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ABSTRACT 

 
 

COLLIDING GRAVITATIONAL PLANE WAVES:  

BELL-SZEKERES SOLUTION 

 

 

Cambaz, Efsun 

M.Sc., Department of Physics 

Supervisor:  Prof. Dr. Atalay Karasu 

 

August 2005, 41 pages 

 

 

The collision of pure electromagnetic plane waves with collinear polarization in 

Einstein-Maxwell theory and the collision of gravitational plane waves in vacuum 

Einstein theory are studied. The singularity structure of the Bell-Szekeres and the 

Szekeres solutions is examined by using curvature invariants. As a final work, the 

collision of the plane waves in dilaton gravity theory is studied and also the 

singularity structure of the corresponding space-time is examined. 

 

 

Keywords: Gravitation, Colliding Plane Waves, Bell-Szekeres metric 
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ÖZ 

 

 

 ÇARPIŞAN GRAVİTASYONEL DÜZLEM DALGALAR: 

BELL-SZEKERES ÇÖZÜMÜ 

 

 

Cambaz, Efsun 

Yüksek Lisans, Fizik Bölümü 

     Tez Yöneticisi: Prof. Dr. Atalay Karasu 

 

Ağustos 2005, 41 sayfa 

 

 

Einstein-Maxwell teorisinde eş-çizgisel kutuplanıma sahip elektromagnetik düzlem 

dalgaların çarpışması ve boşluk Einstein teorisinde gravitasyonel düzlem dalgaların 

çarpışması ele alındı. Bell-Szekeres ve Szekeres çözümleri için tanımlanan uzay-

zamanın tekillik yapısı eğrilik değişmezleri kullanılarak incelendi. Son olarak, 

dilaton gravitasyon teorisinde düzlem dalgaların çarpışması ele alındı ve bu metriğin 

tanımladığı uzay-zamanın tekillik yapısı incelendi. 

 

 

Anahtar Kelimeler: Gravitasyon, Çarpışan Düzlem Dalgalar, Bell-Szekeres Metriği 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

 The colliding plane wave solutions have been an important topic in classical 

general relativity. They are the exact solutions describing the collision of plane wave 

in a flat background. The work on this subject was proposed by Penrose [1] in 1965. 

Since then, many exact colliding plane wave solutions have been constructed [2]. 

The first results on exact solutions of the vacuum Einstein equations representing 

colliding plane gravitational waves with collinear polarizations were obtained by 

Szekeres [3], and by Khan and Penrose [4]. Later, Nutku and Halil [5] generalized 

this solution to the case of noncollinear polarizations. The first exact solution of the 

Einstein-Maxwell equations representing colliding plane shock electromagnetic 

waves with collinear polarizations was obtained by Bell and Szekeres [6]. Later, 

Halil [7], Gürses and Halilsoy [8], Griffiths [9] and Chandrasekhar and 

Xanthopoulos [10] studied exact solutions of the Einstein-Maxwell equations 

describing the collision of gravitational and electromagnetic waves. The main result 

of these exact solutions is that the future of the collision surface is bounded by a 

curvature singularity in future directions. This fact could be considered as an 

inevitable effect of the nonlinear gravitational focusing. It has been expected that the 

study of the colliding plane wave solutions may tell us about the nature of the space-

time singularity. The singularity structure of the colliding plane wave geometries has 

been investigated by Sbytov [11], Tipler [12] and Bonnor and Vickers [13]. The 

structure of the governing field equations for colliding plane waves, their physical 

and geometrical interpretations, and various particular solutions and techniques have 

been described in [2].    

 Colliding plane wave solutions are not only important in classical general 

relativity but also in the higher dimensional gravity. Plane wave metrics in various 

dimensions provide exact solutions in the string theory [14]. It is well-known that in 
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the low energy effective action of string theory, there are dilaton fields and various 

kinds of multi-form fields, coupled with each other in the supergravity action. The 

first exact solutions of the colliding plane waves in Einstein-Maxwell-Dilaton gravity 

theories were obtained by Gürses and Sermutlu [15]. This problem is formulated for 

the collinear polarization case and it was shown that when the dilaton coupling 

constant vanishes one of the solutions reduces to the well-known Bell-Szekeres 

solution in the Einstein-Maxwell theory and more recently Halilsoy and Sakalli [16] 

have obtained the extension of Bell-Szekeres solution in Einstein-Maxwell-Axion 

theory. 

 In [17-24], the colliding plane wave solutions in the dilatonic gravity, in the 

higher dimensional gravity, and in the higher dimensional Einstein-Maxwell theory 

were discussed.    

 In this thesis, we study the Bell-Szekeres solution, the Szekeres solution and 

the colliding gravitational plane waves in dilaton gravity. 

In Chapter 2, we briefly review the known properties of the colliding plane 

waves in general relativity. 

In Chapter 3, we discuss the solution of Bell-Szekeres and the solution of 

Szekeres. 

In Chapter 4, we study the exact solutions of two colliding gravitational plane 

waves in dilaton field.  
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CHAPTER 2 
 
 

COLLIDING PLANE WAVES IN GENERAL RELATIVITY 
 
 
 
In this chapter we will discuss the collision of gravitational and electromagnetic 

plane waves in general relativity. 

 

 

2.1   Plane Gravitational Waves 
 

In the electromagnetic theory, Maxwell’s equations are linear, so, 

electromagnetic waves pass through each other without any interaction. However, in 

general relativity Einstein’s field equations are non-linear, so, interactions occur 

between gravitational waves while they pass through each other. This property 

attracted many authors to find a solution to the problem of head-on collisions of 

gravitational waves. 

When searching for exact solutions it is appropriate that the approaching 

waves have plane symmetry, because for plane waves it is possible to formulate the 

problem in such a way that exact solutions can be found before and after the 

interactions. 

Our consideration of gravitational waves starts from the pioneering work of 

Einstein and is based on the linearized form of field equations. In this approximation, 

we shall see that plane wave solutions lead to the result that gravitational waves are 

transverse and possess two polarization states. Also, in Einstein’s theory, 

gravitational waves are considered as perturbations of space-time that propagate with 

the speed of light.  

 

 

 

 



2.1.1 The Linearized Field Equations 
 

We assume that the metric describing the space-time is slightly different from 

the Minkowski metric abη which describes the flat space-time [25]: 

 

abhababg εη +=                                                 (2.1) 

 

where  and 3,2,1,0, =ba ε  is a dimensionless parameter and, throughout, we will 

neglect terms of second order or higher in ε . We also impose that the space-time is 

asymptotically flat, that is, if r denotes a radial parameter, then 

 

0lim =
∞→

ab
r

h .                                                     (2.2) 

 

Since  , than the inverse of the metric is given by c
a

bc
ab gg δ=

 

ababab hg εη −= .                                                  (2.3) 

 

The Christoffel symbols are defined by 

 

).(
2
1

,,, dbccdbbdc
ada

bc gggg −+=Γ                                     (2.4) 

 

Since abη  is constant then by using (2.1) and (2.4), we can write the Christoffel 

symbols as 

 

).(
2
1

,,,
a

bccb
a

bc
aa

bc hhh −+=Γ ε                                       (2.5) 

 

The Riemann tensor (or curvature tensor) is defined by 
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e
bc

a
ed

e
bd

a
ec

a
cbd

a
cbdbcd

aR ΓΓ−ΓΓ+Γ−Γ= ,,   ,                              (2.6) 

 

and with the equation (2.5) this becomes 

 

)(
2
1

,,,, acbdbdacadbcbcadbcd
e

aeabcd hhhhRgR −−+== ε .             (2.7) 

 

Then the Ricci tensor is 

 

−+== acb
c

bca
c

cadb
cd

ab hhRgR ,,(
2
1 ε □ ),abab hh − ,                      (2.8) 

 

where  and □ is the D’Alembertian operator defined as a
a

ab
ab hhh ==η

 

                              □=  ba
ab ∂∂η
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Contracting  with , the Ricci Scalar is obtained as abR abg

 

−== cd
cd

ab
ab hRgR ,(ε □ ),                                       (2.9) h

 

and finally the Einstein field tensor, , in the weak gravitational field is abG

  

 



 (
2
1

2
1

,, −+=−= acb
c

bca
c

ababab hhRgRG ε □  □  abcd
cd

abab hh ηη +− ,, )h

(2.10) 

    

The linearized Einstein field equations are then 

 

abab TG κ= ,                                               (2.11) 

 

where  is the energy-momentum tensor and abT κ is the gravitational constant. 

 

 

2.1.2   Gauge Transformations 

 
Let us consider what happens to linearized equations under a coordinate 

transformation of the form 

 

.aaaa xxx εξ+=′→                                     (2.12) 

 

Applying this to the transformation formula for  given by abg

 

)()( xg
x
x

x
xxg cdb

d

a

c

ab ′′
∂

′∂

∂

′∂
= , 

 

we find the transformation of , namely, abh

 

,2 ),( baababab hhh ξ−=′→                                  (2.13) 

 

where the bracket denotes symmetrization. This is called a gauge transformation. We 

can see that both the linearized curvature tensor (2.7) and its contractions are gauge 
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invariant quantities, that are unchanged to first order in ε  by transformations of the 

form (2.13). To fix the gauge, we go back to field equations and define new variables 

abψ  by 

 

hh ababab ηψ
2
1

−= ,                                      (2.14) 

 

then (2.8), (2.9) and (2.10) become 

 

−+= acb
c

bca
c

abR ,,(
2
1 ψψε □                        (2.15)    ),abh

−= cd
cdR ,2(

2
1 ψε □                                  (2.16) ),abh

−+= acb
c

bca
c

abG ,,(
2
1 ψψε □ ).,ab

ab
abab ψηψ −                (2.17) 

 

This suggest that our field equations will reduce to wave equations if we impose the 

condition 

 

,0
2
1

,,, =−= bab
a

ab
a hhψ                                  (2.18) 

 

which is called the Einstein, de Donder, Hilbert, or Fock gauge. Then by (2.17), 

Einstein’s full field equations reduce to  

 

  ε
2
1 □ .abab Tκψ −=                                      (2.19) 

 

Then, the vacuum field equations in the Einstein’s gauge reduce to 
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□ .0=abψ                                               (2.20) 

 

Combining (2.20) and (2.14), we find that  must satisfy the classical wave 

equation 

abh

 

□ .0=abh                                               (2.21) 

 

Thus, we conclude that, in linearized theory, gravitational effects propagate as waves 

with the speed of light. 

 

 

2.1.3 Linearized Plane Gravitational Waves 
 

We look for a simple solution of the linearized vacuum field equations which 

represents an infinite plane wave propagating in the x-direction. We start by 

introducing the coordinates 
 

),,,(),,,( 3210 zyxtxxxx =  

 

and adopt the ansatz 

 

),( xthh abab =                                                   (2.22) 

 

which requires 

 

03,2, == abab hh .                                                (2.23) 

 

Then by using (2.7), we find 20 independent components of Riemann tensor [25]. 

From the linearized vacuum field equations in the form , some of the 0=abR
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components of Riemann tensor will vanish. We can see that, the non-zero 

components of Riemann tensor only involve the components . Then 

 can be written in this form 

332322  and  , hhh

abh

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3323

2322
00
00

0000
0000

hh
hh

hab          .                                   (2.24) 

 

We sharpen our ansatz (2.22) by requiring 

 

)( xthh abab −= ,                                                (2.25) 

 

so that it clearly represents a solution propagating in the x direction with the speed of 

light. If we use the Einstein gauge condition (2.18) and the gauge freedom (2.13), 

where aξ  also satisfies the wave equation, there might exist a coordinate system in 

which )(  )(    23222233 andonly hasand xthxthhhh ab −−−=  components. Hence, 

 will be in this canonical form abh

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

2223

2322
00
00

0000
0000

hh
hh

hab          .                                   (2.26) 

 

Now, we consider the physical significance of these two independent functions in the 

next section. 
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2.1.4 Polarization States 
 

Let us first define the line element in general form as 

ba
ab dxdxgds =2 ,                                         (2.27) 

 

where  In the case .3,2,1,0, =ba ,023 =h  this line element becomes 

 

[ ] [ ] 2
22

2
22

222 )(1)(1 dzxthdyxthdxdtds −+−−−−−= εε ,           (2.28) 

 

which is called an ‘ ’. Let us suppose that  is some oscillatory 

function of  so that there are values when  and values when 

. As seen from the metric (2.28), this wave causes oscillations only in the 

. This implies that an 

wave22 −h 22h

)( xtu −= 022 >h

022 <h

plane−yz wave22 −h has a transverse character and we refer 

to this state as a wave with + polarization. 

On the other hand, in the case =0, the line element (2.28) takes the form 22h

 

[ ] [ ] 2
23

2
23

222 )(1)(1 zdxthydxthdxdtds −+−−−−−= εε ,           (2.29) 

 

by performing a rotation through in the o45 plane−yz given by  

 

).(
2

1            ),(
2

1 zyzzzyyy +−=→+=→                    (2.30) 

 

This is called ‘ ’. This wave is also transverse and produces the same 

effect as an but with the axes rotated . We refer to this state as a 

wave with x polarization. 

wave23 −h

wave22 −h o45
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Clearly, a general wave is a superposition of these two polarization states. 

The fact that the two polarization states are at  to each other contrasts with the 

two polarization states of an electromagnetic wave, which are  to each other. 

o45
o90

 

 

2.2 Exact Plane Gravitational Waves 

 
If we introduce double null coordinates defined by  

 

xtvxtu +=−=          ,                                            (2.32) 

 

in (2.28), then an  has a line element of the form wave22 −h

 

,)()( 22222 dzugdyufdudvds −−=                               (2.33) 

 

where 

 

)(1)(        ),(1)( 22
2

22
2 uhuguhuf εε +=−= .                         (2.34) 

 

From the line element (2.33), only one vacuum field equation can be found 

 

0// =′′+′′ ggff ,                                             (2.35) 

 

where prime denotes derivative with respect to u. Let us denote the first term by the 

function ,i.e. )(uh

 

hggff =′′−=′′ //  .                                             (2.36) 
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Hence, any choice of arbitrary function  gives rise to a vacuum solution. Such 

exact solutions are called linearly polarized plane gravitational waves. They 

represent plane-fronted waves, abstracted from any sources, propagating in the x-

direction. 

)(uh

If we carry out the coordinate transformation, 

 

,     ,     ,     , 22 gzZfyYggzffyvVuU ==′+′+==  

 

then the line element is transformed into Brinkmann form  

 
222222 ))(( dZdYdUdVdUYZUhds −−+−=                     (2.37) 

 

which shows the explicit dependence on function . This function represents the 

amplitude of the polarized wave. 

)(uh

Such solutions allow us to investigate the question of the scattering of 

gravitational waves. Unlike electromagnetic theory, where the linearity of the theory 

means that electromagnetic waves pass through each other unaltered and so one can 

superpose 2 solutions; there is, in general, no superposition principle in general 

relativity. Indeed we may expect the non-linearity of the theory to reveal itself in the 

interaction of two gravitational waves. However, (2.37) does reveal a limited 

superposition principle in that two plane waves moving in the same direction can be 

superposed simply by adding their corresponding  functions. Thus when moving 

in the same direction, two such gravitational waves do not scatter one another. To 

exhibit scattering, we need two waves moving in different directions. If we consider 

two linearly polarized waves colliding at an angle, we can always find a class of 

observers who consider the collision to be head on. Hence, it is sufficient to work in 

a coordinate system in which the waves appear to collide head on. 

)(uh
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2.2.1 Collision of Plane Waves 
 

In this section we consider the head on collision between plane gravitational 

and electromagnetic waves. 

In collision problems, we may choose two null coordinates u  and  such that 

the wave fronts of the waves are represented by u =0 and =0 (see figure 2.1). The 

metric describing the plane-fronted gravitational waves is given by  

v
v

 

,),,(2 2222 dZdYduZYuHdudrds −−+=                           (2.38) 

 

where  characterizes the nature of the wave. ),,( ZYuH

For an impulsive plane gravitational wave function H  can be taken as 

 

))(( 22 YZuaH −= δ                                             (2.39) 

 

where  is the amplitude of the wave and a )(uδ  is the Dirac-delta function, which is 

defined by the requirements 

 

⎪⎩

⎪
⎨
⎧

=∞

≠
=

0 if  

0 if   0
)(

u

u
uδ      ,                                         (2.40) 

∫
∞

∞−

= ).0()()( fduuuf δ                                            (2.41) 

 

Alternatively, for a plane gravitational shock wave 

 

))(( 222 YZuaH −= θ ,                                           (2.42) 

 

where )(uθ  is the Heaviside step function defined by 

 

 13



⎪⎩

⎪
⎨
⎧

>

≤
=

0 if    1

0 if   0
)(

u

u
uθ  ,                                            (2.43) 

 

and for an electromagnetic plane wave 

 

).)(( 222 YZuaH += θ                                           (2.44) 

 

The form of metric (2.38), however, is unsuitable for a discussion of colliding plane 

waves since it contains only one null coordinate. It is therefore convenient to 

transform this metric to the Szekeres line element [25], which is 

 

)coshsinh2cosh( 222 WdzeWdydzWdyeedudveds VVUM −−− +−+=  (2.45) 

 

where M, U, V and W are functions of  in general. In the study of collision 

problems, it is convenient to divide the space-time into four regions labeled                     

I( <0, <0), II ( >0, <0), III (u <0, >0) and IV ( >0, >0), as shown in  

figure 2.1. These regions are bounded by the two null hypersurfaces =0 and v =0. 

vu and

 u v  u v v u v
 u

The metric functions U, V, M and W must take different forms in different 

regions. That is 

 

                        Region I    :   U=V=W=M=0, 

 

                        Region II   :   )( ),( ),( ),( uMMuWWuVVuUU ==== , 

 

                        Region III  :   )( ),( ),( ),( vMMvWWvVVvUU ==== , 

 

                        Region IV  :  ),( ),,( ),,( ),,( vuMMvuWWvuVVvuUU ==== . 

 

Region I is the flat Minkowski space-time, it is assumed that the collision is 

taking place in the absence of any background field, and regions II and III contain 
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the approaching waves from opposite directions. Region IV is the interaction region 

in which the metric is in the form (2.45) (see figure 2.1). The metric coefficients in 

region IV are uniquely determined by a characteristic initial value problem with data 

determined on the null hypersurfaces 0=u  and 0=v . 

The function W determines the rotation of the wave polarization vectors. If 

we have constant and parallel polarization then one can put W=0. 

The general recipe to construct the colliding plane wave solutions is to solve 

the field equations in region IV and then reduce the solutions to other regions, 

requiring the metric to be continuous and invertible in order to paste the solutions in 

different regions. 

More importantly, as a physical solution one has to impose some kind of 

junctions on the metric to get an acceptable physical solution. The physical 

conditions can be translated into conditions on the metric are called the junction 

conditions.  

In the collision problem, we generally use the Lichnerowicz or the O’Brien 

and Synge (OS) boundary conditions. The Lichnerowicz conditions require that there 

should exist a coordinate system in which the components of the metric and 

electromagnetic potential are at least of class  on the null surfaces. However, OS 

require that 

1C

 

               ,              , 0,
0

0, ab
a

ab
ab

ab ggggg  

 

be continuous across the null surface (note that 0 in the above formulae for 0=u  or 

). Moreover, OS condition means that the metric functions U, V, M and W need 

to be continuous and  across the junction at 

0=v

0=uU 0=u . The same happens at the 

junction at 0=v . However, the above Lichnerowicz or OS junction condition on the 

metric is not enough. To be physically sensible, the curvature invariants R and 

 should not blow up at the null boundaries.  ab
ab RRR =2
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Usually, when discussing the colliding plane wave solutions, one does not put 

on any constraints on the Riemann tensor ,  or other higher 

curvature invariants. 

abcdR abcd
abcd RRR =4

 
I 

FLAT

IIIII

IV

v=0 u=0 

Time 

 
Figure 2.1: Space-time is divided into four regions. Two space-like coordinates have been suppressed. 

Region I is the flat background, regions II and III contain the approaching waves, and region IV is the 

interaction region following the collision at the point .0 , 0 == vu  
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CHAPTER 3 
 

 

THE BELL-SZEKERES AND THE SZEKERES SOLUTIONS 
 

 

 

In this chapter, we discuss the Bell-Szekeres solution, which describes colliding 

electromagnetic waves in Einstein-Maxwell gravity and the Szekeres solution which 

describes the collision of two step gravitational plane waves.            

 

 

3.1 The Bell-Szekeres Solution 
 

Here, we discuss the Bell-Szekeres solution, which is the first solution of the 

Einstein-Maxwell field equations and describes the collision of two step 

electromagnetic plane waves with collinear polarization. The line element for the 

Szekeres solution is given by 

 

)(2 222 dyedxeedudveds VVUM −−− ++=  .                          (3.1) 

 

The metric functions and ,U V M depend on the null coordinates u and . The non-

zero Christoffel symbols of the metric (3.1) can be calculated to be 

v

 

,)(

,)(

,

2
1

2
1

VUM
vvxx

u

VUM
vvyy

u

uuu
u

eVU

eVU

M

+−

−−

−=Γ

+=Γ

−=Γ
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Here we have abbreviated the derivatives by a subscript, e.g. 
u
MM u ∂
∂

= . Using 

(2.6), the components of the Riemann tensor are calculated as 
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                                                                                                (3.3)    .uv
M
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Using (2.8), the components of Ricci tensors are then given by 
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The electromagnetic vector potential has a single non-zero component 

 where ),0,,0,0( AA = A  is a function of both u  and . The components of the 

electromagnetic field strength 

v

 

dAdxdxFF ba
ab =Λ= 2

1 ,                                            (3.5) 

 

where , are  b
bdxAA =

 

uuy AF =      ,      vvy AF =  .                                      (3.6) 

 

The energy-momentum tensor defined by  

 

)
4
1(

4
1 cd

cdabbcad
cd

ab FFgFFgT −=
π

,                               (3.7) 

 

has the following non-vanishing components 

 

2)(
4
1

u
VU

uu AeT +=
π

, 
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2)(
4
1

v
VU

vv AeT +=
π

, 

vu
VU

uv AAeT +=
π4
1  , 

vu
M

xxyy AAeTT
π4
1

==  .                                        (3.8) 

 

Using the Einstein field equation  

 

)( 2
1 TgTR ababab −= κ ,                                           (3.9) 

 

where the trace of the energy momentum tensor 0=T  for the Bell-Szekeres metric, 

the Einstein-Maxwell field equations in region IV can be written as 

 

,0=− vuuv UUU                                                 (3.10) 

,
2

2 vu
VU

uvuvvu AAeVVUVU +=+−−
π
κ                               (3.11) 

,2 uvuvvu AAVAV =−−                                             (3.12) 

,)(
2

22)()( 222
u

VU
uuuuuu AeUMUVU +=++−−

π
κ                   (3.13) 

,)(
2

22)()( 222
v

VU
vvvvvv AeUMUVU +=++−−

π
κ                   (3.14) 

.02 =−+ vuvuuv VVUUM                                           (3.15) 

 

Here, the last equation can be derived from the other equations so it is not 

independent. The problem is to find the solution of the above equations. It is easy to 

see that the integration of the first equation gives 

 

),()( vgufe U +=−                                                (3.16) 
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where  and f g  are arbitrary decreasing functions in the interaction region. Here, we 

can find the initial data for the functions  In region II, (3.16) becomes . and , , MVU

 

),0()( gufe U +=−                                                (3.17)   

                       

while in region III 

 

),()0( vgfe U +=−                                               (3.18) 

 

where . We set without loss of generality  Hence, 

the initial data of determines the functions  and 

1)0()0( =+ gf .2/1)0()0( == gf

Ue− f g . It can be shown that (3.11) 

and (3.12) are the integrability conditions for the other equations (3.13), (3.14) and 

(3.15). First we find the functions andVU  , A  from (3.10), (3.11) and (3.12), then the 

function M can be obtained by integrating (3.13) and (3.14). Therefore, we should 

solve the equations (3.11) and (3.12) first.  

It is useful to change the variables , so that the field equations 

become 

),(  to),( gfvu

 

,2
2 gf

VU
fgfggf AAeVVUVU +=+−−

π
κ                             (3.19) 

,,, 2 fgfggf AAVAV =−−                                          (3.20) 
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by changing variables 

 

.    ,    ,    ,    ,    , vgvufuvgvufuvgvufu gVVfVVgUUfUUgAAfAA ======  

 21



 

Here, it is suitable to put the equations (3.21) and (3.22) in the form 

 

SvuM e
gf

gfe −−

+
= ,                                             (3.23) 

 

where  satisfies S

 

⎥⎦
⎤
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+
−= + 22 )(

2
)(

2 f
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ff AeVgfS
π
κ

,                            (3.24) 

⎥⎦
⎤

⎢⎣
⎡ +

+
−= + 22 )(

2
)(

2 g
VU

gg AeVgfS
π
κ

.                            (3.25) 

 

An exact solution to the equation (3.19) and (3.20) is 

 

),log()log( pqrwpqrwV +−−=  

),( rqpwA −= γ                                                  (3.26) 

 

where 
κ
πγ 82 =  and 

 

2/12/12/12/1 )
2
1(  , )

2
1(  , )

2
1(  , )

2
1(     gqgwfpfr −=+=−=+= .    (3.27) 

 

Since, we determine the functions , now we can integrate the equations 

(3.24) and (3.25) to find the function 

AVU  and , ,

M . The integration gives for  S
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1logg
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1log
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1)log(
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⎜
⎝
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⎠
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⎝
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                   (3.28) 
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where  is the integration constant. Then the equation (3.26) becomes c

 

.

2
1

2
1

2
1

2
1 ggff

gcf
e vuM

+−+−
=−                              (3.29) 

 

Here, is not continuous across the boundaries because of the terms Me− f−2
1  

and g−2
1 . Bell-Szekeres have given definitions for  to be gf  and 

 

,)(sin
2
1         ,)(sin

2
1 21 nn QgPf −=−=                                (3.30) 

 

where )(uauP θ=  and )(vbvQ θ=  with the arbitrary constants a  and . The 

parameters  and  are determined by the initial data. Physically, these parameters 

determine the character of the wavefront; mathematically, they determine the 

continuity of the metric functions on the wavefronts 

b

1n 2n

0 ,0 == vu . The terms f−2
1  

and g−2
1  exactly cancel the effect of the term  when . Then, 

 becomes continuous across the boundaries. Here, it is appropriate to choose 

vu gcf 221 == nn

Me−

ab
c 4

1=  in order to put M zero in region I. Then,   

 

0=M                                                         (3.31) 

 

in all regions for the Bell-Szekeres metric. Therefore, the metric is piecewise  and 

metric functions satisfy the required O’Brien-Synge junction conditions. In terms of 

 and  the solution of the complete set of equations (3.10)-(3.15) is 

1C

P Q
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.0

,0

),cos(log)cos(log

),cos(log)cos(log

=

=

+−−=

+−−−=

M

W

QPQPV

QPQPU

                             (3.32) 

 

The solution in the interaction region takes the very simple form given by 

 

22222 )(cos)(cos2 dyQPdxQPdudvds ++−+= .                  (3.33) 

 

To interpret this solution as a plane wave we have to transform the metric to 

Brinkmann form (2.38) by doing transformations: 

 

,~

,~)tan(~)tan(

,)cos(~
,)cos(~

2
2
12

2
1

uu

yPQPxPQPvr

yQPy

xQPx

uu

=

++−+=

+=

−=

                (3.34) 

 

 where the profile function is found to be (2.44), which means that the approaching 

waves are electromagnetic plane waves. 

Now, we will look for the singularities in region IV for the Bell-Szekeres 

metric. The metric coefficient , according to (3.16), is given by Ue− )()( vguf +  

where  and  are decreasing functions from the value 1/2. It is therefore inevitable 

that a singularity will develop as 

f g

.0→+ gf  

A general analysis of space-time singularity requires all invariants. In 4-

dimensinonal case there are fourteen curvature invariants [26]. Here, we give three of 

them which are R ,  and . For the Bell-Szekeres 

metric the quadratic Riemann invariant  is calculated as  

2R )( ab
abRR= )(4 abcd

abcd RRR =

4R
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                     (3.35) 

 

22
4 32 baR =                                                                                    (3.36) 

 

which is finite. The nature of the space-time singularity for the Bell-Szekeres metric 

has been considered by Matzner and Tipler [27], Clarke and Hayward [28] and more 

recently by Helliwell and Konkowski [29]. They have shown that the Bell-Szekeres 

solution is free of curvature singularities. It has been also shown that the 

hypersurface  on which the opposing waves focus each other is a Cauchy 

horizon rather than a curvature singularity. 

0=+ gf

For the solutions to be physical, the curvature invariants  need to 

not blow up in the region IV. If we calculate them for Bell-Szekeres we see that 

 and  

  and 2RR

0=R

 

yy
yy

xx
xx

vv
vv

uu
uu

uv
uv RRRRRRRRRRR ++++= 22  

                     (3.37) 
)(22     

2)()(2  

22222

22222

uvvuuvuvvuuv

uvuuuvvvuuvvuu

VUVUVVUVUV

UVUUVUUUU

+−+++

++−+−=

 

22
2 16 baR =                                                                                      (3.38) 

 

which is also finite. Thus we can conclude that, the Bell-Szekeres metric has no 

singularity [2]. 
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We also examine whether the Bell-Szekeres metric is conformally flat or not. 

In general relativity, this is determined by the Weyl tensor which is the trace free part 

of the Riemann tensor and given by   

 

).(
6
1               

)(
2
1

acgbdgadgbcgR

bcgadRbdgacRacgbdRadgbcRabcdRabcdC

−+

+−−−=

         (3.39) 

 

A metric is said to be conformally flat if its Weyl tensor vanishes everywhere. Using 

(3.3) and (3.4), the non-zero components of the Weyl tensor can be calculated as 

 

,)(
2
1 VU

uuuuuxux eVUVC +−−−=  

                                         ,)(
2
1 VU

uuuuuyuy eVUVC −−−=      

,)(
2
1 VU

vvvvvxvx eVUVC +−−−=  

.)(
2
1 VU

vvvvvyvy eVUVC −−−=                                    (3.40) 

 

Here, there are two linearly independent components. We can choose them to be 

 and . If we substitute the solution (3.26) into these tensors, we see that 

all components (3.40) are zero in all four regions. So, we can say that the interior of 

each region is conformally flat. However, if we calculate the Weyl tensor on the 

boundaries of the interaction region, on 

uyuyC vyvyC

0=u  and 0=v , it is found to be 

proportional to Dirac- delta function (2.43). That is, 

 

).()(cossin          ),()(cossin uvauaubCvubvbvaC vyvyuyuy θδθδ −=−=     (3.41) 
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Thus we can conclude that, in the Bell-Szekeres solution, the collision of two 

step electromagnetic plane waves always generates impulsive gravitational waves 

along the null boundaries. This is an interesting feature of the Bell-Szekeres solution.  

 

 

3.2 The Szekeres Solution 
 

The first exact solution (that was published) which describes a collision 

between plane waves was in fact that of Szekeres (1970) [3]. It describes the 

collision of two gravitational plane waves. In the Szekeres solution, the approaching 

waves have constant and parallel polarizations. Since, the approaching waves are 

gravitational waves, the electromagnetic vector potential becomes zero, and then we 

can rewrite the field equations (3.10)-(3.15) as 

 

,0=− vuuv UUU                                                 (3.42) 

,2 uvvuuv VUVUV +=                                              (3.43) 

uuuuuu UVUUM 2)()(2 22 −+= ,                            (3.44) 

vvvvvv UVUUM 2)()(2 22 −+= ,                             (3.45) 

vuvuuv VVUUM +−=2  .                                      (3.46) 

 

From (3.42), we have the same solutions (3.16), (3.17) and (3.18). The equation 

(3.43), in terms of  and  coordinates, becomes f g

 

0)(2 =+++ gffg VVVgf                                      (3.47) 

 

which is the well known Euler-Poisson-Darboux equation. There exists a large class 

of solutions of this equation [2]. Szekeres has obtained the solution 

 

 27



2/1

2
1
2
1

1tanh22

2/1

2
1
2
1

1tanh12
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

−−−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

−−−=
f

g
k

g

f
kV   ,             (3.48) 

 

which contains two arbitrary constants  With this expression for V , the 

remaining equations (3.44)-(3.46) may be integrated to give 

. and 21 kk
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where c is constant. This expression contains the necessary multiples of )log(2
1 f−  

and )
2
1log( g−  that are required to cancel the effects of the unbounded term 

 on the boundary. Szekeres has given definitions for  and vu gflog f g  as  
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Then the terms )log(2
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1
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2
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−  in (3.48) exactly cancel the term 

 when . In this case, )log( vu gcf 1
2211 )( −= ncncc M  becomes continuous and is 

given by 
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where . Therefore, the 

metric is at least piecewise  and the metric functions satisfy the required 

Lichnerowicz junction conditions. The above solution includes the Khan and Penrose 

solution for colliding impulsive waves when 

)2,1(   2    ,    )/11(2  ,  )/11(2 2
2

21
2

1 =≥−=−= innknk i

2C

221 == nn , 121 == kk .  

Having obtained an exact solution in region IV, the question is to find the 

initial conditions which give rise to it. We obtain the corresponding solutions in 

region II simply by replacing  by 1/2. Then the equation (3.42) gives   g

 

)log( 2
1+−= fU .                                                (3.52) 

 

Using this equality, it can be seen that the solution in region II must have the line 

element 

 

))((2 22
2
12 dyedxefdudveds VVM −− +++= ,                         (3.53) 

 

where, retaining the coordinate freedom in u . Then we can rewrite the exact 

solutions for region II as 
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In order to interpret this solution as a plane wave, we have to transform the metric 

(3.53) to the Brinkmann form (2.38) by doing the transformations:  
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where the profile function is found to be 
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We need to calculate the profile function for given values of . Using (3.52), 

(3.54) and (3.55), we can simply find that 
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Thus it can be clearly seen that approaching gravitational wave in region II is an 

impulsive plane wave if 21 =n  and a step plane wave if  .21 >n

We need to consider the nature of the space-time singularity as in the Bell-

Szekeres solution. Using the non-zero components of the Riemann tensor (3.3) for 

the Szekeres metric, we can calculate the quadratic Riemann invariant ( ) as 4R
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Here we consider the most singular term, then we find  

 

    ,                                      (3.60) 422
4 )( −−+≅ αgfgfR vu

 

where =α  ) . It can be said that there is a curvature singularity 

in region IV on the surface on which 
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CHAPTER 4 
 
 

COLLIDING PLANE GRAVITATIONAL WAVES IN 

 DILATON GRAVITY 
 

 

In this chapter, we discuss the collision of two plane gravitational waves in dilaton 

gravity. 

  Einstein-Maxwell-dilaton gravity is derivable from a variational principle 

with the action 
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1)( 224 ⎟

⎠
⎞

⎜
⎝
⎛ −∇−−= ∫ FeRgxdS aψψ                             (4.1) 

 

where  is the dilaton coupling constant and a ),( vuψψ =  is the dilaton field. Dilaton 

fields coupled to Einstein-Maxwell fields appear as a result of a dimensional 

reduction of the Kaluza-Klein Lagrangian [30]. The field equations are   
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The metric for the action (4.1) is given by 

 

)(2 222 dyedxeedudveds VVUM −−− ++= .                             (4.5) 

 

The gauge potential has a single non-zero component )0,,0,0( AAb =  where  is a  bA
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function of u and v. Then the field equations turn out to be 
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,0222 =+++−− vuvuvuuvuv VVUUUM ψψ                         (4.8) 

,0=− vuuv UUU                                            (4.9) 
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vu
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uvvuuv AAeVUVUV ψ                        (4.10)  

 

The equations of motion for dilaton and 1-form potentials are 
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From (4.9) we can be integrated to give 

 

))()(log( vgufU +−= ,                                            (4.13) 

 

as in the previous chapters. Here  are arbitrary functions and 

satisfy . We set, without loss of generality,  It is 

useful to change the variables  and  

)( and )( vguf

1)0()0( =+ gf .2/1)0()0( == gf

),(  to),( gfvu XEV  ,  to ,ψ  defined as follows: 

 

aVXaVE 2
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With this choice in term of  and f g , the equations (4.10), (4.11), and (4.12) take 

the form 

 

,0)()( 2
1 =+++ gffg XXXgf                                      (4.15) 
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02 =−− fggffg AEAEA ,                                        (4.16) 

gf
E

gffg AAeEEEgf −−=+++ 22
1 )()( α ,                           (4.17) 

 

where 

 

2
2
11 a+=α .                                                     (4.18) 

 

The equations (4.6) and (4.7) can be integrated to give M  in terms of . They 

can be written as  

),( gf

 

0)()( 212
2
12

2
1 =+++++ −

fff
E

f XgfEgfAeS
αα

,                    (4.19) 

0)()( 212
2
12

2
1 =+++++ −

ggg
E

g XgfEgfAeS
αα

,                    (4.20) 

 

where 

 

)log()log(2
1

vu gfgfMS ++−= .                                   (4.21) 

 

Now we consider the X -equation (4.15). It can be solved by the Khan-Penrose-

Szekeres method: 

 

,log
2

log
2 qr

qra
pw
pwaX

+
−

+
+
−

=                                       (4.22) 

 

where are given in (3.27). qrpw  and  , ,

We make an ansatz for in this form [21]: AE  and 

 

,log
pqrw
pqrwE

−
+

=                  )( rqpwA −= γ ,                           (4.23) 
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which solves (4.16) automatically and from (4.17) we find that  

 

α
γ 42 = .                                                       (4.24) 

 

After integrating (4.19) and (4.20) with X  given by (4.22) to get  

 

 ( )( ) ( )( ) ( ) ( )++−+−+++−= gfbgfbgfbS log212121log2121log 321  

                    + ⎟
⎠
⎞

⎜
⎝
⎛ ++ pqrwfga 22

2
1log

2

2

α
,                                                             (4.25) 

 

where 

 

α4
22

21
+

==
abb ,        

2
21 2

3
ab +−

=
α ,                             (4.26) 

 

and using (4.21) we find that 

 

( )( )[ ] ( )( )[ ] ( ) ×+−++−= −−−− 321 21212121 bbb
vu

M gfgfgfgfe  

                α4
2 2

22
2
1

a

pqrwfg
−

⎥⎦
⎤

⎢⎣
⎡ ++× .                                                         (4.27) 

 

Here,  is not continuous across the boundaries because of the terms  

and . To make it so we assume that the functions  and 

Me− 1)21( bf −−

2)21( bg −− f g  take the 

forms (3.48)  

 

,)( 112
1 nucf −=                   .)( 222

1 nvcg −=  
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Then the terms  and  in (4.28) cancel the term  when 

. So,  becomes continuous across the boundaries and can be  

1)21( bf −− 2)21( bg −− vu gf

221 == nn Me−

written as  

 

( )( )[ ] ( ) 312121 bbM gffge −−− +++= α4
2 2

22
2
1

a

pqrwfg
−

⎥⎦
⎤

⎢⎣
⎡ ++×  .         (4.28) 

 

In this case, M is given by 

 

( )( )[ ] ( ) log
4
2log2121log

2
31 α
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⎡ ++ pqrwfg 22
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1 .      (4.29) 

 

Therefore, the metric is piecewise  and metric functions satisfy the required 

O’Brien-Synge junction conditions. 

1C

The other components of the metric are given by 
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and the dilaton field is given by     
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The above (4.22), (4.23)-(4.29) solve the equations of motion for the region IV. 

When  goes to zero, the above solution reduces to the well-known Bell-

Szekeres solution. 

0=a

We need to calculate the quadratic Riemann invariant  by using (4.13), 

(4.14), (4.22), (4.23), (4.29), and the Riemann tensors (3.3) and the Ricci tensors 

(3.4) as 

4R
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     (4.33) 

 

Here we consider the most singular term, then we find (4.33) as  

 

4222
34 3)( −+≅ b

vu gfgfbR .                                         (4.34) 

 

It can be said that there is a curvature singularity in region IV on the surface on 

which 0=+ gf . 
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CHAPTER 5 
 
 

CONCLUSION 

 
 
 

In this thesis, we studied the collision of pure electromagnetic plane waves with 

collinear polarization in Einstein-Maxwell theory which is known as the Bell-

Szekeres solution. It has been found that, in the Bell-Szekeres solution, the collision 

of two step electromagnetic plane waves always generates impulsive gravitational 

waves along the null boundaries. Then, the Szekeres solution has been studied which 

describes the collision of two gravitational plane waves. We have found that there is 

a curvature singularity in the interaction region on the surface on which 0=+ gf . 

We have given a solution for the collision of two plane gravitational waves in dilaton 

gravity. We have seen that the solution reduces to the well-known Bell-Szekeres 

solution when dilaton coupling constant becomes zero and there is a curvature 

singularity in the interaction region on the surface which 0=+ gf . 
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