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ABSTRACT 
 
 

MOVING OBJECT IDENTIFICATION AND 

EVENT RECOGNITION IN 

VIDEO SURVEILLANCE SYSTEMS 

 

Örten, Burkay Birant 

MSc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr.  A. Aydın Alatan 

 

August 2005, 73 Pages 

 

This thesis is devoted to the problems of defining and developing the basic 

building blocks of an automated surveillance system. As its initial step, a 

background-modeling algorithm is described for segmenting moving objects 

from the background, which is capable of adapting to dynamic scene 

conditions, as well as determining shadows of the moving objects. After 

obtaining binary silhouettes for targets, object association between 

consecutive frames is achieved by a hypothesis-based tracking method. 

Both of these tasks provide basic information for higher-level processing, 

such as activity analysis and object identification. In order to recognize the 

nature of an event occurring in a scene, hidden Markov models (HMM) are 

utilized. For this aim, object trajectories, which are obtained through a 

successful track, are written as a sequence of flow vectors that capture the 

details of instantaneous velocity and location information. HMMs are trained 

with sequences obtained from usual motion patterns and abnormality is 

detected by measuring the distance to these models. Finally, MPEG-7 

visual descriptors are utilized in a regional manner for object identification. 

Color structure and homogeneous texture parameters of the independently 
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moving objects are extracted and classifiers, such as Support Vector 

Machine (SVM) and Bayesian plug-in (Mahalanobis distance), are utilized to 

test the performance of the proposed person identification mechanism. The 

simulation results with all the above building blocks give promising results, 

indicating the possibility of constructing a fully automated surveillance 

system for the future. 

 

Keywords: Moving Object Detection, Object Tracking, Event Recognition, 

Hidden Markov Models, Object Identification. 
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ÖZ 
 
 

GÜVENLİK AMAÇLI VİDEO SİSTEMLERİNDE 

HAREKETLİ NESNELERİN TANINMASI VE 

OLAY ANALİZİ 

 

Örten, Burkay Birant 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. A. Aydın Alatan 

 

Ağustos 2005, 73 Sayfa 

 

Bu tez, otomatize bir görsel güvenlik sistemi için gerekli olan temel 

parçaların tanımlanması ve geliştirilmesi üzerine bir çalışmadır. Bu tür bir 

sistemde en temel parçalardan birisi hareketli nesnelerin bulunmasıdır. Bu 

amaçla, değişken ortam şartlarını öğrenme kapasitesine sahip, ayrıca 

gölgeleri de nesne maskelerinden ayırabilen bir arkaplan modelleme 

yöntemi tanımlanmaktadır. Nesne maskeleri elde edildikten sonra birbirini 

takip eden kareler arasında nesneleri eşleyebilmek için hipotez tabanlı bir 

takip algoritması önerilmektedir. Bu iki parça, daha üst seviye işlemler için 

gerekli olan temel bilgileri sağlamaktadır. Sahnedeki hareketlerin 

anlamlandırılması ve türlerinin belirlenmesi için saklı Markov modelleri 

kullanılmaktadır. Nesne eşlemesi sonucunda elde edilen rota bilgileri, 

hareketin hız ve pozisyon bilgisini içeren akış vektörleri kullanılarak bir seri 

halinde yazılmakta ve bu vektörler K-ortalama yöntemi kullanılarak 

gruplanmaktadır. Sahnedeki genel olağan hareket rotalarına ait seriler saklı 

Markov modellerinin eğitilmesinde kullanılmakta, herhangi bir rotanın bu 

modellere olan uzaklığı hesaplanarak da hareketin doğası belirlenmektedir. 

Son olarak, MPEG-7 görsel tanımlayıcıları nesne tanımlama konusunda 

bölgesel olarak kullanılmaktadır. Hareketli nesne bölütlemesi sonucunda 
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elde edilen bölgelerden renk yapısı ve homojen doku parametreleri 

çıkarılmaktadır. Destek vektör makinesi ve Mahalanobis uzaklığı 

kullanılarak yapılan testler sonucunda önerilen tanıma sisteminin 

performansı gösterilmektedir. Yukarıda tanımlanan sistem ile yapılan 

simülasyonlar, otomatik bir video gözlem sistemi oluşturulması açısından 

olumlu sonuçlar vermektedir. 

 

Anahtar Kelimeler: Hareketli Nesnelerin Bulunması, Nesne Takibi, Olay 

Analizi, Saklı Markov Modelleri, Nesne Tanıma. 
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CHAPTER 1 

 
 

1INTRODUCTION 
 
 
 

In recent years, with the latest technological advancements, off-the-shelf 

cameras became vastly available, producing a huge amount of content that 

can be used in various application areas. Among them, visual surveillance 

receives a great deal of interest nowadays. Until recently, video surveillance 

was mainly a concern only for military or large-scale companies. However, 

increasing crime rate, especially in metropolitan cities, necessitates taking 

better precautions in security-sensitive areas, like country borders, airports 

or government offices. Even individuals are seeking for personalized 

security systems to monitor their houses or other valuable assets. 

 Old-fashioned security systems were vastly relying on human labor 

instead of system hardware. As a result, detection and assessment of threat 

was limited with the concentration of the human operator. Additionally, area 

under surveillance may be too large to be monitored by a few operators and 

number of cameras may exceed their monitoring capability. This situation 

forces the use of more personnel, which makes it even a more expensive 

task in an era of technological equipments’ being much cheaper than the 

human resource. 

 The sole answer for this increasing demand for personal and societal 

security is automation. The vast amount of data acquired from video 

imagery should be analyzed by an intelligent and useful autonomous 

structure. This intelligent system should have the capacity to observe the 

surrounding environment and extract useful information for subsequent 
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reasoning, like detecting and analyzing the activity (motion), or identifying 

the objects entering the scene. Besides, monitoring should be done 24- 

hours-a-day, without any interruption. This sort of a system will achieve the 

surveillance task more accurately and effectively, saving a great amount of 

human effort. 

1.1 Scope of the Thesis 
 

This thesis deals with the problems of defining and developing the basic 

building blocks of an automated surveillance system. Initial problem is the 

detection of object motions in the scene. Background modeling algorithms, 

which are capable of coping with the changes in the scene (i.e., adaptable), 

are described for extracting isolated moving objects and a hypothesis-

based algorithm is utilized for tracking the detected objects.  

 Higher-level tasks, such as event recognition and object identification, 

are also to be handled in such an automated system. Event recognition is 

achieved by modeling object trajectories by the help of hidden Markov 

models (HMM). Finally, visual feature-based object identification is also 

examined. The performances of the proposed system blocks are validated 

by the simulation results. 

1.2 Outline of the Thesis 
 

In Chapter 2, related works and state of the art for each of the proposed 

system blocks are presented. 

 Moving object detection algorithms are described in Chapter 3. These 

algorithms include adaptive background modeling, moving object 

segmentation and noise cleaning methods. Additionally, removal of 

shadows from binary masks is also explained in this chapter. 

 After the detection of the moving objects, the next problem turns out to 

be tracking of these objects. Chapter 4 details a hypothesis-based object-

tracking algorithm, which utilizes a color model for each foreground object 

to handle occlusions. 



 

 3

 Chapter 5 mentions a hidden Markov model based event recognition 

algorithm. HMMs are briefly introduced in this chapter and utilization of 

object trajectories for event recognition is described together with some 

simulation results. 

 Visual features used for object identification, utilized classifiers and the 

expert combination schemes are presented in Chapter 6. Simulation results 

on different data sets are also provided. 

 The thesis is concluded in Chapter 7 and some future extensions are 

also discussed in this chapter. 
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CHAPTER 2 
 

 

2STATE-OF-THE-ART IN VIDEO SURVEILLANCE SYSYTEMS 
 

 

 

The described framework in this study includes 4 main building blocks for 

an automated surveillance system, which can be listed as moving object 

detection, object tracking, event recognition and object identification. This 

chapter describes the related work and the latest studies in the literature on 

each of these building blocks. 

2.1 Moving Object Detection 
 

Detecting changes in image sequences of the same scene, captured at 

different times, is of significant interest due to a large number of 

applications in several disciplines. Video surveillance is among the 

important applications, which require reliable detection of changes in the 

scene. 

 There are several different approaches for such a detection problem. 

These methods can be separated into two conventional classes: temporal 

differencing and background modeling and subtraction. The former 

approach is possibly the simplest one, also capable of adapting to changes 

in the scene with a lower computational load. However, the detection 

performance of temporal differencing is usually quite poor in real-life 

surveillance applications. On the other hand, background modeling and 

subtraction approach has been used successfully in several algorithms in 

the literature. 
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 Haritaoglu, et al. [1], model the background by representing each pixel 

with its maximum intensity value, minimum intensity value and intensity 

difference values between consecutive pixels. The limitation of such a 

model is its susceptibility to illumination changes. 

 Oliver, et al. [2] have proposed an eigenspace model for moving object 

segmentation. In this method, dimensionality of the space constructed from 

sample images is reduced by using Principal Component Analysis (PCA).  

Their claim is that, after the application of PCA, the reduced space will 

represent only the static parts of the scene, yielding moving objects, if an 

image is projected on this space. Although the method has some success in 

certain applications, it cannot model dynamic scenes completely. Hence, it 

is not very suitable especially for outdoor surveillance tasks. 

 Another statistical method is proposed by Wren, et al. [3], which models 

each point in a scene by using a Gaussian distribution with an estimated 

mean intensity value. The drawback of the model is that it can only handle 

unimodal distributions. Later, in a general approach, a mixture of Gaussians 

is also proposed, instead of a single Gaussian [4].  

 Elgammal, et al. [5] use sample background images to estimate the 

probability of observing pixel intensity values in a nonparametric manner 

without any assumption about the form of the background probability 

distribution. As a matter of fact, this theoretically well established method 

yields many accurate results under challenging outdoor conditions. 

2.2 Object Tracking 
 

Obtaining the correct track information of the moving objects is crucial for 

subsequent actions, like event modeling and activity recognition. For this 

purpose, many different types of tracking algorithms have been proposed 

[3,6,9,10,11,12]. Most of these algorithms can be listed under the following 

4 different groups: model-based, region-based, contour-based and feature-

based algorithms [6]. 
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 Model-based algorithms track objects by the aim of fitting them into a 

predetermined model. The models are usually produced off-line by using a 

priori knowledge about the nature of the object and the scene under 

consideration [7]. An obvious disadvantage of this type of tracking is the 

need for priori information about all the objects that might appear in the 

observed environment. In addition to that, construction of such a model is 

not a trivial task. 

 Region-based approaches extract relevant object information like color 

or texture from regions and track these regions by utilizing such information 

[3][8].  

 Unlike other tracking methods, contour-based approaches rely on the 

contour information of the moving object instead of the whole set of pixels 

inside the object region. Object boundaries are extracted and updated in 

successive frames and a simpler representation is achieved in this way 

[6][9][10]. The performance of such a tracker is quite sensitive to 

initialization, making it difficult to adapt to an automated surveillance 

system. 

 The final class of trackers is the feature-based approaches. They aim to 

find and track relevant features of the object like perimeter, area of the 

object region [11] or more local features, like corners or vertices inside a 

given region [12]. Feature-based methods are usually not very effective for 

handling occlusions between objects. 

2.3 Event Recognition 
 
Event recognition is probably the ultimate purpose of a fully automated 

surveillance system. Even though it is quite important and useful to 

recognize an activity, it is not easy to define the type of motion that is 

interesting and meaningful within surveillance context. Hence, there are 

many studies addressing different types of events. Polana and Nelson [11] 

compute the optical flow fields between consecutive frames and sum up the 

vector magnitudes in object regions to obtain high dimensional feature 
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vectors that are used for recognition. Activities are classified by using the 

nearest neighbor algorithm. In another attempt to find simple motion 

characteristics, Fujiyoshi et al. [13] proposes a “star” skeletonization 

method. The objects are detected by using background subtraction, then 

their boundaries are extracted and a skeleton is produced. The authors 

claim that skeletonization provides important motion cues, such as body 

posture and cyclic motion of skeleton segments, which in turn are utilized in 

determining human activities, such as walking or running [13]. 

 Instead of analyzing simplistic object motions, activity patterns in time 

might also be observed. Oliver, et al. [2] propose a state-based learning 

architecture with coupled hidden Markov models (CHMM), to model object 

behaviors and interactions between them.  Johnson, et al. [14] represent 

object motion by using flow vectors, which involve spatial location and 

instantaneous velocity of the object. Afterwards, the trajectories are 

constructed as a sequence of flow vectors and a competitive learning 

network is adapted to model the probability density functions of flow vector 

sequences. Similarly, Rao, et al. [15] produce probabilistic models to 

describe the normal motion in the scene. The flow vectors are further 

quantized to obtain a prototype representation and trajectories are 

converted into prototype vector sequences. Thereafter, these sequences 

are evaluated using the probabilistic trajectory models.  

  Stauffer, et al. [16] produces a codebook of prototype representations 

from input representations (x, y, vx, vy, size of object, binary mask) by using 

on-line Vector Quantization (VQ). Then, a co-occurrence matrix is defined 

over the prototypes in the codebook and a hierarchical classifier is formed 

by using co-occurrence data.  Lee, et al. [17] also work with prototype 

vectors and aim to classify both local and global trajectory points. They use 

Support Vector Machines for local point abnormality detection whereas 

global trajectories (sequences of vectors) are classified by using HMMs. As 

a final step, a rule-based system incorporates local and global information 

to decide on the abnormality of the motion pattern [17]. 
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2.4 Person Identification 
 
Understanding the identity of persons entering the scene is another 

important part of a surveillance system. Latest studies on person 

identification demonstrate the popularity of architectures based on 

biometrics (distinctive personal features). Face and gait are the main 

biometric features that can be observed within passive surveillance context 

[6]. Research on face recognition has a longer history and there are several 

studies on face detection, face tracking, extraction of facial features and 

face recognition [25][26][27].  

 Gait-based recognition has gained more attention in recent years. 

These studies can be classified into three main categories: model-based 

methods, statistical methods and physical feature-based methods. Model-

based methods use anatomical models to analyze gait of a person. 

Parameters like joint trajectories or angular speeds are used to build the 

models [28][29]. In statistical methods, moment features of object regions 

are utilized for identifying individuals [30][31]. Finally, physical feature-

based models make use of the geometric structural properties of human 

body to identify the motion pattern of an individual. Among these properties 

are the height, stride length and cadence [32]. A more detailed discussion 

on gait-based recognition studies can be found in [6]. 
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CHAPTER 3 
 

 

3MOVING OBJECT DETECTION 
 

 

 

Performance of an automated visual surveillance system considerably 

depends on its ability to detect moving objects in the observed environment. 

A subsequent action, such as tracking, analyzing the motion or identifying 

persons, requires an accurate extraction of the foreground objects, making 

moving object detection a crucial part of the system.  

 The problem of detecting changes in a scene can be described as 

follows: Images of the same scene is acquired in time by a static camera 

and the aim is to detect changes between consecutive frames. Pixels that 

have a significant difference compared to the previous ones are marked as 

foreground pixels, whereas other pixels are labeled as background, 

resulting in a change mask. The set of pixels in this change mask yields the 

segmentation of the moving objects. 

 In order to decide on whether some regions in a frame are foreground 

or not, there should be a model for the background intensities. This model 

should also be able to capture and store necessary background information. 

Any change, which is caused by a new object, should be detected by this 

model, whereas unstationary background regions, such as branches and 

leafs of a tree or a flag waving in the wind, should be identified as a part of 

the background. 

 In this thesis, several different methods are tested to decide on their 

performance for such a detection problem. 
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3.1 Comparison of Moving Object Segmentation Methods  
 
The moving object segmentation methods, which are used in some 

comparative tests, can be listed as follows: 

 
• Frame differencing 

• Moving average filtering 

• Eigenbackground subtraction 

• Hierarchical Parzen window-based moving object detection 

 

 All of these methods have both advantages and disadvantages, which 

are provided below together with some brief descriptions. Additionally, 

simulation results are included to demonstrate the performance of each 

algorithm on some real-life data. 

3.1.1 Frame Differencing 
 
The simplest method for moving object detection is frame differencing. The 

model for the background is simply equal to the previous frame. 

 







>−−

<−−
=

thtyxItyxI

thtyxItyxI
tyxm

),,(),,( if 1

),,(),,( if0 
),,(

1

1
  (3.1) 

 

In the above formula, I(x,y,t) is the intensity at pixel location (x,y) at time t, 

th is the threshold value and m(x,y,t) is the change mask obtained after 

thresholding. Instead of using the previous frame, a single frame, which 

does not include any moving objects, can also be used as a reference. 

Although this method is quite fast and has an adaptation ability to the 

changes in the scene, it has a relatively low performance in dynamic scene 

conditions and its results are very sensitive to the threshold value, th. 

Additionally, based on a single threshold value, this method cannot cope 

with multi-modal distributions [18]. As an example for the intensity variation 



 

 11

of single background pixel in time having two “main” intensity values, a 

sample multi-modal distribution (histogram) can be seen in Figure 3-1. 

 

 

 
 

Figure 3-1. Multi-modal distribution 

 

3.1.2 Moving Average Filtering 
 

In this method, the reference background frame is constructed by 

calculating the mean value of the previous N frames. A change mask is 

obtained as follows: 

 


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>−

<−
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where the update equation of the background model is 

 

111 −×−+−×= t,reft,ref I)()t,y,x(II αα   (3.3) 

 

As in the frame differencing method, mask, m(x,y,t), is obtained after 

thresholding by th. In the update equation, α is the learning parameter. 
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Moving average filtering also suffers from threshold sensitivity and cannot 

cope with multi-modal distributions, whereas yields a better background 

modeling with respect to the frame differencing. 

 

3.1.3 Eigenbackground Subtraction 
 
Eigenbackground subtraction [2] proposes an eigenspace model for moving 

object segmentation. In this method, dimensionality of the space 

constructed from sample images is reduced by the help of Principal 

Component Analysis (PCA).  It is proposed that the reduced space after 

PCA should represent only the static parts of the scene, yielding moving 

objects, if an image is projected on this space. The main steps of the 

algorithm can be summarized as follows [18]: 

 

• A sample of N images of the scene is obtained; mean background 

image, µb, is calculated and mean normalized images are arranged 

as the columns of a matrix, A. 

• The covariance matrix, C=AAT, is computed. 

• Using the covariance matrix C, the diagonal matrix of its eigenvalues, 

L, and the eigenvector matrix, Φ, is computed. 

• The M eigenvectors, having the largest eigenvalues 

(eigenbackgrounds), is retained and these vectors form the 

background model for the scene. 

• If a new frame, I, arrives it is first projected onto the space spanned 

by M eigenvectors and the reconstructed frame I' is obtained by 

using the projection coefficients and the eigenvectors. 

• The difference I - I' is computed. Since the subspace formed by the 

eigenvectors well represents only the static parts of the scene, 

outcome of the difference will be the desired change mask including 

the moving objects. 
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 This method has an elegant theoretical background, if it is compared to 

the previous two methods. Nevertheless, it cannot model dynamic scenes 

as expected, even though it has some success in some restricted 

environments. Hence, eigenbackground subtraction is still not very suitable 

for outdoor surveillance tasks. 

3.1.4 Hierarchical Parzen Window Based Moving Object Detection 
 
In this section, a hierarchical Parzen window-based method [38] is 

proposed for modeling the background. This approach depends on 

nonparametrically estimating the probability of observing pixel intensity 

values, based on the sample intensities [5]. An estimate of the pixel 

intensity can be obtained by, 

 

∑ −=
k

k )xx(
N

)x(p ϕ1
    (3.4) 

 

where the set {x1, x2, …, xN} gives the sample intensity values in the 

temporal history of a particular pixel in the image. The function ϕ(.) in (3.4) 

is the window function, which is used for interpolation and usually denoted 

as Parzen window [24], giving a measure for the contribution of each 

sample in the estimate of p(x). When the window function is chosen as a 

Gaussian function, (3.4) becomes: 
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 The above equation can be obtained for three color channels (R, G, B) 

by using the assumption that they are all independent, where σi is the 

window function width of the ith color channel window function. Considering 

the samples {x1i, x2i, …, xNi} are background scene intensities, one can 

decide whether a pixel will be classified as foreground or background 
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according to the resulting value in (3.5).  If the resulting probability value is 

high (above a certain threshold), this indicates the new pixel value is close 

to the background values. Hence, it should be labeled as a background 

pixel. On the contrary, if the probability is low (below threshold) the pixel is 

decided to be part of the moving object and marked as foreground. This 

process yields the first stage detection of objects. However, change mask 

obtained as a result of this first stage calculation usually contains some 

noise. 

 In order to improve the results, a second stage should also be utilized. 

At this stage, by using the sample history of the neighbors of a pixel 

(instead of its own history values), the following probability value is 

calculated, 

 

)B|p(x max(x)p y)(N xNy∈
=     (3.6) 

 

where N(x) defines a neighborhood of the pixel x and By is the sample 

intensity values in the temporal history of y where y∈ N(x). Probability pN 

can be defined as the pixel displacement probability [5] and it is the 

maximum probability that the observed value is the part of the background 

distribution of some point in the neighborhood of x. After performing a 

similar calculation as in (3.5) on foreground pixels (by using the history of y 

instead of x), which are obtained as the result of the first stage calculations, 

one can also find p(x|By). After thresholding, a pixel can be decided to be a 

part of a neighboring pixel’s background distribution. This approach reduces 

false alarms due to dynamic scene effects, such as tree branches or a flag 

waving in the wind. Another feature of the second stage is the connected 

component probability estimation. This process yields, whether a connected 

component is displaced from the background or it is an appeared object in 

the scene. The second stage helps reducing false alarms in a dynamic 

environment providing a robust model for moving object detection. 
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 Although the above-mentioned method is effective for background 

modeling, it is slow due to calculations at the estimation stage. Performing 

both the first and the second stage calculations on the whole image is 

computationally expensive. Hence, a hierarchical version of the above 

system is proposed in this thesis, which includes multilevel processing to 

tailor the system suitable for real-time surveillance applications. 

 

 

 

 
 

Figure 3-2. Hierarchical detection of moving objects 

 

Figure 3-2 illustrates the hierarchical structure of the proposed system. 

When a frame from the sequence arrives, it is downsampled and first stage 

detection is performed on this low-resolution image. Due to the high 

detection performance of the nonparametric model, the object regions are 

captured quite accurately even in the downsampled image, providing object 

bounding boxes to the upper level. The upper level calculations are 

performed only on the candidate regions instead of whole image, ensuring 

faster detection performance. Indeed, processing the whole frame in a 

sequence takes approximately 5 sec. (in a Pentium IV PC with 1 GB RAM), 

whereas the hierarchical system makes it possible to process the same 
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frame around 150-200 msecs. Besides, providing a bounding box to the 

upper level only makes the processing faster without causing any 

performance degradation in the final result. 

3.1.5 Simulation Results for Moving Object Detection 
 
In this section, the simulation results for moving object detection is 

presented and discussed. For each video, a comparison of the following 

algorithm outputs is shown: frame differencing, moving average filtering, 

eigenbackground subtraction and hierarchical Parzen window-based 

moving object detection. The simulations are performed on two different 

sequences. 

 The first sequence is obtained from MPEG-7 Test Set, (CD# 30, ETRI 

Surveillance Video), which is in MPEG-1 format recorded at 30 fr/s with a 

resolution of 352x240. In Figure 3-3, a sample frame from ETRI 

Surveillance video is given together with the outputs of four algorithms. The 

results for eigenbackground and hierarchical Parzen window methods are 

both satisfactory, whereas moving average produces a ghost-like replica 

behind the object due to its use of very recent image samples to construct a 

reference background frame. The final result is for frame differencing, which 

also results with a very noisy change mask. 

 

 

 

 
(a) 
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(b)        (c) 

 

 

  
(d) (e) 

Figure 3-3.  Detection results for Sequence-1 

  a) Original frame b) Frame differencing  

  c) Moving average filtering d) Eigenbackground subtraction  

  e) Hierarchical Parzen windowing 
 

The other test sequence is in MPEG-1 format, 30 fr/s with a resolution 
320x240 (it can be downloaded from http://www.cs.rutgers.edu/~elgammal). 
This video contains a dynamic background due to dense tree leaves and 
branches waving in the wind (Figure 3-4). The hierarchical Parzen 
windowing extracts the object silhouette quite successfully. However, 
moving average, eigenbackground subtraction and frame differencing 
approaches yield either noisy or inaccurate outputs. Obviously, noise 
filtering or morphological operations can also be used to improve the results 
of these methods at the risk of distorting object shape. 
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(a) 

 

  
(b)       (c) 

 

  
(d)       (e) 

Figure 3-4.  Detection results for Sequence-2 

  a) Original frame b) Frame differencing 

  c) Moving average filtering d) Eigenbackground subtraction  

  e) Hierarchical Parzen windowing 
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3.2 Noise Removal 
 
The strategy defined in Section 3.1.4 for detecting moving objects produces 

quite accurate silhouettes. However, it is still highly expected to observe 

some noise that cannot be handled by the background model. This noise 

affects the outputs of many calculation stages during the processing of a 

frame and the overall mask becomes inaccurate due to noise. In order to 

get improved results, noise removal is a crucial step. For this purpose, 

some simple, but effective algorithms are used in the proposed system. 

These algorithms are: 

 

• Morphological operators: erosion and dilation, 

• Connected component labeling and area filtering. 

 

Although connected component labeling (CCL) is a powerful tool that gives 

important information about the objects in the change mask, it is not only 

utilized primarily for noise removal. Its usage for noise removal is described 

briefly. 

3.2.1 Morphological operators for noise removal 
 
Morphological operators work usually on binary images by using a 

structuring element and a set operator (intersection, union, etc). Structuring 

element determines the details of the operations to be performed on the 

input image. Generally, the structuring element is 3×3 in size and has its 

origin at the center pixel. It is shifted over the image and at each pixel of the 

image its elements are compared with the ones on the image. If the two 

sets match the condition defined by the set operator (e.g. if element by 

element multiplication of two sets exceeds a certain value), the pixel 

underneath the origin of the structuring element is set to a pre-defined value 

(0 or 1 for binary images). For the basic morphological operators, the 

structuring element contains only foreground pixels (1’s) and background 
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pixels (0’s). The operators of interests in this context are erosion and 

dilation [19]. 

3.2.1.1 Erosion 
 
As its name implies, the basic effect of erosion operator is to erode away 

the boundaries of the regions for the foreground pixels. A structuring 

element for this purpose is shown in Figure 3-5. Each foreground pixel in 

the input image is aligned with the center of the structuring element. If, for 

each pixel having a value “1” in the structuring element, the corresponding 

pixel in the image is a foreground pixel, then the input pixel is not changed. 

However, if any of the surrounding pixels (considering 4-connectedness) 

belong to the background, the input pixel is also set to background value. 

The effect of this operation is to remove any foreground pixel that is not 

completely surrounded by other white pixels (Figure 3-5). As a result 

foreground regions shrink and holes inside a region grow.  

 

 
 

Figure 3-5. Erosion operation 

3.2.1.2 Dilation 
 
Dilation is the dual operation of erosion. A sample structuring element is 

shown in Figure 3-6. The structuring element works on background pixels 

instead of foreground pixels, with the same methodology defined in erosion 

operator (considering 8-connectedness). This time, foreground regions 

grow, while holes inside the regions shrink. 
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Figure 3-6. Dilation operation 

 

 By using erosion and dilation operators in turn, some of the noise 

(grainy noise) can be removed from the mask. Apart from the noise 

removal, erosion operation might disconnect the links between loosely 

connected regions, which are not the desired foreground objects most of 

the time, such as tree branches or leafs moving in the wind. When the 

connectedness of a region is lost and the region area is below a threshold, 

it is not treated as a foreground object any more. On the other hand, 

strongly connected regions are not affected from this operation (except from 

their boundaries) and a subsequent dilation operation recovers the 

shrinkage caused by erosion. 

3.2.2 Connected Component Labeling (CCL) and Area Filter 
 
Connected component labeling groups pixels in an image into components 

based on pixel connectivity. The algorithm adapted to the system in this 

thesis works as described below [19]: 

 

1. Image is raster scanned 

2. If the pixel under consideration is a foreground pixel (having value 1): 

a. If one of the pixels on the left, on the upper-left, on top or on 

the upper right is labeled, this label is copied as the label of 

the current pixel. 
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b. If two or more of these neighbors has a label, one of the labels 

is assigned to the current pixel and all of the labels are 

marked as equal (as being in the same group) and an 

equivalence table is formed. 

c. If none of the neighbors has a label, current pixel is given a 

new label 

3. All pixels on the image are scanned considering the rules defined in  

Step 2. 

4. Classes representing the same group of pixels in the equivalence 

table are merged and given a single label. 

5. Image is scanned once more to replace old labels with the new ones. 

All isolated groups of pixels are given a distinct label as a result of 

the algorithm (Figure 3-7). 

 

   
(a)      (b) 

Figure 3-7. Connected component labeling on a binary image 

 

 As it is described in Section 3.2, the area of each isolated object region 

is obtained after CCL algorithm. Considering the average area of moving 

objects in the scene, a threshold value is determined. Objects having an 

area below this threshold are not considered as desired moving objects and 

they are removed from the change mask. The same threshold value is 

utilized after several tests conducted both in indoor and outdoor 

environments.  
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 Apart from the area of a region, number of independent moving objects 

in the scene and the bounding boxes of these objects (width, height and 

center) are extracted as a result of connected component labeling, which 

are both very crucial in such an automated image analysis system. Indeed, 

tracking algorithm is based on such information. 

3.3 Shadow Removal 
 
During segmentation of the objects from the background, moving cast 

shadows are always misclassified, as a part of the moving object. This 

result is expected, since the shadow causes a significant intensity change 

on the surface it is cast upon. However, desired segmentation of the moving 

objects should not contain shadows. In order to remove them, an algorithm 

is applied on the change mask [20]. The idea behind the algorithm is as 

follows: If a shadow is cast upon a surface, the intensity value decreases 

significantly, whereas normalized color value does not change much.  
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Is(x,y) = α I(x,y)   ,   α < 1   (3.7) 

 

where I(x,y) is the intensity value at point (x,y) and subscript “s” denotes the 

value after shadow. The foreground pixels, having intensity values different 

from the background, but normalized color values that are close to 

background values, are labeled as shadow region. After detection, regions 

of shadow are removed from change mask as shown in Figure 3-8. 
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(a) (b) 

 
(c) 

   Figure 3-8. Shadow removal result  

     a) Moving object detection  

     b) Shadow detection 

     c) Mask with shadows removed 
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CHAPTER 4 
 

 

4OBJECT TRACKING 
 

 

 

Background subtraction algorithm identifies the moving objects in the scene 

and separates them from the background, while producing accurate change 

masks. After the object segmentation is achieved, the problem of 

establishing a correspondence between object masks in consecutive 

frames should arise. Indeed, initializing a track, updating it robustly and 

ending the track are important problems of object mask association during 

visual data flow. Obtaining the correct track information is crucial for 

subsequent actions, such as event modeling and activity recognition. 

 As it was described in Chapter 2, there are several different trackers 

that can be utilized according to the nature of the application. In the 

framework defined in this thesis, the image frames of a scene are recorded 

by a static camera and the moving objects are segmented from the 

background before initializing a track hypothesis. Hence, after these initial 

steps, tracking process can be considered as a region mask association 

between temporally consecutive frames. Details of the tracking mechanism 

are described in the following sections. 

4.1 Matching Criterion 
 
Background subtraction algorithm produces accurate masks for the moving 

objects in the scene. Hence, after connected component labeling is applied, 

the bounding boxes and centroids of the moving objects can be easily 

obtained. In the proposed system, object region matching is achieved by 
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simply using box overlapping. In this approach, the bounding box of the 

mask of an object in the previous frame is compared to the bounding boxes 

of the masks in the current frame. A metric, yielding the percentage of the 

overlapping regions of the boxes, provides a measure for associating the 

masks in two consecutive frames. At this point, object displacement is 

assumed to be small compared to the spatial extent of the object itself. 

Besides, object velocity (distance between centroids of two regions) is 

recorded at each frame and helps to make an initial guess about the 

position of the object at current frame (Figure 4-1). 
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Figure 4-1. Basic notations and matching criterion for tracking 

 

 Although small displacement assumption is valid generally, in some 

cases this hypothesis does not hold due to delays in preprocessing 

(background subtraction) stage during real-time performance. Object 

regions may be detected to be apart from each other so that they do not 

match according to simple box overlapping. Hence, object velocity 

information is especially useful in these situations, since it will yield an initial 

prediction (in the direction of previous motion) about the new position of the 

object. 
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 According to the results of above defined matching criterion, a matrix is 

formed indicating the matches between the objects in the current frame 

(new objects) and that of the previous frame (old objects). 

4.1.1 Match Matrix 
 
Let m be the number of objects in previous frame (at time=t-1) and n be the 

number of objects in current frame (at time=t). Match matrix, M, is an mxn 

matrix denoting the matches between objects in consecutive frames, as 

shown in Figure 4-2. Every entry of this matrix shows whether the 

respective objects match according to box overlapping. A “1” value at 

position Mij means that object i of the previous frame can be associated with 

object j of the current frame. Conversely, if the entry has a value of “0”, 

there is no matching between objects i and j. 

 

 
 

Figure 4-2. Match matrix, M 

 

Entries having a value of “0” in matrix M are not explicitly shown in Figure 4-

2. Observing the arrangement of M, one can see that more than one entry 

in a row or in a column might obtain a value of 1. In some cases, a row or a 

column may not have a single match at all. It is indeed this property of the 

match matrix that allows producing track hypotheses. These hypotheses 

are described in more detail in the next section with the help of illustrative 

examples. 
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4.2 Track Hypotheses 
 
As pointed out in the previous section, match matrix is the starting point for 

the track hypothesis generation. It has primarily two sources for distinct 

information content: rows and columns. Rows provide information about the 

relation of an old object with the new objects. Likewise, columns give the 

relation between a new object and the old ones. There are 3 different 

hypotheses for both rows and columns. Hence, it will be convenient to 

analyze these cases denoting the rows by “R” and the columns by “C”. 

 

Case C1. No “1” value in a column means a new object does not match any 

of the old objects known by the system (e.g. Figure 4-3).  In this case a new 

track is initialized for the new object. Initializing a track in the described 

framework corresponds to recording the initial bounding box, velocity and 

the entrance time of the object. 

 

 

   
(a)       (b) 

 Figure 4-3. A new object appears in the scene 

a) Change mask at time = t-1, single object 

b) Change mask at time = t, one old and one new object 

 

Case C2. Single “1” value in a column stands for the situation in which a 

new object has only a single match. This is the desired tracking result since 
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an isolated moving object should have a single match between consecutive 

frames (e.g. Figure 4-4). 

 

   
(a)      (b) 

 Figure 4-4. New object matches a single old object 

a) Old object at time = t-1 

b) New object at time = t 

 

Case C3. More than a single “1” value in a column means a new object 

matches with more than one old object. This situation can be observed, if 

isolated objects come together to form a group (e.g. Figure 4-5(a)(b)) and a 

track is initialized for this newly formed group object. During the tracking of 

this new group object, its trajectory data is used to update the track 

information of every single object in the group. Another possible reason for 

having several “1” values in a column is merging of the object parts, which 

are previously detected as isolated moving entities by background 

subtraction module (e.g. Figure 4-5(c)(d)). Since one of the objects is 

considered as a part of the other one, its track is terminated. Usually, such 

separated parts can be merged with the main object in a few frames. 

Therefore, the track history (duration for the object being tracked) is utilized 

to discriminate between the two different cases described above. 
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(a)       (b) 

 

   
(c)       (d) 

 Figure 4-5. New object matches multiple old objects 

a) 2 isolated objects at time = t-1 

b) A single object (group object) at time = t 

c) An isolated object and an object part at time = t-1 

d) A single object (merged object parts) at time = t 

 

Case R1. No “1” value in a row stands for the situation in which a previous 

object does not have a match in the current frame. This situation may occur 

when the moving target is temporarily blocked by another object in the 

scene or when the target leaves the scene. In order to account for the first 

case and to be able to keep track of the object, while it is out of sight, its 

position is estimated for a few frames by using its last available bounding 

box position and velocity vectors. Certainly, the resulting estimate should be 
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in the direction of the prior motion, since it is mostly a valid approach to 

assume temporal motion consistency. 

 

Case R2. Single “1” value in a row means a previous object has only a 

single match in the current frame. This is the same situation described in 

column single match case. Tracking parameters are updated based on the 

information obtained from the new frame. 

 

Case R3. More than a single “1” value in a row means a previous object has 

more than one match among the objects in the current frame. There are 

mainly three different reasons for this situation. The first reason is the 

splitting of object parts, which is exactly the opposite of the situation 

illustrated by Figure 4-5(c)(d). For this case, the separated part is merged 

with its own object and a new track is not initialized. The second case is the 

splitting of group objects that were previously merged, as described in part 

C3. Although it is not mentioned so far, every single object in the group has 

a color model, as a part of its track information, which will be described in 

the next section. This color model is used to identify the object leaving the 

group and its track is continued as described previously for an isolated 

object. In addition to the above-mentioned two cases, some objects enter 

the scene together and detected as a single target. When they are 

separated from each other, the track history of the group is passed to each 

single object and they are continued to be tracked as isolated targets. 

4.3 Foreground Object Color Modeling 
 
Change mask yields some local regions for the moving targets in the scene. 

The most important visual information that can be obtained from these local 

regions is color information. Hence, as a part of object’s track information, 

color histogram is utilized. Color histogram can be obtained by counting the 

number of occurrences of a particular (R, G, B) value in the mask region. A 
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distribution is obtained for each color channel after normalizing it with the 

total number of pixels in the mask, as 

 

 
pixels  of number Total

CH(r) P(r) =     (4.1) 

 

where CH(r) denotes the number of pixels having red value ‘r’ and P is the 

resulting distribution. The distributions for blue and green channels can also 

be obtained similarly. 

 In order to compare the color model of two objects, a distance metric is 

required. For this purpose, Kullback-Liebler divergence [21] is utilized, 

which is mostly used to obtain the distance between any two probability 

distributions. If h1 and h2 are assumed to be two probability distributions 

obtained from the color histograms of two distinct objects, the distance 

between h1 and h2 is given by: 
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Since the distance metric provided above is not symmetric (D(h1,h2) ≠ 

D(h2,h1)) , the following form is usually preferred instead: 
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Appearance models are required to solve ambiguities that might arise in 

identifying different objects. These ambiguities might occur during 

occlusions or when an object leaves a group of objects. Therefore, color 

modeling facilitates robust tracking of each isolated object under cluttered 

scene conditions. 
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CHAPTER 5 
 

 

5EVENT RECOGNITION 
 

 

 

The main purpose of an automated surveillance system is to analyze the 

visual changes in the observed environment, which includes detection of 

motion and understanding its nature. In this thesis, up to this point, the 

algorithms for moving object detection and tracking are discussed. They are 

both crucial stages in a surveillance task; however they mainly serve as a 

backbone for a higher-level task, such as activity analysis, which provides 

semantic description for the motion and interaction of objects in the scene. 

 As the diverse studies on event analysis point out, there is not a well-

defined set of meaningful activity types that is of significant interest. Instead, 

they are strongly application dependent. However, detection of “abnormal” 

motion patterns should be the ultimate aim of every robust surveillance 

system. Abnormal, in this context, can be defined as an unusual event, 

which does not have any previous occurrences throughout the observation 

interval. One can say that people running around a park may look quite 

normal, whereas they can be marked as suspicious objects, if they do the 

same inside a building. Therefore, instead of labeling every motion pattern 

as normal or abnormal by the help of user intervention, it is a more suitable 

approach to observe usual activities in a scene and label the rest (which 

does not resemble usual behavior) as suspicious. 

 In the proposed framework, trajectory information is obtained after 

successful tracking of an object. The resulting motion patterns are used to 
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train a predefined number of Hidden Markov Models and subsequent event 

recognition is performed by using the trained HMMs. 

5.1 Hidden Markov Models 
 
Hidden Markov model (HMM) is a statistical model where the system being 

modeled is assumed to be a Markov process. In order to understand the 

idea behind HMM, it is convenient to review discrete Markov processes first. 

5.1.1 Discrete Markov Processes 
 
A Markov process is a process, which moves from state to state depending 

(only) on the previous n states. A collection of discrete-valued random 

variables {qt} forms an nth-order Markov chain, if: 

 

)S  q , ,S  q | S  P(q )S  q , ,S  q | S  P(q n-tn-t1-t1-ttt111-t1-ttt =…====…==     (5.1) 

 

for all t ≥ 1 and all q1, q2, …, qt. In other words, given the previous n random 

variables (qi’s), the current variable (Si = states) is conditionally independent 

of every variable earlier than the previous n. In the above equation, “q” is a 

stochastic process and “qt = St” can be explained as event q being in state 

St at time t. The simplest Markov chain is the first order chain, where the 

choice of state is made purely on the basis of the previous state. Hence, 

expression in (5.1) simplifies into: 

 

  )S  q | S  P(q   )S  q , ,S  q | S  P(q 1-t1-ttt111-t1-ttt ====…==   (5.2) 

 

 In a Markov chain, state transitions occur according to a set of 

probability values associated with the system’s current state. Therefore, {qt 

= Si, qt+1=Sj} can be explained as the event of a transition from state Si to 

state Sj starting at time t with a probability of: 
 

 )S  q | S  P(q  a itj1tij === +      (5.3) 



 

 35

with aij’s having the following properties: 

 

10 =≥ ∑
j

ijij a     ,a      (5.4) 

 

Explanation of the above-mentioned ideas with a weather forecast model 

[22] is quite helpful. Assume, at every observation, the weather is found to 

be in one of the three states: sunny, rainy and cloudy (Figure 5-1). 

According to the model, weather for today can be forecasted, if one has 

knowledge about the weather of yesterday. Additionally, the transition from 

one state into another occurs with a certain probability, which is 

independent of time.   

 

 
 

Figure 5-1. A simple Markov chain modeling weather condition 

 

In order to characterize the state transitions, following matrix can be utilized. 
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Matrix A is called the state transition matrix and each row of it contains 

probability values for going form state i to state j. Using the information 
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provided by A, one can find the probability of having a cloudy day after 5 

sunny days or obtain the expected number of consecutive rainy days. 

However, output of the forecast system depends on the starting point. 

Utilized notation for initial state probabilities are: 
 

)Sq(P ii == 0π  

 

A thorough model description is achieved by providing state transition 

matrix, A, and the initial state probabilities, πi. 

5.1.2 Extension to HMMs 
 
The idea behind hidden Markov models can be well described by building 

upon the example provided for discrete Markov processes. Assume that a 

weather model is still required but there is no available information about 

the previous state of it. Instead, humidity values are measured for the past 

few days. High humidity values strongly imply rainy weather, whereas lower 

values can be observed during sunny days. The observed sequence of 

states (humidity levels) are probabilistically related to the hidden process 

(weather states) and such processes can be modeled by using a hidden 

Markov model, where there is an underlying hidden Markov process 

changing over time, and a set of observable states which are closely related 

to the hidden states. In short, 
 

Hidden states: Actual states of the system, modeled by a Markov process. 

Observable states: ‘Visible’ states of the same process. 
 

As it was stated previously, the state transitions are given by the 

probabilities, aij, in an N-by-N transition matrix, A. In addition to that, for M 

observation symbols v1, v2,…, vm the observation probability distribution is 

given by matrix B, whose elements are defined as [22]: 

 

Mk1  N,j1  for  )Sq|t at v(P)k(b jtkj ≤≤≤≤==  
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 When the number of states, N, number of observation symbols, M, state 

transition matrix, A, observation probability matrix, B, and the initial state 

probabilities, π, are specified, HMM is characterized completely. Following 

shorthand notation is used to denote the model: 
 

),B,A( πλ =  

5.2 Basic Problems of HMMs 
 
Once a system is described as an HMM, there are three basic problems to 

be solved [22]: Finding the probability of an observed sequence given an 

HMM (evaluation), finding the sequence of hidden states that most probably 

generated an observed sequence (decoding) and generating an HMM given 

a sequence of observations (learning). Although, the problems of interest in 

the scope of this thesis are training and evaluation, solution to all three 

problems are provided for completeness. 

5.2.1 Problem 1 – Evaluation 
 
Assume a sequence of observations O = O1O2….OT and a model λ = (A, B, 

π) is given. The problem is to compute P(O|λ), the probability of sequence 

O given the model λ. In order to solve this problem, a method known as 

forward-backward algorithm [22] is used. A forward variable, αt(i), is used 

throughout the calculations and it is defined as follows: 
 

)|Sq,O...OO(P)i( ittt λα == 21  

 

The forward variable is the probability of observing the partial sequence O = 

O1O2....Ot until time t and the system being in state Si at that time instance. 

Note that probability of the overall sequence can be calculated using αt(i)’s. 

Indeed, 
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Efficient calculation of the above probability value can be achieved 

inductively [22]: 
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5.2.2 Problem 2 – Decoding 
 
In this case, the problem is to find the most probable state sequence that 

should have generated the output sequence, O, given the model λ. One can 

find the most probable sequence of hidden states by listing all possible 

sequences of hidden states and finding the probability of the observed 

sequence for each of the combinations. The most probable sequence of 

hidden states gives the maximum probability for the observed output. 

Although this approach proposes a solution, it is not viable due to its 

computational burden. The most popular method for solving this problem is 

Viterbi Algorithm [22], which finds the single best state sequence as a 

whole. A definition should be made before describing the algorithm steps. 
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 δt(i) is the highest probability among the probabilities of all single paths, 

at time t, accounting for the first t observations and ending in state i. By 

using induction, one can arrive at the following result : 
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 The main steps of the Viterbi algorithm can be listed as follows: 
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 Path Backtracking:  2,...,1-T 1,-Tt    ),q(*q *
ttt == ++ 11ψ  

 

 In the above formulation ψt(i) is an array that holds the argument 

maximizing δt+1 (i) for all i and t. 

5.2.3 Problem 3 – Learning  
 
The final problem to be solved is the learning problem. The aim is to detect 

model parameters λ = (A, B, π) for maximizing the probability of the 

observation sequence, O. This is by far the most challenging problem 

among all. Fortunately, Baum-Welch algorithm [22][23] proposes an 

iterative procedure for locally maximizing the probability. An additional 

parameter, βt(i), is to be defined before providing the details. βt(i) is the 

backward variable, which is similar to forward variable but it defines the 

probability of partial observation sequence from t+1 to the end provided that 

the system given by model λ being in state i at time t. 
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 The probability of being in state i is given by: 
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 The above expression can be written as: 
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 Note that probability of system being in state i, γt(i), also equals  

αt(i)βt(i), where the forward variable accounts for the observations up to time 

t and backward variable for the rest. Hence, (5.8) takes the following form: 
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 As a final definition ξt(i,j), probability of system being in state i at time t 

and in state j at time t+1, is provided below: 
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 It can also be written in a few steps in terms of the forward and 

backward variables. The result is obtained as: 
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 The model parameters of λ can be calculated using the concept of 

counting event occurrences [22]: 
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 It is stated that [22], when calculations are initiated with a model λ = (A, 

B, π) and the parameters are updated according to the above defined 

formulas, either λ =λ  or P(O|λ ) > P(O| λ), where λ  denotes the updated 

model. In other words, re-estimating the parameters will either make no 

difference or make the model better. Hence, by using iterative estimation 

process, the most likely HMM according to the provided observation 

sequence can be found. 

5.3 Recognizing Events by Using HMM 
 

Once tracking of an object is successfully achieved, its trajectory 

information is obtained for every point it has visited. This information 

involves the position of the centroid and object’s instantaneous velocity at 

each point, which are then utilized to construct a flow vector, f:  

 

)v,v,y,x(f yx=  

 

 The flow vectors capture the details of object’s instantaneous motion, 

as well as the location in the image. Assuming the object is observed for N 

frames, its trajectory, T={(x1,y1,vx1,vy1), (x2,y2,vx2,vy2),…, (xN,yN,vxN,vyN)}, can 

be written as a sequence of flow vectors: NfffT ...21= . The motion 

sequence of an object constitutes a useful pattern in time. Therefore, 
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underlying event can be modeled stochastically via a hidden Markov model. 

The idea is to observe usual trajectories of the moving targets in the scene 

and train the HMMs by using normal trajectories. In this context, the 

definition of abnormal is any type of motion that has not any previous 

occurrences (i.e., not resembling normal). This method does not need any 

prior information about the scene and it does not require user supervision, 

such as defining the normal and abnormal activities for modeling the 

events. Hence, it is independent on the environment under observation.  

 In order to train hidden Markov models, a “useful sequence” is required. 

However, all possible combinations of velocity and location vectors 

constitute a large number of distinct trajectories, which cannot be modeled 

properly. Hence, a more compact (quantized) representation is required. 

For this purpose, a set of prototype vectors is produced from the flow 

vectors by using unsupervised clustering methods and each flow vector is 

represented by the index of its closest prototype.  

 In order to account for the contributions of position and velocity 

information equally, (x,y) and (vx,vy) are clustered separately. Assuming N 

clusters are needed for representing the centroids and M clusters for 

velocities, total number of prototypes generated is NxM. An example for the 

clustering of coordinates and velocities in a scene is provided in Figure 5-2. 

11 clusters are used for position vectors and 2 clusters are utilized for 

velocities. Hence, total number of prototype vectors obtained after 

clustering is 22. Additionally, a sample trajectory is shown in Figure 5-2(c), 

which belongs to an object that has been tracked for 9 frames. Table 5-1 

lists the corresponding coordinate and velocity clusters followed by this 

object and the prototype vector indexes. 
 

Table 5-1. Prototype representation of an object trajectory 
 

Coordinate clusters of each point 7,7,7,10,10,10,6,6,9 

Velocity clusters of each point 2,2,2,2,  2,  2,  2,2,2 

Prototype vector indexes 14,14,14,20,20,20,12,12,18 
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(a)       (b) 

 
(c) 

Figure 5-2. Clustering of (a) coordinates and (b) velocity vectors and (c) a   

sample object trajectory. 

 

 The method used for clustering data is the K-Means algorithm [24]. K-

Means algorithm tries to classify objects into K clusters such that some 

metric relative to the centroids of the clusters is minimized, where K is a 

positive integer. Several different metrics can be used for minimization such 

as the minimization of the sum of square distances between data and the 

corresponding cluster centroid, which is preferred in this study. K-Means 

algorithm can be summarized in a few steps: 
 
Step 1: Begin by choosing K random points from feature space, which

constitute the initial clusters

Step 2: Calculate the distance of each object to every cluster and

assign the object to the closest one.
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Step 3: After the assignment of all objects is complete,

recalculate centroids (means) of the K clusters.

Step 4: Repeat steps 2 and 3 until convergence (according to the

minimization metric described before) is achieved and the cluster

centroids do not move any more.

 

 K-Means algorithm is an elementary but effective way of unsupervised 

data clustering. Object centroid and velocity vectors can be successfully 

clustered by using this method. 

 

 Once the clustering is achieved, the motion trajectory of an object can 

be obtained in terms of the prototype vector indexes. In the next step, the 

problem of training HMMs with these sequences is solved. At this point, two 

problems arise: Selection of the number of models to be trained and training 

the models with multiple observations (previous learning algorithm is utilized 

for a single sequence). 

5.3.1 Selection of the Number of Models 
 

 As it was stated previously, there is usually no restriction on the type of 

activity that can be observed in a scene. During the training stage, there 

might be several different trajectory sequences, which cannot be accurately 

modeled by a single HMM.  There should be a mechanism to identify 

distinct motion patterns and each pattern is to be modeled separately. 

However, it is neither possible nor an easy task to exactly specify the 

number of different observable motion types. If the images are obtained 

from a highway (Figure 5-3(a)), it can be deduced that there are mainly two 

types of motion; one going from bottom to top (right lane) and the other from 

top to bottom (left lane). On the other hand, the scene of interest may 

contain a great deal of human activity (Figure 5-3(b)), which makes it even 

harder to define the number of usual motion patterns.  
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(a)       (b) 

Figure 5-3. Sample activity types in a (a) highway (b) campus 

 

 In this study, a novel approach is adopted for specifying the number of 

models in which the clues provided by centroid clustering are used. As an 

example, Figure 5-4(a) illustrates the trajectory clusters of objects acquired 

from the highway sequence. As one might easily notice, right lane traffic 

goes normally through the sequence 7-10-6-9-4 among the 11 clusters. 

Similarly, left lane has another sequence to be followed. Another 

observation is that, objects enter the scene at cluster 7 on the right and at 

cluster 4 or 5 (depending on the first detection location) on the left. In light 

of these observations, it can be suggested to use two HMMs for modeling 

the motion in this sequence, one for the trajectories starting at cluster 7 and 

the other for trajectories starting at 4th or 5th cluster (see Figure 5-4(b)). 

Instead of utilizing human supervision for identifying distinct motion 

patterns, a general and straightforward extension of this idea would be to fit 

a model for each centroid cluster. In other words, instead of 2 HMMs, 11 

HMMs will be utilized and each model will be trained using the trajectories 

starting at respective cluster. This approach is based on the assumption 

that the motion patterns starting at the same location can be represented by 

the same model. Although some deviations from this assumption might be 

observed, it is generally valid for the usual activity types in a scene, making 

it a useful system part in an autonomous event detection module.  
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 In this context, evaluation of a trajectory for abnormality detection is 

achieved using the entry point to the scene. One might argue that some 

HMMs may not be trained due to lack of trajectory data starting at that 

cluster. When an object enters the scene from such a cluster, it is compared 

against the trained models and the minimum distance is accepted as the 

trajectory evaluation of an object result.  

 

    
 

Figure 5-4. a) Trajectory clusters of the highway sequence 

                   b) Two HMMs for modeling distinct motion patterns in the scene 

 

 As it was described above, each HMM is to be trained with all the 

sequences having an initial cluster belonging to the respective model. The 

training problem is discussed in Section 5.2.3 with a single sequence. In 

order to train the model with multiple sequences, some modifications should 

be achieved with respect to the previous algorithm and these changes are 

described in the next subsection. 

5.3.2 Training HMMs with Multiple Sequences 
 
In order to obtain better estimates of the parameters, multiple sequences 

should be used to train the model. Extension of single sequence training to 

multiple sequences is as follows [22]. An observation sequence was 

previously described as: 
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TO...OOO 21=  
 

 Multiple sequences of observations can be written as: 

 

{ })K()()( O,...,O,OO 21=  

 

where O(i) denotes the ith observation sequence. Instead of maximizing the 

probability of observing a single sequence O (i.e., P(O|λ)), P(O |λ) is to be 

maximized. Assuming independence between observations, one can write 

that: 
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 Parameter estimation is achieved by considering individual number of 

occurrences for each observation sequence. Modified formulas can be 

given as [22]: 
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accounting for the scaling factor for each sequence. 
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5.4 Simulation Results 
 

In this section, the implementation details for clustering and HMMs are 

given together with the test results. The simulations are performed on two 

different sequences, as shown in Figure 5-3; Highway (MPEG-7 Test CD-

30) and Campus sequences. In both cases, 3-state fully connected HMMs 

are used to model trajectories. State transition matrix and initial state 

probabilities are randomly initialized, whereas the observation matrix 

probabilities are assigned values according to the number of prototype 

vectors (i.e., according to the number of centroid and velocity clusters). 

 The first results are presented for the Highway sequence. The obtained 

trajectories are clustered according to centroid and velocity data separately, 

as it can be seen from Figure 5-5. 11 clusters are used for centroids and 2 

clusters for the velocities, which make a total of 22 prototype vectors. 

Hence, observation probabilities matrix is of size 3 by 22, and each entry in 

a row is initialized with the value 22
1 . 

 

 

 
(a) 
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(b) 

 

Figure 5-5. a) Centroid and b) velocity clusters for highway sequence. 

 

 

 As described previously, a “normal” motion follows one of the paths, 

given in Figure 5-5(a) with a velocity falling into one of the two clusters 

depicted in Figure 5-5(b). Figure 5-6(a) illustrates a typical normal trajectory 

that can be observed in this sequence. A car is moving from the bottom 

entry point towards top. On the other hand, an abnormal motion is provided 

in Figure 5-6(b) in which a person is trying to cross the road and arrive at 

the other lane. Cluster sequences followed by each object and their log 

likelihood (Equation 5.5) according to the 7th and 6th HMMs respectively are 

given in Table 5-2. 
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(a)      (b) 

Figure 5-6. a) A typical normal motion. b) A sample abnormal motion. 

 

 

Table 5-2. A typical example from cluster sequences and log likelihood of 

normal and abnormal motion for highway video. 

 
 Cluster Sequence Log Likelihood (Eq.5.5) 

Normal motion 7-10-6-9 12.65 

Abnormal motion 6-11 119.52 

 

  

 More results are obtained from the Campus sequence (Figure 5-7). 10 

clusters are utilized for centroids whereas velocities are divided into 4 

clusters. The observation probability matrix is 3 by 40 and the initialization 

values are 40
1 . 



 

 51

 
 

(a) 

 

 
 

(b) 

 

Figure 5-7. a) Centroid and b) velocity clusters for campus sequence. 
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 Similar to the previous case, Figure 5-8(a) and 5-8(b) depicts a normal 

and an abnormal trajectory, respectively. Although, it is even harder to 

define the abnormal event in this case, one can still consider some unusual 

behavior. Table 5-3 lists the details of each motion. 

 

 

   
(a)       (b) 

Figure 5-8. a) A typical normal motion. 7) A sample abnormal motion. 

 

 

Table 5-3. A typical example from cluster sequences and log likelihood of 

normal and abnormal motion for campus video. 

 

 Cluster Sequence Log Likelihood (Eq. 5.5) 

Normal motion 1-4-3-5 19.2 

Abnormal motion 6-1 96.4 
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CHAPTER 6 
 
 

6OBJECT IDENTIFICATION 

 

 

 

Determining some statistical information about automatically identified 

people, who enter into the scene, can be another important capability of an 

automated surveillance system. Hence, person identification should be 

achieved as reliable as possible. Latest studies are mainly focused on 

biometrics [25-32]: identification based on distinctive personal properties. 

As stated in Chapter 2, the main features that are of significant interest are 

face and gait related features. Face recognition research has reached 

certain maturity, whereas gait-based identification is receiving more 

attention, recently [28-32]. Although, biometrics is quite important for the 

future of automated identification systems, there are still some major 

problems related with it. First of all, it is not easy to represent and recognize 

biometric patterns. Additionally, success of biometric-based identification is 

excessively sensitive to measurements. In order to obtain useful 

information, some restrictions (like walking in a predefined style for gait 

recognition or looking directly towards camera for face detection) are 

usually required. 

 It was emphasized in Chapter 5 that the system proposed in this study 

does not put any restrictions on the motions of the targets in the scene. 

Hence, some other information source has to be utilized for identification 

purposes. The most suitable and useful information is due to the visual 

content of the object regions, which are obtained after segmentation from 

the background. For such a person recognition problem, it can be assumed 
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that color and texture are the most important and invariant visual features. 

Obviously in different applications, shape might also be used to discriminate 

between human, animal and vehicle classes. 

 In order to represent color and texture features, the well-accepted 

MPEG-7 descriptors are preferred [33]. Color structure [33] descriptor is 

used to represent color, whereas homogeneous texture [33] descriptor is 

utilized for representing the texture information. Before moving into the 

details of classification mechanism, it will be convenient to provide brief 

information about MPEG-7 standard and the preferred descriptors. 

Afterwards, some simulation results will be presented to demonstrate the 

performance of the proposed system. 

6.1 Brief Review of MPEG-7 Standard 
 

The latest advances in technology enable easy production and storage of 

multimedia data. Everyday, an increasing amount of audiovisual information 

is gathered from different sources such as images, audio, speech, video, 

and various others. When the amount of the data grows, management of 

this content becomes a major challenge. There has to be a way of 

representing the audiovisual information beyond waveforms or compression 

based approaches. For efficient content identification and management, 

International Standards Organization Moving Pictures Expert Group (ISO 

MPEG) established a new standard, MPEG-7, Multimedia Content 

Description Interface. 

 The same committee has also successfully developed other well-known 

standards, such as MPEG-1, MPEG-2 and MPEG-4. Their recent standard 

MPEG-7 defines a representation of multimedia information with a set of 

well-defined requirements [33][34]. However, MPEG-7 substantially differs 

from all other MPEG standards due to its target. While all the others 

represent the content itself, MPEG-7 represents information about the 

content. Therefore, it is not a coding standard, but a multimedia content 

description interface. Moreover, it should also be noted that MPEG-7, does 



 

 55

not standardize the way the information is to be extracted or consumed, 

whereas it standardizes which information is to be extracted and utilized. It 

is stated in [33] that it should be possible to create an MPEG-7 description 

of an analogue movie or of a picture that is printed on paper, in the same 

way as of digitized content. 

 MPEG-7 standard supports both manual and automatic annotation 

alternatives. Although it includes many detailed media descriptions for 

manual annotation, automatic annotation is strongly supported by many 

audiovisual low-level descriptors based on native properties of the 

multimedia content (i.e. color, texture, shape, melody, etc.). Obviously, a 

material can be described in many ways in the context of MPEG-7 [33]. A 

lower abstraction level would be to describe the visual content by utilizing 

shape, size, texture, color, movement and position information or audio 

content by key, mood or tempo. On the other hand, the same content can 

be described semantically at a higher level as follows: “This is a scene in 

which a car is parked in front of a green building and a child crying out 

loudly.” Moreover, MPEG-7 addresses the interoperability issues and aims 

at providing a standard way for multimedia content description and allows 

the exchange of content and its descriptions across different systems. In the 

next sections, some of the popular visual MPEG-7 descriptors are explained 

shortly. 

6.1.1 Color Structure Descriptor 
 

MPEG-7 Color Structure descriptor is used in the proposed person 

identification system to represent the color feature of an image. Color 

Structure descriptor specifies both color content (like color histogram) and 

the structure of this content by the help of a structure element [33]. This 

descriptor can distinguish between two images in which a given color is 

present in identical amounts, whereas the structure of the group of pixels is 

different (see Figure 6-1). In the person recognition system, 64-bin version 

of Color Structure descriptor is utilized. 
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Figure 6-1.  Two images with similar color histograms but different structure      

of color [33]  

6.1.2 Homogeneous Texture Descriptor  
 

The second fundamental feature of an image, texture, is represented by 

MPEG-7 Homogeneous Texture descriptor [33], characterizing the region 

texture by mean energy and energy deviation from a set of frequency 

channels (see Figure 6-2). Definition of the descriptor in MPEG-7 standard 

permits its use on arbitrary shaped regions, in which the background is 

neglected. 

 In Homogeneous Texture descriptor, the frequency channels are 

modeled by Gabor functions and the 2-D frequency plane is divided into 30 

channels. In order to construct this descriptor, the mean and the standard 

deviation of the image in pixel domain is calculated and combined into a 

single feature vector with the means and energy deviations computed in 

each of the 30 frequency channels. As a result, a feature vector of 62 

dimensions is extracted from each image [33]. 
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Figure 6-2. Frequency channels on 2-D image plane [33] 

 

6.2 Classifiers 
 

In order to be able to discriminate between people in the scene by using the 

selected features, a robust classifier should be used. For this purpose, a 

popular classifier, Support Vector Machine (SVM) [37] is selected. There 

can be two distinct classifiers one of which is working on color structure 

feature space and the other on homogeneous texture. Due to its 

computational burden, SVM-based classification is performed offline, while 

training the classifiers with a manually labeled set of object images. 

However, the identification of persons entering the scene has to be 

completed in real time, without user interaction. On the other hand, 

extraction of both color and texture parameters is computationally 

expensive. Assuming that texture provides less information than color in 

such low-resolution surveillance videos, the color structure feature is 

preferred  and it is used in a Bayesian plug-in classifier, which simply 

utilizes the Mahalanobis distance between feature vectors with the 

assumption of Gaussian distribution for conditional densities [24]. Both of 

these online (Mahalanobis Distance) and offline (SVM) classifiers are 

described below. 
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6.2.1 Support Vector Machine 
 

Support Vector Machine performs classification between two classes by 

finding a decision surface via certain points of the training set. This 

approach is different in the way that it handles the risk concept. Although 

other classical classifiers try to classify training sets with minimal errors, 

SVM can sacrifice from training set performance for being successful on 

yet-to-be-seen samples [37]. Briefly, one can say that SVM constructs a 

decision surface between samples of two classes, maximizing the margin 

between them (Figure 6-3) [34]. 

 
(a)       (b) 

Figure 6-3. Boundary obtained by an a) Ordinary classifier b) SVM. 

 
 SVM classifies test data by calculating the distance of samples from the 

decision surface with its sign signifying which side of the surface they 

reside.  

 In this study, in order to improve the classification results, both single 

and combined classifier performances are investigated. In order to combine 

the classifier outputs, each classifier should produce calibrated posterior 

probability values. In order to obtain such an output, a simple logistic link 

function method, proposed by Wahba [35], is utilized: 
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In this formula, f(x) is the output of an SVM, which is the distance of the 

input vector from the decision surface. The details about the classifier 

combination schemes are provided in Section 6.3. 

6.2.2 Mahalanobis Distance 
 

Mahalanobis distance is based on the correlations between variables by 

which different patterns can be identified and analyzed. It is the normalized 

distance between two N-dimensional vectors, which are scaled by the 

statistical variation in each component of these vectors. Consider a cloud of 

points having a mean, µ, and a covariance matrix, C. Mahalanobis distance 

of a vector, x, to this cloud of points can be defined as follows: 

 

( ) ( )µµ −−= − xCx(x)D T
M

1  

 

It is a useful way of determining similarity of an unknown sample set to a 

known one. It differs from Euclidean distance in that it takes into account 

the correlations of the data set. Obviously, such an approach is equivalent 

to finding the minimum-error-rate classifier with the assumption that the 

conditional probabilities are Gaussian distributed [24]. 

 Mahalanobis distance is utilized during real-time person identification. 

Color structure feature of an object is extracted from every observed frame 

and its statistics (mean and covariance matrix) is obtained. Afterwards, the 

object is compared with the stored data in the archive by utilizing 

Mahalanobis distance in between. If the object does not resemble any of 

the known classes, it is labeled as a new identity. The overall process is 

completed quite fast, enabling real-time operation. 
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6.3 Combining Classifiers 
 

Visual features and the classifiers that work on these features are described 

in the previous sections. It was noted that both the color and texture based 

classifiers are SVM-based. In order to improve classification performance, 

calibrated posterior output probabilities that are obtained from each 

classifier are combined by using several different combination schemes 

[36]. After such a combination, the resultant probability value is compared 

against a threshold value and the final classification result is achieved. 

These combination methods are listed below. 

6.3.1 Sum Rule 
 

The first approach is Sum rule, which in the two expert case simplifies into 

an arithmetic average of the two probabilities. 
 

2
21 )y|p(P)x|p(P)y,x|p(P kk

k
+=  

 

where P1(pk|x) and P2(pk|y) are the single expert probabilities (one working 

on color structure, other on homogeneous texture) of a person being pk 

according to the features x and y. 

6.3.2 Product Rule 
 

Product rule is another well-known combination method, which is specified 

by the following formula: 
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6.3.3 Max Rule 
 

Max rule is given by a similar formula to product rule. Instead of multiplying 

probabilities, maximum of them is utilized. 
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6.3.4 Min Rule 
 

The formulation is similar to the Max rule: 
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6.3.5 Geometric Mean Rule 
 

Calculating the geometric mean of the probabilities is another approach for 

combining classifiers: 
 

)y|p(P)x|p(P)y,x|p(P kkk 21 ×=  

6.3.6 Absolute Max and Min Rules 
 

Absolute max and absolute min rules are used as special cases of majority 

vote rule. Absolute max rule picks the highest of the probabilities as the last 

decision, whereas absolute min rule picks the lowest probability and 

assigns it to the sample. Figure 6-4 illustrates the use of experts in a 

combination scheme. 
 

 

Figure 6-4. Expert combination scheme. 
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6.4 Simulation Results 
 

In this section, both classifier combination simulation results, which are 

performed using SVM and classification performance results of Bayesian 

plug-in classifier, are provided. Classifier combination simulations are 

performed on two different sequences. The first one is from MPEG-7 Test 

Set, (CD# 30, ETRI Surveillance Video), in which two persons are to be 

identified out of seven distinct identities. Typical examples of frames, 

containing these distinct identities, are given in Figure 6-5. The selected 

objects are first divided into equal-sized train and test sets. Then from these 

sets each person class is trained and tested according to one-against-all 

scheme. 

 

 
 

 Figure 6-5. (Above) Two persons to be identified, person-1 (left) and 

person-2 (right). 

  (Below) Five Other identities. 

 

In addition to the decisions of single classifiers based on color and texture, 

seven different classifier combination schemes are also evaluated. The 

performance results for the identities in this sequence are presented in 

Table 6-1. 
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Table 6-1. Person identification results for ETRI video 

 

  Single Expert Combined Experts 
  Color Texture Sum Product Max Min Geo. 

Mean 
Abs 
Max Abs Min

Accuracy 92,94% 44,77% 67,64% 67,64% 67,64% 67,64% 62,04% 85,64% 52,07% 

Precision 100,00% 0,00% 95,71% 95,71% 95,71% 95,71% 97,67% 84,85% 0,00% 
Person 

1 
Recall 85,28% 0,00% 34,01% 34,01% 34,01% 34,01% 21,32% 85,28% 0,00% 

Accuracy 66,15% 88,82% 90,37% 90,37% 90,37% 90,37% 85,40% 90,06% 64,91% 

Precision 100,00% 89,84% 100,00% 100,00% 100,00% 100,00% 100,00% 90,00% 100,00%
Person 

2 
Recall 53,02% 95,26% 86,64% 86,64% 86,64% 86,64% 79,74% 96,98% 51,29% 

 

 

As it can be observed from Table 6-1, color and texture features of the 

person to be recognized affect the performance of single expert 

significantly. For instance, in Person-1 of Figure 6-3, color-based expert 

outperforms the texture-based one, since the texture of the clothes of this 

person has no significant difference from that of the other identities. On the 

other hand, for the Person-2 case, texture-based expert yields better 

results. Such a problem seems to be solved by combining these experts in 

an appropriate scheme. According to Table 6-1, it can be observed that 

absolute max combination yields the most stable and promising results for 

this case.  

 The second sequence is produced in METU campus, with 7 distinct 

persons moving in the scene (Figure 6-6). Classification strategy is similar 

to the previous one and 6 of them (excluding bottom-right identity) are to be 

identified according to one-against-all scheme. The results are listed in 

Table 6-2. 
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Figure 6-6. Persons in METU sequence. 

 

 

Table 6-2. Person identification results for METU video 

 

  Single Expert Combined Experts 
  Color Texture Sum Product Max Min Geo. 

Mean 
Abs 
Max Abs Min

Accuracy 85,71% 72,45% 88,76% 86,63% 86,76% 84,76% 87,76% 68,37% 89,80% 

Precision 70,83% 56,36% 76,00% 75,00% 74,32% 72,00% 76,19% 52,31% 81,58% 
Person 

1 
Recall 100,00% 91,18% 98,06% 96,06% 97,06% 94,06% 94,12% 100,00% 91,18% 

Accuracy 98,61% 75,00% 90.1% 79.25% 87,50% 76.82% 84,72% 98,61% 75,00% 

Precision 100,00% 0,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 0,00% 
Person 

2 
Recall 94,44% 0,00% 52.41% 48.73% 50,00% 47.82% 38,89% 94,44% 0,00% 

Accuracy 100,00% 62,99% 97,06% 93,06% 95,06% 96,48% 97,64% 86,61% 76,38% 

Precision 100,00% 56,41% 95,34% 92,34% 94,64% 95,56% 100,00% 75,36% 100,00%
Person 

3 
Recall 100,00% 42,31% 97,15% 94,15% 96,32% 96,15% 94,23% 100,00% 42,31% 

Accuracy 98,58% 58,16% 95,04% 93,08% 95,04% 94,46% 95,04% 65,96% 90,78% 

Precision 97,50% 58,41% 91,76% 90,85% 91,76% 91,89% 94,94% 61,90% 98,51% 
Person 

4 
Recall 100,00% 84,62% 100,00% 95,68% 98,68% 98.64% 96,15% 100,00% 84,62% 

Accuracy 99,09% 77,27% 96,36% 92,36% 93,36% 95,44% 94,55% 90,00% 86,36% 

Precision 96,77% 60,00% 88,24% 86,24% 87,24% 88,24% 90,00% 73,17% 100,00%
Person 

5 
Recall 100,00% 50,00% 100,00% 98,04% 99,09% 100,00% 90,00% 100,00% 50,00% 

Accuracy 87,39% 57,98% 86,55% 76.32% 85.83% 65.44% 86,55% 60,50% 84,87% 

Precision 78,13% 50,53% 76,12% 58.12% 75.17% 52.45% 76,12% 52,04% 77,05% 
Person 

6 
Recall 98,04% 94,12% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 92,16% 
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Table 6-2 depicts that color outperforms texture in almost all cases. 

Moreover, the best combination results are obtained by the Sum rule. 

 Considering both of these simulations, one can infer important results 

about classifier combination. First of all, it can be observed that if one of the 

classifier outputs is significantly worse than the other, the overall 

performance degrades and the better classifier cannot compensate for it. 

Additionally, it is not possible to determine a “best” combination scheme, 

which works in all situations. However, it can be deduced that combining 

classifiers yields a more robust output compared to single classifier, 

although the performance is sometimes lower than the single case. 

 Unlike the offline identification scheme (SVM), there is not a binary 

classification approach in Bayesian plug-in classifier. Each identity, which is 

observed in the scene, belongs to one of the classes in the archive or it is 

labeled as a new one. In Table 6-3, person recognition rates achieved with 

Bayesian plug-in classifier are presented, which demonstrate that this 

classifier gives satisfactory real-time identification results even though its 

performance is below that of the SVM-based classifier. For example, it 

cannot distinguish between person-1 and person-4 well due to the colors in 

their clothes. 

 

Table 6-3. Person identification results for METU video with Bayesian plug-

in classifier 

 

 Person 1 Person 2 Person 3 Person 4 Person 5 Person 6

Recognition 
Rate 20,97% 73,33% 41,67% 82,91% 69,40% 79,52% 
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CHAPTER 7 
 

 

7CONCLUSIONS 
 

 

 

There is an increasing demand for personal and public security systems. 

However, utilizing human resources in such systems builds up the 

expenses, as well as inconsistencies due to subjective perceptions. 

Besides, technological devices are vastly available in this era. All of these 

factors indicate the inevitable utilization of automated systems. In this 

thesis, an automated surveillance system is described, which includes the 

following four main building blocks: moving object detection, object tracking, 

event recognition and person identification. 

7.1 Main Contributions 
 
In this thesis, several novel contributions are obtained in the moving object 

detection, event recognition and person identification building blocks. 

 In order to extract moving objects in real-time, a hierarchical structure 

(two level processing) is proposed. In this way, a considerable speed-up is 

obtained during the segmentation stage without any degradation in object 

silhouettes. 

  In the HMM-based event recognition scheme, the selection of the 

number of models is achieved by utilizing coordinate clustering information, 

without human supervision. Hence, the proposed system might be utilized 

in any scenario without giving a priori information about the scene, but only 

some training data with typical object motion. 
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 Final contributions are achieved in the person identification framework. 

The color and texture features of the segmented object regions are utilized 

for recognizing persons and combination of classifiers is utilized to obtain a 

better performance. 

7.2 Discussions 
 

Moving object detection segments the moving targets form the background 

and it is the crucial first step in surveillance applications. Four different 

algorithms, namely frame differencing, moving average filtering, 

eigenbackground subtraction and Parzen window-based moving object 

detection, are described and their performances in different outdoor 

conditions are compared. Parzen window approach is proved to be 

accurate and robust to dynamic scene conditions, considering the 

simulation results. A novel multi-level analysis stage is also introduced and 

a considerable speed up is obtained for the tested sequences. Additionally, 

a simple algorithm is presented to remove shadows from the segmented 

object masks for obtaining better object boundaries. 

 Object tracking follows the segmentation step and it is used to 

associate objects between consecutive frames in a sequence. Using the 

objects in the previous frame and the current frame, a match matrix is 

formed. Simple bounding box overlapping is used as a matching criterion 

while constructing this matrix. The information obtained from the match 

matrix is utilized in a hypotheses-based tracking algorithm. The simulation 

results indicate the acceptable performance of such a system in case of 

small number disjoint targets. However, a better association, as well as 

tracking method, should be required for real life scenes with many crossing 

and jointly moving objects. 

 After segmentation and tracking of the moving objects are achieved, 

higher-level tasks can be incorporated into the system. Event recognition is 

an example of such semantic processing. A hidden Markov model-based 

event analysis scheme is described for this purpose. Object trajectories, 
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which are obtained during the period of training, are utilized to form flow 

vectors, which contain information about the instantaneous position and 

velocity of the object (x, y, vx, vy). The position and velocity vectors are 

clustered separately by using K-Means algorithm and a prototype 

representation is achieved. Sequence of flow vectors (written in terms of 

prototype vector indexes) belonging to the “normal” (usually observed) 

motion patterns are used to train HMMs. Abnormality of a given trajectory (a 

sequence of vectors) is evaluated by calculating its distance to each 

previously trained model. Since the models are trained with normal 

sequences only, the distance should be high, if the trajectory is abnormal. It 

was observed during simulations that a single HMM is not sufficient to 

successfully model every possible motion in the scene. Hence, number of 

position clusters is utilized for the selection of model count. The simulations 

demonstrate the success of the presented self-learning recognition module. 

 Finally, a novel approach for object identification is proposed in which 

color structure and homogeneous texture descriptors of MPEG-7 standard 

are utilized to represent the visual content of the segmented object regions. 

However, it is observed that the seperability of color and texture features of 

samples varies greatly even in a single domain. Classifier combination is 

proposed to address this problem and 7 different combination rules are 

tested. Considering the results of simulations, it is concluded that the 

inferior classifier output degrades the overall performance significantly. 

Besides, it is not easy to determine a combination rule, which will give the 

best performance in all situations. However, combining classifiers yields 

more robust results compared to single classifier case. Support Vector 

Machine is utilized in identification tests; but its computational burden 

necessitates the use of another classifier, which is a simple Bayesian plug-

in, for real-time operation. Although the results obtained with the Bayesian 

plug-in are satisfactory, SVM classifier yields better identification 

performances. 
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7.3 Future Directions 
 

 As some future work, shadow removal process can be achieved with a 

more robust algorithm. This case will both improve object silhouettes and 

tracking results. As for the identification part, an automated combination 

scheme should be incorporated into the system, which will automatically 

decide on the best combination rule with respective weights of color and 

texture features. 
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