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ABSTRACT

HILBERT FUNCTIONS OF GORENSTEIN MONOMIAL CURVES

Mete, Pınar (Topaloğlu)

Ph.D., Department of Mathematics

Supervisor: Assist. Prof. Dr. Sefa Feza Arslan

July 2005, 46 pages

The aim of this thesis is to study the Hilbert function of a one-dimensional Gorenstein

local ring of embedding dimension four in the case of monomial curves. We show

that the Hilbert function is non-decreasing for some families of Gorenstein mono-

mial curves in affine 4-space. In order to prove this result, under some arithmetic

assumptions on generators of the defining ideal, we determine the minimal generators

of their tangent cones by using the standard basis and check the Cohen-Macaulayness

of them. Later, we determine the behavior of the Hilbert function of these curves,

and we extend these families to higher dimensions by using a method developed by

Morales. In this way, we obtain large families of local rings with non-decreasing

Hilbert function.

Keywords: Monomial curves, Standard basis, Hilbert function, Gorenstein rings
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ÖZ

GORENSTEIN TEKTERİMLİ EĞRİLERİNİN HILBERT FONKSİYONLARI

Mete, Pınar (Topaloğlu)

Doktora, Matematik Bölümü

Tez Yöneticisi: Assist. Prof. Dr. Sefa Feza Arslan

Temmuz 2005, 46 sayfa

Bu tezde amacımız, tekterimli eğriler durumu için 4. gömme boyutunda bir boyutlu

yerel Gorenstein halkalarının Hilbert fonksiyonunu çalışmaktır. 4 boyutlu afin uzayda,

Gorenstein tekterimli eğrilerinin bazı ailelerinin Hilbert fonksiyonunun azalmayan

olduğunu gösterdik. Bu sonucu ispatlamak için, tanımlayan idealin üreteçleri üzerine

bazı aritmetik kabuller altında standart baz kullanmak suretiyle bunların teğet koni-

lerinin minimal üreteçlerini belirleyerek bu konilerin Cohen-Macaulay olup olmadığını

test ettik. Ayrıca, bu eğrilerin Hilbert fonksiyonlarının davranışını belirledik ve bu

eğri ailelerini Morales’in geliştirdiği metot ile daha yüksek boyutlara genişlettik. Bu

şekilde, Hilbert fonksiyonu azalmayan olan, geniş yerel halka aileleri elde ettik.

Anahtar Kelimeler: Tekterimli eğriler, Standart bazları, Hilbert fonksiyonu, Goren-

stein halkaları
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

DEDICATON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 COHEN-MACAULAY RINGS AND HILBERT FUNCTION OF A
LOCAL COHEN-MACAULAY RING . . . . . . . . . . . . . . . . . . 5

2.1 Cohen-Macaulay and Gorenstein Rings . . . . . . . . . . . . . 5

2.2 Hilbert Function of a Graded Algebra . . . . . . . . . . . . . 9

2.3 Hilbert Function of a Local Ring . . . . . . . . . . . . . . . . 12

2.3.1 Literature . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Hilbert Functions and Cohen-Macaulayness . . . . . 14

3 MONOMIAL CURVES IN AFFINE SPACE . . . . . . . . . . . . . . 16

3.1 Defining Equations of Monomial Curves . . . . . . . . . . . . 16

3.2 Symmetric Semigroups . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Tangent Cone of a Monomial Curve . . . . . . . . . . . . . . 21

3.4 Cohen-Macaulayness of Tangent Cone . . . . . . . . . . . . . 21

4 HILBERT FUNCTIONS OF GORENSTEIN
MONOMIAL CURVES . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Generators of Tangent Cone . . . . . . . . . . . . . . . . . . . 25

4.2 Gorenstein Monomial Curves whose Tangent Cones are non-CM 34

4.3 A Conjecture for Higher Dimensions . . . . . . . . . . . . . . 36

4.4 Generalization to Higher Dimensions . . . . . . . . . . . . . . 38

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



CHAPTER 1

INTRODUCTION

The behavior of the Hilbert function HR(n) of a local ring (R,m) has remained as

an important problem to be determined for a long time. The importance of this

problem comes from the fact that the Hilbert function HR(n) of a local ring (R, m)

is a good measure of the singularity of (R, m) at m [29]. Nevertheless, relatively little

is known about the behavior of the Hilbert function HR(n) of a local ring (R, m).

Since the Hilbert function HR(n) of a local ring (R,m) is the Hilbert function of the

associated graded ring,

grR = grmR = R/m⊕m/m2 ⊕m2/m3 ⊕ · · ·

we need to find grR, in order to determine the Hilbert function of R. The toughness

to get grR for a given local ring (R,m) makes the direct computation of HR(n)

difficult. If grR is Cohen-Macaulay, the computation of the Hilbert function of a local

ring can be reduced to a computation of the Hilbert function of an Artin local ring,

which has a Hilbert function with finite number of nonzero values. Besides, Cohen-

Macaulayness of the associated graded ring guarantees that the Hilbert function is

non-decreasing [39]. In this case we need to check the Cohen-Macaulayness, which

assures this reduction.

In spite of the fact that the Hilbert function of a graded k-algebra is well-

understood, when it is Cohen-Macaulay, very little is known in the local case even if

this has a close relation with the well developed theory of singularities. This stems

1



from the fact that the associated graded ring of a local Cohen-Macaulay ring can be

very bad [41, p44].

The main related open problem was stated by Sally as the following conjecture

[35]:

Sally’s conjecture. If R is a one-dimensional Cohen-Macaulay lo-

cal ring with small enough embedding dimension, then HR(n) is non-

decreasing.

This conjecture is well known for embedding dimension less than or equal to 2.

Matlis proved the Sally’s conjecture for the embedding dimension two [28]. Moreover,

the non-decreasing property of the Hilbert function of a local ring for the embedding

dimension 3 case was also proved by Juan Elias [15]. In the literature, there are

several examples showing that Cohen-Macaulayness of a local ring does not neces-

sarily assure the non-decreasing behavior of its Hilbert function. The first examples

of local rings with decreasing Hilbert function were given by Herzog-Waldi [23] and

Eakin-Sathaye [13]. Besides, Orecchia showed that for all b ≥ 5 there exists a re-

duced one-dimensional local ring of embedding dimension b with decreasing Hilbert

function [31]. Thus, the Cohen-Macaulayness of a local ring does not guarantee that

its Hilbert function is non-decreasing. Moreover, nothing is known even for Goren-

stein local rings, which are special Cohen-Macaulay rings, so Sally’s conjecture can

be restated for Gorenstein rings: If R is a one-dimensional Gorenstein local ring with

small enough embedding dimension, then HR(n) is non-decreasing.

The aim of this thesis is to study the Hilbert function of a one-dimensional

Gorenstein local ring of embedding dimension four in the case of monomial curves.
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A monomial affine curve C in the affine space Ad
k over a field k is given parametrically

by xi = tni , that is , we have

C = {(tn1 , . . . , tnd) ∈ Ad
k | t ∈ k}

where n1, n2, . . . , nd are positive integers with gcd(n1, n2, . . . , nd) = 1. The addi-

tive semigroup , which is denoted by < n1, n2, . . . , nd >, generated minimally by

n1, n2, . . . , nd and is defined as < n1, n2, . . . , nd >= {n | n =
∑d

i=1 aini, ai’s are

non-negative integers}. There is a connection between a monomial curve and the

additive semigroup depending on the semigroup ring k[[tn1 , tn2 , . . . , tnd ]]. From this

standpoint, monomial curves can be seen as a common ground where geometric,

algebraic and arithmetical techniques apply.

In order to proceed, it is possible to consider either the associated graded ring

of R = k[[tn1 , tn2 , . . . , tnd ]] which is denoted by grR = grm(k[[tn1 , tn2 , . . . , tnd ]]), or

the ring k[x1, x2, . . . , xd]/I(C)∗. We prefer the latter, namely, the ring to study the

problem, since we have tools to find the generators of I(C)∗. This ring is called

coordinate ring of the tangent cone of the monomial curve C. We also have methods

to check the Cohen-Macaulayness of the associated graded ring by using standard

basis theory, which provides crucial information about the Hilbert function.

Knowing the defining ideal explicitly by the work of Bresinsky [8], we investigate

and determine the behavior of the Hilbert function of Gorenstein monomial curves in

the case of embedding dimension four. Based on the standard basis theory, we find

the minimal generators of the tangent cone of a monomial curve C in affine space

A4 under some arithmetic conditions on the generators of defining ideal. By using

the Cohen-Macaulayness of the tangent cone, we determine the Hilbert function of
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the associated graded ring of these curves.

In chapter 2, we introduce basic concepts required to study our problem by giving

the definitions of the Hilbert function of a local ring and of the Gorenstein ring, and

we give a survey of the literature. Then, we describe the relation between Hilbert

function and Gorenstein rings and also Cohen-Macaulay rings, respectively.

Chapter 3 is devoted to the monomial curves and Cohen-Macaulayness of the

tangent cone. We give the definitions of monomial curve and symmetric semigroup,

and mention some very important results. After defining the tangent cone, we es-

tablish the criteria for determining the Cohen-Macaulayness of the tangent cone of

a monomial curve.

In chapter 4, we first present the results about the generators of the defining

ideals of Gorenstein monomial curves in affine A4 space. We find the minimal gen-

erators of the tangent cone of Gorenstein monomial curves C under some arithmetic

assumptions on their defining ideals. Showing the Cohen-Macaulayness of the tan-

gent cones of these families gives us the opportunity to obtain families of Gorenstein

local rings with non-decreasing Hilbert function. We also consider families of Goren-

stein monomial curves, whose associated graded rings are not Cohen-Macaulay. By

extending the Gorenstein monomial curves to higher dimensions, we obtain large

families of local rings with non-decreasing Hilbert function.
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CHAPTER 2

COHEN-MACAULAY RINGS AND HILBERT

FUNCTION OF A LOCAL COHEN-MACAULAY RING

In this chapter, we introduce the basic definitions of Cohen-Macaulay and Gorenstein

rings. After giving the main related facts about the Hilbert functions of a graded

ring, we also give some results about the Hilbert functions of Cohen-Macaulay and

Gorenstein rings respectively. Then we define the Hilbert function of a local ring

and give a literature summary of the main problem: Hilbert function of a Cohen-

Macaulay local ring.

2.1 Cohen-Macaulay and Gorenstein Rings

First, we need some definitions to define a Cohen-Macaulay ring.

Definition 2.1.1. Let R be a ring. A regular sequence on R(or an R-sequence) is a

set a1, a2, . . . , an of elements or R with the following properties:

(i) R 6= (a1, a2, . . . , an)R,

(ii) The jth element aj is not a zero divisor on the ring R/(a1, a2, . . . , aj−1)R for

j = 1, 2, . . . , n, where for j = 1, we set (a1, a2, . . . , an) to be the zero ideal.

The lengths of all the maximal R-sequences(where R is Noetherian) in an ideal

are the same. This gives us the opportunity to define the depth of an ideal of a

Noetherian ring.
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Definition 2.1.2. Let R be a Noetherian ring. The depth of an ideal I is the length

of any maximal R-sequences in I.

The definition of height of any ideal is given as follows:

Definition 2.1.3. Let R be a commutative ring, and P be a prime ideal. The height

of P is the supremum of the lengths l of strictly descending chains

P = P0 ⊃ P1 ⊃ . . . ⊃ P`

of prime ideals. The height of any ideal I is the infimum of the heights of the prime

ideals containing I.

Now, we can define the Cohen-Macaulay ring.

Definition 2.1.4. A Noetherian ring R is Cohen-Macaulay, if depth(I)=height(I)

for each ideal I of R.

We can now give the definition of Gorenstein rings, which are special Cohen-

Macaulay rings. Gorenstein rings constitute an important class of local rings. These

are distinguished from the others by their ubiquity and various characterizations of

rings which belong to this class. From the point of such properties, they have been

considered as the nicest rings.

Bass made invaluable contributions to algebra and geometry such that he is the

first to characterize Gorenstein rings in terms of the type [4]. Hence, he is given

respect for developing the theory of these rings [5].

In [16] Foxby gives a remarkable characterization of Gorenstein rings by proving

the conjecture of Vasconcelos :
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Suppose (R, m, k) is a Noetherian local ring of dimension d containing a

field; then R is a Gorenstein ring if µd(m,R) = 1.

where µd(m,R) is dth Bass number of R with respect to m.

Geometrically, Gorenstein rings are common and significant as the title of Bass’

foundational paper, [14, p526].

The characterization of the class of Gorenstein rings usually involves homologi-

cal algebra. The fundamental definition states that a Noetherian local ring R is a

Gorenstein ring if it is of finite injective dimension [10, p94]. On the other hand,

we prefer another approach that follows an elementary way to the most important

facts of the theory by avoiding the use of structure theorems of injective modules

and duality theorems. In order to define Gorenstein rings based upon our approach,

we need to give some required definitions.

Definition 2.1.5. [3, p35] Let (R,m) be a local ring of dimension d = dim R. Any

d-element set of generators of an m-primary ideal is called a system of parameters

(or a set of parameters) of the local ring (R, m).

Definition 2.1.6. [3, p137] An irreducible ideal is a proper ideal which can not be

expressed as an intersection of two ideals properly containing it.

Then the definition of Gorenstein rings reads,

Definition 2.1.7. A local ring (R,m) is Gorenstein if and only if every system of

parameters of the ring R generates an irreducible ideal.

Alternatively, one can define Gorenstein rings to be the rings of type equal to 1.

This is the main homological characterization. It can be shown that this is equivalent
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to the one in the Definition 2.1.7. In order to make the equivalence clear we need to

give the definition of the type.

Definition 2.1.8. If (R, m) is a local Cohen-Macaulay ring of dimension d, then the

number

dimR/m Extd
R(Rm, R)

is called as the type r(R) of the ring R.

Now the following theorem shows the equivalence.

Theorem 2.1.9. [3, p140] The following properties are equivalent for a local ring

(R,m):

(i) The ring R is Cohen-Macaulay and there exists a system of parameters of R

generating an irreducible ideal, i.e. R is a Cohen-Macaulay ring of type 1,

(ii) Every system of parameters of the ring R generates an irreducible ideal.

Proof. See [3, p140].

We will be interested in monomial curves, therefore we will consider the ring

R = [[tn1 , . . . , tnd ]] of dimension one. As a result, R is Gorenstein, if every principal

ideal (r) generated by an element r ∈ R with
√

(r) = (tn1 , . . . , tnd) is irreducible.

Remark 2.1.10. Knowing that Gorenstein rings are Cohen-Macaulay rings, one way

to check if a ring is Gorenstein is to first check its Cohen-Macaulayness. If it is a

Cohen-Macaulay ring, the procedure follows as to find a system of parameters, to

kill it and then to compute the Socle. In order to get the type, it is required to

determine how many linearly independent elements are in the Socle.
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Example 2.1.11. Let A = k[X, Y ]/(X2, XY, Y 2), which has dimension zero, and

hence A is a Cohen-Macaulay ring. Now, Soc(A) = (0 : m)A = {z ∈ A | mz =

(0)} = m. Since there are two linearly independent elements are in the socle, type

of A is greater than 1. Therefore, A can not be Gorenstein.

2.2 Hilbert Function of a Graded Algebra

Before we define the Hilbert function of a local ring, we need to define the Hilbert

function of a graded k-algebra.

Definition 2.2.1. The Hilbert function HR(n) of a graded k-algebra R is defined as

HR(n) = dimkRn

where Rn is the homogeneous piece consisting of elements of degree n.

The assertion of Hilbert is that it is possible to extract all the information con-

tained in infinitely many values of the function H(n) using a set of finite number of

its values. The following theorem shows Hilbert’s approach :

Theorem 2.2.2. (Hilbert) If R is a finitely generated algebra over k[x1, . . . , xr], then

HR(n) agrees, for large S, with a polynomial of degree ≤ r − 1

Definition 2.2.3. The polynomial PR(n) satisfying PR(n) = HR(n) for sufficiently

large n is the Hilbert polynomial of R.

There is more to say about the Hilbert polynomial.

Theorem 2.2.4. [42, p342] Let the graded ring R have dimension d
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(i)

HR(t) =
hR(t)

(1− t)d
,

where hR(t) is a polynomial

(ii) the Hilbert polynomial PR(n) of R is of degree d − 1 with leading coefficient

hR(1)/(d− 1)! .

Proof. See [42, p342]

Definition 2.2.5. The multiplicity of a graded ring R is defined to be hR(1) and it

is denoted by e(R). The polynomial hR(t) is called the h-polynomial of R.

Definition 2.2.6. [10, p169] Let R be a positively graded k-algebra where k is a

field. Then the degree of the Hilbert function of R is denoted by a(R) and called the

a-invariant of R.

Before giving the first criteria for checking the Cohen-Macaulayness of a graded

ring, we need the following definition:

Definition 2.2.7. Let A be a graded ring of dimension d. A system of parameters

for A is a set of homogeneous elements a1, . . . , ad ∈ A such that dim (A/(a1, . . . , ad))

is zero.

Proposition 2.2.8. [42, p56] Suppose that a1, . . . , ad is a homogeneous system of

parameters for a graded ring A. Then A is a Cohen-Macaulay if and only if a1, . . . , ad

is a regular sequence. Moreover, if a1, . . . , ad are of degree 1, and if HA(t) = (h0 +

h1 + . . .+hrt
r)/(1− t)d, then the polynomial h0 +h1 + . . .+hrt

r is the Hilbert series

of the Artin ring A/(a1, . . . , ad). In particular, hi ≥ 0.
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The following proposition is another useful test to check the Cohen-Macaulayness

of a graded ring which is in the form k[x1, . . . , xn]/I, where I is a homogeneous ideal.

Proposition 2.2.9. [6, p117] Let A = k[x1, . . . , xn]/I, where I is a homogeneous

ideal, and let dim A = d. Then, the ring A is Cohen-Macaulay if and only if e(A) =

dimk(A/(a1, . . . , ad)), for some (and hence all) system of parameters a1, . . . , ad of

degree 1.

It would not be surprising that additional properties of R will put further con-

straints on the Hilbert function. Here, it is suitable to draw attention to a discussion

on this feature for Gorenstein properties.

Theorem 2.2.10. (Stanley’s Gorenstein Criterion) [10, p170] Let k be a field, R

is a d-dimensional C-M positively graded k-algebra. Suppose that R has the Hilbert

series

HR(t) =

∑s
i=0 hit

i

∏d
j=1(1− taj)

.

(i) If R is Gorenstein, then HR(t) = (−1)dta(R)HR(t−1).

(ii) Suppose R is a domain, and HR(t) = (−1)dtqHR(t−1) for some integer q. Then

R is Gorenstein.

Proof. See [10, p170].

Remark 2.2.11. Assume that the positively graded k-algebra R is Gorenstein, and

HR(t) =
hR(t)∏d

i=1(1− tai)

where a1, . . . , ad ∈ Z+. Then, the functional equation in Theorem 2.2.10(i) for HR(t)

is equivalent to the equation hR(t) = tdeg hRhR(t−1), that is, to the symmetry of the

polynomial hR(t).
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2.3 Hilbert Function of a Local Ring

The Hilbert function of a d-dimensional local ring (R, m) proves to be important

since it is a good measure of the singularity at (R, m). Sally summarizes the idea

behind this fact by saying that the Hilbert function measures the degree to which R

deviates from a regular local ring, or equivalently measures the degree to which grR

deviates from a polynomial ring over R/m [36].

Definition 2.3.1. The Hilbert function of (R,m) is the function H(n) which is the

dimension over R/m of the nth component of the associated graded ring

grmR = R/m⊕m/m2 ⊕m2/m3 ⊕ · · ·

Thus, HR(n) = dimR/m mn/mn+1 for all n ∈ Z≥0. Hilbert series of R is defined as

HR(t) =
∑

n∈Z≥0

HR(n)tn

Here, dimR/m represents the ordinary vector space dimension over the field R/m.

This graded algebra grmR corresponds to a relevant geometric structure. If R is the

localization at the origin of the coordinate ring of an affine variety passing through

0, then the associated graded ring grmR turns out to be the coordinate ring of the

tangent cone of this variety at the origin, which is the cone containing all lines that

are the limiting positions of secant lines to the variety in 0. Consequently, they both

have the same Hilbert function, as well as the Hilbert series.

Remark 2.3.2. It is very difficult to get the associated graded ring, grR, for a given

local ring since grm = m/m2 ⊕m2/m3 ⊕ . . . may involve zero divisors. Now, in this

case, all the R/m-vector space homomorphisms of mn/mn+1 to mn+1/mn+2 given

by multiplication by elements of m have nontrivial kernels for some n. As will be
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seen below, the Hilbert function of a one-dimensional local domain even may satisfy

H(2) < H(1).

2.3.1 Literature

In general, very little is known about the Hilbert function of a Cohen-Macaulay local

ring, since the associated graded ring of a local Cohen-Macaulay ring can be very

bad.

The first obvious question was to understand, whether the Hilbert function of a

local Cohen-Macaulay ring was non-decreasing, and this was stated by Sally as the

following conjecture [35]:

Sally’s conjecture. If R is a one-dimensional Cohen-Macaulay lo-

cal ring with small enough embedding dimension, then HR(n) is non-

decreasing.

Matlis proved the Sally’s conjecture for the embedding dimension two [28]. Elias

proved Sally’s conjecture for the embedding dimension three in the equicharacteristic

case [15].

The very first examples of rings with decreasing Hilbert function were given by

Herzog-Waldi [23] and Eakin-Sathaye [13] in the literature. In the first example,

R = k[t30, t35, t42, t47, t148, t153, t157, t169, t181, t193] is the ring of regular functions of a

monomial curve with embedding dimension 10 and the corresponding Hilbert func-

tion is HR = {1, 10, 9, 16, 25, . . .}. The second one in [13] is the ring of regular func-

tions R = k[t15, t21, t23, t47, t48, t49, t50, t52, t54, t55, t56, t58] of a monomial curve of em-

bedding dimension 12 with decreasing Hilbert function HR = {1, 12, 11, 13, 15, . . .}.
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Moreover, these two rings are one-dimensional Cohen-Macaulay local rings, whose

associated graded rings are not Cohen-Macaulay. In [31], Orecchia showed that for

all b ≥ 5 there exists a reduced one-dimensional local ring of embedding dimen-

sion b with decreasing Hilbert function. Later, ordinary singularities with decreasing

Hilbert function and embedding dimension at least 7 were constructed by Roberts

[32]. Gupta and Roberts gave examples of one-dimensional local rings with decreas-

ing Hilbert functions with embedding dimension b ≥ 4 in [20].

These examples show us that the Cohen-Macaulayness of a local ring does not

necessarily assure that its Hilbert function is non-decreasing. Therefore Sally’s con-

jecture can be restated as, if R is a one-dimensional Gorenstein local ring with small

enough embedding dimension, then HR(n) is non-decreasing.

2.3.2 Hilbert Functions and Cohen-Macaulayness

It is important to discover which local rings (R, m) have Cohen-Macaulay associated

graded rings, since Cohen-Macaulayness reduce the computation of the Hilbert func-

tion of (R, m) to the computation of the Hilbert function of an Artin local ring, the

latter function having only a finite number of nonzero values. Sometimes the key to

whether gr(R) is Cohen-Macaulay lies in the embedding dimension, which is H(1),

of the local ring. One may find several articles in the literature about this approach

[36]. Besides, knowing which local rings have Cohen-Macaulay associated graded

rings with respect to the maximal ideal enables us to make a rough classification of

singularities such as Gorenstein singularities, normal singularities, etc. Also, the va-

rieties all of whose local rings are Cohen-Macaulay manifest some special properties

[27].
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Suppose that R is a graded algebra of dimension d. (If R0 = k is a field and

so that R is a k-algebra, then one can say that R is a graded algebra). R is said

to be Cohen-Macaulay if and only if R has a homogeneous R-sequence of length d

[39, p66]. If depth(R)≥ 1, we have H(0) ≤ H(1) ≤ H(2) ≤ . . .. This is clearly

seen, because multiplication by a homogeneous non-zero divisor of degree one is a

monomorphism from Rn into Rn+1.

Remark 2.3.3. If grm = m/m2⊕m2/m3⊕. . . includes a zero divisor, then it, naturally,

contains a homogeneous nonzero divisor x̄ ∈ mt/mt+1 for some t ≥ 1. Also, multipli-

cation by x̄ is a one-to-one vector space homomorphism of mn/mn+1 to mn+t/mn+t+1

for all n ≥ 0. Thus, if x is any lifting of x̄ to R, then grm(R)/(x̄) ∼= grm(R/(x))

where dim(R/(x)) = dim R − 1. If grm(R) is Cohen-Macaulay and dim R =d, then

grm contains a regular sequence x̄1, . . . , x̄d of length d. By the argument above, if

x1, . . . , xd are liftings of x̄1, . . . , x̄d, then grm(R)/(x̄1, . . . , x̄d) ∼= grm(R/(x1, . . . , xd)).

From Proposition 2.2.8, HR(t) = HR/(x1,...,xd)(t)/(1− t)d where HR(t) is the Hilbert

series of the ring R and HR/(x1,...,xd)(t) is the Hilbert series of the Artin local ring

R/(x1, . . . , xd). This relation manifests how the Cohen-Macaulayness of the asso-

ciated graded ring of a local ring with respect to the maximal ideal reduces the

computation of the Hilbert function of a local ring to a computation of the Hilbert

function of an Artin local ring.
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CHAPTER 3

MONOMIAL CURVES IN AFFINE SPACE

Our main geometric objects of interest in this thesis are the monomial curves. These

form an important class of curves in the sense that they interconnect geometry, al-

gebra and combinatorics. This is a direct consequence of the relationship between

the monomial curves and semigroups generated by integers. The close relation be-

tween numerical semigroups and monomial curves let us use the algebraic geometry

terminology in studying numerical semigroups.

In this chapter we, firstly, present some basic facts about monomial curves and

symmetric semigroups. Then, we discuss the Cohen-Macaulayness of the tangent

cone of a monomial curve.

3.1 Defining Equations of Monomial Curves

A monomial affine curve C in the affine space Ad
k over a field k is given parametrically

by xi = tni , i.e., we have

Γ = {(tn1 , . . . , tnd) ∈ Ad
k | t ∈ k}

Let R = k[x1, . . . , xn] and k[t] be two polynomial rings over k, graded by deg(xi) = ni

for all i and deg(t) = 1, respectively. Let Φ be the graded homomorphism of k-

algebras

Φ : R → k[t], xi → tni .
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Now, the image of Φ, denoted by k[S] or k[Γ], is the semigroup ring. The additive

semigroup S generated minimally by n1, n2, . . . , nd is represented by < n1, n2, . . . , nd >

and is defined as

< n1, n2, . . . , nd >=
{

n | n =
d∑

i=1

aini, ai
′s are non− negative integers

}
. (3.1)

I(C) is the defining ideal of C consisting of

{f(x1, . . . , xd) | f(x1, . . . , xd) ∈ k[x1, . . . , xd], f(tn1 , . . . , tnd) = 0,

t transcendental over k} .

Φ gives an isomorphism for 1 ≤ i ≤ d

k[x1, . . . , xn]/I(C) ∼= k[tn1 , . . . , tnd ].

As a result, this isomorphism exhibits the relationship between the monomial

curve and the semigroup leading to isomorphism of local rings,

(k[x1, . . . , xn]/I(C))(x1,...,xd)
∼= k[tn1 , . . . , tnd ](tn1 ,...,tnd)

which, subsequently, yields that the completions of the local rings give

(k[[x1, . . . , xn]]/I(C)) ∼= k[[tn1 , . . . , tnd ]].

3.2 Symmetric Semigroups

It is considered to be a classical problem to study the subsemigroups of N. This

is equivalent to investigate the sets of natural solutions of linear equations with

coefficients in N. The study of the subsemigroups of N has also gained motivation

by its interaction with algebraic geometry and commutative algebra after the works

of [21, 26] and others. The observation is that the properties of the semigroup S
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imply properties on the semigroup ring R = k[S]. For instance, Kunz showed that

R is Gorenstein if and only if S is symmetric [26].

A numerical semigroup S, as defined in equation (3.1), is said to be symmetric if

and only if the number of gaps is equal to the number of nongaps. A gap is given by

n /∈< n1, n2, . . . , nd >, 0 < n ≤ c ,

and a nongap is,

n ∈< n1, n2, . . . , nd >, 0 ≤ n < c

where the number c is the greatest integer not in S and is called the Frobenius number

of S. The problem of Frobenius number refers to determination of the integer c. The

problem of computing and estimating the Frobenius number has been examined by

several authors in terms of the generators for different classes of semigroups [18] and

the references therein. The formula for the Frobenius number c = n1n2 − n1 − n2

first proved in [40], if S is generated by two elements, S =< n1, n2 >.

For the case that S is generated by three elements, an algorithm is proposed

by Johnson [25] which incorporates subsequent improvements in [11], [37], and

[34]. Fröberg derived an easier expression for c for three-generated semigroups

< n1, n2, n3 > and for four-generated < n1, n2, n3, n4 > symmetric semigroups. These

are the following theorems :

Theorem 3.2.1. [17] Let S =< n1, n2, n3 > be non-symmetric. Then the Frobenius

number of S is c = max{n2α12+n3α3−(n1+n2+n3), n2α2+n3α13−(n1+n2+n3)} =

max{n2α12 + n3(α13 + α23)− (n1 + n2 + n3), n2(α12 + α32) + n3α13− (n1 + n2 + n3)}.

Theorem 3.2.2. [17] Let S =< n1, n2, n3, n4 > be symmetric but k[S] not a complete

intersection. Then the Frobenius number of S is c = n2α2 + n3α3 + n4α14 − (n1 +
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n2 + n3 + n4) = n2(α32 + α42) + n3(α13 + α43) + n4α14 − (n1 + n2 + n3 + n4).

Based on the findings of Herzog and Kunz [22], Stanley realized that the follow-

ing theorem of Kunz on numerical semigroup rings can easily be derived from the

Stanley’s Gorenstein criterion 2.2.10.

Theorem 3.2.3. [10, p171] Let S be a numerical semigroup with Frobenius number

c. The following conditions are equivalent

(a) k[S] is Gorenstein;

(b) The semigroup S is symmetric, i.e., for all i with O ≤ i ≤ c− 1 one has i ∈ S

if and only if c− i− 1 6∈ S.

Proof. Write R = k[S]. Then

HR(t) =
∑
j∈S

tj = 1/(1− t)−
∑

i∈N\S
ti ,

and subsequently,

−HR(t−1) = t/(1− t) +
∑

i∈N\S
t−i .

Suppose HR(t) = −trHR(t−1) which necessitates r = c− 1, and

1/(1− t)−
∑

i∈N\S
ti = tc/(1− t) +

∑

i∈N\S
tc−1−i .

Hence HR(t) = −tc−1HR(t−1) if and only if S is symmetric, and the assertion follows

from Theorem 2.2.10.

This result gives us the opportunity that if we have a monomial curve corre-

sponding to a symmetric semigroup, we can call it a Gorenstein monomial curve.

The results show that there is a connection between the symmetric semigroups

and the number of generators of the defining ideals of corresponding monomial curves
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in affine 3- and 4-spaces. For a monomial curve C with embedding dimension 3, Her-

zog shows that the defining ideal I(C) has 2 generators if and only if the semigroup

< n1, n2, n3 > is symmetric [21]. This shows that every Gorenstein monomial curve

with embedding dimension three is a complete intersection. In the same paper, he

also show that if S =< n1, n2, n3 > and not symmetric, then

k[S] ' k[x1, x2, x3]/(x
α1
1 − xα12

2 xα13
3 , xα2

2 − xα21
1 xα23

3 , xα3
3 − xα31

1 xα32
2 )

and αij < αj for all i, j. For the embedding dimensions greater than or equal to 4,

every Gorenstein monomial curve is not a complete intersection, which was shown in

[21] and [44]. Bresinsky not only proved that I(C) is generated by 3 or 5 elements

for a monomial curve C with symmetric semigroups of integers generated by four

elements, but he also gave an explicit description of the generators of I(C) [8].

We use Bresinsky’s results extensively in this thesis. Herzog and Bresinsky’s results

show that in embedding dimensions 3 and 4, symmetry implies the existence of a

finite upper bound on the number of generators of the ideals of Gorenstein monomial

curves. This is not true for general monomial curves in embedding dimensions greater

than or equal to 4, as it was shown by Bresinsky [7]. In other words, in embedding

dimension 4, there are monomial curves with arbitrary large number of generators. It

is still an open question, whether symmetry always implies the existence of a finite

upper bound on the number of generators of the ideals of Gorenstein monomial

curves. Bresinsky has some contribution for embedding dimension 5 case, but even

this case has not been completed yet [9].
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3.3 Tangent Cone of a Monomial Curve

The tangent cone of a variety at a point, which refers to the approximation of the

variety at this point, comes as a very important and useful geometric object. It

is possible to get local information, particularly, when the point is a singular one.

Naturally, a monomial curve C has a singular point at the origin if ni > 1 for all

1 ≤ i ≤ d. In this case, the tangent cone of a monomial curve at the origin is

important to understand more about the monomial curves.

Definition 3.3.1. Let I∗ be the ideal which is generated by the polynomials f∗, where

the homogeneous summand of f of least degree, for f ∈ I. The geometric tangent

cone Cp(V ) at p is V (I∗), and the tangent cone is the pair (V (I∗), k[x1, . . . , xd]/I∗).

One can study the tangent cone of the variety V at the origin with a different ap-

proach by using the associated graded ring of the coordinate ring k[x1, . . . , xd]/I(V )

of a variety V with respect to the maximal ideal m. We can investigate the tangent

cone of a monomial curve C at the origin by studying either the associated graded

ring of k[[tn1 , tn2 , . . . , tnd ]] with respect to the maximal ideal m = (tn1 , tn2 , . . . , tnd)

which is denoted by grm(k[[tn1 , tn2 , . . . , tnd ]]), or the ring k[x1, x2, . . . , xd]/I(C)∗. For

the details, see [1].

3.4 Cohen-Macaulayness of Tangent Cone

As we have mentioned before, it is an important problem to determine if the tangent

cone of the associated graded ring of a local ring is Cohen-Macaulay, (CM), because

this guarantees the non-decreasing property of the Hilbert function.

Since our main geometric objects are monomial curves, we will pay attention to
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the Cohen-Macaulayness of the tangent cone of a monomial curve. In this section,

we will discuss some results about checking the Cohen-Macaulayness of the tangent

cone of a monomial curve C by considering the ideal I(C)∗. For details, see [1].

Lemma 3.4.1. [19, Theorem7] grm(k[[tn1 , tn2 , . . . , tnd ]]) is Cohen-Macaulay if and

only if tn1 is not a zero divisor in grm(k[[tn1 , tn2 , . . . , tnd ]]).

Then the useful result follows:

Theorem 3.4.2. [2, Theorem 2.1] Let C be a monomial curve. Let g1, . . . , gs be a

minimal Gröbner basis for I(C)∗ with respect to a reverse lexicographical order that

makes x1 the lowest variable. Then grm(k[[tn1 , tn2 , . . . , tnd ]]) is Cohen-Macaulay if

and only if x1 6 | in(gi) for 1 6 i 6 s, where in(gi) is the leading term of gi.
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CHAPTER 4

HILBERT FUNCTIONS OF GORENSTEIN

MONOMIAL CURVES

Our main aim is to study the Hilbert function of a one-dimensional Gorenstein local

ring of embedding dimension four which corresponds to a monomial curve. We have

mentioned that, it is a longstanding problem to determine the behavior of the Hilbert

function of a local ring, and we have restated the Sally’s famous conjecture as:

Sally’s conjecture. If R is a one-dimensional Gorenstein local ring

with small enough embedding dimension, then HR(n) is non-decreasing.

This conjecture is open even for monomial curves in embedding dimension 4.

In order to study this problem in monomial curve case, we consider monomial

curves for which their semigroups are symmetric. We recall that a numerical semi-

group < n1, n2, . . . , nd >= {n | n =
∑d

i=1 aini, ai’s are non-negative integers} is

symmetric if and only if the number of gaps is equal to the number of nongaps

(n /∈< n1, n2, . . . , nd >, 0 < n ≤ c is called a gap, and n ∈< n1, n2, . . . , nd >, 0 ≤

n < c is called a nongap). Kunz [26] gives an algebraic characterization of sym-

metric semigroups by showing that < n1, n2, . . . , nd > is symmetric if and only if

k[[tn1 , tn2 , . . . , tnd ]] is Gorenstein. Bresinsky shows that for a monomial curve C with

symmetric semigroups of integers generated by four elements, I(C) is generated by

3 (complete intersection case) or 5 elements [8]. He also gives description of the
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defining ideal and arithmetic conditions for the generators of I(C).

Since the tangent cone may not be Cohen-Macaulay even in the complete in-

tersection case, almost nothing is known about the Hilbert function. For example,

the monomial curve having parametrization x1 = t12, x2 = t14, x3 = t21, x4 = t30 is

a complete intersection, but the associated graded ring of k[[t12, t14, t21, t30]] is not

Cohen-Macaulay, so that we cannot immediately conclude that its Hilbert function

is non-decreasing even in the complete intersection case.

Hence, our main aim is to investigate and try to determine the behavior of the

Hilbert function of Gorenstein monomial curves in the case of embedding dimension

four. Based on the standard basis theory, we find the minimal generators of the

tangent cone of a monomial curve C with defining ideal as described in [8] under

some arithmetic assumptions. By using the Cohen-Macaulayness of these tangent

cones, we determine that the Hilbert function of these curves are non-decreasing

under these assumptions.

We can summarize the notation as the following: A monomial affine curve C has

parametrization

x1 = tn1 , x2 = tn2 , . . . , xd = tnd

where n1, n2, . . . , nd ∈ Z+ with gcd(n1, n2, . . . , nd) = 1 and n1, n2, . . . , nd generate

minimally the semigroup < n1, n2, . . . , nd >. I(C) is the defining ideal of C consisting

of

{f(x1, . . . , xd) | f(x1, . . . , xd) ∈ k[x1, . . . , xd], f(tn1 , . . . , tnd) = 0,

t transcendental over k},
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and I(C)∗ is the ideal generated by the polynomials f∗ for f in I(C), where f∗ is the

homogeneous summand of f of least degree, and µ(I(C)∗) is the minimal number of

generators of ideal I(C)∗ which is also called the tangent cone of the monomial curve

C. In order to study the tangent cone of a monomial curve C at the origin, it is possi-

ble to consider either the associated graded ring of k[[tn1 , tn2 , . . . , tnd ]] with respect to

the maximal ideal m = (tn1 , tn2 , . . . , tnd) which is denoted by grm(k[[tn1 , tn2 , . . . , tnd ]]),

or the ring k[x1, x2, . . . , xd]/I(C)∗.

4.1 Generators of Tangent Cone

In this section, we find the minimal generators of the tangent cone of monomial curve

C having the defining ideal as in Theorem 3 in [8] under some arithmetic assumptions

on the generators. First, we recall the Bresinsky’s theorem which gives the explicit

description of a Gorenstein monomial curve [8].

Theorem 4.1.1. (Bresinsky) [8, Theorem 3] S =< n1, n2, n3, n4 > symmetric and

I(C) is not necessarily generated by 3 elements if and only if I(C) = (f1 = xα1
1 −

xα13
3 xα14

4 , f2 = xα2
2 −xα21

1 xα24
4 , f3 = xα3

3 −xα31
1 xα32

2 , f4 = xα4
4 −xα42

2 xα43
3 , f5 = xα43

3 xα21
1 −

xα32
2 xα14

4 ) where the polynomials fi, 1 ≤ i ≤ 4, are unique up to isomorphism and

0 < αij < αj.

Remark 4.1.2. Here, αini ∈< n1, . . . , n̂i, . . . , n4 > such that αi, 1 ≤ i ≤ 4, are

minimal.

Remark 4.1.3. Since the polynomials fi are unique up to isomorphism by Lemma 4

in [8], there are six isomorphic possible permutations which can be considered within

three cases :

25



Case 1: f1 = (1, (3, 4)). Then

either f2 = (2, (1, 4)), f3 = (3, (1, 2)), f4 = (4, (2, 3))

or f2 = (2, (1, 3)), f3 = (3, (2, 4)), f4 = (4, (1, 2))

Case 2: f1 = (1, (2, 3)). Then

either f2 = (2, (3, 4)), f3 = (3, (1, 4)), f4 = (4, (1, 2))

or f2 = (2, (1, 4)), f3 = (3, (2, 4)), f4 = (4, (1, 3))

Case 3: f1 = (1, (2, 4)). Then

either f2 = (2, (1, 3)), f3 = (3, (1, 4)), f4 = (4, (2, 3))

or f2 = (2, (3, 4)), f3 = (3, (1, 2)), f4 = (4, (1, 3))

In these cases the generators fi = (i, (j, k)) are denoted symbolically by the notation

xαi
i − x

αij

j xαik
k .

Now we want to show the relation between the defining ideal of Gorenstein mono-

mial curves generated by 5 elements and their tangent cone. In order to do this, we

construct examples by using the main characterization of [26]. First, we obtain

monomial curves whose semigroups are symmetric. Later, we compute their defining

ideals by using Macaulay2, then we find their tangent cones and determine their

Hilbert functions.

The examples presented in tables 4.1 and 4.2 and tested by the Macaulay2 code

implied that the generators of tangent cone can be obtained provided that some

restrictions are imposed on generators of the defining ideal. Generally speaking, one

can compute a set of generators of I(C)∗ using the algorithm which is known as

the “tangent cone algorithm” (see [12, p.467]) by merely knowing the description

of the ideal I(C). This algorithm utilizes the Gröbner basis which confines the
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Table 4.1: Some examples...

[Case 1(a)] f1 = (1, (3, 4)), f2 = (2, (1, 4)), f3 = (3, (1, 2)), f4 = (4, (2, 3))

C (11, 16, 18, 26) (16, 17, 22, 26)

I(C)
(x4 − zw, y3 − x2w, z3 − x2y2,

w2 − yz2, x2z2 − y2w)
(x3 − zw, y4 − xw2, z3 − x2y2,

w3 − y2z2, xz2 − y2w)

I(C)∗ (w2, zw, z3, y2w, y3 − x2w)
(w3, zw, z3, y2w2, y4z − x4w,

y6 − x5z, xw2, xz2 − y2w)

H(n) 1, 4, 8, 10, 11, . . . 1, 4, 9, 12, 14, 16, . . .

[Case 1(b)] f1 = (1, (3, 4)), f2 = (2, (1, 3)), f3 = (3, (2, 4)), f4 = (4, (1, 2))

C (11, 14, 15, 18) (7, 8, 17, 18) (9, 10, 11, 23)

I(C)
(x3 − zw, y4 − xz3,

z4 − y3w, w2 − x2y,

yz − xw)

(x5 − zw, y3 − xz,

z2 − y2w, w2 − x4y,

yz − xw)

(x5 − z2w, y2 − xz,

z3 − yw, w2 − x4y,

yz2 − xw)

I(C)∗
(w2, zw, z4 − y3w,

yz − xw, y4 − xz3)
(w2, zw, z2, yz − xw,

y3w, y7, xz)
(w2, z2w, z5, yw,

yz4, y2 − xz, xw)

H(n) 1, 4, 7, 10, 11, . . . 1, 4, 5, 6, 6, 6, 7, . . . 1, 4, 6, 7, 9, . . .

[Case 2(a)] f1 = (1, (2, 3)), f2 = (2, (3, 4)), f3 = (3, (1, 4)), f4 = (4, (1, 2))

C (14, 17, 22, 24)

I(C) (x4 − y2z, y4 − z2w, z3 − x3w, w2 − xy2, xz2 − y2w)

I(C)∗ (w2, z2w, z3, y2z, y4w, y6 − x4zw, xz2 − y2w)

H(n) 1, 4, 9, 12, 13, 14, . . .

[Case 2(b)] f1 = (1, (2, 3)), f2 = (2, (1, 4)), f3 = (3, (2, 4)), f4 = (4, (1, 3))

C (5, 12, 13, 14) (10, 11, 19, 24)

I(C)
(x5 − yz, y2 − x2w, z2 − yw,

w2 − x3z, x3y − zw)
(x3 − yz, y4 − x2w, z3 − y3w,

w2 − xz2, xy3 − zw)

I(C)∗ (w2, zw, z2 − yw, yz, y2)
(w2, zw, z3, yz, y5w, y9 − x8z,

x2w, x3z2 − y4w)

H(n) 1, 4, 5, . . . 1, 4, 7, 8, 9, 9, 9, 9, 10, . . .
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Table 4.2: Some examples continued...

[Case 3(a)] f1 = (1, (2, 4)), f2 = (2, (1, 3)), f3 = (3, (1, 4)), f4 = (4, (2, 3))

C (7, 8, 9, 13) (13, 14, 17, 38)

I(C)
(x3 − yw, y2 − xz, z3 − x2w,

w2 − yz2, x2y − zw)
(x4 − yw, y4 − x3z, z3 − xw,

w2 − y3z2, xy3 − zw)

I(C)∗ (w2, zw, z3 − x2w, yw, y2 − xz) (w2, zw, z4, yw, yz3, y4 − x3z, xw)

H(n) 1, 4, 6, 7, . . . 1, 4, 6, 10, 12, 13, . . .

[Case 3(b)] f1 = (1, (2, 4)), f2 = (2, (3, 4)), f3 = (3, (1, 2)), f4 = (4, (1, 3))

C (9, 11, 14, 16) (8, 9, 22, 23)

I(C)
(x3 − yw, y4 − z2w, z3 − xy3,

w2 − x2z, yz − xw)
(x4 − yw, y5 − zw, z2 − xy4,

w2 − x3z, yz − xw)

I(C)∗ (w2, z2w, z3, yw, yz − xw, y5 − x3z2) (w2, zw, z2, yw, yz − xw, y8, x4z)

H(n) 1, 4, 7, 8, 9, . . . 1, 4, 5, 6, 7, 7, 7, 8, . . .

computation only to global orderings, and this method was used by many authors,

see [1]. However, in our case, this method is not efficient and one must go to local

orderings to avoid imposing relatively larger number of restrictions and, therefore,

to achieve a better generalization. Hence, we use standard basis theory and for local

orderings, we use Mora’s tangent cone algorithm based on standard basis.

The standard basis of an ideal or a module is just a special set of generators,

which makes the computation of various invariants of the corresponding ideal or

module possible via only its leading monomials. A Gröbner basis will be referred

as the standard basis for a global ordering. We use Buchberger‘s algorithm for the

computation of Gröbner bases. The algorithm for computing the standard basis is

the same for any monomial ordering. Yet, only the normal form algorithm differs for

well-orderings, called as the global orderings and for non-global orderings, called as
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the local, respectively mixed, orderings. The reader should see the reference [24] for

the details of local orderings, normal form (NF ), standard basis and Mora’s tangent

cone algorithm.

We give only the definition of the negative degree reverse lexicographical ordering

among the other local orderings.

Definition 4.1.4. [24, p.14] (negative degree reverse lexicographical ordering)

xα >ds xβ :⇐⇒ deg xα < deg xβ, where deg xα = α1 + . . . + αn,

or (deg xα = deg xβ and ∃1 ≤ i ≤ n :

αn = βn, . . . , αi+1 = βi+1, αi < βi).

Proposition 4.1.5. Let C be a Gorenstein monomial curve with defining ideal

I(C) = (f1 = xα1
1 − xα13

3 xα14
4 , f2 = xα2

2 − xα21
1 xα24

4 , f3 = xα3
3 − xα31

1 xα32
2 , f4 = xα4

4 −

xα42
2 xα43

3 , f5 = xα43
3 xα21

1 − xα32
2 xα14

4 ) as in Theorem 4.1.1. Then, under the restriction

α2 ≤ α21 + α24, the defining ideal I(C)∗ of the tangent cone is generated by a set S∗

consisting of the least homogeneous summands of fi’s in I(C) for 1 ≤ i ≤ 5,

S∗ = {xα13
3 xα14

4 , xα2
2 , xα3

3 , xα4
4 , xα32

2 xα14
4 }

for α2 < α21 + α24 and

S∗ = {xα13
3 xα14

4 , xα2
2 − xα21

1 xα24
4 , xα3

3 , xα4
4 , xα32

2 xα14
4 }

for α2 = α21 + α24.

Remark 4.1.6. A set of restrictions appear naturally from the structure of the sym-

metric group S =< n1, n2, n3, n4 >. Then, we have the following extra conditions
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α1 > α13 + α14 and α4 < α42 + α43 , since n1 < n2 < n3 < n4. There is an-

other restriction α3 < α31 + α32 which appears as a consequence of the inequality

n3α3 = n1α31 + n2α32 < n3α31 + n3α32.

Remark 4.1.7. The restriction α2 ≤ α21 + α24 implies another condition on the

generator f5 so that α43 + α21 > α32 + α14.

In order to prove this proposition, we need the following remark and lemmas.

First, we give some definitions.

Definition 4.1.8. [24, p.46] (normal form) Let G denote the set of all finite lists

G ⊂ R, where the ring R = k[x1, . . . , xn]> is the localization of k[x1, . . . , xn] with

respect to a monomial ordering >. A map

NF : R× G → R, (f, G) 7→ NF (f | G),

is called a normal form on R if, for all G ∈ G,

(0) NF (0 | G) = 0,

and, for all f ∈ R and G ∈ G,

(1) NF (0 | G) 6= 0 ⇒ LM(NF (f | G)) /∈ L(G), where LM(NF (f | G)) and L(G)

are the leading monomial of normal form of f with respect to G and the leading

ideal of G, respectively.

(2) If G = {g1, . . . , gs}, then r := f − NF (f | G) has a standard representation

with respect to G, that is, either r = 0, or

r =
∑s

i=1 aigi, ai ∈ R,

satisfying LM(f) ≥ LM(aigi) for all i such that aigi 6= 0.
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Definition 4.1.9. [24, p.120] (ecart of a polynomial f) For a monomial xαei ∈ K[x]r

set

deg xαei := deg xα = α1 + ... + αn

For f ∈ K[x]r\{0}, let deg f be the maximal degree of all monomials occurring in

f . We define the ecart of f as

ecart(f) := deg f − deg LM(f).

Remark 4.1.10. The Product Criterion [24, p.63]: Let f, g ∈ K[x1, . . . , xn] be poly-

nomials such that lcm(LM(f), LM(g)) = LM(f).LM(g), then

NF (spoly(f, g) | {f, g}) = 0.

Lemma 4.1.11. The set S = {f1, f2, f3, f4, f5} where the polynomials fi’s are as in

Proposition 4.1.5. I(C) is a standard basis with respect to the negative degree reverse

lexicographical ordering >ds, under the condition α2 ≤ α21 + α24

Proof. We apply standard basis algorithm (Mora’s tangent cone algorithm) to the

set {f1, f2, f3, f4, f5}. We begin with f1 and f2. Since

NF (spoly(f1, f2) | {f1, f2}) = 0 by remark 4.1.10, then

NF (spoly(f1, f2) | {f1, f2, f3, f4, f5}) = 0 and the algorithm terminates. Next, we

choose f1 and f3. spoly(f1, f3) = xα1
1 xα43

3 − xα31
1 xα32

2 xα14
4 and since

α1 + α43 > α31 + α32 + α14, LM{h = spoly(f1, f3) = xα31
1 xα32

2 xα14
4 }. Then,

Th = {f5 = xα43
3 xα21

1 − xα32
2 xα14

4 |LM(f5) | LM(h)} 6= ∅.

ecart(f5)=α43 + α21 − (α32 + α14)

ecart(h)=α1 + α43 − (α31 + α32 + α14)
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Since ecart(f5)=ecart(h) no h will be added to the finite list. spoly(f5, h) = 0

causes the iterative steps to stop at this stage of the algorithm. In the same

manner, the algorithm is applied to all the 2-tuples in the list.

Lemma 4.1.12. [24, p.296] Let I ⊂ 〈x〉 ⊂ K[x], x = (x1, . . . , xr), be an ideal, and

let {f1, . . . , fs} be a standard basis of I with respect to a local degree ordering >.

Then I∗ = 〈f1∗ , . . . , fs∗〉, where I∗ is the defining ideal of the tangent cone fi∗ is the

homogeneous summand of least degree of fi.

Proposition 4.1.13. [24, p.296] Let I ⊂ 〈x〉 ⊂ K[x], x = (x1, . . . , xr), be an ideal,

let A := K[x]〈x〉/I, and let m be the maximal ideal of A. Then

grm(A) ∼= K[x]/I∗.

We can now prove the Proposition 4.1.5.

Proof of Proposition 4.1.5. By the Lemma 4.1.11, S = {f1, f2, f3, f4, f5}, where f ′is

are as in theorem 4.1.1, is a standard basis of I(C) with respect to a local degree

ordering >ds. Then,

I(C)∗ = 〈f1∗ , . . . , f5∗〉 = {xα13
3 xα14

4 , xα2
2 , xα3

3 , xα4
4 , xα32

2 xα14
4 }

for α2 < α21 + α24 and

I(C)∗ = {xα13
3 xα14

4 , xα2
2 − xα21

1 xα24
4 , xα3

3 , xα4
4 , xα32

2 xα14
4 }

for α2 = α21 + α24 by the Lemma 4.1.12. Finally, from the Proposition 4.1.13 and

grm(k[[tn1 , tn2 , . . . , tnd ]]) ∼= k[x1, x2, . . . , xd]/I(C)∗,

I(C)∗ is generated by
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S∗ = {xα13
3 xα14

4 , xα2
2 , xα3

3 , xα4
4 , xα32

2 xα14
4 }

for α2 < α21 + α24 and

S∗ = {xα13
3 xα14

4 , xα2
2 − xα21

1 xα24
4 , xα3

3 , xα4
4 , xα32

2 xα14
4 }

for α2 = α21 + α24.

2

Remark 4.1.14. The same method can be applied to Case 1(b) with the restriction

α2 ≤ α21 + α23 and α3 ≤ α32 + α34, Case 2(b) with the restriction α2 ≤ α21 + α24,

α3 ≤ α32 + α34 and Case 3(a) with the restriction α2 ≤ α21 + α23, α3 ≤ α31 + α34.

Thus, in all these cases, I(C)∗ is generated by a set of five elements, which are the

homogeneous summands of least degree of the five generators of I(C).

Now, we can determine the behavior of the Hilbert function of the tangent cone

of C, with its defining ideal I(C) as in the Theorem 4.1.1 with the restriction of

Proposition 4.1.5.

Theorem 4.1.15. The Gorenstein monomial curve C having parametrization

x1 = tn1 , x2 = tn2 , x3 = tn3 x4 = tn4

and with the defining ideal I(C) as in Theorem 4.1.1 under the restriction α2 ≤

α21 + α24 has Cohen-Macaulay tangent cone at the origin. Therefore, the Hilbert

function of the corresponding Gorenstein local ring is non-decreasing.

Proof. We can apply the Theorem 3.4.2 to the generators of the tangent cone which

are given by the set

S∗ = {xα13
3 xα14

4 , xα2
2 , xα3

3 , xα4
4 , xα32

2 xα14
4 }
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for α2 < α21 + α24 and

S∗ = {xα13
3 xα14

4 , xα2
2 − xα21

1 xα24
4 , xα3

3 , xα4
4 , xα32

2 xα14
4 }

for α2 = α21 + α24. Both of these sets are Gröbner basis with respect to the reverse

lexicographic order with x1 > x4 > x2 > x3. Since x1 does not divide the leading

monomial of any element in S∗, the ring k[x1, x2, x3, x4]/I(C)∗ is Cohen-Macaulay

from Theorem 3.4.2. Since R = grm(k[[tn1 , tn2 , tn3 , tn4 ]]) ∼= k[x1, x2, x3, x4]/I(C)∗ is

Cohen-Macaulay, multiplication by a homogeneous non-zero divisor of degree one is

a monomorphism from Rn into Rn+1. This means H(0) ≤ H(1) ≤ H(2) ≤ . . . .

Remark 4.1.16. This result can be proved similarly when the defining ideal I(C) is

as in other isomorphic possible cases.

As a result, we can now give the general theorem:

Theorem 4.1.17. Let C be a Gorenstein monomial curve having parametrization

x1 = tn1 , x2 = tn2 , x3 = tn3 x4 = tn4

with defining ideal I(C) = (f1 = xα1
1 − m1, f2 = xα2

2 − m2, f3 = xα3
3 − m3, f4 =

xα4
4 −m4, f5), where m1,m2,m3 and m4 are monomials, and n1 < n2 < n3 < n4. If

α2 ≤ total degree of m2 and α3 ≤ total degree of m3, then the Hilbert function of the

local Gorenstein ring k[[tn1 , tn2 , tn3 , tn4 ]] is non-decreasing.

4.2 Gorenstein Monomial Curves whose Tangent Cones are

non-CM

In this section, we try to understand what we can say about the Cohen-Macaulayness

of the tangent cone if we do not have the restriction on the generators of the defining
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ideal I(C) as given in Theorem 4.1.1. Hence, we only consider the remaining case

α2 > α21 + α24 and we obtain the following Lemma:

Lemma 4.2.1. Let C be a Gorenstein monomial curve with defining ideal I(C) =

(f1 = xα1
1 −xα13

3 xα14
4 , f2 = xα2

2 −xα21
1 xα24

4 , f3 = xα3
3 −xα31

1 xα32
2 , f4 = xα4

4 −xα42
2 xα43

3 , f5 =

xα43
3 xα21

1 −xα32
2 xα14

4 ) as in Theorem 4.1.1. Then, under the restriction α2 > α21 +α24,

its tangent cone at the origin is not Cohen-Macaulay.

Proof. In this case, since α2 > α21 + α24 the generators of I(C)∗ must either contain

the homogeneous summand of least degree of f2 = xα2
2 −xα21

1 xα24
4 , which is xα21

1 xα24
4 or

this term must be a zero element in the ring k[x1, x2, x3, x4]/I(C)∗. But this is only

possible, if either there exists a generator xa
1x

b
4 of I(C)∗ satisfying xa

1x
b
4 | xα21

1 xα24
4

or a generator xc
4 of I(C)∗ satisfying xc

4 |xα24
4 . The second case is not possible,

because xα4
4 − xα42

2 xα43
3 is the binomial in I(C) with α4, the smallest possible value,

and α24 < α4. Thus, x1 is a zero divisor of the ring k[x1, x2, x3, x4]/I(C)∗ and

this shows that R = grm(k[[tn1 , tn2 , tn3 , tn4 ]]) ∼= k[x1, x2, x3, x4]/I(C)∗ is not Cohen-

Macaulay

Remark 4.2.2. Same observations show us that we can obtain same results for the

other three permutations:

f1 = (1, (3, 4)), f2 = (2, (1, 3)), f3 = (3, (2, 4)), f4 = (4, (1, 2)),

f1 = (1, (2, 3)), f2 = (2, (1, 4)), f3 = (3, (2, 4)), f4 = (4, (1, 3)),

f1 = (1, (2, 4)), f2 = (2, (1, 3)), f3 = (3, (1, 4)), f4 = (4, (2, 3)).

Remark 4.2.3. In other two cases

f1 = (1, (2, 3)), f2 = (2, (3, 4)), f3 = (3, (1, 4)), f4 = (4, (1, 2)) and

f1 = (1, (2, 4)), f2 = (2, (3, 4)), f3 = (3, (1, 2)), f4 = (4, (1, 3)),
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we produced several examples of Gorenstein monomial curves. While some of their

tangent cones are CM, the others come out to be not CM.

4.3 A Conjecture for Higher Dimensions

In this section, we consider the same problem first in embedding dimension 5 and

then in all higher dimensions. In order to do this, we construct examples using the

results of [9] and [33]. We obtain monomial curves in 5-space whose semigroups are

symmetric, compute generators of their defining ideals and tangent cone by using

Singular and determine the Hilbert function.

The examples 4.3 which are tested by Singular [38] show that our problem can

be extended to embedding dimension 5 within the same approach. We remind that

these examples are selected such that we impose restrictions on α2, α3 and α4 which

are the exponents of the generators starting with x2, x3 and x4, respectively. For

the generators xα2
2 − m2, xα3

3 − m3 and xα4
4 − m4, we have the restrictions α2 ≤

total degree of m2, α3 ≤ total degree of m3 and α4 ≤ total degree of m4, and these

conditions can be considered as the generalization of the conditions in Theorem

4.1.17. If we consider these examples, it is interesting to observe that the tangent

cones are Cohen-Macaulay. Thus, these examples suggest that this can be stated as

a new conjecture even though we could not prove it since the explicit description of

the defining ideals in higher dimensions are unknown.
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Table 4.3: Examples in 5-space.

C (6, 7, 8, 9, 10) (10, 11, 13, 14, 17)

I(C)
(x2

2 − x1x3, x2x3 − x1x4, x
2
3 − x1x5,

x2x4 − x1x5, x3x4 − x2x5, x
2
4 − x3x5,

x3x5 − x3
1, x4x5 − x2

1x2, x
2
5 − x2

1x3)

(x2x3 − x1x4, x3x4 − x1x5, x
2
4 − x2x5

x3x5 − x3
1, x4x5 − x2

1x2, x
2
5 − x2

1x4

x3
2 − x2

1x3, x1x
2
3 − x2

2x4, x
3
3 − x2

2x5)

I(C)∗

(x2
2 − x1x3, x2x3 − x1x4, x

2
3 − x1x5,

x2x4 − x1x5, x3x4 − x2x5, x
2
4 − x3x5,

x3x5, x4x5, x
2
5)

(x2x3 − x1x4, x3x4 − x1x5,

x2
4 − x2x5, x3x5, x4x5, x

2
5,

x3
2 − x2

1x3, x1x
2
3 − x2

2x4, x
3
3 − x2

2x5)

H(n) 1, 5, 6, . . . 1, 5, 9, 10, . . .

C (10, 11, 12, 13, 14) (18, 19, 20, 21, 22)

I(C)
(x2

2 − x1x3, x2x3 − x1x4, x
2
3 − x2x4,

x2x4 − x1x5, x3x4 − x2x5, x
2
4 − x3x5,

x3x
2
5 − x4

1, x4x
2
5 − x3

1x2, x
3
5 − x3

1x3

(x2
2 − x1x3, x2x3 − x1x4, x

2
3 − x2x4

x2x4 − x1x5, x3x4 − x2x5, x
2
4 − x3x5

x3x
4
5 − x6

1, x4x
4
5 − x5

1x2, x
5
5 − x5

1x3)

I(C)∗

(x2
2 − x1x3, x2x3 − x1x4, x

2
3 − x2x4,

x2x4 − x1x5, x3x4 − x2x5, x
2
4 − x3x5,

x3x
2
5, x4x

2
5, x

3
5

(x2
2 − x1x3, x2x3 − x1x4, x

2
3 − x2x4

x2x4 − x1x5, x3x4 − x2x5, x
2
4 − x3x5

x3x
4
5, x4x

4
5, x

5
5)

H(n) 1, 5, 9, 10, . . . 1, 5, 9, 13, 17, 18, . . .

C (19, 23, 29, 31, 37) (19, 27, 28, 31, 32)

I(C)

(x3x4 − x2x5, x
3
2 − x2

1x4,

x2
2x3 − x2

1x5, x1x
2
3 − x2

2x4,

x2x
2
3 − x1x

2
4, x

3
3 − x1x4x5,

x2x
2
4 − x1x3x5, x

3
4 − x1x

2
5,

x2
3x5 − x5

1, x
2
4x5 − x4

1x2,

x3x
2
5 − x3

1x
2
2, x4x

2
5 − x4

1x3,

x3
5 − x3

1x2x4)

(x3x4 − x2x5, x
3
2 − x1x

2
4,

x2
2x3 − x1x4x5, x2x

2
3 − x1x

2
5,

x3
3 − x3

1x2, x
2
2x4 − x3

1x3,

x2x
2
4 − x3

1x5, x
3
4 − x2

1x2x3,

x2
3x5 − x3

1x4, x
2
4x5 − x2

1x
2
3,

x3x
2
5 − x2

1x
2
2, x4x

2
5 − x5

1)

I(C)∗

(x3x4 − x2x5, x
3
2 − x2

1x4,

x2
2x3 − x2

1x5, x1x
2
3 − x2

2x4,

x2x
2
3 − x1x

2
4, x

3
3 − x1x4x5,

x2x
2
4 − x1x3x5, x

3
4 − x1x

2
5,

x2
3x5, x

2
4x5, x3x

2
5, x4x

2
5, x

3
5)

(x3x4 − x2x5, x
3
2 − x1x

2
4,

x2
2x3 − x1x4x5, x2x

2
3 − x1x

2
5,

x3
3, x

2
2x4, x2x

2
4, x

3
4, x

2
3x5,

x2
4x5, x3x

2
5, x4x

2
5, x

3
5)

H(n) 1, 5, 14, 18, 19, . . . 1, 5, 14, 18, 19, . . .
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Conjecture. Let C be a Gorenstein monomial curve having parametriza-

tion

x1 = tn1 , x2 = tn2 , . . . x` = tn` , ` ≥ 5

with defining ideal I(C) containing the generators

f2 = xα2
2 −m2, . . . , f`−1 = x

α`−1

`−1 −m`−1

where αi’s, 1 ≤ i ≤ ` are minimal, m2, . . . , m`−1 are monomials and

n1 < n2 < . . . < n`. If α2 ≤ total degree of m2, . . . , α`−1 ≤ total

degree of m`−1, then the Hilbert function of the local Gorenstein ring

k[[tn1 , tn2 , . . . , tn` ]] is non-decreasing.

4.4 Generalization to Higher Dimensions

In this section, we connect the ideas in [30] and [8] to obtain families of monomial

curves with Cohen-Macaulay associated graded rings in higher dimensions.

Theorem 4.4.1. Let C be a Gorenstein monomial curve having parametrization

x1 = tn1 , x2 = tn2 , x3 = tn3 x4 = tn4

and with the defining ideal I(C) as in Theorem 4.1.1 under the restriction α2 ≤

α21 + α24. Let C ′ be a monomial curve in 5-space having parametrization,

x1 = tpn1 , x2 = tpn2 , x3 = tpn3 x4 = tpn4 x5 = tn5

where n5 = a1n1 +a2n2 +a3n3 +a4n4 6= 0 is any element of the numerical semigroup

generated by n1, n2, n3, n4 and p is a prime satisfying gcd(n5, p) = 1 and p ≤ a1 +

a2 + a3 + a4. Then the Hilbert function of the local ring k[[tpn1 , tpn2 , tpn3 , tpn4 , tn5 ]] is

non-decreasing.
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To prove this theorem, we need the following proposition.

Proposition 4.4.2. I(C ′) is generated by the set S = {f1 = xα1
1 − xα13

3 xα14
4 , f2 =

xα2
2 −xα21

1 xα24
4 , f3 = xα3

3 −xα31
1 xα32

2 , f4 = xα4
4 −xα42

2 xα43
3 , f5 = xα43

3 xα21
1 −xα32

2 xα14
4 , f6 =

xp
5 − xa1

1 xa2
2 xa3

3 xa4
4 }.

Remark 4.4.3. Note that we start with the Gorenstein monomial curves in affine

4-space but we give up the Goreinsteinness property of the new curves in dimension

5.

To prove the above proposition, we need the following lemma:

Lemma 4.4.4. [30, Lemma 3.2] Let C be a curve having parametrization

x1 = ϕ1(t), ..., x`−1 = ϕ`−1(t), x` = ta.

Let β be a positive integer such that gcd(a, β) = 1, and let C̃ be a curve having

parametrization

x1 = ϕ1(t
β), ..., x`−1 = ϕ`−1(t

β), x` = ta.

For any f(x1, ..., x`) ∈ k[x1, ..., x`], we denote by f̃ the element f(x1, ..., x`−1, x
β
` ).

Then if f1, ..., fs is a set of generators for I(C), then f̃1, ..., f̃s is a set of generators

for I(C̃).

Proof of Proposition 4.4.2. The proof is a direct consequence of the above lemma

with the generators of I(C) as in Theorem 4.1.1.

2

We can now prove the Theorem 4.4.1.
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Proof of Theorem 4.4.1. The standard basis of the set S in Proposition 4.4.2 with

respect to the negative degree reverse lexicographical ordering with x5 < x1 < x2 <

x3 < x4 is itself. Thus, the tangent cone is generated by the set S∗ consisting

of just the homogeneous summands of least degree of the elements in S. If we

compute the Gröbner basis with respect to the reverse lexicographic order with

x1 > x5 > x4 > x2 > x3, and take the leading monomials of the elements in the

Gröbner basis with respect to this order, we obtain the set

S ′∗ = {xα13
3 xα14

4 , xα2
2 , xα3

3 , xα4
4 , xα32

2 xα14
4 , xp

5}.

for α2 < α21 + α24 and

S ′∗ = {xα13
3 xα14

4 , xα2
2 − xα21

1 xα24
4 , xα3

3 , xα4
4 , xα32

2 xα14
4 , xp

5}

for α2 = α21 + α24. Since x1 does not divide any element in S ′∗, the coordi-

nate ring of tangent cone of the monomial curve C ′ , k[x1, x2, x3, x4, x5]/I(C ′)∗, is

Cohen-Macaulay from Theorem 3.4.2. Since R = grm(k[[tpn1 , tpn2 , tpn3 , tpn4 , tn5 ]]) ∼=

k[x1, x2, x3, x4, x5]/I(C ′)∗ is Cohen-Macaulay, the Hilbert function of the local ring

k[[tpn1 , tpn2 , tpn3 , tpn4 , tn5 ]] is non-decreasing.

2

The same method can be used in the same manner to obtain monomial curves in

higher dimensions.
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CHAPTER 5

CONCLUSION

In this thesis, we studied the Sally’s famous conjecture for Gorenstein monomial

curves and showed that this conjecture holds for such curves in embedding dimension

four. We used the ring k[tn1 , tn2 , . . . , tnd ]/I(C)∗, since we tried to utilize standard

basis theory to find the generators of I(C)∗. This computational approach allowed us

to have a greater look over the problem. The results drawn in this thesis would not

have been obtained by solely considering the semigroup ring. Because it does not give

the generators of I(C)∗. On the other hand, our approach determines the generators

of tangent cone which enables us to investigate its Cohen-Macaulayness. Then, we

have the ability to study the behavior of the Hilbert function of the corresponding

ring.

We also determined families of Gorenstein monomial curves, whose tangent cone

is not Cohen-Macaulay, but all the examples of this type of monomial curves showed

that their associated graded ring has still non-decreasing Hilbert function.

Thus, we solved part of the Sally’s restated conjecture for the Gorenstein mono-

mial curves in embedding dimension 4 case, and for the remaining part we found

many examples to support the conjecture.

We realized that the procedure which we used in embedding dimension four can

be applied to higher dimensions. We obtained examples and saw that our claim is

still true for some of these examples which obey certain restrictions.
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Starting with Gorenstein monomial curves in embedding dimension four we achieved

to extend the same problem to fifth and higher dimensions by giving up being Goren-

stein, and in this manner we obtained large families of local rings with non-decreasing

Hilbert function.

Finally, we can say the computations done in this thesis show that computational

methods can be applied to geometric problems to obtain a broader point of view.
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[3] S. Balcerzyk, T. Jósefiak, Commutative Rings, Dimension, Multiplicity and Ho-
mological Methods, Ellis Horwood Ltd.,PWN-Polish Scientific Publishers, War-
saw, 1989.

[4] H. Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102,
(1962), 18-29.

[5] H. Bass, On the ubiquity of Gorenstein rings, Math. Zeit. 82, (1963), 8-28.

[6] D. Bayer and M. Stillman, Macaulay, A system for computation in algebraic
geometry and commutative algebra, 1992

[7] H. Bresinsky, On prime ideals with generic zero xi = tni , Proc. Amer. Math.
Soc. 47, (1975), 329-332.

[8] H. Bresinsky, Symmetric semigroups of integers generated by four elements,
Manuscripta Math. 17, (1975), 205-219.

[9] H. Bresinsky, Monomial Gorenstein Ideals, Manuscripta Math. 29, (1979), 159-
181.

[10] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press,
Cambridge, 1993.

[11] A. Brauer, J.E., Shockley, On a problem of Frobenius, J. Reine Angew. Math
211, (1962), 215-220.

[12] D. Cox, J. Little, D. O’Shea, Ideals, varieties and algorithms, Springer-Verlag,
1992.

[13] J. Eakin, A. Sathaye, Prestable ideals, Journal of Algebra 41, (1976), 439-454.

[14] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry,
Springer-Verlag, New York, 1995.

[15] J. Elias, The conjecture of Sally on the Hilbert function for curve singularities,
Journal of Algebra 160, No.1 (1993), 42-49.

[16] H.-B. Foxby, On the µi in a minimal injective resolution, II. Math. Scand. 41
(1977), 19-44.
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