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ABSTRACT 

 

 

USE OF SATELLITE OBSERVED SEASONAL SNOW COVER 

IN HYDROLOGICAL MODELING AND SNOWMELT RUNOFF PREDICTION 

IN UPPER EUPHRATES BASIN, TURKEY 

 

ŞORMAN, Ali Arda 

Ph.D., Department of Civil Engineering 

Supervisor: Asst. Prof. Dr. Zuhal AKYÜREK 

 

June 2005, 213 pages 

 

 

Snowmelt runoff in the mountainous eastern part of Turkey is of great importance 

as it constitutes 60-70% in volume of the total yearly runoff during spring and 

early summer months. Therefore, forecasting the amount and timing of snowmelt 

runoff especially in the Euphrates Basin, where large dams are located, is an 

important task in order to use the water resources of the country in an optimum 

manner. 

 

The HBV model, being one of the well-known conceptual hydrological models used 

more than 45 countries over the world, is applied for the first time in Turkey to a 

small basin of 242 km2 on the headwaters of Euphrates River for 2002-2004 water 

years. The input data are provided from the automatic snow-meteorological 

stations installed at various locations and altitudes in Upper Euphrates Basin 

operating in real-time. Since ground based observations can only represent a small 

part of the region of interest, spatially and temporally distributed snow cover data 

are acquired through the use of MODIS optical satellite. Automatic model 

parameter estimation methods, GML and SCE_UA, are utilized to calibrate the HBV 

model parameters with a multi-objective criteria using runoff as well as snow 

covered area to ensure the internal validity of the model and to generate a Pareto 
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front. Model simulations show that the choice of study years and timing of satellite 

images affect the results and further suggest that more study catchments and 

years should be included to achieve more comprehensible conclusions. In the 

second part of the study, the calibrated HBV model is applied to forecast runoff 

with a 1-day lead time using gridded input data from numerical weather prediction 

models of ECMWF and MM5 for the 2004 snowmelt period. Promising results 

indicate the possible operational use of runoff forecasting using numerical weather 

prediction models in order to prevent or at least take precautions before flooding 

ahead of time.  

 

 

Keywords:  snowmelt runoff, HBV model, parameter estimation, snow cover,  

numerical weather prediction model, Turkey 
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ÖZ 

 

 

TÜRKİYE’NİN YUKARI FIRAT HAVZASINDA UYDU GÖZLEMLERİYLE BULUNAN 

KARLA KAPLI ALANLARIN HİDROLOJİK MODELLEMEDE KULLANIMI VE 

KAR ERİMESİNDEN OLUŞAN AKIMLARIN TAHMİNİ 

 

ŞORMAN, Ali Arda 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. Zuhal AKYÜREK 

 

Haziran 2005, 213 Sayfa 

 

 

Türkiye’nin dağlık doğu bölümlerindeki kar erimesinin meydana getirdiği akımlar, 

bahar ve ilk yaz ayları süresince yıllık akımın % 60-70’ini oluşturduğu için büyük bir 

öneme sahiptir. Bu nedenle, büyük barajların yer aldığı Fırat Havzasında, kar 

erimesinden oluşan akımların miktarının ve zamanlamasının tahmin edilmesi, 

ülkenin su kaynaklarının verimli bir biçimde kullanılmasını sağlamak için önemli bir 

görevdir.  

 

Dünyada 45’den fazla ülkede kullanılmış, iyi bilinen kavramsal hidrolojik 

modellerden biri olan HBV modeli, Türkiye’de ilk defa Fırat Nehri’nin kaynağında 

yer alan 242 km2’lik bir havzada 2002-2004 su yılları için uygulanmıştır. Model girdi 

verileri, Yukarı Karasu Havzasında, gerçek zamanlı gözlem yapılması ve veri 

toplanması amacıyla farklı yer ve yüksekliklere kurulmuş otomatik kar ve 

meteoroloji istasyonlarından sağlanmıştır. Yer gözlem istasyonları, ilgili alanın ancak 

küçük bir kısmını temsil edebileceği için, alansal ve zamansal dağılımlı karla kaplı 

alanların saptanmasında MODIS optik uydu görüntülerinden faydalanılmıştır. 

Otomatik model parametre tahmin yöntemleri olan GML ve SCE_UA, akımın yanı 

sıra karla kaplı alan verisinin kullanıldığı; modelin içsel doğruluğunu saptayan ve 

Pareto düzlemi oluşturmaya olanak tanıyan çoklu objektif kriterleriyle HBV model 
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parametrelerininin kalibre edilmesinde kullanılmıştır. Model simülasyonları, 

uygulanan süre ve seçilen uydu görüntülerinin sonuçları etkilediğini, bu nedenle 

kesin kararlara ulaşabilmek için modelin farklı havzalarda ve uzun yıllar boyunca 

uygulanması gerektiğini göstermektedir. Çalışmanın ikinci kısmında, ECMWF ve 

MM5 sayısal hava tahmin modellerinden sağlanan grid bazlı veriler, kalibre edilmiş 

HBV modeline girdi olarak kullanılarak 2004 su yılının kar erime periyodunda bir 

gün öncesinden akım tahmini gerçekleştirilmiştir. Sonuçlar, su taşkınlarının 

önlenebilmesi veya en azından tedbir alınabilmesi için, sayısal hava tahmin model 

verilerinin işlevsel akım tahmininde faydalı olduğunu göstermektedir.  

 

 

Anahtar Kelimeler:  Kar erime akımı, HBV modeli, parametre tahmini, karla kaplı 

alan, sayısal hava tahmin modeli, Türkiye 
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CHAPTER 1 

 

INTRODUCTION 
 
 
 

1.1 Importance of the Problem  

 

In most parts of the world seasonal short term variations in streamflow reflect 

variations in rainfall only. However, at higher latitudes and altitudes where more 

precipitation falls as snow, runoff depends on heat supply for snowmelt rather than 

the timing of precipitation. The hydrological importance of snow is not restricted to 

areas where it lies for months: many dryland rivers in areas with little or no snow 

are fed largely by meltwater from high mountains many kilometers away. 

Snowmelt water is therefore an immensely important water resource in many parts 

of the world for public supply, hydropower, irrigated agriculture and other uses. 

Much of the value of meltwater as a resource lies in its reliable occurrence at a 

particular time of the year and enhanced, if total runoff and timing can be 

predicted. Accurate forecasting can also minimize risk and loss from floods caused 

by rapid snowmelt. Hydrologists have therefore devoted much effort to developing 

models to simulate and forecast snowmelt runoff.  

 

A plethora of hydrologic models have been proposed during the last few decades 

for a variety of different applications ranging from purely statistical methods which 

neglect the physics of snowmelt process to the complicated energy budget 

equations. But most hydrological models fall in the category of conceptual models 

which try to represent a compromise between scientifically realistic complexity and 

practically realistic simplicity mainly because of the difficulties in obtaining input 

data varying in time and space. 
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Traditionally, input to hydrological models is obtained from point measurements of 

precipitation and temperature at the meteorological stations whereby supported by 

direct observations of the snow pack when possible. In the past, hydrologists relied 

mostly on conventional data network systems based on manual ground 

measurements. As the technological progress brought new impulses, automatic 

meteorological stations furnished real-time data from remote mountain areas 

which was particularly important for snow hydrology. 

 

However, ground based observations can by necessity only represent a small part 

of the region of interest creating problems in basins with pronounced topography 

because of the high spatial variability of hydro-meteorological parameters. Since a 

long time, hydrologists have thus looked to remote sensing as an additional source 

of information. In this sense, remote sensing offers the advantage of spatially 

distributed observations which, in principle, are more directly linked to runoff than 

point data because measured runoff represents an integration across a drainage 

basin. 

 

Snow cover mapping in mountainous areas is demanding due to the interfering 

topography and the heterogeneous ground properties. With the growing number of 

satellite platforms and improvements in processing and transmission of digital data 

obtained from them, it has become possible to obtain frequent snow cover 

information in near real-time through a variety of different sources. Other 

hydrologic information such as topographic, vegetation and soil characteristics can 

also be made available from digital databases through the use of Geographic 

Information Systems. The incorporation of these data sets into hydrologic 

modeling is considered highly desirable by hydrologists. The development of 

efficient and effective methods to determine the amount and timing of snowmelt 

runoff is still an active area of research.  

 

 

 



 3 

1.2 Purpose of the Study 

 

Water perhaps is the most valuable natural asset in the Middle East as it was a 

historical key for settlement and survival. The Euphrates and Tigris Rivers with 

their tributaries served as the cradle for many civilizations that evolved in 

Mesopotamia, “the land between two rivers”. The headwaters of these two trans-

boundary rivers originate within the boundaries of Turkey and are later shared by 

the riparian countries Syria, Iran, Iraq and Saudi Arabia along its way until linked 

by their natural course to drain into the Persian Gulf.  

 

The Euphrates-Tigris basin is largely fed by snow precipitation over the uplands of 

northern and eastern Turkey. A sustained period of high flows during the spring 

months resulting from melting of the snowpack causes not only extensive flooding, 

inundating large areas, but also the loss of much needed water required for 

irrigation and power generation purposes during the summer season. 

 

Many of the large dams in Turkey are located in the Euphrates-Tigris basin. The 

aridity of the region and the water requirements of the downstream nations 

necessitate accurate and optimum operation of these dams.  

 

Accordingly, the importance of monitoring the seasonal snow cover and forecasting 

the river runoff in the mountainous regions of Eastern Turkey, as being one of the 

major headwaters of Euphrates-Tigris basin, is crucial from water resources 

management point of view. 

 

As a result, a pilot basin, located on the Upper Euphrates River, is selected 

whereby five automatic meteorological and snow stations and three stream 

gauging stations are installed providing real-time data for hydrological modeling.  

 

For this study, one of the well known hydrological models, HBV model, is used for 

the first time in Turkey. Being a conceptual model in trying to represent the 

physical processes with simplified yet logical algorithms, HBV model is 
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automatically calibrated both in a traditional manner with the collected hydro-

meteorological data from the ground stations and with the additional snow cover 

area derived from optical satellite and later verified in the first part of the study.  

 

In the second part, spatially and temporally distributed meteorological variables 

obtained from numerical weather prediction models are used as input to the 

calibrated HBV model to perform pre-operational runoff forecasts for part of the 

2004 water year when snowmelt dominates runoff.  

 

The study is targeted at individuals and organizations interested in operational 

snowmelt runoff modeling. It does not present a theoretical look at state-of-the-art 

snowmelt modeling, but an account for implementation of, and improvements to, 

established hydrological models assisted by Earth Observation data for real time 

snowmelt runoff forecasting at the very headwaters of Euphrates River. 

 

So the objectives of the study can be listed as: 

� real time snow, meteorological and hydrological data collection at the 

headwaters of Euphrates Basin, 

� multi-objective hydrological model calibration using measured runoff and snow 

covered area derived from Earth Observation data by means of a      

population-based algorithm, 

� integration of numerical weather prediction model outputs with a hydrological 

model in forecasting 1-day ahead runoff values, 

� co-operation between university (METU) and government organizations (DSI 

and DMI) in order to use the water resources of the country in an optimum 

manner. 
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1.3 Organization of the Dissertation 

 

The structure of this dissertation follows a clear and logical order for the reader to 

understand the work undertaken during the study. It consists of seven further 

chapters.  

 

Chapter 2 discusses the fundamentals of snow hydrology starting from the physics 

of snow formation until snowmelt runoff. Physical properties of the snowpack and 

several different snow data collection methods are described. During this process, 

the most important factors affecting snow cover distribution in a catchment of 

various spatial scales are discussed. Different modeling approaches in snowmelt 

hydrology along with their data requirements are mentioned.  

 

Chapter 3 introduces the hydrological model used in this thesis, the HBV model, 

which is one of the well known hydrologic models in the world. Each of its routines 

and corresponding model parameters is described in detail along with the input 

data requirements and output produced. The traditional model performance 

criterion is explained. Afterwards, a general view of model calibration concept both 

with manual and automatic methods are compared. The formulation of automatic 

calibration framework is illustrated. The concept of multi-objective calibration is 

presented with the aim to seek the Pareto (non-dominant) solutions of the 

problem. In the end, the future of hydrological model calibration is discussed. 

 

Chapter 4 describes the selected field site and the locations of the automatic snow, 

meteorological and hydrological instrumentation installed in the region. The 

instrumentation collect high quality real time data and when needed can transmit 

this data online for use in near real time modeling in the basin. These equipments 

were essential to characterize the climate conditions over the rough mountainous 

topography of Eastern Anatolia and are the pioneer applications in Turkey. These 

comprehensive data sets form the basis of hydrological modeling work undertaken 

in subsequent chapters. 
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Chapter 5 summarizes the remote sensing techniques applied in snow hydrology. 

Although microwave portion of the electromagnetic spectrum provide more details 

about the snow properties along with the independency of measurements from 

weather conditions and illumination, because of the easy interpretation of snow 

and fine spatial resolution, the use of visible and near infrared region is still highly 

preferred. A recently launched optical satellite, Moderate Resolution Imaging 

Spectrometer (MODIS) is briefly described in addition to different MODIS snow 

products formed and MODIS snow detection algorithm is mentioned. 

 

Chapter 6 constitutes the first part of the model application. Since HBV model is a 

semi-distributed conceptual hydrologic model, its several parameters need 

calibration. Calibration of the selected free parameters in the model is undertaken 

firstly in a traditional manner using only runoff and then runoff along with snow 

covered area derived from Earth Observation data to assess if internal simulations 

of the model could be improved without deteriorating the runoff results. The HBV 

model is later validated for periods not used in the calibration stage. Lastly the 

Pareto front is derived in order to determine the non-dominant parameter sets 

giving equally good results. 

 

Chapter 7 forms the second part of the model application. The numerical weather 

prediction models used in the study and the procedures followed in coupling the 

gridded atmospheric model outputs into the calibrated HBV model are explained. 

1-day ahead runoff forecasts are computed for the 2004 water year when 

snowmelt was dominant and the results are compared with the observed runoff 

values in the pilot basin.  

 

Finally, Chapter 8 summarizes the main results of the previous two chapters, 

discusses the implications of the work within the context of existing snow 

hydrology literature and makes recommendations for further research.  
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CHAPTER 2 

 

FUNDAMENTALS OF SNOW HYDROLOGY 
 
 
 

2.1 Introduction 

 

The occurrence of precipitation in the solid form (snow) as opposed to the liquid 

form (rain) typically causes a change in drainage basin response to the input of 

water, because snow is stored in a basin for an extended period of time before it 

enters into the runoff process. 

 

In many regions of the world, snowfall and the resulting seasonal snowcover 

represent an important source of water. Although, volumetrically they form only a 

small fraction of the Earth’s fresh water, their hydrological importance is immense. 

When the snowpacks melt, the snowmelt recharges the groundwater and 

replenishes surface water storage. Excessive snowmelt runoff can cause flooding, 

while inadequate snowmelt is often the prelude to later drought. 

 

Snow accumulation and snow melt plays a major role in the hydrological cycle in 

temperate to cold regions and even in mountainous basins of tropical regions. 

Snow accumulation and melt also affect the runoff regime strongly, usually leading 

to a pronounced seasonal variation. 
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2.2 Snow - Formation, Distribution and Measurement 

2.2.1 Physics of Formation 

 

The atmospheric requirements for snowfall formation are the presence of water 

vapor and ice nuclei and an ambient temperature below 0°C. Ice nuclei are 

particles that cause ice crystals to form through either direct freezing of cloud 

droplets or freezing of water deposited on the particle surface as a vapor. At any 

time, there are billions of aerosol particles in the atmosphere, but a very small 

fraction of these particles are active as ice nuclei. Once ice crystals form, they may 

splinter and create large numbers of nuclei to aid the precipitation process.  

 

Continued growth of an ice crystal leads to the formation of a snow crystal. This is 

a large particle, having a very complex shape and of such size that it is visible to 

the naked eye. A snowflake is an aggregation of snow crystals which may grow in 

size during its fall to the earth owing to the adhesion of colliding snow crystals. 

Snow scientists classify atmospheric snow crystals by their shapes and growth 

processes (Magono and Lee, 1966 as cited in Gray and Prowse, 1992), but a 

different system is used to classify seasonal snow on the ground (Colbeck et al., 

1990 as cited in Gray and Prowse, 1992). 

 

Whether a snowflake formed in the atmosphere arrives at the earth’s surface as 

snow or rain depends primarily on the extent and temperature of layers of air 

through which it falls. Figure 2.1 illustrates the temperature dependent probability 

distribution of snow, sleet and rain occurrences in the interval from -2°C to +4°C 

from results observed at Donner Summit, USA (USACE, 1956) and Øvre Jervan, 

Norway (Killingtveit, 1976).  
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      A: Data from USACE, 1956 B: Data from Killingtveit, 1976 

Figure 2.1 Distribution of precipitation type as a function of air temperature 

 

2.2.2 Physical Properties of the Snowpack 

 

A number of physical parameters used to characterize the snowpack are: 

� Water Equivalent (mm) 

� Depth (cm) 

� Density (g/cm3 or kg/m3) 

� Liquid Water Content (% of weight or volume) 

� Albedo 

� Areal Extent 

 

The water equivalent of snow is the vertical depth of water which would be 

obtained by melting the snowpack. It is usually obtained as the product of average 

snow depth and density. An average density of a freshly fallen snow can be 

assumed as 100 kg/m3, which gives 1 unit of water for each 10 units of snow 

depth. But the density of a new snowfall varies widely depending on the amount of 

air contained within the lattice of the snow crystals. Densities in the range of 50 to 

120 kg/m3 are common. Lower values are generally found in snowfalls formed 

under dry, cold conditions and higher values are found in wet snows at warm 

temperatures. 
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Following deposition, the density of a new snow increases rapidly owing to 

metamorphism – changes in the size, shape and bonding of snow crystals due to 

temperature and water vapor gradients, settlement and wind packing with the rate 

of change being controlled primarily by meteorological conditions.  

 

The average density of a snowpack also varies seasonally. During snowmelt, the 

densities commonly range between 350 and 500 kg/m3 owing to the storage and 

loss of meltwater. Lower densities occur in the morning and increase during the 

day as the snowpack becomes primed by infiltrating water.  

 

Liquid water content is the amount of liquid water (not frozen) retained in the 

snowpack. During the onset of snowmelt, the meltwater produced will first be 

retained in the snowpack as liquid water and no runoff is produced. Only when the 

retaining capacity is exceeded, usually 5-10% liquid water content per unit volume, 

additional snowmelt will be released from the snowpack and produce runoff. An 

example from measurements in Norway is shown in Figure 2.2 (Killingtveit and 

Saelthun, 1995). 

 

Figure 2.2 Liquid water content in a vertical snow profile for Nea basin, Norway 

(Killingtveit and Saelthun, 1995). 
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Snow albedo is the ratio of reflected radiation to the incoming radiation. It is 

usually averaged over the visible short-wave radiation spectrum (0.4 – 0.7 µm) 

and gives a good indication of the ability of the snow to absorb radiation energy. 

Generally the albedo of fresh, newly fallen snow is high, up to 95%, but decreases 

over time as metamorphosis of the snowpack changes the crystal structure to 

increasingly coarser grains. Old snow is often contaminated with dust and air 

pollution and albedo may be as low as 25%. Snow albedo varies widely with snow 

conditions and also with the wavelength of incoming radiation. This fact is used in 

remote sensing of snow, where measured albedo for different wavelengths can be 

used to distinguish between snow and bare ground or to identify wet and 

contaminated snow. Figure 2.3 shows albedo for snow of different age and for 

contaminated glacier ice (Winther, 1993).  

 

Figure 2.3 Spectral variability of snow albedo for different types of snow (Winther, 

1993).  

 

The location and extent of snowcover is usually estimated using remotely sensed 

data that can discriminate between snow and no snow. Snowcover extent is often 

expressed as a percentage or fraction of the total drainage area of interest that is 

covered by accumulated snow.  
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2.2.3 Collection of Snow Data 

 

Knowledge of the amount of snow accumulation at a point (snowfall) on the 

ground and its spatial distribution (snowcover) throughout the area of interest is 

essential for snow modeling. Table 2.1 summarizes the techniques that are 

available to measure snowfall at a point and the areal extent of the snowcover 

(USACE, 1998).  

 

There is uncertainty in all precipitation data (Isrealson, 1967; Larson, 1971; 

Sevruk, 1986 cited in Marks et al., 1992) but because rainfall is of higher and 

constant density than snow, rainfall data are not as difficult to analyze (Harris and 

Carder, 1974 cited in Marks et al., 1992). Peck (1972 in Marks et al., 1992) 

summarizes the problem of monitoring snowfall, stating that most measurements 

of snowfall rates and volumes are the least accurate of the meteorological 

measurements used in hydrological modeling. Even if the uncertainty in point snow 

data collection can not be removed completely, it may be reduced by careful gage 

placement and calibration (Larson and Peck, 1974). But precipitation evaluation at 

mountainous areas indicate that problems of wind during deposition are increased 

in rugged, high altitude regions where gage placement can significantly alter gage 

catch (Pagliuca, 1934; Garstka, 1944; Chadwick, 1972; Hamon, 1972 cited in 

Marks et al., 1992). In a comparison of gauge efficiency to snow deposition on 

snow boards show a systematic underestimate by collection gauges in windy alpine 

environments (Marks et al., 1988). Also numerous investigations have revealed 

that an unshielded gauge may only receive 50% of the true precipitation when the 

wind speed exceeds 4-5 m/s as shown in Figure 2.4 (Killingtveit and Saelthun, 

1995). Hence in remote alpine environments, snow collection gages can not be 

relied upon for snowfall data. Instead, detailed ground measurements of snow 

should be made both on an event basis and at regular intervals (Marks et al., 

1992). If the site is inaccessible on regular basis, being located at the higher parts 

of the basin, then snow pillows and depth sensors may be used. Although they 

may also represent only point data, if the location is carefully chosen, the 

continuous measurements can add valuable information. 
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Table 2.1 Snowfall and snowcover measurement techniques (USACE, 1998). 

Measurement Class Method Name Parameter Measured 

Simple linear measurement Graduated snow ruler Depth 

 Snow board Depth 

   

Gravimetric Precipitation gauges  

 a. Non-recording bucket  Water equivalent 

 
b. Recording  

    weighing/ tipping bucket 

Water equivalent 

Snowfall rate 

 
c. Electronic balance Water equivalent 

Snowfall rate 

 
Snow samplers (snow tubes) Depth 

Water equivalent 

 
Snow pillows and snow 

triangles 
Water equivalent 

   

Calorimetric 
Freezing, alcohol solution or 

dilution calorimetric methods 

Liquid water content 

(weight basis) 

   

Electromagnetic   

A. In situ sensors a. Gamma radiometers Water equivalent 

 b. Acoustic sensors Depth 

 
c. Optical snow gauge 

   (transmissiometer) 

Snowfall rate 

Snowfall mass conc. 

   

B. Remote Sensors 

   (satellite or airborne) 

Natural terrestrial  

gamma radiation 

Water equivalent 

Snowcover 

 Visible photography Snowcover 

 
Microwave Water equivalent 

Snowcover 

 
Radar Depth 

Snowcover 

 Multispectral Images Snowcover 
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Figure 2.4 Gauge catch deficiency for rain and snow as a function of wind speed 

(Killingtveit and Saelthun, 1995). 

 

Apart from the point snowfall data, the changing areal extent of the seasonal snow 

cover may be detected by remote sensors (satellite or airborne). Sometimes these 

sensors may even be used to determine snow water equivalent (e.g. microwave 

and gamma radiation), but firstly, they have to be calibrated with reliable ground 

truth point data to be used for operational purposes.  

 

2.2.4 Snow Cover Distribution 

 

The areal variability of snow cover can be studied at three spatial scales: 

� Microscale (<100m) 

� Mesoscale or Local (100 m to a few km) 

� Macroscale or Regional (> a few km) 
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The most important factors affecting snow distribution in a catchment are: 

� Climate 

� Topography 

� Vegetation 

 

Climate 

The important climatic parameters, in addition to the precipitation itself, are air 

temperature and wind. Air temperature affects the form of precipitation, 

melting/freezing and internal metamorphosis of the snowpack. Air temperature at 

snowfall determines the crystal structure and the degree of packing of the new 

snow. Snow falling at low temperatures consists of light crystals, easily moved by 

wind, while snow falling at around 0°C will usually be wet and dense and not so 

easily affected by wind. Since air temperature normally decreases with elevation, 

while precipitation normally increases, the effect is a net increase in snow with 

elevation. This effect can be very pronounced, with large snowpacks in high-lying 

areas and little or no snow in the lower-lying regions. 

 

Wind has a strong influence on the redistribution of snow and consequently effect 

on the spatial variability in snow water equivalent. In addition, wind has great 

influence on the energy exchange between atmosphere and the snow surface and 

thus for evaporation, melting and refreezing of the snowpack. Wind hardens and 

compacts snow because of the drag forces exerted on the surface by the moving 

air and by impacting particles. Transported snow crystals undergo changes to their 

shape and size and form drifts and banks of higher density than the parent 

material. Generally, through erosion, transportation and redeposition, snow is 

redistributed significantly, especially in non-forested areas where the wind is 

strongest and snow drift is not hindered by trees. The net effect is that hills and 

ridges are blown free of snow and an accumulation of snow in the low-lying, 

gullies and within forests. This leads to an uneven or skew snow distribution in the 

catchment. Figure 2.5 depicts a snow distribution for a catchment in Norway 

compiled from 250 sampling points (Killingtveit and Sand, 1991). 
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Figure 2.5 Snow distribution from Orkla river in Norway, based on 250 sampling 

points in the 800m zone (Killingtveit and Sand, 1991). 

 

Topography 

Depth of seasonal snow cover usually increases with elevation because of the 

larger number of snowfall events and lower amounts of evaporation and melt. 

Thus, at a particular location in a mountainous region, a strong linear association is 

often found between seasonal snow cover and elevation within a selected elevation 

band. However, even along specific transects the rate of increase in water 

equivalent with elevation may vary widely from year to year.  Elevation alone is not 

a causative factor in snow cover distribution and a host of other variables such as 

slope and aspect must be considered to interpret distribution patterns accurately. 

Snow depth decreases with distance along a slope oriented in the direction of 

prevailing winds and major accumulations occur on lee slopes (sheltered from 

wind) and in abrupt depressions. A primary influence of aspect on snow 

distribution patterns is its effect on the surface energy exchange process and 

snowmelt. 

 

Vegetation 

Vegetation affects snow cover distribution through its influences on surface 

roughness and wind speed, therefore on snow erosion, transport and deposition; 

the surface energy exchange; and snowfall interception. It is commonly observed 
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that the snow distribution in a forested area is less uneven than in an open area. 

The proportion of snowfall accumulated in a forest depends on canopy density, the 

proportion of the ground surface protected (shaded) by vegetation and tree 

species. Interception by coniferous forests is much greater than by deciduous 

forests because deciduous trees lose their leaves during winter. This also affects 

the energy balance at the ground surface and the amount of snowfall lost to 

evaporation and sublimation.  

 

2.3 Snowmelt 

 

In many parts of the world, melt of the seasonal snow cover is the single most 

important event of the water year. Water produced by melting snow supplies 

reservoirs, lakes, rivers and infiltrating meltwater recharges soil moisture and 

groundwater.  

 

When snow melts, the ice that composes the snow is converted into water. Since 

the conversion from ice to water requires the input of energy (or heat), the 

process of snowmelt is inextricably linked to the flow and storage of energy into 

and through the snowpack.  

 

Whenever sufficient energy is available, some snow (ice) will melt and form liquid 

water (i.e. snowmelt). Since the physical structure of the snowpack is a porous 

matrix, this snowmelt will be held as liquid water (provided it does not refreeze) in 

the interstices between the snow grains and will increase snow density and snow 

water content. The snowpack is commonly called “ripe” when it is isothermal at    

0°C and saturated. Whenever the capacity of the snowpack interstices to hold the 

liquid water is exceeded, some of the snowmelt will begin to move down-gradient 

called direct surface runoff to become a portion of the snowmelt runoff. 

Additionally, some of the snowmelt may infiltrate into the ground. The amounts 

that infiltrate depend on inherent soil characteristics, soil moisture content, as well 

as whether or not the ground surface is frozen. The infiltrated snowmelt later 
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reemerges as interflow into stream channels, or it percolates into deeper 

groundwater storage. Hence the snowmelt process can conceptually be divided 

into several different but interrelated processes: 

 

� Heat balance of the snowpack 

� Snowmelt at the atmosphere-snow and ground-snow interface 

� Internal movement and retention of liquid water within the snowpack 

� Release of water from bottom of snowpack with infiltration or surface runoff 

 

There are many models for forecasting snowmelt runoff. These use either an 

energy balance or some empirically defined snowmelt index to compute melt. For 

extreme conditions and for short term forecasts, physically based systems are 

recommended. Most index models are designed for simulation periods of a month 

or longer and give good results under average conditions.  

 

2.3.1 Energy and Mass Balance 

 

The energy balance approach for calculating snowmelt applies the law of 

conservation of energy to a control volume. The control volume has its lower 

boundary as the snow-ground interface and its upper boundary as the snow-air 

interface. Use of a volume allows the energy fluxes into the snow to be expressed 

as internal energy changes. 

 

The balance requires that the sum of the energy fluxes by radiation, convection, 

condensation and conduction plus the change in internal energy in the volume be 

zero. For a cube of snow of unit volume, assuming the energy transfers in the 

horizontal direction are negligible, the energy equation in the vertical direction 

gives the amount of net energy available for melt. The energy fluxes on a 

snowpack are quantified with the equation given below and depicted in Figure 2.6 

(Killingtveit and Saelthun, 1995). 
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dt

dU
QQQQQQQ pgehsnm ±+++++= ln   Equation 2.1 

 

Qm : net energy available for melt 

Qsn : net short wave radiation flux absorbed by the snow 

Qln : net long wave radiation flux at the snow-air interface 

Qh : sensible heat flux between air and snow by convection 

Qe : latent heat flux between snow and air by evaporation, sublimation, 

condensation 

Qg : heat flux between ground and snow by conduction 

Qp : heat from rain 

dU/dt: rate of change of internal energy per unit area of snowpack 

 

 

Figure 2.6 Energy fluxes in the vertical direction on a snowpack (Killingtveit and 

Saelthun, 1995). 

 

The rate of change of internal energy in the snowpack is composed of the energy 

to melt the ice portion of the snowpack, freeze the liquid water in the snow and 



 20 

change the temperature of the snow. Thus during periods of warming, the net flux 

of heat (dU/dt) is into the snow, while during periods of cooling, the net flux 

(dU/dt) is out of the snowpack. Therefore, the amount of energy available to cause 

snowmelt varies and can be dynamic, depending on the magnitudes of the various 

energy inputs to the snowpack. Male and Gray (1981) suggest that snowmelt is 

not homogeneous throughout the snowpack depth and point out that most of the 

melting occurs at the upper (snow-air) and lower (snow-ground) interfaces of the 

snow.  

 

The summation of all sources of energy (heat) represents the total amount of 

energy available for melting the snowpack which may be expressed at a point by 

the general formula given in Equation 2.2. 

Bh

Q
M

wf

m

ρ
=      Equation 2.2 

M : snow melt (mm/day) 

Qm : net energy flux computed from Equ. 2.1 (kJ/m2*day) 

hf : latent heat of fusion of ice (kJ/kg) 

ρw : density of water (kg/m3) 

B : thermal quality of snow or fraction of ice in a unit mass of wet snow (B≤1) 

 

A melting snowpack consists of a mixture of snow (ice) and a small quantity of free 

(liquid) water trapped in the interstices between the snow grains. The relative 

proportion of a snowpack that consists of ice determines the thermal quality (B) of 

the snowpack. A snowpack that contains no free water has a thermal quality of 

1.0. However, after melt has begun, there is some free water held within the snow 

matrix, yielding a thermal quality of less than 1.0. The heat energy required to 

release 1 g of water is somewhat less than the latent heat of fusion of water (that 

is the energy required to change state from ice to water; 334.9 kJ/kg or 80 cal/g 

for pure ice). For a melting snowpack, after free drainage by gravity for several 

hours, the thermal quality normally averages between 0.95 and 0.97, 

corresponding to 3 to 5 percent liquid water in the snow. 
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For normal melt conditions one can assume: 

hf : 334.9 kJ/kg 

ρw : 1000 kg/m3 

B : 0.97 

 

Giving Equation 2.3 for snow melt in units of mm/day. 

325

Q
M m=     Equation 2.3 

 

The significant problem with implementing an energy balance approach to 

predicting snowmelt is the variability of the energy terms, particularly over time (at 

diurnal as well as synoptic and seasonal time scales), but also over space. Modern 

automatic weather stations allow the energy balance to be quantified at a point. It 

is rare for such instrumentation to be available at even a single point in a basin, 

and even then a problem remains in extrapolating the measurements to other 

parts of the basin. However, an alternative to measuring the energy balance is to 

approximate the main terms from more readily available data. There are many 

variants on this parametric energy balance approach. Net short wave radiation can 

be estimated from incident radiation (which in turn depends on latitude, altitude, 

and time of year, and can be corrected for relief shading effects), cloud cover, and 

snow albedo. The diurnal temperature range is sometimes used as a crude index. 

Sensible heat transfer varies as the product of air temperature and wind speed, 

and precipitation heat supply as the product of temperature and rainfall rate. All 

such approaches require extrapolation of, not just air temperature, but also wind 

speed and other variables from the base station to distant and higher parts of the 

basin.  

 

Estimates of snowmelt amounts are derived through the use of energy balance 

equations as well as by some empirical defined snowmelt index. 
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2.3.2 Temperature Index Methods 

 

Although energy balance models provide a physical basis for estimating snowmelt, 

the data required to solve the energy equation are very extensive. Therefore, 

operational systems for snowmelt prediction substitute a temperature index 

approach. Since air temperature was already a predominant variable used in the 

energy budget equations, it is logically connected with many of the energy 

exchanges involved in snowmelt. Also it is the meteorological variable that can 

most safely be extrapolated across a basin and since it is commonly available to 

hydrologists in historical and real-time databases, the studies concluded that air 

temperature is a useful index to snowmelt, particularly in forest covered basins. It 

is less reliable as an index in open, exposed areas because net short wave 

radiation, sensible and latent heat fluxes (none of which are related directly to air 

temperature) may exhibit wide variations in their relative importance to snowmelt. 

The temperature index approach is least applicable during extremes, e.g., when 

net radiation and latent heat are large and air temperature is low. It is also 

unsuitable for monitoring diurnal variations in melt because air temperatures 

usually lag and attenuate short term variations in net radiation. However, the low 

data and computational requirements make temperature indexes particularly 

attractive for operational modeling. Indeed, the method is at the heart of models 

such as SRM and HBV. The method is robust and can be applied to a variety of 

spatial scales and environmental conditions (WMO, 1986). 

 

The simplest and most common expression relating snowmelt to air temperature is 

 

( )cTTaM −=  if T ≥ Tc Equation 2.4 

0M =    if T < Tc 

M  : snow melt (mm/day) 

a  : degree-day factor (mm/day/oC) 

T  : mean air temperature (oC) 

Tc  : critical air temperature at which snow melts (oC) 
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Since air temperature is only one of the several meteorological parameters 

influencing snowmelt, neither the degree-day factor nor the critical temperature 

can be truly constant. Solar radiation, cloudiness, wind speed, snow albedo, 

relative humidity and the effect of forest cover are some of the other parameters 

that can be used in order to account for the terms in the energy balance (Kuusisto, 

1980).  

  

The literature abounds with different values for the degree-day factor and the 

critical temperature. Although quite often a fixed critical temperature of 0oC can be 

set without great loss in model performance, the degree-day factor is known to 

vary within a wide range of 2 - 15 mm/oC/day. Normally, the value varies between 

3 - 6 mm/oC/day (Killingtveit and Saelthun, 1995).  

 

The degree-day model has been extended in a number of ways, in numerous 

studies (Kustas and Rango, 1994; Cazorzi and Fontana, 1996; Hock, 1999; 

Ohmura, 2001; Pellicciotti et al., 2002; Şensoy, 2005). Typically, other climate 

parameters are included in order to account for other terms in the energy balance 

in addition to air temperature. Additional parameters commonly used are wind 

speed, relative humidity, short wave radiation and snow albedo. One of the most 

common extensions of the degree-day model is the addition of snow albedo with 

short wave radiation because radiation is a dominant flux in the energy balance 

snowmelt studies. Hence with the addition of new variables, Equation 2.4 can be 

renamed as modified (enhanced) degree-day and rewritten as below: 

( ) S1bTTaM c )( α−+−=   Equation 2.5 

M  : snowmelt (mm/day) 

a  : degree-day factor (mm/day/oC) 

T  : mean air temperature (oC) 

Tc  : critical air temperature at which snow melts (oC) 

b : radiation index (mm/day/W/m2) 

α : snow albedo (units) 

S : incoming shortwave radiation (W/m2)  
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With the modified degree-day approach especially on a diurnal cycle, Pellicciotti et 

al. (2002) show that 80-90% of the energy balance terms can be explained. Hence 

it can be stated that with the addition of very limited data apart from the most 

common temperature and precipitation measurements, a very significant amount 

energy needed to melt the snow can be modeled. The only handicap for this 

modified method is the inability to incorporate it into operational modeling since 

radiation and albedo values are not very frequently found as forecast values.  

 

2.4 Snowpack Meltwater Production and Movement 

 

The metamorphosis from a loose, dry and subfreezing snowpack of low density to 

a coarse, granular and moist snowpack of high density is sometimes spoken of as 

“ripening” of the snowpack. A ripe snowpack is said to be “primed” to produce 

runoff when it becomes isothermal at 0°C and its liquid-water-holding capacity has 

been reached. At this point, the only storage effect of the snowpack is that of 

“transitory” storage, resulting in a temporary delay of liquid water transit through 

the pack.  

 

As each new layer of snow is deposited, its upper surface is weathered by 

radiation, rain, and wind. The undersurface of the new layer may also be affected 

by ground heat. As a result, the snowpack is stratified, showing distinct layers and 

ice planes or lenses that separate individual snowstorm deposits. The interior of 

the pack is subjected to the action of percolating water and diffusing water vapor. 

 

Analysis of meltwater movement through snow is more complicated than 

infiltration in a more static medium such as soil. The snowpack medium changes 

continuously as snow grains change in shape and size. In addition, as the snow 

melts and refreezes, impermeable ice layers form. Snowmelt moves through the 

snowpack vertically and horizontally. However, after the liquid-water conditioning 

of the snowpack has taken place, the movement of water through the pack is 

mostly straight downward to the snow-ground interface. Ice layers within the 
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snowpack, however, tend to deflect the path intermittently, thereby resulting in an 

irregularly stepped pattern.  

 

Colbeck (1978 in Marks et al., 1992) and Yosida (1973 in Marks et al., 1992) have 

shown that as meltwater drains through the snowpack two zones are formed. An 

upper layer of wet snow that is isothermal at 0oC and a lower layer with a 

temperature below 0oC. The rate at which a wetting front moves downward is 

controlled by refreezing of water onto grains to release sufficient heat of fusion to 

raise the temperature of the snow to 0oC and to increase the water content. A 

wetting front does not advance as a uniform wave. Vertical flow fingers develop 

around inhomogeneities along the horizontal boundaries of the snowpack (Marsh 

and Woo 1984) which concentrate water that moves at a higher velocity than 

meltwater in the adjacent surrounding snow. These fingers cause instability in the 

flow regime and may extend through numerous stratigraphic layers.  

 

2.5 Meltwater Infiltration 

 

In snow hydrology, there will be essentially no direct runoff until the soil storage is 

filled to its field capacity, which is the amount of water that can be held against 

gravity. After this capacity, excess water may pass through the soil under 

gravitational force and appear later as subsurface or baseflow component of the 

streamflow. The time delay of transitory storage in the soil is integrated in the total 

basin storage effect.  

 

Direct measurements of soil moisture in basins are generally lacking. Accordingly, 

basin soil moisture conditions are generally estimated from indirect relationships 

involving earlier precipitation, duration of rainless days, groundwater levels, stream 

discharges, time of year and other factors associated with soil moisture variation.  

 

For areas of deep snow accumulation, the soil moisture deficit is satisfied early in 

the snowmelt period and in many areas it may often be satisfied in the fall from 
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rainfall or snowmelt. In the latter case, the soil beneath the snowpack remains at 

or above the field capacity throughout the winter and any loss by 

evapotranspiration will usually be supplied by winter snowmelt or rainfall. For years 

in which the soil moisture capacity is not filled by fall or winter rainfall or 

snowmelt, it is necessary to estimate the condition of the soil from preceding 

hydro-meteorological events. 

 

Gray and Prowse (1992) state that the infiltrability of frozen ground is one of the 

most important factors affecting the apportioning of snow water between direct 

runoff and soil water in most northern regions. The ground is generally unfrozen 

beneath deep mountain snowpacks because of the flow of heat from the ground, 

together with the insulating effect of the snowpack. Frozen ground will occur 

during winter or early spring, in areas where snowpacks are shallow and where 

prolonged periods of subfreezing air temperatures prevail. Snowmelt infiltration 

into a frozen soil is influenced by the thermal and hydrophysical properties of the 

soil, the soil temperature and moisture regime and the quantity and rate of release 

of water from the snowpack. If the depth of frost is small, the energy exchanged 

between the soil and the meltwater may thaw the entire frozen profile, returning 

the infiltration characteristics of the soil to those of the unfrozen state. Studies by 

Komarov and Makarova (1973 in Gray and Prowse, 1992) suggest that a soil frozen 

to a depth less than 150 mm behaves the same as an unfrozen soil, but once a soil 

is frozen to 600 mm depth, freezing to greater depth has no further effect on 

infiltration. The principle effects of frozen ground on the outflow hydrograph of the 

watershed are faster response with higher peak flow and greater volume in the 

total hydrograph. 

 

2.6 Runoff from Snowmelt 

 

Many of the snow processes described in the preceding systems have been 

incorporated into operational systems for forecasting catchment runoff. The 

manner in which the various models available for snowmelt simulate the processes 
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varies widely in complexity, from single variable indices of melt to complete energy 

balances. Each model is most reliable in the area were it was developed and may 

require extensive calibration when applied elsewhere. In 1986, the results of a 

comprehensive study undertaken by the World Meteorological Organization 

compared the performance of eleven models using data sets from six different 

regions (WMO, 1986). This numerical assessment provides useful information on 

effects of basin size, relative elevation range, percentage forest cover and other 

factors on model performance. 
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CHAPTER 3 

 

HYDROLOGICAL MODELING AND CALIBRATION 
 
 
 

3.1 Introduction 

 

Conceptual hydrologic models that account for the continuous dynamics of 

hydrologic processes were introduced in the early 1960’s. The Stanford Watershed 

Model (Crawford and Linsley, 1962 cited in Duan et al., 2003) was the first 

integrated attempt to take advantage of the advent of digital computers to 

describe quantitatively the hydrologic processes that take place in a watershed 

within the limitations of current understanding and the limitations of the computer.  

 

The limitations of our hydrologic understanding and the limitations of the computer 

both have evolved since 1960’s. Computing power has increased immensely, but it 

still may pose practical limits for hydrologic modeling and parameter estimation 

today. Yet, hydrologic understanding remains limited and imperfect in several 

ways. A great challenge in hydrology is to make predictions and test hypotheses at 

space and time scales of practical interest. In the end, it is not possible to resolve 

every detail of every aspect of the hydrology of the real world. So, effective 

hydrologic modeling is both the art and the science of applying limited and 

imperfect understanding.  

 

These issues were well understood by Crawford and Linsley (1966 cited in Duan et 

al., 2003) who wrote:  

“A hydrologic model is nothing more than a collection of quantitative hydrologic 

concepts that are given mathematical representations. If each of these concepts is 

a well established physical law that has an exact mathematical representation, and 
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if every physical component of the watershed is present in the model, the entire 

model structure would be unique and all physical processes in the watershed could 

be accurately simulated. Prohibitive amounts of input data would be required, far 

beyond practical limitations even for small watershed plots.” 

 

Since most of the action in hydrology occurs underground where it cannot be 

directly observed, this assessment remains valid today.  

 

A plethora of hydrologic models have been proposed during the last few decades 

and many are being used for a variety of different applications. These models have 

been valuable tools for water management problems (e.g. flood forecasting, water 

balance studies, computation of design floods) whilst the increasing awareness of 

environmental problems has also given additional impetus to hydrological modeling 

(Seibert, 2003). Twenty-six of the world’s most popular computer models of 

watershed hydrology were documented by Singh (1995). More recently Singh and 

Frevert (2002a, 2002b) put together a 2-volume book that gives a comprehensive 

account of 38 mathematical models of large and small watershed hydrology not 

included in Singh’s (1995) book. Some notable models that have been widely used 

throughout the world include: the Tank model (Sugawa, 1995) that was a 

contemporary of SWM; the Sacramento model in the National Weather Service 

River Forecast System (Burnash, 1995); the Precipitation Runoff Modeling System 

(PRMS) developed by the United States Geological Survey (Leavesley and 

Stannard, 1995); the SHE model developed in Europe (Bathurst et al., 1995) and 

the HBV model developed in Sweden (Bergström, 1995). 

 

The first comprehensive attempt to intercompare different hydrologic models was 

the World Meteorological Organization (WMO) hydrologic model intercomparison 

study (WMO, 1975). Subsequently, WMO led intercomparison studies of snowmelt 

models (WMO, 1986) and real-time applications of hydrologic models (WMO, 

1992). Recently there has been a number of intercomparison studies of models 

used to represent the land surface in atmospheric models (Henderson-Sellers et 

al., 1993).  
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Every conceptual model has parameters that are the coefficients and exponents in 

the model equations. These parameters must be estimated for a given catchment 

and for each computational segment of the model. They must be estimated either 

by some relationship with physical characteristics or by tuning the parameters so 

that model response approximates observed response, a process known as 

calibration.  

 

In this section of the thesis, one of the well known hydrologic models, HBV model, 

is introduced and a general calibration process framework is discussed. 

 

3.2 HBV Model 

 

The HBV model is a conceptual precipitation-runoff model which is used to 

simulate the runoff process in a catchment based on data for precipitation, air 

temperature and potential evapotranspiration. The model computes snow 

accumulation, snow melt, actual evapotranspiration, storage in soil moisture and 

groundwater and runoff from the catchment.  

 

The HBV model was developed during the early 1970s by Dr. Sten Bergström and 

colleagues at the Hydrologiska Byrans Vattenbalansavdelning, HBV, (Hydrological 

Bureau Waterbalance section), a former section at the Swedish Meteorological and 

Hydrological Institute (SMHI). Today the HBV model concept is widespread. In 

different model versions HBV has been applied in some 45 countries with different 

climate conditions ranging in size from small research basins to the continental 

scale. The model is a standard method for hydrological forecasting in many 

countries, it is used for design studies as well as being a hydrological research tool. 

Lately, it has been used in water quality modeling, transport of nutrients and in 

studies of impacts due to global warming.  
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The main principles behind the HBV model are: 

� The model must be based on a sound scientific foundation 

� It must be possible to meet its data demands in most areas 

� Its complexity must be justified by its performance 

� It must be properly validated 

� The user must be able to understand the model 

 

3.2.1 Model Structure 

 

The HBV model can be best classified as a semi-distributed conceptual model 

based on a representation of a few main components in the land phase of the 

hydrological cycle. It uses subbasins as primary hydrological units and within 

these, an area-elevation distribution and crude classification of land use is 

employed. The subbasin option is used in geographically or climatologically 

heterogeneous basins or in presence of large lakes. Runoff from a catchment is 

computed from climatic data like precipitation, air temperature and potential 

evapotranspiration. To accomplish this, the model computes water balance for the 

main storage types in the catchment and show how these storages change 

dynamically in response to the varying meteorological inputs. The normal time step 

is usually daily, though shorter time steps are available as an option. The HBV 

model consists of three main storage components shown in Figure 3.1. 

 

� Snow Routine 

� Soil Moisture Routine 

� Runoff Response and Routing Routine 

 

The model consists of a number of parameters grouped into two main categories 

named as confined and free parameters. Confined parameters are values that are 

provided to the model once and never changed (e.g. catchment area, area-

elevation curve and lake percentage). Free parameters must be determined by a 

process of calibration of the model. Free parameters are normally determined 



 32 

before the model is taken in operational use and later kept constant. The model, 

however, be recalibrated as more and better input data are collected form the 

catchment. The most important free parameters in the HBV model are listed in 

Table 3.1, together with their normal range and commonly used default values. 

 

 

Figure 3.1 Main structure of the HBV-model (Killingtveit and Saelthun, 1995) 

 

3.2.1.1 Catchment Description 

 

The most important characteristics of the catchment are described by the following 

parameters in the HBV-model: 

� The catchment area (km2) 

� Area of natural lakes (km2) 

� Area of regulated lakes (km2) 

� Area-elevation curve (hypsographic curve) 
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The catchment may be divided in as many as ten elevation levels. The area and 

average elevation of each level is used to construct the area-elevation curve. 

 

Table 3.1 Free parameters in the HBV model 

Name Meaning 
Default 
value 

Value range 
Min        Max 

Units 

Tx 
Threshold temperature 
for rain/snow 

1.0 -1.0 2.0 °C 

Ts 
Threshold temperature 
for snowmelt 

0.0 -1.0 2.0 °C 

Cx 
Degree-day  
factor 

4.0 3.0 6.0 mm/°C/day 

LV 
Liquid water  
content 

0.08 0.0 0.1 --- 

CFR 
Refreezing efficiency in 
snow 

0.05 0.0 0.1 --- 

PKOR 
Precipitation correction 
rainfall 

1.05 1.05 1.2 --- 

SKOR 
Precipitation correction 
snowfall 

1.2 1.15 1.5 --- 

TTGD 
Temperature lapse rate 
for clear days 

- 0.6 -1.0 - 0.6 °C/100 m 

TVGD 
Temperature lapse rate 
during precipitation 

- 0.4 - 0.6 - 0.4 °C/100 m 

PGRD 
Precipitation 
lapse rate 

0.05 0.0 0.1 --- 

FC 
Field capacity in soil 
moisture zone 

150 75 300 mm 

LP 
Threshold value for PET 
in soil moisture 

1.0 0.7 1.0 frac. of FC 

β 
Parameter in soil 
moisture routine 

2.0 1.0 4.0 --- 

KUZ2 
Fast recession constant 
in Upper zone 

0.3 0.1 0.5 1/day 

UZ 
Threshold level for quick 
runoff in Upper zone 

20 10 40 mm 

KUZ1 
Slow recession constant 
in Upper zone 

0.1 0.05 0.15 1/day 

PERC 
Percolation from Upper 
to Lower zone 

0.6 0.5 1.0 mm/day 

KLZ 
Recession constant in 
Lower zone 

0.001 0.0005 0.002 1/day 
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3.2.1.2 Snow Routine 

 

The snow routine of the model, Figure 3.2, controls snow accumulation and snow 

melt and works separately for each elevation and vegetation zone. The 

precipitation is assumed to accumulate as snow when the air temperature drops 

below a threshold value (Tx). To account for undercatch of snow precipitation and 

winter evaporation, snow accumulation is adjusted by the snow correction factor. A 

temperature and precipitation lapse rate is provided according to elevation. Melt 

starts with temperatures above a threshold (Ts) according to a simple degree-day 

factor (Cx) which is assumed to remain constant throughout the melt season. The 

liquid water holding capacity of snow has to be exceeded before any runoff is 

generated (CPRO) and a refreezing coefficient is fixed in the model when snowmelt 

is interrupted (CFR). 

  

 

Figure 3.2 The snow routine in the HBV-model (Killingtveit and Saelthun, 1995) 
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By dividing the catchment into elevation zones the model is able to simulate the 

elevation dependent variability in snow storage, usually with higher precipitation 

and more snow at high elevations in the catchment than in the lower areas. This 

results in an elevation-dependent distributed snow storage in the catchment. 

 

In addition to this elevation-dependent variation, there is another type of variation 

in snow storage that sometimes needs to be modeled. Within each elevation zone 

the snow cover will normally be unevenly distributed, mainly due to the effect of 

wind drift. In most implementations of the HBV model in Norway what is called a 

distributed snow-routine is used to simulate the effect of this uneven or skew 

distribution of snow within each elevation level. This computation is performed by 

distributing the snow storage within each elevation level using snow distribution 

curves. 

 

The main results of the computations in the snow routine are the following three 

variables which are computed for each elevation zone and time step: 

� Snow storage in mm of water equivalent 

� Free (liquid) water contents in snow in mm 

� Snow melt in mm/time step 

 

3.2.1.3 Soil Moisture Routine 

 

The soil moisture accounting of the HBV model is based on a modification of the 

bucket theory in that it assumes a statistical distribution of storage capacities in a 

basin.  

 

The soil moisture routine receives rainfall or snowmelt as input from the snow 

routine and computes the storage of water in soil moisture, actual 

evapotranspiration and what may be called the net runoff generating precipitation 

as output to the runoff response routine. 
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The soil moisture routine is based on two simple equations with three empirical 

parameters, β, FC and LP as shown in Figure 3.3. The parameter β controls the 

contribution to the runoff response routine (dUZ) and the increase in soil moisture 

storage (dSM) for a precipitation or snow melt input of 1 mm into the soil moisture 

storage. The equation is non-linear if β is not equal to 1. Usually β has a value in 

the range 2-3, making the equation strongly non-linear. 

 

Figure 3.3 The soil moisture routine in the HBV-Model, (Killingtveit and Saelthun, 

1995) 

 

This structure results in a small percentage contribution to runoff (small net 

precipitation) when the soil moisture is low and a high contribution when the soil 

moisture is high. The Field Capacity (FC) is the maximum soil moisture storage in 

the model. If the soil moisture storage is filled up to FC, no more precipitation or 

snow melt can be stored as soil moisture and all input to soil moisture storage will 

be transformed directly to runoff. This may lead to high runoff even from moderate 

rain. 

 

The soil moisture storage is depleted by evapotranspiration. The computation of 

actual evapotranspiration (EA) is a function of potential evapotranspiration (EP) 

and relative soil moisture storage (SM/FC). If the soil moisture exceeds a threshold 
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value (LP), the actual evapotranspiration equals the potential value. If soil moisture 

is below LP, the actual evapotranspiration decreases linearly with the decrease in 

storage as shown in Figure 3.3. Evapotranspiration in the model is only computed 

from the snow-free part of a catchment. 

 

Both β, LP and FC are free parameters and must be determined by model 

calibration. They can not be determined directly from maps or field surveys. In 

some versions of the model an additional parameter controls the infiltration of 

water into the soil moisture routine. If the intensity of rainfall or snowmelt exceeds 

infiltration capacity the excess water is transferred directly to the runoff response 

function. 

 

3.2.1.4 Runoff Response and Routing Routine 

 

The runoff response routine transforms the net precipitation (excess water) 

produced in the soil moisture routine into runoff. The runoff response function in 

the HBV model consists of two linear tanks or reservoirs arranged as shown in 

Figure 3.4. This routine also includes the effect of direct precipitation on and 

evaporation from rivers and lakes in the catchment. 

 

The two linear reservoirs called upper zone and lower zone delay the runoff in time 

and by choosing suitable values for the parameters the model can obtain both a 

quick response for high flows and slow response for low flows, as normally seen in 

observed hydrographs. The total combined flow from upper and lower zones can 

finally be filtered through a separate routine for river routing using a modified 

Muskingum method or simply for smoothing the flow with a triangular weighing 

function. The total effect of the runoff response function is very similar to the use 

of a unit hydrograph, transforming a sequence of net precipitation values into a 

runoff hydrograph. 
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Figure 3.4 The runoff response routine in the HBV-Model, (Killingtveit and 

Saelthun, 1995) 

 

The upper zone conceptually represents the quick runoff components, both from 

overland flow and from groundwater drained through more superficial channels, 

interflow. When the input of net precipitation from soil moisture zone exceeds a 

percolation capacity (PERC), the storage in upper zone will start to fill and 

simultaneously be drained through the lower outlet. The speed of drainage is 

determined by the recession coefficient for the lower outlet (KUZ). If the storage 

exceeds a threshold (UZ1), an even quicker drainage will start through the upper 

outlet, the drainage speed controlled by the upper recession coefficient (KUZ1). In 
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some implementation of the model even an additional threshold and recession 

coefficient is used for still higher storage and quicker runoff components as shown 

in Figure 3.4. The combined effect of the upper zone is a variable response which 

can be adjusted to fit the observed quick runoff response in a catchment. 

 

The lower zone conceptually represents the groundwater and lake storage that 

contributes to base flow in the catchment. The drainage speed is controlled by only 

one recession parameter (KLZ). The lower zone gets water input by percolation 

from upper zone and by direct precipitation on lakes and rivers. The lower zone is 

depleted through base flow runoff and also through evaporation from lakes and 

rivers. This evaporation always equals the potential as long as there is water in the 

lower zone storage. 

 

3.2.1.5 HBV Model Calibration 

 

Model calibration in this context means to determine the set of free parameters in 

the model that gives the best possible correspondance between observed and 

simulated runoff for a cathment. A general method for model calibration process is 

outlined in Figure 3.5. 

 

The calibration of the HBV model is basically a trial and error procedure, where 

free parameters are chosen, model simulations are performed and the computed 

and observed runoff compared. The most difficult part of the procedure is the 

evaluation of the difference between observed and simulated runoff and to decide 

which parameter(s) should be changed and how much. To decide if another set of 

parameters really give better fit for the model, a method or criterion to determine 

the goodness of fit is needed. To test the goodness of fit in the HBV model, 

subjective and objective methods are utilized. 
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Figure 3.5 Model calibration process (Killingtveit and Saelthun, 1995) 

 

The subjective method is usually based on study of plots of input data and 

observed and computed hydrographs as shown in Figure 3.6. A graph of the 

accumulated difference between the simulated and the recorded runoff reveals any 

volume bias in the water balance. Also scatter plots, flow duration curves and 

cumulative deviation curves may be used. A trained hydrologist can usually see 

how several parameters should be corrected from the study of observed and 

simulated runoff from one simulation. The subjective method is most efficient in 

the initial phase of model calibration, where several parameters need to be 

changed simultaneously. The use of objective methods is more appropriate during 

the “fine tuning” of the model where parameters are close to their optimal value. It 

is then difficult to see from the plots if the model has been improved by a slight 

change in parameter values. 

 

To judge the model performance when using an objective method, a statistical 

criterion, normally the R2-value according to Nash and Sutcliffe (1970) is employed 

as given in Equation 3.1. 
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Figure 3.6 An example of a simulation output based on the HBV-model (Killingtveit 

and Saelthun, 1995) 
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where  obsQ  = observed runoff 

  obsQ  = mean of observed runoff 

  simQ  = simulated runoff 

 

R2, often termed as the model efficiency criterion, varies from -∞ to +1.0, the 

higher the value the better the model fit. R2 has a value of 1.0, if the simulation 

and observation values agree completely and 0 if the model does not perform any 

better than the mean value of the recorded runoff. Negative values can be result 

of poor model performance or poor data. Normal values during HBV model 

calibrations are within the range 0.6-0.9. 
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Once the error functions are selected, the best (optimal) set of parameters may be 

found by systematically varying models parameters and computing the error 

functions for each parameter set. It is possible to search for and locate the optimal 

parameter set by different strategies, based on manual or automatic searching 

methods. 

 

When the model has been optimally fitted to the observed data either by manual 

or automatic calibration, the goodness of fit should be tested (validated) on an 

independent set of data. This is often referred to as a split sample test.  

 

3.3 Hydrologic Model Calibration 

 

The increasing use of hydrologic models as tools for the study of hydroclimatology 

has prompted hydrologists and climatologists to examine complex problems and 

utilize new data sources. Hydrologic models, however, are only as reliable as their 

structure and the accuracy of their inputs and parameter estimates. While they are 

often mathematical in their structure, for reasons of parsimony and mathematical 

tractability, they must remain simple while being able to accurately simulate and 

predict complex hydrological phenomena. It is often assumed that the model 

structure is correct (even though this assumption can be questionable) and to 

devote much attention to model inputs and parameter estimates (Yapo, 1996).  

 

Various techniques exist by which parameter estimates can be deduced: (a) field 

measurements, (b) prior information and (c) calibration. For as much as it is 

desirable to infer model parameters using (a) and (b) as witnessed by the gaining 

importance of the former, virtually all models require that some parameters be 

calibrated. 

 

Hydrological model calibration is the process by which some or all parameters of a 

model are systematically adjusted in order to provide model outputs that closely 

resemble the observed data. The goal of calibration is to reduce the uncertainty 
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associated with the model parameters. (Maximum uncertainty is when parameters 

are assigned their initial range, whereas minimum uncertainty is when a single 

parameter set of values is found). Depending on the techniques used to infer 

parameter estimates, calibration can be separated into manual and automatic 

calibration.  

 

3.3.1 Manual Calibration 

 

Manual calibration is a procedure in which various subjective adjustments to model 

parameters, usually one at a time, are made on the basis of specific characteristics 

of the modeled output. Evaluation of model parameters by manual calibration can 

yield a good set of estimates. The method is, however, a tedious and time 

consuming task, depending on the number of free parameters and the degree of 

parameter interaction. In addition, subjective adjustments of parameters make the 

success of manual calibration user-dependent. In fact the user must possess a 

significant level of experience with the model to achieve good parameters. Besides 

the subjectivity of the method, it is possible that, on separate occasions, a single 

user can obtain different sets of acceptable parameters because of changing 

experience with the model or because of the order in which some parameters are 

estimated. Although these parameters may be different, they still provide similar 

output results. Due to the subjectivity involved, it is difficult to explicitly assess the 

confidence of the model simulations. 

 

Perhaps the best argument for the use of manual calibration is that the user gains 

experience with the model and valuable insights into parameter interaction and 

sensitivity. Manual calibration is often used for initialization of model parameters 

including initial ranges and starting values.  
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3.3.2 Automatic Calibration 

 

Automatic calibration consists of techniques in which the computer adjusts 

parameters in a rule-based fashion using a single objective function. The 

implementation of an automatic model calibration procedure requires the selection 

of (a) a calibration data set, (b) a goodness-of-fit measure (objective function), (c) 

an automatic parameter search procedure (optimization algorithm), (d) a region of 

the parameter to be searched (feasible parameter space), (e) a validation 

procedure (tests to determine the degree of uncertainty remaining in the model). 

 

The main advantages of automatic calibration are its speed and ease of use. With 

the availability of fast and powerful computers automatic calibration has gained in 

importance as witnessed by the multitude of computer optimization algorithms. 

Automatic calibration can be viewed as an objective tool which even a novice can 

use because the user is not required to intervene during the search for the best 

parameter set.  

 

The main disadvantages of automatic calibration are its dependence on a single 

objective function to direct the search for the best parameter and failure to obtain 

a unique global optimum. Another disadvantage is that, without the proper 

selection of an objective function, automatic calibration can degenerate to pure 

curve fitting. Thus, there appears to be a need for methods to infuse hydrological 

reasoning into the automatic calibration process.  

 

In recent years, application of automatic calibration routines in hydrological 

modeling has advanced considerably. The routines, however, has evolved in 

various directions in different application areas. For parameter estimation in 

groundwater modeling, gradient-based local search techniques have mainly been 

applied (e.g. McLaughlin and Townley, 1996). In lumped, conceptual hydrological 

models, population-evolution-based global optimization methods, such as the 

shuffled complex evolution algorithm (Duan et al., 1992), have shown to be more 

efficient. Application of automatic calibration in complex, integrated and distributed 
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hydrological catchment models is an ongoing research area with limited 

experience. 

 

3.3.3 Formulation of Calibration Framework 

 

The process of model calibration is illustrated in Figure 3.7 (Madsen and Jacobsen, 

2001). In automatic calibration, parameters are adjusted automatically according 

to a specific search scheme for optimization of certain calibration criteria (objective 

functions) that measure the goodness-of-fit of the simulation model. The process 

is repeated until a specified stopping criterion is satisfied, e.g. maximum number of 

model evaluations, convergence of the objective function or convergence of the 

parameter set. 

 

 

Figure 3.7 Outline of automatic calibration scheme, interfacing an optimization 

algorithm with the simulation model (Madsen and Jacobsen, 2001) 
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Formulation of a proper framework for automatic calibration involves the following 

key elements: 

 

� Model parameterization and choice of calibration parameters 

� Specification of calibration criteria 

� Choice of optimization algorithm 

 

3.3.3.1 Model Parameterization and Choice of Calibration 

Parameters 

 

A semi-distributed hydrological modeling system potentially involves a large 

number of model parameters to be specified by the user during the model setup. 

Comprehensive field data, however, are seldomly available to fully support 

specification of all model parameters. In addition, some model parameters are of a 

more conceptual nature and cannot be directly assessed from field data. 

 

In the model parameterization, the available field data should be used to define 

the spatial patterns of the parameter values to describe the most significant 

variations. This is often done by defining a conceptual model with appropriate 

parameter classes of geological units, soil types, vegetation types etc. For each 

class, some parameters are then assessed directly from field data while other 

parameters may be subject to calibration. The challenge is to formulate a relatively 

simple model parameterization in order to provide a well-posed calibration problem 

but at the same time keep it sufficiently complex in order to capture the spatial 

variability of key model parameters. The importance of a rigorous model 

parameterization for calibration of distributed hydrological models was emphasized 

by Refsgaard (1997). This aspect becomes even more important when automatic 

procedures are applied for parameter estimation. 

 

Sensitivity analysis can be conducted to investigate which parameters can be 

considered to be well determined (sensitive) and which are poorly determined 
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(insensitive) with respect to the available observations. In Hill (1998), 

dimensionless, scaled sensitivities are used which measure the change in simulated 

values with respect to each of the parameters. Spear and Hornberger (1980) 

introduced a generalized sensitivity analysis procedure based on Monte Carlo 

sampling where a number of randomly generated parameter sets is evaluated and 

compared. Sensitivity analysis can be used in the initial model parameterization 

process to decide which parameters are insensitive and can be set to fixed values. 

The results of such an analysis, however, should be carefully interpreted. The 

dimensionless, scaled sensitivities in Hill (1998) depends on the parameter values, 

and hence sensitivity statistics evaluated at some initial parameter values may be 

very different from the statistics obtained using other parameter sets. In addition, 

sensitivity statistics do not properly account for parameter correlations, implying 

that parameters that seem to be insensitive may have important correlations with 

other parameters that are essential for the model behavior (Madsen, 2000b) 

 

It should be noted that model parameterization and model calibration is an 

iterative process. If the calibration results in poorly defined parameter values, one 

should reconsider the model parameterization and define a simpler conceptual 

model that includes fewer calibration parameters. On the other hand, if the model 

is not able to sufficiently describe the spatial variability reflected in the 

observations, one should consider distributing key model parameters or including 

other process descriptions in the calibration. 

 

3.3.3.2 Specification of Calibration Criteria 

 

The automatic calibration scheme involves optimization of numerical measures 

(objective functions) that compare observations of the state of the system with 

corresponding simulated values. For hydrological model calibration river runoff or 

water level data are the most available measurements. In other cases, 

groundwater level data, water content in the unsaturated zone, snow covered area 

and snow water equivalent (snowpack) can also be used. In this respect, it is 
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important to note that for a proper evaluation of the validity of a catchment model, 

distributed data rather than just catchment-integrated values such as river runoff 

are necessary for calibration. In addition, parameters are usually better determined 

(more sensitive) when new types of field data are used for calibration rather than 

adding more data of the same variable. 

 

If F (θ) is denoted as an objective function that measures the goodness-of-fit of 

the simulated model with respect to the parameter set θ, the optimal parameter 

set θopt is found by solving the optimization problem 

 

θopt = Min {F (θ) } , θ  ∈  Θ   Equation 3.2 

 

In this case the optimization problem is constrained in the sense that θ is restricted 

to the feasible parameter space Θ. The parameter space is usually defined as a 

hypercube by specifying lower and upper limits on each parameter. These limits 

are chosen according to physical and mathematical constraints, information about 

physical characteristics of the system, and from modeling experiences. The feasible 

parameter space can also be defined as a hyperellipsoid by using prior knowledge 

about the correlation between the different parameters (Kuczera, 1997). 

 

Automatic calibration can also be defined as an unconstrained optimization 

problem. In this case, prior information about the parameters can be used by 

adding a penalty term in the objective function that measures the departure of the 

parameters from their prior estimates (e.g. Hill, 1998). 

 

The most commonly used objective function adopted in automatic optimization is 

the sum of squared errors between the observed and simulated model response. 

Calibration based on a single performance measure, however, is often inadequate 

to properly measure the simulation of all the important characteristics of the 

system that are reflected in the observations. Recently, automatic procedures have 
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been developed that allow a simultaneous optimization of a number of different 

calibration objectives (Gupta et al., 1998; Madsen, 2000a). 

 

In a multi-objective context, model calibration can, in general, be performed on 

the basis of: 

 

� Multi-variable measurements, i.e. groundwater level, river runoff and other 

types of measurements. 

� Multi-site measurements, i.e. several groundwater level and runoff 

measurement sites distributed within the catchment. 

� Multi-response modes, i.e. objective functions that measure various responses 

of the hydrological processes such as the general water balance, peak flows, 

and low flows. 

 

When using multiple objectives, the calibration problem can be stated as follows: 

 

Min { F1 (θ) , F2 (θ) , …., Fm (θ)} ,  θ ∈  Θ   Equation 3.3 

 

where Fi(θ), i = 1, 2,.., m are the different objective functions. The solution of 

Equation 3.3 will not, in general, be a single unique set of parameters but will 

consist of the so called Pareto set of solutions (non-dominated solutions), 

according to various trade-offs between the different objectives. The definition of 

the Pareto front is illustrated in Figure 3.8 in the simple case of two objectives F1 

and F2. Points on the Pareto front have the characteristics that no other points 

have both a smaller value of F1 and a smaller value of F2 (illustrated for point B in   

Figure 3.8 where no points exist in the hatched rectangle). When moving along the 

Pareto front from A to C results in successively smaller values of F2 at the expense 

of larger values of F1. 
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Figure 3.8 Definition of Pareto front for optimization of two objectives 

 

When solving the multi-objective calibration problem, the problem is usually 

transformed into a single-objective optimization problem by defining a scalar that 

aggregates the various objective functions. One such aggregate measure is the 

weighted average 
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==

,   Equation 3.4 

 

where wi are weights assigned to the different objectives. For investigating the 

entire Pareto front, the aggregated measure can be adopted by performing several 

optimization runs using different values of wi. 

 

In practical applications, the entire Pareto set may be computationally too 

expensive to calculate, and one is only interested in part of the Pareto optimal 

solutions. In this case, the user can specify the weights to reflect the relative 
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priorities given to certain objectives, depending on the specific model application 

being considered. Furthermore, the weights should also reflect the measurement 

errors, i.e. smaller weights are given to measurements with larger errors. The 

selection of weights, however, is not straightforward, since the priority also 

depends on the value of Fi itself. For instance, if all wi are equal, implicitly larger 

weights are given to objectives with larger F-values. A proper scaling of the 

objective functions in the aggregated measure can be defined as 
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where gi are functions that transform the different objectives to a common scale. 

When using a population-based optimization algorithm, an initial population within 

the feasible region is evaluated. From this initial population, the transformation 

functions can be evaluated. Madsen (2000a) used an Euclidian distance function in 

which all the objective functions are transformed to having about the same 

distance to the origin near the optimum. Van Griensven and Bauwens (2001) 

adopted a probability distribution function for Fi for transformation of the objective 

functions into a probability scale. 

 

3.3.3.3 Choice of Optimization Algorithm 

 

Optimization algorithms can, in general, be categorized as “local” and “global” 

search methods (Sorooshian and Gupta, 1995). Depending on the hill climbing 

strategy employed, local search algorithms may be further divided into “direct” and 

“gradient-based” methods. Direct search methods use only information on the 

objective function value, whereas gradient-based methods also use information 

about the gradient of the objective function. Local search methods are efficient for 

locating the optimum of a uni-modal function since in this case the hill climbing 

search will eventually reach the global optimum, irrespective of the starting point. 

One of the more popular direct search methods is the simplex method (Nelder and 



 52 

Mead, 1965). Gradient-based methods include the steepest descent method and 

various approximations of the Newton method (e.g. the Gauss–Marquardt 

algorithm).  

 

Numerical simulation models may have numerous local optima on the objective 

function surface, and in such cases local search methods are less effective because 

the estimated optimum will depend on the starting point of the search. For such 

multi-modal objective functions global search methods are more effective (“global” 

in the sense that these algorithms are especially designed for locating the global 

optimum and not being trapped in local optima). Popular global search methods 

are the so-called population-evolution-based search strategies such as the shuffled 

complex evolution (SCE) algorithm (Duan et al., 1992) and genetic algorithms (GA) 

(Wang, 1991). 

 

For calibration of lumped, conceptual hydrological catchment models a large 

number of studies have been conducted that compare different automatic 

algorithms (e.g. Duan et al., 1992; Gan and Biftu, 1996; Cooper et al., 1997; 

Kuzcera, 1997; Franchini et al., 1998; Thyer et al., 1999). The main conclusion 

from these studies is that the global population-evolution-based algorithms are 

more effective than multi-start local search procedures, which in turn perform 

better than pure local search methods. 

 

3.3.4 Multi-Objective Calibration Problem 

 

Previous research has focused extensively on the proper selection of an objective 

function for calibration of hydrological models. The development of an objective 

function is typically based on assumptions regarding the distributions of 

measurement errors present in the data. In general, these functions can be 

summarized by a weighted least square (WLS) of the following mathematical form 

(Troutman, 1985): 
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where 
obs

tq  and ( )θsim

tq  are the observed and model response at time t, 

respectively and n is the number of observations. The model response is 

dependent on parameters θ and exogenous inputs for hydrologic models include 

rainfall or temperature measurements. The WLS function scales and weights the 

difference between observed and modeled response, the prediction error             

et = ( )θ− sim

t

obs

t qq  by constant factors ξ and wt, respectively. Depending of the 

values for ξ and wt and assumption regarding the distribution of the prediction 

error, Equation 3.6 corresponds to the Maximum Likelihood Estimator (MLE). For 

example, when all the constants are set to unity (ξ = 1 and wt = 1), Equation 3.6 

reduces to Mean Absolute Error (MAE) and corresponds to the MLE for 

independent and identically uniform distributed errors. For ξ = 2 and wt=1, WLS 

becomes the well-known Simple Least Square (SLS), where errors are assumed to 

be normally distributed with zero mean and constant variance, i.e. et ~ N (0, σ
2). 

For cases where the weights are different than unity, their correct form can be 

deduced via maximum likelihood theory. The Autocorrelated Maximum Likelihood 

Estimator (AMLE) and Heteroscedastic Maximum Likelihood Estimator (HMLE) 

developed by Sorooshian and Dracup (1980) are examples where ξ = 2 and 

correspond to gaussian errors. AMLE assumes correlated errors (et = a * et-1 + et), 

while HMLE assumes that the errors have unequal variances. 

 

Choosing the proper objective for calibration can be difficult. The selection of an 

objective function requires prior knowledge or some assumption of the type of 

distribution present in the measurement errors associated with the data. For that 

reason, it is highly recommended that, for any calibration, results should be 

validated by residual analysis in order to verify the assumptions made with the use 

of a specific objective function. For example, the performances of two objective 

functions were carefully examined by Yapo et al. (1996). The objectives were: (a) 

Daily Root Mean Square (DRMS = nSLS / ) objective function and (b) HMLE 
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objective function. Using DRMS as objective resulted in better matching of high 

flow events and HMLE provided better results on low flow events. Therefore it was 

concluded that neither DRMS nor HMLE was superior but, depending on the 

intended purpose of the model either objective function could be used for 

calibration.  

 

Model calibration requires the usage of an objective function where the goal is to 

determine a parameter set which minimizes the errors between observed and 

model outputs. Two fundamentally different ways exist to improve the closeness of 

model outputs to the observed data. (1) Each error can be minimized 

independently but simultaneously, (2) the errors can be aggregated under different 

functional relationship (e.g. weighted sum or weighted product) to account for 

specific characteristics present in the errors. In general, the second option is 

adopted because of its feasibility and mathematical attractiveness.  

 

The calibration of hydrologic model is inherently a multi-objective problem because 

several objective functions can be used in matching different portions of the 

hydrographs or matching multiple outputs. The goal of multi-objective 

programming (MOP) is to seek non-dominant, efficient or Pareto solutions. Pareto 

solutions represent tradeoffs among different objective functions; as one moves 

from one non-dominant solution to another, one objective function improves 

whereas the other objective function(s) must decrease in value. 

 

3.3.5 Reflections on the Future of Model Calibration 

  

A problem in hydrological modeling is the great number of parameters and the risk 

for compensating errors. The fact that many, quite different, parameter sets can 

produce almost equally good agreement with observations is referred to as “model 

equifinality” (Beven 1993, 2001). Two ‘ways forward’ on the equifinality issue 

include: (1) making more detailed use out of the comparison between simulated 
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and observed runoff series or (2) incorporating additional data into the model 

calibration procedure (Seibert, 2003).  

 

The need to utilize additional endogenous data such as, snow covered area, snow 

reservoir, evapotranspiration, soil moisture, groundwater levels, water quality or 

even qualitative information, for model calibration and testing has been 

emphasized by others in the recent years as one remedy to the problem (Kuczera, 

1983; Hooper et al., 1988; de Grosbois et al., 1988; Ambroise et al., 1995; 

Rafsgaard, 1997; Kuczera and Mroczkowski, 1998; Seibert, 2000; Bergström, 

2002; Seibert, 2003; Alfnes et al., 2005). Testing models against variables other 

than simply catchment outlet runoff is important for two main reasons:  

 

1. in many hydrological questions and for other sciences as well such as 

ecology, it may be of much more interest to know what happens within a 

catchment than at the outlet alone, 

2. to have confidence in model predictions, which are sometimes 

extrapolations beyond the testable conditions, it must be ensured that the 

model not only works but also does for the right reason.  

 

In this sense multi-criteria application would be the most straightforward method 

to calibrate the model and in doing so, a small compromise in terms of runoff 

simulation may lead to better simulations on the other output variables. This can 

lead not only to improved parameter estimates but to better understanding of 

limitations of our models because different sets of parameter values may be 

needed to match different sets of observed data. Although some special 

measurements may only be available for brief periods during special research 

projects, others may become available routinely, especially from satellite remote 

sensing. 

 

Generally, a large number of model parameters need to be specified in conceptual 

runoff models. Reducing the number of parameters is an unattractive option 

because it might transform the gray-box representation of the precipitation-runoff 
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process into a pure black-box description. Another more attractive way to reduce 

parameter uncertainty is the use of additional data. However, the worth of 

additional data varies depending on the kind of data, but also on the structure of 

the applied model.  

 

To conclude, the use of multi-criteria calibration may not be the only solution to 

the problem of non-uniqueness of model parameters. The comparison of model 

results to more information than only runoff does, however, lead to increased 

confidence in the physical relevance of the model and provides new insight for 

further realistic conceptual model development. 
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CHAPTER 4  

 

FIELD SITE AND INSTRUMENTATION 
 
 
 

4.1 Introduction 

 

Water perhaps is the most valuable natural asset in the Middle East as it was a 

historical key for settlement and survival. The Euphrates and Tigris rivers with their 

tributaries served as the cradle for many civilizations that evolved in Mesopotamia, 

“the land between two rivers”. The Euphrates and Tigris rivers are the two largest 

trans-boundary rivers in Western Asia that are linked by their natural course where 

after named as Shatt-al-Arab, forming a river almost a kilometer wide and drain 

into the Persian Gulf. The riparian countries sharing the Euphrates-Tigris basin are 

Turkey, Syria, Iran, Iraq and Saudi Arabia as shown in Figure 4.1. The surface area 

that each country contributes is given in Table 4.1 (UNEP, 2001) and the estimates 

of mean annual natural runoff of the Euphrates and Tigris rivers are presented in 

Table 4.2 (Altınbilek, 2004). 

 

Turkey is contributing a surface area of around 21.1% for the Euphrates basin and 

14.3% for the Tigris basin even though an overwhelming 98% of Euphrates runoff 

is produced in the highlands of Turkey as compared to an estimated 53% of the 

discharge of the Tigris. On the overall, Turkey contributes 71.4% of the Euphrates 

and Tigris basin’s combined natural flow. 
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Figure 4.1 Euphrates and Tigris rivers  

 

Table 4.1 Area of the Euphrates-Tigris drainage basin in riparian countries (UNEP, 

2001) 

Euphrates Basin Tigris Basin 
Country 

km2 % km2 % 

Turkey 121 787 21.1 53 052 14.3 

Syria 95 405 16.5 948 0.2 

Iran --- --- 175 386 47.2 

Iraq 282 532 49.0 142 175 38.3 

Saudi Arabia 77 090 13.4 --- --- 

Total 576 814 100.0 371 561 100.0 

 

Table 4.2 Contribution of the riparian states to the Euphrates-Tigris basin (km3/yr) 

(excluding river Karun) (Altınbilek, 2004) 

Euphrates Basin Tigris Basin 
Country 

km2 % km2 % 

Turkey 121 787 21.1 53 052 14.3 

Syria 95 405 16.5 948 0.2 

Iran --- --- 175 386 47.2 

Iraq 282 532 49.0 142 175 38.3 

Saudi Arabia 77 090 13.4 --- --- 

Total 576 814 100.0 371 561 100.0 
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The characteristic feature that distinguishes the hydrologic regime of the 

Euphrates-Tigris river system is the irregularity of flow both between and within 

years, with large floods originating from the snowmelt in spring. About two-thirds 

of the precipitation occur in winter and may remain in the form of snow for half of 

the year. With the beginning of snowmelt in spring, the concentration of discharge 

over the months of March through June causes not only extensive flooding, 

inundating large areas, but also the loss of much needed water required for 

irrigation and power generation purposes during the summer season. 

 

Accordingly, the importance of monitoring and modeling the areal snow cover cycle 

in the mountainous regions of Eastern Turkey, as being one of the major 

headwaters of Euphrates-Tigris basin, is crucial from water resources management 

point of view. 

 

4.2 Area of Study 

 

Within the borders of Turkey, the Euphrates river is formed by the union of two 

major tributaries at the mountainous Eastern Anatolia: the Karasu river which rises 

in the northeast highlands (elevation 2744 m) of the city of Erzurum and the Murat 

river which originates from the mountains (elevation 3135 m) surrounding the city 

of Ağrı. Keban dam is at the junction of these two tributaries and it the first major 

dam on the Euphrates River followed by Karakaya, Atatürk, Birecik and Karkamış 

dams respectively until the Syrian border. 

 

Karasu basin, a subbasin of the Euphrates River, is selected as the representative 

pilot basin to monitor and model the snow cover cycle in Eastern Anatolia as 

shown in Figure 4.2. The main reasons for the selection of Karasu basin are its 

easier accessibility, better security and the high level of assistance received from 

the regional offices of the governmental organizations. Karasu basin outlet is 

controlled by the stream gauging station EIE 2119 under the supervision of 

General Directorate of Electrical Power Resources Survey and Development 
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Administration (EIE) in Turkey. The total catchment area is about 10,216 km2 and 

the elevation ranges between 1125 m and 3487 m a.s.l. When the long-term 

runoff hydrographs at the EIE 2119 stream gauging station is analyzed, it can be 

seen that around 69% of total annual volume contribute to the flow during the 

snowmelt period of mid March through mid July (Kaya, 1999; Tekeli, 2005). This 

high percentage of snowmelt runoff indicates the necessity of accurate snowmelt 

runoff prediction in rate, volume and timing.  

 

Figure 4.2 Location of Karasu basin in Turkey 

 

Karasu basin is further divided into two smaller basins in order to simulate the 

snowmelt-runoff at different scales. The first of these is the basin with the outlet 

EIE 2154 again under the supervision of General Directorate of Electrical Power 

Resources Survey and Development Administration (EIE) (where more details can 

be found in Şensoy, 2005) with an area of 2818 km2 and the other is the basin 

with the outlet DSI 21-01 under the supervision of General Directorate of State 

Hydraulic Works having an area of 242 km2. The main focus in this thesis will be 

on the latter basin which will be named as the Kırkgöze basin from now on and will 

be discussed in detail in Chapter 6.  
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The seasonal snow cover in the region begins to accumulate in late November or 

early December. During winter nearly all precipitation falls as snow and partial 

areal precipitation events are common in the catchment. During spring and early 

summer, mixed rain/snow events occur. The climatic characteristics give rise to a 

typical hydrological regime: low flows generally prevail over the winter, while most 

incident precipitation accumulates as snow. This is followed by a sustained period 

of high flows during the spring resulting from melting of the winter snowpack. Flow 

generally declines after snow disappears from the catchment in early summer. 

Snow covered area of Turkey within the global framework of Northern Hemisphere 

can be seen in Figure 4.3.  

 

 

 

Figure 4.3 Daily snow cover conditions in Europe and Asia on 1 and 20 April 2003 

from NOAA web site (URL-1) 
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4.3 Stations and Instrumentation 

 

The science and practice of hydrology includes managing, assessing and 

forecasting the quantity and quality of water. Both historical and real-time 

hydrological data are collected, stored and analyzed. The resulting information is 

provided to the decision makers to manage the water resources and to mitigate 

floods, droughts, pollution incidents and similar water-related hazards. For this 

reason, an important prerequisite is the availability of accurate, reliable and timely 

data (WMO, 1999b). In developed countries, virtually all data collection is made by 

agencies with official program responsibilities and is available in computer 

databases. In addition to storing data, the databases allow for data retrieval, 

report generation, statistical analysis, model calibration and input data preparation 

for hydrologists and model users. In Turkey, several governmental organizations 

collect hydro-meteorological data, but the flow of information is slow and 

unorganized besides the scarce number of stations especially at higher elevations. 

Also, Turkey does not have a specific archiving organization and data source in 

terms of snow studies. Therefore, one of the main aspects of the present research 

is the formation of a continuous snow database in the eastern part of Turkey. In 

the end, the ultimate goals of graphical and tabular outputs, statistical analysis, 

remote sensing and geographic information systems integration capability and 

report availability should be satisfied with the cooperation of governmental 

organizations. 

 

Investigations of the snow cover energy balance and snowmelt in remote alpine 

watersheds require detailed monitoring of the surface climate. Snow 

metamorphism, melting and runoff are controlled by the magnitude of energy 

available to drive these processes and these energy fluxes are determined by the 

combination of local meteorological inputs of precipitation and energy. Table 4.3 

summarizes the possible data types that are needed in snow hydrological analysis 

along with comments on the purpose and application of the data (USACE, 1998).  

 

 



 63 

Table 4.3 Data requirements for snow analysis (USACE, 1998) 

Data type Physical element or purpose Application 

Snow water  

Equivalent 

(SWE) 

Estimate of precipitation  

Index to basin water supply 

Snowpack during ablation 

Analysis, model calibration 

Water supply forecasting 

Modeling snowmelt 

Snow depth 
Estimate of SWE, precipitation 

Estimate of weight 

SWE, precipitation applications 

Snow load on structures 

Snow 

density 

Estimate of SWE, precipitation 

Condition of snow 

SWE, precipitation application 

Avalanche conditions, snow loads 

Areal 

snowcover 

Extent of basin snowcover 

Snowline elevation 

Model calibration 

Parameter in forecast models 

Precipitation  
Estimate of SWE 

Basin moisture input 

Hydrograph analysis, model 

calibration 

Water supply forecasting 

Air 

temperature 

Rain/snow interface 

Index to all energy exchanges 

Factor in energy budget estimates 

Modeling snow accumulation 

Modeling snowmelt (temp. index / 

energy budget) 

Snow albedo Solar energy absorption Modeling (energy budget) 

Solar 

radiation 
Solar energy flux Modeling (energy budget) 

Longwave  

radiation 
Longwave energy flux Modeling (energy budget) 

Wind 

velocity 

Estimate of convection / 

condensation energy flux  
Modeling (energy budget) 

Humidity 
Estimate of condensation energy 

flux 
Modeling (energy budget) 

Streamflow 
Continuous discharge  

Runoff volumes 

Hydrograph analysis, model 

calibration 

Water supply analysis, forecasting 
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It is hard, dangerous and expensive to collect hydro meteorological data at higher 

altitudes especially in extreme climatic conditions. However, it is essential to 

characterize the climate conditions over the rough topography of the remote 

mountainous catchments in Eastern Turkey where most of the water to the large 

dams is generated from snowmelt during spring and early summer months.  

 

Detailed climatic observations in montane climates are limited and most of those 

that do exist come from locations at lower elevations (Smith and Berg, 1982 cited 

from Marks et al., 1992) and from nonalpine locations (Anderson, 1976 cited from 

Marks et al., 1992). This is the case in Karasu Basin as well. Meteorological stations 

at higher elevations, especially above 1850 m, are sparse and usually not 

continuous. On the other hand, snow course measurements by the governmental 

organizations are generally conducted once or twice a month during a snow 

season. In such situations, it becomes nearly impossible to monitor, model and 

forecast the amount and timing of important snow accumulation or melt events.  

 

The increasing need for automatic data acquisition systems has led to considerable 

efforts in research and development to find optimal system designs and to improve 

accuracy and reliability. This work has led to development of sensors, electronics, 

software and complete systems which have been tested for extended periods both 

in experimental and operational networks.  

 

With this idea, more sophisticated snow studies in the region started with the 

NATO-Sfs project in 1996. Under the guidance of Middle East Technical University 

and in cooperation with the governmental organizations of General Directorate of 

Electrical Power Resources Survey and Development Administration (EIE) and 

General Directorate of State Hydraulic Works (DSI) with their regional offices 

giving considerable effort, this project made it possible for the installation of four 

automated snow and meteorological (snow-met) stations at higher elevations of 

the study area in 1999. The stations were named as Çat (2340 m), Sakaltutan 

(2150 m), Ovacık (2130 m) and Hacımahmut (1965 m). The locations of the 

stations were selected according to their accessibility, safety and to represent the 
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characteristics of the basin with different subbasins, elevations, slopes and 

aspects. At the time, the instrumentation of the stations was not of great 

complexity. The sensors consisted of the main meteorological data such as 

temperature, humidity, wind speed and direction along with the collection of snow 

data using steel snow pillows (2 m by 2 m) to measure the snow water equivalent 

and an ultrasonic depth sensor to measure the depth of snow on the pillow. The 

measured data were recorded in a datalogger as minimum, maximum and daily 

averages.  

 

With the data collected from this project, a number of master thesis using different 

hydrological models (SRM, SLURP, HEC-1) on different basin scales have been 

completed by Kaya (1999), Uzunoğlu (1999), Şensoy (2000) and Tekeli (2000). 

 

With the existing infrastructure and experience gained on snow hydrology from the 

previous studies, it was decided that more fieldwork and additional data was 

necessary for further model development and testing. Hence, two projects funded 

by State Planning Organization (DPT), BAP-2001K120990 and BAP-2003K120920-

01, made the continuation of the snow studies possible in the years 2001 and 

2003. During this time, firstly, a new and well-equipped snow-meteorological 

station was set up in the basin in 2001, Güzelyayla (2065 m), and progressively, 

the previously installed stations were upgraded by increasing the number and 

accuracy of the instrumentation each year. With these upgrades, snow-met 

stations started to collect even higher quality data at a better time resolution than 

before. On top of these, key stream gauging stations were also renewed to collect 

automated discharge data during this period. But most important of all, as five 

snow-met stations and three stream gauging stations became automated collecting 

valuable data, this data could also be made available in real time format through 

satellite, GSM (Global System for Mobile Communication) or telephone 

communications whichever suited the station location. Therefore with this system, 

real time monitoring and near real time hydrological forecasting became possible. 

Figure 4.4 depicts the locations of the automated snow-met as well as the stream 

gauging stations in and around Karasu Basin on a digital elevation map and    
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Table 4.4 gives general information on the current situation of the established 

stations. 

 

 

Figure 4.4 Locations of the automated snow-met and stream gauging stations in 

and around Karasu Basin 

 

Even the most common meteorological parameters are difficult to measure 

continuously at a remote site because both the instrumentation and recording 

equipment exhibit varying degrees of instability depending on environmental 

conditions (Marks et al., 1992). On the rough topography and extreme climatic 

conditions of Eastern Anatolia, at times it may take days or weeks to attend 

instrumentation in case of a breakdown or malfunction in the sensors. This has 

happened a few times in the past years which resulted in loss of valuable data. But 

on the whole, the equipment worked quite well over the past years with minimum 

maintenance. Careful attention has been paid to both the precision and accuracy of 

the instrumentation, but the absolute uncertainty can not be known outside the 

laboratory. 
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Table 4.4 General information on the established automatic snow and 

meteorological (snow-met) stations and stream gauging stations (sgs) in and 

around Karasu Basin. 

Station 
Elevation 

(m) 
Type 

Coordinates 

(Geographic) 

Date of 

Construction 

Çat 2340 Snow-met 
39° 44’ 37’’ N 

41° 00’ 34’’ E 
Feb-1999 

Sakaltutan 2150 Snow-met 
39° 52’ 24’’ N 

39° 07’ 54’’ E 
Feb-1999 

Ovacık 2130 Snow-met 
40° 14’ 48’’ N 

41° 00’ 03’’ E 
Feb-1999 

Güzelyayla 2065 Snow-met 
40° 12’ 01’’ N 

41° 28’ 22’’ E 
Oct-2001 

Hacımahmut 1965 Snow-met 
39° 48’ 21’’ N 

40° 43’ 45’’ E 
Feb-1999 

DSI 21-01 

Kırkgöze 
1830 SGS 

40° 05’ 51’’ N 

41° 22’ 59’’ E 
Oct-2003 

EIE 2154 

A. Kağdariç 
1675 SGS 

39° 56’ 20’’ N 

40° 45’ 35’’ E 
Oct-2004 

EIE 2119 

Kemah 
1123 SGS 

39° 39’ 01’’ N 

39° 21’ 36’’ E 
Oct-2004 

 

 

Tables 4.5 through 4.7 show the instrumentation with respect to meteorological, 

radiation and snow sensors present in each station and Table 4.8 provides the 

means of data collection and transfer from different snow-met and stream gaging 

stations in and around Karasu basin.  

 

In the following sections, the type of data collected within each station is discussed 

with further details including tables, photographs and charts to give an idea of the 

conditions at site. 
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Table 4.5 Meteorological instrumentation at the sites 

Station Prec Temp 
Wind 

Speed 

Wind 

Direction 

Relative 

Humidity 

Air 

Press 

Çat 

(2340 m) 
 f f f f f 

Sakaltutan 

(2150 m) 
 f     

Ovacık 

(2130 m) 
f f f f f  

Güzelyayla 

(2065 m) 
f f f f f f 

Hacımahmut 

(1950 m) 
 f f f f f 

 

 

 

Table 4.6 Radiation instrumentation at the sites 

Station 
Solar 

Radiation 
Albedo 

Net Longwave 

Radiation 

Net Total 

Radiation 

Çat 

(2340 m) 
f   f 

Sakaltutan 

(2150 m) 
    

Ovacık 

(2130 m) 
f f f  

Güzelyayla 

(2065 m) 
f f  f 

Hacımahmut 

(1950 m) 
f    
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Table 4.7 Snow instrumentation at the sites 

Station Snow Pillow Snow Depth Snow Lysimeter 

Çat 

(2340 m) 

Hypalon 

(6.5 m2) 

Ultrasonic Depth 

Sensor 
--- 

Sakaltutan 

(2150 m) 

Steel 

(4.0 m2) 

Ultrasonic Depth 

Sensor 
--- 

Ovacık 

(2130 m) 

Hypalon 

(6.5 m2) 

Ultrasonic Depth 

Sensor 

Yes 

(1.60 m2) 

Güzelyayla 

(2065 m) 

Hypalon 

(6.5 m2) 

Ultrasonic Depth 

Sensor 

Yes 

(1.53 m2) 

Hacımahmut 

(1950 m) 

Steel 

(4.0 m2) 

Ultrasonic Depth 

Sensor 
--- 

 

Table 4.8 Data collection and transfer system 

Station Data Collection Data Transfer 

Çat 

(2340 m) 
2-hour and daily Inmarsat Mini-M 

Sakaltutan 

(2150 m) 
Daily Inmarsat Mini-M 

Ovacık 

(2130 m) 
2-hour and daily Telephone Modem 

Güzelyayla 

(2065 m) 
2-hour and daily Telephone Modem 

Hacımahmut 

(1950 m) 
Daily GSM 

DSI 21-01 Kırkgöze 

(1830 m) 
15-minute GSM 

EIE 2154 A. Kağdariç 

(1675 m) 
15-minute GSM 

EIE 2119 Kemah 

(1125 m) 
15-minute GSM 
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4.3.1 Snow Data 

 

The collection of snow data in conventional manner by snow poles and tubes in the 

region stared in mid 1960 s by the governmental organizations. During a snow 

season, usually monthly or bimonthly snow course measurements are conducted. 

These measurements indicate the high snow potential of the region but are far 

from providing sufficient information for snow modeling. 

 

In order to automatically collect continuous snow data in the study area, snow 

pillows connected to a pressure transducer and ultrasonic depth sensors are 

installed to each of the snow-met stations. With this, snow pillows would measure 

the weight of the snow on top of them and at the same time depth sensors would 

measure the snow depth over the pillow, hence, snow water equivalent over the 

snow pillows can be calculated.  At first, the snow pillows were made of steel 

sheets buried under the soil. At each station, four of these pillows were placed 

together (2 m by 2 m) and connected with pipes. These pillows were not very 

sensitive to the shallow snow depth above them producing spurious values. 

Therefore, they were replaced by rubber made hypalon pillows which covered a 

larger area (approx. 6.5 m2) than the metal pillows and more sensitive to weight 

changes because of its material. The hypalon pillows were placed on a uniform soil 

insulated by rubber lining and covered by a wire mesh to protect them from rats. 

They are filled with water, antifreeze and alcohol in order to prevent the fluid from 

freezing as well as keeping the density close to 1000 kg/m3. All the air inside the 

pillow should be evacuated so that snow load is transferred directly by the mixed 

fluid to the pressure transducer whereby measured and logged to the data logger. 

Figure 4.5 shows the installation of a snow pillow in Çat station.  
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Figure 4.5 Snow pillow installation in Çat station 

 

The snow depth and snow water equivalent at a station is monitored continuously 

being measured every 30 seconds and averaged over a 2-hour period. Also daily 

minimum and maximum values along with the time of occurrences of these events 

are summarized at the end of each day in the loggers. As these valuable data are 

measured and recorded by the station equipment, snow measurements are also 

conducted manually from time to time by snow sampling tubes around or close to 

each station in order to compare the readings. Figure 4.6 and Figure 4.7 show 

such a comparison of snow depth and snow water equivalent respectively from 

Güzelyayla station during 2004 water year. As seen from the figures, snow depths 

show a better match than the SWE values. This may be considered as an expected 

result because the accuracy of measuring the snow depth is much more than the 

SWE. Small discrepancies can be attributed to the errors in the manual snow tube 

weighing as well as load decrease over the snow pillow due to ice bridging. Even if 

these errors are small, the snow sampling points are in any case different than the 

area over the snow pillow and this might be another reason for the mismatch of 

the values which may be explained by wind drift and forming of the ice lenses or 

frozen layers in the snow.  

October 2003 
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Figure 4.6 Manual and automatic snow depth measurements (cm),         

Güzelyayla station, 2004 water year 

 

Figure 4.7 Manual and automatic snow water equivalent measurements (mm), 

Güzelyayla station, 2004 water year 
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As seen from Table 4.5, currently, Çat (replaced in 2003), Ovacık (replaced in 

2002) and Güzelyayla (installed in 2001) stations have hypalon snow pillows where 

as Sakaltutan and Hacımahmut sites continue to work with steel snow pillows. But 

all the snow-met stations have ultrasonic depth sensors over the pillows.  

 

Long term manual snow course measurements for snow water equivalent between 

1976-2003 around Güzelyayla, Ovacık, Çat and Sakaltutan sites is depicted in 

Figure 4.8. This analysis is done to show the general pattern of SWE distribution at 

different locations and altitudes in the basin during a snow season. Snow water 

equivalent values are grouped into ten day composites since the observation dates 

are unevenly distributed within a month. Unfortunately, snow course data are 

generally carried out during accumulation periods hence missing out snow melt. 

But in any case, these long term SWE data may give an indication on the average 

conditions to determine dry and wet snow seasons.  

 

 

Figure 4.8 Long term average manual snow water equivalent values (1976-2003) 
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4.3.2 Meteorological Data 

4.3.2.1 Radiation  

 

Radiation is the only form of energy transfer that can be measured directly in the 

natural environment. Greatest use of radiometers in hydrology is in the studies 

related with evaporation and snowmelt. For most studies of evaporation, incident 

all wave radiation data are adequate, since the reflectivity of water is nearly 

constant. The reflectivity of snow, however, is highly dependent upon wavelength 

and albedo, which may range from 30 to 90 percent. Hence, both incident 

shortwave and longwave radiation data are required.  

 

Also under clear sky conditions the distribution of incident radiation can be 

modeled over complex terrain for both solar (shortwave) (Dozier, 1980) and 

thermal (longwave) (Marks and Dozier, 1979) wavelength ranges, but under 

cloudy conditions, measurements are necessary because the separate 

contributions of direct and diffuse solar and emitted thermal radiation from the 

atmosphere and clouds are not easily predicted or modeled. Since Eastern Anatolia 

has a rough topography, clouds are mainly present during winter and spring 

seasons. Therefore, rather than modeling solar and thermal radiations in the 

region, incident radiation is reliably and accurately measured in broad wavelength 

band widths using well established instrumentation.  

 

Incident radiation is monitored with a combination of sensors in Çat, Ovacık, 

Güzelyayla and Hacımahmut stations. Net radiometers in the spectral range of  

0.3-100 µm are used in Çat and Güzelyayla stations. Pyronometers are used to 

measure solar radiation in the spectral range of 0.305-2.8 µm at Çat, Ovacık, 

Güzelyayla and Hacımahmut stations. Net pyrgeometers are placed at Ovacık 

station to measure both the incoming and outgoing longwave radiation within the 

spectral range of 5-25 µm. Measurements of albedo is accomplished through the 

use of two pyronometers possessing hemispherical fields of view. One 

pyronometer measures the incident and the other the reflected flux and albedo is 
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calculated by ratioing these fluxes. Albedo measurements are conducted in Ovacık 

and Güzelyayla stations. Forms of net solar and net total radiation are measured at 

Çat and Güzelyayla stations whereas, net solar and net thermal radiation is 

measured at Ovacık station to derive net total radiation. Therefore, a combination 

of different radiation forms are being measured and derived in the stations 

providing a kind of verification with each other. Table 4.6 summarizes the radiation 

instrumentation in the study area. Figure 4.9 illustrates the combination of 

pyronometers and pyrgeometers at Ovacık station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Net pyronometer and net pyrgeometer at Ovacık station 

 

Figure 4.10 depicts 2-hourly average solar radiation (W/m2) for a diurnal cycle at 

Güzelyayla station over a 15-day period in mid-January and mid-June of the 2003 

water year. As seen from the figure, in June, the sun rises about 2 hours earlier 

and sets about 2 hours later and the radiation difference is nearly 3-fold than in 

January. Figure 4.11 shows 2-hourly average net radiation (W/m2) again at 

Güzelyayla station for the same diurnal periods in January and June of the 2003 

water year. The significant difference in net radiation magnitude and sunlit period 

can easily be seen between the two periods.  

Net 
Pyrgeometer 

Net 
Pyronometer 
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Solar Radiation, Güzelyayla Station, 2003 Water Year
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Figure 4.10 Winter and summer diurnal average solar radiation (W/m2),  

Güzelyayla station, 2003 water year  

 

Net Radiation, Güzelyayla Station, 2003 Water Year
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Figure 4.11 Winter and summer diurnal average net radiation (W/m2),    

Güzelyayla station, 2003 water year 
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Topographic differences in elevation, shading and exposure between the 

measurement stations may cause distinct differences in measured solar radiation 

(Marks et al., 1992). The contribution of solar and thermal radiation to the energy 

balance of snow cover during 2002, 2003 and 2004 water years are discussed in 

detail in Şensoy (2005).  

 

4.3.2.2 Air Temperature 

 

The most common meteorological data collected anywhere are of air temperature. 

Ideally, these measurements should be made at a specified height above the snow 

surface, shielded from the effects of radiation or conduction from sources other 

than the atmosphere. In practice, this is seldom the case. Some radiant heating or 

cooling of the instrument shelter is inevitable, but in most locations this produces 

only a minor affect (Marks et al., 1992).  

 

Air temperature measurements are present in all five snow-met stations in the 

study area as indicated in Table 4.7. Daily minimum, average and maximum air 

temperatures are presented in Figure 4.12 and monthly minimum, average and 

maximum air temperatures are tabulated in Table 4.9 for the 2003 water year at 

Güzelyayla station to give a better insight about the region. These values point out 

that even at an elevation of 2065 m above sea level (a.s.l.) (Güzelyayla station), 

air temperatures may range from -30 °C to +30 °C showing how extremely this 

parameter may vary during a year’s cycle. 
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Minimum, Average ve Maximum Air Temperature, Güzelyayla Station, 2003 Water Year
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Figure 4.12 Daily air temperatures (oC), Güzelyayla station, 2003 water year 

 

Table 4.9 Monthly air temperatures (oC), Güzelyayla station, 2003 water year 

Month Minimum Average Maximum 

October -9.57 7.67 20.63 

November -10.38 1.71 13.65 

December -24.52 -10.03 5.08 

January -19.89 -6.31 2.89 

February -23.20 -8.32 1.32 

March -23.47 -7.10 3.71 

April -14.43 2.35 12.17 

May -5.54 9.75 21.28 

June -1.85 12.03 23.90 

July 4.32 15.49 28.26 

August 5.23 16.53 29.73 

September -0.57 12.02 28.32 
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4.3.2.3 Snow Surface Temperature 

 

Snow surface temperature is difficult to measure by physical thermometry. Davis et 

al. (1984) showed that the near snow surface temperature tends to follow the air 

temperature as long as the air temperature is less than 0oC. This occurs because 

the insulating characteristics of the snow cover allow the surface layer to come into 

temperature equilibrium with the atmosphere even though this may create large 

temperature differences between the surface and lower layers. However, once the 

air temperature is above 0oC, the snow surface is constrained (≤ 0oC) and the 

temperature difference can increase in magnitude.   

 

Manual spot measurements of snow surface temperature using a radiant 

thermometer were taken at Güzelyayla and Ovacık stations during 2003 water 

year. A linear relationship is found between air temperature and snow surface 

temperature. These estimates of snow surface temperature should be reasonable 

for the top few centimeters of the snow cover during windy or daylight conditions. 

However, they may substantially differ especially under calm conditions at night 

due to radiative cooling. 

 

4.3.2.4 Soil Temperature 

 

Even though ground heat flux in the energy balance calculations is not a dominant 

factor, it is measured only in Güzelyayla station during 2003 water year. A 

thermistor probe was buried in soil to a depth of 15-20 cm for it to represent the 

upper soil layer. The recorded results from 2003 water year were not satisfactory 

because the upper soil temperature was always above 0oC during the winter 

season. Even when the air and snow surface temperatures are well below the 

freezing point, a positive ground temperature would mean a very high ground heat 

flux in the energy balance calculations and a continuous melting from the snow-

ground interface which is not believed to be the case. Therefore, the thermistor 

probe is replaced by a better thermocouple probe in Güzelyayla station in the 
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beginning of 2004 water year in the hope to measure more realistic upper soil 

layer temperatures. 

 

4.3.2.5 Wind Speed and Direction 

 

The movement of air is an important part of weather process; wind exerts 

considerable influence in evaporation and snowmelt processes. Wind speed is 

measured by anemometers and wind direction by vanes of which there are several 

types. Wind is highly variable in both time and space and is difficult to characterize 

by sampling in either of these dimensions. It is generally deemed site-specific. 

Wind direction is greatly influenced by orientation of orographic barriers. With a 

weak pressure system, diurnal variation of wind direction may occur in 

mountainous regions, the winds blowing upslope in the daytime and downslope at 

night.  

 

Wind speed and direction are measured in all the snow-met stations except 

Sakaltutan. Wind speeds are more pronounced in Çat and Güzelyayla stations 

especially during snow accumulation period with an average around 3 - 4 m/s and 

a prevailing wind direction of north-east south-west. Wind speeds are rather low at 

Ovacık station with an average of 1.5 m/s. Daily mean wind speed and wind 

direction are shown in Figure 4.13 and Figure 4.14 respectively at Güzelyayla 

snow-met station during 2003 water year. 
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4.3.2.6 Relative Humidity and Air Pressure 

 

Relative humidity or the water vapor content of the air is monitored in all the 

snow-met stations except Sakaltutan. Capacitance-type humidity instruments are 

installed at the stations as these are preferred to be used at remote alpine sites. 

These sensors are also affected by radiant heating and cooling, though to a lesser 

degree than are air temperature sensors.  

 

Air pressure is monitored in Çat, Güzelyayla and Hacımahmut snow-met stations. A 

barometer with a silicon capacitive sensor is used to measure barometric pressure 

on a 600 to 1060 mb range.  

 

4.3.2.7 Precipitation 

 

Precipitation in Karasu Basin falls mainly as snow during November through March 

and rain at other times. But sleet (mixed rain and snow) is also quite frequent in 

the transition periods between rain and snow depending on air temperature.  

 

There are precipitation gages located at Ovacık and Güzelyayla stations. These 

gages are equipped with an electrical heater, but due to lack of power supply at a 

remote location, the heater could not be operated. Since snow accumulation may 

present gaging problem due to gage freezing, capping of gage by snow and high 

winds, precipitation gages are generally used to measure rainfall amounts and 

snowfall data are computed according to snow pillow and depth sensor variations. 

During 2003 water year, 612 mm of precipitation is measured in Güzelyayla snow-

met station as shown in Figure 4.15. 
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Precipitation, Güzelyayla Station, 2003 Water Year
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Figure 4.15 Daily and yearly cumulative precipitation (mm), Güzelyayla station, 

2003 water year 

 

4.3.3 Hydrological Data 

4.3.3.1 Snowmelt Lysimeter 

 

Snowmelt runoff models are mainly evaluated based on the reproducing capability 

of an observed hydrograph that are not direct measurements of snow melt. 

Improvements in these model components would lead to a stronger physical basis 

and for this reason, water released from the base of the snow pack is an ideal 

variable because it serves as the output of the snowmelt routine and the input to 

the runoff production routine. Hence, snowmelt lysimeters are designed to collect 

and measure the melt water released from the snow pack, thus they are excellent 

tools for quantifying the snowmelt timing and volume requirements of snowmelt 

studies, such as water-supply forecasting and hydrologic model-improvement 

studies (Kattelmann, 2000). In the snow free season, snowmelt lysimeter can be 
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used as an efficient precipitation gage since it is less affected by wind due to its 

large area (Killingtveit and Saelthun, 1995).  

 

In this sense, unenclosed snowmelt lysimeters are constructed and installed at 

Güzelyayla (2002) and Ovacık (2003) snow-met stations. Tekeli et al. (2005b) 

discusses the types, construction and installation of the two snowmelt lysimeters in 

detail. Both of the snowmelt lysimeters are placed at a higher elevation than 

ground level to minimize lateral flows in the snow pack but the wind drift effect 

could not be diminished. The outflow from the snowmelt lysimeters are measured 

with a tipping bucket rain gauge placed at the bottom of the lysimeter outlet with a 

screen to eliminate any debris entering into the rain gage. The installed snowmelt 

lysimeter at Güzelyayla snow-met station is seen in Figure 4.16. The snowmelt 

lysimeter at Güzelyayla station worked quite well for the two water years (2003 

and 2004) but problems hindered the operation in Ovacık snow-met station. 

Freezing of outlet flow and debris blockage were the main problems faced in 

Ovacık station. 

 

The results of the snowmelt lysimeter outflow timing are quite comparable with 

snow melt and rainfall values especially in Güzelyayla station. Lysimeter data and 

basin outlet runoff in micro (Kırkgöze Basin, 242 km2) and macro (Keban Basin, 

67,500 km2) catchment scales also show an interesting match for the 2003 water 

year as seen in Figure 4.17. For more results of the snowmelt lysimeter operation 

Tekeli et al. (2005b) may be referred. 
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Figure 4.16 Snowmelt lysimeter at Güzelyayla station 

 

 

 

 

 

 

Figure 4.17 Güzelyayla snowmelt lysimeter outflow comparison with different basin 

scale discharges 
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4.3.3.2 Streamflow 

 

Measurement of stage and discharge is a very central part of operational hydrology 

and hence, most data available for model calibration and verification are runoff 

data. Having a long runoff series for a basin enables the researchers to understand 

the behavior of the catchment better under different conditions. Although long 

runoff records are important, nowadays, monitoring real time runoff data is as 

crucial for real time operations and forecasting.  

 

Based on this idea, besides monitoring five snow-met stations, three main stream 

gaging stations are selected in Karasu Basin where real time runoff data are also 

observed. These stream gaging stations are EIE 2119, EIE 2154 and DSI 21-01 

from downstream to upstream. Table 4.4 and Table 4.8 present more information 

on the stream gauging stations. DSI 21-01 station is equipped with real time shaft 

encoder system in the beginning of 2004 water year, but replaced by a pressure 

transducer system instead in the beginning of 2005 water year. The other two 

stream gaging stations are established with real time instrumentation in the 

beginning of 2005 water year both using a shaft encoder system. The real time 

communication with all three stream gaging stations is managed using a GSM 

system which is probably the most efficient and reliable way of communication in 

Turkey at the moment. By chance, the early unexpected flooding in Turkey which 

occurred during 29 February - 9 March 2004 has shown the vital importance of 

accessing real time runoff data especially on Euphrates River where large dams are 

located (Şorman et al., 2004). 
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CHAPTER 5 

 

REMOTE SENSING IN SNOW HYDROLOGY 

 
 
 

5.1 Introduction 

 

In the hydrological field, modeling needs spatial data from the consideration of the 

area being studied. In the past, hydrologists relied mostly on conventional data 

network systems based on manual ground measurements. As the technological 

progress brought new impulses, automatic meteorological stations furnished data 

from remote mountain areas which was particularly important for snow hydrology.  

 

Remote sensing is one of the new techniques being applied in hydrology and in 

particular in snow hydrology. Characterized by insufficient spatial and temporal 

coverage of the Earth’s surface, the conventional networks are being 

supplemented by remotely sensed data network systems because of several 

unique aspects. First, remote sensing techniques have the ability to measure 

spatial information as opposed to point data. Second, remote sensing techniques 

have the ability to measure the state of the Earth’s surface over large and 

especially remote areas. Finally, they have the ability to assemble long term data 

for multi purposes especially those which utilize satellite sensors (Engman and 

Gurney, 1991). 
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5.2 History of Remote Sensing of Snow 

 

Earth Observation (EO) data have been successfully applied in snowmelt hydrology 

only in the past few decades. Some of the first attempts were conducted by Rango 

et al. (1977) showing the effective application of EO data to predict snowmelt 

runoff and Rott (1978) demonstrating the application of frequent snow cover 

mapping in the Alps using different sensors. Early attempts at snow mapping using 

EO data are summarized in Hall and Martinec (1985). An illustration of the 

usefulness of satellite derived snow cover data for hydrological modeling was given 

by Martinec and Rango (1987). Wiesnet et al. (1987) outlined the importance of 

remote sensing methods for snow cover mapping in general. 

 

Haefner (1980 cited in Rott, 2000) stated that within Europe at the time snow 

cover monitoring from satellite was not yet undertaken on a routine basis whereas 

several such activities were being conducted in North America during the 1980’s 

resulting in applications still operational today (Carroll, 1990). An online example is 

available at the National Operational Hydrologic Remote Sensing Center (NOHRSC, 

URL-2).  

 

Individual snow cover monitoring activities have frequently been reported, Frank et 

al. (1988), Harrison and Lucas (1989), Hu et al. (1993), Seidel et al. (1994), 

Baumgartner and Rango (1995), Rango (1996), Nagler and Rott (1997), but joint 

approaches resulting in methods and applications shared with a large community 

of users, especially in Europe, have begun recently with the HydAlp (Rott et al., 

2000) and SnowTools (Guneriussen et al., 2000) projects. Following the 

achievements in these projects, other joint works have been undertaken such as 

EnviSnow (URL-3) and SnowMan (URL-4) projects which are still being continued.  
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5.3 Spectral Characteristics of Snow 

 

Every object emits radiation in all wavelengths in the electromagnetic spectrum, 

Figure 5.1. Therefore, sensors that operate from gamma ray wavelengths to the 

very high frequency of microwave portions have been employed for remote 

sensing of snow and ice. However, it may be more advantageous to use discrete 

portions of the spectrum for specific task at hand, since there may be 

distinguishing key wavelength portions enabling easy detection of the object under 

search.  

 

 

Figure 5.1 Electromagnetic Spectrum 

 

Snow has a unique reflectance behavior; illuminated by the sun; snow is one of the 

brightest objects in nature in the optical and near infrared range (~0.410 µm), but 

is rather dark in the medium infrared (~1.5-2.5 µm) (Seidel and Martinec, 2004). 

Freshly fallen snow has a very high reflectance in the visible wavelengths as seen 

in Figure 5.2, but as it ages the reflectivity decreases in the visible and especially in 

the longer near infrared region. The aging is characterized by melting and 

refreezing cycles leading to a gain in crystal grain size as well as contamination 

with impurities. An advantage of using visible and near infrared data is the easy 

interpretation of the image as well as its spatial resolution, but on the other hand 

clouds may degrade the use of such wavelengths.  
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Figure 5.2 Reflective properties of snow 

 

Thermal infrared part of the spectrum measure the radiation emitted by the Earth’s 

surface which is dependent on surface temperature. Therefore these channels are 

mostly used to measure snow surface temperature. If the snow surface 

temperature stays at 0°C in a diurnal cycle, then it is highly likely that the snow 

pack has reached an isothermal stage indicating the process of snowmelt. Clouds 

may again limit the usability of thermal infrared images because cloud top 

temperatures would be measured instead of surface temperatures.  

 

Microwave radiation measured at different wavelengths and at different 

polarizations enables the extraction of information related to the physical 

characteristics of the snow pack. Depth, water equivalent, liquid water capacity, 

grain size and shape, temperature, stratification are some of the properties that 

can be detected on microwave region. Since the response of snow varies with its 

state, regular monitoring may allow the detection on the onset of melt. Superiority 

of microwave with respect to the visible imagery is the independency of 

measurements from weather conditions and illumination. Thus cloud covered or 

night time data can also be used. However, their low spatial resolutions prevent 

their usability in mountainous basins (Rango, 1996). 
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Table 5.1 shows the relation between some of the snow properties and spectral 

bands and Table 5.2 gives the snow properties that affect its reflectance values 

(Engman and Gurney, 1991). 

 

Table 5.1 Relation between snow properties and spectral bands (Engman and 

Gurney, 1991). 

Property 
Visible/Near 

Infrared 
Thermal Microwave 

Snow cover area Yes Yes Yes 

Depth If very shallow Weak Moderate 

Snow water equivalent If very shallow Weak Strong 

Stratigraphy No Weak Strong 

Albedo Strong No No 

Liquid water content Weak Weak Strong 

Temperature No Strong Weak 

All weather capability No No Yes 

Current best resolution A few meters 
Hundreds 

of meters 
Tens of meters 

 

 

Table 5.2 Snow properties affecting its reflectance (Engman and Gurney, 1991). 

Property 
Visible 

Reflectance 

Near 

Infrared 

Reflectance 

Thermal 

Infrared 

Emissivity 

Microwave 

Emissivity 

Grain size * Yes No Yes 

Zenith Angle No Yes Yes Yes 

Depth Yes No No Yes 

Contaminants Yes No No  

Liquid water content No * No Yes 

Temperature No No No Yes 

Density No No No Yes 
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5.4 Satellite Remote Sensing of Snow 

 

Snow cover mapping in mountainous areas is demanding due to the interfering 

topography and the heterogeneous ground properties. According to Rango (1994), 

the only efficient way to monitor the dynamically changing seasonal snow cover on 

a sufficiently large scale is by satellite remote sensing. But, one must judiciously 

select the proper sensor to use for a particular analysis taking into consideration 

factors such as wavelengths, resolution or frequency and timing of ground 

coverage (Hall and Martinec, 1985).  

 

A high temporal resolution is important; particularly for monitoring changes in 

snow extent due to melt or accumulation. Although snow cover can be detected 

and monitored with a variety of remote sensing devices, the greatest application 

has been found in the visible (VIS) and the near infrared (NIR) region of the 

electromagnetic spectrum (Hall et al., 2002). For operational snow cover 

monitoring, satellites with moderate spatial resolution but with high repetition rate 

are important for the advantage of obtaining a cloud free image. Although cloud 

problem is removed with the use of microwave data (either passive or active), 

interpretation of the images are much more difficult with respect to optical 

satellites because they are highly affected from surface and subsurface properties.  

 

Sensor systems presently in orbit are listed in Table 5.3. The multi-spectral sensors 

differ in terms of spatial and time resolution. The acquainted spectral information 

ranges in bands (or channels) from the visible, near-infrared (NIR) and up to the 

thermal-infrared (TIR) wavelengths. Operational snow cover monitoring requires as 

many sensors in orbit as possible with repetition rates as high as possible in order 

to take advantage of some cloud free or partially cloud covered scenes. A 

comprehensive survey of missions and sensors both from the past and the present 

in orbit has been compiled by Kramer (2002).  
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Table 5.3 Characteristics of satellites for snow cover mapping (Status: June 2003) 

(adapted from Seidel and Martinec, 2004) 

 

Satellite Sensors 
Spectral 

bands 

Spatial 

Resolution 

Repetition 

rate 

Launched 

by 

Meteosat-7 VIS/IR 3 2.5 km × 2.5 km 0.5 hours 
EUMETSAT 

(1997) 

Meteosat-8 VIS/IR 12 1 km × 1 km 0.25 hours 
EUMETSAT 

(2002) 

NOAA-14, -16 AVHRR 5 1 km × 1 km 12-24 hours USA (2000) 

TERRA, AQUA MODIS-XS 36 
250 m, 500 m, 

1000 m 
1-2 days 

USA (1999, 

2002) 

ENVISAT MERIS 15 300 m × 300 m 3 days ESA (2002) 

Landsat-4, -5 
MSS 

TM 

4 

7 

59 m × 79 m 

30 m × 30 m 
16 days 

USA (1972, 

1984) 

Landsat-7 
ETM+ 

PAN 

7 

1 

30 m × 30 m 

15 m × 15 m 
16 days USA (1999) 

SPOT-2, -3, -4 
XS 

PAN 

3 

1 

20 m × 20 m 

10 m × 10 m 
26 days 

France (1990, 

1993, 1998) 

SPOT-5 XS 3 
10 m × 10 m 

5 m × 5 m 
26 days France (2002) 

IRS-1C 
PAN 

LISS-3 

1 

4 

5.8 m × 5.8 m 

23 m × 23 m 
5 days India (1995) 

IRS-P3 WIFS 3 188 m × 188 m 24 days India (1996) 

IKONOS 
XS 

PAN 

4 

1 

4 m × 4 m 

1 m × 1 m 
3 days USA (1999) 

QUICKBIRD-2 
XS 

PAN 

4 

1 

2.44 m × 2.88 m 

0.61 m × 0.72 m 
3 days USA (2001) 
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The satellites tabulated in Table 5.3 can further be classified into High and Medium 

Resolution Optical Imagers (HROI and MROI), optical in this sense does include 

the infrared part of the electromagnetic spectrum. The most obvious advantage of 

MROI sensors is their high repetition rate and the possibility of near real time 

access to data. Hence, in terms of logistics, this makes MROI data highly suitable 

for regular and efficient SCA mapping. Although spatial resolution of MROI sensors 

limit the application to large basins, snow cover mapping at regional or larger 

scales can again be benefited from wide area coverage and low data cost.  

 

Studies performed in literature indicate the effective use of medium optical 

imagery satellites. Among the available MROI sensors, AVHRR has been utilized for 

the longest time and in the largest number of studies dealing with SCA mapping. 

Snow cover maps of the Northern Hemisphere have been available since 1966 

from the National Oceanic and Atmospheric Administration (NOAA, URL-1). Snow 

cover maps derived from NOAA-AVHRR are commonly used from small scale area 

analysis. More detailed maps for larger scale studies are deduced from the high 

resolution multi-spectral sensors such as on board of Landsat or SPOT satellites.  

The recently launched Moderate Resolution Imaging Spectroradiometer (MODIS) 

by NASA as part of the first Earth Observing System (EOS) platform is of special 

interest for snow hydrology with respect to global and continental surveys. This 

sensor is discussed in more detail in the following section. 
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5.5 Moderate Resolution Imaging Spectroradiometer (MODIS) 

 

Earth Observation System (EOS) launched the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments, on the Terra platform in 18 December 

1999 and on the Aqua platform in 4 May 2002. MODIS provides imagery of the 

Earth’s surface and clouds in 36 discrete, narrow spectral bands from 

approximately 0.4 to 14 µm in wavelengths with a temporal resolution of near to 

one day and spatial resolution of 250 m (bands 1-2), 500 m (bands 3-7) and   

1000 m (bands 8-36). Table 5.4 shows the 36 discrete MODIS bands and their 

corresponding Landsat TM and NOAA-AVHRR bands. The EOS project is designed 

to observe and monitor the surface of the Earth for 15 years in order to 

differentiate short-term and long-term trends, as well as, regional and global 

phenomena.  

 

MODIS has a very comprehensive workforce behind it consisting of several 

universities and organizations around the world under the directives of NASA. 

MODIS Science Team is divided into four discipline groups: Atmosphere, 

Calibration, Land and Ocean under which 44 standard MODIS data products are 

generated. A MODIS data product summary chart is shown in Table 5.5. Among 

the many MODIS products, MODIS snow and ice products are distributed through 

the National Snow and Ice Data center (URL-5) Distributed Active Archive Center 

(DAAC) at the University of Colorado in Boulder, Colorado since September 2000. 

 

With the increased spectral band number and daily global 500 m spatial resolution 

offered by MODIS, MODIS snow cover products are prone to improve and/or 

enhance the currently available operational products (Hall et al., 2002) such as 

NOAA-AVHRR. Also, daily as well as 8-day composite snow cover maps are 

produced. Main distinguishing characteristics of MODIS snow data is the fact that 

the processing chain is automated thus reducing or eliminating biases due to 

human subjectivity. This enables the production of a consistent data set required 

for long-term climate studies. Moreover, the quality assurance (QA) information 

embedded within the data set is very informative about the snow extent.  
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Table 5.4 MODIS band centers and corresponding Landsat TM and NOAA-AVHRR 

bands. (Hall et al., 1998) 

 

 

 

5.5.1 MODIS File Format 

 

Hierarchical Data Format – Earth Observation System (HDF-EOS) is the standard 

format for EOS-Data Information System (EOSDIS) products. The snow product 

files contain two layers, which are namely, the meta data including the attributes 

and the Scientific Data Sets (SDS) including the data arrays. 
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Table 5.5 MODIS data product summary chart 

 
Calibration  
MOD 01 - Level-1A Radiance Counts  
MOD 02 - Level-1B Calibrated Geolocated Radiances  
MOD 03 - Geolocation Data Set  

 
Atmosphere 
MOD 04 - Aerosol Product  
MOD 05 - Total Precipitable Water (Water Vapor)  
MOD 06 - Cloud Product  
MOD 07 - Atmospheric Profiles  
MOD 08 - Gridded Atmospheric Product  
MOD 35 - Cloud Mask 

 
Land 
MOD 09 - Surface Reflectance  
MOD 10 - Snow Cover 
MOD 11 - Land Surface Temperature & Emissivity  
MOD 12 - Land Cover/Land Cover Change  
MOD 13 - Gridded Vegetation Indices (Max NDVI & Integrated MVI)  
MOD 14 - Thermail Anomalies, Fires & Biomass Burning  
MOD 15 - Leaf Area Index & FPAR  
MOD 16 - Evapotranspiration  
MOD 17 - Net Photosynthesis and Primary Productivity 
MOD 29 - Sea Ice Cover 
MOD 43 - Surface Reflectance BRDF/Albedo Parameter 
MOD 44 - Vegetation Cover Conversion  

 
Ocean 
MOD 18 - Normalized Water-leaving Radiance  
MOD 19 - Pigment Concentration  
MOD 20 - Chlorophyll Fluorescence  
MOD 21 - Chlorophyll_a Pigment Concentration  
MOD 22 - Photosynthetically Available Radiation (PAR)  
MOD 23 - Suspended-Solids Concentration  
MOD 24 - Organic Matter Concentration  
MOD 25 - Coccolith Concentration  
MOD 26 - Ocean Water Attenuation Coefficient  
MOD 27 - Ocean Primary Productivity  
MOD 28 - Sea Surface Temperature  
MOD 31 - Phycoerythrin Concentration  
MOD 36 - Total Absorption Coefficient  
MOD 37 - Ocean Aerosol Properties  
MOD 39 - Clear Water Epsilon  
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5.5.2 MODIS Snow Products 

 

MODIS snow products are provided as a sequence of products beginning with a 

swath (scene) and progressing through spatial and temporal transformations to an 

8-day gridded product (Riggs et al., 2003). A summary of the six different MODIS 

snow data products are shown in Table 5.6. 

 

Table 5.6 Summary of the MODIS snow data products 

Earth Science Data 

Type (ESDT)* 

Product 

Level 

Nominal Data Array 

Dimensions 

Spatial 

Resolution 

Temporal 

Resolution 

Map 

Projection 

MOD10_L2 L2 1354 km by 2000 km 500 m swath(scene) None 

MOD10L2G L2G 1200 km by 1200 km 500 m nth day Sinusoidal 

MOD10A1 L3 1200 km by 1200 km 500 m day Sinusoidal 

MOD10A2 L3 1200 km by 1200 km 500 m 8-day Sinusoidal 

MOD10C1 L3 360o by 180o (global) 0.05o day Geographic 

MOD10C2 L3 360o by 180o (global) 0.05o 8-day Geographic 

ESDT*: short name used for identifying snow data product 

 

The MODIS snow maps will augment the valuable record of Northern Hemisphere 

snow cover that was started in 1966 by NOAA which provided weekly maps 

(Matson et al., 1986) and continues today with the daily snow products from the 

Interactive Snow and Ice Mapping System (IMS) (Ramsay, 1998).  

 

5.5.3 MODIS Snow Detection Algorithm 

 

The MODIS snow mapping (Snowmap) and ice mapping (Icemap) algorithms 

identify snow, lake ice and sea ice by their reflectance and emittance properties 

and generate global daily and 8-day composited snow/ice cover products. The 

basic techniques used in these algorithms are threshold-based criteria tests, the 

normalized difference between bands and decision rules. MODIS bands 1, 2, 4, 6, 

31 and 32 are the main inputs to the snow cover algorithm.  
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The MODIS snow mapping is a fully automated algorithm that is based on 

Normalized Difference Snow Index (NDSI) and a set of thresholds. The NDSI is 

useful for the identification of snow and ice for separating snow/ice and most 

cumulus clouds. The NDSI is a measure of the relative magnitude of the 

characteristic reflectance difference between the visible and short infrared 

reflectance of snow as shown in Equation 5.1.  

 

6BandMODIS4BandMODIS

6BandMODIS4BandMODIS
NDSI

)()(

)()(

+

−
=  Equation 5.1 

 

The NDSI is insensitive to a wide range of illumination conditions, is partially 

normalized for atmospheric effects and does not depend on the reflectance in a 

single band (Hall et al., 2001). 

 

The high reflectance of snow in the visible compared to mid-infrared portion of the 

spectrum yields high NDSI values for snow compared to other surface materials. 

After numerous comparison tests with Landsat-TM scenes, the NDSI threshold is 

set to be greater than 0.4 for snow. Since water may also have an NDSI ≥ 0.4, an 

additional test is necessary to separate water from snow. Snow and water may be 

discriminated by MODIS Band 2 (0.841-0.876 µm) test. If MODIS Band 2 

reflectance is ≥ 11% and NDSI ≥ 0.4 then the pixel is initially mapped as snow.  

 

Forests are among the dark objects that cause a classification problem in NDSI 

because many snow covered pixels in forested areas have an NDSI lower than 0.4. 

To eliminate this confusion Normalized Difference Vegetation Index (NDVI) 

(Tucker, 1979; Tucker, 1986 and Townshend and Tucker, 1984), which has been 

proven to be an effective method for monitoring global vegetation conditions 

throughout a year, is utilized. The NDVI for MODIS is calculated using Band 1 and 

Band 2 as shown in Equation 5.2. 

 

1BandMODIS2BandMODIS

1BandMODIS2BandMODIS
NDVI

)()(

)()(

+

−
=  Equation 5.2 



 100 

High values of NDVI indicate healthy and denser vegetation. Thus by using the 

NDVI and NDSI in combination, it is possible to lower the NDSI threshold in 

forested areas without compromising the algorithm performance in other land 

covers (Hall et al., 2001). If a pixel has NDSI and NDVI values within an irregular 

polygon as determined from canopy-reflectance modeling as discussed in Klein et 

al. (1998), it is mapped as snow. 

 

To improve the snow mapping accuracy and eliminating the spurious snow, 

especially from cloud intrusion, aerosol effects, snow/sand confusion on coastlines, 

a thermal mask was implemented in fall of 2001. A split window technique using 

MODIS Band 31 (10.78-11.28 µm) and Band 32 (11.77-12.27 µm) is performed to 

estimate surface temperature values. A pixel is not mapped as snow if the 

estimated surface temperature is greater than 277°K. It is reported that this 

technique has improved the snow covered area especially in warm tropical regions 

(Hall et al., 2001). 

 

MODIS snow algorithm is executed on land and inland lake pixels. In this content, 

oceans are skipped using the land/water mask in MODIS geolocation product 

MOD03. Also Snowmap is applied to pixels that have a clear view of the surface. 

Clouds are masked using MODIS cloud mask data product MOD35 (Riggs et al., 

2003). 

 

For further details on MODIS technical specifications, data products, algorithms 

and ordering, one may refer to Hall et al. (2001), Hall et al. (2002), Riggs et al. 

(2003) and MODIS internet web page (MODIS, URL-6). 
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5.6 Geographic Information Systems in Remote Sensing 

 

In order for the application of remote sensing to be successful, key ancillary 

support systems must be available. Beyond the initial computer data processing of 

the digital remote sensing imagery, Geographic Information Systems (GIS) are 

used to supply all other important spatial, temporal and statistical information at 

low cost to further integrate and analyze the remote sensing data with relative 

ease (WMO, 1999a).   

 

A GIS is an organized collection of computer hardware, software and geographic 

data designed to efficiently capture, store, update, manipulate, analyze and display 

all forms of geographically referenced information (Johnson et al., 1992). The 

information pertaining to various spatial or temporal features are stored typically 

as attributes in tabular files linked to the feature, often in special database 

management systems (DBMS).  

 

GIS is extensively used to delinate drainage systems either from a DEM (Digital 

Elevation Model) or TIN (Triangulated Irregular Network) for any location and then 

quantify the characteristics of that system. Watersheds, stream networks, slope, 

aspect and many other topographic characteristics can be generated to assist in 

the analysis of remotely sensed images. For example, when a basin is only partially 

obscured by cloud, it is possible to extrapolate snow cover information from   

cloud-free areas to cloud covered areas by equating areas of similar elevation, 

aspect and slope (Rango, 1996). 

 

RS and GIS are both tools for managing spatially distributed information in large 

quantities and at a variety of scales. Both increase the capabilities of human 

decision maker and planners to grasp relationships at larger scales and in more 

complex settings than has been possible before.  
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Processing of remote sensing data is getting less expensive since technical tools for 

multi-spectral image analysis and management of results using Geographic 

Information Systems are commonly available. In addition, the availability of Earth 

Observation data on a global scale with reasonable time and ground resolutions is 

steadily increasing.  

 

GIS coupled with remote sensing is a well-established tool and routinely used in 

applied hydrology today. Results of the analysis give a digital representation of the 

temporal and spatial variations of selected variables (e.g. snow cover, vegetation) 

and can serve as input into hydrological models.  
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CHAPTER 6 

 

HBV MODEL APPLICATION 

 

 

6.1 Introduction 

 

The expanding use and increased complexity of hydrological runoff models has 

given rise to a concern about overparameterization and risks for compensating 

errors. In this sense, an accurate simulation of runoff is no guarantee for correctly 

estimated internal variables of a conceptual model. An error in the description of 

one process may be compensated by an error in another part of the model. One 

proposed way out is the calibration and validation against additional observations, 

such as snow, soil moisture, groundwater or water quality. 

 

The HBV model was initially intended for runoff simulation and hydrological 

forecasting, but as the scope of applications grew rapidly, the physical credibility of 

the model became critical. Some of these applications were focused on site-specific 

details in the water balance, which opened opportunities for internal validation of 

the model (Bergström et al., 2002). It became important to make sure that the 

model was not ‘right for the wrong reason’ (Klemes, 1986).  

 

The Nordic HBV model (Saelthun, 1996) used in this study is a modified version of 

the HBV model (Bergström, 1992) developed for the Nordic project “Climate 

Change and Energy Production” as a synthesis of several versions used in different 

Nordic countries. The model structure is a sequence of three submodels for snow, 

soil and response with a usual daily time step as described in Chapter 3. The 

model is divided into ten elevation intervals and the observed model inputs are 

precipitation, temperature and potential evapotranspiration. The main output from 
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the simulations is runoff, but snow pack and snow covered area for each elevation 

interval can also be simulated. The HBV model is applied to Kırkgöze Basin in 

Upper Euphrates River, where details are provided in the following section, as a 

pioneer application of the model in Turkey.  

 

Since HBV model is a semi-distributed conceptual hydrologic model with several 

parameters, it needs calibration. In this section of the thesis, determination of the 

confined model parameters as well as calibration of the specified free parameters 

in the model is undertaken. A multi-variable calibration procedure, using optical 

satellite derived snow covered area data as well as runoff, in the HBV model 

application is tested to assess if internal simulations of the model could be 

improved without deteriorating the runoff results. In this sense, Earth Observation 

data can play a valuable role to increase the confidence in the model performance. 

 

6.2 Basin Description 

 

Kırkgöze basin, located at the headwaters of Karasu basin as shown in Figure 6.1 

with the outlet DSI 21-01 under the supervision of General Directorate of State 

Hydraulic Works, is selected as the test area in this study. Kırkgöze basin has an 

area of 242.42 km2 and an elevation range from 1830 m to 3140 m as shown on a 

Digital Elevation Model (DEM), Figure 6.1, derived from 1:25,000 scaled contour 

maps using GIS spatial analysis. The median elevation in the basin is calculated 

around 2342 m. Figure 6.2 depicts the slope map of the basin which has a mean 

total slope of 24.6%. In terms of aspect, 20.8% is facing north, 22.1% is facing 

east, 23.4% is facing south, 30.7% is facing west and 3.0% is on a flat surface in 

Kırkgöze basin as presented in Figure 6.3. For a better visual understanding of the 

site, a 3-dimensional view of the basin is shown in Figure 6.4. A land use map of 

the area is generated by performing a hierarchical classification technique on a 

Landsat TM June 2000 satellite image (Akyürek and Şorman, 2002) as shown in 

Figure 6.5. Most of the area is pasture (86%) along with bare land and forest 

contributing 7% and 4% respectively to the basin. The general climatologic 
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conditions indicate a cold, dry and windy area which can also be observed by the 

figures given in Chapter 4.  

 

The main reasons for concentrating on this certain basin rather than the whole 

Karasu basin is that there is no significant human interaction to the catchment 

either from urbanization or reservoir regulation. Although the basin can be 

considered as small in terms of scale, it has a large elevation difference that makes 

it possible to conduct a snow study. Finally, Kırkgöze basin is located close to the 

city of Erzurum and therefore the region is accessible to reach at regular intervals. 

 

 

 

Figure 6.1 Location and Digital Elevation Model of Kırkgöze Basin 
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Figure 6.2 Slope map of Kırkgöze Basin 

 

Figure 6.3 Aspect map of Kırkgöze Basin 
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Figure 6.4 3-dimensional view of Kırkgöze Basin 

 

Figure 6.5 Land cover classes for Kırkgöze Basin derived from Landsat TM image, 

     June 2000 
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6.3 Hydro-meteorological Data 

 

Güzelyayla snow and meteorological station is located within Kırkgöze basin as 

seen in Figure 6.1. This automatic station measures several snow and 

meteorological variables every 30 seconds and records the averages of these 

measurements every 2 and 24 hours. Since there are no synoptic or climate 

stations in the catchment operated by the governmental organizations, mean daily 

temperature and total precipitation data for the HBV model is used only from 

Güzelyayla station.   

 

Discharge data for Kırkgöze basin is supplied from DSI 21-01 stream gaging station 

which is positioned at the outlet of the basin.  Both a shaft encoder and pressure 

transducer equipment measure the stages at the outlet which are converted into 

discharge values using rating curves updated frequently.  

 

Table 6.1 summarizes the hydrometeorological data (precipitation, temperature 

and discharge) used for modeling in Kırkgöze basin.  

 

Table 6.1 Hydro-meteorological data used for modeling in Kırkgöze basin  

   (P: Precipitation, T: Temperature, Q: Discharge) 

Station 

Name 
Type Parameters 

Start 

Year 

Latitude 

Longitude 

Elevation 

(m) 

Güzelyayla 
Snow and 

Meteorological 
P, T 2001 

40° 12’ 01’’ N 

41° 28’ 22’’ E 
2065 

Kırkgöze 
Stream 

Gaging 
Q 1963 

40° 05’ 51’’ N 

41° 22’ 59’’ E 
1830 
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6.4 Snow Cover Data 

 

The Earth Observation data used in the study are daily MODIS snow products 

MOD10A1, details given in Chapter 5, downloaded from National Snow and Ice 

Data Center (NSIDC, URL-5), Boulder, Colorado, USA, through file transfer protocol 

(ftp). MODIS images are stored in tiles as shown in Figure 6.6 and the study area 

corresponds to a single tile namely, h21v04. Downloaded images are then 

processed using MODIS Reprojections Tools (MRT, URL-7) software to define the 

projection, cell size and if needed to mosaic several other tiles. Using MRT 

software, MODIS MOD10A1 products are reprojected into World Geodetic System 

1984 (WGS84) Universal Transverse Mercator (UTM) Zone 37 projection system 

which is originally Sinusoidal. The spatial resolution of the product is kept as 500 m 

as default and since there is only one MODIS tile used, no mosaicking is 

performed.  

 

 

 

Figure 6.6 View of MODIS tiles 
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Three melt seasons, 2002, 2003 and 2004 are chosen for comparison of HBV 

snowpack predictions with snow cover maps derived from MODIS satellite. This is 

mainly because there are no reliable temperature and precipitation data within the 

region before this time since Güzelyayla station was installed in late 2001. Also, 

even there were meteorological data for the area of study, MODIS satellite images 

are only present from September 2000 since MODIS is one of the recent satellites 

in space. Before this time, if snow covered area is the point of interest, other 

Medium Range Optical Instrumentation (MROI) satellites need to be used, one 

such example would be NOAA-AVHRR which is not as superior as MODIS in terms 

of spatial and spectral resolution.  

 

Daily images from the three melt periods, 2002, 2003 and 2004 are processed 

using MRT software which are later imported into ERDAS Imagine software. With a 

module written in Spatial Modeler of ERDAS Imagine software, the 8-bit continuous 

MODIS image is converted into a thematic snow cover product with names and 

color attributes. The thematic snow cover product of the whole MODIS tile is cut 

for the area of interest which is Kırkgöze basin for an overlay analysis of snow, 

cloud and land cover percentages in the region for each daily image. Clear images 

from cloud coverage are preferred to be used in modeling, hence images that have 

cloud cover less than 25% are processed as a first step that correspond to a period 

just before, during and just after all the snow has melted. A total of 28 images in 

2002, 20 images in 2003 and 27 images in 2004 are classified with the above given 

criteria. Afterwards, these images are further decreased in number because of a 

stricter criterion in which images that fall into only the main mid-melting period, 

excluding beginning and ending snowmelt periods, as well as a cloud cover 

percentage of less than around 10-15% is preferred. The reasons for the second 

criteria are that a model can easily simulate the beginning and ending of the melt 

periods but may have problems within this portion and also a further clear image 

from clouds is more reliable. Hence in the end, 6 images in 2002, 6 images in 2003 

and 7 images in 2004 are selected to be used for snow covered area determination 

in Kırkgöze basin. Finalized image dates with snow and cloud cover percentages 

are tabulated in Table 6.2 and are depicted in Figure 6.7.  
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Table 6.2 Dates with cloud and snow coverage for the available classified MODIS 

images in Kırkgöze basin. 

 

2002 

(6 images) 

2003 

(6 images) 

2004 

(7 images) 

Date Cloud % Snow % Date Cloud % Snow % Date Cloud % Snow % 

13-Apr-02 7.7 88.0 11-Apr-03 9.2 75.7 25-Mar-04 6.6 89.0 

29-Apr-02 1.9 47.6 13-Apr-03 3.4 55.5 8-Apr-04 11.7 77.4 

7-May-02 1.1 36.8 2-May-03 6.7 34.7 9-Apr-04 7.3 65.8 

20-May-02 0.0 24.9 3-May-03 0.1 28.8 18-Apr-04 16.6 70.2 

27-May-02 0.0 11.8 9-May-03 2.3 20.6 26-Apr-04 6.7 42.7 

7-Jun-02 2.2 4.6 13-May-03 3.5 9.2 22-May-04 11.2 18.7 

      1-Jun-04 11.6 7.6 

 

 

As mentioned by Klein et al. (1998), Metsamaki et al. (2002) and Vikhamar and 

Solberg (2003), remote sensing of the snow pack works best for open areas. Since 

the basin under study does not contain a dense vegetation land cover, there is no 

need to mask out an area where remote sensing images can give erroneous 

results.  
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13 Apr 2002 

 

11 Apr 2003 

 

25 Mar 2004 

 

29 Apr 2002 

 

13 Apr 2003 

 

08 Apr 2004 

 

07 May 2002 

 

02 May 2003 

 

09 Apr 2004 

 

20 May 2002 

 

03 May 2003 

 

18 Apr 2004 

 

27 May 2002 

 

09 May 2003 

 

26 Apr 2004 

 

07 Jun 2002 

 

13 May 2003 

 

22 May 2004 

  

 

01 Jun 2004 

 

Figure 6.7 Classified MODIS images from the study period (yellow=snow, 

brown=land, blue=cloud or unclassified). 
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6.5 Model Parameters 

 

As described in Chapter 3, HBV model parameters consist of two categories named 

as confined and free parameters. Confined parameters are values that are 

provided to the model once and never changed whereas free parameters must be 

determined by a process of calibration.  

 

6.5.1  Confined Model Parameters 

 

The confined parameters of HBV model are listed and further discussed below:  

 

� Area and area-elevation curve 

� Potential monthly evapotranspiration 

� Land use and vegetation (land cover) 

� Initial conditions 

 

Area and Area-Elevation Curve 

Through the use of GIS analysis, several basin characteristics are determined as 

shown in Figure 6.1 through Figure 6.4. In this sense, the area of the basin is 

calculated as 242.42 km2 and the area-elevation (hypsometric) curve is computed 

using the Digital Elevation Model (DEM) of Kırkgöze basin given in Figure 6.8.  

Since HBV model requires the basin to be described in ten equal percentage 

elevation intervals, this process is done using a GIS query and tabulated in Table 

6.3 along with their slope values in percentage.  
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Figure 6.8 Hypsometric curve of Kırkgöze Basin 

 

 

Table 6.3 Ten equal elevation intervals of Kırkgöze basin and their corresponding 

slope values 

Basin Area (%) Elevation Range (m) Slope (%) 

0 - 10 1830 - 2026 19.66 

10 - 20 2026 - 2107 21.32 

20 - 30 2107 - 2178 23.78 

30 - 40 2178 - 2254 24.91 

40 - 50 2254 - 2342 26.41 

50 - 60 2342 - 2440 27.90 

60 - 70 2440 - 2589 30.32 

70 - 80 2589 -2692 25.12 

80 - 90 2692 -2791 20.94 

90 - 100 2791 - 3140 25.41 

0 - 100 1830 - 3140 24.62 
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Potential Monthly Evapotranspiration 

 

Evapotranspiration is the term used to describe the two almost inseparable 

processes of evaporation (physical process of the conversion of liquid water to 

water in a vapour form) and transpiration (loss of water by plants). The maximum 

and actual rates of evapotranspiration are called potential and actual 

evapotranspiration respectively. In the determination of potential evaporation, 

Thornthwaite (1948), Blaney-Criddle (1950) and Penman (1956) as cited in      

Usul (2001) are some of the most well known methods. 

 

The potential evapotranspiration for the HBV model is calculated in monthly terms 

using Thornthwaite and Blaney-Criddle formulae because of the simple and reliable 

applicability of the two methods. The results of the two approaches were quite 

similar for each month hence an average is calculated and given in Table 6.4. 

 

Table 6.4 Monthly potential evapotranspiration (PET) used in the HBV model 

Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

PET 

(mm/month) 
35 9 2.5 2.5 2.5 9 30 65 85 95 95 70 

 

 

Land Cover 

 

The land cover classes are determined by performing a hierarchical classification 

technique on a Landsat TM June 2000 satellite image (Akyürek and Şorman, 2002) 

as shown in Figure 6.5. There are more land cover classes in this classification than 

HBV model can recognize, therefore, they are joined into four classes which are 

field, forest, lake and glacier to be used as input into the HBV model. With this 

grouping, there are no lake or glacier components whereas 96% of the area is 

considered as field and the rest 4% is taken as forest in the model.  
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Table 6.5 Study catchment characteristics 

Catchment River 
Area 

(km2) 

Elevation (m a.s.l) 

Median       Max           Min 

Field 

(%) 

Forest 

(%) 

Lake 

(%) 

Glacier 

(%) 

DSI 21-01 

Kırkgöze 
Karasu 242.42 2342 3140 1830 96 4 0 0 

 

 

Initial Conditions 

 

Contents of the HBV model storages (upper and lower) at the beginning of 

simulation periods are important but generally unknown values. In literature, 

generally two methods are used to prevent problems linked to inappropriate initial 

conditions so as not to jeopardize the simulations. First, the initial levels in model 

storages are set to average seasonal values for the corresponding time of the year. 

Second, a warm-up period, a few months to a year are common values, is inserted 

at the beginning of each simulation period to attenuate the effect of the storage 

initialization (Seibert, 1997; Uhlenbrook, 1999; Perrin, 2001). Model results for the 

warm-up period are ignored in the computation of goodness-of-fit criteria.  

 

In this study, both methods are tried to be applied. Firstly, several runs are 

performed to determine the seasonal average conditions in the basin and then 

each simulation period is also given a warm-up period of nearly half a month. A 

longer warm-up period would not be practical to use in this case because already 

not a long simulation period is present for model calibration (3 years of data).  

 
 

6.5.2  Free Model Parameters 

 

Being a general hydrological model that can simulate both rainfall and snowfall, 

HBV model has quite a number of free parameters to adjust for calibration. These 

parameters are listed in Table 3.1. Although HBV is a conceptual model, most of its 

parameters do have a physical meaning. Therefore, in order to calibrate the free 

parameters of the model if there are measurements related to the model 
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parameters, these parameters are rather taken as fixed values to decrease the 

number of calibrable parameters in the model and hence the uncertainty.  

 

As the HBV model is highly-overparameterized, standard values are assigned to 

some of the calibration parameters in this study. Internal model parameters, like 

maximum content of liquid water (LV) and the refreezing coefficient (CFR), are not 

calibrated and literature based values are used since they are not very sensitive 

free parameters. The number of model parameters to be calibrated with their 

default values and feasible parameter space are given in Table 6.6. 

 

6.6 Automatic Calibration Routine coupled with HBV Model 

 

Once all the confined parameters are calculated and those less sensitive free 

parameters are decided upon, the rest of the free parameters need to be 

calibrated. As discussed in Chapter 3, this procedure can either be done manually 

or in an automatic manner. In this study, an automatic calibration technique is 

utilized to determine the selected 16 free parameters in HBV model. The automatic 

calibration is carried out by an independent computer package outside the HBV 

model using two different search methods namely GML (Gauss-Marquardt-

Levenberg) and SCE_UA (Shuffled Complex Evolution, University of Arizona) which 

are discussed in the following sections.   
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Table 6.6 HBV model free parameters with their upper and lower ranges and 

assigned default values for calibration 

Name Meaning 
Default 
value 

Value range 
Min        Max 

Units 

        Snow routine 

Tx 
Threshold temperature 
for rain/snow 

0.0 -2.5 2.5 °C 

Ts 
Threshold temperature 
for snowmelt 

0.0 -2.5 2.5 °C 

Cx 
Degree-day  
factor 

3.5 1 7 mm/°C/day 

PKOR 
Precipitation correction 
rainfall 

1.0 0.5 1.7 --- 

SKOR 
Precipitation correction 
snowfall 

1.0 0.5 1.7 --- 

TTGD 
Temperature lapse rate 
for clear days 

- 0.6 -1.1 -0.3 °C/100 m 

TVGD 
Temperature lapse rate 
during precipitation 

- 0.4 -0.8 -0.2 °C/100 m 

PGRD 
Precipitation 
lapse rate 

0.01 0.0 0.1 --- 

          Soil routine 

FC 
Field capacity in soil 
moisture zone 

250 50 450 mm 

LP 
Threshold value for PET 
in soil moisture 

0.9 0.6 1.0 frac. of FC 

β 
Parameter in soil 
moisture routine 

1.0 1.0 4.0 --- 

         Response routine 

KUZ2 
Fast recession constant 
in Upper zone 

0.2 0.1 0.6 1/day 

UZ 
Threshold level for quick 
runoff in Upper zone 

20 5 65 mm 

KUZ1 
Slow recession constant 
in Upper zone 

0.1 0.01 0.3 1/day 

PERC 
Percolation from Upper 
to Lower zone 

0.9 0.5 2.0 mm/day 

KLZ 
Recession constant in 
Lower zone 

0.001 0.0005 0.01 1/day 
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6.6.1  Model-independent Parameter ESTimation (PEST) 

 

PEST (an acronym for Parameter ESTimation) is a powerful nonlinear parameter 

estimation computer package, developed by Doherty et al. (1994) and later 

updated Doherty (2003, 2004) and, that exists independently of any particular 

model, yet can be applied to a wide range of model types.  

 

The purpose of PEST is to assist in data interpretation, model calibration and 

predictive analysis. If there are field or laboratory measurements corresponding to 

model-generated numbers, PEST can adjust model parameter and/or excitation 

data until model-generated numbers fit a set of observations as closely as possible, 

provided certain continuity conditions are met. It will decrease the discrepancies 

between modeled and observed values to a minimum in the weighted least 

squares sense. It does this by taking control of the model and running it as many 

times as is necessary in order to determine this optimal set of parameters and/or 

excitations. The universal applicability of PEST lies in its ability to perform these 

tasks for any model that reads its input data from one or a number of ASCII      

(i.e. text) input files and writes the outcomes of its calculations to one or more 

ASCII output files. Thus a model does not have to be recast as a subroutine and 

recompiled before it can be used within a parameter estimation process. PEST 

adapts to the model, the model does not need to adapt to PEST. 

 

6.6.1.1 An Overview of PEST 

 

PEST is subdivided into three functionally separate components which are: 

• parameter and/or excitation definition and recognition, 

• observation definition and recognition, 

• the nonlinear estimation and predictive analysis algorithm. 
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Parameter definition and recognition 

 

Of the masses of data of all types that may reside on a model’s input files, those 

numbers must be identified which PEST is free to alter and optimize. Fortunately, 

this is a simple process which can be carried out using input file “templates”. To 

construct a template file, each space occupied by a parameter is replaced by a set 

of characters that both identify the parameter and define its width on the input 

file. Then whenever PEST runs the model it copies the template to the model input 

file, replacing each parameter space with a parameter value as it does so. 

 

PEST requires that upper and lower bounds be supplied for adjustable parameters; 

this information is vital to PEST, for it informs PEST of the range of permissible 

values that a parameter can take. Many models produce nonsensical results, or 

may incur a run-time error, if certain inputs transgress permissible domains.  

 

PEST allows logarithmic transformation of selected parameters to hasten the rate 

of convergence to optimal parameter values. PEST also allows to incorporate a 

prior information into the estimation process to increase the value of the objective 

function (i.e. the sum of squared deviations between model and observations).  

 

Observation definition and recognition 

 

PEST requires that for each model output file which must be opened and perused 

for observation values, an instruction file be provided detailing how to find those 

observations. This instruction file can be prepared using any text editor. 

 

Once interfaced with a model, PEST’s role is to minimize the weighted sum of 

squared differences between model-generated observation values and those 

actually measured in the laboratory or field; this sum of weighted, squared, model-

to-measurement discrepancies is referred to as the “objective function”. The fact 

that these discrepancies can be weighted makes some observations more 
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important than others in determining the optimization outcome. Weights should be 

inversely proportional to the standard deviations of observations, “trustworthy” 

observations having a greater weight than those which cannot be trusted as much. 

Also, if observations are of different types (for example solute concentration and 

solvent flow rates in a chemical process model) they can be grouped by the user 

so that the weights assigned to each group can reflect the relative magnitudes of 

the numbers used to express different quantities; in this way the set of larger 

numbers will not dominate the parameter estimation process just because the 

numbers are large. A particular observation can be provided with a weight of zero 

if the user does not wish it to affect the optimization process at all.  

 

Parameter estimation algorithm 

 

PEST uses a nonlinear estimation technique known as the Gauss-Marquardt-

Levenberg (GML) algorithm. For linear models (ie. models for which observations 

are calculated from parameters through a matrix equation with constant parameter 

coefficients), optimization can be achieved in one step. However for nonlinear 

problems (most models fall into this category), parameter estimation is an iterative 

process. At the beginning of each iteration, the relationship between model 

parameters and model-generated observations is linearized by formulating it as a 

Taylor series expansion about the currently best parameter set; hence the 

derivatives of all observations with respect to all parameters must be calculated. 

This linearized problem is then solved for a better parameter set and the new 

parameters tested by running the model again. By comparing parameter changes 

and objective function improvement achieved through the current iteration with 

those achieved in previous iterations, PEST can tell whether it is worth undertaking 

another optimization iteration; if so the whole process is repeated. 

 

The strength of this method lies in the fact that it can generally estimate 

parameters using fewer model runs than any other estimation method, a definite 

bonus for large models whose run times may be considerable. However the 
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method requires that the dependence of model-generated observation 

counterparts on adjustable parameters and/or excitations be continuously 

differentiable. 

 

As it calculates derivatives, PEST records the sensitivity of each parameter with 

respect to the observation dataset to a file which is continuously available for 

inspection. If it is judged that PEST’s performance is being inhibited by the 

behaviour of certain parameters (normally the most insensitive ones) during the 

optimization process, these parameters can be temporarily held at their current 

values while PEST calculates a suitable upgrade for the rest of the parameters. 

This whole process can be automated using PEST’s “automatic user intervention” 

functionality.  

 

PEST uses a number of different criteria to determine when to halt its iterative 

process. Note that only one of them (zero-valued objective function) is a guarantee 

that the objective function minimum has been obtained. In difficult circumstances, 

any of the other termination criteria could be satisfied when the objective function 

is well above its minimum and parameters are far from optimal. If these criteria 

are properly set through user provided PEST input variables, the user can be 

reasonably assured that when PEST terminates the parameter estimation process, 

either the optimal parameter set has been found or further PEST execution will not 

find it. 

 

At the end of the parameter estimation process (the end being determined either 

by PEST or by user) PEST writes a large amount of useful data to its run record 

file. PEST records the optimized value of each adjustable parameter together with 

that parameter’s 95% confidence interval. It tabulates the set of field 

measurements, their optimized model-calculated counterparts, the difference 

between each pair, and certain functions of these differences. (These are also 

recorded on a special file ready for immediate importation into a spreadsheet for 

further processing.)  
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As a summary, PEST requires three types of input files which are: 

• template files, one for each model input file which PEST must write prior to 

a model run, 

• instruction files, one for each model output file which PEST must read after 

a model run, and 

• a PEST control file which “brings it all together”, supplying PEST with the 

names of all template and instruction files together with the model 

input/output files to which they pertain. It also provides PEST with the 

model name, parameter initial estimates, field or laboratory measurements 

to which model outcomes must be matched, prior parameter information, 

and a number of PEST variables which control the implementation of the 

Gauss-Marquardt-Levenberg method. 

 

For a more detailed explanation of the PEST package, one can refer to Doherty  

(2003, 2004). 

 

6.6.2  Shuffled Complex Evolution (SCE-UA) 

 

The SCE-UA method, developed at the University of Arizona, is a global search 

optimization method designed to handle difficult, nonlinear response surfaces 

encountered in the calibration of conceptual watershed models. SCE-UA method is 

not problem specific and can be used for a broad class of problems effectively as 

well. SCE-UA method is capable of handling high parameter dimensionality and it 

does not rely on derivatives. The method is based on the notion of sharing 

information and on concepts drawn from principles of natural biological evolution.  

 

A number of studies have been conducted that compare SCE-UA with other 

existing global and local optimization methods, including the Adaptive Random 

Search (ARS) method, Multi Start Simplex (MSX) method and Genetic Algorithm 

(GA) for calibrating conceptual rainfall–runoff models (e.g. Duan et al., 1992; Duan 

et al., 1994; Gan and Biftu, 1996; Cooper et al., 1997; Kuczera, 1997; Franchini et 
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al., 1998; Freedman et al., 1998; Thyer et al., 1999). These studies demonstrate 

that the SCE-UA method is an effective and efficient search algorithm in finding the 

global optimum. The SCE-UA method has been widely applied for calibration of 

various conceptual rainfall–runoff models, including the Sacramento model 

(Sorooshian et al., 1993; Duan et al., 1994; Gan and Biftu, 1996; Yapo et al., 

1996; Gan et al., 1997), the Tank model (Tanakamaru and Burges, 1996; Cooper 

et al., 1997), the Xinanjiang model (Gan and Biftu, 1996; Gan et al., 1997) and for 

the first time with HBV model in this study. 

 

The SCE-UA method is based on a synthesis of the best features from several 

existing search strategies, including the simplex procedure (Nelder and Mead, 

1965), competitive evolution (Holland, 1975), controlled random search (Price, 

1987) and introduces the new concept of complex shuffling.  

 

The SCE-UA method begins by dividing the sample of all possible parameter values 

into a number of complexes (ngs), each containing a specified number of points 

(npg). Each complex is allowed to perform a modified simplex process. After a 

specified number of steps (nspl), the points within the complexes are shuffled to 

form a new set of sub-complexes each containing a number of points (nps) from 

the previous generation of complexes. The shuffling process reduces the risk of 

optimizing to a local minimum. As the search progresses, the entire population 

tends to converge towards the neighborhood of the global optimum, provided the 

initial population size is sufficiently large.  

 

The SCE method includes various algorithmic parameters. The most important 

parameter is the number of complexes (ngs). Sensitivity tests show that the 

dimensionality of the calibration problem (number of calibration parameters) is the 

primary factor determining the proper choice of (ngs) (Duan et al., 1994). In 

general, the larger the value of (ngs) chosen the higher the probability of 

converging into the global optimum but at the expense of a larger number of 

model simulations (the number of model simulations is virtually proportional to 

ngs) and vice versa.  
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For a more detailed structure of the SCE-UA algorithm, one can refer to Duan et al. 

(1992, 1993, 1994) and Singh (1995).  

 

6.6.3  A Comparison of PEST and SCE_UA Search Methods 

 

Although two different search methods for model calibration process are described 

in the preceding sections, both can be run on the same platform. SCE_UA 

algorithm is linked to the PEST package (Doherty, 2003) which allows the use of 

already prepared input files (template, instruction and control files) under PEST 

platform. This saves time and effort to the user in the data preparation stage by 

which the input files are created and checked once and can be used for both of the 

search methods afterwards. 

 

The strength of global optimization methods such as, SCE-UA and other such 

methods, is their ability to incorporate a certain degree of randomness into the 

search for the minimum of the objective function. There are costs and benefits 

associated with this strategy. The computational cost of adding such randomness 

to the selection of trial parameter values lies in the fact that many such values 

must often be selected for these methods to work properly; the selection of every 

such parameter set requires that a model run be undertaken in order to evaluate 

the objective function associated with that set. However the benefit of this strategy 

lies in the fact that it is only through the inclusion of such randomness in the 

global search strategy that it can be guaranteed that all “regions of attraction” 

within parameter space are “felt” at various stages of the optimization process; the 

global objective function minimum lies at the base of one of these regions of 

attraction. The efficiency with which different global optimization methods can 

locate this global minimum depends in part on the extent to which they can “learn 

from experience” in pursuing parameter trajectories which lead towards local, 

rather than global, objective function minima. 
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The Gauss-Marquardt-Levenberg (GML) method employed by PEST is stated not to 

be a global optimization method (Doherty, 2004). Where there is only one 

minimum of the objective function, the GML method is normally the fastest way to 

find it, involving far fewer model runs than any other method. However if 

parameter starting values are located in the catchment area of a local minimum, 

rather than the global minimum, then the GML method will very efficiently find its 

way to the local minimum. 

 

6.7 Model Calibrations 

 

In this study, the HBV model is automatically calibrated using GML and SCE_UA 

search algorithms for Kırkgöze basin. Data from the three-year period,                  

1 October 2001 to 30 September 2004, are used in the calibration process both in 

individual water year terms and in a combined form. The calibration process is 

carried out in two modes: 1) against runoff only as traditionally done (Q-model)   

2) against runoff and snow covered area (SCA) using Earth Observation data   

(QS-model). 

 

Such work was firstly initiated within the SnowTools (Guneriussen et al., 2000) and 

HydAlp (Rott et al., 2000) projects. The evaluations carried out in these projects 

showed that updating of the HBV model with remotely sensed SCA data tended to 

reduce the model performance. But Engeset et al. (2003) and later Alfnes et al. 

(2004, 2005) stated that the main reason for this could be the SCA data which was 

not used in the model calibrations. Using SCA in the calibration process, Engeset et 

al. (2003) and Alfnes et al. (2004, 2005) found that calibrating against both SCA 

and runoff together resulted in models that simulated SCA better than models 

calibrated against runoff alone. The improved SCA simulations did not seem to 

reduce the precision in the runoff simulations. Similar studies to evaluate the use 

of Earth Observation data on snow in the HBV model are conducted by Metsämäki 

et al. (2003) and Johansson et al. (2003). 
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The difference of this study from the above mentioned literature is that SCE_UA 

global optimization search method is applied for the first time with the HBV model 

along with the additional snow covered area data from MODIS satellite for a multi-

variable calibration. Above all, this is the first application of the HBV model in 

Turkey. The objective of the study is to investigate if using SCA data from MODIS 

satellite in the HBV model calibrations would improve the final model performance 

that does not depend on runoff only. 

 

The HBV model input and necessary calibration files are prepared in PEST platform 

so that both GML and SCE_UA search methods could be automatically applied for 

the calibration process. An example of the template, instruction and control files 

are presented in Appendix A.  

 

As mentioned earlier, PEST platform uses the sum of weighted squared residuals 

(Φ) as the objective function, Equation 6.1. The best parameter set for a       

single-variable calibration is decided upon the lowest objective function under the 

given weight conditions for each observation.  

 

( )
2norm

1i

ii rw∑
=

=Φ    Equation 6.1 

where:    ri = residual (difference between the observed and simulated value 

   for a variable) 

    wi = weight of each observation 

m or n = number of observations depending of the criterion variable 

 

The weighting factor of the observations is of great importance in the automatic 

calibration process. For a multi-variable calibration case where different 

observation types are used (runoff in m3/s and snow covered area in %), weight of 

each observation is adjusted such that different objective functions (Φ1 for runoff 

and Φ2 for snow covered area) are of about the same magnitude, Equation 6.2. 

The reason for this adjustment is that no one of the variable groups should 
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dominate during the calibration process even when their number of observations 

are different.  

 

( ) ( )
2m

1j

jj

2n

1i

ii21 SCArwQrw ∑∑
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+=Φ+Φ=Φ )()(   Equation 6.2 

 

Several simulation trails are undertaken using both GML and SCE_UA automatic 

calibration procedures. The original method of PEST package, which is the GML 

algorithm, converges to a result far before SCE_UA does. On a PC with Pentium IV 

processor and 512 MB RAM, a GML run for a combined three-year simulation takes 

around 3-5 minutes whereas, for a SCE_UA simulation at least 120 minutes are 

approximately needed for the completion of a run. In this sense, GML method is 

more advantageous. However, during the GML and SCE_UA simulation trials, both 

methods generally give different results when minimizing the objective function. By 

large, SCE_UA provides lower objective function values as compared to GML 

algorithm. The only explanation of this result can be mentioned as, although GML 

search method converges faster to minimize the objective function, it seems to 

reach a local minimum most of the time. Hence it can be concluded that GML is 

very dependent on the starting parameter values as have been mentioned by some 

other authors as well (Alfnes et al., 2005; Doherty, 2004; Engeset et al., 2003). 

When the final parameter estimation values determined by SCE_UA method are 

fed back into GML algorithm, the GML method does not improve on the objective 

function. As a result it can be deduced that although taking longer to complete the 

shuffling process, SCE_UA search method is a more powerful method than the 

GML algorithm in nonlinear parameter estimation when applied to hydrologic 

modeling to find the global optimum.  

 

During the multi-variable calibration procedure, the SCE_UA method used in the 

study provides only the total minimum objective function (Φ) from both variables 

at the end of a simulation. Hence the weight of each variable (Φ1 and Φ2) can not 

be observed. To examine and make sure that one variable group does not 
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dominate over the other, GML method is run with the SCE_UA output results once 

again to see the effect of each variable group on the objective function separately.  

 

As a means to judge the performance of the calibration, two widely used 

goodness-of-fit criterion are applied. The first one is the Root Mean Square Error 

(RMSE), Equation 6.3, that has the units of the evaluated variable. The lower the 

RMSE means the better the calibration process has been undertaken.  

 

( )

n

xx

RMSE

n

1i

2

isimiobs∑
=

−

=
,,

  Equation 6.3 

 

where:  obsx  = observed value 

  simx  = simulated value 

       n = number of observations 

 

The second goodness-of-fit criterion is the well-known Nash and Sutcliffe (1970)   

R2 criterion, Equation 6.4, mainly applied in rainfall-runoff modeling. It is 

dimensionless and may obtain a value ranging from -∞ to 1. A value greater than 

zero means that the simulated model gives a better estimate than a long-term 

mean of the observations. Also termed as the model efficiency, this equation 

actually shows the percentage of explained variance over the total variance (or in 

other words one minus the unexplained variance) between the observed and 

simulated values. Being dimensionless, it has an advantage over RMSE in the 

sense that different variables may be comparable. But it does depend on a 

meaningful average value.  

 

 

 



 130 

    

( )

( )∑

∑

=

=

−

−

−=
n

1i

2

obsiobs

n

1i

2

isimiobs
2

xx

xx

1R

,

,,

   Equation 6.4 

 

where:  obsx  = observed value 

  simx  = simulated value 

  obsx  = average value during the observation period 

       n = number of observations 

 

 

The above-mentioned criterion are transformed to the equations given in Table 6.7 

to judge the performance of the calibration simulations for single-variable and 

multi-variable cases with runoff and snow covered area as the variables. Usually in 

literature RMSE and R2 criterion are applied to runoff which is probably the easiest 

but at the same time the most important measured field variable. But for the   

multi-variable calibration procedure, these criterion are applied to snow covered 

area as well that describe the accuracy of the temporal variation of SCA. For SCA 

variable, unlike runoff, all of the daily values during a snowmelt season are not 

present mostly due to the cloud problem of the optical satellite used. Therefore, 

the number of observations for runoff and SCA are different. One additional 

criterion with respect to runoff is added to the goodness-of-fit table which is the 

accumulated relative volume error (VE) during the modeled period. This criterion is 

general and used both in the single and multi-variable calibration simulations. 

Although, daily volume differences can be noticeable, during the overall model 

calibration period, results may practically yield no volume error. But this criterion is 

still important for the verification and forecasting periods. 
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Table 6.7 Goodness-of-fit criterion used in the calibration process 

Objective Functions Equation Value for ‘perfect’ fit 
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where Q represents discharge in m3/s and SCA is snow covered area in %. n and 

m values are the number of discharge and snow covered area observations 

respectively. VE is the accumulated relative volume error. 

 

During the calibration of the HBV model, each of the above mentioned     

goodness-of–fit criterion are calculated for the calibration period and will be 

presented in the subsequent sections. The RMSE terms for each variable have their 

own units of measurement so as to give an idea of the error. On the other hand, 

R2 terms are dimensionless. Due to this advantage, a weighted combination of the 

dimensionless criterion can be used to yield an optimal goodness-of-fit as shown in 

Equation 6.5. 
2

TOTR  criterion combines the criterion for snow covered area as well 

as runoff with a penalty for any volume error. This combined multi-variable 
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technique can be used to take into account all the variables subject to calibration 

or validation. An advantage of the proposed formulation is that all variables are 

given about the same weight owing to the dimensionless nature of the R2 criterion. 

No re-scaling of the different criteria due to differences in magnitude or variance is 

needed. 

  

E3

2

SCA2

2

Q1

2

TOT VwRwRwR −+=   Equation 6.5 

 

The choice of weights wi introduces some subjectivity into the automatic process. 

The default choice should be to set all weights equal however, different weights 

could be chosen, taking into account for example the reliability and sampling 

frequency of the different variables. Although runoff may be the most important 

end product of a hydrological model especially during a flood season, in this study, 

the internal variable of SCA in the HBV model is as worthy to be correctly 

simulated. Therefore, equal weights are given to both runoff and snow covered 

area criterion because it is thought that one should not dominate over the other if 

their effect is to be tested. In this sense, w1 and w2 are both given a weight of 0.5 

and w3 is specified as 0.1 as proposed by Lindström et al. (1997) and Bergström et 

al. (2002) to be a decent penalty for any volume error occurring.  
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6.7.1  Simulations without EO data (single-variable) 

 

The first of the calibration modes is the traditional single-variable runoff 

simulations (Q-model) without the use of Earth Observation data. 16 HBV model 

free parameters are automatically calibrated using SCE_UA method firstly taking 

each year individually and then in a combined form. By this way it will be possible 

to see how the model tries to replicate the observed values for certain years and 

as a whole. The goodness-of-fit criterion is calculated for runoff and SCA 

separately along with the volume penalty and the total model efficiency is 

determined by assigning certain weights to these criterion. Figure 6.9 shows the 

model simulation runs for discharge and snow covered area using the single 

criterion as runoff for individual years and Figure 6.10 plots the model simulation 

runs for combined years. Table 6.8 and Table 6.9 tabulate the results. 

 

It looks like the individual year 2003 is simulated the best out of the three by 

considering each of the goodness-of-fit criterion. The simulated hydrograph fits 

well with the observed values and the snow covered area depletion shows a 

smooth decline over the melt period except once in late April 2003.  

 

For individual years of 2002 and 2004, time-wise the start of the melt season is 

simulated correctly, but the observed peak discharge values in the hydrograph are 

not met.  This mismatch is compensated later in the season which also includes 

the rainfall-runoff process even after snowmelt has ceased. During 2002, there are 

two times when SCA has increased (snowfall occurrence) in the melt period 

whereas, the same process has occurred several times in the 2004 season showing 

a more fluctuating snow cover over the basin.  

 

As of the combined calibration runs, 2003-2004 combination has the best 

discharge efficiency, but SCA is represented best within the 2002-2003 water 

years. This is probably because 2004 discharge values are better modeled as 

compared to 2002 simulations but at the same time since 2004 SCA depletion has 



 134 

a more complicated decreasing trend, this is why SCA goodness-of-fit values 

decrease when 2004 is taken into consideration. 

 

Also as expected, as more data are made available for calibration, both discharge 

and snow covered area efficiencies decline which can be seen from 2002-2004 

three year combination results. Although this is the case, the lowering of the 

efficiencies also correspond to a more sound model parameter calibration values. 

On the overall, model efficiency values above 80% are categorized as good results 

in hydrological terms.  

 

Table 6.8 Calibration results of Q-models for individual years 

Water Year 2002 2003 2004 

Simulation Period 1/10/2001 - 30/9/2002 1/10/2002 - 30/9/2003 1/10/2003 - 30/9/2004 

RMSE Q 0.435 0.168 0.363 

RMSE SCA 8.758 5.476 12.956 

R2 Q 0.880 0.980 0.920 

R2 SCA 0.898 0.939 0.794 

VE 0.002 0.000 0.001 

R2 TOT 0.889 0.960 0.857 

Figure 6.9 a.1 + b.1 a.2 + b.2 a.3 + b.3 

 

Table 6.9 Calibration results of Q-models for combined years 

Water Year 2002-2003 2003-2004 2002-2004 

Simulation Period 1/10/2001 - 30/9/2003 1/10/2002 - 30/9/2004 1/10/2001 - 30/9/2004 

RMSE Q 0.427 0.414 0.455 

RMSE SCA 5.040 10.537 10.065 

R2 Q 0.880 0.900 0.870 

R2 SCA 0.958 0.847 0.863 

VE 0.000 0.002 0.000 

R2 TOT 0.919 0.874 0.867 

Figure 6.10 a.1 + b.1 a.2 + b.2 a.3 + b.3 
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6.7.2  Simulations with EO data (multi-variable) 

 

The second calibration mode is the multi-variable runoff and snow covered area 

simulations (QS-models). Again SCE_UA method is utilized to automatically 

calibrate the selected 16 free parameters individually and in a combined form for 

the three respective years 2002, 2003 and 2004. Figure 6.11 and Figure 6.12 

depict the model simulation runs for individual years and in a combined form 

respectively. The goodness-of-fit criterion is calculated for each variable and given 

in Table 6.10 and Table 6.11 for the two different combinations.  

 

The best representation of the simulated hydrographs among individual years is 

again 2003, while 2002 and 2004 year early snowmelt runoff peaks can still not be 

matched. In terms of SCA, 2002 shows a better agreement with the MODIS 

images. On the overall for the individual years, 2003 is far better than the rest. 

 

For the combined years, the two-year combined calibrations give similar results for 

discharge and a small decrease of 0.01 in the three-year combined. The best SCA 

values are achieved in 2003-2004 combination and interestingly 2002-2004 SCA is 

the next best. On the overall, the total model efficiencies for the combined years 

are very close to each other.  
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Table 6.10 Calibration results of QS-models for individual years 

Water Year 2002 2003 2004 

Simulation Period 1/10/2001 - 30/9/2002 1/10/2002 - 30/9/2003 1/10/2003 - 30/9/2004 

RMSE Q 0.507 0.244 0.510 

RMSE SCA 2.629 3.338 4.196 

R2 Q 0.840 0.980 0.880 

R2 SCA 0.991 0.977 0.978 

VE 0.000 0.001 0.001 

R2 TOT 0.916 0.979 0.929 

Figure 6.11 a.1 + b.1 a.2 + b.2 a.3 + b.3 

 

 

Table 6.11 Calibration results of QS-models for combined years 

Water Year 2002-2003 2003-2004 2002-2004 

Simulation Period 1/10/2001 - 30/9/2003 1/10/2002 - 30/9/2004 1/10/2001 - 30/9/2004 

RMSE Q 0.484 0.531 0.562 

RMSE SCA 5.236 4.078 4.914 

R2 Q 0.880 0.880 0.870 

R2 SCA 0.954 0.977 0.967 

VE 0.000 0.001 0.000 

R2 TOT 0.917 0.929 0.919 

Figure 6.12 a.1 + b.1 a.2 + b.2 a.3 + b.3 
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6.7.3  Comparison of Model Calibrations 

 

The HBV model calibration is carried out for the three water years, 2002, 2003 and 

2004 in several different yearly combinations to see the change in model response 

both in terms of runoff and snow covered area variables. The goodness-of-fit 

criterion values on these two variables are computed individually and in a 

combined weighted manner. Model parameter uncertainty is tested to see the 

difference between single-variable and multi-variable model calibration. 

 

When the calibration results are compared using Q-model and QS-model for the 

individual years, it can be concluded that at a small expense of discharge 

efficiency, SCA measures increase. Individual year 2003 has been affected the 

least in these two calibration modes, where the discharge efficiency stayed the 

same while SCA efficiency increased giving a total increase on the overall as can be 

seen in Table 6.12. Individual years 2002 and 2004 both show a 0.04 decrease for 

discharge measure but a 0.093 to 0.184 increase for SCA R2 terms. As a total, 

0.019 to 0.072 increase in the individual year calibration is observed when weights 

are distributed equally to discharge and snow covered area.  

 

In the comparison for the combined years, Table 6.13, a decrease of 0.02 in 

discharge efficiency is observed for the 2003-2004 combination whereas no change 

is detected for the 2002-2003 and 2002-2004 simulations. In terms of SCA, an 

interesting small decrease is calculated for the 2002-2003 combination as 

compared to a significant increase for the 2003-2004 and 2002-2004 calibration 

combinations.  

 

As an overall result on the calibration process it can be concluded that, both 

individual and combined year QS-model simulations show a considerable increase 

in the total model efficiency including runoff, snow covered area and accumulated 

volume terms as compared to the Q-model runs. A small trade-off in discharge 

efficiency is compensated by a larger increase in the SCA measure giving an overall 

increase for the model goodness-of-fit terms. In all the calibration simulations, the 
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relative accumulated volume error is very small which does not affect the total 

model efficiency results.  

 

Table 6.12 Calibration result comparison for individual years 

Water Year 2002 2003 2004 

Simulation Period 1/10/2001 - 30/9/2002 1/10/2002 - 30/9/2003 1/10/2003 - 30/9/2004 

RMSE Q -0.072 -0.076 -0.147 

RMSE SCA +6.129 +2.138 +8.760 

R2 Q -0.040 0.000 -0.040 

R2 SCA +0.093 +0.038 +0.184 

VE +0.002 -0.001 0.000 

R2 TOT +0.027 +0.019 +0.072 

 

 

Table 6.13 Calibration result comparison for combined years 

Water Year 2002-2003 2003-2004 2002-2004 

Simulation Period 1/10/2001 - 30/9/2003 1/10/2002 - 30/9/2004 1/10/2001 - 30/9/2004 

RMSE Q -0.057 -0.117 -0.107 

RMSE SCA -0.196 +6.459 +5.151 

R2 Q 0.000 -0.020 0.000 

R2 SCA -0.004 +0.130 +0.104 

VE 0.000 +0.001 0.000 

R2 TOT -0.002 +0.055 +0.052 
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The best parameter sets for individual and combined year calibration cases with  

Q-model and QS-model are tabulated in Table 6.14 and Table 6.15 respectively. In 

order to better visualize the changes in parameter values between individual and 

combined years, the parameter values are normalized along the feasible parameter 

space, given in Table 6.6, using Equation 6.6 to obtain a value in the range of zero 

and one.  

( )
( )minmax

min

xx

xx
ValueNormalized

−

−
=   Equation 6.6 

 

where:  x = optimum parameter value for each model variable 

  xmin = lowest value in the feasible parameter space 

  xmax = highest value in the feasible parameter space 

 

Figure 6.13 through Figure 6.16 depict the normalized ranges of the 16 HBV model 

parameters with individual and combined Q-model and QS-model simulations. 

Simulation results indicate that only few of the model parameters are found to be 

well-defined, while for the others, good fits are obtained over broad ranges. 

 

For the Q-model runs parameters tx, ts, skor, tvgd, uz1 and perc show a narrow 

range distribution (< 0.2) while lp and β are the parameters which have the largest 

range. The rest are scattered in between 0.2 and 0.4 values. For the QS-model 

simulations, parameters in the narrow range are ts, cx, tvgd, prgd, fc, kuz2. 

Parameters tx, lp, uz1, perc and β show the largest change within the parameter 

set. Interestingly, narrow ranged parameters in Q-model runs are not seen in the 

QS-model simulations. ts and tvgd are the only two parameters to be well-defined 

in both model calibration results. For an easier comparison among all the model 

parameters between single and multi-variable calibrations for combined years, the 

ratios are computed by dividing QS-model ranges for each parameter with the     

Q-model ranges where the results are plotted in Figure 6.17. It can be seen that 

some of the model parameters are well over and some under the equilibrium line 

(line passing from QS/Q Range=1). Parameter uncertainty, i.e. the problem to find 

one unique set of parameters, increases with the number of model parameters and 
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decreases with increasing information about the system. Hence in the calibration of 

the HBV model, it was hoped that the use of additional data, snow covered area in 

this case, would help to constrain the ranges of parameter values. It is not very 

clear to say that parameter uncertainty has been decreased in this study as 

expected. There could be several reasons to this. Firstly, calibration data of three 

years may not be enough to give such a judgement as well as including the quality 

of this data. Another reason could be the overparameterization of the model to 

obtain only one optimal parameter set. There could be several different parameter 

sets spread throughout the parameter space that can provide almost equally good 

fits. And finally, other objective functions beside the sum of squared differences as 

used in this study, could be utilized to make more use of the data in hand. 

Although parameter uncertainty may be a significant source of the combined 

modeling uncertainty, other sources such as natural randomness, data errors and 

the model structure itself may pose uncertainty on their own.  

 

One thing that needs to be stressed on besides parameter uncertainty is that it is 

important to distinguish between an insensitive and an uncertain parameter. As 

stated by Seibert (1997) that if good simulations of the measured runoff could be 

obtained with different values for one parameter, this does not necessarily mean 

that the simulations are  insensitive to changes in this parameter, but that changes 

are compensated for by the other parameters. Hence in order to decrease 

overparameterization of the model, parameter sensitivity analysis may be 

employed to decrease the number of calibrable model parameters and set constant 

values to the insensitive model parameters at a small expense of model efficiency. 

By this way, better calibration and validation processes can be applied for a basin 

hence resulting in a more reliable hydrological modeling. 

 

 

 

 

 

 



 145 

Table 6.14 Model parameter values for individual years 

2002 2003 2004 

Parameter Units Q-

model 

QS-

model 

Q- 

model 

QS-

model 

Q- 

model 

QS-

model 

Ts °C -2.4612 -0.9911 -0.0811 0.2397 -1.0725 -0.4407 

Tx °C -2.4863 -2.4950 -2.3191 -1.2820 -2.4676 -2.4835 

Cx mm/°C/day 2.5340 2.8554 4.0697 4.3252 4.3712 2.4529 

PKORR --- 0.6798 0.7244 0.7509 0.6516 0.8969 0.7811 

SKORR --- 1.3849 1.1665 0.9681 0.8669 0.6206 0.6802 

TTGRAD °C/100 m -1.0796 -1.0785 -0.8086 -0.7997 -1.0986 -0.9738 

TVGRAD °C/100 m -0.7490 -0.7520 -0.7902 -0.5934 -0.9079 -0.7950 

PGRAD --- 0.0312 0.0107 0.0243 0.0500 0.0513 0.0696 

FC mm 188.0497 148.1461 385.2775 291.1822 205.5851 192.6434 

LP frac. of FC 0.9771 0.8786 0.8981 0.7971 0.7331 0.8109 

β --- 3.2396 1.9494 2.1591 1.9270 2.6919 3.1854 

KUZ2 mm 0.1009 0.1001 0.1024 0.1000 0.1009 0.1041 

UZ 1/day 12.0458 24.1698 49.5994 46.0404 64.9398 56.9710 

KUZ1 1/day 0.2344 0.1284 0.1311 0.1334 0.0764 0.1098 

PERC mm/day 1.3253 1.2942 1.3227 1.2030 1.4944 1.7162 

KLZ 1/day 0.0051 0.0045 0.0037 0.0037 0.0042 0.0056 

 

Table 6.15 Model parameter values for combined years 

2002-2003 2003-2004 2002-2004 

Parameter Units Q-

model 

QS-

model 

Q- 

model 

QS-

model 

Q- 

model 

QS-

model 

Ts °C -1.1466 0.8477 -2.0272 -1.9815 -2.0348 -1.7032 

Tx °C -2.4383 -2.4984 -2.3007 -2.3814 -2.4436 -2.4362 

Cx mm/°C/day 2.6201 2.7956 4.7678 2.7195 4.6102 3.1742 

PKORR --- 0.7760 0.6866 0.9921 0.9153 0.7664 0.7462 

SKORR --- 0.7344 0.9151 0.6614 0.6667 0.8849 0.9790 

TTGRAD °C/100 m -0.7559 -0.6937 -1.0978 -0.8229 -1.0960 -0.9512 

TVGRAD °C/100 m -0.7438 -0.7039 -0.7998 -0.7990 -0.7955 -0.7499 

PGRAD --- 0.0436 0.0487 0.0186 0.0320 0.0419 0.0315 

FC mm 176.0250 167.1741 259.1700 207.3383 154.0874 134.4047 

LP frac. of FC 0.8671 0.6321 0.7654 0.8549 0.6848 0.6951 

β --- 2.2465 1.4090 3.1350 3.2392 1.3522 1.1233 

KUZ2 mm 0.5175 0.1008 0.1004 0.1009 0.1007 0.1014 

UZ 1/day 68.7396 28.4374 58.2409 41.0517 64.5592 18.1054 

KUZ1 1/day 0.1423 0.1420 0.0644 0.0748 0.0842 0.1128 

PERC mm/day 1.4391 1.3139 1.4988 1.4994 1.4914 1.9748 

KLZ 1/day 0.0061 0.0063 0.0037 0.0037 0.0053 0.0053 
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Figure 6.13 Q-model normalized values for combined years  
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Figure 6.14 QS-model normalized values for combined years 
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Figure 6.15 Q-model normalized values for individual and combined years 
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Figure 6.16 QS-model normalized values for individual and combined years 
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Figure 6.17 Calibrated parameter variations between Q-model and QS-model for 

combined years 

 

 

Unfortunately, model calibration does not guarantee reliability of model 

predictions. The parameter values obtained during calibration and the subsequent 

predictions made using the calibrated model are only as realistic as the validity of 

the model assumptions for the study watershed and the quality and quantity of 

actual watershed data used for calibration and simulation. Therefore, even after 

calibration, there is potentially a great deal of uncertainty in results that arises 

simply because it is too unlikely to find error-free observational data (e.g. 

precipitation, streamflow, topography) and because no simulation model is an 

entirely true reflection of the physical process being modeled. 
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6.8 Model Validation 

 

Once the HBV model parameters have been optimally fitted to the observed data 

by automatic calibration using single and multi-variable cases, the goodness-of-fit 

should be tested (validated) on an independent set of data. This is often referred 

to as a split sample test. Since not a very long input data set is in hand considering 

only three water years, 2002, 2003 and 2004, again a combination of these years 

are used to validate the model. This is done in two cases; 1) the model parameters 

found by calibrating 2002-2003 years are used to validate the water year 2004 and             

2) 2003-2004 parameters are used to validate the water year 2002.  

 

As the first case, 2004 water year is validated both in terms of runoff and snow 

covered area using Q-model and QS-model parameters. The results are plotted in 

Figure 6.18 and tabulated in Table 6.16. For the second case, 2002 water year is 

validated using runoff and snow covered area with Q-model and QS-model 

parameters respectively. These results are shown in Figure 6.19 and tabulated in 

Table 6.17. 

 

Commenting on the results, goodness-of-fit criterion values for the validation of 

2004 year are all lower than the calibration period of 2002-2003 water years both 

in terms of Q-model and QS-model results. This is an expected finding in general, 

but as the calibration period increases the difference between the calibration and 

validation results are expected to decrease. 

 

For the 2002 validation case using 2003-2004 water years, the values are a little 

different than the 2004 validation. Interestingly, the SCA measures seem to give 

better results during the validation stage only for the Q-model parameters, 

whereas, QS-model parameters for SCA show a decreasing trend as expected. On 

the overall, the calibration results are still higher. 2002 validation measures show a 

better fit as compared to the 2004 validation results by 3-4%, but there is no clear 

indication to conclude that QS-model parameters perform better than Q-model 

parameters for this period of study.  
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a.1) 2004 Q-model Discharge 

0

10

20

30

40

50

60

70

80

90

100

0
1
-M
a
r-
0
4

0
8
-M
a
r-
0
4

1
5
-M
a
r-
0
4

2
2
-M
a
r-
0
4

2
9
-M
a
r-
0
4

0
5
-A
p
r-
0
4

1
2
-A
p
r-
0
4

1
9
-A
p
r-
0
4

2
6
-A
p
r-
0
4

0
3
-M
a
y
-0
4

1
0
-M
a
y
-0
4

1
7
-M
a
y
-0
4

2
4
-M
a
y
-0
4

3
1
-M
a
y
-0
4

0
7
-J
u
n
-0
4

1
4
-J
u
n
-0
4

2
1
-J
u
n
-0
4

S
C
A
 (
%
)

MODIS

Q-model

 

b.1) 2004 Q-model SCA 
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a.2) 2004 QS-model Discharge 
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b.2) 2004 QS-model SCA 

 

Figure 6.18 Model validation results for 2004 water year using a) discharge (m3/s) 

and b) snow covered area (%) 

 

Table 6.16 Validation of 2004 using 2002-2003 calibration results 

Q-model QS-model 
Criterion 

Calibration Validation Calibration Validation 

RMSEQ 0.427 0.562 0.484 0.609 

RMSESCA 5.040 6.411 5.236 5.841 

R2Q 0.880 0.740 0.880 0.700 

R2SCA 0.958 0.949 0.954 0.958 

VE 0.000 0.123 0.000 0.093 

RTot 0.919 0.832 0.917 0.820 
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a.1) 2002 Q-model Discharge 
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b.1) 2002 Q-model SCA 
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a.2) 2002 QS-model Discharge 
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b.2) 2002 QS-model SCA 

 

Figure 6.19 Model validation results for 2002 water year using a) discharge (m3/s) 

and b) snow covered area (%) 

 

Table 6.17 Validation of 2002 using 2003-2004 calibration results 

Q-model QS-model 
Criterion 

Calibration Validation Calibration Validation 

RMSEQ 0.414 0.478 0.531 0.484 

RMSESCA 10.537 8.024 4.078 7.705 

R2Q 0.900 0.810 0.880 0.800 

R2SCA 0.847 0.915 0.977 0.921 

VE 0.002 0.002 0.001 0.010 

R2Tot 0.874 0.862 0.929 0.860 
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6.9 Investigation of Pareto Front 

 

As described in Chapter 3, the solution of Equation 3.3 will not, in general, be a 

single unique set of parameters but will consist of the so called Pareto set of 

solutions (non-dominant solutions), according to various trade-offs between 

different objectives. Thus, a number of tests are carried out in order to estimate 

the Pareto front and analyze the trade-offs between runoff and snow covered area 

variables for the combined three consecutive water years (2002 - 2004) only. For 

this study, Equation 6.2 (weighted sum of squared differences) is utilized for the 

two variables of runoff and snow covered area. To explore the Pareto front, ten 

different calibration runs are conducted with different weightings on the objective 

functions runoff (Φ1) and snow covered area (Φ2); two calibration runs using only 

one of the variables for estimation of the tails of the front and eight runs to 

estimate the intermediate part. The root mean square error (RMSE), Equation 6.3, 

is determined from the objective function of weighted sum of squared differences 

corresponding to the estimated Pareto front and plotted in Figure 6.20. From a 

multi-objective point of view, these ten parameter sets are equally good but 

obviously for practical applications some points are more relevant than others.  
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Figure 6.20 Estimated Pareto front without transformation constants 
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When solving the multi-objective calibration problem, the problem is usually 

transformed into a single-objective optimization problem by defining a scalar that 

aggregates the various objective functions. One such aggregate measure is the 

Euclidean distance as given in Equation 6.7 and used by Madsen (2000a). 

 

( ) ( ) ( )( )2

pp

2

22

2

11agg AFAFAFF +θ+++θ++θ=θ )(....)()()(  Equation 6.7 

 

where Ai are transformation constants assigned to the different objectives, which 

allows to select relative priorities to certain objectives. The two objectives in this 

case are RMSE of runoff (RMSEQ) and snow covered area (RMSESCA). Hence 

Equation 6.7 can be rewritten to reflect the variables of the study as Equation 6.8.  

 

( ) ( )( )2

2SCA

2

1Qagg ARMSEARMSERMSE +++=   Equation 6.8 

 

The selection of the transformation constants, however, is not straight forward, 

since the priority also depends on the value of the objective function. For instance, 

if all Ai are set to zero, implicitly larger weights are given to objectives with larger 

RMSE values. For investigating the entire Pareto front, the aggregated distance 

measure can be adopted by performing several optimization runs using different 

values of Ai. This in practical applications may be too tedious to calculate where 

one is only interested in part of the Pareto optimal solutions. In this case, it is 

proposed to use an aggregated objective function that puts equal weights on the 

different objectives. A balanced measure can be defined by assigning 

transformation constants in Equation 6.8 such that all (RMSEx + Ai) have about the 

same distance to the origin. When using a population-based optimization 

algorithm, SCE_UA as considered here, an initial population within the feasible 

region is evaluated. The minimum values of Fi (Fi,min) are estimated from this initial 

population and each of the objective functions is transformed to having the same 

distance to the origin as the objective function with the largest minimum value of 

Fi as given in the equation below; 
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( ) p21iwhenFp21jFMaxA iji ,...,,,...,,, min,min, =−==  Equation 6.9 

 

The distances to the origin of all the plotted simulation points in Figure 6.20 are 

calculated with the abovementioned Euclidean distances procedure and a balanced 

optimum is determined along the intermediate part of the Pareto front as indicated 

in Figure 6.21. The compromise solution corresponds to a break point on the 

Pareto front; that is, moving along the front in either direction implies only a small 

decrease of one of the objective functions at the expense of a pronounced increase 

of the other objective function defining a Pareto front with a very sharp structure.  
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Figure 6.21 Balanced Pareto front with transformation constants 

 

The variation of the optimum model parameter sets along the Pareto front is given 

in Figure 6.22. The parameter values are normalized with respect to the upper and 

lower limits of the hypercube search space shown in Table 6.6 so that the feasible 

range of all parameters is between 0 and 1. A remarkably large variability is 

observed in the parameter values when moving along the Pareto front. The range 

is larger than 50% of the feasible range for some of the parameters, ttgd, pgrd, fc, 

beta, kuz2 and uz. For the others, a trend is apparent when moving along the 
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Pareto front. For instance, tx, ts, ttgd, kuz1 and klz increase with respect to 

increasing weight on snow covered area objective. Focusing on either of the two 

objectives result in distinctly different parameter combinations. The variation of 

parameter combinations along the Pareto front also implies a large variability on 

the simulated hydrograph as shown in Figure 6.23.  

 

As a conclusion, although the traditional concept of model calibration is built on the 

hypothesis that a unique optimum set of parameter values exist, it is clear from 

the above analysis that such unique global solution does not exist. In a           

multi-objective context, there is a multitude of parameter combinations that are 

”equally good”. Depending on the priority of the objectives one may shift either 

way on the Pareto front although a balanced optimum is preferred most of the 

time for a hydrologically sound application. Table 6.18 show the calibrated HBV 

model parameter values for the balanced optimum point on the Pareto front. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 156 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tx ts cx pkor skor ttgd tvgd pgrd fc lp beta kuz2 uz kuz1 perc klz

N
o
rm

a
li
z
e
d
 V
a
lu
e

 

Figure 6.22 Normalized range of parameter values along the Pareto front (coloring 

correspond to parameter sets in Figure 6.21) 
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Figure 6.23 Range of simulated hydrographs corresponding to parameter sets 

along the Pareto front 
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Table 6.18 Calibrated balanced optimum HBV model parameters values on the 

Pareto front  

Name Meaning Units 
Default 
value 

   Value range 
Min         Max 

Calibrated 
Parameter 

Value 

        Snow routine      

Tx 
Threshold temperature for 

rain/snow 
°C 0.0 -2.5 2.5 -1.1629 

Ts 
Threshold temperature for 
snowmelt 

°C 0.0 -2.5 2.5 -2.3632 

Cx 
Degree-day 

factor 
mm/°C/

day 3.5 1 7 2.6604 

PKOR 
Precipitation correction 

rainfall 
--- 1.0 0.5 1.7 0.7049 

SKOR 
Precipitation correction 
snowfall 

--- 1.0 0.5 1.7 0.8361 

TTGD 
Temperature lapse rate for 

clear days 
°C/100 

m - 0.6 -1.1 -0.3 -0.7729 

TVGD 
Temperature lapse rate 

during precipitation 
°C/100 

m - 0.4 -0.8 -0.2 -0.6642 

PGRD 
Precipitation 
lapse rate 

--- 0.01 0.0 0.1 0.0839 

Soil routine      

FC 
Field capacity in soil 
moisture zone 

mm 250 50 450 121.3990 

LP 
Threshold value for PET in 

soil moisture 
frac. of 

FC 0.9 0.6 1.0 0.8001 

β 
Parameter in soil moisture 

routine 
--- 1.0 1.0 4.0 1.7734 

Response routine      

KUZ2 
Fast recession constant in 
Upper zone 

1/day 0.2 0.1 0.6 0.1084 

UZ 
Threshold level for quick 

runoff in Upper zone 
mm 20 5 65 58.0023 

KUZ1 
Slow recession constant in 

Upper zone 
1/day 0.1 0.01 0.3 0.1089 

PERC 
Percolation from Upper to 
Lower zone 

mm/day 0.9 0.5 2.0 1.9118 

KLZ 
Recession constant in 

Lower zone 
1/day 0.001 0.0005 0.01 0.0047 
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CHAPTER 7 

 

HBV MODEL FORECASTS USING             

NUMERICAL WEATHER PREDICTION MODELS 

 

7.1 Introduction 

 

Hydrological models require meteorological input data for computation of 

watershed runoff values. These required meteorological values show variation both 

in time and space. A common source of spatially and temporarily varying 

meteorological data are the outputs of numerical weather prediction models.  

 

Numerical weather prediction (NWP) is the name given to the technique used to 

forecast the weather by computer from its present, measured state up to several 

days ahead (URL-8).  Hydrological forecast analyses are highly dependent on the 

forecasted meteorological data. As the accuracy of the meteorological forecast 

data increase, better results of the hydrological analysis can be derived. Such 

accurate hydrological analyses enable better hydropower production, optimization 

of water supply and flood control. Thus, future weather situations are the key 

interest of hydrological and meteorological model forecasts.  

 

Operational runoff forecasts are being carried out in many countries of the world 

since decades using hydrological models of various complexity. In critical 

situations, the forecasts are required for flood warning purposes, otherwise they 

are used for planning of hydropower production and reservoir operation. Mainly in 

the eastern part of Turkey, snowmelt plays an important role in the formation of 

runoff where the highest peaks as well as the highest runoff volumes normally 
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occur during the melt season. Besides the work done by Şorman et al. (2004) and 

Tekeli (2005) so far, no real-time hydrological forecasting has been conducted 

according to author’s knowledge by coupling atmospheric and hydrological models 

in the region. 

 

This chapter will give a brief description about each of the numerical weather 

prediction models used in the study and the procedures followed in coupling the 

necessary atmospheric model outputs into the HBV model for runoff forecasting.  

 

7.2 Numerical Weather Predictions (NWP) Models 

 

7.2.1 European Center for Medium-Range Weather Forecasts 

(ECMWF) 

 

Recognizing the economic and social benefits to be derived from more accurate 

medium-range forecasts, the European States agreed to combine their scientific 

and technical resources in this aspect of weather forecasting and decided to 

establish the European Centre for Medium-Range Weather Forecasts (ECMWF). 

The European Centre for Medium-Range Weather Forecasts (ECMWF, the Centre) 

is an international organization supported by 25 European States. Currently, its 

member states are Belgium, Denmark, Germany, Spain, France, Greece, Ireland, 

Italy, Luxembourg, the Netherlands, Norway, Austria, Portugal, Switzerland, 

Finland, Sweden, Turkey and United Kingdom. The states that have concluded co-

operation with ECMWF are Croatia, Czech Republic, Iceland, Hungary, Romania, 

Slovenia and Serbia and Montenegro.  

 

Originally a COST (European Cooperation in Science and Technology) project, the 

Centre was established in 1973 by a convention. The first real-time medium-range 

forecasts were made in June 1979 and the Centre has been producing operational 

medium-range weather forecasts since 1 August 1979.  
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ECMWF is a consequence of hundred year’s development in dynamic and synoptic 

meteorology, fifty years of which are related with the development of the 

numerical weather prediction (NWP) methods. The principle objectives of ECMWF 

can be summarized as: 

 

� the development of numerical methods for medium-range weather forecasting; 

� the preparation, on a regular basis, of medium-range weather forecasts for 

distribution to the meteorological services of the Member States; 

� scientific and technical research directed to the improvement of these 

forecasts; 

� collection and storage of appropriate meteorological data.  

 

Every day, ECMWF prepares 10-day weather forecasts and shares the numerical 

products with the meteorological offices of the member states by a dedicated 

telecommunications network. Turkey, being one of the member states since 

November 1975, uses these products to prepare medium-range forecasts for the 

end users.  

 

7.2.1.1 Medium-Range Forecasts 

 

ECMWF predicts the behavior of the atmosphere in the medium-range up to ten 

days ahead. In this time, the future state of the atmosphere at any point can be 

influenced by phenomena at very distant geographical locations. Thus, many 

applications of medium-range forecasting, for example ship routing or pollution 

dispersion, are not confined to limited areas of the globe. Therefore, the whole 

atmosphere is included in the model from the earth's surface to a height of 65 km. 

The discretization that can be afforded at the moment depends on the computer 

power available and how efficiently it is used.  
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The horizontal resolution of the discretization of the Centre's current model is 

equivalent to having 40 km evenly spaced grid points geographically around the 

globe. This network of points is then repeated at 60 levels in the vertical. The 

model forecasts wind, temperature and humidity at 20,911,680 points throughout 

the atmosphere. Even though very small scale effects, such as, heating of the soil 

by the sun, turbulence of the air near the ground and at high levels in the 

atmosphere and cumulus cloud systems, can not be represented properly with the 

most powerful computers available today, much effort is placed to take into 

account their influence on the behavior of the parameters of the large scales. Even 

so, with today’s resolution it is possible, for example, to distinguish clearly the 

French Massif Central from the Alps and the Po valley in northern Italy. Hence it 

can be said that with this detail the Centre's model can produce a realistic forecast 

of the near surface weather parameters, such as local winds and temperature at 

the level of the measurement stations.  

 

7.2.1.2 Making the Forecast and Products 

 

In order to start the computer model, initial or starting conditions are required. 

Observations are used to calculate the weather (wind etc.) at each point 

throughout the model atmosphere. The forecast is made in short steps, of about 

15 minutes ahead, with each forecast providing initial conditions for the next 

forecast step.  

 

The preparation of initial conditions is both a delicate and demanding task which in 

the ECMWF forecasting system requires almost as much computer resources as a 

ten day forecast. 

 

Initial conditions for the ECMWF global model are prepared by making an 

appropriate synthesis of observed values of atmospheric fields taken over a 24 

hour period and short-range forecasts provided by the global model itself. This 

synthesis is a process of assimilating observed values into a model. The use of 
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both observations and model forecasts in the construction of initial values is 

required. High quality data are sparsely and irregularly distributed over the globe. 

Short-range model forecasts carry forward in time knowledge of earlier 

observations and also provide a crucial background for extracting useful 

information from expensive satellite observations. 

 

The model variables for the computation of the forecasts are temperature, wind 

and specific humidity. These primary parameters are converted into other 

atmospheric parameters. A subset of parameters is available to ECMWF Member 

States through the operational dissemination system as shown in Table 7.1, where 

all parameters are available in lat-long grid form. These products are computed at 

3 hourly intervals from 3 to 72 hours and at 6 hourly intervals from 72 to 240 

hours. 

 

7.2.1.3 Data Archives 

 

Weather forecasting makes use and generates very large volumes of data that 

need to be stored for long periods including observations, analysis, forecast and 

also research experiments. These data represent a valuable asset, providing a 

detailed record of worldwide weather and weather forecasts over the past 25 

years. To accommodate these data, ECMWF has a dedicated Data Handling 

System. In order to manage and access this large archive, ECMWF has developed 

a dedicated software: the Meteorological Archive and Retrieval System (MARS). 

Data is stored in standard formats agreed with the World Meteorological 

Organization, namely GRIB (GRIdded Binary) format for meteorological fields and 

BUFR (Binary Universal Form of Representation of meteorological data) format for 

meteorological observations.  
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Table 7.1 ECMWF dissemination products 

Operational products Additional experimental products  

Upper air parameters (on pressure 

levels and model levels 

Mean sea level pressure 

                                     to day 7 

Upper air parameters (on pressure 

levels and model levels 

Mean sea level pressure 

                 from day 7 ½  to day 10 

2 meter temperature 

2 meter dew point 

10 meter wind 

10 meter wind gust 

total precipitation 

total cloud cover 

     to day 7 (every 3 h up to day 3, 

every 6 h beyond) 

2 meter temperature 

2 meter dew point 

10 meter wind 

10 meter wind gust 

total precipitation 

total cloud cover 

     to day 7 (every 3 h up to day 3, 

every 6 h beyond) 

Additional weather parameters: 

large scale precipitation 

convective precipitation 

low cloud cover 

medium cloud cover 

high cloud cover 

snowfall 

snowdepth 

            throughout the forecast range 
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7.2.2 Mesoscale Model (MM5) 

 

The PSU/NCAR mesoscale model is a limited-area, nonhydrostatic or hydrostatic, 

terrain-following sigma-coordinate model designed to simulate or predict 

mesoscale and regional-scale atmospheric circulation. It has been developed at the 

Pennsylvania State University (PSU) and National Center for Atmospheric Research 

(NCAR) as a community mesoscale model and is continuously being improved by 

contributions from users at several universities and government laboratories    

(URL-9). 

 

The Fifth-Generation NCAR / Penn State Mesoscale Model (MM5) is the latest in a 

series that developed from a mesoscale model used by Anthes at Penn State in the 

early 70's that was later documented by Anthes and Warner (1978 cited in URL-9). 

Since that time, it has undergone many changes designed to broaden its usage. 

These include (i) a multiple-nest capability, (ii) nonhydrostatic dynamics, which 

allows the model to be used at a few-kilometer scale, (iii) multitasking capability on 

shared- and distributed-memory machines, (iv) a four-dimensional data-

assimilation capability, and (v) more physics options.  

 

7.2.2.1 Components of MM5 

 

The model (known as MM5) is supported by several auxiliary programs, which are 

referred to collectively as the MM5 modeling system.  

 

A schematic diagram is provided to facilitate discussion of the complete modeling 

system in Figure 7.1. It is intended to show the order of the programs and the flow 

of the data and to briefly describe their primary functions. Documentation for 

various programs in the modeling system is available online (URL-10).  
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Figure 7.1 MM5 modeling system data flowchart (URL-10) 

 

Terrestrial and isobaric meteorological data are horizontally interpolated (programs 

TERRAIN and REGRID) from a latitude-longitude mesh to a variable high-resolution 

domain on either a Mercator (low latitudes), Lambert Conformal (mid latitudes), or 

Polar Stereographic (high latitudes) projection system. Since the interpolation does 

not provide mesoscale detail, the interpolated data may be enhanced (program 

RAWINS or little_r) with observations from the standard network of surface and 

rawinsonde stations using either a successive-scan Cressman technique or 

multiquadric scheme. Program INTERPF performs the vertical interpolation from 
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pressure levels to the sigma coordinate system of MM5. Sigma surfaces near the 

ground closely follow the terrain and the higher-level sigma surfaces tend to 

approximate isobaric surfaces. Since the vertical and horizontal resolution and 

domain size are variable, the modeling package programs employ parameterized 

dimensions requiring a variable amount of core memory. Some peripheral storage 

devices are also used. After the MM5 run, the data from sigma coordinate levels 

are interpolated back to the pressure levels by INTERPB. On the other hand, 

NESTDOWN can be used to interpolate model level data to a finer grid for 

preparation of a new model integration. Model outputs both on pressure and sigma 

surface levels can be viewed by graphic programs RIP or GRAPH. 

 

Program Functions  

� TERRAIN 

• Define model domain and map projection 

• Generate terrain, and landuse catagory data on model grids 

• Generate vegetation/soil catagory data for MM5 model's land-surface model 

option (V3 only)  

• Calculate map-scale factors and Coriolis parameter for the model (V3 only) 

� REGRID / (DATAGRID V2 only)  

• Generate first-guess pressure-level fields on model grids from another 

model dataset  

• Calculate map-scale factors and Coriolis parameter for the model (V2 only)  

� RAWINS / LITTLE_R  

• Perform objective analysis: blend first-guess fields with radiosonde and 

surface observations  

� INTERPF / (INTERP V2 only)  

• Interpolate pressure-level data from either RAWINS/LITTLE_R or REGRID/ 

(DATAGRID V2) to model's sigma coordinate 

� MM5  

• Perform time integration 
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� NESTDOWN  

• Generate fine mesh model input from coarse mesh model output   (1-way 

option). Capability of changing vertical sigma levels.  

• Generate fine mesh model input from coarse mesh model input  

� INTERPB  

• Interpolate model sigma-level data to pressure levels  

• Generate first guess for RAWINS/LITTLE_R  

• Generate intermediate files for REGRID/regridder  

� GRAPH/RIP  

• Generate plots from the output of modeling system programs (based on 

NCAR Graphics) 

 

7.2.2.2 Data Required to Run MM5 Modeling System 

 

For a successful MM5 run, the following data sets are required: 

� Topography data 

� Land use data 

� Gridded atmospheric data having at least: sea level pressure, wind, 

temperature, relative humidity and geopotential height at the following 

pressure levels, surface, 1000, 850m 700m 500, 400, 300, 250, 200, 150,     

100 mb 

� Soundings and surface observations data 

 

Topography, land use, vegetation and soil data with global coverage in varying 

resolutions are available from NCAR website (URL-11). The modeling system is 

able to run on various computer platforms such as Cray, SGI, IBM, Alpha, Sun, HP, 

and PCs running Linux. 
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7.2.2.3 Lateral Boundary Conditions 

 

Since MM5 is a regional model, it requires an initial condition as well as lateral 

boundary condition to run. To produce lateral boundary condition for a model run, 

one needs gridded data to cover the entire time period that the model is 

integrated. In MM5, all four boundaries have specified horizontal winds, 

temperature, pressure and moisture fields and can have specified microphysical 

fields (such as cloud) if these are available. Thus, before any model run, boundary 

values have to be set in addition to the initial values.  

 

The boundary values can come from any of the following three places: 

� Analyses at the future times 

� Previous coarser mesh simulation 

� Another model’s forecast 

 

7.2.3 Use of Numerical Weather Prediction Models in Turkey 

 

Turkish State Meteorological Organization (DMI) is the responsible government 

organization for providing weather forecasts both in quantitative and qualitative 

form to other organizations and the public. Since Turkey is one of the member 

states of the ECMWF, Turkish State Meteorological Organization receives forecast 

products to prepare medium-range forecasts. By using ECMWF data as boundary 

conditions to MM5 modeling system, DMI also generates MM5 products to provide 

forecast data to the end users. 

 

With a protocol signed between State Meteorological Organization (DMI) and 

Middle East Technical University (METU), Water Resources Laboratory (WRL), 

some of the ECMWF and MM5 products (temperature and precipitation data) are 

transferred from DMI to METU-WRL through file transfer protocol (ftp) to be used 

in snowmelt runoff forecasting in the Eastern Anatolian region of Turkey. 
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The advantage of MM5 over ECMWF is the temporal and spatial resolution 

improvements. As described earlier, ECMWF model forecasts are produced every   

3 to 6 hours with 0.5° grid resolution whereas MM5 products are produced every   

1 hour with 0.1° grid resolution. It is difficult to display the temporal resolution but 

spatial resolution difference between the two NWP models can be seen in      

Figure 7.2 which presents the air temperature grid forecasts. 

 

a) 

 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Forecast of air temperature (°C) in and around Karasu basin by                           

     a) ECMWF    b) MM5 
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Another major difference between ECMWF and MM5 models is the topographic 

data layer used to predict and distribute the atmospheric conditions as depicted by 

Figure 7.3. It can be seen that MM5 layer has a finer elevation resolution than 

ECMWF data. 

 

a) 

 

 

 

 

 

b) 

  

 

 

 

 

 

Figure 7.3 Elevation contours over Turkey by   a) ECMWF   b) MM5 

 

Finally, MM5 modeling system also utilizes a land use layer during the generation 

of the forecasts whereas ECMWF does not make use of such a layer. This land use 

layer for the area of Karasu basin is shown in Figure 7.4. The higher elevated parts 

of the basin are classified mainly as crop/wood mosaic while the lower parts are 

composed of grassland, pasture and savanna formation. Although there are several 

different land use groups in and around the basin, it may still seem to be a very 

broad classification as compared to the land use groups determined by Landsat TM 

satellite images shown in Figure 6.5. 
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Figure 7.4 Land use layer utilized in MM5 forecasts 

 

7.3 Snowmelt Runoff Forecasting in the Upper Euphrates Basin 

 

Snow in the Eastern Anatolia starts to accumulate in late autumn and may stay on 

ground until early summer depending on the elevation. Since 60-70% of the total 

volume comes during the snowmelt season, early forecasting of the snowmelt 

runoff would enable optimum reservoir regulation which is very important as there 

are several large dams located in series on the Euphrates River.  

 

In this respect, snowmelt runoff forecasting is conducted in the Upper Euphrates 

basin during the 2004 snowmelt season for the first time using numerical weather 

forecast models. Daily average temperature and total precipitation products of 

ECMWF and MM5 data are used as input data for the calibrated HBV model in the 

representative study area of Kırkgöze basin. As being a pioneer study in the 

region, this work could not be conducted in a real time form during its first 
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application due to several reasons stated below: 

� time limitations due to manual processing of the forecast data 

� malfunction of the stream gaging station DSI 21-01 (outlet of Kırkgöze basin) 

� missing forecast data at times 

 

An interesting coincidence is that 2004 water year has evolved an untimely 

snowmelt event that occurred during late February and early March right after a 

significant snowfall in the eastern and southern parts of Turkey. This situation has 

resulted in the loss of human lives due to flooding and avalanches as well as in the 

inundation of many areas causing considerable damage to houses and farmlands. 

This situation has been reported by several national and international organizations 

and media at the time (URL-12; URL-13; URL-14; URL-15). Therefore, it was an 

important opportunity to evaluate how good the flooding situation could be 

predicted if the short term forecast products of numerical weather prediction 

models had been used in advance. 

 

7.3.1 Forecast Processing Chain 

 

There are basically four different data sets used in the forecasting process where 

the main steps of the processing chain are outlined in Figure 7.5. The processing 

chain is composed of a series of programs written for Unix and Windows 

environments. Fortran and Perl codes are mainly used under Unix environment 

whereas, custom-made Visual Basic scripts are complied in Windows media. Data 

sets are received from various platforms and are passed through different 

processes which are explained in more detail in the following sections. In the end, 

all the data are compiled to prepare the model input for runoff forecasts. Since 

different data are received and processed in different platforms, a fully automatic 

forecast processing chain could not be performed during the study although, such 

automation is necessary and should be considered as a future progress.  
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Figure 7.5 Data processing chain for runoff forecasts 

 

Meteorological Forecast Data  

 

ECMWF forecasts are transferred to Turkish State Meteorological Organization 

(DMI) via file transfer protocol. Using these ECMWF data as boundary conditions 

for Turkey, a nested MM5 forecast is determined at a finer resolution. Both of the 

NWP model outputs are then uploaded to METU server from DMI via shell scripts 

at the beginning of each day (around 4:00 am). 

The two NWP model data come in different formats. ECMWF data are available in 

GRIB (GRIdded Binary) format, whereas, MM5 data are in RIP (Read-Interpolate-

Plot) format. Since each output format is unique, different strategies are developed 

to decode the data sets. The flowchart for the processing chains of ECMWF and 

MM5 output are given in Figure 7.6. Following the decoding process, both data 

sets are imported into a GIS environment where necessary projection information 

are firstly added in order to perform several GIS spatial analysis.  

Meteorological 
Forecast Data 

 
ECMWF / MM5 

Forecast 

Temperature and 
Precipitation Data 

Forecasts 

Data compilation 

and preparation of 
model input files 

Data 
archieve 

Meteorological 
Observation Data 

Güzelyayla  
Snow-Met Station 

Runoff Data 
 

DSI 21-01 

Satellite Data 
 

MODIS 

Observed 

Temperature and 
Precipitation Data 

Measured 
Runoff 

Snow Covered 
Area (SCA) 

HBV Model 
Simulations 

Runoff 
Forecast 



 174 

     a)         b) 

 

Figure 7.6 NWP model data processing chains  

     a) ECMWF GRIB data  b) MM5 RIP data 
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Meteorological Observation Data  

 

Ground based meteorological data are provided from the five automatic snow-met 

stations set up in and around Karasu basin where details are given in Chapter 4. 

For this study on the Kırkgöze basin, only Güzelyayla snow-met station is used as 

the representative in situ station for validation purposes of the forecast data since 

it is located within the basin boundary. Although data from other stations may also 

be used to compare in case of a break-down or malfunction of any instrumentation 

at Güzelyayla snow-met station. The flowchart of this process is given in       

Figure 7.7. 

 

 

 

Figure 7.7 Hydro-meteorological data processing chain  
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Runoff Data  

 

As given in Chapter 4, there are three automatic stream gaging stations located in 

Karasu basin. But for this study, runoff from only DSI 21-01 station is taken into 

account that drains Kırkgöze basin although measurements from the other stations 

are also monitored for data comparison purposes and to be used in case of 

instrumentation malfunction. The flowchart of this process is identical to 

meteorological observation data hence can be related to Figure 7.7. 

 

Satellite Data 

 

MODIS satellite images are used in this study to determine snow covered area 

depletion in Kırkgöze basin especially during the 2004 snowmelt period. Daily 

MODIS images of snow cover (MOD10A1), where the algorithm is explained in 

Chapter 5, are downloaded from NSIDC by FTP. These images are later processed 

in the order as shown by Figure 7.8 to be used in the snow covered area 

comparison derived from the HBV model simulations.  

 

7.3.2 Model Input Data 

 

Since data arrive from several different sources in various formats, the preparation 

of input files into the HBV model are performed manually. Two parameter sets on 

the Pareto front determined in Chapter 6 are utilized to predict snowmelt runoff at 

the outlet of Kırkgöze basin (DSI 21-01) for the 2004 snowmelt season. One set is 

the Pareto tail point that minimizes the discharge error (Q-model) and the second 

set is the balanced optimum point (QS-model). The model input data are 

composed of four main data sets as described in the forecast process chain. In this 

section, the necessary model input data and their timing are described for a     

real-time runoff forecasting process. 
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Figure 7.8 Flowchart of MODIS snow covered area determination 

 

Meteorological Forecast Data  

 

The meteorological forecasts are composed of temperature and precipitation data 

in a daily format as used by the HBV model from numerical weather predictions 

models of ECMWF and MM5. The basin under study is represented by 1 grid of 

ECMWF or 9 grids of MM5 data, as can be seen in Figure 7.9 showing two forecast 

day examples. The ECMWF forecasts consist of a 1-day ahead (t+24 hour) daily 

average temperature and daily total precipitation data. The MM5 forecast data  
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ECMWF Temperature (°C) 6 Mar 2004 

 
ECMWF Precipitation (mm) 6 Mar 2004 

 
MM5 Temperature (°C) 6 Mar 2004 

 
MM5 Precipitation (mm) 6 Mar 2004 

 
ECMWF Temperature (°C) 28 May 2004 

 
ECMWF Precipitation (mm) 28 May 2004 

 
MM5 Temperature (°C) 28 May 2004 

 
MM5 Precipitation (mm) 28 May 2004 

Figure 7.9 Daily forecasts of ECMWF and MM5 data 
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include again 1-day ahead (t+24 hour) temperature values for 07:00, 14:00 and 

21:00 local times. Although hourly MM5 forecast data are available in DMI, the use 

of such data would have considerably increased the memory size as well as the 

processing time needed to conduct this study. Hence daily average temperature is 

calculated from the given three values as would generally be done on a ground 

climate station. The daily total precipitation from MM5 data are determined by the 

addition of convective and non-convective precipitation values for the related day.  

 

The meteorological forecast data are available from the beginning of the snowmelt 

season which is marked by 29 February 2004 until 30 June 2004. MM5 forecasts 

are preferred to be used when available because of its finer spatial resolution, but 

at times when they were missing generally due to a problem in the FTP uploading 

from DMI, ECMWF data back up the missing days for model input. The acquisition 

timing and method of meteorological forecast data availability are presented in 

Table 7.2. 

 

Meteorological Observed Data  

 

Daily forecast temperature and precipitation data are validated with ground station 

measurements from Güzelyayla (GY) automatic snow-met station inside the 

Kırkgöze basin each day. The differences between the observed and forecast 

values for both temperature and precipitation data are compared and plotted in 

Figure 7.10 and 7.11 respectively. Daily forecast results for each day are replaced 

with the observed values for the next day’s model simulation throughout the 

forecast period. The collected 2-hourly and daily observed data can be reached 

online 24-hours a day using telephone modem as summarized in Table 7.2. 
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Runoff Data  

 

For a real-time runoff study, the model discharge simulations computed with the   

1-day lead time forecast data need to be validated and updated continuously. 

Therefore, stream gaging station DSI 21-01 at the Kırkgöze basin outlet was 

automated for the 2004 water year to collect discharge data every 15 minutes and 

transmit this data when connected via GSM. But the instrumentation failed to work 

properly during the melt season. As a result, discharge data could not be collected 

in a real-time form and was instead obtained manually from time to time when the 

data logger was downloaded from in situ. Because of this inconvenience, for the 

2005 water year, the shaft encoder instrumentation measuring water level at the 

stream gaging station is replaced by a pressure sensor. This equipment is working 

without a problem for the continuing 2005 water year transmitting the collected 

data by GSM when needed. For runoff forecast validation, the availability and 

timing of the measured runoff data are given in Table 7.2. 

 

Snow Cover Data  

 

Although discharge can be regarded as the most important output for any 

hydrological model, the internal model variables should also be physically 

consistent. Otherwise the model would be working right for the wrong reason. 

Hence, snow cover in the melt season is tracked by MODIS satellite images in 

order to compare with the model simulation results. Daily MODIS snow cover data 

(MOD10A1 for Terra platform and MYD10A1 for Aqua platform) are downloaded 

from NSIDC for the 2004 melt season. Each snow cover image is processed as 

described earlier in the chapter and those least affected by cloud obstruction are 

selected. Each MODIS image is ordered from NSIDC by a delay of 3-4 days and 

has to be downloaded by ftp. The availability and timing of MODIS SCA images are 

presented in Table 7.2. 
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Table 7.2 Availability of input data 

Forecast meteorological data 

Data Type Availability Via Arrival Time 

MM5 Daily FTP from DMI ~ 4:00 am each day 

ECMWF Daily FTP from DMI ~ 4:00 am each day 

Observed meteorological data 

Station Name Availability Via Arrival Time 

Güzelyayla  

(GY) 
2-hour and daily 

Telephone 

modem 
Online 24 hours 

Runoff data 

Station Name Availability Via Arrival Time 

Kırkgöze 

DSI 21-01 
15-min and daily GSM Online 24 hours 

Snow cover data 

Satellite Name Availability Via Arrival Time 

MODIS 

(Terra/Aqua) 

Daily 

(3-4 days delay) 
FTP from NSIDC 

~ ½ day after 

ordering 

 

7.3.3 Forecast Simulations 

 

The above mentioned four data sets are utilized to forecast daily runoff and snow 

covered area using the HBV model and compare the results with the observed 

values for the snowmelt period starting from 29 February and continuing until 30 

June during the 2004 water year. The results of the Q-model parameter set for 

runoff and snow covered area are plotted in Figure 7.12 and Figure 7.13 

respectively. Figure 7.14 and Figure 7.15 show the same results for the QS-model 

parameter set. Apart from the visual comparison, Table 7.3 is prepared to evaluate 

the differences between the two model runs for the forecast period using various 

goodness-of-fit criteria described earlier in Chapter 6.  
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Table 7.3 Forecast simulation results of the two models 

Model Q-model QS-model Difference 

Water Year 2004 2004 2004 

Simulation Period 29/2/2004 - 30/6/2004 29/2/2004 - 30/6/2004 29/2/2004 - 30/6/2004 

RMSE Q 1.432 1.727 -0.295 

RMSE SCA 10.391 5.542 +4.849 

R2 Q 0.750 0.637 -0.113 

R2 SCA 0.867 0.962 +0.095 

VE 0.0014 0.0648 -0.0634 

R2 TOT 0.808 0.794 -0.014 

 

On the overall, the two models both simulated runoff and snow covered area quite 

well even when using 1-day lead time numerical weather prediction data for the 

HBV input parameters. Runoff in the Q-model is predicted better than the         

QS-model but on the contrary snow covered area is better estimated using the   

QS-model parameters compared to the Q-model. The volume error, which is used 

as a penalty on the total, increases with the QS-model parameters. Hence on the 

overall goodness-of-fit giving equal weight to runoff and snow covered area with a 

minor penalty for volume error, Q-model gives a slightly better fit than the        

QS-model. 

 

Generally in the region, the initial increase on runoff usually occurs when the ripe 

snowpack first starts to melt during mid-march. But the timing of the first peak in 

the 2004 snowmelt season occurred earlier than expected with a high magnitude, 

beginning on 29 February 2004, which was the main reason for the flooding in the 

region. Comparing the hydrographs, Q-model simulates this high initial peak better 

than the QS-model, most probably because of the higher degree-day factor 

parameter. In relation to the same time period, the SCA depletion is greater for the 

Q-model as expected since more snow is allowed to melt. Having the lower initial 

peak for the QS-model hydrograph, the following two runoff peaks are higher than 
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the Q-model. Since the SCA line approximately indicates 40% at the beginning of 

May in both models, this shows that nearly equal amount of snow has melted until 

the beginning of May in which the Q-model melts the pack more in the earlier part 

of the season whereas QS-model has a slower start for the beginning but with an 

increasing reaction. Both models show a similar reaction during the mid melt 

period simulating the timing and peaks quite well. In the same manner, both of the 

model hydrographs do not give a good fit for the final part of the melt season 

always indicating an underestimation. This could be related to an incorrect 

precipitation correction in the model parameters (pkor), a missed precipitation 

representation for the model input from NWP models or with a small probability an 

incorrect computation of the observed hydrograph itself from the varying rating 

curve due to sedimentation.  

 

The study shows that meteorological output from numerical weather prediction 

models (MM5 and ECMWF) give valuable information on the early prediction of 

runoff. Although only 1-day lead time is presented in this work, further increase on 

the lead time (from a couple of days to a week) can be evaluated but with an 

increasing uncertainty (Johansson et al., 2001). This uncertainty is especially 

higher for the precipitation values which are difficult to forecast accurately for 

periods longer than 1-2 days in advance (Vehvilainen and Huttunen, 2001).  

 

Even though quite satisfying results have been achieved in coupling atmospheric 

and hydrologic models for runoff forecasting, there are a couple of points that may 

need to be addressed for a more representative watershed modeling. Firstly, not 

all the information supplied by the NWP models are utilized in the HBV model. 

Meteorological variables other than temperature and precipitation, such as 

radiation and wind, are known to affect snow melt and evaporation significantly. 

Also, the distribution of meteorological variables within the watershed and through 

time is simplified in the HBV model. Instead of using gridded data, HBV can only 

represent subbasins and zone levels.  
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Keeping these points in mind, improvements both on atmospheric and hydrologic 

modeling continuously follow one another with the rapidly growing collaboration of 

hydrologists and atmospheric scientists. Through these developments, hopefully in 

the very near future, coupling of atmospheric and hydrologic modeling especially 

for runoff forecasting will become a standard tool for better planning of 

hydropower production, reservoir operation and especially for flood warning 

purposes.  
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CHAPTER 8 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

8.1 Introduction 

 

This chapter summarizes the main results of the preceding chapters and addresses 

the question on how successfully the aims have been achieved. The important 

limitations faced during the study are outlined and suggestions on to how they 

might be improved and additional recommendations for future work are put 

forward.  

 

The two major aims initially stated at the beginning of the study were: 

i) To apply one of the well-known conceptual hydrological models in a 

basin in Turkey for the first time not in a traditional manner using only 

runoff but also including satellite snow covered area as an additional 

variable. This would enable the generation of Pareto front (non-

dominant solutions) between runoff and snow covered area to 

determine the balanced optimum parameter sets. 

ii) To use numerical weather predictions model output as input into the 

calibrated hydrological model and perform operational runoff forecasts 

with a 1-day lead time for part of the 2004 water year when snowmelt 

is dominant.  

 

These aims were accomplished through a combined monitoring and modeling 

approach within the general framework of numerical model application in 

hydrology. The extent to which these objectives have been achieved and the main 

results arising from the work presented are discussed below.  
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8.2 Conclusions 

 

In the first part of the thesis, the automatic calibration of the HBV model is carried 

out in Kırkgöze basin using two different procedures. The first one against runoff 

data alone (Q-model) and the other is using both runoff and snow covered area 

(SCA) together (QS-model). The results prove that the HBV model can be 

calibrated against SCA in addition to runoff with only a small reduction in the 

model performance. The improved performance in SCA was considerably higher 

than the loss of performance in runoff. Consequently, on the overall, the total 

model performance increases around 3.7% for the QS-model including both runoff 

and SCA as compared to Q-models simulations.  

 

Inspecting the variation for the normalized ranges of the calibrated HBV model 

parameters, only a few of the model parameters are found to be well-defined while 

for the others, good fits are obtained over broad ranges. Although it was expected 

that the use of additional data would help to decrease the model parameter 

uncertainty by constraining the ranges of parameter values, it was not so clear to 

state it in this study. The study did, however, rely upon a relatively short duration 

of recorded data for the watershed under consideration. The capability of the 

automatic calibration algorithm and the uncertainty analysis methodology, as well 

as the behavior of the simulation model could be more effectively tested if the 

calibration, verification, and uncertainty analysis efforts could be applied to a ‘data 

rich’ watershed. 

 

In the last part of the calibration process, the Pareto front is investigated for the 

non-dominant set of solutions using runoff at one axis and snow covered area on 

the other. A number of tests have been carried out to determine the tails of the 

front as well as the balanced optimum values located at the intermediate part of 

the front closer to the origin. From a multi-objective point of view all the points 

lying on the Pareto front are equally as good, but obviously for practical 

applications some points are more relevant than others. For example, the tail point 

that minimizes SCA is not a very realistic approach in modeling, as runoff is 
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probably the most important output in any hydrological model. But in the same 

sense, considering runoff as the only relevant model result could approach to a 

reasoning where a model may predict runoff correctly regardless of the internal 

parameters. Hence, depending on the priority of the objectives, one may shift 

either way in the Pareto front although a balanced optimum is preferred most of 

the time, as done in this case, for a hydrologically sound application.  

 

The result of the first part of study indicates that integration of satellite observed 

SCA in hydrological modeling requires persistence. Therefore, the benefit from the 

Earth Observation data may not be obvious for years when the snowpack is well 

simulated by the model, although showing a confirmation of the model estimate. 

But during unusual snow distribution conditions where large deviations are present 

as in the distributed case of Şensoy (2005), snow covered images may be of 

valuable help allowing an updating of the model to represent the actual conditions 

in the area of concern (Engeset et al, 2003; Alfnes et al., 2005).   

 

The techniques for model calibration may need to be further developed which 

requires substantial amount of reliable data for evaluation. In this lies an obvious 

obstacle. Without reliable data, there will be no model development. Without an 

active end user, remote sensing experts may not give their best efforts to produce 

high quality data (Johansson et al., 2003). 

 

As a remark, one should also bring attention to the obvious shortcomings of the 

hydrological model (HBV) itself. It is unsatisfactory that the performance in 

predicting runoff deteriorates when additional information like that of SCA is 

included. This is a commonly known feature of the HBV model and the same 

behaviour is observed when including other observations of, say, groundwater, 

extension of saturated areas, or environmental tracers (Bergstrom et al., 2002). 

This brings attention to the problem of overparameterization in the HBV model that 

is quite effective in disguising flawed process descriptions. This study has obtained 

positive results when including SCA data, but part of the problem of not obtaining 
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even better results are not entirely related to imperfect SCA observations but also 

on inadequate description of the hydrological processes in the HBV model. 

 

For the second part of the thesis, the calibrated HBV model using both Q-model 

and QS-model parameters are applied to forecast runoff with a 1-day lead time in 

the study area, although longer lead times are possible to use with increasing 

uncertainty. During the forecasts, the two models had the better of one another in 

different aspects, Q-model having a better runoff model performance whereas   

QS-model predicting SCA with a better fit. On the overall, the total model 

performances were quite similar with Q-model (0.808) having a small edge over 

the QS-model (0.794). Accordingly it can be concluded that, in its first attempt for 

the Upper Euphrates basin, the concept of hydrologic forecasting using numerical 

weather prediction model data gave promising results especially in the timing of 

the high runoff events. Consequently, it is shown that the possibility of operational 

runoff forecasting in the Eastern part of Turkey could be made applicable if such 

studies are put into operational use.  

 

During the forecast simulations, the uncertainty of the predicted input data should 

not be underestimated. The reason is that a grid data (0.1° spatial resolution 

corresponding to approximately 9 km) represents a point on the ground. Hence to 

improve the NWP output, especially for a rugged mountainous terrain, several 

ground stations at different locations and altitudes should be compared with the 

NWP data either using a downscaling or upscaling procedure.  

 

Also to mention that especially during the period when rapid melting of snowpack 

starts at low and medium altitudes at which high deviation of SCA are expected to 

occur between simulated models runs and observed satellite products, rather than 

the number of satellite images in larger quantity, the quality (being free of clouds) 

as well as the timing of the images are more important (Tekeli et al., 2005a).  
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The present evaluation of the HBV model confirms that any major breakthroughs 

may not be expected in hydrological modeling as long as we limit ourselves to 

standard input data and judge the models by analysis of river runoff only. But by 

using additional data and improved calibration strategies, small improvements 

could be made possible to increase the confidence in the model and to take a step 

closer to physical reality.  

 

As a final conclusion, it can be inferred with great confidence that real-time or at 

least near-real time monitoring of snow and hydro-meteorological data is a 

necessity for operational hydrologic modeling which can be utilized for the better 

management of water resources.  

 

8.3 Recommendations 

 

• Instrumentation malfunction occurred several times during the study 

period. Better sheltering and maintenance to some of the equipment is 

necessary. For example, the snow pillow pressure has to be adjusted 

before snow accumulation so that correct measuring of the weight above 

the pillow can be conducted. Also, special care must be taken for the snow 

lysimeter because the main operational function of this equipment is to 

show when ripe snow starts to generate flow. If any blockage in the 

equipment takes place due to icing or debris, the main snowmelt period 

could be missed.  

• Some of the instrumentation in the current snow-met stations need 

updating. Since temperature is one of the easier meteorological variables to 

measure, precipitation should be measured more accurately especially as 

being one of the HBV model input. To measure precipitation both in the 

liquid and solid form somehow snow has to be melted to convert into water 

equivalent. This can be done either by heating the equipment or by using 

an antifreeze solution. The disadvantage of the first method is that it may 

increase the sublimation process whereas in the latter method, a lag time 

may occur before snow melts in the antifreeze liquid to be measured. But in 
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any case either of the methods would be very efficient to decrease the 

uncertainty for the “skor” model parameter. 

• Further reliable data should be collected for a couple of more years in order 

to understand the basin response in different situations such as, quick melt 

on temperature increase only, rain-on-snow events, different snow 

depletion patterns and the range of runoff values during different snowmelt 

periods. This would also be useful enabling longer warm-up periods to 

determine the initial state of the model which has a significant effect on 

model results. 

• Additional snow and meteorological stations need to be installed in 

Euphrates basin especially to represent Murat catchment where more of the 

snowmelt runoff is contributed compared to Karasu basin. For the selection 

of the new sites, different locations, elevation, slope, aspect and 

accessibility to the point should be taken into account.  

• Additional snow and meteorological station data should be used considering 

a larger basin as the study area to see the response of scale factor on the 

calibration and forecast results.  

• In order to test the overparameterization in the HBV model, a parameter 

identification procedure could be applied as in the case of Muleta (2005). 

Firstly, screening those parameters that could be reasonably estimated 

based on field data. Then a parameterization technique for transferring 

model parameters of a given spatial unit to other spatial units in the 

watershed using a selected representative subbasin. Finally, applying a 

parameter sensitivity analysis particularly for watersheds that lack long 

years of recorded data to reduce the number of calibrable parameters.  

• As well as reducing the number of parameters for model calibration, 

adjusting the parameter range also needs careful attention. Although 

several limits can be found in literature, appropriate values should be 

tested that do not affect the model efficiency significantly. 

• Besides determining the sensitive model parameters, uncertainty analysis 

should also be performed because uncertainty in models and data leads to 

uncertainty in model parameters and model predictions. Bevin and Binley 
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(1992) proposed a method called generalized likelihood uncertainty 

estimation (GLUE) that uses prior distributions of parameter sets and a 

method for updating these distributions, as new calibration data become 

available, to make probabilistic estimates of model outputs. In order to 

determine uncertainty GLUE method could be applied to the data set in 

hand. 

• The simplified HBV model structure could be improved by additional input 

variables such as radiation (as one of the dominant energy fluxes for 

snowmelt), wind, humidity, cloud cover etc. and at the same time the daily 

time step for model simulations could be lowered. With these 

improvements a simple conceptual model can be turned into a more 

physically based model but for such changes to take place, a long test 

period with sufficient amount of reliable data at various geographical 

locations need to be conducted to make sure that the additional variables 

are beneficial for the operational use of the model. 

• A log normal snow distribution is used in the HBV model applied in this 

study. According to Alfnes et al. (2005) a dynamic snow distribution using 

gamma sums is applied to represent the snow reservoir more correctly. 

Hence using new distribution functions could improve the model results 

especially on snow water equivalent and snow cover. 

• Present version of the HBV model divides the basin into subbasins and 

further into elevation zones. Although the results achieved so far in 

literature are satisfactory, to improve on the current situation by better 

representing the physical conditions, delineation of subbasins into 

hydrologic response units (HRUs) based on physical characteristics of the 

watershed (i.e. elevation, slope, aspect, soil, land use) could be beneficial 

(Nagler, 2005). 

• Besides the use of optical satellites to determine snow covered area, 

microwave remote sensing could be utilized to reflect other properties of 

snow such as snow water equivalent that could be verified by the ground 

snow-met stations and made use of as an additional variable in hydrologic 

modeling. 
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• Satellites providing snow covered area, such as NOAA and MODIS, 

represent a pixel in binary terms as either snow or no snow. But it is known 

that as the snowmelt season progresses patchy areas of snow appear. Such 

areas are generally depicted as snow covered because of the brighter snow 

reflectance. To represent such conditions, subpixel snow classification 

concept is being applied where a percentage of snow cover is expressed for 

each pixel of the image (Appel and Salomonson, 2005; Painter et al., 

2005). 

• MM5 forecast data may be improved by using a finer topographic layer 

from a Digital Elevation Model and a better land use layer obtained from 

satellite remote sensing such as MODIS or Landsat. Also inclusion of data 

assimilation would enable more accurate forecasts.  

• A step ahead of the forecasting process is “nowcasting” where radar 

images can be utilized for runoff prediction. Such measurements may not 

give a lengthy time in advance but on the other hand could be much more 

accurate than an event which has not yet taken place.  

• For the selection of model parameters, effects of weather phenomena,      

El Nino and La Nina, can be investigated. 

• The current snow-met stations are set up by Middle East Technical 

University (METU) and State Hydraulic Works (DSI) personnel financed by 

State Planning Organization (DPT) projects conducted in METU. So far the 

operation and maintenance of this equipment are largely undertaken by the 

METU personnel but both the equipment and knowledge of use of the 

collected data has to be transferred to the government organizations and 

used operationally in the most appropriate manner possible besides 

continuing research studies in the universities.  

 

 

 

 

 



 196 

REFERENCES 
 
 
 
Akyürek, Z. and Şorman, A.Ü. (2002), Accuracy Assessment of a Landsat Assisted 
Land-cover Mapping Case Study: City of Erzurum and its Vicinity-Turkey,            
3rd International Remote Sensing Symposium of Urban Areas, Istanbul, Turkey,   
11-13 June 2002, Vol. 2, pp. 529-536. 
 
Alfnes, E., Langsholt, E., Skaugen, T. and Udnaes H-C, (2005) Updating snow 
reservoir in hydrological models from satellite observed snow covered areas, 
Report No.4-2005, Norwegian Water Resources and Energy Directorate (NVE), 
Oslo, Norway. 
 
Alfnes, E., Udneas, H.C. and Andreassen, L. (2004) Satellite-observed snow 
covered area and spring flood prediction in the HBV model, The XXIII. Nordic 
Hydrological Conference, Fresh Water Resources Management, Estonia. 
 
Altınbilek, D. (2004) Development and Management of Euphrates-Tigris Basin, 
Water Resources Development, Vol. 20, No. 1, pp. 15-33. 
 
Ambroise, B., Perrin, J.L. and Reutenauer, D. (1995) Multicriterion validation of 
semidistributed conceptual model of the water cycle in the Fecht Catchment, Water 
Resources Research, 31 (6), 1467-1481. 
 
Appel I. and Salomonsaon V.V. (2005) Global Estimate of Fractional Snow Cover 
from MODIS, 4th EARSeL Workshop: Remote Sensing of Snow and Glaciers-
Important Water Resources of the Future, 21-23 February 2005, University of 
Berne, Switzerland. 
 
Bathurst, J.C., Wicks, J.M., O’Connell, P.E. (1995) The SHE/SHESED basin scale 
water flow and sediment transport modeling system, in Computer models of 
watershed hydrology, ed V.P. Singh, Water Resources Pub., pp165-214. 
 
Baumgartner, M.F. and Rango, A. (1995) A microcomputer based alpine snowcover 
analysis system (ASCAS), Photogrammetric Engineering and Remote Sensing,     
61 (12), 1475-1486. 
 
Bergström, S., Lindström, G. and Pettersson, A. (2002) Multi-variable parameter 
estimation to increase confidence in hydrological modeling, Hydrological Processes, 
16, 413-421.  
 
Bergström, S. (1995) The HBV model, in Computer models of watershed 
hydrology, ed. V.P. Singh, Water Resources Pub., p165-214. 
 



 197 

Bergström, S. (1992) The HBV Model-Its Structure and Applications, SMHI 
Hydrology, RH No.4, Norrköping, 35 pp. 
 
Beven, K.J. (2001) Rainfall-runoff modeling, Wiley, 360pp. 
 
Beven, K.J. (1993) Prophecy, reality and uncertainty in distributed hydrological 
modeling, Advances in Water Resources, 16, 41-51. 
 
Beven, K.J. and Binley, A.M. (1992) The future of distributed models: model 
calibration and uncertainty prediction, Hydrological Processes, 6, 279-298.  
 
Burnash, R.J.C. (1995) The NWS river forecast system-catchment modeling, in 
Computer models of watershed hydrology, ed. V.P. Singh, Water Resources Pub., 
p165-214. 
 
Carroll, T. R. (1990) Operational Airborne and Satellite snow cover products of the 
National Hydrologic Remote Sensing Center, Proceedings of the 47th Annual 
Eastern Snow Conference, 87-98. 
 
Cazorzi, F., and Fontana, G.D. (1996) Snowmelt modeling by combining air 
temperature and a distributed radiation index, Journal of Hydrology, 181 (1-4), 
169-187. 
 
Cooper, V.A., Nguyen, V.T.V. and Nicell, J.A. (1997) Evaluation of global 
optimization methods for conceptual rainfall-runoff model calibration, Wat. Sci. 
Tech., 36 (5), 53-60. 
 
Davis, R.E., Dozier, J. and Marks, D. (1984) Micrometeorological measurements 
and instrumentation in support of remote sensing observations of an alpine snow 
cover, Proceedings of the Western Snow Conference, 52, 161-164. 
 
Doherty, J. (2004) PEST - Model Independent Parameter Estimation, User Manual: 
Fifth Edition, Watermark Computing, Australia. 
 
Doherty, J. (2003) PEST – Surface Water Utilities, Watermark Numerical 
Computing and University of Idaho. 
 
Doherty, J., L. Brebber, and P. Whyte (1994) PEST - Model Independent Parameter 
Estimation, Watermark Computing, Corinda, Australia. 
 
Dozier, J. (1980) A clear sky spectral radiation model for snow-covered 
mountainous terrain, Water Resources Research, 16, 709-718. 
 
Duan, Q., Gupta, V., Sorooshian, S. and Rousseau, A., Turcotte, R. (2003) 
Calibration of Watershed Models, ed. Duan Q. et al., Water Science and Application 
6, American Geophysical Union, Washington DC. 
 



 198 

Duan, Q., Sorooshian, S. and Gupta, V. (1994) Optimal use of the SCE-UA global 
optimization method for calibrating watershed models, Journal of Hydrology, No. 
158, 265-284. 
 
Duan, Q., Sorooshian, S. and Gupta, V. (1993) A Shuffled Complex Evolution 
Approach for Effective and Efficient Optimization, Journal of Optimization Theory 
Application, Vol.76, No.3, 501-521. 
 
Duan, Q., Sorooshian, S. and Gupta, V. (1992) Effective and efficient global 
optimization for conceptual rainfall-runoff models, Water Resources Research, 28 
(4), 1015-1031. 
 
Engeset, R.V., Udnaes, H.C., Guneriussen, T., Koren, H., Malnes, E., Solberg, R. 
and Alfnes, E. (2003) Improving Runoff Simulations Using Satellite-Observed and 
Time-Series of Snow Covered Area, Nordic Hydrology, 34 (4), 281-294. 
 
Engman, E.T. and Gurney, R.J. (1991) Remote Sensing in Hydrology, Chapman 
and Hall, 225 pp 
 
Franchini, M., Galeati, G. and Berra, S. (1998) Global optimization techniques for 
the calibration of conceptual rainfall-runoff models, Hydrological Sciences Journal, 
43 (3), 443-458. 
 
Frank C., Itten I. K., Staez K. (1988) Improvement in NOAA-AVHRR snow cover 
determination for runoff prediction, IEEE IGARSS, pp.433-435. 
 
Freedman V.L., Lopez V.L., Hernandez M. (1998) Parameter identifiably for 
catchment-scale erosion modeling: A comparison of optimization algorithms, 
Journal of Hydrology, 207 (1-2), 83-97 
 
Gan, T.Y., Dlamini, E.M. and Biftu, G.F. (1997) Effects of model complexity and 
structure, data quality and objective functions on hydrological modeling, Journal of 
Hydrology, 192, 81-103. 
 
Gan, T.Y. and Biftu, G.F. (1996) Automatic calibration of conceptual rainfall-runoff 
models, optimization algorithms, catchment conditions and model structure, Water 
Resources Research, 32 (12), 3513-3524. 
 
Gray, D.M. and Prowse, T.D. (1992) Snow and floating ice, Handbook of 
Hydrology, D.R. Maidment ed., McGraw-Hill, Inc., New York: 7.1-7.58. 
 
Grosbois, D.E., Hooper, R.P. and Christopherson, N. (1988) A multisignal automatic 
calibration methodology for hydrochemical models-A case study of the Birkenes 
model, Water Resources Research, 24 (8), 1299-1307. 
 
 
 



 199 

Guneriussen, T., Bjerke, P.L., Hallikainen, M., Hiltbrunner, D., Johnsen, H., 
Jaaskelainen, V., Kolberg, S.A., Koskinen, J., Maltzer, C., Pullianen, J., Sand, K., 
Solberg, R. Standley, A. and Wiesmann, A. (2000) Research and Development of 
Earth Observation Methods for Snow Hydrology, SnowTools Final Report, NORUT 
Report, 431/47-00.  
 
Gupta, H.B., Sorooshian, S. and Yapo, P.O. (1998) Toward improved calibration of 
hydrological models: Multiple and noncommensurable measures of information, 
Water Resources Research, 34 (4), 751-763. 
 
Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J. (2002) 
MODIS snow cover products, Remote Sensing of Environment, 83, pp. 181-194.  
 
Hall, D.K., Riggs, G.A., Salomonson, V.V., Barton, J.S., Casey, K., Chien, J.Y.L., 
DiGirolamo, N.E., Klein, A.G., Powell, H.W., Tait, B.A. (2001) Algorithm Theoretical 
Basis Document (ATBD) for MODIS snow and sea-ice mapping algorithms. 
 
Hall, D.K., Foster J.L., Verbyla D.L., Klein A.G. and Benson C.S. (1998) Assessment 
of snow-cover mapping accuracy in a variety of vegetation-cover densities in 
central Alaska, Remote Sensing of Environment, 66:129-137. 
 
Hall, D.K. and Martinec, J. (1985) Remote sensing of ice and snow, Chapmen and 
Hall, London, pp189. 
 
Harrison, A.R. and Lucas, R. M. (1989) Multi-spectral classification using 
NOAA/AVHRR imagery, International Journal of Remote Sensing, Vol. 10, 907-916. 
 
Hendersen-Sellers, A., Yang, Z.L., Dickinson, R.E., (1993) The project for 
intercomparison of land-surface parameterization schemes, Bull. Amer. Meteor. 
Soc., 74(7), 1335-1349. 
 
Hill, M.C. (1998) Methods and guidelines for effective model calibration, U.S. 
Geological Survey, Water Resources Investigations Report 98-4005. 
 
Hock, R. (1999) A distributed temperature index ice and snowmelt model including 
potential direct solar radiation, Journal of Glaciology, 45 (149), 101-111. 
 
Holland, J. (1975) Adaptation in natural and artificial systems, Ann Arbor, 
University of Michigan Press, 211 pp.  
 
Hooper, R.P., Stone, A., Christopherson, N., Grosbois, E.D. and Seip, H.M. (1988) 
Assessing the Birkenes model of stream acidification using a multisignal calibration 
methodology, Water Resources Research, 24 (8), 1308-1316. 
 
Hu, X., Bailey, J.O., Barret, E.C. and Kelly, E.J. (1993) Monitoring snow area and 
depth with integration of remote sensing and GIS, International Journal of Remote 
Sensing, Vol. 14, No. 17, 3529-3268. 
 



 200 

Johansson, B., Andreasson, J. and Jansson, J. (2003) Satellite data on snow cover 
in the HBV model. Method development and evaluation. SMHI Hydrology,          
RH No.90, Norrköping. 
 
Johansson, B., Caves, R., Ferguson, R. and Turpin, O. (2001) Using remote 
sensing data to update the simulated snow pack of the HBV runoff model. In: 
Remote Sensing and Hydrology, IAHS publ., No. 267, 595-597. 
 
Johnson, A.I., Petterson, C.B. and Fulton, J.L. (1992) Geographic Information 
Systems (GIS) and mapping – Practices and standards, ASTM Publication STP 
1126, 346 pp. 
 
Kattelmann, R. (2000) Snowmelt lysimeters in the evaluation of snowmelt models, 
Annals of Glaciology, 31, 406-410. 
 
Kaya, H.I. (1999), Application of Snowmelt Runoff Model using remote sensing and 
geographic information systems, M.Sc. Dissertation, Dept. of Civil Engineering, 
Middle East Technical University, Ankara, Turkey. 
 
Killingtveit, A. and Saelthun, N.R. (1995) Hydrology, Hydropower Development 
Volume No. 7, Norwegian Institute of Technology, Division of Hydraulic 
Engineering, Trondheim, Norway. 
 
Killingtveit, A. and Sand, K. (1991) Areal Distribution of snow cover in mountainous 
areas, Northern Research Basin 1990, National Hydrology Research Institute, 
Saskatoon.  
 
Killingtveit A. (1976) En studie av vannbalansen i Sagelva hydrologiske 
forskningsfelt, Instittutt for vassbygging, NTH, Trondheim, Norway. 
 
Klein, A.G., Hall, D.K. and Riggs, G.A. (1998) Improving snow cover mapping in 
forests through use of a canopy reflectance model, Hydrological Processes, 12, 
1723-1744. 
 
Klemes, V. (1986) Operational testing of hydrological simulation models, 
Hydrological Sciences Journal, 31 (1), 13-24.  
 
Kramer, H.J. (2002) Earth Observation History, Observation of the Earth and its 
Environment – Survey of Missions and Sensors, Springer. 
 
Kuczera, G. and Mroczkowski, M. (1998) Assessment of hydrologic parameter 
uncertainty and the worth of multi-response data, Water Resources Research, 34, 
1481-1489. 
 
Kuczera, G. (1997) Efficient subspace probabilistic parameter optimization for 
catchment models, Water Resources Research, 33 (1), 177-185. 
 



 201 

Kuczera, G. (1983) Improved parameter inference in catchment models,              
2. Combining different kinds of hydrological data and testing their compatibility, 
Water Resources Research, 19, 1163-1172. 
 
Kustas, W.P. and Rango, A. (1994) A simple energy budget algorithm for the 
snowmelt runoff model, Water Resources Research, Vol. 30, No. 5, pp. 1515-1527. 
 
Kuusisto, E. (1980) On the values and variability of degree-day melting factor in 
Finland, Nordic Hydrology, 11, pp. 235-242. 
 
Larson, L.W. and Peck E.W. (1974) Accuracy of precipitation measurements for 
hydrologic modeling, Water Resources Research, Vol. 10, 857-863.  
 
Leavesley, G.H. and Stannard, L.G. (1995) The precipitation-runoff modeling 
system, in Computer models of watershed hydrology, ed. V.P. Singh, Water 
Resources Pub., p165-214. 
 
Lindström G., Johansson B., Persson M., Gardelin M., Bergström S. (1997) 
Development and test of the distributed HBV-96 model, Journal of Hydrology, 201, 
pp 272-288. 
 
Madsen, H. and Jacobsen, T. (2001) Automatic calibration of the MIKE SHE 
integrated hydrological modeling system, 4th DHI Software Conference, 6-8 June 
2001, Scanticon Conference Center, Helsingør, Denmark. 
 
Madsen, H. (2000a) Automatic calibration of a conceptual rainfall-runoff model 
using multiple objectives, Journal of Hydrology, 235, 276-288. 
 
Madsen, H. (2000b) Automatic calibration and uncertainty assessment in rainfall-
runoff modeling, 2000 Joint Conference on Water Resources Engineering and 
Water Resources Planning and Management, Hyatt Regency Minneapolis, USA, July 
30 -August 2, 2000. 
 
Male, D.H. and Gray, D.M. (1981) Snow cover ablation and runoff, D.H. Male and 
D.M. Gray ed. Toronto, Ontario, Pergamon Press: 360-436 
 
Marks, D., Dozier, J. and Davis, R. (1992) Climate and energy exchange at the 
snow surface in the alpine region of the Sierra Nevada 1. Meteorological 
measurements and monitoring, Water Resources Research, Vol.28, No. 11: 3029-
3042. 
 
Marks, D., McGurk, B., Berg, N. and Dawson, D. (1988) Snow volume comparisons 
for atmospheric deposition monitoring, Proc. West. Snow Conf., 56, 124-136. 
 
Marks, D. and Dozier, J. (1979) A clear sky longwave radiation model for remote 
alphine areas, Arch. Meteorol., Geophys. Bioclimatol. Ser. B. 27, 159-187. 
 



 202 

Marsh, P. and Woo, M. K. (1984) Wetting front advance and freezing of meltwater 
within a snow cover 2: A Simulation Model, Water Resources Research, Vol. 20, 
No. 12: 1865-1874. 
 
Martinec, J. and Rango, A. (1987) Interpretation and utilization of areal snow cover 
data from satellites, Annals of Glaciology, Vol. 19, pp. 166-169. 
 
Matson, M., Ropelewski C.F. and Varnadore M.S. (1986) An atlas of satellite 
derived northern hemisphere snow cover frequency, National Weather Service, 
Washington, D.C., 75 pp. 
 
McLaughlin, D. and Townley, L.R. (1996) A reassessment of the groundwater 
inverse problem, Water Resources Research, 32 (5), 1131-1161. 
 
Metsamaki, S., Huttunen, M., Anttila, S. (2003) The operative remote sensing of 
snow covered area in a service of hydrological modeling in Finland, Proceedings of 
the 23rd EARSeL Symposium and Workshops, Gent, Belgium, 2-7 June 2003. 
 
Metsamaki, S., Vepsalainen, J., Pulliainen, J. and Suckdorff, Y. (2002) Improved 
linear interpolation method for the estimation of snow covered area from optical 
data, Remote Sensing of Environment, 82, 64-78. 
 
Muleta, M. and Nicklow, J. (2005) Sensitivity and uncertainty analysis coupled with 
automatic calibration for a distributed watershed model, Journal of Hydrology, 306, 
127-145. 
 
Nagler T. (2005) Personal contact. 
 
Nagler, T. and Rott H. (1997) The application of ERS-1 SAR for snowmelt runoff 
modeling. In: M.F. Baumgartnet, G.A. Schultz, and A.I. Johnson (eds), 5th Scientific 
Assembly of the International Association of Hydrological Sciences, Rabat, 
Morocco, 28-30 April, 1997 (IAHS Publication No.242, pp. 119-126) 
 
Nash, J.E. and Sutcliffe, J.V. (1970) River flow forecasting through conceptual 
models. Part I: A discussion of principles, Journal of Hydrology, Vol. 10, 282-290. 
 
Nelder, J.A. and Mead, R. (1965) A simplex method for function minimization, 
Comput. J., 7 (4), 308-313. 
 
Ohmura, A. (2001) Physical basis for the temperature based melt index method, J. 
Applied Meteorology, 40 (4), 753-761. 
 
Painter T.H., Bales R., Dozier J. (2005) Enhanced subpixel snow cover products 
from MODIS in snowmelt hydrological applications, 4th EARSeL Workshop: Remote 
Sensing of Snow and Glaciers-Important Water Resources of the Future, 21-23 
February 2005, University of Berne, Switzerland. 
 
 



 203 

Pellicciotti, F., Strasser, U., Brock, B., Burlando, P., Funk, M. and Corrippio, J.,  
(2002), An enhanced albedo accounting degree-day melt model for distributed 
application, American Geophysical Union (AGU) Fall Meeting, San Francisco. 
 
Perrin, C., Michel C., Andreassian, V. (2001) Does a large number of parameters 
enhance model performance? Comparative assessment of common catchment 
model structures on 429 catchments, Journal of Hydrology, 242, pp 275-301. 
 
Price, W.L. (1987) Global optimization algorithms for a CAD workstation, Journal of 
Optimization Theory and Applications, 55 (1), 133-146. 
 
Ramsay, B. (1998) The interactive multisensor snow and ice mapping system, 
Hydrological Processes, 12, pp.1537-1546. 
 
Rango, A. (1996) Spaceborne remote sensing for snow hydrology applications, 
Hydrological Sciences Journal, Vol. 41, 477-494. 
 
Rango, A. (1994) Application of remote sensing methods to hydrology and water 
resources, Hydrological Sciences Journal, 34 (4), 309-320. 
 
Rango, A., Salomonson, V.V., and Foster, J.L. (1977) Seasonal streamflow 
estimation in the Himalayan region employing meteorological snowcover 
observations, Water Resources Research, Vol. 13 (1), 109-112. 
 
Refsgaard, J.C. (1997) Parameterization, calibration and validation of distributed 
hydrological models, Journal of Hydrology, 198, 69-97.  
 
Riggs, G.A., Barton, J.S., Casey K., Hall, D.K., Salomonson, V.V. (2003) MODIS 
snow products user guide for collection 4 data products.  
 
Rott, H., Nagler, T., Glendinning, G., Wright, G., Miller, D., Gauld, J., Caves, R., 
Ferguson, R., Quegan, S., Turpin, O., Clark, C., Johansson, B., Gyllander, A., 
Baumgartner, M., Kleindienst, H., Voigt, S. and Pirker, O. (2000) HYDALP. 
Hydrology of Alpine and High Latitude Basins. Final Report. Institut für 
Meteorologie and Geophysik, Universitat Innsbruch, Mitteilungen, 4. 
 
Rott, H. (1978) Zur Schneekartierung in alpinen Einzugsbebieten aus 
Satellitenbildern, Zeitschrift fur Gletscherkunde und Glaziologie, Vol 14(1), 81-93. 
 
Saelthun, N.R. (1996) The ‘Nordic’ HBV Model. Description and documentation of 
the model version developed for the project climate change and energy 
production, Norges Vassdrags-og Energiverk Report No.7. 
 
Seibert, J (2003) The quest for an improved dialogue between modeler and 
experimentalist, Calibration of Watershed Models, ed. Duan Q. et al., Water 
Science and Application 6, American Geophysical Union, Washington DC. 
 



 204 

Seibert, J. (2000) Multi-criteria calibration of a conceptual runoff model using a 
genetic algorithm, Hydrology and Earth System Science, 4 (2), 215-224. 
 
Seibert, J. (1997) Estimation of parameter uncertainty in the HBV model, Nordic 
Hydrology, 28(4/5), 247-262. 
 
Seidel, K. and J. Martinec (2004). Remote Sensing in Snow Hydrology; Runoff 
Modeling, Effect of Climate Change, Springer, 150pp. 
 
Seidel, K., Brüsh, W. and Steinmeier,  C. (1994) Experiences from real time runoff 
forecasts by snow cover remote sensing, IEEE IGARSS. 
 
Singh, V.P. and Frevert, D.K. (2000a) Mathematical models of large watershed 
hydrology, Water Resources Pub., 891pp. 
 
Singh, V.P. and Frevert, D.K. (2000b) Mathematical models of small watershed 
hydrology and applications, Water Resources Pub., 950pp. 
 
Singh, V.P. (1995) Computer models of watershed hydrology, Water Resources 
Pub., 1130pp. 
 
Sorooshian, S. and Gupta, V.K. (1995) Model calibration, in Computer models of 
watershed hydrology , V.P. Singh (ed.), Water Resources Pub., Littleton, Colorado, 
23-68. 
 
Sorooshian, S., Duan, Q. and Gupta, V.K. (1993) Calibration of rainfall-runoff 
models: application of global optimization to the Sacramento soil moisture 
accounting model, Water Resources Research, 29 (4), 1185-1194. 
 
Sorooshian, S. and Dracup, J.A. (1980) Stochastic parameter estimation of 
hydrologic rainfall-runoff models, Correlated and heteoroscedastic error cases, 
Water Resources Research, 16 (2), 430-442. 
 
Spear, R.C. and Hornberger, G.M. (1980) Eutrophication in peel inlet. II: 
Identification of critical uncertainities via generalized sensitivity analysis, Water 
Res., 14, 43-49. 
 
Sugawa, M. (1995) Tank model, in Computer models of watershed hydrology, ed. 
V.P. Singh, Water Resources Pub., p165-214. 
 
Şensoy, A. (2005), Physically based point snowmelt modeling and its distribution in 
Upper Euprates Basin, Ph.D. Dissertation, Dept. of Civil Engineering, Middle East 
Technical University, Ankara, Turkey. 
 
Şensoy, A. (2000), Spatially distributed hydrologic modeling approach using 
geographic information systems, M.Sc. Dissertation, Dept. of Civil Engineering, 
Middle East Technical University, Ankara, Turkey. 
 



 205 

Şorman, A.A., Tekeli A.E., Şensoy A., Şorman A.Ü. (2004) Forecasting the Early 
Snowmelt Flood of 2004 – A Case Study from Upper Euphrates Basin,                 
6th International Congress on Advances in Civil Engineering, 6-8 October 2004, 
Boğaziçi University, Istanbul, Turkey. 
 
Tanakamuru, H. and Burges, S.J. (1996) Application of global optimization to 
parameter estimation of the Tank Model. In Proceedings of the International 
Conference on Water Resources and Environmental Research, 29-31 October, 
Kyoto, Japan, Vol.2, 39-46. 
 
Tekeli, A.E. (2005), Operational hydrological forecasting of snowmelt runoff model 
by RS-GIS Integration, Ph.D. Dissertation, Dept. of Civil Engineering, Middle East 
Technical University, Ankara, Turkey. 
 
Tekeli A.E., Akyürek Z., Şorman A.A., Şensoy A., Şorman A.Ü. (2005a)           
Using MODIS snow cover maps in modeling snowmelt runoff process in the 
Eastern part of Turkey, Remote Sensing of Environment (accepted for publication). 
 
Tekeli A.E., Şorman A.A., Şensoy A., Şorman A.Ü., Bonta J., Schaefer G. (2005b), 
Snowmelt lysimeters for real time snowmelt studies in Turkey, Turkish Journal of 
Engineering and Environmental Sciences, Vol.29, No.1, pp 29-40. 
 
Tekeli, A.E. (2000), Integration of remote sensing and geographic information 
systems on snow hydrology modeling, M.Sc. Dissertation, Dept. of Civil 
Engineering, Middle East Technical University, Ankara, Turkey. 
 
Thyer, M., Kuczera, G. and Bates, B.C. (1999) Probabilistic optimization for 
conceptual rainfall-runoff models: A comparison of the shuffled complex evolution 
and simulated annealing algorithms, Water Resources Research, 35 (3), 767-773. 
 
Townshend, J.R.G. and Tucker, C.J. (1984) Objective assessment of Advanced 
Very High Resolution Radiometer data for land cover mapping, International 
Journal of Remote Sensing, 5, 497-504. 
 
Troutman, B.M. (1985) Errors and parameter estimation in precipitation-runoff 
modeling 1. Theory, Water Resources Research, Vol. 21(8), pp 1195-1213. 
 
Tucker, C.J. (1986) Maximum normalized difference vegetation index images for 
sub-Saharan Africa for 1983-1985, International Journal of Remote Sensing, 7, 
1383-1394. 
 
Tucker, C.J., (1979) Red and photographic infrared linear combinations for 
monitoring vegetation, Remote Sensing of Environment, 8, pp 127-150. 
 
Uhlenbrook, S., Seibert, J., Leibundgut, C., Rodhe, A. (1999) Prediction uncertainty 
of conceptual rainfall-runoff models caused by problems in identifying model 
parameters and structure, Hydrological Sciences Journal, 44(5), 779-797. 
 



 206 

UNEP (2001) The Mesopotamian Marshlands: Demise of an Ecosystem, Early 
Warning and Assessment Technical Report No.3, UNEP/DEWA/TR.0103, Geneva. 
 
USACE (1998) Engineering and Design: Runoff from Snowmelt, U.S. Army Corps of 
Engineers, Washington DC. 
 
USACE (1956) Snow Hydrology: Summary report of the snow investigations,     
U.S. Army Corps of Engineers, North Pacific Division, Portland, Oregon. 
 
Usul, N. (2001) Engineering Hydrology, METU Press Publishing Company. 
 
Uzunoğlu, E. (1999), Application of the SLURP model using remote sensing and 
geographic information systems, M.Sc. Dissertation, Dept. of Civil Engineering, 
Middle East Technical University, Ankara, Turkey. 
 
Van Griensven, A. and Bauwens, W. (2001) Multi-objective calibration in integrated 
river basin modeling, Geophysical Research Abstracts, Vol.3, European Geophysical 
Society, 26th General Assembly. 
 
Vehvilainen, B. and Huttunen, M. (2001) Hydrological forecasting and real time 
monitoring in Finland: The watershed simulation and forecasting system (WSFS), 
Finnish Environment Institute. 
 
Vikhamer, D. and Solberg, R. (2003) Subpixel mapping of snow cover in forests by 
optical remote sensing, Remote Sensing of Environment, 84, 69-82. 
 
Wang, Q.J. (1991) The genetic algorithm and its application to calibrating 
conceptual rainfall-runoff models, Water Resources Research, 27 (9), 2467-2471. 
 
Wiesnet, D.R., Ropelevski, C.F., Kukla, G.J. and Robinson, D.A. (1987) A discussion 
of the accuracy of NOAA satellite derived global seasonal snow cover 
measurements, IAHS publications, Vol. 166, 291-304. 
 
Winther, J-G. (1993) Snow and Glacier Ice Characteristics measured using Landsat 
TM Data, Norwegian Institute of Technology, Dept. of Hydraulic and Environmental 
Engineering, IVB Report B-2-1993-5, Trondheim, Norway. 
 
WMO (1999a) Current operational applications of remote sensing in hydrology, 
Publication No. 884, Operational Hydrology Report No. 43, World Meteorological 
Organization, Geneva, Switzerland. 
 
WMO (1999b) Areal modeling in hydrology using remote sensing data and 
geographical information system, Publication No. 885, Operational Hydrology 
Report No. 44, World Meteorological Organization, Geneva, Switzerland. 
 
WMO (1992) Simulated real-time intercomparison of hydrological models, 
Publication No. 779, Operational Hydrology Report No. 38, World Meteorological 
Organization, Geneva, Switzerland. 



 207 

WMO (1986) Intercomparison of models of snowmelt runoff, Publication No. 646, 
Operational Hydrology Report No. 23, World Meteorological Organization, Geneva, 
Switzerland. 
 
WMO (1975) Intercomparison of conceptual models used in hydrological 
forecasting, Operational Hydrology Technical Report No: 7, WMO, Geneva.  
 
Yapo, P.O. (1996) A multi-objective global optimization algorithm with application 
to calibration of hydrological models, PhD. Thesis, Department of Hydrology and 
Water Resources, University of Arizona, Tucson, Az. 
 
Yapo, P.O., Gupta, V., Sorooshian, S. (1996) Calibration of Conceptual Rainfall-
Runoff Models: Sensitivity to Calibration Data, Journal of Hydrology, 181, 23-48. 
 
 
 
 
 

Web References 
 
 
URL-1, NOAA, National Oceanic and Atmospheric Administration 
http://www.ssd.noaa.gov/PS/SNOW 
(Last accessed 20/03/2005) 
 
URL-2, NOHRSC, National Operational Hydrologic Remote Sensing Center 
http://www.nohrsc.nws.gov 
(Last accessed 20/10/2004) 
 
URL-3, EnviSnow, Development of Generic Earth Observation Based Snow 
Parameter Retrieval Algorithms 
http://projects.itek.norut.no/EnviSnow 
(Last accessed 20/06/2005) 
 
URL-4, SnowMan, Snow Parameter Retrieval from Remote Sensing data for 
Improved Monitoring and Management of Water Resources 
http://projects.itek.norut.no/snowman 
(Last accessed 20/06/2005) 
 
URL-5, NSIDC, National Snow and Ice Data Center 
http://www.nsidc.org 
(Last accessed 14/03/2005) 
 
URL-6, MODIS, Moderate Resolution Imaging Spectroradiometer 
http://modis.gsfc.nasa.gov 
(Last accessed 20/03/2005) 
 



 208 

URL-7, MRT, MODIS Reprojection Tools 
http:// lpdaac.usgs,gov/landdaac/tools/modis/index.html 
(Last accessed 25/10/2004) 
 
URL-8, ECMWF, European Center for Medium-Range Weather Forecasts 
http://www.ecmwf.int 
Last accessed 20/03/2005) 
 
URL-9, MM5, Mesoscale Model 5 
http://www.mmm.ucar.edu/mm5/overview.html 
(Last accessed 20/06/2005) 
 
URL-10, MM5, Mesoscale Model 5 
http://www.mmm.ucar.edu/mm5/mm5v3/v3model.html 
(Last accessed 20/06/2005) 
 
URL-11, MM5, Mesoscale Model 5 
ftp://ftp.ucar.edu/mesouser/MM5V3/TERRAIN_DATA 
(Last accessed 20/06/2005) 
 
URL-12, Anadoluajansı 
http://www.hri.org/news/turkey/anadolu/2004/04-03-06.anadolu.html 
(Last accessed 20/10/2004) 
 
URL-13, Dartmouth Flood Observatory 
http://www.dartmouth.edu/%7Efloods/Archives/2004global.jpg 
(Last accessed 20/10/2004) 
 
URL-14, Poleshiftprepare 
http://www.poleshiftprepare.com/earth_changesJanMar2004.htm 
(Last accessed 20/10/2004) 
 
URL-15, Turkishpress 
http://www.turkishpress.com/turkishpress/news.asp?ID=18205 
(Last accessed 20/10/2004) 
 
 
 
 



 209 

APPENDIX A 
 
 
 

Parameter ESTimation (PEST) Input Files 

 

 

ptf # 

START  2KIRK  

  2    0            1    PNO       Number of precipitation stations 

  2    0  GY_P           PID1      Identification for precip station 1 

  2    0        2065.    PHOH1     Altitude precip station 1 

  2    0        1.0      PWGT1     Weight precipitation station 1 

  2    0            1    TNO       Number of temperature stations 

  2    0  GY_T           TID1      Identification for temp station 1 

  2    0        2065.    THOH1     Altitude temp station 1 

  2    0        1.0      TWGT1     Weight temp station 1 

  2    0            1    QNO       Number of discharge stations           

  2    0  Kirkgoze       QID       Identification for discharge station 

  2    0          1.     QWGT      Scaling factor for discharge 

  2    0       242.42    AREAL     Catchment area                       [km2] 

  2    4        0.000    MAGDEL    Regulation reservoirs                [1] 

  2    5     1890.000    HYPSO ( 1,1), low point              [m] 

  2    6     2026.000    HYPSO ( 2,1) 

  2    7     2107.000    HYPSO ( 3,1) 

  2    8     2178.000    HYPSO ( 4,1) 

  2    9     2254.000    HYPSO ( 5,1) 

  2   10     2341.000    HYPSO ( 6,1) 

  2   11     2440.000    HYPSO ( 7,1) 

  2   12     2589.000    HYPSO ( 8,1) 

  2   13     2692.000    HYPSO ( 9,1) 

  2   14     2791.000    HYPSO (10,1) 

  2   15     2957.000    HYPSO (11,1), high point 

  2   16        0.000    HYPSO ( 1,2), Part of total area below HYPSO (1,1) = 0  

  2   17        0.100    HYPSO ( 2,2) 

  2   18        0.200    HYPSO ( 3,2) 

  2   19        0.300    HYPSO ( 4,2) 

  2   20        0.400    HYPSO ( 5,2) 

  2   21        0.500    HYPSO ( 6,2) 

  2   22        0.600    HYPSO ( 7,2) 

  2   23        0.700    HYPSO ( 8,2) 

  2   24        0.800    HYPSO ( 9,2) 

  2   25        0.900    HYPSO (10,2) 

  2   26        1.000    HYPSO (11,2), Part of total area below HYPSO (11,1) = 1  

  2   27        0.000    BREPRO( 1), Glacier area, part of total area, below HYPSO( 1,1) (=0.0)  

  2   28        0.000         

  2   29        0.000         

  2   30        0.000        

  2   31        0.000     

  2   32        0.000     

 

  2   33        0.000     

  2   34        0.000     

  2   35        0.000     

  2   36        0.000     

  2   37        0.000    BREPRO(11), Glacier area, part of total area, below HYPSO(11,1) 

  2   38        

  2   39      270.000    NDAG      Day no for conversion of glacier snow to ice   

  2   40 #     tx   #    TX        Threshold temperature for snow/ice            [C] 

  2   41 #     ts   #    TS        Threshold temperature fo no melt              [C] 

  2   42 #     cx   #    CX        Melt index                               [mm/deg/day] 

  2   43        0.050    CFR       Refreeze efficiency                           [1]  

  2   44        0.080    LV        Max rel. water content in snow                [1] 

  2   45 #   pkor   #    PKORR     Precipitaion correction for rain              [1] 

  2   46 #   skor   #    SKORR     Additional precipitation corection for snow at gauge [1]   
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  2   47                 GRADALT   Altitude for change in prec. grad.            [m]   

  2   48                 PGRAD1    Precipitation gradient above GRADALT          [1] 

  2   49        0.020    CALB      Ageing factor for albedo                  [1/day] 

  2   50        0.330    CRAD      Radiation melt component                      [1]   

  2   51        0.340    CONV      Convection melt component                     [1] 

  2   52        0.330    COND      Condensation melt component                   [1] 

  2   60         1.1     CEVPL     lake evapotranspiration adjustment fact       [1]   

  2   61         0.5     ERED      evapotranspiration red. during interception   [1]     

  2   62        30.0     ICEDAY    Lake temperature time constant                [d] 

  2   63 #   ttgd   #    TTGRAD    Temperature gradient for days without precip [deg/100 m] 

  2   64 #   tvgd   #    TVGRAD    Temperature gradient for days with precip    [deg/100 m] 

  2   65 #   pgrd   #    PGRAD     Precipitation altitude gradient              [1/100 m] 

  2   66        1.500    CBRE      Melt increase on glacier ice                  [1] 

  2   67        0.008    EP        EP( 1), Pot evapotranspiration, Jan    [mm/day] or [1]  

  2   68        0.008    EP        EP( 2), Pot evapotranspiration, Feb    [mm/day] or [1]  

  2   69        0.300    EP        EP( 3) 

  2   70        1.000    EP        EP( 4) 

  2   71        2.000    EP        EP( 5) 

  2   72        2.800    EP        EP( 6) 

  2   73        3.000    EP        EP( 7) 

  2   74        3.000    EP        EP( 8) 

  2   75        2.300    EP        EP( 9) 

  2   76        1.100    EP        EP(10) 

  2   77        0.300    EP        EP(11) 

  2   78        0.008    EP        EP(12)), Pot evapotranspiration, Dec    [mm/day] or [1]  

  2   79 #   fc     #    FC        Maximum soil water content           [mm] 

  2   80 #   lp     #    FCDEL     Pot.evapotr when content = FC*FCDEL  [1] 

  2   81 #   beta   #    BETA      Non-linearity in soil water zone     [1] 

  2   82       50.00     INFMAX    maximum infiltration capacity        [mm/day] 

  2   83      

  2   84      

  2   85 #   kuz2   #    KUZ2      Quick time constant upper zone       [1/day] 

  2   86 #    uz1   #    UZ1       Threshold quick runoff               [mm] 

  2   87 #   kuz1   #    KUZ1      Slow time constant upper zone        [1/day] 

  2   88 #   perc   #    PERC      Percolation to lower zone            [mm/day] 

  2   89 #    klz   #    KLZ       Time constant lower zone             [1/day] 

  2   90        0.00     ROUT      (1), Routing constant (lake area, km2) 

  2   91        0.00     ROUT      (2), Routing constant (rating curve const) 

  2   92        0.00     ROUT      (3), Routing constant (rating curve zero) 

  2   93        0.00     ROUT      (4), Routing constant (rating curve exp) 

  2   94        0.00     ROUT      (5), Routing constant (drained area ratio) 

  2   95        0.00     DECAY     (1), Feedback constant 

  2   96        0.00     DECAY     (2), Feedback constant 

  2   97        0.00     DECAY     (3), Feedback constant 

  2   98        0.17     CE        Evapotranspiration constant          [mm/deg/day] 

  2   99        1.0      DRAW      "draw up" constant                   [mm/day] 

  2  100        40.0     LAT       Latitude                             [deg] 

  2  101       -0.6      TGRAD(1)  Temperature gradient Jan             [deg/100m] 

  2  102       -0.6      TGRAD(2)  Temperature gradient Feb             [deg/100m] 

  2  103       -0.6      TGRAD(3)  Temperature gradient Mar             [deg/100m] 

  2  104       -0.6      TGRAD(4)  Temperature gradient Apr             [deg/100m] 

  2  105       -0.6      TGRAD(5)  Temperature gradient May             [deg/100m] 

  2  106       -0.6      TGRAD(6)  Temperature gradient Jun             [deg/100m] 

  2  107       -0.6      TGRAD(7)  Temperature gradient Jul             [deg/100m] 

  2  108       -0.6      TGRAD(8)  Temperature gradient Aug             [deg/100m] 

  2  109       -0.6      TGRAD(9)  Temperature gradient Sep             [deg/100m] 

  2  110       -0.6      TGRAD(10) Temperature gradient Oct             [deg/100m] 

  2  111       -0.6      TGRAD(11) Temperature gradient Nov             [deg/100m] 

  2  112       -0.6      TGRAD(12) Temperature gradient Dec             [deg/100m] 

  2  113        20.0     SPDIST    Uniformly distributed snow acc       [mm] 

  2  114        80.0     SMINI     Inital soil moisture content         [mm] 

  2  115         0.0     UZINI     Initial upper zone content           [mm] 

  2  116       135.0     LZINI     Initial lower zone content           [mm] 

  2  121            1     VEGT(1,1) Vegetation type 1, zone 1             

  2  122            0     VEGT(2,1) Vegetation type 2, zone 1             

  2  123          0.0     VEGA(1)   Vegetation 2 area, zone 1            [1] 

  2  124          0.0     LAKE(1)   Lake area,         zone 1            [1] 

  2  125            1     VEGT(1,2) Vegetation type 1, zone 2             

  2  126            0     VEGT(2,2) Vegetation type 2, zone 2             

  2  127          0.0     VEGA(2)   Vegetation 2 area, zone 2            [1] 

  2  128          0.0     LAKE(2)   Lake area,         zone 2            [1] 

  2  129            1     VEGT(1,3) Vegetation type 1, zone 3             

  2  130            0     VEGT(2,3) Vegetation type 2, zone 3             

  2  131          0.0     VEGA(3)   Vegetation 2 area, zone 3            [1] 

  2  132          0.0     LAKE(3)   Lake area,         zone 3            [1] 

  2  133            1     VEGT(1,4) Vegetation type 1, zone 4             
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  2  134            0     VEGT(2,4) Vegetation type 2, zone 4             

  2  135          0.0     VEGA(4)   Vegetation 2 area, zone 4            [1] 

  2  136          0.0     LAKE(4)   Lake area,         zone 4            [1] 

  2  137            1     VEGT(1,5) Vegetation type 1, zone 5             

  2  138            0     VEGT(2,5) Vegetation type 2, zone 5             

  2  139          0.0     VEGA(5)   Vegetation 2 area, zone 5            [1] 

  2  140          0.0     LAKE(5)   Lake area,         zone 5            [1] 

  2  141            1     VEGT(1,6) Vegetation type 1, zone 6             

  2  142            0     VEGT(2,6) Vegetation type 2, zone 6             

  2  143          0.0     VEGA(6)   Vegetation 2 area, zone 6            [1] 

  2  144          0.0     LAKE(6)   Lake area,         zone 6            [1] 

  2  145            1     VEGT(1,7) Vegetation type 1, zone 7             

  2  146            0     VEGT(2,7) Vegetation type 2, zone 7             

  2  147          0.0     VEGA(7)   Vegetation 2 area, zone 7            [1] 

  2  148          0.0     LAKE(7)   Lake area,         zone 7            [1] 

  2  149            1     VEGT(1,8) Vegetation type 1, zone 8             

  2  150            0     VEGT(2,8) Vegetation type 2, zone 8             

  2  151          0.0     VEGA(8)   Vegetation 2 area, zone 8            [1] 

  2  152          0.0     LAKE(8)   Lake area,         zone 8            [1] 

  2  153            1     VEGT(1,9) Vegetation type 1, zone 9             

  2  154            0     VEGT(2,9) Vegetation type 2, zone 9             

  2  155          0.0     VEGA(9)   Vegetation 2 area, zone 9            [1] 

  2  156          0.0     LAKE(9)   Lake area,         zone 9            [1] 

  2  157            1     VEGT(1,10) Vegetation type 1, zone 10             

  2  158            0     VEGT(2,10) Vegetation type 2, zone 10           

  2  159          0.0     VEGA(10)   Vegetation 2 area, zone 10          [1] 

  2  160          0.0     LAKE(10)   Lake area,         zone 10          [1] 

FINIS 
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pif * 

l200  [sc01]66:73 

l16   [sc02]66:73 

l8    [sc03]66:73 

l13   [sc04]66:73 

l7    [sc05]66:73 

l11   [sc06]66:73 

l308  [sc07]66:73 

l2    [sc08]66:73 

l19   [sc09]66:73 

l1    [sc10]66:73 

l6    [sc11]66:73 

l4    [sc12]66:73 

l317  [sc13]66:73 

l14   [sc14]66:73 

l1    [sc15]66:73 

l9    [sc16]66:73 

l8    [sc17]66:73 

l26   [sc18]66:73 

l10   [sc19]66:73 
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pcf 

* control data 

restart estimation 

16 20 14 0 2 

1 2 single point 1 0 0 

5.0 2.0 0.3 0.03 10 

3.0 3.0 0.001 

0.1 aui 

30 0.01 3 3 0.01 3 

1 1 1 

* automatic user intervention 

8 1 0.9 0 

10 0 3 

0.8 0.95 3 

* parameter groups 

tcrt relative  0.03    0.01  always_2  2 parabolic 

tres relative  0.03    0.01  always_2  2 parabolic 

cx   relative  0.0125  0.05  always_2  2 parabolic 

kor  relative  0.025   0.025 always_2  2 parabolic 

tgrd relative  0.02    0.001 always_2  2 parabolic 

pgrd relative  0.02    0.001 always_2  2 parabolic 

fc   relative  0.025   1.0   always_2  2 parabolic 

lp   relative  0.02    0.001 always_2  2 parabolic 

beta relative  0.02    0.05  always_2  2 parabolic 

kuz2 relative  0.03    0.01  always_2  2 parabolic 

uz1  relative  0.025   1.0   always_2  2 parabolic 

kuz1 relative  0.05    0.005 always_2  2 parabolic 

perc relative  0.05    0.005 always_2  2 parabolic 

klz  relative  0.02    0.001 always_2  2 parabolic 

* parameter data 

tx   none  relative    0.000   -2.0      2.5    tcrt  1.0   0.0 1 

ts   none  relative    0.000   -2.0      2.5    tres  1.0   0.0 1 

cx    log  factor      3.500    1.0      7.0    cx    1.0   0.0 1 

pkor  log  factor      1.000    0.5      1.5    kor   1.0   0.0 1 

skor  log  factor      1.000    0.5      1.7    kor   1.0   0.0 1 

ttgd none  factor     -0.600   -1.1     -0.4    tgrd  1.0   0.0 1 

tvgd none  factor     -0.400   -0.7     -0.3    tgrd  1.0   0.0 1 

pgrd none  relative    0.010    0.0      0.1    pgrd  1.0   0.0 1 

fc    log  factor    250.000   50.0    450.0    fc    1.0   0.0 1 

lp   none  relative    0.900    0.6      1.0    lp    1.0   0.0 1 

beta none  relative    1.000    1.0      4.0    beta  1.0   0.0 1 

kuz2 none  factor      0.200    0.1      0.5    kuz2  1.0   0.0 1 

uz1   log  factor     20.00     5.0     65.0    uz1   1.0   0.0 1 

kuz1 none  factor      0.100    0.01     0.3    kuz1  1.0   0.0 1 

perc none  factor      0.600    0.30     2.0    perc  1.0   0.0 1 

klz  none  factor      0.001    0.0005   0.01   klz   1.0   0.0 1 

* observation groups 

diff 

sca 

* observation data 

accd  0.0   1.0   diff 

sc01   88.0 1.0   sca 

sc02   47.6 1.0   sca 

sc03   36.8 1.0   sca 

sc04   24.9 1.0   sca 

sc05   11.8 1.0   sca 

sc06    4.6 1.0   sca 

sc07   75.7 1.0   sca 

sc08   55.5 1.0   sca 

sc09   34.7 1.0   sca 

sc10   28.8 1.0   sca 

sc11   20.6 1.0   sca 

sc12    9.2 1.0   sca 

sc13   89.0 1.0   sca 

sc14   77.4 1.0   sca 

sc15   65.8 1.0   sca 

sc16   70.2 1.0   sca 

sc17   42.7 1.0   sca 

sc18   18.7 1.0   sca 

sc19    7.6 1.0   sca 

* model command line 

hbv.exe < arda020304.txt 

* model input/output 

param.tpl param.dat 

res_020304.ins PRTFIL.RES 

snow_020304n.ins PRTFIL.RES 
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