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ABSTRACT

EVOLVING AGGREGATION BEHAVIORS FOR SWARM ROBOTIC SYSTEMS: A

SYSTEMATIC CASE STUDY

Bahçeci, Erkin

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Erol Şahin

August 2005,57pages

Evolutionary methods are shown to be useful in developing behaviors in robotics. Interest

in the use of evolution in swarm robotics is also on the rise. However, when one attempts

to use artificial evolution to develop behaviors for a swarm robotic system, he is faced with

decisions to be made regarding some parameters of fitness evaluations and of the genetic

algorithm. In this thesis, aggregation behavior is chosen as a case, where performance and

scalability of aggregation behaviors of perceptron controllers that are evolved for a simulated

swarm robotic system are systematically studied with different parameter settings. Using a

cluster of computers to run simulations in parallel, four experiments are conducted varying

some of the parameters. Rules of thumb are derived, which can be of guidance to the use of

evolutionary methods to generate other swarm robotic behaviors as well.

Keywords: Swarm Robotics, Evolutionary Methods, Genetic Algorithms, Grid Computing,

Neural Networks
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ÖZ

OĞUL ROBOT ṠISTEMLEṘI İÇİN TOPLANMA DAVRANIŞI EVR İMLEŞTİRİLMESİ:

ṠISTEMATİK BİR ÖRNEK PROBLEMİNCELEMEṠI

Bahçeci, Erkin

Yüksek Lisans, Bilgisayar M̈uhendislĭgi Bölümü

Tez Yöneticisi : Assist. Prof. Dr. Erol Şahin

Ağustos 2005,57sayfa

Evrimsel ÿontemlerin robot sistemleri için davranış geliştirilmesinde kullanılabileceği bilin-

mektedir. Bu ÿontemler ŏgul robot sistemleri için de giderek dahaönemli bir ç̈ozüm yöntemi

olarak ortaya çıkmaktadır. Ancak yapay evrim yöntemleriyle bir ŏgul robot sistemi için

davranış evrimleştirilmeye çalışıldığında evrimin parametreleri ile ilgili bazı kararlar ver-

ilmesi gerekmektedir. Bu çalışmadaörnek problem olarak toplanma davranışı seçilmiş ve

robotların kontrol programı olarak benzetim ortamındaki bir oğul robot sisteminde evrim-

leştirilen yapay sinir ăgları kullanılmıştır. Farklı evrim parametreleriyle oluşturulan yapay

sinir ăglarının performansı vëolçeklenebilirlĭgi araştırılmıştır. Benzetim programları bir bil-

gisayar k̈umesinde paralel olarak çalıştırılacak şekilde bazı parametrelere verilen değerler

dĕgiştirilerek d̈ort ayrı deney yapılmıştır. Ŏgul robot sistemlerinde başka davranışların da

evrimsel ÿontemlerle oluşturulmasına yardımcı olabilecek pratik kurallar çıkarılmıştır.

Anahtar Kelimeler: Ŏgul Robot Bilimi, Evrimsel Ÿontemler, Genetik Algoritmalar, Dağıtık

Hesaplama, Yapay Sinir Ăgları
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CHAPTER 1

Introduction

Apart from their essential contributions to science fiction, robots have been utilized in indus-

try, especially in automotive sector since 1956 [1]. Different forms of theseindustrial robots

or industrial manipulatorsinclude robot armsandCartesian coordinate robots. They sig-

nificantly speed up and improve accuracy of tasks such as welding and painting, and reduce

cost and time requirements for manufacturing processes. Their main task is to replay a pro-

grammed sequence of motor actions to move its parts to exactly the same positions over and

over again. This accuracy in movement is made possible in an industrial robot with its high-

precision (therefore expensive) actuators and with the help of motion sensors. Environment

sensing is optional, but usually the outside world is assumed to stay the same, and external

disturbances are not considered.

With a need for remote operation of robots in non-industrial settings,teleoperatedrobots

were built. They were driven with remote controls, and as well as actuators, some included

sensors such as a camera to allow easier and more distant control. An example is the study

by Farryet al. [2]. They have implemented teleoperation of a robot hand by transforming

myoelectric signals produced by the operator’s hand muscles into motor actions on the robot

hand. Using this conversion they were able to replicate the movements of the operator’s hand

on the robot hand including grasping and several types of thumb motion.

Another type of control issemi-autonomous control, which has two forms:shared control

andcontrol trading [1]. The former implies that a person continuously watches the robot

while it performs a task autonomously, but takes the control over when a delicate job arises.

Control trading differs from shared control in level of autonomy. In control trading, a person

tells the robot the task or sub-task to be done, which is carried out by the robot autonomously.

Communication with the robot is only needed to assign a new job or to interrupt a currently

running one. Sojourner [3], used in Mars missions, is an example to the use of control trading.
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This type of controller is necessary in most space missions because of the extra long signal

transmission times. Real-time teleoperation is simply not possible when it takes 5 minutes to

send a command and 10 minutes to get the feedback.

The idea ofautonomous roboticstakes the challenge one step further: humans should not

interfere in the robot’s operation at all, i.e., robots are on their own from beginning of a task to

its completion. An autonomous robot should be able to cope in an unknown environment that

may have different external factors. The robot must decide on its own how to act according to

its changing environment, while simultaneously trying to accomplish its objective. The robot

cannot be programmed beforehand with rules on what to do for each possible combination of

sensor data. Not just because it would require a huge list of sensor-actuator pairs, but also

because nobody actually knows what the outputs of the robots should be for all combinations

of sensor readings [4].

The performance of a robot is determined not only by its controller, but also by its inter-

action with the environment. Even if most environment factors such as surface roughness and

amount of light and wind are stabilized, factors such as the friction between robot wheels and

ground, and therefore slippage of wheels are difficult to be determined. Thus, manual design

of anultimatecontroller (that will act properly in all cases) is a rather difficult and challenging

task.

1.1 Swarm Robotics

Robotics research focused on single-robot systems until late 80’s. This was when research

also began on multiple robots [5] because robots got cheaper to build or buy. However, multi-

robot studies are not substitutes for single-robot studies since domains ofsingle-robotand

multi-robot tasks are mostly discrete. A single robot is more useful in some errands such as

picking and carrying large objects, assisting people, and mimicking human actions, whereas

multiple robots are more useful in tasks, which require spatial distribution, robustness, or

scalability.

With the advancements in manufacturing techniques, mass production of macro, micro,

and nano scale robots is expected to become possible in the near future, which will enable

applications with tens to thousands of small robots. There are task domains where it is more

appropriate to use such large number of simple robots instead of one big complex robot. These

include [6]:
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• tasks that need large area coverage (such as search and rescue missions),

• tasks that favor redundancy for robustness (such as communication networks and future

nano swarms of medical robots in blood vessels) or for security (such as landmine

detection and elimination),

• tasks that require scalability when the problem at hand might grow larger or smaller

(such as monitoring or securing borders of enemy troops).

When we look at nature, we see that certain animals have properties that make them

suitable for such tasks: the animals living in colonies, such as ants or bees. One might ask

why not to get inspiration from these social animals. At this pointswarm roboticscomes

into scene. It is a new approach for the coordination of large numbers of relatively simple

robots [6, 7]. The approach takes its inspiration from the system-level functioning of social

insects which demonstrate three desired characteristics for multi-robot systems:robustness1,

flexibility2, andscalability3. Most of the studies [7, 8] on swarm robotics focus on developing

behaviors with these desired characteristics.

By definition, in swarm robotics, robots are simplistic with respect to the task they tackle.

They have simple control architectures, such as neural networks, and only small amounts

of memory, if any. This fact makes them highly dependent on the current sensor inputs to

decide the outputs of its actuators. They also have local communication, i.e., they can only

communicate with nearby robots and do not send out broadcast messages. However, this fact

does not prevent swarm systems to show interesting global behaviors.

1.2 Emergence and Self-Organization

In a swarm of social animals, local interactions of individuals result in highly organized

colony behavior although there is no leader orchestrating the colonyfrom above. The global

behavior seems to be a consequence of local actions and communications alone. Such behav-

iors are calledemergent.

Ronald C. Arkin gives the following definitions foremergence[9]:

1 Robustnessis the ability to finish the aimed task in the presence of a partial failure of the system, therefore
exists in a group of robots more than in a single robot, where failure of one robot can be compensated by others.

2 Flexibility is the capacity to coordinate in different ways so that different tasks can be accomplished with
the same robots, for example to be able to carry objects together as well as moving in a connected group to move
on rough terrain and over gaps.

3 Scalabilityis the ability to function in groups of different sizes, so that different sized tasks can be handled.

3



• “Emergent behavior implies a holistic ability where the sum is considerably
greater than its parts.

• Emergence is the appearance of novel properties in whole systems.

• Global functionality emerges from the parallel interaction of local behav-
iors.

• Intelligence emerges from the interaction of the components of the system
(where the system’s functionality, i.e., planning, perception, mobility, etc.,
results from the behavior-generating components).

• Emergent functionality arises by virtue of interaction between components
not themselves designed with the particular function in mind.”

Emergence of group behaviors or global patterns from the seemingly unrelated interac-

tions and relations among the lower level constituents, without the need for a leader or a

centralized control of any kind, is the phenomenon calledself-organization. Simple local

rules in physical or biological systems can lead to interesting global patterns. For example,

suppose we add a small pie slice next to another one, with the following rule

r(t + 1) = 1.035× r(t) (1.1)

wherer(t) is the radius of thetth slice and angle of each slice is the same. After about a

hundred iterations, the resulting global pattern, which can be seen inFigure 1.1(a), resembles

a seashell (Figure 1.1(b)) or a snail’s shell.

Examples of such patterns can be seen in nature quite often both in the form of visual and

behavioral patterns [11]. An interesting example is the series of patterns, shown inFigure 1.2,

formed during aggregation ofdictyosteliumamoeba, which is a unicellular organism. They

group in spirals which then turns into a multicellular formation, and finally into a stream-

like pattern toward the center of cells. This is caused by local changes in concentration of

a chemoatractant which is secreted by amoeba that are starving. The observed aggregation

performance, which is in the order of some hundred thousands in cell count, is incredible

compared to the difficulty of obtaining aggregation for even 10 robots [6].

Another self-organizing aggregation behavior happens in cockroach larvae. Jeansonet al.

[12] investigated their behaviors at both individual and collective levels at different densities

in a homogeneous medium. Jeansonet al. modeled the larvae’s observed behaviors which de-

pend on the presence of nearby larvae. Their model showed that using only local information

can lead the whole group into clusters.

Self-organization is observed in robotics studies as well. In [13], Owen Hollandet al.

report that in their experiments, they obtained spatial sorting behaviors, i.e., sorting two kinds

4
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Figure 1.1: (a) Global pattern emerging from a simple local rule.(b) Similar pattern in a
seashell. The image is taken from a collection [10] of interesting natural patterns by Paul
Doherty.

Figure 1.2: Aggregation patterns of dictyostelium amoeba into Dictyostelium discoideum
slime mold. Each step of the transitions from left to right takes about 30 minutes. Images
courtesy of P.C. Newell.

of pucks into distinct homogeneous clusters. They used a group of mobile robots that only

sense the presence and color of the pucks. Here, an important point is that coordination and

regulation of the task is done via the items themselves instead of via robot communication.

The robots detect pucks and obstacles (other robots are considered obstacles as well) and act

according to simple rules depending on this detection. The robots do not communicate at

all. This type of interaction that is done through the environment is calledstigmergyand is

5



utilized among social insects in their everyday tasks such as nest building and brood sorting.

Holland’s study proves possibility of self-organization in robots as well, with the puck sorting

behavior happening through local interactions alone, without any global communication or

centralized control.

1.3 Evolving Controllers for Robots

The behavior of a robot can be described in two perspectives: proximal and distal. These are

defined by Nolfi [14] as follows:

“The distal description is from the observer’s point of view and is based on

words or sentences in our own language which are used to describe a sequence of

sensorimotor loops. Theproximaldescription is from the robot’s point of view

and is based on a description of how the robot reacts to each sensory state.”

We, as humans, want the robots to perform certain behaviors, which we can accurately

describe only in distal terms. However, a robot can only observe its environment fromits own

sensory view and react to it withinits ownactuation capabilities. We cannot accurately know

and tell what it should do depending on its every possible combination of inputs, hence lack

the proximal description of the desired behavior. Therefore we cannot easily determine the

desired controller for the robots.

What we need is a method for the robots to implement their own control mechanism that

depends on theirproximalview of the environment, where we only need to (and actually only

can) define a means to evaluate theirobservedbehavior in ourdistal terms. A very suitable

method fulfilling these requirements is artificial evolution.

Starting with a set of (possibly random) controllers, evolutionary computation methods

generate increasingly better performing controllers using performance evaluations (by means

of distal descriptions) of the current set. Performance increase is obtained through selection of

more fit controllers and generatingpossiblyhigher performing ones using genetic operators,

just as in the natural evolution.

A successful application of artificial evolution to robot controller design is reported by

Floreanoet al. [4], who evolved a controller for a single Khepera robot to travel in a looping

maze, while avoiding the walls as much as possible. They used a suitable fitness function

to maximize forward movement and obstacle avoidance together. This study shows that it is

6



possible to utilize artificial evolution to develop robot controllers, at least for a simple task

such as this.

1.4 Aggregation

As the case for our study on artificial evolution, we chose the aggregation behavior4. Aggre-

gation is basically the approaching behavior of the members of a group so that they are close

together for various purposes. It is observed in many types of animals, such as slime molds,

beetles, flies, fish, and birds [11]. It can be considered as a self-organizing process in these

animals, because only local interactions are used in global aggregation of the group5. Ani-

mals either use aggregation to increase their chances of survival, or they use it as a precursor

of other behaviors in which they need to act together. These behaviors include carrying large

prey, exchanging supplies, building nests, reproducing, preserving their body temperatures,

and coordinated and more efficient movement [11]. All of these require prior aggregation at

the site of interest.

=⇒

Figure 1.3: Aggregation task involving 20 robots.

The case we chose in this systematic study can be described as “aggregation of robots

with limited ranged perceptual abilities in a closed arena”. Aggregation, or clustering, of

robots (Figure 1.3) is useful when the task to be accomplished requires or is done easier with

a group of robots. Aggregation is especially valuable in swarm robotics, where by definition

of swarm robotics [6], robots interact and communicate locally. However, aggregation in a

4 There are also studies in literature [15] that study behaviors called as aggregation, which is actually gathering
passive items (such as pucks) by the robots. This behavior should not be confused with the aggregation that is the
task case in this study.

5 See the definition of self-organization inSection 1.2
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group of robots that can only communicate locally is a challenging problem, because as in

the animals mentioned above, a self-organizing behavior should be developed. Moreover, this

controller should be scalable as much as possible like in animals, i.e., it should work as well

as it can with different numbers of individuals. Furthermore, the robots are not capable of

identifying other robots or distinguishing a single close robot from a group of distant ones (as

seen inFigure 3.5(c)). Therefore, one may have difficulty in determining the right kind of

interactions among the robots with their limited sensing capabilities to obtain scalable global

aggregation. A straightforward strategy such as “go toward the loudest signal, if the sound

is more than some threshold then stop” results in small clusters, which are far from desired

large clusters containing as many robots as possible. Hence, discovering better strategies is

required.

To study performance in accomplishing a task, one needs a way to measure the quality

of the desired behavior. The assessment of the quality of aggregation can be done in more

than one way. For simulations, the assessment methods may be computing average distances

between every pair of robots, calculating average distance to the center of mass of robots (as

done in [16]), counting robots in clusters (in closely packed groups), computing minimum

spanning tree among robots (over distances to each other), etc. The method used in this study

will be described in detail inSection 5.2.4.

1.5 Systematic Analysis of Aggregation in Swarm Robotic Systems

Due to their appropriateness as a controller generation tool, evolutionary methods are becom-

ing promising candidates to develop behaviors in robotics studies. This is especially true for

swarm robotic systems, on which it is necessary to discover the required interactions among

a group of very simple robots that should act in a coordinated fashion using only local com-

munication. This causes a larger gap between distal and proximal descriptions of the desired

behavior, and makes swarm robotic systems more suitable for evolutionary algorithms. On the

other hand, when one uses evolutionary algorithms in swarm robotics, he should determine

some evolution and fitness evaluation parameters.

Using aggregation of robots, we studied the performance and the scalability of evolved

behaviors for a simulated swarm robotic system. We conducted four systematic experiments

varying some parameters and analyzed the effect of different parameter choices on perfor-

mance and scalability of aggregation behaviors.

8



The rest of the thesis is organized as follows:Chapter 2will describe evolutionary meth-

ods, and in particularGenetic Algorithms. It will also review some evolutionary robotics

studies in literature. Physical simulation environment and robot architecture will be discussed

in Chapter 3. Chapter 4will elaborate on a system (with installation and usage guide given

in Appendix A) to run genetic algorithms in a distributed manner, which is needed due to

high computation times required by physical simulations.Chapter 5will describe the details

of the infrastructure used for evolution experiments. The details and results of these experi-

ments will be stated inChapter 6. Finally, conclusions and future work will be presented in

Chapter 7.
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CHAPTER 2

Evolutionary Robotics

2.1 Artificial Evolution

Evolutionary computational methods are inspired by the natural evolution. In nature, a pop-

ulation of animals struggle to survive and reproduce to produce the next generation. The

principle of “survival of the fittest” applies: individuals that are fitter within their environ-

ments are more likely to survive and also more likely to produce offspring, transferring their

genetic material onto the next generation. In this way, nature eliminates weak individuals and

the population gets more adapted to the environmental conditions generation by generation.

The idea of evolution, i.e., animals getting selected over theirsurvival performanceto

produce better adapted populations, started to be used as an optimization method, in 60’s.

Evolutionary computation grew in four areas:

• Genetic algorithms (Holland)

• Evolutionary programming (Fogelet al.)

• Evolution strategies (Rechenberg and Schwefel)

• Genetic programming (Koza)

John H. Holland began publishing on adaptive systems theory in 1962 [17] and wrote

his book onGenetic Algorithmsin 1975 [18], which mimics natural evolution and is basi-

cally adaptation of apopulationof candidate solutions for a problem with the use of genetic

operators such asselection, mutationandcrossover.

Meanwhile, Fogelet al. came up with a method they namedEvolutionary Programming

[19, 20] which is similar to genetic algorithms, but does not make use of crossover. This was

one of the earliest attempts to evolve behavior. Evolutionary Programming was applied to

evolution of finite state machines and function optimization [21].
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Another evolutionary computation method is Rechenberg’sEvolution Strategies[22, 23],

which makes use of different crossover (orrecombination) techniques where one new pop-

ulation member is formed using genes of either two or all of the population members, and

choosing an intermediate value of among parent parameter values in the chromosome instead

of directly inheriting one of them.

The fourth method,Genetic Programming, is attributed to Koza [24] and is usually con-

sidered a subset of genetic algorithms. It deals with evolving computer programs in the form

of trees instead of strings, where the individuals in the population are evaluated for fitness by

being executed.

According to [21], which describes and discusses these four evolutionary algorithms com-

prehensively, evolutionary computation methods, are different from other search and opti-

mization methods in several aspects:

• A population of candidate solutions rather than a single one is maintained.This in-

creases variety in solution space. It also enables applications where a group of solutions

is needed rather than only one.

• The search in solution space is done more randomly compared to deterministic pro-

gression of other methods.Doing so makes it possible to discover different and better

solutions at consequent evolutions.

• Fitness of solutions are used directly instead of being utilized as derivatives and sec-

ond derivatives.This enables applications in optimizing functions that do not have

continuous derivatives.

2.2 Genetic Algorithms

Holland’s Genetic Algorithms, works roughly as depicted inFigure 2.1. Suppose we have a

given problem that we want to find a solution to. For example, let this problem be minimizing

a functionf(x). For the genetic algorithm to operate on a problem, we need an encoding for

a candidate solution of the problem. In our example, a candidate solution is anx value, which

can be encoded as a floating point number or an integer.

Genetic algorithms work with a set of candidate solutions rather than a single one as in

other optimization methods. The encoded candidate solution is called achromosomeand the

set of solutions is called apopulationanalogous to a set of animals in a population, each of
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Initialize population
repeat

Evaluate fitness of individuals
Select individuals to mate depending on fitness
Pair individuals to be mated
Apply crossover
Apply mutation

until a termination condition is met

Figure 2.1: The genetic algorithm.

which areencodedin a single DNA molecule.

The genetic algorithm needs a way to evaluate thegoodness(or fitness, as widely used) of

a candidate solution. For the function minimization example, this would simply be evaluation

of the function with the value of the variable that is the candidate solution. The smaller the

result, the better the solution.

The whole population of candidate solutions is evaluated in this manner. Depending on

their fitness values, the population is sorted and a subset of the population isselectedamong

the better ranking individuals. This selected set is then used to produce the new population,

i.e., the population of the nextgeneration. It is this part of the Genetic Algorithm that imple-

ments thesurvival of the fittestprinciple. The new population, created through some genetic

operators such ascrossoverandmutation, is expected to have higher fitness values.

Crossoveror recombinationis applied to the selected set of individuals, with a certain

probability. Crossover swaps parts of two chromosomes, i.e., pairs from the selected set,

where it can be applied at one point on the chromosomes or on multiple points. Its main

purpose is to join twousefulsegments of two different chromosomes in one chromosome,

where the resulting chromosome has moreusefulparts than the two initial chromosomes.

This does not always happen, but when it happens often enough, it will result in a better

performing population through improved individuals.

After crossover operations, individuals in the population are subjected to themutation

operator with a small probability. Mutation is used to alter a small portion of the chromosome

at a random position. It helps in creating individuals that are randomly and slightly perturbed

versions of the previous populations. In short, crossover combines solutions whereas mutation

generates new ones.

Use of genetic operators such as crossover and mutation improves chances of introducing
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more fit individuals, however these operators may also destroy some highly fit ones. To

overcome this disadvantage, a fraction of the top ranking individuals in the population may

be transferred to the next generation without applying crossover or mutation. This helps

preserving the best chromosomes, and usually accelerates evolution. This modification is

called elitism and is commonly used in studies using genetic algorithms.

The encoding of a candidate solution and the fitness function is specific to the problem

at hand. Furthermore, the crossover and mutation operations can be defined to suit the chro-

mosome encoding. For example, random bits in the chromosome encoding can be altered or

if the encoding consists of a set of numbers, the value of a randomly chosen one can be in-

creased or decreased by a random amount. Genetic algorithms are executed in the same way

(as shown inFigure 2.1) once the following are supplied:

• an encoding,

• a fitness function,

• a mutation operator,

• a crossover operator,

• a termination condition.

The Genetic Algorithm continues to produce new populations, or generations, in this

manner until a termination condition is met, which is usually reaching a maximum number

of generations. Then, the best candidate solution of the final generation is considered to be

thesolution produced by the evolution. Furthermore, if the problem requires so, not one but

a set of the candidate solutions in the final population can be used, which is not possible with

more traditional optimization algorithms.

2.3 Use of Artificial Evolution in Swarm Robotic Systems

Early studies on evolving behaviors for swarm robotic systems reported limited success and

expressed pessimistic conclusions. In one of the earliest studies, Zaeraet al. [25] used evolu-

tion to develop behaviors for dispersal, aggregation, and schooling in fish. Although they had

evolved successful controllers for dispersal and aggregation; the performance of the evolved

behaviors for schooling was considered disappointing, and they concluded that for complex

actions like schooling, manual design of a controller would require less time and effort than
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evolving one, mainly due to the difficulty of determining a useful evaluation function for the

specific task.

Mataricet al. [26] have made a comprehensive review of the studies until 1996 on evolv-

ing controllers to be used in physical robots and they have discussed the key challenges. They

addressed approaches and problems such as evolving morphology and/or controller, evolving

in simulation or with real robots, fitness function design, co-evolution, and genetic encod-

ings. They emphasized that for an evolved controller to be beneficial, the effort to produce

it in evolution should be less than the effort needed to manually design a controller for the

same robotic task. They stated that it has not been the case, yet; but when the challenges

and problems are handled, they may become a practical alternative to controllers designed by

hand.

In [27], Lund et al. used evolution to develop minimal controllers for exploration and

homing task. They evolved controllers for the Khepera robot (K-Team, Switzerland) for the

task considered where the robot was desired to leave a light source, i.e., home, explore the

surrounding for some time, and then return back home where it is virtually recharged. To

obtain this periodic behavior, they used sampled sensory input and a minimal network archi-

tecture without recurrent connections, which can be used to obtain the notion ofreturn period.

Instead their evolution exploited the geometrical shape as perceived by robot and produced a

suitable controller.

In contrast to some of these pessimistic conclusions, during the recent years optimistic re-

sults are being reported on the evolution of swarm behaviors. In the Swarm-bots Project [28],

Baldassarreet al. [29] successfully evolved controllers for a swarm of robots to aggregate and

move toward a light source in a clustered formation. Moreover, for this specific task, several

distinct movement types emerged: constant formation, amoeba (extending and sliding), and

rose (circling around each other). In [28], Trianniet al. also evolved successful controllers for

a swarm of robots that can grip each other, called a swarm-bot, to fulfill tasks such as aggre-

gation, coordinated motion in a common direction, cooperative transport of heavy loads (as

in ants), and all-terrain navigation to avoid holes (connected in swarm-bot formation). Their

evolved controllers made use of sound sensors, traction sensors, and flexible links. Trianni

et al. [30] has also identified two types aggregation behaviors emerged from evolution: a

dynamic and a static clustering behavior. In static clustering, robots move in circles until they

are attracted to a sound source. Then theybounceagainst each other until an aggregate is

formed. The clusters are tight and static with the robots involved turning on the spot, whereas
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in dynamic aggregation, the clusters are loose and they flock around. This study is a good

example of evolution of different strategies, or behaviors, for a specific task. Furthermore, in

[16] Dorigo et al. evolved aggregation behaviors for a swarm robotic system. They analyzed

two of the evolved behaviors and showed that evolution was able to discover rather scalable

behaviors.

Ward et al. [31] have evolved neural network controllers for such a survival scenario

where there are two populations of animals, predators and preys that co-evolve to produce a

schooling behavior. They have also studied on the connection of physiology with behavior

and they claim that prey need a wide-range low-resolution visual sensors whereas predators

are better off with visual input concentrated in the front.

Despite these studies, the use of artificial evolution to generate swarm robotic behav-

iors for a desired task is a rather unexplored field of study. The effort in using evolutionary

methods can be reduced by suggestions on choosing parameters required in applying artificial

evolution to swarm robotics. To the best of our knowledge, no systematic study has been

made to investigate effects of parameters to help such choices. In this study, we addressed

this lack of systematic analysis studies to deduce some rules of thumb on the choice of some

parameters used in evolution of swarm robotic behaviors.
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CHAPTER 3

Simulator

The previous chapter discussed the benefits of using artificial evolution to develop robot con-

trollers. However, once a controller is evolved using simulations, it is difficult to be sure that

this controller will actually work on a physical robot as it does in simulation. Therefore, to

increase confidence in transferring an evolved controller onto physical robots, robot simu-

lations are done using physical simulators. These simulators realistically model movements

and interactions of bodies under gravitational and other external forces. Bodies have mass and

shape properties (collision geometries) and can be connected to each other with several types

of joints. Collisions between bodies are also simulated. Upon collision, an instantaneous joint

(contact joint) is formed between the colliding bodies that simulates the desired amount and

type of frictional forces.

3.1 Simulation Environment

In this study, a port1 of MISS, a cut-down version of the Swarmbot3D simulator [32] is used.

Swarmbot3D is a physics-based simulator developed within the Swarm-bots project that mod-

eled the s-bots (mobile robots with the ability to connect to each other). Swarmbot3D simu-

lator includes simulation models of the s-bot at different levels, all obtained from and verified

against the actual s-bot. As Mataricet al. mentioned [26], evolving controllers for physical

robots in simulation requires modeling of noise and error models to maximize transferability

of controllers onto physical systems. This is ensured in this simulator with the sensor models

implemented with sensory data coming from the physical s-bot. The minimal s-bot model of

Swarmbot3D simulator is used here, with which evolution of aggregation behavior was first

1 In Kovan Research Lab, we ported MISS and Swarmbot3D simulators from Vortex, a commercial physics
development platform, to the Open Dynamics Engine (ODE), a free physics-based simulation library. Extensions
to ODE were done to add XML file loading capabilities, to improve rendering and camera handling, which were
packaged under the name Kovan ODE eXtensions (KODEX). Using KODEX, converting Swarmbot3D from
Vortex to ODE was possible with little effort.

16



Figure 3.1: A screenshot of the simulator.

studied by Dorigoet al. in [16]. A snapshot of the simulator is shown inFigure 3.1.

3.2 Robot Architecture

A schematic view of the robot indicating the sensor and signal source configuration used in

our experiments is shown inFigure 3.2. The robot is modeled as a differential drive robot

with two wheels. The model has 8 infrared range sensors around the robot, and one omni-

directional speaker and 4 directional microphones placed at the center of the robot.

3.2.1 Robot Controller

The part of a robot that computes actuator outputs as a function of the robot inputs is called

the controller, i.e., brain, of the robot. In the experiments performed, robots act reactively

depending only on their inputs. They don’t have any memory or long deliberative processes

to decide on the outputs. The controller is chosen to be a single-layer perceptron which has 12

input neurons (4 connected to microphones and 8 connected to infrareds), 3 output neurons (1

to control the omni-directional speaker and 2 to control the wheels) as seen inFigure 3.3. This

controller is a reactive architecture because outputs are determined directly by the inputs: no

planning is done and no memory is used.
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Figure 3.2: A schematic view of the robot model. The robot has a diameter of 5.8 cm. The
8 bars emanating from the body of the robot indicate the IR sensor direction and range. The
4 triangles are placed at the center represent microphones, 2 rectangles at the sides represent
wheels, and the circle at the center represents an omni-directional speaker.

1513 14

75 6431 2 108 9 11 12

Microphones Infrared sensors

Left
wheel

Right
wheel Speaker

Figure 3.3: Neural network controller used as the controller for robots. Neurons match
corresponding parts inFigure 3.2as follows: 1-4: microphones, 5-12: IR sensors, 13-14:
wheel actuators, and 15: speaker.

3.2.2 Sensor Specifications

The details of the sensor models are described in detail in [32]. The infrared sensors are

modeled using sampling data obtained from the real robot with the addition of white noise
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as described in [29] and [32]. The characteristics of the sampled IR sensors can be seen

in Figure 3.4. These were recorded with an obstacle near the robot at certain distances and

angles.

Figure 3.5(c)shows the characteristics of the sound sensor model which drives the long-

range interactions among the robots. As it is, the sound sensor model can be regarded as

unrealistic due to its simplicity. However, using a proper placement of microphones robust

sound source localization can be done as in [33], where Valinet al. has localized sound

sources with a precision of 3 degrees in 3 meters range using an array of 8 sound sensors

placed at the corners of a rectangular prism.

However, it should be noted that our simulator was neither verified against the original

Swarmbot3D simulator, nor against the physical robots. Therefore, we make no claims about

the portability of the evolved controllers onto the physical robots. Yet, for the purpose of this

study, we believe that the sensor and signaling models which were taken from the Swarm-

bot3D simulator are sufficient since our study aims to deduce general rules of thumb for

evolving behaviors in swarm robotic systems.
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Figure 3.4: Readings of sampled IR sensors obtained in [29]. The four graphs belong to
samples obtained when near(a) a straight wall,(b) another robot,(c) a small obstacle, and(d)
a big obstacle. The vertical axis shows the observed proximity value as the maximum among
the readings of the eight actual IR sensors around the physical robot, hence the eight peaks in
each graph. The other two axes show the angle and distance of the obstacle. The colors show
the range of sensor values, which tells us that in all samples the observed proximity is below
10% at distances greater than about 3 cm. (The robot has a diameter of 5.8 cm).
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Figure 3.5: (a) A 400×400 cm arena with one robot at the center.(b) A 400×400 cm arena
with five robots at the center.(c) Sound heard from one and five sound emitting robots at the
center, shown with a solid and a dashed line, respectively. The audibility values shown are the
maximum of sensory input values recorded by the four microphones of a virtual robot which
is placed at different distances from one wall to the opposite on a horizontal line intersecting
the center of the two arenas shown in (a) and (b). Higher values indicate higher audibility. The
pits at the center indicate the regions occupied by the sound emitting robots. It is important to
note that one robot at distance 20 and 5 robots at distance 67 are heard at the same audibility
level. These two very different situations cannot be distinguished by the robots used in this
study.
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CHAPTER 4

Parallelized Evolution System (PES)

Evolutionary robotics studies require large numbers of simulation runs. For an evolution of

50 generations that uses a population of50 individuals and5 different runs for evaluating

the fitness of single individual, a total of 12500 simulation runs are needed. When physical

simulations are used to achieve realistic behaviors, a single simulation takes time on orders

of 10’s of seconds to complete. For an average simulation run time of 50 seconds, a single

evolution requires 625000 seconds, or 10416.67 minutes, or 173.61 hours, or 7.23 days on a

single computer. Due to these heavy costs of processing requirements, evolutionary robotics

studies would be definitely limited by the total amount of CPU-time available.

Fortunately, fitness evaluations done in one generation of an evolution are completely

independent of each other. Hence a possibility of parallelization arises for these fitness eval-

uations of the same generation. And this is exactly what the Parallelized Evolution System

(PES) does.

PES [34] is a platform to parallelize evolutionary methods on a group of computers con-

nected via a network. It separates the fitness evaluation of genotypes from other tasks (such as

selection and reproduction) and distributes these evaluations onto a group of computers to be

processed in parallel. PES consists of two components: (1) a server component, named PES-

Server, that executes the evolutionary method, the management of the communication with

the client computers, and (2) a client component, named PES-Client, that executes programs

to evaluate a single individual and return the fitness back to the server.Figure 4.1shows the

structure of a PES system.

An easy interface is provided to the user by PES, which relieves him from dealing with

the communication between server and client processes. PES-Client is developed for both

Windows and Linux, enabling the PES system to harvest computation power from comput-

ers running either of these operating systems. An easy-to-use framework for implementing
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Evaluate individual
Send the fitness back

Evaluate individual
Send the fitness back

Evaluate individual
Send the fitness back

Evolutionary Algorithm
Create individuals
Dispatch individuals
Collect fitness values

PES−C (Linux) PES−C (Win) PES−C (Win)

PES−S (Linux)

Figure 4.1: Structure of the PES system. The PES-Server runs on a Linux machine and han-
dles the management of the evolutionary method. It executes the selection and reproduction
of the individuals (genotypes) which are then dispatched to a group of PES-Clients (running
both Windows and Linux systems). The individuals are then evaluated by the clients and their
fitness values are sent back to the server.

evolutionary methods, and the inter-operability of the system distinguishes PES from other

systems available and makes it a valuable tool for evolutionary methods with large computa-

tional requirements.

PES uses PVM (Parallel Virtual Machine)[35]1, a widely utilized message passing library

in distributed and parallel programming studies, for communication between the server and

the clients. We have also considered MPI [36] as an alternative to PVM. MPI is a newer stan-

dard that is being developed by multiprocessor machine manufacturers and is more efficient.

However PVM is more suitable for our purposes since (1) it is available in source code as

free software and is ported on many computer systems ranging from laptops to CRAY super-

computers, (2) it is inter-operable, i.e. different architectures running PVM can be mixed in

a single application, (3) it does not assume a static architecture of processors and is robust

against failures of individual processors.

PES wraps and improves PVM functionality. It incorporates a time-out mechanism to

detect processes that have crashed or have entered an infinite loop. PES providesping, data

andresult message facilities. Ping messages are used to check the state of client processes.

Data messages are used to send task information to client processes and result packages are

1 Available athttp://www.csm.ornl.gov/pvm/pvmhome.html.
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used to carry fitness information from clients.

The following sections describe the PES-Server and PES-Clients.

4.1 PES-Server

PES-Server provides a generic structure to implement evolutionary methods. This structure

is based on Goldberg’s basic Genetic Algorithm [37] and is designed to be easily modified

and used by programmers. The structure assumes that fitness values are calculated externally.

In its minimal form, it supports tournament selection, multi-point cross-over and multi-point

mutation operators.

PES-Server maintains a list of potential clients (computers with PES-Client installed), as

specified by their IP numbers. Using this list, the server executes an evolutionary method and

dispatches the fitness evaluations of the individuals to the available clients. The assignment

passes the location of the executable to be run on the client as well as the parameters that

represent that particular individual and the initial conditions for the evaluation. Then it waits

for the clients to complete the fitness evaluation and get the computed fitness values back.

PES-Server contains fault detection and recovery facilities. Using theping facility the

server can detect clients that have crashed and assign the uncompleted tasks to other clients.

In its current implementation, the server waits for the evaluation of fitness evaluations from

all the individuals in a generation before dispatching the individuals from the next generation.

4.2 PES-Client

PES-Client acts as a wrapper to handle the communication of the clients with the server.

It fetches and runs a given executable (to evaluate a given individual) with a given set of

parameters. It returns the fitness evaluations, and other data back to the server.

Client processes contain a loop that accepts, executes and sends result of tasks. Client

processes reply topingsignals sent by the PES-Server to check their status. Crashed processes

are detected through this mechanism.

PES-Clients are developed for single processor PC platforms running Windows and Linux

operating systems. Note that, to use clients with both operating systems, the fitness evaluating

program should be compilable on both systems. In its current implementation, PES-Client has

the fitness evaluation component embedded within itself (as seen inFigure 4.2(b)) to simplify

communication with PES-Server. For another problem with a different fitness evaluation,
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Figure 4.2: (a) A snapshot of the environment being simulated: Mobile robots distributed
in an arena are enclosed by walls.(b) Architecture of PES-Client being used. In its current
implementation, fitness evaluation and communication parts are not separated.

the PES-Client should be altered to suit that problem. Ideally, the communication compo-

nent of PES-Client should be separated from the fitness evaluation component, but this is not

implemented yet.

4.3 Experimental Results of PES

We developed the PES platform as part of our work within the Swarm-bots project2 [38] to

develop swarm robotic behaviors. We conducted experiments to evolve behaviors for cluster-

ing of a swarm of mobile robots and analyzed the speed-up and efficiency of the PES system

in this task.

The swarm of robots and their environment are modeled using ODE (Open Dynamics

Engine), a physics-based simulation library,Figure 4.2(a). The parameters of this simulation

and parameters of the controller (network weights) are passed to the PES-Client from the

PES-Server. The simulator constructs the world and runs the simulation, by solving physical

dynamics equations. Movements of robots are determined by their controller as specified by

the genotype. This controller uses the sensors of the robots and moves the robots for 2000

time steps. Then a fitness value is computed, based on a measure of clustering achieved. This

fitness value is then returned to the PES-Server, as shown inFigure 4.2(b).

2 More information can be found athttp://www.swarm-bots.org.
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Tasks Assigned to Processors

Figure 4.3: Load of 12 processors during 5 generations of evolution.

4.3.1 Experimental Set-up for Testing PES

To test the performance of PES, we installed PES-Clients on 12 PC’s of a student laboratory at

the Computer Engineering Department of Middle East Technical University, Ankara, Turkey.

During the experiment, these computers were being used by other users and each of them had

different workloads that varied in time. The population size was set to 48, requiring 48 fitness

evaluations to take place during each generation. The evolution was run for 30 generations.

Figure 4.3plots the load of the 12 processors in time during the evaluation of five genera-

tions. The PES-Server waits for fitness evaluations of all the individuals in a generation before

selection and reproduction of the individuals of the next generation. In the plot, the vertical

lines separate the generations. Within each generation, 48 fitness evaluations are calculated,

which are visible as dark diamonds or dark horizontally stretched hexagons. It can be seen

that the fitness evaluation time varies between different cases. There are two major causes of

this. First, each processor has a different and varying workload depending on the other users

of that computer. Second, the physics-based simulation of the swarm of robots slows down

dramatically as robots collide with each other and the walls in the environment.

In order to analyze the speed-ups achieved through the use of the PES system and its

efficiency, we have repeated the evolution experiment using 1, 2, 3, 6 and 12 processors. The
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Figure 4.4: (a) Speed-up is plotted against number of processors.(b) Efficiency is plotted
against number of processors.

data obtained is used to compute the following two measures:

Sp =
Time required for single machine

Time required for p machines

Ep =
Speed-up with p processors

p

The results are plotted inFigure 4.4(a,b). IdeallySp should be linear to number of proces-

sors andEp should be 1. The deviance is a result of the requirement that all individuals need

to be evaluated before moving on to the next generation. As a consequence of this, after the

dispatching of the last individual in a generation, all but one of the processors have to wait

for the last processor to finish its evaluation. This causes a decrease in the speed-up and ef-

ficiency plots. Note that, apart from the number of processors, these measures also depend

on two other factors: (1) the ratio of total number of fitness evaluations in a generation to the

number of processors, (2) the average duration of fitness evaluations and their variance.

Earlier in this chapter, we had described a ping mechanism that was implemented to check

whether a processor has crashed or not. This mechanism was crucial since we envision PES

to harvest idle processing powers of existing computer systems and cannot make assumptions

about the reliability of the clients.Figure 4.5shows the ping mechanism at work during

an evolution where we had 20 fitness evaluations in each generation run on 4 processors.

Similar to the plot inFigure 4.3, this plot shows the loads of the processors. The numbers

in the hexagons are labels that show the number of the individuals being evaluated. The

continuous vertical bars separate the generations. the dotted vertical lines that are drawn at
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Figure 4.5: Load of processors during a run in which a processor fails.

15, 30, 45, and 60 seconds mark the pings that check the status of the processors. In this

experiment, processor 2 crashed on while it is evaluating individual 5 after the first ping.

PES-Server detected this at the second ping (at time 30), assigned the evaluation of individual

5 to processor 1, and removed processor 2 from its list.

For the actual experiments of this thesis that aim to systematically analyze aggregation

performance of evolved controllers PES was installed on a cluster of 128 computers provided

by TÜBİTAK ULAKB İM. Using this cluster with PES, we could reduce evolution time from

one week to 2.5 hours with 100 computers.

Furthermore, to run simulations for scalability evaluation in parallel on this cluster of

computers, we derived a program (called PES-Dist) from PES. This program is a tool that

utilizes PVM to distribute execution of a series of programs if the complete command line for

each program to be run is supplied.
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CHAPTER 5

Experimental Framework

5.1 Introduction

Regarding evolutionary methods in developing controllers for swarm robotic studies, there are

some parameters that should be considered, such as the number of generations, the number

of simulation steps used for fitness evaluations, number of robots, and size of arena. We per-

formed four experiments that altered some parameters and compared the results for different

choices of parameter values.

Tasks constituting each of the four experiments are shown inFigure 5.1. An evolution

suite (dashed box) consists of an evolution and a scalability evaluation for each choice of

parameters. An evolution, shown as the box shaded in light gray, is run to produce a controller

for each specified choice of parameter values. This box is enlarged inFigure 5.2and explained

in detail inSection 5.2.

The evolved controller is then analyzed for its scalability performance, i.e., performance

in different sized set-ups to measure itsscalability. This step that is shown as the box shaded

in dark gray inFigure 5.1is enlarged inFigure 5.6and described inSection 5.3. The result of

the dashed box is a set of scalability performances, one for each parameter choice.

The genetic algorithm, in a way, does an adaptive random search over the solution (in

this case controller) space and it is not guaranteed to find the optimal solution. In this study,

the best performing controller at the final generation of evolution is taken as the solution

produced by an evolution. However, there may be better performing solutions that the ge-

netic algorithm has not discovered. Also variance in performance of controllers in simulation

affects the observed fitness of a controller. A controller does not get the same score in two dif-

ferent simulation runs with different initial random robot distributions. Therefore,in a single

evolution, if a chosen valuei of a specific parameter produces a better performing controller
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Figure 5.1: Flow of operations in the experiments. Evolution uses a specified set of parame-
ters to produce an evolved controller.

than a controller produced by a chosen valuej, this does not necessarily mean thati is a better

value choice for this parameter thanj. This may lead to results that are not so strong.

Since this study aims to derive rules of thumbs for evolutionary robotics, the credibility of

results regarding the choice of parameter values should be as high as possible. To accomplish

this, more than one evolution with different random seeds (shown as multiple dashed boxes in

Figure 5.1) is carried out for each parameter value choice. The scalability performances for

each parameter choice are then combined by averaging, shown at the bottom ofFigure 5.1.

This thesis extends [39] in this sense by conducting four evolutions for each parameter value

choice instead of only one.

5.2 Genetic Algorithm and Evolution Scheme

5.2.1 Genetic Algorithm Details and Parameters

The genetic algorithm used in this study is shown and described inFigure 5.2. This genetic

algorithm is run with a population ofp = 50 chromosomes. Fitness evaluation of a single
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controller that is shown in the box shaded with a gradient is enlarged inFigure 5.5and is

described in detail inSection 5.2.4.

5.2.2 Encoding of the Robot Controller

The connection weights of the perceptron seen inFigure 3.3(plus bias weights for output

neurons) are encoded as3 × 12 + 3 = 39 floating point numbers on a chromosome, or a

population member.

5.2.3 Genetic Operators

Tournament selection was chosen as the selection method because of its simplicity. After

selection, crossover is applied to the members of the population with a probability of 0.8.

The mutation method used is defined as choosing one weight out of all 39 weights on the

chromosome and adding a random value uniformly in[−1.0,+1.0] range. Each chromosome

is subjected to this type of mutation with a probability of 0.5. This means that each network

weight in the population has a mutation probability of0.5
39 . At each generation, depending

on their fitness, the best 10% (e = 5) of the population is copied unchanged to the next

generation, i.e., elitism, together with the rest, which is the result of selection, crossover, and

mutation operations.

5.2.4 Fitness Evaluation

For the genetic algorithm to function correctly, the chromosomes should be evaluated for their

fitness, i.e., in our case, how good the encoded controller performs aggregation. Aggregation

quality can be assessed in several ways. One way is to compute sum of the distances of each

pair of robots. This measure gives smaller values as the robots get closer to each other. How-

ever, we chose another aggregation measure, which counts the robots in the formed clusters

and computes the fitness as the size of the largest cluster with respect to the whole group, be-

cause this measure is a direct method of calculating what percent of the robots have clustered

together.

In order to do the evaluation, the perceptron defined by that particular chromosome is

replicated as the controller for all the robots in the swarm, and the swarm robotic system is

simulated for a certain number of steps. At the end of a simulation run, sizes of clusters are

computed. This is done as follows.
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Figure 5.2: The genetic algorithm in detail. It starts with a population of sizep initialized
randomly. Each individual, which encodes a controller, is evaluated for its fitness. Using the
computed fitness values, the controllers are sorted in descending order. The tope controllers
form theelite group and go into the new population untouched. Among the whole popula-
tion, a set of(p − e) controllers are selected with tournament selection and are subjected to
crossover, then mutation to give(p − e) new controllers. The resulting(p − e) controllers,
together with the elite controllers form the new population of sizep. If the termination condi-
tion is not met yet, the new population goes through the same process again. Otherwise, the
best performing controller in the last fitness evaluation is accepted asthe solution. The given
parameter set is used in fitness evaluation and the termination condition.

32



Robotsi and j are referred to as neighbors if theNeighbor(i, j) relation, defined in

Equation 5.1, is true. Also, the two robots are in the same cluster, or aggregate or group, if

the Connected(i, j) relation, defined inEquation 5.2, is true. Connected(i, j) is actually

the transitive closureof the Neighbor(i, j) relation. Transitive closure is computed using

Warshall’s algorithm, which hasO(n3) complexity over the number of robots [40].

Neighbor(i, j) =


true if distance between

i andj ≤ 4 cm

false otherwise

(5.1)

Connected(i, j) =



true if there is a path from

i to j over the

relationshipNeighbor

false otherwise

(5.2)

Using the transitive closure, each robot is assigned to a cluster, while calculating the size

of clusters. This is done with the algorithm, shown inFigure 5.3, of O(n2) complexity over

the number of robots. The primary purpose of this algorithm is to determine the largest cluster

l. The aggregation performance, orfitness, of a single evaluation run is defined assize(l)
nrobots

,

i.e., ratio of size of the largest cluster to the number of all robots, wheresize(c) is the number

of robots in clusterc.

Different initial positions of robots in the arena lead to a significant bias for the result-

ing aggregation performance, as seen inFigure 5.4. Therefore, a fair evaluation of different

controllers requires multiple performance evaluation simulations per controller, each starting

with a different random initial placement. The number of simulations per controller will be

callednruns from now on.

The fitness of a chromosome is defined as inEquation 5.3.

Fitness = Fcombine(fitness1, ..., fitnessnruns) (5.3)

whereFcombine, fitness combining function, is used to join the fitness values ofnruns simula-

tion runs done for a single chromosome. These runs differ in their randomization seed, which

determines the initial placement of robots.fitnessi in this equation refers to the fitness value

of a simulation run with theith random seed. In this study, theFcombine function is one of

the parameters altered in experiments and is chosen among the following functions:average,

median, minimum, andmaximum.
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for all robotr do
for all clusterc do

if Connected(r, first robot ofc) then
Assign robotr to clusterc
Incrementsize(c)
if clusterl not initialized ORsize(c) > size(l) then

l ⇐ c
end if
Continue with next robotr in outer loop

end if
end for
Create new clusterc′

Put robotr into clusterc′

size(c′) ⇐ 1
if clusterl not initializedthen

l ⇐ c′

end if
end for

Figure 5.3: Algorithm to determine the largest cluster.

5.2.5 Arena Set-ups for Evolution

Simulations involve robots that are initially randomly distributed in a closed square arena.

Arena sizes that are used in the evolutions are 110×110 cm, 140×140 cm, 200×200 cm, and

282×282 cm. Initial positions and orientations of robots are random and are determined using

the random seed coming from the genetic algorithm.

5.3 Scalability Evaluation

During scalability analysis, each evolved controller is tested with 50 different seeds on 5

different set-ups, which are all set-ups used for evolution plus a 400×400 cm arena, shown in

Table 5.1. In all these set-ups the robot density over the arena is kept the same. The number

of simulation steps is increased in larger arenas to allow more time for aggregation.

The results, i.e., final largest cluster ratio of robots, obtained from the 50 runs are averaged

and yield the result for a single controller and a single evaluation set-up. We had mentioned 4

different evolutions for each parameter value choice. Each one of the 4 controllers produced

by these evolutions are evaluated for their scalability in the same manner, on the 5 differ-

ent evaluation set-ups. The results are plotted for each evaluation set-up and each different

parameter value choice averaged over the 4 evolution suites. Thescalability metricwe use
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Different initial positions and their consequences. The pairs of images ((a)-(b),
(c)-(d), and(e)-(f)) show the state of robots at steps 1 and 6000 for three different seeds using
the same controller.
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Figure 5.5: Fitness evaluation of a single controller in the genetic algorithm. The same
controller is used innruns different simulation runs with different initial random robot place-
ments and the results are combined into one single value. This value is used as the fitness of
the controller.
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Figure 5.6: Scalability evaluation of the given controller is done by running each controller
on 50 times on each of the 5 different sized set-ups and averaging the results.

is simply a vector of 5 numbers that are the average fitness values for 5 different scalability

set-ups.

The numbers given above mean 50runs× 5 set-ups× 4 evolutions= 1000 evaluation

simulation runsfor each parameter value choice and1000×4 parameter alternatives= 4000
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Table 5.1: Set-ups used for scalability evaluation.

set-up # Robots Arena Size # Simulation Steps

1 3 110× 110 3000
2 5 140× 140 6000
3 10 200× 200 9000
4 20 282× 282 12000
5 40 400× 400 15000

total scalability evaluation runsin a single experiment. As one can realize, this is huge

amount of computation for a single computer to overcome. Hence, just like we parallelized

fitness evaluations of the genetic algorithm, we also distributed these simulation runs with

PES-Dist mentioned inChapter 4. These simulation runs were also executed on the cluster of

ULAKB İM.
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CHAPTER 6

Experiments and Results

Our main purpose in the experiments is to derive hints, in evolutionary swarm robotics, to

how the available limited processing time should be utilized for evolving a desired robotic

behavior. Should the available time be given to more generations, to more runs per controller,

or to longer simulations for fitness evaluation? Choices of some parameters that do not affect

total evolution time were also investigated.

With the experimental framework described in the previous chapter, we conducted four

experiments to investigate the effect of different parameters on performance and scalability of

evolved aggregation behaviors. Parameters altered in the experiments can be seen inTable 6.1.

The specifically investigated parameters in each experiment are shown inTable 6.2.

Due to long computation times for simulations, for each parameter, a limited number of

values could be investigated, which can be seen inTable 6.2. Different ranges and more values

for parameters could also be considered, which would extend the results of this study.

Table 6.1: Parameters altered in evolution experiments.

Parameter Name Parameter Description

Fcombine(·) Fitness combining method
nruns Number of simulation runs per controller
nsteps Number of simulation steps
ngens Number of generations in evolution

Set-up Size Set-up size in terms of number of robots, arena size,
and number of simulation steps

In the first three experiments total number of simulation steps used in evolution was kept

constant. This roughly corresponds to keeping the total amount of processor time constant1.

The first experiment considered effects of changing a single parameter, while the second

1 Roughly, because two simulations that run forS simulation steps do not necessarily have equal execution
durations due to longer execution when there are more collisions in simulation.

38



Table 6.2: Investigated parameters in evolution experiments.

Experiment Investigated parameters

1 Fcombine(·)
2 nsteps vs. nruns

3 ngens vs. nruns

4 Set-up Size

and third experiments specifically investigated trade-off’s between the parameters shown in

Table 6.1and the fourth experiment altered set-up size used in evolution. In the trade-off

experiments, the aim was to answer the set of questions “If I have parameters that cause

longer evolutions when increased, should I use the limited amount of CPU time for increasing

parameterA and decreasing parameterB, or vice versa?” In other words, the question is

“which parameter is worth increasing,A or B?”

Table 6.3: Constant and variable parameters in the experiments are shown. Variable parame-
ters are given as different values that the variable is assigned. Experiments 2, 3, and 4 used
median as theFcombine function, because initial trials had shown that median caused slightly
better performance. However, this was observed to be incorrect when all results of experiment
1 were obtained as seen inSection 6.1.

Exp. nrobots Arena size nsteps nruns ngens Fcombine

1 10 200×200 6000 5 50 avg., median,
min., max.

2 10 200×200 18000, 6000, 1, 3, 5, 10 50 median
3600, 1800

3 10 200×200 6000 1, 3, 5, 10 150, 50, median
30, 15

4 5, 10, 20 140×140, 6000, 9000, 3 50 median
200×200, 12000
282×282

6.1 Experiment 1: Fitness Integration Method

In Section 5.2.4we had mentioned afitness combining function, Fcombine, that determines

how thenruns different fitness evaluations (each obtained from different initial robot posi-

tions) of a controller are combined. Due to a standard deviation that can be as high as 24%

(Figure 6.1(a)) among fitness values obtained with the same controller, the function may in-

fluence the course of evolution and performance of resulting controller significantly. The first

experiment is motivated by the question of how should theFcombine function be chosen to
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obtain the best results. We examined the effect of fitness combining method, where the four

functions,average, median, minimum, andmaximumwere used asFcombine.

The results, which can be seen inFigure 6.1(a), indicate that the four functions are sorted

according to their performance in the orderminimum, maximum, median, andaverage. Each

one dominates, i.e., is better in all evaluation set-ups than, the next one in this order. The

minimumfunction, which corresponds to pessimistic evaluation, is clearly the best of the

four.

It is also worth mentioning that, considering the standard deviations among the scalabil-

ity performances of 4 distinct evolutions (Figure 6.1(b)), the minimumfunction performed

close in each of the 4 evolutions, i.e., showed small variance, as well performing the best.

On the other hand, themaximumfunction, which is the second best in performance, showed

significant variance among evolutions compared to the other functions. This means that al-

though both seem to perform well, themaximumfunction is riskier to use in evolution than

theminimumfunction.

One interesting observation would be that the functions that consider only extrema in fit-

ness, i.e.,minimumandmaximumfunctions, performed better than the functions emphasizing

all fitness values, i.e.,medianandaveragefunctions.

The behavior of one of the best controllers evolved in this experiment can be seen in

Figure 6.2(a)andFigure 6.2(b). The evolved strategy can be described as “if no sound is

heard then go straight; if there is wall then avoid it; if a sound is heard then approach the

loudest sound source; but if the sound is very loud then turn on the spot”. The emergent

behavior of formed groups is to move slowly toward the loudest sound source. This can be

seen in paths of groups inFigure 6.2(b), which are slowly going toward each other.

6.2 Experiment 2: Simulation Duration vs. Number of Runs per Controller

Choice of parameters that affect evolution time are hard to choose, since to alter one of them

and to keep the total evolution duration constant, one needs to sacrifice another parameter. To

shed light onto this situation, we considered a trade-off in the second experiment, between the

number of runs per controller (nruns) and the number of simulation steps in fitness evaluation

(nsteps) while keeping the number of total simulation steps executed for a specific controller

constant.Figure 6.3shows a significant monotonous increase in performance asnruns in-

creases although while duration of simulation decreases. However, asnruns is increasing,
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Figure 6.1: Results of experiment 1. Different integrations of fitness values of the
same controller are compared. They-axis shows final largest cluster ratios, i.e., ag-
gregation performance, whereas thex-axis designates 5 different set-ups used to eval-
uate scalability performance of produced controllers by the evolutions depicted on the
legend. The evaluation set-ups increase in number of robots, size of arena, and num-
ber of simulation steps from left to right. For each of the 5 setups on x-axis,
(a) showsmean(mean over 50 runs) over 4 evolution suites with the error bars indicating
mean(std.dev. over 50 runs) over 4 evolution suites.(b) differs only in error bars, which in-
dicatestd.dev.(mean over 50 runs) over 4 evolution suites.
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Figure 6.2: The behavior of an evolved controller with(a) a single robot in an arena of size
200× 200 after 10000 time steps, and(b) 40 robots in an arena of size400× 400 after 15000
time steps. Final positions of robots are shown as circles together with the paths they followed
during the whole simulation run.
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performance increase is slowing down, which can be seen as decreasing gaps between the

lines in the plot. This is probably due to decreasednsteps in highnruns evolutions,

This implies that the number of runs for a controller is more important than the number

of simulation steps up to a certain level, where the gain coming from highnruns is surpassed

by the loss from lownsteps.
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Figure 6.3: Results of experiment 2. The number of runs for the same controller and the
number of simulation steps are varied while keeping total number of steps for a controller
constant. Plot axes are the same as inFigure 6.1. For each of the 5 setups on x-axis,
(a) showsmean(mean over 50 runs) over 4 evolution suites with the error bars indicating
mean(std.dev. over 50 runs) over 4 evolution suites.

The degree of general drop in performance toward larger scalability evaluation arena set-

ups inFigure 6.3and the result plots of other experiments show the amount of deviation from

perfect scalability, which would be shown as completely horizontal lines, i.e., no performance

loss with bigger scales.

6.3 Experiment 3: Number of Generations vs. Number of Runs per Controller

Another trade-off we considered in total evolution time is betweennruns and number of gen-

erations (ngens) while keeping the number of total simulation steps in the whole evolution

constant. Our third experiment investigates the choice of parameters in this trade-off. In the

experimented values for the parameters, asnruns is increasedngens is decreased, so that the

total number of simulation runs done in the evolution is constant.

The resulting performance and variance plots are shown in (Figure 6.4). The resulting
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scalability performances are rather close, which is pretty surprising because it shows that the

decrease in performance by decreasing number of generations (as suggested by the fact that if

elitism is used in a genetic algorithm, performance increases or stays the same at consequent

generations) is compensated by the increase in performance caused by the increase innruns

(as shown in Experiment 2). Moreover, this balance of the two parameters seems to exist at

the same parameter value ranges (that isngens = [15, 150] andnruns = [1, 10]) for all 5

set-ups of different size.
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Figure 6.4: Results of experiment 3. The number of generations and the number
of runs for the same controller are varied while keeping total number of steps con-
stant. Plot axes are the same as inFigure 6.1. For each of the 5 setups on x-axis,
(a) showsmean(mean over 50 runs) over 4 evolution suites with the error bars indicating
mean(std.dev. over 50 runs) over 4 evolution suites.

6.4 Experiment 4: Set-up Size

Scalability is an important issue in swarm robotic systems, since it significantly affects the

usefulness of a swarm robotic controller. Therefore, one might ask the question “how well

does a controller, that is evolved using a set-up of certain size, perform on different sized

set-ups?”, or more generally “how does chosen set-up size in evolution affect the scalability

performance of evolved controllers?”. One would expect that each evolution produces a con-

troller that runs best on its evolution set-up among controllers that are evolved on different

sized set-ups. Is that really so?
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As explained in earlier chapters, in each evolution, controllers are evaluated for their

fitness by running a simulation on a set-up of certain size (arena size, number of robots, and

number of simulation steps combined). For evaluating the fitness of a controller, if we use

multiple set-ups instead of a single one, would we be able to evolve a morescalablecontroller,

i.e., a controller that performs higher in all different sized set-ups?

These questions were tackled in our fourth experiment. However, the type of scalability

considered here does not involve solutions tosparserarenas, i.e., having lowerrobot densities,

or shorter times to complete aggregation. If arena size and simulation duration were kept

constant while number of robots was altered, the problem would change considerably. A

sparser arena would mean that finding other robots would be a much more challenging task

because of limited sensor ranges. The tactic required to aggregate in such an arena may

be quite different from the one required in a less sparse one. It would also complicate the

aggregation task if simulation duration was not increased together with number of robots.

Aggregation in shorter times may require different strategies.

Therefore, the scalability we try to achieve is concerned with attempting the same task

with different number of robots, while also altering the arena size to keep the robot density

constant, and also simulation duration to allow enough time for the robots to find each other

and aggregate. Thus, this experiment investigates the effect of set-up size, i.e., number of

robots, arena size, and number of simulation steps together, on performance and scalability.

Unlike the first three experiments, which were conducted to find out how to use total process-

ing time most effectively, this experiment does not keep the total number of simulation steps

in the whole evolution constant. Instead it analyzes how good controllers evolved with differ-

ent set-ups perform on smaller/larger set-ups. It investigates which set-up size leads to better

scalability and also whether using all set-ups in one evolution (where calculating fitness a

controller by multiplying simulation results on different set-ups) improves overall scalability.

The results inFigure 6.5(a)show that, as expected, the multiple set-up evolution per-

formed the best among the five evolutions and displayed the highest scalability. Also, the

evolution with the smaller set-up (5-robot set-up evolution) showed higher performance in

smaller evaluation set-ups (3-robot and 5-robot set-ups), and lower performance in larger

evaluation set-ups (10-robot, 20-robot, and 40-robot set-ups) than the evolutions with bigger

set-ups (10-robot and 20-robot set-up evolutions).

When we look atFigure 6.5(b), we see that multiple set-up evolution is not only the best

performing evolution, but also the one with the least “variance among 4 evolutions”, hence
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Figure 6.5: Results of experiment 4, where evolution set-up size, i.e. number of robots, arena
size, and number of simulation steps, is varied. Plot axes are the same as inFigure 6.1. For
each of the 5 setups on x-axis,(a) showsmean(mean over 50 runs) over 4 evolution suites
with the error bars indicatingmean(std.dev. over 50 runs) over 4 evolution suites.(b) dif-
fers only in error bars, which indicatestd.dev.(mean over 50 runs) over 4 evolution suites.

the highest reliability among different evolutions. Furthermore, it is observed that 20-robot

set-up evolution has the highest variance. This shows that if the 20-robot set-up is chosen for

evolving controller, the resulting performance will be less predictable compared to evolutions

on other set-ups. This may be caused by the size of the set-up, where even with a suitable

controller for the task, 20 robots may end up at placements that have much more varying
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fitness the end of 12000 steps in a big arena with respect to smaller set-ups.

Among the three evolutions using only one set-up, each evolution produced a controller

that performed best at its evolved set-up. The difference between the performance of a con-

troller evaluated on the set-up that it is evolved on and performances of other two controllers

becomes significant in the evaluation with the 20-robot set-up, where 20-robot set-up evolu-

tion scores much higher than 5-robot set-up evolution. However, the controller evolved in

multiplied set-up evolution outperforms all others, even on their very own evolution set-ups.

It is very interesting and can further be analyzed because the three evolutions get to have three

evaluation simulation runs on their own set-up, while the multiplied set-up evolution gets to

have only one on each of the three set-ups.
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CHAPTER 7

Conclusions and Discussions

We studied how several parameters involved in using evolutionary methods in swarm robotic

systems affect the performance and the scalability of behaviors. We chose the aggregation

behavior as our case and made four systematic experiments. These experiments investigated

trade-offs among number of runs per controller, number of generations in the genetic algo-

rithm, and number of simulation steps to find out the most beneficial resource to dedicate

processing time to. Furthermore, this study examined how to best merge fitness results ob-

tained from simulation runs of the same controller with different seeds. Finally, one more

experiment was done to better understand how evolution set-up size affects the scalability and

performance on set-ups of different size.

In this study, we have made some assumptions regarding the problem domain in several

aspects: the aggregation task, robot architecture, robot controller, and the genetic algorithm.

For the aggregation task, we considered clustering of robots in a closed arena where a robot

can perceive a portion of the arena. Therefore, the robots had no means of broadcast com-

munication. However, they were able to hear a group of robots better than a single one at the

same distance as seen inFigure 3.5. The controller of the robots was a single-layer percep-

tron, which means that the robots had reactive control, without any memory and acted without

doing any planning. Furthermore, the robots were not capable of identifying each other. Also,

the group of robots was homogeneous without a leader of any kind. This provides robustness

for the system, which is one of the characteristics of swarm robotics.

There were also some assumptions on the genetic algorithm. The perceptron controller

was encoded in the chromosome as a vector of floating point numbers with a mutation that

adds or subtracts a random number with a probability of 1%. The size of the population

used was 50, where the top 5 chromosomes were passed unaltered to the next generation.

Tournament selection was used, where the selected chromosomes were subjected to cross-
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over with 80% probability.

Based on the results obtained from the experiments conducted, we conclude the following

rules of thumb, which can be accepted as true in the assumed domain we described above:

1. To combine results from different fitness evaluations of the same controller (to over-

come bias from random initial distributions), the use ofminimumfunction should be

preferred over the functionsaverage, median, andmaximum.

2. When faced with the trade-off between the number of simulation steps for each run and

the number of different runs per controller, one should choose the minimum sufficient

number of simulation steps while maximizing the number of runs per controller. This

will considerably eliminate negative effects of the high variance observed in robotics

applications when initial positions are random.

3. The optimum value of the number of runs per controller and the number of generations

(which is as important as number of runs) is not easy to obtain. Number of genera-

tions in evolution needed for emergence of a controller with acceptable performance,

depends on architectural complexity of the controller and difficulty of the task. It is

best to let the evolution run once initially for many generations to see about when the

performance reaches a reasonable level.

4. In fitness evaluation, running simulations in multiple set-ups of different scale and mul-

tiplying the results improves scalability, since the controller is evaluated in multiple set-

ups of different size, while being evolved. Also, evolving robot controllers on set-ups

close in size to the actual set-ups that the robot is to be used will improve performance

on that set-up. Therefore, using controllers evolved in set-ups too different than the

application set-up is not recommended. Also evolving on a large set-up will increase

variance of the evolved controller in performance among multiple evolutions.

We believe that these results, obtained through the systematic experiments, have a high

chance of being relevant both for evolving other swarm robotic behaviors in simulation, and

for evolving behaviors for physical robotic systems. Some of these rules of thumb are already

employed earlier in the studies that evolve self-organizing behaviors by Dorigoet al. [16].

They use many runs per controller to obtain more reliable fitness evaluations (as suggested by

item 2above) and for each of these runs they use a random number of robots to obtain a more

scalable controller (which supportsitem 4).
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7.1 Future Work

This study can be extended by considering tasks other than aggregation and verifying the

results on them. Also, more experiments can be carried out to investigate effects of other

parameters which do not influence total run-time such as mutation-crossover rates, and dif-

ferent fitness measures. Moreover, experiments can be conducted to further explore optimal

regions in trade-offs among parameters that affect total run-time, such as population size in

the genetic algorithm, simulation run-time, and number of simulations for each chromosome.

Finally, the results can be strengthened more by applying the evolved controllers onto physi-

cal robots and evaluating the performance and scalability with different number of robots and

with arenas of different size or shape.
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[7] M. Dorigo and E. Şahin, “Swarm robotics - special issue editorial,”Autonomous Robots,
vol. 17, no. 2, 2004.
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[30] V. Trianni, R. Groß, T. Labella, E. Şahin, and M. Dorigo, “Evolving Aggregation Be-
haviors in a Swarm of Robots,” inAdvances in Artificial Life - Proceedings of the 7th
European Conference on Artificial Life (ECAL)(W. Banzhaf, T. Christaller, P. Dittrich,
J. T. Kim, and J. Ziegler, eds.), vol. 2801 ofLecture Notes in Artificial Intelligence,
pp. 865–874, Springer Verlag, Heidelberg, Germany, 2003.

52



[31] C. R. Ward, F. Gobet, and G. Kendall, “Evolving collective behavior in an artificial
ecology.,”Artificial Life - Special issue on Evolution of Sensors in Nature, Hardware
and Simulation, vol. 7, no. 2, pp. 191–209, 2001.

[32] F. Mondada, G. C. Pettinaro, A. Guignard, I. Kwee, D. Floreano, J.-L. Deneubourg,
S. Nolfi, L. Gambardella, and M. Dorigo, “Swarm-bot: A new distributed robotic con-
cept,”Autonomous Robots, vol. 17, no. 2–3, pp. 193–221, 2004.

[33] J.-M. Valin, F. Michaud, J. Rouat, and D. Letourneau, “Robust sound source localization
using a microphone array on a mobile robot,” inProceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 1228–1233, 2003.
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APPENDIX A

Parallelized Evolution System Manual

A.1 Installation

Parallelized Evolution System (PES) can be installed easily on both Linux and Windows

(using Cygwin), as long as PVM is also installed, which is necessary for communications

between server and client components. PES also requires remote services (namely rexec or

rsh) to function. Remote services can be replaced by ssh as described in the documentation

of PVM and ssh. Details of installation in both platforms are given in following subsections.

A.1.1 Linux Installation

Most recent Linux distributions come with the PVM library. Otherwise, the easiest way to

install PVM is using its rpm distributions.

Remote services are also present in most of Linux distributions. Details of configuration

are given inSection A.2.

The first step to install PES is to install PVM. For Linux machines, following the described

process in packages is enough. Especially using rpm distribution facilitates the process.

A.1.2 Windows Installation

Installation on Windows is slightly more complicated than installation on Linux. On Win-

dows, Cygwin is mandatory for PES to operate. Cygwin can be downloaded and installed

from the official Cygwin web site1. Full distribution of Cygwin contains many useful utili-

ties, but also uses great amount of drive space (around 1 GB).

In many distributed applications, the same executable program is run on each computer to

be used for distributed processing. Therefore, compilers and development tools are not needed

1 http://www.cygwin.com
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on all computers, but only one, which will be used to compile the distributed application.

Then, this executable can be transferred to the others, which require a minimal distribution of

Cygwin. This distribution must contain a shell andinetdto work correctly. Theinetdpackage

contains remote call services. Packages that are dependencies of these must also be included.

After Cygwin installation, PVM must be compiled under Cygwin. Some recent distrib-

utions of PVM have some minor problems that cause compilation under Cygwin to fail. A

working build can be found at the homepage of Kovan Research Laboratory2.

A.2 Configuration

In all platforms, PVM requires two environment variables to be set: PVMARCH and PVMROOT.

PVM ARCH defines the architecture of the machine. The value that should be used can be

learned by issuing thepvmgetarchcommand that comes with the PVM package. PVMROOT

should contain the root path of the PVM installation.

Configuration of PES is independent of platform. However, PVM requires platform-

specific issues to be addressed.

PES uses a single configuration file “Pesdef.txt”. This file contains parameters used in

the genetic algorithm. This configuration file is searched on the running directory of the

server program. TheTaskManagerinstance for the program reads this file and configures the

program using the file. When the file is not present, default values are used. The parameters

and their default values are listed onFigure A.1.

A.2.1 Linux Configuration

PVM requires remote services. Unless otherwise stated, remote services require password

authentication. Password authentication is repetitive and clumsy to use with many machines.

An alternative is rhosts authentication, which is simpler to use. The user should create a

file named “.rhosts” in his/her home directory, which should contain a list of login names

(together with the name of their servers) that are allowed to login to this account without

password authentication. This file consists of lines composed of a server and login name pair.

For further details on this file, see the manual page ofrlogin command.

The last step of PVM configuration is to run the pvm daemon. This can be accomplished

by executing thepvmcommand. This command runs the pvm console, which enables control

2 http://www.kovan.ceng.metu.edu.tr
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of PVM and the tasks that are running on it. The PVM console can be used to add/remove

hosts at run time.

A.2.2 Windows Configuration

The .rhostsauthentication mechanism is not supported in Cygwin. Instead, the “hosts.equiv”

file can be used. This mechanism is more dangerous than using .rhosts since it allow the user

to login to the system as any user. So this file should be prepared with care.

PVM daemon and console under Cygwin are similar to the Linux version. Cygwin pro-

vides a bash shell for this purpose. Cygwin must be configured as described in the PVM

documentation. Cygwin environment is not available for remote calls, so environment vari-

ables should be added to the Windows environment. The simplest way to accomplish this is

using the Windows registry scripts. A script for default directories can be also found at the

Kovan web site.

A.3 Example

A simple example comes with the PES distribution. It features all basic functions of PES and

demonstrates the implementation of PES-S and PES-C for a model XOR problem.

A.4 Frequently Asked Questions

1. Where can I use PES?PES is designed for problems where fitness evaluations are

the dominating factor in complexity. It performs best on such problems, like problems

attacked with evolutionary methods that involve long simulations as fitness evaluation.

2. How many PC’s can PES work with? PES currently assumes a maximum of 300

computers. In theory, it can work with arbitrary number of computers but it is tested

with at most 128 PC’s.

3. Is there any more information available on PES?There is a PES technical report at

the Kovan web site. It gives details on the performance of PES.

4. Where is the documentation of the library? It is included in the distribution under

“doc” directory.

5. Is PES free?Yes. PES is provided as freeware.
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6. PES finishes execution with error -7, why?This error signals that the executable file

in clients can’t be found. Check the “Pesdef.txt”. SeeFigure A.1for details on the

contents of “Pesdef.txt”.

7. PES works too slowly, why?The cause of this problem can be configuration. Check

the hosts in the PVM environment. Typepvm to reach console. In this console, type

conf to see the hosts available. Also, the PES server component displays available hosts

on initialization. If the required hosts are not available, add them to the PVM host list

as defined in the PVM documentation. If the problem persists, check “Pesdef.txt” for

the location of the executable program in clients. See also Question1.

Parameter Type Description
nproc int Number of PES-C’s to use.

MAX GENERATIONS int Max number of generations
POPSIZE int Population size of genetic algorithm.

TASK STEPS int Number of simulation steps.
This can be used for simulated fitness functions.

pingtimeout int Timeout for PES-C’s in seconds.
TASK PEREVAL int Number of cases to be tested

for each fitness function evaluation.
SLAVENAME string Path of the PES-C executable in

slave machines.

Figure A.1: Configuration file (Pesdef.txt) contents.
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