grade

max_div_no

maximum number of available divisions in a grade

min_course_no minimum number of available courses for students in a
division

max_course_no maximum number of available courses for students in a
division

min_meeting_no

minimum number of available meetings in a course

max_meeting_no

maximum number of available meetings in a course

min_meeting_length

minimum available meeting length in a course

max_meeting_length

maximum available meeting length in a course

min_branch_no

minimum number of branches in a problem instance

max_branch_no

maximum number of branches in a problem instance

min_section_no

minimum number of sections in a division

max_section_no

maximum number of sections in a division

 148

Table A.2 Curricular Parameters for RDG

Parameter Name Description

min_own_div_course_no minimum number of courses taken
from its own division for a section

max_own_div_course_no maximum number of courses taken
from its own division for a section

min_other_divs_no minimum number of other divisions
that a section takes course from

max_other_divs_no maximum number of other divisions
that a section takes course from

min_other_div_course_no minimum number of courses taken
from a division other than its own for
a section

max_other_div_course_no maximum number of courses taken
from a division other than its own for
a section

min_offered_courses_no minimum number of courses offered
from a division

max_offered_courses_no maximum number of courses offered
from a division

 Table A.3 Instructor Parameters for RDG

Parameter Name

Description

min_assigned_course_no minimum number of different courses
an instructor can teach

max_assigned_course_no maximum number of different courses
an instructor can teach

 149

Table A.4 Temporal Parameters for RDG

Parameter Name

Description

min_daily_hour_no minimum number of daily available
hours in a problem instance

max_daily_hour_no maximum number of daily available
hours in a problem instance

min_slot_no

minimum number of total slots for a
term

max_slot_no

maximum number of total slots for a
term

min_daily_assigned_slot_no minimum number of assigned slots
for a grade in a day

max_daily_assigned_slot_no

maximum number of assigned slots
for a grade in a day

min_begin_hour minimum daily beginning hour for
assigned meetings of a section

max_begin_hour minimum daily beginning hour for
assigned meetings of a section

min_grade_day_no minimum number of days available
for a grade

max_grade_day_no maximum number of days available
for a grade

min_day_no minimum number of defined days for
a problem instance

max_day_no maximum number of defined days for
a problem instance

 150

Table A.5 Parameters of Constraint Density for RDG

Parameter Name

Description

instructor_exclusion_probability probability that determines
whether an instructor defines
exclusion slots

instructor_slot_exclusion_probability probability that determines
which slots an instructor will
exclude

instructor_workload_constraint_probability probability that determines
whether an instructor defines
workload constraints

course_section_preset_probability probability that determines
whether a course section defines
preset time slots

section_exclusion_probability probability that determines
whether a section defines
exclusion slots

section_daily_exclusion_probability probability that determines
which days of the section will
have excluded slots

section_hourly_exclusion_probability probability that determines
which hours of the section will
be excluded in a chosen day

section_daily_workload_constraint_probability probability that determines
whether a section defines
workload constraints

 151

A.2 Output for the RDG

The output file will begin with the initial information in the format

displayed in Table A.6.

Table A.6 Representation of Initial Points in the Problem Instance

There is(are) 2 branch(es)
In Branch 0
 There is(are) 4 grade(s)
 In Grade 0
 There is(are) 4 division(s)
 In Division 0
 There is(are) 4 section(s)
 Section(s) is(are):
 S 0 S 1 S 2 S 3
 S 0 is assigned to 4 course sections
 These course sections are CS 0 CS 1 CS 2 CS

3
 ...
 In Division 1
 ...
 In Grade 1
 ...

As seen above, the information about the size of the problem will be

listed in a hierarchical way. Every branch, grade and division has an

identification number that is unique among the set it is contained. To

ilustrate, every branch has a unique number. Every grade in a branch

have identification numbers that are unique among the set of grades for

the current branch. Similarly, the identification numbers of every division

in a specific grade at a particular branch, i.e each division of grade 1 at

branch 0, differ from each other. However, sections have identification

values that are unique among the set of all the sections belonging to the

problem instance. The same property applies for the course sections as

well.

 152

The curricular information is outputted as displayed in Table A.7.

Table A.7 Representation of Curricular Information in the Problem

Instance

There is(are) 5 possible grade(s)
In Grade 0
 There is(are) 4 possible-division(s)
 In Division 0
 There is(are) 4 course(s)
 In Course 6 offered by division 0
 There is(are) 4 meeting(s)
 Meeting_Length(s) is(are): 2 2 1 1
 In Course 1 offered by division 0
 There is(are) 2 meeting(s)
 Meeting_Length(s) is(are): 2 1
 In Course 3 offered by division 0
 There is(are) 3 meeting(s)
 Meeting_Length(s) is(are): 2 1 1
 In Course 4 offered by division 0
 There is(are) 3 meeting(s)
 Meeting_Length(s) is(are): 1 1 1
 In Division 1
 ...
In Grade 1
 ...

The curricular information defines the possible grades to be offered and

the possible divisions in each of the grades. The courses listed for a

division show the curriculum of sections that belong the current grade

and division.

Each division offers a number of courses to the sections that are from

different divisions as well as the ones that belong to it. Each course has

a unique identification within the set of courses that are also offered from

its division. For instance, course 6 offered from division 0 can be

interpreted as "Physics course from quantitative division". It is

maintained via parameters that the number of courses offered from its

own division are more in number, have more meetings and/or have

 153

longer meetings in the curriculum for a section. To illustrate, a section

from verbal division have more courses offered from the verbal division

such as geography, etc. The number of days and daily hours defined are

outputted as in Table A.8.

Table A.8 Representation of Temporal Structure in the Problem Instance

There is(are) 7 day(s)
There is(are) 11 daily_hour(s)

 In Branch 0
 Grade 0 has 53 slots
 1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 18 24 25 26 27 28 29 30 31 32 45 46
 47 48 49 50 51 52 53 54 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 72 73
 Grade 1 has 55 slots
 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 19 20 21 25 26 27 28 29 30 31 32 35
 36 37 38 39 40 41 42 43 45 46 47 48 49 50 51 52 53 54 56 57 58 59 60 61
 62 63 64 65
 ...

Then, the available time slots for all the grades in each of the branches

are listed. The time slots are numbered from 0 to (number of days x daily

hours). It is revealed via interviews with private school authorities that all

the grades in a particular branch have a predefined set of time slots and

each section belonging to that grade is assigned to course section

meetings from that set. Instructor assignments are listed for all the

instructors as in Table A.9

 154

Table A.9 Representation of Instructor Assignments in the Problem

Instance

Instructor 0 from division 0 teaches 3 course section(s)
He(She) teaches course sections CS 0 CS 5 CS 456

Every instructor belongs to a specific division and can lecture only

courses from that division. There is a maximum limit defined on the

number of different courses an instructor can teach.

Preset and exclusion constraints are the constraints that indicate the

specified time slots for course sections or excluded time slots for sections

or instructors. Knowing that each slot in the timetable is enumerated,

each of those constraints are listed for the sections, course sections and

instructors that have defined such constraints. Those sections, course

sections and instructors are probabilistically chosen by the aid of

parameters. Below are some portions of the output file that display a few

of the preset and exclusion constraints.

Table A.10 Representation of Exclusions and Specifications in the Problem

Instance

...
Meetings of Course Section 53 should be held at slots: 46 57 67 4 13
...
Section S 0 excludes 8 slots
These slots are 15 16 17 18 26 28 29 30
...
Instructor 6 excludes 11 slots
These slots are 6 8 11 31 34 51 55 61 63 73 75
Instructor 7 excludes 0 slots
...

 155

Binary event constraints, i.e the edge constraints are not reproduced in

the output file since they are present in the definition of the problem. The

event spread constraints below are listed in the output file for each of the

instructors or sections that have them. Those sections and instructors are

probabilistically chosen by the aid of parameters.

Table A.11 Representation of Event-spread Constraints in the Problem

Instance

...
Instructor 56 should lecture minimum 1 maximum 4 hours a day
...
Instructor 172 should lecture minimum 2 maximum 3 hours a day
...
In a day, Section S 64 can be assigned Maximum 7 minimum 5 hours totally
In a day, this section can be assigned to courses from at most 2 divisions
There should be
 Maximum 5 minimum 3 hours for courses offered by division 1
 Maximum 3 minimum 1 hours for courses offered by division 2
...

The instructor constraints other than the instructor exclusion constraints

and workload constraints are not reproduced in the output file since they

are present in the definition of the problem.

The sample file in Table A.12 returns the analysis of a specific problem

instance created by the RDG.

 156

Table A.12 Analysis of the Randomly Generated Data

There are 8 days
There are 10 daily hours
There are 960 course section meetings
There are 384 course sections
There are 108 sections
There are 27 divisions
There are 9 grades
There are 3 branches

Conflict Density between course section meetings is 0.043904
Conflict Count(Edge Constraints only EC1 3084, only EC2 16358, both 768)
between course section meetings is 20210
Percent of course sections that have preset slots for their meetings is
6.250000
Percent of meetings whose time slots have been predefined is 6.041667

Total number of Sections is 108
Average number of course sections for a section is 3.555556
Average number of meetings for a section is 8.888889
Average number of hours for a section is 10.444444
Max. number of meetings for a section is 11
Max. number of hours for a section is 12
Average number of available slots for a section is 79.814815
Percent of Sections who define slot exclusions is 100.000000
Average number of excluded slots for those sections is 0.185185
Percent of Sections who define workload constraints is 48.148148
Percent of Sections who define workload constraints for courses from each
offering division is 48.148148

Total number of Instructors is 29
Average number of meetings for an instructor is 33.103448
Average number of hours for an instructor is 38.896552
Max. number of meetings for an instructor is 53
Max. number of hours for an instructor is 59
Average number of available slots for an instructor is 79.241379
Percent of Instructors who define slot exclusions is 6.896552
Average number of excluded slots for those instructors is 11.000000
Percent of Instructors who define workload constraints is 55.172414

