
AUTOMORPHISMS OF COMPLEXES OF CURVES ON ODD GENUS

NONORIENTABLE SURFACES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY
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Prof. Dr. Şafak ALPAY

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Mustafa KORKMAZ

Supervisor

Examining Committee Members

Prof. Dr. Turgut ÖNDER (METU)
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abstract

Automorphisms of complexes of curves on odd genus

nonorientable surfaces

ATALAN OZAN, Ferihe

Ph.D., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Mustafa KORKMAZ

August 2005, 43 pages

Let N be a connected nonorientable surface of genus g with n punctures.

Suppose that g is odd and g + n > 6. We prove that the automorphism group of

the complex of curves of N is isomorphic to the mapping class group MN of N .

Keywords: Mapping class group, complex of curves, nonorientable surface.
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öz

TEK SAYIDA DELİKLİ YÖNLENDİRİLEMEYEN

YÜZEYLER ÜZERİNDE EG̃RİLERİN

KOMPLEKSLERİNİN OTOMORFİZMİ

ATALAN OZAN, Ferihe

Doktora, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa KORKMAZ

Ag̃ustos 2005, 43 sayfa

N g delikli n işaretli noktası olan bag̃lantılı yönlendirilemeyen yüzey olsun. N

nin eg̃rilerinin kompleksinin otomorfizm grubunun N nin MN gönderim sınıfları

grubuna izomorfik oldug̃unu kanıtlıyoruz.

Anahtar Kelimeler: Yüzeylerin gönderim sınıfları grubu, eg̃rilerin kompleksi,

yönlendirilemeyen yüzey.
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chapter 1

introduction

1.1 Introduction and statement of results

Let N be a connected nonorientable surface of genus g with n punctures and

let MN denote the mapping class group of N , the group of isotopy classes of all

diffeomorphisms N → N . The complex of curves C(N) on N is defined to be the

abstract simplicial complex whose vertices are the isotopy classes of nontrivial

simple closed curves. A set of vertices {v0, v1, . . . , vq} forms a q− simplex if and

only if v0, v1, . . . , vq have pairwise disjoint representatives.

Each diffeomorphism N → N acts on the set of nontrivial simple closed curves

preserving the disjointness of simple closed curves. It follows that the mapping

class group of N acts on C(N) as simplicial automorphisms. In other words,

there is a natural group homomorphism MN → Aut C(N). The purpose of this

thesis is to prove the following theorem.

Theorem 1.1. Let N be a connected nonorientable surface of genus g with n

punctures. Suppose that g is odd and g + n > 6. Then the natural map MN →
Aut C(N) is an isomorphism.

The complex of curves on an orientable surface S was introduced by Har-

vey [6]. It was shown by Ivanov [13] and Korkmaz [15] that all automorphisms

of the complex of curves on S are induced by diffeomorphisms of the surface S,

1



with a few exception. Another proof of this result was also obtained by Luo [17].

As a consequence of this result, it was proved that any isomorphism between two

subgroups of finite index in the mapping class group of S is given by the conju-

gation with a mapping class (cf. [13], [15]). Ivanov also gave another proof of the

fact that the isometries of the Teichmüller space are induced by diffeomorphisms

of S.

Schaller [20] showed that the extended mapping class group of a hyperbolic

surface is isomorphic to the automorphism group of the graph. The set of vertices

of the graph is the set of nonseparating simple closed geodesic and the edges

consisting of pairs of those nonseparating curves satisfying the property that

the two curves in each pair intersect exactly once. Margalit [18] proved that the

automorphism group of the pants complex is isomorphic to the extended mapping

class group. Irmak [8, 9, 10] defined a superinjective simplicial map and showed

that a superinjective simplical map of the complex of curves and the complex of

nonseparating curves is induced by a homeomorphism of an orientable surface.

Irmak and Korkmaz [11] proved that the automorphism group of the Hatcher-

Thurston complex is isomorphic to the extended mapping class group modulo

its center. Brendle and Margalit [3] showed that any injection of a finite index

subgroup of K, generated by the Dehn twists about separating curves, into the

Torelli group I of a closed orientable surface is induced by a homeomorphism,

conforming a conjecture of Farb that Comm(K) ∼= Aut(K) ∼= MS. Behrstock

and Margalit [1] proved that for a torus with at least 3 punctures or a surface

of genus 2 with at most 1 puncture, every injection of a finite index subgroup of

the extended mapping class group into the extended mapping class group is the

restriction of an inner automorphism.

All the above results are about orientable surfaces. For nonorientable surfaces
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we prove that the automorphism group of the complex of curves of a nonorientable

surface of odd genus is isomorphic to its mapping class group. First, we show that

the natural group homomorphism is injective. Second, we prove that the natural

group homomorphism is surjective for the punctured projective plane using the

results and the ideas of Korkmaz’s analogous work on the punctured sphere [15]

and a result by Scharlemann [21]. For higher genus, we use induction and some

ideas contained in Irmak’s analogous work [9].
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chapter 2

preliminaries and notations

2.1 Introduction

Let N be a connected nonorientable surface of genus g with n marked points.

We call these marked points punctures. Recall that the genus of a nonorientable

surface is the maximum number of projective planes in a connected sum decom-

position.

2.1.1 Circles and arcs

If a is a circle on N , by which we mean a simple closed curve, then according

to whether a regular neighborhood of a is an annulus or a Mobius strip, we call

a two-sided or one-sided simple closed curve, respectively.

We say that a circle is nontrivial if it bounds neither a disc nor annulus

together with a boundary component, nor a disc with one puncture, nor a Mobius

band on N .

If a is a circle, then we denote by Na the surface obtained by cutting N along

a. A circle a is called nonseparating if Na is connected and separating otherwise.

If a is separating, then Na has two connected components. If a is separating and

if one of the components of Na is a disc with k punctures, then we say that a is

a k-separating circle.
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We denote circles by the lowercase letters a, b, c and their isotopy classes by

α, β, γ. An embedded arc connecting a puncture to itself or two different punc-

tures will be denoted by a′, b′, c′ and their isotopy classes by α′, β′, γ′.

Let α be the isotopy class of a circle a. We say that α is nonseparating

(respectively separating) if a is nonseparating (respectively separating). Similarly,

we say that α is one-sided, two-sided or k-separating vertex if a is one-sided, two-

sided or k-separating circle, respectively.

The geometric intersection number i(α, β) of two isotopy classes α and β is

defined to be the infimum of the cardinality of a ∩ b with a ∈ α, b ∈ β. The

geometric intersection numbers i(α, β′) and i(α′, β′) are defined similarly.

The following lemma is proved in [5].

Lemma 2.1. Let S be a sphere with 3 punctures. Then

(i) up to isotopy, there exists a unique nontrivial embedded arc joining a punc-

ture P to itself, or P to another puncture Q,

(ii) all circles on S are trivial.

2.1.2 The complex of curves

An abstract simplicial complex is defined as follows (cf. [19]): Let V be a

nonempty set. An abstract simplicial complex K with vertices V is a collection of

nonempty finite subsets of V , called simplices, such that if v ∈ V , then {v} ∈ K,

and if σ ∈ K and σ′ ⊂ σ is a nonempty subset of V , then σ′ ∈ K. The dimension

dimσ of a simplex σ is cardσ−1, where cardσ is the cardinality of σ. A simplex

σ is called a q-simplex if dimσ = q. The supremum of the dimension of the

simplices of K is called the dimension of K.
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A subcomplex L of an absract simplicial complex K is called a full subcomplex

if whenever a set of vertices of L is a simplex in K, it is also a simplex in L.

The complex of curves C(S) on an orientable surface S is the abstract sim-

plicial complex whose vertices are the isotopy classes of nontrivial simple closed

curves. Similarly, the complex of curves C(N) on a nonorientable surface N is

the abstract simplicial complex whose vertices are the isotopy classes of nontrivial

simple closed curves. In this complex of curves, we take one-sided vertices as well

as two-sided vertices. Clearly, the complex of curves of a surface of genus g with

n punctures and with b boundary components, and that of a surface of genus g

with n + b punctures are isomorphic. Therefore, sometimes we regard boundary

components and the punctures the same.

Two distinct vertices α, β ∈ C(N) are joined by an edge if and only if their geo-

metric intersection number is zero. More generally, a set of vertices {v0, v1, . . . , vq}
forms a q-simplex if and only if i(vj, vk) = 0 for all 0 6 j, k 6 q.

Dimension

Clearly, the dimension of C(N) is n − 2 if N is a projective plane with n

punctures. If S is a sphere with n punctures, then the dimension of C(S) is

n − 4. For higher genus, if N is a connected nonorientable surface of genus

g > 2 with n punctures such that the Euler characteristic of N is negative and if

g = 2r + 1, then the dimension of C(N) is 4r + n− 2 and if g = 2r + 2, then the

dimension of C(N) is 4r + n (see Section 2.1.5). If S is a connected orientable

surface of genus g with n punctures such that 2g + n > 4, then the dimension of

C(S) is 3g + n− 4.
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Links and dual links

Let α be a vertex in the complex of curves. We define the link L(α) of α to

be the full subcomplex of the complex of curves whose vertices are those of the

complex of curves which are joined to α by an edge in the complex of curves. The

dual link Ld(α) of α is the graph whose vertices are those of L(α) such that two

vertices of Ld(α) are joined by edge if and only if they are not joined by an edge

in the complex of curves (or in L(α)).

Pentagons

A pentagon is an ordered five-tuple (γ1, γ2, γ3, γ4, γ5), defined up to cyclic

permutations and inversion, of vertices of the complex of curves such that

i(γi, γi+1) = 0 for i = 1, 2, . . . , 5 and i(γi, γj) 6= 0 otherwise.

2.1.3 Curve complexes of low dimensions

Obviously, if S is a sphere with 6 3, then there are no nontrivial circles on

S. Therefore, C(S) is empty. If S is a sphere with four punctures, then C(S)

is infinite discrete. If N is a projective plane or a projective plane with one

puncture then C(N) consists of a unique vertex. If N is a projective plane with

two punctures, then C(N) is finite (cf. [21]). It consists of two vertices, the

isotopy classes of the circles c1 and c2 of the Figure 2.1.

2.1.4 The arc complex B(N)

We now define another abstract simplicial complex B(N) as follows. The ver-

tices of B(N) are the isotopy classes of nontrivial embedded arcs on N connecting
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Figure 2.1: The isotopy classes of circles on twice-punctured RP 2

two punctures. A set of vertices of B(N) forms a simplex if and only if these

vertices have pairwise disjoint representatives.

Arcs and 2-separating circles

If a is 2-separating circle on N , there exists up to isotopy a unique nontrivial

embedded arc a′ on the twice-punctured disc component of Na joining two punc-

tures by Lemma 1.1 in [15] and in [5]. On the other hand, an arc a′ connecting

two different punctures of N determines uniquely a 2-separating circle up to iso-

topy, that is, the boundary of a regular neighborhood of the arc. So, we have

a one-to-one correspondence between the set of 2-separating isotopy classes and

the set of isotopy classes of embedded arcs connecting two different punctures.

Example

If N is a projective plane with one puncture, then B(N) consists of a unique

vertex. Scharlemann studied the arc complex of a twice-punctured projective

plane. He showed that the vertices of the arc complex consist of the isotopy

classes of arcs shown in the Figure 2.2.
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Figure 2.2: The isotopy classes of arcs on twice-punctured RP 2

Simple pairs and chains

If a and b are two 2-separating circles, and α, β are their isotopy classes,

such that the corresponding arcs a′ and b′ can be chosen disjoint with exactly

one common endpoint P , then we say that a and b constitute a simple pair of

circles and denote it by 〈a; b〉 (see Figure 2.3(a)). Similarly, we say that 〈a′; b′〉 is

a simple pair of arcs. We also say 〈α; β〉 and 〈α′; β′〉 simple pairs.

a'
b'

a b
a aa2

k

0

1

k
P P

(a) (b)

Figure 2.3: A simple pair and a chain

Let a′1, a
′
2, . . . , a

′
k be embedded pairwise disjoint arcs, Pi and Pi+1 the end-

points of a′i, with Pi 6= Pj for i 6= j, 0 6 i, j 6 k. Therefore, 〈a′i; a′i+1〉 is a simple

pair of arcs for each 1 6 i 6 k − 1. Let a1, a2, . . . , ak be the corresponding cir-

cles. We say that 〈a′1; a′2; . . . ; a′k〉 is a chain of arcs (see Figure 2.3(b)). Similarly,
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〈a1; a2; . . . ; ak〉 is a chain of circles.

2.1.5 Maximal simplices in the curve complex

We recall that the maximum number of disjoint pairwise nonisotopic nontrivial

circles on a connected orientable surface S of genus r with n boundary components

is 3r − 3 + n, whenever the Euler characteristic χ(S) of S is negative.

Lemma 2.2. Let S be a connected orientable surface of genus g with n punctures.

Suppose that 2g + n > 4. Then all maximal simplices in C(S) have the same

dimension 3g + n− 4.

Lemma 2.3. Let N be a real projective plane with n > 2 punctures. All maximal

simplices in C(N) have the same dimension n− 2.

Proof. Let n = 2. The complex C(N) consists of only two vertices, hence all

simplices are of dimension 0.

Let n > 3. We consider a maximal simplex σ of dimension `. Hence, σ

contains ` + 1 elements only one of which is a one-sided vertex. By cutting N

along this one-sided simple closed curve, we get sphere with n + 1 punctures. By

Lemma 2.2, all maximal simplices in the complex of curves on the sphere with

n + 1 punctures have the same dimension n− 3. It follows that ` = n− 2.

Proposition 2.1. Let N be a connected nonorientable surface of genus g > 2 with

n punctures such that the Euler characteristic of N is negative. Let ar = 3r+n−2

and br = 4r + n − 2 if g = 2r + 1, and ar = 3r + n − 3 and br = 4r + n − 4 if

g = 2r. Then there is a maximal simplex of dimension ` in C(N) if and only if

ar 6 ` 6 br.
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Proof. For each integer ` satisfying ar 6 ` 6 br, the maximal simplicies are shown

in Figure 2.4 and Figure 2.5 for closed nonorientable surface of odd genus. One

can draw similar figures for nonorientable surface of odd genus with punctures

and nonorientable surface of even genus. Moreover, Figure 2.6 helps to see the

maximal simplex of dimension ` between ar and br.

...

Figure 2.4: maximum number of disjoint pairwise nonisotopic nontrivial circles

...

Figure 2.5: maximum number of disjoint pairwise nonisotopic nontrivial circles

We now prove the converse. Let us consider a maximal simplex σ of dimension

`. Hence, σ contains `+1 elements. Choose pairwise disjoint simple closed curves

representing elements of σ, and let Nσ denote the surface obtained by cutting N

along these simple closed curves.

Suppose that the number of one-sided simple closed curves is m, so that we

have ` + 1−m two-sided elements in σ. The surface Nσ is a disjoint union of k

11



Figure 2.6:

pair of pants for some positive integer k. By the Euler characteristic argument,

it can be seen that k = g + n − 2. The number of boundary components and

punctures on Nσ is 3k. By counting the the contribution of one-sided curves and

two-sided curves to the boundary of Nσ, one can easily see that

3k = n + m + 2(` + 1−m). (2.1)

Suppose first that g = 2r + 1. In this case 1 ≤ m ≤ 2r + 1. From the

equality (2.1), it is easy to see that m must be odd and ` = 3r + n− 2 + m−1
2

.

Suppose now that g = 2r. In this case 1 ≤ m ≤ 2r. From the equality (2.1),

it is easy to see that m must be even and ` = 3r + n− 4 + m
2
.

The proposition follows from these.

2.1.6 Centralizer of certain subgroups

Let T ′ be the subgroup of mapping class group of N such that T ′ is generated

by the Dehn twist of two-sided nonseperating circles as below shown in Figure 2.7.

Proposition 2.2. Let N be a connected nonorientable surface of odd genus g

and g + n > 5. Suppose that C is a collection of two-sided nonseparating circles

in Figure 2.7 such that T ′ is generated by the Dehn twist tci
along the circles ci

of C. Then the centralizer CMN
(T ′) is trivial.

12



c
1

c

c

c

c

2

3

4

5

6

c

c

8

...

Figure 2.7:

Proof. Let [f ] ∈ CMN
(T ′). Unoriented circles will be denoted by c̄. Then, f(c̄i) =

c̄i for ci ∈ C. Let a be a one-sided circle such that Na is an orientable surface.

We observe that f(ā) = ā. Because there is one isotopy class of one-sided circle

which does not intersect circles ci in C. Therefore, by cutting N along a, we get

diffeomorphism f| : Na → Na. Moreover, f| is orientation preserving. To see this,

assume that cj is dual to ci, we know that f| preserves the orientation of a regular

neighborhood of ci if and only if it preserves the orientation of cj. Recall that

tubular neighborhood of ci ∪ cj is a torus with one boundary component. Since

the product of the orientations of ci and cj gives the orientation of the torus, f|

preserves the orientation of tubular neighborhood. Using this argument for these

circles in Figure 2.7, we deduce that f| preserves the orientation of the surface

Na. Since CMNa
(PMNa) = {1} in [14], f| is isotopic to identity. Since f(a) = a,

we obtain that f is isotopic to identity on N . Hence, CMN
(T ′) = {1}.

13



chapter 3

Injectivity of MN → AutC(N)

We first show that the natural map MN → Aut C(N) is injective.

Theorem 3.1. Let N be a connected nonorientable surface of genus g with n

punctures. Suppose that g + n > 6. Then the natural map MN → Aut C(N) is

injective.

Proof. Suppose that [f ] ∈ MN acts trivially on C(N). Then f : N → N ,

f∗ : C(N) → C(N), f∗ = id; i.e., f∗(ν) = ν for all ν ∈ C(N). First, suppose that

g = 2r + 1 is odd. Let a be a one-sided circle such that Na is orientable surface

of genus r with n + 1 boundary components. We denote by α the isotopy class

of a. Then f∗(α) = α. This implies f(a) is isotopic to a. Then there exists a

diffeomorphism g w id, g(f(a)) = a. Let h = g◦f . We observe that h(a) = a and

h∗ = g∗ ◦ f∗ = id ◦ id = id. Therefore, we have a diffeomorphism h| : Na −→ Na

such that (h|)∗ = id. Using Ivanov’s Theorem in [13] (for r = 0 and 1, using

Theorem1 in [15]), we get h| w id. Since h(a) = a, we see that h w id on N . In

other words, it descends to a diffeomorphism of N . So, we have g ◦ f w id. Since

g w id, we get f w id. Hence, the natural map MN → Aut C(N) is injective.

Now, suppose that g = 2r + 2. Let b be a nonseparating two-sided circle

such that Nb is orientable surface of genus r with n + 2 boundary components.

Let β be the isotopy class of b. Then f∗(β) = β. This implies f(b) is isotopic

to b. Then there exists a diffeomorphism g w id, g(f(b)) = b. Let h = g ◦ f .

14



We see that h(b) = b and h∗ = g∗ ◦ f∗ = id ◦ id = id. Therefore, we have a

diffeomorphism h| : Nb −→ Nb such that (h|)∗ = id. Using Ivanov’s Theorem in

[13] (for r = 0 and 1, using Theorem1 in [15]), we get h| w id. Since h(b) = b,

h w id on N . In other words, it descends to a diffeomorphism of N . Therefore,

we obtain that g ◦ f w id. Since g w id, we get f w id. Hence, the natural map

MN → Aut C(N) is injective.
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chapter 4

Surjectivity of MN → AutC(N)

4.1 Punctured RP 2

Throughout this section unless otherwise stated, N will denote a real projec-

tive plane with n > 5 punctures. We need at least 5 punctures for the proof of

the Lemma 4.2.

In this section, we prove that the natural homomorphism MN → Aut C(N)

is surjective. Hence it will be an isomorphism. For this, we first prove that auto-

morphisms of C(N) preserve the topological type of the vertices of C(N) and that

certain pairs of vertices of C(N) can be realized in the complex of curves. We

conclude that automorphisms of C(N) preserve these pairs of vertices. Next, we

show that every automorphism of C(N) induces an automorphism of the complex

B(N) in a natural way. The automorphisms of B(N) are determined by their ac-

tion on a maximal simplex. Then, we use the relation between maximal simplices

of B(N) and isotopy classes of ideal triangulations of N and in conclusion, we

show that an automorphism of B(N) induced by some automorphism of C(N)

agrees with a mapping class.

We remind that if N is a projective plane with n > 2 punctures, then up to

diffeomorphism there is only one nonseparating one-sided circle and also there is

no nonseparating two-sided circle. The other circles are k-separating for some k.
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Lemma 4.1. Let n > 2 and k > 4. If N is a projective plane with n punctures

and S is a sphere with k punctures, then C(N) and C(S) are not isomorphic.

Proof. The complexes C(N) and C(S) have dimensions n− 2 and k − 4, respec-

tively. If k 6= n + 2, since these complexes of curves have different dimensions,

C(N) and C(S) are not isomorphic. If k = n + 2, we proceed as follows.

Let n = 2. Then C(N) is finite (see [21]), however, C(S) is infinite discrete

since S is a sphere with 4 punctures. Therefore, they are not isomorphic.

Now, assume that n > 3 and C(N) and C(S) are not isomorphic when N

has n− 1 punctures. We need to show that these complexes are not isomorphic

if N has n punctures. Assume that there is an isomorphism ϕ : C(N) → C(S).

Note that for a vertex γ of C(N), the dual link Ld(γ) of γ is connected if and

only if γ is either one-sided or 2-separating. For a vertex δ of C(S), the dual link

Ld(δ) of δ is connected if and only if δ is 2-separating. From this, it follows that

the image of the union of the set of one-sided vertices and the set of 2-separating

vertices of C(N) is precisely the set of 2-separating vertices of C(S). Let γ be a

2-separating vertex of C(N). Then ϕ takes γ to a 2-separating vertex δ of C(S)

and induces an isomorphism L(γ) → L(δ).

Clearly, L(γ) is isomorphic to the complex of curves of a real projective plane

with n− 1 punctures and L(δ) is isomorphic to the complex of curves of a sphere

with n + 1 punctures. By assumption, these complexes are not isomorphic. We

get a contradiction. Hence, C(N) and C(S) are not isomorphic.

Theorem 4.1. The group Aut C(N) preserves the topological type of the vertices

of C(N).
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Proof. Let ϕ be an automorphism of C(N). Note that for a vertex γ of C(N),

the dual link Ld(γ) of γ is connected if and only if γ is either one-sided vertex or

2-separating. Therefore, ϕ cannot take a one-sided vertex or a 2-separating to a

k-separating vertex with k > 2.

Assume that ϕ(α) = β is a 2-separating vertex for some one-sided vertex α.

Let a ∈ α be a circle. Then Na is disc with n punctures. Let b ∈ β. Then Nb is

homeomorphic to RP 2 with n− 2 punctures and with one boundary component.

Clearly, L(α) is isomorphic to C(Na). Similarly, L(β) is isomorphic to C(Nb).

Since the complexes C(Na) and C(Nb) are not isomorphic by Lemma 4.1, β cannot

be 2-separating. It also follows from this that ϕ maps a 2-separating vertex to a

2-separating vertex.

Let γ be a k-separating vertex for some 3 6 k 6 n − 1. Then ϕ(γ) = δ

is an l-separating vertex for some 3 6 l 6 n − 1. We must show that k = l.

Let c ∈ γ and d ∈ δ be circles. Nc and Nd have two connected components.

Let Nc = N0 t N1 and Nd = N ′
0 t N ′

1 such that Ni and N ′
i have genera i. The

dual link Ld(γ) has exactly two connected components. Let us denote these

components by Ld
0(γ) and Ld

1(γ); Ld(γ) = Ld
0(γ)tLd

1(γ). We name Li(γ) so that

the vertices of Ld
i (γ) are the isotopy classes of circles on Ni. Let Li(γ) be the

full subcomplex of C(N) with vertices Ld
i (γ). It follows that (Li(γ))d = Ld

i (γ).

Then Li(γ) is isomorphic to C(Ni). Clearly, the dimension of C(N0) is k − 3

since N0 is a sphere with punctures and the dimension of C(N1) is n − k − 2.

Similarly, we define Ld
i (δ) and Li(δ) so that Li(δ) is isomorphic to C(N ′

i). If

ϕ(γ) = δ, then ϕ restricts to an isomorphism L(γ) → L(δ), which induces an

isomorphism Ld(γ) → Ld(δ). Then either ϕ(Ld
0(γ)) = Ld

0(δ) or ϕ(Ld
0(γ)) = Ld

1(δ).

Hence, ϕ(L0(γ)) = L0(δ) or ϕ(L0(γ)) = L1(δ). However, ϕ(L0(γ)) = L1(δ) is

not possible by Lemma 4.1. Therefore, ϕ(L0(γ)) = L0(δ). It follows that their
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dimensions are equal: k − 3 = l − 3. Hence, k = l.

The proof of the theorem is now complete.

Theorem 4.2 (Korkmaz). Let α and β be two 2-separating vertices of C(S).

Then 〈α; β〉 is a simple pair if and only if there exist vertices γ1, γ2, γ3, . . . , γn−2

of C(S) satisfying the following conditions.

(i) (γ1, γ2, α, γ3, β) is a pentagon in C(S),

(ii) γ1 and γn−2 are 2-separating, γ2 is 3-separating, and γk and γn−k are k-

separating for 3 6 k 6 n/2,

(iii) {α, γ3} ∪ σ, {α, γ2} ∪ σ, {β, γ3} ∪ σ and {γ1, γ2} ∪ σ are codimension-zero

simplices, where σ = {γ4, γ5, . . . , γn−2}.

Theorem 4.3. Let α and β be two 2-separating vertices of C(N). Then 〈α; β〉
is a simple pair if and only if there exist vertices γ1, γ2, γ3, . . . , γn−1, δ of C(N)

satisfying the following conditions.

(i) (γ1, γ2, α, γ3, β) is a pentagon in C(N),

(ii) γ1 is 2-separating, γ2 is 3-separating, and γk is k-separating for 3 6 k 6

n− 1, δ is one-sided,

(iii) {α, γ3}∪ σ ∪{δ}, {α, γ2}∪ σ ∪{δ}, {β, γ3}∪ σ ∪{δ} and {γ1, γ2}∪ σ ∪{δ}
are codimension-zero simplices, where σ = {γ4, γ5, . . . , γn−1}.

Proof. Suppose that 〈α; β〉 is a simple pair. Let a ∈ α and b ∈ β so that 〈a; b〉
is a simple pair. It is clear that any two simple pairs of circles are topologically

equivalent, that is; if 〈c; d〉 is any other simple pair, then there exists a diffeomor-

phism F : N → N such that 〈F (c); F (d)〉 = 〈a; b〉. So, we can assume that a and
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b are the circles illustrated in Figure 4.1. In the figure, we think of the sphere as

the one point compactification of the plane and the cross inside the circle means

that we delete open disc and identify the antipodal boundary points so that we

get a real projective plane with punctures. The isotopy classes γi of the circles ci

and the isotopy class δ of the one-sided circle d satisfy (i)-(iii).

c

c

c
c

a

b
c54

3

2
1

...

ccn-1 n

d

Figure 4.1:

Now, we prove the converse. Assume that conditions (i)-(iii) above hold. Let

d ∈ δ be a one-sided circle. Deleting {δ} from conditions (ii) and (iii), we have

codimension-one simplices {α, γ3} ∪ σ, {α, γ2} ∪ σ, {β, γ3} ∪ σ and {γ1, γ2} ∪ σ.

However, these simplicies are codimension-zero simplices in the complex C(Nd).

By Theorem 4.2, we see that 〈α; β〉 is a simple pair on the sphere and Nd is a

sphere with n + 1 > 6 punctures. Let us say that a puncture is inside a if it is

one of the two punctures on the disc bounded by a. Similarly for b. There are

three possibilities the boundary component d′ (we see it as a puncture from point

of view of the curve complex) resulting from cutting along d, as illustrated in
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Figure 4.2. In the figure, this boundary component d′ is drawn as an oval. The

case are: (1) it may be outside of both a and b, (2) it may be inside, say, a and

outside of b, or (3) it may be the unique puncture inside both a and b.

(i) (ii) (iii)

a b a b a
b

d'

d'

Figure 4.2:

After the identifying the antipodal boundary points of the oval, in order to

get both a and b as 2-separating circles, we must have the case in Figure 4.2(i).

Hence, we see that 〈α; β〉 is a simple pair on N as well.

Corollary 4.1. Let ϕ be an automorphism of C(N). If 〈α; β〉 is a simple pair,

so is 〈ϕ(α); ϕ(β)〉. Similarly, the image of a chain in C(N) under ϕ is also a

chain.

Proof. The conditions (i) and (iii) of Theorem4.3 are invariant under the auto-

morphisms of C(N). By Theorem4.1, the condition (ii) is also invariant under

the automorphisms of C(N). Corollary follows from these.

Action of Aut C(N) on punctures

We can define an action of the group Aut C(N) on punctures of N as follows.

For ϕ ∈ Aut C(N) and for a puncture P of N , choose two isotopy classes α′, β′ of

embedded arcs such that 〈α′; β′〉 is a simple pair with the common endpoint P .
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Define ϕ(P ) to be the common endpoint of the simple pair 〈ϕ(α′); ϕ(β′)〉. We note

that by the one-to-one correspondence between the set of 2-separating vertices

of C(N) and the set of those vertices of B(N) which join different punctures,

Aut C(N) has a well-defined action on the latter set.

Next two lemmas below can be proved in the same way as Lemma3.5 and

Lemma3.6 in [15].

Lemma 4.2. The definition of the action of Aut C(N) on the punctures of N is

independent of the choice of the simple pair.

Lemma 4.3. Let ϕ ∈ Aut C(N), α be a k-separating vertex of C(N) and a ∈ α.

If N ′
a denotes the k-punctured disc component of Na and N ′′

a denotes (n − k)-

punctured RP 2 with one boundary component, then ϕ(P(N ′
a)) = P(N ′

ϕ(a)) and

ϕ(P(N ′′
a )) = P(N ′′

ϕ(a)).

Action of Aut C(N) on arcs

We define an action of Aut C(N) on the vertices of B(N) as follows. Let

ϕ ∈ Aut C(N), α′ a vertex of B(N) and let a′ ∈ α′. If a′ is joining two different

punctures, then ϕ(α′) is already defined by the correspondence between the 2-

separating vertices of C(N) and the action of Aut C(N) on C(N). The other

words, ϕ(α′) is the isotopy class of the arc, which is unique up to isotopy, joining

two punctures on the twice-punctured disc component of Nϕ(a) for ϕ(a) ∈ ϕ(α).

Suppose now that the arc a′ joins a puncture P to itself and it is a two-sided

loop. Then the action is same as in [15]. To be more precise, let a1 and a2 be

the boundary components of a regular neighborhood of a′ ∪ {P} and α1 and α2

be their isotopy classes, respectively. Since a′ cannot be deformed to P , at most

one of a1 and a2 is trivial.
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If a1 is trivial, then a1 bounds either a disc with one puncture or a Möbius

band. If it bounds a disc with a puncture Q, then a2 bounds a disc with two punc-

tures P and Q. By Theorem 4.1, ϕ(α2) is 2-separating. So for a representative

ϕ(a2) of ϕ(α2), one of the components, say N ′
ϕ(a2) of Nϕ(a2) is a twice-punctured

disc, with punctures ϕ(P ) and ϕ(Q) by Lemma 4.3. Define ϕ(α′) to be the iso-

topy class of a nontrivial simple arc on N ′
ϕ(a2) joining ϕ(P ) to itself. Such an arc

is unique up to isotopy by Lemma 2.1.

If a1 bounds a Möbius band, then a2 bounds a projective plane with one

puncture P . By Theorem 4.1, ϕ(α2) bounds a projective plane with one punc-

ture ϕ(P ). Therefore, for a representative ϕ(a2) of ϕ(α2), one of components,

say N ′
ϕ(a2), of Nϕ(a2) is a projective plane with one puncture and one boundary

component. The puncture on N ′
ϕ(a2) is ϕ(P ) by Lemma 4.3. There is only one

nontrivial two-sided loop (arc) joining a puncture ϕ(P ) to itself by Example 2.1.4.

We define ϕ(α′) to be the isotopy class of this two-sided loop (arc) joining ϕ(P )

to itself.

If neither of a1 and a2 is trivial, then a1 and a2 bound an annulus with

a puncture P . We claim that ϕ(a1) and ϕ(a2) also bound a once-punctured

annulus with only one puncture ϕ(P ). Here, ϕ(ai) is a representative of ϕ(αi)

for i = 1, 2. To see this, let N ′
ai

be the subsurface of N bounded by ai not

containing the puncture P . Similarly we define N ′
ϕ(ai)

to be the component of

Nϕ(ai) not containing ϕ(P ). Now, assume that the set of punctures on N ′
a1

and

N ′
a2

are P(N ′
a1

) = {P1, . . . , Pk} and P(N ′
a2

) = {Pk+1, . . . , Pn−1}, respectively.

Then Pi 6= Pj for all i, j. By Lemma 4.3, P(N ′
ϕ(a1)) = {ϕ(P1), . . . , ϕ(Pk)} and

P(N ′
ϕ(a2)) = {ϕ(Q1), . . . , ϕ(Qn−k)}. We deduce that since ϕ(a1) and ϕ(a2) are

disjoint and nonisotopic, they must bound an annulus with only one puncture

ϕ(P ). The class ϕ(α′) is defined to be the isotopy class of the unique arc up to

23



isotopy on this annulus joining ϕ(P ) to itself.

Suppose finally that a′ is a one-sided loop (arc) joining a puncture P to itself.

Let a be the boundary component of a regular neighborhood of a′ ∪ {P} and let

α be the isotopy class of a. The circle a bounds a Möbius band with a puncture

P . By Theorem 4.1, ϕ(a) ∈ ϕ(α) bounds a Möbius band M with a puncture, say

Q. By Lemma 4.3, Q = ϕ(P ). By Example 2.1.4, there is up to isotopy a unique

one-sided loop b′ on M joining ϕ(P ) to itself. We define ϕ(α′) to be the isotopy

class of b′.

Lemma 4.4. Let ϕ be an automorphism of C(N) and α′ and β′ be two distinct

vertices of B(N) such that i(α′, β′) = 0. Then i(ϕ(α′), ϕ(β′)) = 0. Therefore,

every automorphism of C(N) yields an automorphism of B(N).

Proof. Let a′ and b′ be two disjoint representatives of α′ and β′, respectively.

There are thirteen possible cases as illustrated in Figure 4.3. In each figure, we

assume that the arc on the left is a′ and the other is b′.

If a′ (respectively b′) is joining two different punctures, we denote by α (re-

spectively β) the 2-separating vertex of C(N) corresponding to α′ (respectively

β′), and by a (respectively b) a representative of α(respectively β).

If a′ (respectively b′) is a two-sided arc joining a puncture P to itself, we denote

by a1 and a2 (respectively b1 and b2) the boundary components of a regular

neighborhood of a′ ∪ {P} (respectively b′ ∪ {P}). If a regular neighborhood

of a′ ∪ {P} (respectively b′ ∪ {P}) is a once-punctured Möbius band M , we

denote the boundary component of M by a3 (respectively b3). We also denote

representatives of ϕ(α), ϕ(α′), ϕ(α1), ϕ(α2), ϕ(α3) by ϕ(a), ϕ(a′), ϕ(a1), ϕ(a2),

ϕ(a3), respectively. If, say, a1 is trivial, then a1 bounds either a disc with a

puncture or a Möbius band. In the first case, we think of a1 as the puncture its
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bounds. In the second case, we think of a1 as the core of the Möbius band it

bounds. Aut C(N) has a well defined action on the isotopy classes of these trivial

simple closed curves.

We now examine each of the thirteen cases.

(i) (ii) (iii) (iv)

(v) (vi) (vii)

(viii) (ix) (x) (xi)

(xii) (xiii)

Figure 4.3:

The proof is similar to that of Lemma 3.7 in [15] for (i), (ii), (iv), (vii), (ix),

(xi) and we will not repeat them here.

(iii) In this case, ϕ(a3) bounds a Möbius band M with a puncture and ϕ(b)

bounds a disc D with two punctures. Since ϕ is an automorphism, and since a3

and b are disjoint and nonisotopic, ϕ(a3) and ϕ(b) are disjoint and nonisotopic.

Then M does not intersect D. Since ϕ(a′) is on M and ϕ(b′) is on D, it follows
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that ϕ(a′) is disjoint from ϕ(b′).

(v) The once-punctured annulus bounded by b1 and b2 and the once-punctured

Möbius band bounded by a3 are disjoint. Since b1, b2 and a3 are pairwise disjoint,

so are ϕ(b1), ϕ(b2) and ϕ(a3). So the annulus A bounded by ϕ(b1), ϕ(b2), and

the once-punctured Möbius band M bounded by ϕ(a3) are disjoint. Since ϕ(a′)

is on M and ϕ(b′) is on A, they are disjoint.

(vi) This case follows from Corollary 4.1.

(viii) Suppose that a′ and b′ are joining the punctures P and Q. Let R be

any other puncture and let c′ be an arc from P to R disjoint from a′ ∪ b′. Let

D denote a regular neighborhood of b′ ∪ c′ ∪ {P, Q,R}, so that D is a disc with

three punctures. Let d′ denote the unique arc on D joining Q to R such that d′

does not intersect a′ ∪ b′ ∪ c′. Let e be the boundary of D. So any two arcs in the

set {b′, c′, d′} is a simple pair. Thus any two arcs in the set {ϕ(b′), ϕ(c′), ϕ(d′)}
is a simple pair, and ϕ(b′), ϕ(c′) and ϕ(d′) are contained in the three punctured

disk component of ϕ(e). It follows that any arc disjoint from ϕ(c′) and ϕ(d′) is

also disjoint from ϕ(b′). Since ϕ(a′) is disjoint from ϕ(c′) and ϕ(d′) by (vi), it is

also disjoint from ϕ(b′).

(x) Let P be the common endpoint of two-sided loop a′ and one-sided loop

b′, so that both arcs connect P to itself. By Theorem 4.1 and Lemma 4.3, ϕ(a1)

and ϕ(a2) are boundaries of an annulus with one puncture ϕ(P ). Since ϕ(b′) is

disjoint from ϕ(a2), ϕ(b′) is also disjoint from ϕ(a′).

(xii) Assume that a′ is joining P to itself such that a′ is a one-sided loop,

and b′ is connecting P to Q. Let P1, ..., Pn−2 be the punctures other than P and

Q. Choose a chain 〈c′1, ..., c′n−2〉 such that c′i joins Pi−1 to Pi for 1 6 i 6 n − 2,

where P0 = Q. We consider a two-sided loop d′ joining P to P disjoint from a′,

b′ and 〈c′1, ..., c′n−2〉 such that one of the components of the complement of d′ is a
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Möbius band and the other is a disc with punctures Q,P1, P2, ..., Pn−2. By (vi),

〈ϕ(c′1), ..., ϕ(c′n−2)〉 is also chain and disjoint from ϕ(b′). By (xi), ϕ(d′) is disjoint

from ϕ(b′) and the chain 〈ϕ(c′1), ..., ϕ(c′n−2)〉. Note that one of the components of

the complement of ϕ(d′) contains ϕ(b′) and the chain 〈ϕ(c′1), ..., ϕ(c′n−2)〉. Since

ϕ(a′) is disjoint from ϕ(d′) by (x), we obtain that ϕ(a′) is also disjoint from ϕ(b′).

(xiii) Let P be the common endpoint one-sided loops a′ and b′. The comple-

ment of a regular neighborhood of a′∪b′ is the union of two discs D1 and D2 with

n− k − 1 and k punctures for some k with 1 6 k 6 n− 2. Let b′1, ..., b
′
n−k−2 be a

chain on D1 so that each b′i is disjoint from a′∪ b′. Let P1, ..., Pk be the punctures

on D2. We can choose pairwise disjoint arcs c′i connecting Pi−1 and Pi such that

each c′i is also disjoint from a′∪ b′∪∂D1, where P0 = Pk+1 = P and 1 6 i 6 k+1.

It follows that a regular neighborhood of c′1∪ · · ·∪ c′k+1 is a Möbius band with

k + 1 punctures. Then a regular neighborhood of ϕ(c′1) ∪ · · · ∪ ϕ(c′k+1) is also a

Möbius band with k + 1 punctures.

Now the surface obtained from N by cutting along ϕ(c′1) ∪ · · · ∪ ϕ(c′k+1) and

ϕ(∂D1) is an annulus A. The puncture ϕ(P ) gives rise to two punctures R1 and

R2 on the same component of ∂A. The arcs ϕ(a′) and ϕ(b′) live on A. In order

to get a one-sided arc, each must connect R1 to R2. Up to isotopy there are two

arcs from R1 and R2 which are disjoint. These two arcs must be ϕ(a′) and ϕ(b′).

Lemma 4.5. The natural map Aut C(N) → Aut B(N) is injective.

Proof. From the lemma above, every element of Aut C(N) yields an element of

Aut B(N). This gives a homomorphism. Now, we need to show that the kernel

of this homomorphism is trivial. In other words, if an automorphism of C(N)

induces the identity automorphism of B(N), then this automorphism must be
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the identity.

Let ϕ be an automorphism of C(N). Suppose that ϕ induces the identity

automorphism of B(N). We recall that there is a one-to-one correspondence

between 2-separating vertices of C(N) and the vertices of B(N) joining different

punctures. It follows that ϕ is the identity on 2-separating vertices of C(N).

Let α be a one-sided vertex of C(N) and let a ∈ α. Let us denote by

P1, . . . , Pn the punctures on the connected component of Na. Let us take any

chain 〈c′1, . . . , c′n−1〉 disjoint from a such that c′i connects Pi to Pi+1. Let γ′i be

the isotopy class of c′i. Since i(γi, α) = 0, we have i(γi, ϕ(α)) = 0 and hence

i(γ′i, ϕ(α)) = 0. Let C ′ = c′1 ∪ · · · ∪ c′n−1. The surface NC′ obtained from N

by cutting along C ′ is a projective plane with one boundary component. Up to

isotopy, there is only one one-sided simple closed curve on NC′ . Both α and ϕ(α)

are on NC′ . So, we must have ϕ(α) = α.

Let α be a k-separating vertex of C(N) with 3 6 k 6 n−1 and let a ∈ α. Let

us denote by P1, . . . , Pk and Q1, . . . , Qn−k the punctures on the two connected

components of Na. Let us take any two chains 〈b′1, . . . , b′k−1〉 and 〈c′1, . . . , c′n−k−1〉
disjoint from a such that b′i connects Pi to Pi+1 and c′j connects Qj to Qj+1. Let

β′i and γ′j be the isotopy classes of b′i and c′j, respectively. Let d′ be a one-sided

loop joining to Q1 to itself disjoint from the other arcs. Let δ′ be the isotopy class

of d′. Because i(βi, α) = 0, i(γj, α) = 0 and i(δ, α) = 0, we have i(βi, ϕ(α)) =

i(γj, ϕ(α)) = 0 and i(δ, ϕ(α)) = 0. Then i(β′i, ϕ(α)) = i(γ′j, ϕ(α)) = 0 and

i(δ′, ϕ(α)) = 0. Let A′ = b′1 ∪ · · · ∪ b′k−1 ∪ δ′ ∪ c′1 ∪ · · · ∪ c′n−k−1. The surface NA′

obtained from N by cutting along A′ is an annulus. Since, up to isotopy, there is

only one two-sided simple closed curve on NA′ , we must have ϕ(α) = α.
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Ideal triangulations of N and maximal simplices of B(N)

All maximal simplices in B(N) have the same dimension, and there is a well-

defined action of the group Aut B(N) on maximal simplices. Any realization of

a maximal simplex is an ideal triangulation of N . An ideal triangulation is a

triangulation of N whose vertex set is the set of punctures on N in the sense that

vertices of a triangle can coincide as can a pair of edges. Note that isotopy class

of any ideal triangulation forms a maximal simplex in B(N). The converse of

that is also true. So, Aut B(N) acts on the isotopy classes of ideal triangulations.

We quote the following definition from [15].

Definition 4.1. A good ideal triangle is a set {a′, b′, c′} of nontrivial embedded

disjoint arcs such that a′, b′ and c′ connect P1 to P2, P2 to P3 and P3 to P1,

respectively, for three different punctures P1, P2 and P3, and such that a′ ∪ b′ ∪ c′

bounds a disc in N .

The following lemma can be proven similar to the proof Corollary in [7].

Lemma 4.6. Let N be a projective plane with at least five punctures. Then given

any two maximal simplices σ and σ′ of B(N), there exists a sequence of maximal

simplices σ = σ1, σ2, . . . , σk = σ′ such that σi∩σi+1 is a codimension-one simplex

for each i.

The lemmas below are analogous to Lemma 3.9 and Lemma 3.10 in [15].

Lemma 4.7. Let ϕ̃ ∈ Aut B(N), 4 = {a′, b′, c′} be a good ideal triangle and let

α′, β′, γ′ be the isotopy classes of a′, b′, c′, respectively. Then {α′, β′, γ′} and,

hence {ϕ̃(α′), ϕ̃(β′), ϕ̃(γ′)} is a 2-simplex in B(N). If ϕ̃(4) = {ϕ̃(a′), ϕ̃(b′), ϕ̃(c′)}
is a realization of the latter simplex, then it is a good ideal triangle on N .
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Lemma 4.8. Let ϕ̃ and ψ̃ be two automorphisms of B(N). If they agree on a

codimension-zero simplex, then they agree on all of B(N).

Proof of Theorem1.1 for punctured RP 2

In Section 3, we showed that the natural map MN → Aut C(N) is injective.

We show that this natural homomorphism is onto. Let ϕ ∈ Aut C(N) and let

σ be the isotopy class of a good ideal triangulation of N . So, σ is a maximal

simplex of B(N). By Lemma4.7, ϕ̃ ∈ Aut B(N), the automorphism induced by

ϕ, takes a good ideal triangle to a good ideal triangle and ϕ̃ can be realized by

a homeomorphism. Also, because each edge of a good ideal triangulation is an

edge of two good ideal triangles, the homeomorphism of these triangles gives a

homeomorphism Φ of N . By replacing Φ by a diffeomorphism isotopic to Φ if

necessary, we may assume that Φ : N → N is a diffeomorphism. If [Φ] is the

isotopy class of Φ, then ϕ̃ agrees with Φ̃∗ the automorphism induced by Φ, on the

maximal simplex σ of B(N). From Lemma4.8, they agree on all of B(N). Thus,

ϕ̃ = Φ̃∗. Since the map Aut C(N) → Aut B(N) is injective, we get ϕ = Φ∗.

The proof of the theorem for punctured RP 2 is now complete.

4.2 Surfaces of Higher Genus

Throughout this section unless otherwise stated, N will denote a connected

nonorientable surface of genus g with n punctures where g is odd and g + n > 6.

In this section, we first show that automorphisms of C(N) preserve the topo-

logical type of the vertices of C(N). We then prove that every automorphism of
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C(N) is induced by a diffeomorphism of N . We prove this by induction on r,

where g = 2r + 1.

Lemma 4.9. Let ϕ be an automorphism of C(N). Let α and β be nonseparating

two-sided vertices. If i(α, β) = 1, then i(ϕ(α), ϕ(β)) = 1.

Proof. Let γ1, γ2,..., γ2r−1 be pairwise disjoint one-sided vertices such that each

γi is disjoint from α and β. Consider the link L(γ1, ..., γ2r−1) of these vertices.

Then ϕ restricts to an automorphism ϕ| : L(γ1, ..., γ2r−1) → L(γ1, ..., γ2r−1).

L(γ1, ..., γ2r−1) is isomorphic to the complex of curves of a torus with n + 2r − 1

punctures. Observe that α and β vertices are contained in L(γ1, ..., γ2r−1) and by

assumption i(α, β) = 1. Since n+2r− 1 > 3, by Theorem1 in [15]. ϕ| is induced

by a diffeomorphism. In particular, i(ϕ(α), ϕ(β)) = 1.

The following lemma can be proven using similar techniques as in Lemma3.8.

in [9] or Lemma3 in [11].

Lemma 4.10. Let a be a two-sided nonseparating circle. If c and d are two two-

sided nonseparating circles, both intersecting a transversely once, then there is a

sequence c = c0, c1, ..., cn = d of two-sided nonseparating circles such that each

ci intersects the circle a transversely once and ci is disjoint from ci+1 for each

i = 0, 1, ..., n− 1.

Lemma 4.11. Let n > 2 and k > 1. If N is a projective plane with n punctures

and T is a torus with k punctures, then C(N) and C(T ) are not isomorphic.

Proof. The complexes C(N) and C(T ) have dimensions n− 2 and k − 1, respec-

tively. If k 6= n − 1, since these complexes of curves have different dimensions,

C(N) and C(T ) are not isomorphic. If k = n− 1, we proceed as follows.
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Let n = 2. Thus N is a projective plane with two punctures and T is a torus

with one puncture. In this case, C(N) is finite ([21]), however, C(T ) is infinite

discrete since T is a torus with one puncture. Therefore, they are not isomorphic.

Now, assume that C(N) and C(T ) are not isomorphic when N has n − 1

punctures. Since there are n−1 punctures on N , there are n−2 punctures on T .

We need to show that the complexes C(N) and C(T ) are not isomorphic if N has n

punctures. Assume the contrary that there is an isomorphism ϕ : C(N) → C(T ).

For any vertex γ in C(N), ϕ induces an isomorphisms L(γ) → L(ϕ(γ)) and

Ld(γ) → Ld(ϕ(γ)).

Note that for a vertex γ of C(N), the dual link Ld(γ) of γ is connected if and

only if γ is either one-sided or 2-separating. For a vertex δ of C(T ), the dual link

Ld(δ) of δ is connected if and only if δ is either nonseparating or 2-separating

vertex. From this, it follows that the image of the union of the set of one-sided

vertices and the set of 2-separating vertices of C(N) is precisely the union of the

set of nonseparating vertices and the set of 2-separating vertices of C(T ). Let

γ be a 2-separating vertex of C(N). Then ϕ(γ) is either a nonseparating vertex

or a 2-separating vertex of C(T ). First, we assume that ϕ(γ) is a nonseparating

vertex δ of C(T ). Clearly, L(γ) is isomorphic to the complex of curves of a

projective plane with n − 1 punctures and L(δ) is isomorphic to the complex of

curves of a sphere with n + 1 punctures. By Lemma 4.1, these complexes are not

isomorphic. Therefore, ϕ(γ) cannot be a nonseparating vertex δ of C(T ). Now,

we assume that ϕ(γ) is a 2-separating vertex µ of C(T ). Then L(µ) is isomorphic

to the complex of curves of a torus with n− 2 punctures. By assumption, these

complexes are not isomorphic. Therefore, we get a contradiction. Hence, C(N)

and C(T ) are not isomorphic.
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Lemma 4.12. Let N be a connected nonorientable surface of genus g = 2r + 1,

r > 1 with n > 0 boundary components. The group Aut C(N) preserves the

topological type of the vertices of C(N).

Proof. Let ϕ be an automorphism of C(N). Note that for a vertex γ of C(N),

the dual link Ld(γ) of γ is connected if and only if γ is either one-sided vertex

or nonseparating two-sided vertex or 2-separating. Therefore, ϕ cannot take a

one-sided vertex or a nonseparating two-sided vertex or a 2-separating to a k-

separating vertex with k > 2 or separating vertex.

Let α be a one-sided vertex of C(N) and let a ∈ α such that Na is an orientable

surface. Clearly, L(α) is isomorphic to the complex of curves of an orientable

surface of genus r with n + 1 boundary components Sr,n+1. Let β be a one-sided

vertex and let b ∈ β such that Nb is a nonorientable surface of genus 2r with n+1

boundary components. Obviously, L(β) is isomorphic to the complex of curves

of a nonorientable surface of genus 2r with n + 1 boundary components N2r,n+1.

Let γ be a nonseparating two-sided vertex of C(N) and L(γ) is isomorphic to

the complex of curves of a nonorientable surface of genus 2r − 1 with n + 2

boundary components N2r−1,n+2. Let δ be a 2-separating vertex of C(N) and L(δ)

is isomorphic to the complex of curves of a nonorientable surface of genus 2r + 1

with n − 1 boundary components N2r+1,n−1. Since there are maximal simplices

of different dimensions in the complexes of curves C(N2r,n+1), C(N2r−1,n+2) and

C(N2r+1,n−1), these complexes are not isomorphic to C(Sr,n+1). Moreover, the

dimensions of C(N2r,n+1), C(N2r−1,n+2) and C(N2r+1,n−1) are 4r+n−3, 4r+n−4

and 4r + n − 3, respectively. Therefore, the complex of curves C(N2r−1,n+2) is

not isomorphic to C(N2r,n+1) and C(N2r+1,n−1). Furthermore, although these

complexes of curves C(N2r,n+1) and C(N2r+1,n−1) have the same dimensions, these

complexes are not isomorphic. Because there is a maximal simplex of dimension
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3r+n−3 in the complex of curves C(N2r+1,n−1), whereas, there is no any maximal

simplex of dimension 3r + n− 3 in the complex of curves C(N2r,n+1). Hence, the

complex of curves C(N2r+1,n−1) is not isomorphic to C(N2r,n+1).

Let λ be a separating vertex and let e ∈ λ be circle. Ne has two connected

components. Let Ne = N0 tN1 such that N0 and N1 are nonorientable surfaces.

More precisely, N0 is a nonorientable surface of genus l for some 1 6 l 6 2r with

k+1 punctures for some 0 6 k 6 n denoted by Nl,k+1, then N1 is a nonorientable

surface of genus 2r + 1 − l with n − k + 1 punctures denoted by N2r+1−l,n−k+1.

The dual link Ld(λ) has exactly two connected components. Let us denote these

components by Ld
0(λ) and Ld

1(λ); Ld(λ) = Ld
0(λ)tLd

1(λ). We name Li(λ) so that

the vertices of Ld
i (λ) are the isotopy classes of circles on Ni. Let Li(λ) be the full

subcomplex of C(N) with vertices Ld
i (λ). It follows that (Li(λ))d = Ld

i (λ). Then

Li(λ) is isomorphic to C(Ni). Let µ be a separating vertex and w ∈ µ be circle.

Similarly, we define Ld
i (µ) and Li(µ) so that Li(µ) is isomorphic to C(N ′

i). In

other words, L0(µ) is isomorphic to the complex of curves of a orientable surface

of genus l for some 0 6 l 6 r with k + 1 punctures for some 0 6 k 6 n denoted

by Sl,k+1, then L1(µ) is isomorphic to the complex of curves of a nonorientable

surface of genus 2(r − l) + 1 with n − k + 1 denoted by N2(r−l)+1,n−k+1. Since

L0(µ) is isomorphic to C(Sl,k+1) and all maximal simplices in C(Sl,k+1) have the

same dimension, Ld(µ) is not isomorphic to Ld(λ). Hence, λ cannot be mapped

µ under ϕ.

The proof of the lemma is complete.

Remark 4.1. In the above proof, in case of r = 1 and n > 0, one can see that the

complex of curves of a torus with n + 1 boundary components and the complex of

curves of a projective plane with n + 2 boundary components are not isomorphic

by Lemma 4.11.
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Theorem 4.4. Let N be a connected nonorientable surface of odd genus g =

2r + 1 with n punctures. Suppose that g + n > 6. Then ϕ agrees with a map

h∗ : C(N) → C(N) which is induced by a diffeomorphism h : N → N .

Proof. Let r = 0. Then N is a projective plane with n > 5 punctures. In Section

4, we showed that ϕ is induced by a diffeomorphism of N .

We assume that every automorphism C(N) → C(N) is induced by a diffeo-

morphism of N if N is of odd genus g 6 2r− 1. Now, we show that ϕ is induced

by a diffeomorphism of N for genus g = 2r + 1.

Let c be any two-sided nonseparating circle and γ denote its isotopy class.

By Lemma 4.12, ϕ takes γ to a two-sided nonseparating vertex, say γ′, and let

c′ ∈ γ′. There is a diffeomorphism f such that f(c) = c′. Then f−1
∗ ϕ(γ) = γ where

f∗ : C(N) → C(N) the automorphism induced by f . By replacing ϕ by f−1
∗ ϕ,

we can assume that ϕ(γ) = γ. ϕ restricts to an automorphism ϕc : L(γ) → L(γ).

Since L(γ) is isomorphic to the complex of curves C(Nc) of a nonorientable surface

Nc of genus 2r − 1 with n + 2 boundary components, we get an automorphism

ϕc of the complex of curves of a nonorientable surface of genus 2r− 1 with n + 2

boundary components. By induction, we can assume that ϕc is equal to a map

(gc)∗ : C(Nc) → C(Nc) which is induced by a diffeomorphism gc : Nc → Nc. By

gluing two boundary components of Nc obtained c in a convenient way gc induces

a diffeomorphism gc : N → N . It follows that gc(c) = c. Therefore, ϕ agrees

with (gc)∗ on every element of L(γ). The composition (g−1
c )∗ with ϕ, (g−1

c )∗ ◦ ϕ

fixes γ and every element of L(γ). We may replace (g−1
c )∗ ◦ϕ by ϕ. Now, ϕ is an

automorphism of C(N) such that it is identity on γ ∪ L(γ).

Let d be a two-sided nonseparating circle dual to c. In other words, d inter-

sects c transversely once and there is no other intersection. Let T be a regular

neighborhood of c ∪ d. The surface T is a torus with one boundary component.
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Let e be the boundary component of T . Let δ and ε denote the isotopy class of

d and e, respectively. Obviously, since ε ∈ L(γ), ϕ(ε) = ε. Also, ϕ(γ) = γ. Since

i(δ, ε) = 0, i(ϕ(δ), ϕ(ε)) = i(ϕ(δ), ε) = 0. Since i(γ, δ) = 1 by Lemma 4.9, there

exists an integer n such that ϕ(δ) = (tnc )∗(δ).

Let D(γ) be the set of isotopy classes of two-sided nonseparating circles which

are dual to c on N . Let d1 be a two-sided nonseparating circle which is disjoint

from d and dual to c. Similarly, there exists an integer n1 such that ϕ(δ1) =

(tn1
c )∗(δ1), where δ1 is the isotopy class of d1. Since i(δ, δ1) = 0, i(ϕ(δ), ϕ(δ1)) = 0.

If n 6= n1, then i((tnc )∗(δ), (tn1
c )∗(δ1)) 6= 0 since both d and d1 are dual to c. Thus,

we have i(ϕ(δ), ϕ(δ1)) 6= 0. This is a contradiction. Therefore, we must have

n = n1. Now for any two-sided nonseparating circle s which is dual to c, by

Lemma 4.10 we can find a sequence of two-sided nonseparating circles dual to c,

connecting d to s such that each consecutive pair is disjoint. It follows that ϕ

agrees with (tnc )∗ on every element of D(γ). Therefore, ϕ agrees with (tnc )∗ on γ

and on L(γ) ∪D(γ). Let hc = tnc . In the following, we will denote (hc)∗ simply

by h∗.

If u and v are any other two-sided nonseparating circles dual to each other,

then there exists a diffeomorphism N → N mapping (u, v) to (c1, c2), where c1

and c2 are the circles in Figure 4.4. The set {c1, c2} can be completed to a set C

of two-sided circles except a as shown in Figure 4.4. Let γi be the isotopy class

of ci.

We orient tubular neighborhoods of elements of C in such way that these

orientation agree with an orientation of a regular neighborhood M of ∪ci. We

note that M is an orientable surface.

The isotopy classes of Dehn twists about elements of C generate a subgroup

T ′. As shown above, the restriction of ϕ to L(γi)∪D(γi) agrees with the induced
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map (hi)∗ of a diffeomorphism hi : N → N .

Any circle in C is either disjoint from c1 or is dual to c1, ϕ(γi) = (h1)∗(γi)

for all i. Similarly, ϕ(γi) = (h2)∗(γi) for all i. Hence, (h−1
1 ◦ h2)∗(γi) = γi. In

particular, (h−1
1 ◦ h2)∗(ci) is isotopic to ci and

(h−1
1 ◦ h2)tci

(h−1
1 ◦ h2)

−1 = tεi
ci
,

where εi = ±1. Let us denote h−1
1 ◦ h2 by h. For a circle ci ∈ C dual to c1, we

have the braid relation

tc1tci
tc1 = tci

tc1tci
.

By conjugating with h, we get

tε1c1t
εi
ci
tε1c1 = tεi

ci
tε1c1t

εi
ci
.

But this relation holds if and only if ε1 and εi has the same sign. Now if ci is dual

to c1 and if cj is dual to ci, by similar reasoning we get εj and ε1 have the same

sign. It follows that all εi have the same sign, as we can pass from c1 to any circle

in C through dual circles.

c
1

c

c

c

c

2

3

4

5

6

c

c

8

...

a

Figure 4.4: Identify antipodal points on the boundary component on the left
hand side

37



Suppose that εi = −1, so that htci
h−1 = t−1

ci
for all ci ∈ C. Thus h reverses the

orientation of tubular neighborhoods of ci. Let ρ be the reflection in yz−plane

as shown in Figure 4.4. The reflection ρ leaves each ci ∈ C invariant, but reverses

the orientations of tubular neighborhoods of ci. Here ρtci
ρ−1 = t−1

ci
for all i. Thus

(ρ ◦ h)tci
(ρ ◦ h)−1 = tci

.

In other words, ρ ◦ h ∈ CMN
(T ′). Since CMN

(T ′) is trivial by Proposition 2.2, we

get that

h = ρ−1 = ρ.

On the other hand, there exists a two-sided nonseparating circle a as shown in

Figure 4.4 such that the class α of a is contained in L(γ1) ∩ D(γ2) and h(α) =

ρ(α) 6= α. However, this is a contradiction since h(α) = ϕ(α) = α.

Therefore, we must have εi = 1 for all i. Thus, htci
h = tci

for all i. In

particular h = h−1
1 ◦ h2 ∈ CMN

(T ′) = 1. Consequently, h1 = h2.

Let d be any two-sided nonseparating circle and δ denote the isotopy class of d

on N . Since N is a nonorientable surface of genus g > 3, c1 and d are dually equiv-

alent by Theorem3.1 of [16]. In other words, there exists a sequence of two-sided

nonseparating circles a1, . . . , ak on N such that a1 = c1, ak = d and the circles ai

and ai+1 are dual. Using this sequence, we obtain that (h1)∗ = (h′)∗ = ϕ. Indeed,

for any two-sided nonseparating circle d, (h1)∗ agrees with ϕ. Furthermore, since

the isotopy classes of every separating circle and of any one-sided circle are in

L(ζ) where ζ is the isotopy class of some two-sided nonseparating circle s, we

obtain that (h1)∗ agrees with ϕ on C(N).
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Proof of Theorem1.1 for nonorientable surface of odd genus

It is shown that MN → Aut C(N) is injective in Section 3. Theorem 4.4 im-

plies that automorphisms of C(N) are induced by diffeomorphisms of N . Hence,

this completes the proof Theorem 1.1.
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