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ABSTRACT

GÖDEL SPACETIME

Kavuk, Mehmet

MS., Department of Physics

Supervisor: Özgür Sarıoğlu

August 2005, 56 pages.

In this  thesis  properties  of  the  Gödel  spacetime  are  analyzed and it  is  explicitly

shown that there exist closed timelike curves in this spacetime. Geodesic motions for

massive particles and light rays are investigated. One observes the focusing effect as

a result of the solution of the geodesic equations. The time it takes for a free particle

released from a point to come back to its starting point is calculated. A geometrical

interpretation of the Gödel spacetime is given and the question of what the Gödel

spacetime looks like is answered.

Keywords:  Gödel  spacetime,  Null  geodesics,  Timelike  geodesics,  Time  travel,

Rotation of spacetime.
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ÖZ

GÖDEL UZAY-ZAMANI

Kavuk, Mehmet

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Özgür Sarıoğlu

Ağustos 2005, 56 sayfa

Bu tezde Gödel uzay-zamanının özellikleri çözümlendi ve kapalı zamansı eğrilerin

varlığı  gösterildi.  Jeodezik  denklemi  çözülerek  kütleli  parçacıkların  ve  ışık

demetlerinin  jeodezik  hareketleri  incelendi  ve  odaklanma  etkisi  görüldü.  Bir

noktadan yollanan bir ışık ışınının ve serbest bir parçacığın ne kadar sürede aynı yere

döneceği hesaplandı. Gödel evreninin geometrik bir  yorumu verildi ve bu evrenin

neye benzediği sorusu cevaplandı.

Anahtar  kelimeler:  Gödel  uzay-zamanı,  Null  jeodezikler,  Zamansı  jeodezikler,

Zamanda yolculuk, Uzay zamanın dönmesi.
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CHAPTER 1

INTRODUCTION

   General Relativity theory helps us to determine possible models for the large scale

structure of spacetime. Each of the models  is a pair  ),( gM .  Here  M is  a four

dimensional manifold which represents the totality of all point-event locations; and

g  is a geometric object which represents the metric structure of spacetime. We can

think of it, simply, as a function which assigns lengths to vectors at points of M , but

which assigns negative and zero lengths to vectors as well as positive ones. It thus

partitions  the  vectors at  any point  into  three  classes  and determines  a  light  cone

structure. A vector is said to be timelike,  null, or spacelike according to whether its

length is negative, zero or positive. Timelike vectors fall inside the cone whereas null

ones fall on the boundary. Of course, these null cones have an immediate physical

significance. It is absolutely fundamental to General Relativity theory that there is an

upper  bound  to  the  speeds  with  which  particles  can  travel  (as  measured  by any

observer). If we think of vectors at a point as velocity vectors, then the light cone can

be interpreted as a marking of that upper bound [1].  Massive particles must have

timelike  velocity  vectors;  those  with  zero  mass  must  have  null  ones.  The  most

important geometrical notion that turns out to be the tool to travel back in time is

closed timelike curves.  They are simply closed curves  on the spacetime manifold

whose tangent vectors at every point are timelike and point to the future. These future

directed timelike curves, of course, have various magnitudes due to the spacetime

metric, in particular, length and acceleration. The length is usually called  elapsed

proper time. Timelike curves with no accerelation are called timelike geodesics [1].

In General Relativity, Gödel spacetime is important because it is the first example of

a  spacetime  that  is  a  solution  of  Einstein’s  field  equations  and  that  has  closed

timelike curves, which are classically forbidden. In this thesis, we will review the

Gödel spacetime.

   In the late 1940s,  Kurt  Gödel  took an interest  in  Einstein's  theory of General

Relativity. He was looking for an answer to the question of what the nature of time
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is.  Eventually  he  succeeded  in  finding  a  new  solution  to  the  field  equations  of

Einstein’s theory of General Relativity in 1949 [2] which influenced all the notions

about  time known thus far.  This new solution suggests  a spacetime with  strange

properties.  First  of  all,  the  spacetime  is  filled  with  incoherent  pressureless  fluid

matter in a state of uniform, rigid rotation. Secondly, the particles with no force on

them follow a path similar to the paths that boomerangs follow. This means that the

particles released from a point of the spacetime recede from their starting point until

they reach a critical distance and then move back to their starting point at a later time.

Finally, and the most important of all, there is a possibility of traveling back in time

in the Gödel spacetime. As a matter of fact, all of us are travelling in time during our

daily life on earth, but here by “travelling” we mean that a particle starting its motion

from a spacetime point is able to come back to its starting point again. So there is no

such definite notion as past, future and present in the Gödel spacetime.

   In fact, Gödel’s work did not attract much attention in the beginning. In 1956,

Kundt  [3]  in  Hamburg,  Germany, calculated the geodesic  world lines  in  Gödel’s

spacetime. He used Killing vectors to find the first integrals of the geodesic equations

as suggested by Felix Pirani. Then in 1961, S. Chandrasekhar and J.P. Wright [4]

calculated the timelike geodesics of the Gödel spacetime and concluded that there

wasn’t  any  closed  timelike  geodesic,  so  that  Gödel’s  remark  on  this  issue  was

incorrect. However, Gödel had never claimed that there were closed timelike curves

which  were  geodesics.  Nobody  noticed  this  misunderstanding  until  1970,  when

Howard Stein [5] showed that  Chandrasekhar and Wright had been mistaken. 

    In fact, all the calculations done to find the geodesic world line of the Gödel

spacetime  began  with  either  the  metric  given  in  (2.26),  whose  solution  of  the

geodesic equations has a complicated form and is not very enlightening to understand

the geometrical picture of the spacetime, or the metric conformal to the Gödel one.

Actually Gödel himself applied a transformation to his metric (2.26) to write it in

cylindrical coordinates so as to show the existence of closed timelike curves easily.

In this thesis we calculate the timelike and null geodesics of the Gödel spacetime by

using the Gödel metric written in cylindrical coordinates. 

    There was no geometrical figure showing the behavior of the geodesics of the

Gödel spacetime until 1973 when  Hawking and Ellis pictured Gödel spacetime in
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their monograph entitled  The Large Scale Structure of Spacetime [6]. This was the

first time that geometrical insight was employed in understanding the properties of

the Gödel spacetime. In 2003, I. Ozsvath  and E. Schucking [7]  published a paper

where they asked the question as to how Hawking and Ellis drew this picture,  i.e.

what are the equations of the null geodesics that lead  to this picture? They believed

that some “intrigue” had been made while drawing this picture. By using a metric

conformal to the Gödel metric, they calculated the null geodesics and reconstructed

the picture of Hawking and Ellis. Even though they stated a problem related with the

matter world line which is drawn as spacelike in the picture of Hawking and Ellis

(see Figure 4.1), they did not give   the equations of the timelike geodesics showing

that they really must be inside the critical radius. In this thesis the problems of the

picture in [6] are stated again when necessary and the ways to correct it are shown. In

the second chapter, we begin with an ansatz and find the conditions under which this

ansatz  satisfies  the  field  equations  of  cosmological  Einstein’s  theory of  General

Relativity coupled with a pressureless perfect fluid.  We first  get the most general

form  of  the  Gödel  metric  with  three  integration  constants.  However  A.  K.

Raychaudhuri  and S. N. Thakurta [8]  showed in their paper that  all the solutions

obtained for different values of the integration constants can be transformable to the

Gödel metric.   Hence we decide on how to choose the integration constants so as to

get the original metric that Gödel used in his calculations.  In the third chapter, we

investigate some physical properties of the Gödel spacetime and choose a coordinate

system  to  transform  the  metric  into  cylindrical  coordinates  which  is  useful  in

demonstrating  the  existence  of  closed  timelike  curves.  We  also  find  the  Killing

vectors of the Gödel spacetime. In the fourth chapter, null and timelike geodesics are

calculated and it is shown that these equations are the ones from which Figure 4.1

can be obtained.  
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CHAPTER 2

DERIVATION OF THE GÖDEL SPACETIME

In this  chapter we begin with an ansatz  and a specific  energy-momentum tensor,

namely that of a pressureless perfect fluid source, for the spacetime and find under

what conditions this ansatz satisfies the field equations of cosmological Einstein’s

theory  of  General  Relativity.  We  end  up  with  the  general  solution  of  the  field

equations with three integration constants. As it has been stated before, in [8] it is

shown that all the solutions obtained for different values of the integration constants

can be transformable to the Gödel metric. By appropriate choice of constants we get

the metric that Gödel found in his paper.

2.1 The Metric

In 1949, Gödel found a new cosmological solution of Einstein’s field equations of

the form [2]

                  dtxvdyxudzdxdtdxdxgds )(2)( 22222  
 dy .              (2.1)

In this model, spacetime is full of a pressureless perfect fluid which has an energy-

momentum tensor of the form      VVT  . Here 0  is the energy density of the

fluid and  V  is  the fluid four-velocity. To find under what  conditions  (2.1) is  a

solution to the field equations of cosmological Einstein’s theory of General Relativity

with the  corresponding energy-momentum tensor  stated,  i.e. to  find the unknown

functions  )(xu and  )(xv ,  we  have  to  start  by calculating  the  components  of  the

Christoffel symbol and the Ricci tensor corresponding to this metric. The metric can

be written in matrix form as 

4



            


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0010
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By using the definition of the Christoffel symbol

                             )(
2
1

,,, 



 gggg  ,           (2.2)

we can calculate the nontrivial components of it easily as

                                           

                           v
uv

v


)(2
1

2
0

10 
 ,    

)(2
1

2
0

12 uv
vuuv







,   v
2
11

20  ,

                           v
uv


)(

1
2
1

2
2

10 
 ,     

)(2
1

2
2

12 uv
uvv







 ,  u
2
1

22
1  .

Here “dot” denotes derivative with respect to x . We will use the explicit form of it (

dxd / )  when necessary. In the same manner,  by using the definition of the Ricci

tensor [9] 

                               





















 








xx

R  ,                         (2.3)

we can easily obtain the nontrivial components of the Ricci tensor as

                              
uv

vR


 2

2

00 2
1  ,                   (2.4)
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                          22

22222

11 )(4
)(24)(4)(2

uv
uuuvuvvvvuvvuvR







,             (2.5)

                           
uv

uvvRR



2

2
0220 4

1
2
1 
 ,

                           
uv

uvvvuuuR



 2

22

22
22

4
1

2
1 

 .  (2.6)

These components of the Christoffel symbol and of the Ricci tensor are the only ones

that do not vanish. The components of the Einstein tensor are given in Appendix A.

The Ricci scalar is obtained easily 

                  22

22222

)(4
)(882)(42)3(

uv
vuvvuvvuuuvvuvgRR







 .    (2.7)

If we put  all  of these things together in the field equations  of Einstein’s General

Relativity with a cosmological constant1 

                              
 VV
c

GgRgRgG
2

8
2
1

                       (2.8)

and  use a co-moving coordinate system for the energy-momentum tensor, i.e. take

                                    0)0 ,0 ,0 ,1(  V ,                                                         (2.9)

 

so that

1 Here  G  is Newton’s gravitational constant,  c is  the speed of light and    is the cosmological

constant. For simplicity, we use units such that 1 cG .
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                                     


 0)0 ),( ,0 ,1( gxvVgV  ,   (2.10)

we get, first of all, that   

                           2               8
2
1

3333333333 RgVVRgRG  ,   (2.11)

where we use the fact that 33R  and  3V  are zero. If we use (2.11) and put it into (2.8),

we obtain 

                                              VVR 8 .                    (2.12)

Then we can easily obtain the rest of the equations

           

                                  8                8 000000  RVVR ,                                    (2.13)

                                 0             8 111111  RVVR  ,                                      (2.14)

                                  2
222222 )(8                8 xvRVVR   ,                        (2.15)

                                 )(8          8 20022002 xvRRVVR   .           (2.17)

From  (2.5) and (2.14), we obtain

                                                2
2

2
v

k
kk 


  ,    (2.17)

where uvk  2 .

    We also find from  (2.4) and (2.13) that
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                                                       8
2

2


k

v .  (2.18)

Combining (2.17) together with (2.18), we get 

                                                  k
k

kk 16
2

2




 . (2.19)

Now let us solve  (2.19). First note that 

           kkk
dx
d 2/32/1

2
1)(                                    

k
kk

dx
dkk

2
)(

2
2/12/1


  .

Then  (2.19) becomes  

                                               kk
dx
dkkk 16)( 2/12/1   ,      

and multiplying this by 2/1k , one finds

                

                                              2/12/12/1 16)( kk
dx
dkkk    , 

which can be written as 

                                                   2/1
0

2/1 )( kckk
dx
d

  , (2.20)

where 0160  c . Let   

                                                          pk 2/1 , (2.21)
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 then  (2.20) becomes 

                                                         pcp 02  ,  

which  is  easy  to  handle  since  it  is  a  second  order  homogeneous  equation  with

constant coefficients. The most general solution is given by

                                            xcxc ececxp 2/
2

2/
1

00)(  ,

where  1c and   2c are integration constants. So by using  (2.21), we get

                                            22/
2

2/
1 )()( 00 xcxc ececxk  . (2.22)

                                                                

From (2.18), we have

                             

                                            )()( 2/
2

2/
10

00 xcxc ececcxv  ,

whose solution is simply

                                           3
2/

2
2/

1 )(2)( 00 cececxv xcxc   , (2.23)

where 3c  is another integration constant. Let us define the parameter 

                                               044/0
2  c ,

then (2.23) becomes

                                  3
2

2
2

1 )(2)( cececxv xx   . (2.24)
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The meaning of    will become clear in the next section. In fact, with (2.22) and

(2.24), we now have all we need since )(xu can easily be found by using uvk  2 .

The  metric  functions  )(xu and  )(xv satisfy  the  field  equations  with  no  further

constraints on the integration constants.

2.2 The Choice of the Integration Constants

Now  we  have  a  solution  with  three  integration  constants.  We  now  limit  our

considerations to the specific choice of integration constants to get the metric that

Gödel presented in his paper. In fact, Raychaudhuri and Thakurta [8] showed that all

the solutions obtained for different values of  1c , 2c  and 3c  can be transformable to

the Gödel metric. Since we are after the Gödel spacetime, we will choose appropriate

constants so as to get the Gödel metric.  If we take the negative value of  )(xv and

choose integration constants as

 

                                                   
2

1
1 c ,   032  cc ,

then (2.22) and (2.24)  become

                                                xexk  22

2
1)( ,          xexv  2)( .

Remember that  uvk  2 , so  )(xu  is easily obtained as

                                                       xexu  22

2
1)( .

                         

Now  we  have  the  metric  that  Gödel  used  and   all  the  relevant  quantities

corresponding to this metric, i.e. 
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                          dtdyedyedzdxdtds xx   22222222 2
2
1

,                     (2.25)

 20
10 ,                xe 

 20
12 2

2 ,          xe 
 21

20 2
2 ,        xe 

 221
22 2

2

,                            xe  22
10 2 ,                      02

12  ,

                                            042   ,    04
2

 
R

,

where the  second equation in  the last  line  follows immediately from  (2.11)  and

(2.12) i.e.

 






 88 82  VVVVgRgR .

    This four dimensional spacetime can be viewed as the sum of a three dimensional

spacetime 1M  whose metric 1g  is given by

                             dtdyedyedxdtds xx   2222222
1 2

2
1

(2.26)

on the geometry 3
1 RM   defined by the coordinates ),,( yxt , and a one dimensional

spacelike line  with a metric 2g  given by

                                                     22
2 dzds   

on the manifold  RM 2  defined by the coordinate  z . The metric on 1M  does not

depend  on  z and  the  constantz  lines  are  all  orthogonal  to  1M .  Since  closed
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timelike lines exist for constant z in the 1M , we do not need to consider the full four

dimensional spacetime , instead we can restrict ourselves to just  1M  [6,7]
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CHAPTER 3

PROPERTIES OF THE GÖDEL SPACETIME

In this chapter, we investigate some physical properties of the Gödel spacetime and

choose a coordinate system to transform the metric into cylindrical coordinates which

is useful in demonstrating the existence of closed timelike curves.

3.1  Transformation to Cylindrical Coordinates   

In  his  paper  Gödel  made  the  transformation  to  his  metric  to  demonstrate  the

cylindrical  symmetry  of  the  spacetime  more  explicitly.  The  existence  of  closed

timelike curves can easily be shown for the metric written in cylindrical coordinates.

    With the transformation 

                           rSinhCosrCoshe x 2 22  ,

                           rSinhSinye x 2 2   ,

                           
2
1)2(

2
1 2 TanettTan r ,     

22

2 


 tt
,

                            

the metric (2.26) can be transformed to the form (see Appendix B)

    )  22)((2 22242222 tddrSinhdrSinhrSinhdrtdds    ,   (3.1)

where  0 and ,20  and  0  ,  rt is  identified  with   2 .

We  in  fact  have  written  the  metric  in  a  form  which  is  explicitly  cylindrically

symmetric, since it does not depend on  . Let us use the advantage of this symmetry

condition and take a circle     20  .,const  ,  rrC  in the  0t  plane to

investigate  the  characteristic  of  such  a  circle;  i.e. let  us  examine  under  what

circumstances it is timelike, spacelike or null.
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We see that the tangent vector 


 )(  to the circle C   has the length squared 

                       )1(. 222  rSinhrSinhgg 


  . (3.2)

Then, if 

                            
spacelike is      then 1,             

    null is        then,1  
       timelikeis      then 1,             

2

C
CrSinh
C






                                                       

  (see  Figure 3.2). The acceleration vector   is given by

                                   


  ; ,                           1
 ,                 

for the timelike unit vector [7]

                                                           
2/1

 
  g .

An explicit calculation yields

















  

 12/12/12/1
)()( gggg


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Figure 3.1: The circle C  on the 0t plane which has a tangent vector  .            



 r
rgg 

1
.

We then get the magnitude of the acceleration vector defined as

                                                          
 2)(      

to be     

 

                                            











1
12

2
1

2

2

rSinh
rSinh

Sinhr
Coshr

  . (3.3)

It is easily seen that   does not vanish for  12 rSinh  . Thus, with the help of  (3.2),

we see that we have closed timelike curves (but not geodesics since its acceleration is

not zero) for )21ln( r .

3.2  Killing vectors

It  is  easily seen from the metrics (2.25) and (3.1)  that    the former admits  three

translations along the y , t  and z  axes,  while the latter admits rotation around the 

axis. As a matter of fact, by using the Killing equation in Cartesian coordinates 

                                                          0;;    ,                                              (3.4)

we can easily obtain four of the Killing vectors as

        
t

A



 ,                                 
z

B



 ,                                
y

C



 ,     

      

y
y

x
D








 2 .
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We also have a Killing vector  



in cylindrical coordinates. Transforming back to

the Cartesian coordinates;

                            



 



  x
x ,        yxt

yxt














 ,

we get the fifth Killing vector as

                       
y

ey
x

y
t

eE xx























  2222 1

2
1

2
1

  

in Cartesian coordinates. 

Now we have five independent Killing vectors with the following Lie algebra.

   0, BA ,            0, CA ,             0, DA ,              0, EA ,

   0, CB ,            0, DB ,             0, EB ,              CDC  2, ,

   DEC
2

1,  ,                              EED  2, .

A, B and C are the trivial generators corresponding to the translation invariance of the

metric (2.25) in the t, z and y directions, respectively.

    We see that  A and B commute with every Killing vector. Another feature is that

the commutator of D with the Killing vectors C and D is proportional to the Killing

vector itself. Since we have five Killing vectors, there is a five dimensional group of

isometries in this spacetime which is also transitive. (Transitive means that no point

remains  unchanged  by  a  finite  transformation.)  Hence  Gödel  spacetime  is

homogeneous and admits the following four parameter group of transformations:  
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                                             (i)         tt , 

                                             (ii)         2yey ,

                                             (iii)      zz ,

                                             (iv)      xx ,  

                                                  

where   and  , ,  are the parameters of the group. 

3.3  Rotation, Shear and Expansion

If  V  is the four-velocity of a fluid, then V  can be decomposed as 

                                       VaPV 
3
1

; , (3.5)

where a  is the “four-acceleration” of the fluid 

                                             
 VVa ; , (3.6)

  is the “expansion” of the fluid world lines 

                                           
 ;VV  , (3.7)

  is the “rotation 2-form” of the fluid and   is the “shear tensor”  

                                      )(
2
1

;; 





 PVPV    , (3.8)

                                      





  PPVPV
3
1)(

2
1

;;   . (3.9)
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Here P is the projection tensor  

                         VVgP                         






  VVP  ,        (3.10)

which projects a vector onto the 3-surface perpendicular to V [10]. Rotation 2-form

and the shear tensor are antisymmetric and symmetric, respectively. Now since we

are co-moving observers sitting on the flow of the fluid, our four-velocity tangent to

the world lines of the fluid has the simplest form given in (2.9) and (2.10):

                                             0
 V ,                0gV  .

First,  let  us  examine  the acceleration by using (3.6).  Straightforward calculations

show that it is zero:

                                      00000  





  ggVVa .

This means that the flow of the fluid moves on the geodesics. The expansion    is

also easy to calculate with the help of  (3.7)

                                                   00  



  V  .

So Gödel spacetime is not expanding which is different than the observations of our

spacetime. Our spacetime is expanding as it is obvious from the red-shifted light rays

coming towards us from the distant galaxies. 

    Now a little bit of work is required to find the rotation 2-form of the fluid: 

By using the definition of the covariant derivative

                                                 


 VVV ;       (3.11)
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and (2.10), we get 

                                                


 00; ggV  . 

From the definition of the Christoffel symbol (2.2), we find 

                                      )(
2
1

,,, 


 gggg  . (3.12)

Multiplication of (3.10) and (3.11) gives 

                                   00000000; 


  ggggPV ,

where  the  second  term  in  the  right  hand  side  is  zero  because  there  is  no  time

dependency in the metric. Then we have

                                          00000; 


  ggPV , (3.13)

                                          00000; 


  ggPV , (3.14)

where in the last line we have interchanged  the indices    and   . Now subtract

these two equations and put them into (3.9) to get

                      

                                )(
2
1

00000000   gggg .                     (3.15)

From (3.12) we find 

                                          

                                          0
2
1

0000  g , (3.17)
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where we use the fact that constant00 g . Then (3.15) becomes

                                         )(
2
1

00  gg  .

Now we see that the only component which survives is 12  

                 xe  2
12 2

2
                        xegg  2

12
221112 2 ,

and the magnitude of the rotation 2-form is 

 

                                       212
12

2

2
1

  
 .
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Figure 3.2: 0t plane. Light cones tip over and open out as we proceed away from

A along concentric circles. Initially, such circles are closed spacelike curves like  S.

Eventually light cones tip to create closed null curves like N, and then tip further to

create closed timelike curves like  T. Since  spacetime is stationary and rotationally

symmetric about each matter world line, all observers see what A sees; all see matter

spinning about them.

Now    can be interpreted as the rotation of the pressureless matter  fluid in  the

Gödel spacetime. In section 4.2 we will show that the central matter world line is a

timelike geodesic, so if we move freely on this world line, we see that the matter

fluid around us is rotating with the angular velocity  . In fact, all the fluid matter

content is rotating with respect to every point in space, because of the homogeneity

of the  Gödel spacetime.

    Now let us digress here a little bit and think about the meaning of having non-

vanishing rotation. Actually this spacetime is stationary, since it admits a timelike

Killing vector field,   but it  is not static because in order for this spacetime to be

static,  in  addition  to  being stationary, there should  exist  a  hypersurface which is
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orthogonal  to  the  congruence  of  timelike  Killing  vector  fields.  However  a

straightforward calculation shows that 

                                                            0   

  

if and only if (see Appendix C for the proof)

V [V ;] = 0, (3.18)

which is the condition for hypersurface orthogonality.

    Hence we can conclude that our world lines are not hypersurface orthogonal, since

we  have  non-vanishing  rotation.  Let  us  now  show  that  the  condition  (3.18)  is

necessary  and  sufficient  for  a  vector  to  be  orthogonal  to  a  one-parameter

hypersurface. Suppose that there is a one-parameter family f  of hypersurfaces given

by constant.f  A normal vector   to a hypersurface can be written as follows;

                                    f                         ,hf , (3.19)

                                                                     

where h is an arbitrary scalar function. Now let us construct from an arbitrary vector

the completely antisymmetric tensor

                                                a  [ ;]

     

                                                     )()()(
!3

1
;;;;;;    .

This tensor is actually zero for the specific vector given by (3.19), as can be shown as

follows:

                          

                             ;,,,; hffh         ;,,
2

,,,; ffhfhhf  ,           
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,0}           

{
!3

1

;,,
2

;,,
2

;,,
2

;,,
2

;,,
2

;,,
2

,,,,,,,,,,,,,,,,,,









ffhffhffhffhffhffh

fhhffhhffhhffhhffhhffhhfa

where the first term in the parentheses cancels out with the second, the third term

with  the  fourth,  etc...  Thus  a  necessary  condition  for  a  vector  field    to  be

everywhere  orthogonal  to  a  one-parameter  family  f of  three  dimensional

hypersurfaces is 

                                     
                                                       a  [ ;] = 0.

Hence our world lines are not hypersurface orthogonal,  because (3.18) does not hold

for our situation. Therefore we have a stationary but non-static spacetime.     

    To find the shear tensor, we just add  (3.13) and (3.14) up and find

                       000000000 2
2
1

  gggg .               (3.20)

The last two terms are obviously zero due to (3.17). By using (3.16), we get

                                      )(
2
1

0000  ggg  .              

If we put this equation into (3.20), we find

                                                      0 . (3.21)

None of the components of the shear tensor survives, so its magnitude is zero. (3.21)

represents the fact that, there is no distortion in the shape of our collection of test

particles.  That  is,  suppose some portion of our test  particles occupy a volume in
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space in the shape of a sphere, then, as time goes on, the sphere will remain as a

sphere as opposed to the case where there is  a non-vanishing shear. In the case of a

non-vanishing shear, the sphere would have become an ellipsoid as time passed by.

Hence, there is only a rotation in Gödel spacetime which actually prevents us from

choosing  a  cosmic time coordinate  to agree on events that are simultaneous.
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CHAPTER 4

GEODESICS

In this chapter geodesic motion in Gödel spacetime is analyzed and the geometrical

picture of the spacetime is given.

4.1  Null Geodesics

   To study the null geodesics, we use the variational method for the metric given in

(3.1) and recapitulate the arguments that lead to Figure 4.1 below. (This figure is

reproduced from [6].) In their paper [7] Ozsvath and Schucking drew attention to the

fact that the equations used in drawing Figure 4.1 are not given and stated their belief

that an “intrigue” has been made during the drawing of it. So they calculated the null

geodesics of the Gödel spacetime by using the metric conformal to the Gödel metric

to reconstruct it  again. Since null  geodesics are not affected by such a conformal

transformation and since the timelike or null nature of a vector is left invariant under

such a transformation, there is no loss of generality in doing so. Here we find the

parametric equations of the null geodesics by using the original Gödel metric and try

to show that they are the ones used in drawing Figure 4.1.
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Figure 4.1: Gödel’s spacetime with the irrelevant coordinate z suppressed. The space is
rotationally symmetric about any point; the diagram represents correctly the rotational
symmetry about the r=0 axis, and the time invariance. The light cone opens out and tips
over as r increases (see line L) resulting in closed timelike curves. The diagram does
not correctly represent the fact that all points are in fact equivalent.
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Consider the following extremization related to the three dimensional metric (3.1)

which yields the geodesics:

                                                           0 Ld ,   

               trSinhrSinhrSinhrtxxgL   )(22)( 222422 
  ,

where

                                    
d

dtt  ,        
d

drr  ,                




d
d

 , 

with the affine parameter  that can be used for null geodesics. 

Since the Lagrangian does not depend on t  and  , we have from the Euler-Lagrange

equations the two integrals

                          constant)(2 2 

 arSinht

t
L




, (4.1)

                         constant)(2)( 224 

 btrSinhrSinhrSinhL 





. (4.2)

Here a  can be interpreted as the total energy and b is interpreted as the total angular

momentum of the photons.

Since we are trying to find the null geodesics, we also have

                         0 )(22)( 222422  trSinhrSinhrSinhrtL   . (4.3)

If we substitute (4.1) into (4.3), we find

                                     0  22222  arSinhrCoshr  . (4.4)
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Moreover from  (4.1) and (4.2), we also get 

                                        
rCosh

rSinhabat
2

2 2 
 ,                 (4.5)

  

                                       
rCoshrSinh
rSinhab

22

2

 
 2

 . (4.6)

If we put (4.6) into (4.4), we find the integral 

                   



2/122222

0
)2( 

))((

rSinhabrSinhrCosha

drSinhrCoshr
 .                          (4.7)

(4.7) gives (see Appendix D)

                               10
22 ))(( uaSinrSinh   ,         where

 1244 2

2


a
b

a
b     ,  

2
2

2
1

1



a
bu       and  0   is an integration constant.

If we put this solution into (4.5) and (4.6), we get the integrals 

                            



1))((

}2)1())(({

10
2

10
2

uaSin
dbuaaSinadt




, (4.8)

                     

.
}))((}{1))(({

       

1))((
2

10
2

10
2

10
2











uaSinuaSin
bd

uaSin
dad








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The first one of these two integrals is easier to handle compared to the second one, so

first we find the solution of the first integral and then deal with the second one later. 

After  some calculations,  we  get  the  solution  of  the  first  integral  as  follows  (see

Appendix D):

     




















 ))((

1
1

11

22
0

1

1

11

0  aTan
u

u
ArcTan

uua

baatt .  (4.9)

Now  we  can  investigate  the  geodesic  motion  for  three  distinct  cases:

.0 and 0  ,0  bbb  However, since we are after Figure 4.1 and since all the null

geodesics  drawn in it  come from  0r ,  we must  choose  0b .  Now it  is  much

simpler to integrate the second equation, because after inserting 0b , the remaining

integration becomes trivial. Notice that if we set 0b , then 1 , 01 u  and (4.12)

becomes 

                                  )))((2(2 00   aTanArcTanatt ,

whereas the second integral becomes

                                     


1))((
2

0
2 




aSin
dad .                                              (4.10)

(4.10) gives

                                         )))((2( 00   aTanArcTan .

                            

 If we write them together, we now have the parametric representation of the null

geodesics parameterized by  :        
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                                        ))(( 0  aSinSinhr , (4.11)

                                        )))((2(2 00   aTanArcTanatt , (4.12)

                                           )))((2( 00   aTanArcTan , (4.13)

where  0t  and  0  are  integration  constants.  These  equations  give  the  correct

representation of the null geodesics drawn in Figure 4.1. For every 0  value, we have

a different null geodesic. Suppose that one sends out a light signal from point  p at

some time of  pt  in  the direction    equals  zero,  and let  the constants  00  and

00 t  as well. Then as the angle increases, the distance between the light signal and

the world line   0r  increases until the light signal reaches its maximum distance

)21ln( r from the world line  0r , in which case the angle is equal to  2/ .

One can take the time the signal reaches the point )21ln( r as 0t . Continuing

on its path, the light signal returns to its starting point at the time pt  . At point  p ,

0r  and (4.11) gives 0  , whereas (4.12) gives 0at p  . When the light signal

reaches the  point  )21ln( r at  time  0t ,  (4.11)  gives  2/)( 0  a .  Then

from (4.12), we find 

                                         
2

2
2

0 0


  a .

  The time pt  becomes                             

     

                                              )12(
2




pt .     
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In fact, this is the time for half of the trip. When the light signal returns  to its starting

point p  at a later time  pt  , (4.11) gives   )( 0a  and (4.12) yields

 20  at p

i.e.

)12(
2




pt .

                                            

   All the rays sent out simultaneously in different directions of the plane return later

at the same moment. At the critical distance )21ln( r  from the world line 0r ,

we  have  circles  for  constantt ,  because  every  null  geodesic  touches  the

constantt planes  in  one  point.  In their  papers,  Ozsvath  and Schucking [7]  and

Malament [1] state that the diagram of the Gödel model in [6] is not correct about the

matter  lines,  since  they  are  drawn  as  spacelike.  However  they  do  not  give  the

timelike geodesics equations which show that all the timelike geodesics must be in

the circle with radius )21ln( r . In the next section we show this property of the

timelike geodesics. Moreover, the structure of the light cones,  i.e. what happens to

the light cones as we move away from the world line 0r , is given in section 4.3.

                                                         

4.2  Timelike Geodesics

   Timelike geodesics can be calculated with the same method used in calculating the

null geodesics but this time our Lagrangian must be equal to  1 . Obviously, (4.1)

and (4.2) hold also for this situation. However this time the affine parameter   can

be chosen as the proper time    measured by a co-moving observer. Again we set the

value of b  to zero because of the same reason used in the previous section. Hence we

have
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rCosh

a
2

2
 ,          (4.14)

       

                                              
rCosh

rSinhat 2

2 )1( 
 , (4.15)

             1 )(22)( 222422  trSinhrSinhrSinhrtL   .                   (4.16)

If we put (4.14) and (4.15) into (4.16), we obtain 

                                       2/12222

  
rCoshrSinhaa

drCoshrd


 , (4.17)

whose solution is (see Appendix D)                                     

                                 0  SinSinhr ,                                                    (4.18)

where  



 ,  12  a and 12  a   with the condition .1a

If we substitute (4.18)  into  (4.14) and (4.15), we get the integrals

                                        
 

   



1)(
})({

0
22

0
22




Sin
dSinaadt ,    (4.19)

                                           


1)(
2

0
22 




Sin
dad . (4.20)

These are easily evaluated as           
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                                           










 0

2

20 1
1

2
 aTan

a
aArcTan , (4.21)

                                           










 0

2

20 1
1

22  aTan
a

aArcTanatt . (4.22)

           

For every value of a we have a different timelike geodesic.

When  1a , (4.18), (4.21) and (4.22) become

                                                                          0               0  rSinhr  , 

                                                                         )(2 00   ,

                                                                         00 2  tt ,

respectively, which corresponds to the central matter world line. Suppose that at time

ptt  , a particle is released from point p in Figure 4.1 in the direction 0  . Then

this  particle  will  move on  the  central  matter  world  line  (notice  that  this  particle

moves only in time) and will reach the point  O  at time 0t  when 
20


  . At

the end the particle reaches the point pat time ptt   when   0 . Then one can

easily obtain

                                        
4
2

pt ,                              
4
2

pt  .

For all values of  a , r  is always smaller than )21ln(  . Since a  is interpreted as

the energy per unit  mass, then no massive particle − no matter what its energy is −

can  reach  this  critical  radius.  All  the  particles  released  from  the  point  p  with

different energies will reach some maximum value of r  smaller than ),21ln(  and
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then  reconverge to  p  which  shows that  all  the  matter  lines  must  be  inside  the

cylinder with radius )21ln(  .

4.3 The Structure of the  Light Cones 

To study the structure of the light cones, we need to find the closed-form solution of

the null geodesics equations. After setting 0b , we now come back to (4.4), (4.5)

and (4.6). Take (4.6)   

                                              
rCosh

a
2

2


and  substitute this expression into (4.4) to obtain

 

                                         
rSinhCoshrdr

d
21

2





.   (4.23)

(4.23) gives 

                                      
)(1

)(

0
2

0










Cos

Sin
Sinhr    (4.24)

with the integration constant 0  .
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Figure 4.2:  Path of the photon in the ),( r plane. For every value of 0 , there is a

different ellipse passing through the origin. These ellipses form an envelope, which is

a circle with radius )21ln( r around the origin.

We have from (4.2) that 

                                              
2

1 2rSinh
d
dt 




, (4.25)

or using  (4.24) 

                                         
)(2

2

0
2  


Tand

dt
. (4.26)

If we integrate (4.26), we get 
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                          ))(
2

1()(2 000   TanArcTantt .  (4.27)

We have two equations to think about, which are  (4.24) and (4.25). From these two

equations, we can of course obtain Figure 4.1 again. Although all of the comments

made in section 4.1 hold also for these two equations, since there is no distinction

between them,  it will be useful to consider the situation again. For every 0  value,

we  have  a  different  null  geodesic.  Let  us  see  what  happens  to  the  light  rays

originating from point p  in Figure 4.1. Let us think of the case where 0  is zero. We

see that the left hand side of (4.24) is maximum when  2/  , the null geodesic

reaches its largest distance  );21ln( r  and its distance is zero when  0  and

  .  The  light  ray starts  to  move  from point  p  when  0  and  0tt  ,  and

reaches to its largest distance from the world line 0r  and then goes to the point p

. The time taken by the light ray during the first half of its trip is

                                                           )12(
2

)0()2/( 


 tt .

All the light rays originated from point  p  in different directions return later at the

same moment to the point  p . Of course, the time interval between the point p and

p  is

                                                            )12()0()(   tt .

At  the  distance  )21ln( r from  the  world  line  0r ,  we  have  circles  for

constantt . These circles are null curves as we see from (3.2). However they are

not geodesics. They form a cylinder with an axis at 0r . What happens to the light

cones when we move away from the axis  0r ? To answer this question, we need

dtdr / and it is sufficient to consider one radial direction (see line L in Figure 4.1).

From  (4.23) and (4.25), we obtain  
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2/12

)(1)(1
2

2
)(1  

rSinh
Coshr

rSinh
rSinhCoshr

dt
d

d
dr

dt
dr





 


.

At the origin 0r , the slope of )(tr  is equal to one. This means that we have a light

cone with an angle 4/ . That is, on the central matter line the cones are upright and

oriented  at  4/  to  the  indicated  horizontal  plane.  The  last  expression  becomes

infinite for )21ln( r . It means, as one moves outward, that the cones open up

and tilt over in a counter-clockwise direction. At a critical radius )21ln( r , they

become tangent to the plane.

4.4 Some Remarks About the Gödel Spacetime

    For a given point p  in the Gödel spacetime, there is a cylinder associated with p

which separates the spacetime into two regions in a given coordinate system in which
p rests on the  0r line. All of the points, lying inside this cylinder, have  radial

distances from p which is less than )21ln(  . In fact this cylinder is constructed by

the circles with radius )21ln( r  which are also null curves. Circles with radius

)21ln( r are closed timelike  curves.  For any value of energy  a ,  the photons

originating  from  p  are  confined  inside  this  cylinder.  This  result  holds  also  for

massive particles. However massive particles are never able to reach the cylindrical

surface whereas the photons are. Since there are no closed timelike curves within this

cylinder, time t always increases along every future directed timelike curve. Beyond

)21ln( r the time t  runs backward which can be seen from (4.15) 

                                                      
rCosh

rSinhat 2

2 )1( 
 . (4.15)

37



This expression is zero for  )21ln( r for which the time t  changes its sign. For

)21ln( r , (4.15) becomes negative which means  t  decreases. This shows that

there can not be a cosmic time coordinate t in this spacetime which increases along

every future directed timelike or null curve. Moreover, our observer sitting on the

0r line will observe only some part of the spacetime since all of the geodesics are

confined inside the cylinder.  That  is,  you can not  send a  light  signal  beyond the

radius )21ln( r . Since there is no way to go beyond that cylinder, then there is

no permission for the light rays, coming from distant galaxies, to enter inside the

cylinder either.
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CHAPTER 5

CONCLUSION

We  have  shown  that  by  using  the  original  Gödel  metric  in  calculating  the  null

geodesics of Gödel spacetime, Figure 4.1 can be obtained very easily. This answers

the question that Ozsvath and Schucking have posed in their paper [7]. Moreover, the

problem  of  Figure  4.1,  that  is  pointed  out  by  Ozsvath  and  Schucking  [7]  and

Malament  [1],  is  corrected  with  the  help  of  timelike  geodesics  equations.  By

investigating the structure of light cones, we saw how the closed timelike curves are

created in Gödel spacetime. Gödel spacetime is interesting in two features: Firstly, all

the light rays and the free particles follow the trajectories which are closed in space

(but not in spacetime, of course). This is called the boomerang effect. As it is easily

seen from Figure 4.2 (for the case where 00  ), if we stand at the origin and hold a

flashlight pointing to the east, then all the light rays follow a closed path and come

back to the origin from the west. Everything would be quite messy if we were to live

in a Gödel spacetime. Secondly, the existence of closed timelike  curves was first

shown in Gödel spacetime and such curves allow one to travel back in time. 

   So  far  we  have  not  referred  to  the  notion  of  “time travel”  even though  the

existence of closed timelike curves has been explicitly shown in Gödel spacetime.

Since these closed timelike curves are not geodesics (the acceleration is not zero),

one has to do an accelerated motion to follow these curves. The energy required for a

time traveler to move on a closed timelike curve was calculated by Malament [11].

Since  this  energy issue  is  beyond the  scope  of  this  thesis,  we  have  not  studied

numerical results of his calculations. It is just enough to say that a huge amount of

energy, that is  impossible to produce with our present technology, is  required for

such an accelerated motion to travel back in time. However the consequences of time

travel would be important. There is no satisfactory answer to the question of what

happens if one can travel backwards in time and meet his/her younger self. The issue

remains obscure even though there are lots of scenarios to eliminate the problem that

such a meeting can cause. There would certainly be a paradox if the person killed
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his/her younger self. Some people tend to leave the Gödel solution aside due to such

a possibility. We can not exclude the Gödel spacetime immediately just because it

allows for time travel and the fact that the results of time travel are paradoxical to our

minds. The second reason for the  tendency of leaving Gödel spacetime aside is that

it is not expanding while our universe is. This result alone makes it possible to rule

out the Gödel spacetime as a possible model for describing our universe. However

the issues that arise by the existence of closed timelike curves is still standing.
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APPENDIX A

THE COMPONENTS OF THE EINSTEIN TENSOR

For the sake of completeness, here we list the nontrivial components of the Einstein

tensor of the Gödel spacetime corresponding to the metric (2.1).
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APPENDIX B

TRANSFORMATION TO CYLINDRICAL COORDINATES

In this appendix,  we show the details  of the calculation that transforms the three

dimensional  part  of  the  Gödel  metric  (2.26)  to  its  form  (3.1)  in  cylindrical

coordinates. For this purpose let us start with (2.26)

                            dtdyedyedxdtds xx   2222222 2
2
1

. (2.26)

Let us write (2.26) as

                 2222222

2
1)( dyedxdyedtds xx   ,                                 (B.1)   

and then apply the following transformations to (B.1)         

                            rSinhCosrCoshe x 2 22  ,                                                  (B.2)

                            rSinhSinye x 2 2   ,                                                              (B.3)

                            
2
1)2(

2
1 2 TanettTan r ,        

22

2 


 tt
.         (B.4)

Let us first define new coordinates such that

                                              r2 ,               2 .

Then (B.2), (B.3) and (B.4) can simply be written as

                                  222 SineCosee x   ,     (B.5)

                                )(  2    eeCosSinye x , (B.6)
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2
( .       (B.7)

Now let us differentiate  (B.5):

                  deeCosSindSineCosedxe x )( 2)(2 222   ,
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Meanwhile the differentiation of (B.6) gives:
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If we use (B.8) in (B.6), we get 

    (B.10)

Now subtract

(B.10) from (B.9) to obtain
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Taking the square of (B.11) gives
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In the same manner, taking the square of (B.8) gives
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The combination  2222

2
1 dyedx x  in the metric (B.1) can easily be calculated as

(notice that the  dd  terms in (B.12) and (B.13) are equal and opposite)

                           222
2

2222 )(
22

1
  deeddyedx x 


 


 . (B.14)

Now the differentiation of (B.7) gives:

  dSecedrTanetddtdttTan   )
2
2

2
()

2
2

2
(1 22  














    (B.15)

and by using (B.8), (B.16) can be written as
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      

















d
Tane

Seced
Tane
Tanetddtd

22

2

22 112
2

2 
















 .

Next,  let  us  multiply and divide  the  right  hand  side  of  the  above equation  with
 2Cose :

      









d

SineCose
d

SineCose
CosSintddtd

2222

1 
2
2

2  








 ,

i.e.







 





 tdd
e

d
e

CosSindt
xx

2)11(2  2
22

1 


. (B.16)

Now add (B.11) and (B.16) up








 








 





d
e

eeSineCosetdd
e

dyedt
xx

x

2

22

2

12 ))((2)11(2 ,

i.e.

























 

 

d
e

eeSineCosetddyedt
x

x 22))((2
2

22
12

and we have,

       deetddyedt x 22/2/12 )(2   . (B.17)
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Taking the square of (B.17) gives              

(B.18)

             

Now let us put (B.14) and (B.18) into (B.1)

               

.2)(22
2

)(2)(
2

222/2/2
42/2/22

22











 


 tddtdeedeeeedds 

 


If we write the above equation in terms of r ,   and tagain, we find 

It is now straightforward to obtain (3.1)

         )  22)((2 22242222 tddrSinhdrSinhrSinhdrtdds    . (3.1)

 . )(22)(2)( 22/2/242/2/2222   dtdeedeetddyedt x  

.2)(2
8

)(2)(2 222
4222

222











 


 tddtdeedeeeedrds rr

rrrr


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APPENDIX C

PROOF OF (3.18)

In this appendix, we show the proof of the statement that ( 0 if and only if   V [

V ;] = 0). For this purpose, let us first use (3.11) and then (3.10) to obtain

                                    

                                       )(;; 








  VVVPV  ,

i.e.

                                        





 ;;; VVVVPV  . (C.1)

Now substituting (C.1) into (3.8)

                )(
2
1

;;;; 





 VVVVVVVV  ,

we can obtain

   )(
2
1 ;;;;;; 


 VVVVVVVVVVVVV  +V [α;β] = 0, (C.2)

where we have added and subtracted some terms. (C.2) can be written as

                        

 V [α;β]
V

2
1

 (2 V V [α;μ]+2 V V [μ;β]+ V V μ;α V V μ;β),

i.e.
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 V [α;β]
V ( V V [α;μ] V V [μ;β]) V

2
1

  V V μ;α 
VV

2
1

 V μ;β.

Notice that the terms in parentheses can be written as follows:

           V [α;β]
V ( V V [ β;α] 3 V [V μ;β]) V

2
1

  V V μ;α 
VV

2
1

 V μ;β,

                           

or

   V3 V [V μ;β] 
V

2
1

  V V μ;α 
VV

2
1

 V μ;β.   (C.3)

Recall that  V  is timelike, then  1
VV . If we take the covariant derivative of


VV , we get

                                                 0)(  


 VV ,

i.e.

                                                  02  



 VVVVVV ,

then (C.3) becomes

                                                  V3 V [V μ;β].

Thus  0  if and only if   V [V ;] = 0.
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APPENDIX D

CALCULATIONS OF THE INTEGRALS

D.1  How to Integrate (4.7)

Recall

                     



2/122222 )2( 

))((

rSinhabrSinhrCosha

drSinhrCoshrd .                      (4.7)

If we make the substitution  

                                                                rSinhu 2 ,                                             (D.1)

we get

                                         













2/1

2

2
2 )221(

2
1

a
bu

a
bu

du
a

d
 .

Now let us find the discriminant of the quadratic equation in the denominator

                                    1244))(1(4)221( 2

2

2

2
2 

a
b

a
b

a
b

a
b .      

Hence the roots of the denominator are 

                          
2

2
2
1

1



a
bu ,                    

2
2

2
1

2



a
bu .
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We now have 

         


2/1
2

2/1
1 )()(2

1
uuuu

du
a

d .                             (D.2)

Now we need another substitution  

                                                2121 )( Sinuuuu  .                                           (D.3)

Differentiation of (D.3) gives

                                                  
.)()(2     

 2 )(
2/1

1
2/1

2

12





duuuu
dSinuudu




(D.4)

Then by using (D.3) and (D.4), (D.2) can be written as

 

                                   d
a

d 1
                 

a
1

0   .

After using the inverses of the substitutions (D.3) and (D.1), respectively, we get the

desired result

                            10
22 ))(( uaSinrSinh   .

D.2  How to Integrate (4.8)

Recall

                                   



1))((

}2)1())(({

10
2

10
2

uaSin
dbuaaSinadt




.            (4.8)
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(4.8) can be written as

                                   



1))((

)22(

10
2 uaSin

dbaadt



 .                           (D.5)

After the substitution   

                                                     ))(( 0  aTanq ,                                          (D.6)

(D.4) becomes

                             














1

1
)1(

)22(

12

2
2 u

q
qqa

dqbaadt 
,

               

                             



)1()1(

)22(

1
2

1 uqu
dq

a
baadt  .                  (D.7)

Now we need another substitution           

                                                   



 Tan

u
uq  

1
1

1

1 ,                                      (D.8)

                                                   



 dTan

u
udq )1(

1
1 2

1

1 ,

which takes (D.7) to 
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                                    



 d

uu

ba
a

adt
 1 1 

)22(1

11

 ,

    





1 1 

)22(1

11

0
uu

ba
a

att  .

After using the inverses of the substitutions (D.8) and (D.6) respectively, we get





















 ))((

1
1

1 1 

)22(1
0

1

1

11

0  aTan
u

u
ArcTan

uu

ba
a

att .

D.3  How to Integrate (4.17)  

(4.17) yields

                                         



2/12222

  
rCoshrSinhaa

drCoshrd .

The substitution

 

                                                       Sinhrn   (D.9)

yields
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                                      



2/1222 1)1(

 
ana

dnd ,

which can be  written as 

                                    


















2/1

2
2

2
2/12 1

)1(
)1()1(

 

n
a
aa

dnd
.

Then, after the second substitution 

                                                   Sin
a
an  

1
1

2

2




 , (D.10)

we have 

                       

                                                  


2/12 )1(
 

a
dd 

 ,

                                                 
1

1
20



a

.

Now using the inverses of the substitutions (D.10) and (D.9), respectively, we get the

desired result

                                           0
2

2

2

1
1
1

 



 aSin

a
aSinhr .
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