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ABSTRACT

GODEL SPACETIME

Kavuk, Mehmet
MS., Department of Physics

Supervisor: Ozgiir Sarioglu

August 2005, 56 pages.

In this thesis properties of the Godel spacetime are analyzed and it is explicitly
shown that there exist closed timelike curves in this spacetime. Geodesic motions for
massive particles and light rays are investigated. One observes the focusing effect as
a result of the solution of the geodesic equations. The time it takes for a free particle
released from a point to come back to its starting point is calculated. A geometrical
interpretation of the Gddel spacetime is given and the question of what the Gddel

spacetime looks like is answered.

Keywords: Godel spacetime, Null geodesics, Timelike geodesics, Time travel,

Rotation of spacetime.
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Kavuk, Mehmet
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Bu tezde Godel uzay-zamaninin 6zellikleri ¢oziimlendi ve kapali zamansi egrilerin
varh@ gosterildi. Jeodezik denklemi ¢oziilerek kiitleli parcaciklarin ve 151k
demetlerinin jeodezik hareketleri incelendi ve odaklanma etkisi goriildii. Bir
noktadan yollanan bir 151k 1s1n1n1n ve serbest bir parcacigin ne kadar siirede ayn1 yere
donecegi hesaplandi. Godel evreninin geometrik bir yorumu verildi ve bu evrenin

neye benzedigi sorusu cevaplandi.

Anahtar kelimeler: Godel uzay-zamani, Null jeodezikler, Zamansi jeodezikler,
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CHAPTER 1
INTRODUCTION

General Relativity theory helps us to determine possible models for the large scale

structure of spacetime. Each of the models is a pair (M,g,,). Here M is a four

dimensional manifold which represents the totality of all point-event locations; and

g, 1s a geometric object which represents the metric structure of spacetime. We can

think of it, simply, as a function which assigns lengths to vectors at points of A/ , but
which assigns negative and zero lengths to vectors as well as positive ones. It thus
partitions the vectors at any point into three classes and determines a light cone
structure. A vector is said to be timelike, null, or spacelike according to whether its
length is negative, zero or positive. Timelike vectors fall inside the cone whereas null
ones fall on the boundary. Of course, these null cones have an immediate physical
significance. It is absolutely fundamental to General Relativity theory that there is an
upper bound to the speeds with which particles can travel (as measured by any
observer). If we think of vectors at a point as velocity vectors, then the light cone can
be interpreted as a marking of that upper bound [1]. Massive particles must have
timelike velocity vectors; those with zero mass must have null ones. The most
important geometrical notion that turns out to be the tool to travel back in time is
closed timelike curves. They are simply closed curves on the spacetime manifold
whose tangent vectors at every point are timelike and point to the future. These future
directed timelike curves, of course, have various magnitudes due to the spacetime
metric, in particular, length and acceleration. The length is usually called elapsed
proper time. Timelike curves with no accerelation are called timelike geodesics [1].
In General Relativity, Godel spacetime is important because it is the first example of
a spacetime that is a solution of Einstein’s field equations and that has closed
timelike curves, which are classically forbidden. In this thesis, we will review the
Godel spacetime.

In the late 1940s, Kurt Godel took an interest in Einstein's theory of General

Relativity. He was looking for an answer to the question of what the nature of time



is. Eventually he succeeded in finding a new solution to the field equations of
Einstein’s theory of General Relativity in 1949 [2] which influenced all the notions
about time known thus far. This new solution suggests a spacetime with strange
properties. First of all, the spacetime is filled with incoherent pressureless fluid
matter in a state of uniform, rigid rotation. Secondly, the particles with no force on
them follow a path similar to the paths that boomerangs follow. This means that the
particles released from a point of the spacetime recede from their starting point until
they reach a critical distance and then move back to their starting point at a later time.
Finally, and the most important of all, there is a possibility of traveling back in time
in the Godel spacetime. As a matter of fact, all of us are travelling in time during our
daily life on earth, but here by “travelling” we mean that a particle starting its motion
from a spacetime point is able to come back to its starting point again. So there is no
such definite notion as past, future and present in the Godel spacetime.

In fact, Godel’s work did not attract much attention in the beginning. In 1956,
Kundt [3] in Hamburg, Germany, calculated the geodesic world lines in Godel’s
spacetime. He used Killing vectors to find the first integrals of the geodesic equations
as suggested by Felix Pirani. Then in 1961, S. Chandrasekhar and J.P. Wright [4]
calculated the timelike geodesics of the Godel spacetime and concluded that there
wasn’t any closed timelike geodesic, so that Godel’s remark on this issue was
incorrect. However, Godel had never claimed that there were closed timelike curves
which were geodesics. Nobody noticed this misunderstanding until 1970, when
Howard Stein [5] showed that Chandrasekhar and Wright had been mistaken.

In fact, all the calculations done to find the geodesic world line of the Godel
spacetime began with either the metric given in (2.26), whose solution of the
geodesic equations has a complicated form and is not very enlightening to understand
the geometrical picture of the spacetime, or the metric conformal to the Gddel one.
Actually Godel himself applied a transformation to his metric (2.26) to write it in
cylindrical coordinates so as to show the existence of closed timelike curves easily.
In this thesis we calculate the timelike and null geodesics of the Godel spacetime by
using the Godel metric written in cylindrical coordinates.

There was no geometrical figure showing the behavior of the geodesics of the

Godel spacetime until 1973 when Hawking and Ellis pictured Gddel spacetime in



their monograph entitled 7The Large Scale Structure of Spacetime [6]. This was the
first time that geometrical insight was employed in understanding the properties of
the Godel spacetime. In 2003, I. Ozsvath and E. Schucking [7] published a paper
where they asked the question as to how Hawking and Ellis drew this picture, i.e.
what are the equations of the null geodesics that lead to this picture? They believed
that some “intrigue” had been made while drawing this picture. By using a metric
conformal to the Godel metric, they calculated the null geodesics and reconstructed
the picture of Hawking and Ellis. Even though they stated a problem related with the
matter world line which is drawn as spacelike in the picture of Hawking and Ellis
(see Figure 4.1), they did not give the equations of the timelike geodesics showing
that they really must be inside the critical radius. In this thesis the problems of the
picture in [6] are stated again when necessary and the ways to correct it are shown. In
the second chapter, we begin with an ansatz and find the conditions under which this
ansatz satisfies the field equations of cosmological Einstein’s theory of General
Relativity coupled with a pressureless perfect fluid. We first get the most general
form of the Godel metric with three integration constants. However A. K.
Raychaudhuri and S. N. Thakurta [8] showed in their paper that all the solutions
obtained for different values of the integration constants can be transformable to the
Godel metric. Hence we decide on how to choose the integration constants so as to
get the original metric that Godel used in his calculations. In the third chapter, we
investigate some physical properties of the Godel spacetime and choose a coordinate
system to transform the metric into cylindrical coordinates which is useful in
demonstrating the existence of closed timelike curves. We also find the Killing
vectors of the Godel spacetime. In the fourth chapter, null and timelike geodesics are
calculated and it is shown that these equations are the ones from which Figure 4.1

can be obtained.



CHAPTER 2
DERIVATION OF THE GODEL SPACETIME

In this chapter we begin with an ansatz and a specific energy-momentum tensor,
namely that of a pressureless perfect fluid source, for the spacetime and find under
what conditions this ansatz satisfies the field equations of cosmological Einstein’s
theory of General Relativity. We end up with the general solution of the field
equations with three integration constants. As it has been stated before, in [8] it is
shown that all the solutions obtained for different values of the integration constants
can be transformable to the Godel metric. By appropriate choice of constants we get

the metric that Godel found in his paper.
2.1 The Metric

In 1949, Godel found a new cosmological solution of Einstein’s field equations of

the form [2]

ds* = g axtdx’ = —dt* +dx* +dz° +u(x)dy® +2v(x)dt dy . 2.1

In this model, spacetime is full of a pressureless perfect fluid which has an energy-
momentum tensor of the form 7, = pV,V, . Here p >0 is the energy density of the

fluid and 7" is the fluid four-velocity. To find under what conditions (2.1) is a
solution to the field equations of cosmological Einstein’s theory of General Relativity
with the corresponding energy-momentum tensor stated, i.e. to find the unknown
functions u(x)and v(x), we have to start by calculating the components of the
Christoffel symbol and the Ricci tensor corresponding to this metric. The metric can

be written in matrix form as



10 v 0 S0

0 1 00 Vo v

_ . . }J,V: 0 0
g = 0 u 0 , with an inverse & v 0 1
v +u v+

0 0 1 0 0 0

By using the definition of the Christoffel symbol

o 1 o
F mv Eag y(gyv,p,—i_g-mr,v _gpv,y)a

we can calculate the nontrivial components of it easily as

o1 v 5 o _ 1 vii—uv 1.
10 20V +u) 2 2V +u)’ 20 2V’
1 1 . 1 w+u 1
2 2 1 .
:—7\}, = , r =——1.
20 +u) P2V +u) 2T,

(=R el

—

(2.2)

Here “dot” denotes derivative with respect to X . We will use the explicit form of it (

d/dx) when necessary. In the same manner, by using the definition of the Ricci

tensor [9]

— arv Hp _ arvvp

R
Hp ox’ ox*

+ra pprv av _Favprv ap s

we can easily obtain the nontrivial components of the Ricci tensor as

1 v’

2V +u’

Ry, =

2.3)

(2.4)



2077 =) =4 +u) 4o —2(v +w)ii+u’

R , 2.5

11 4(V2+u)2 ( )
1 1 vu

R,=R,=—V+— ,

20 0 2 4v? +u
1 1? = 2uv? + 2w

R, =—u+— . 2.6

2 2 4 v +u 2.6)

These components of the Christoffel symbol and of the Ricci tensor are the only ones
that do not vanish. The components of the Einstein tensor are given in Appendix A.

The Ricci scalar is obtained easily

ReR oW _ (V* =3u)2v> —4(V* +u)ii + 20 + 8w — 8v(V* + u)v
w& 4V’ +u)’ ’

2.7)

If we put all of these things together in the field equations of Einstein’s General

Relativity with a cosmological constant'

8nG

2
C

1
G”V +AgPLV :Ruv _ERg”V +Agw = pV V (2.8)

TR
and use a co-moving coordinate system for the energy-momentum tensor, i.e. take
y*t=(1,0,0,0)=38"0, (2.9)

so that

" Here (G is Newton’s gravitational constant, Cis the speed of light and A is the cosmological

constant. For simplicity, we use units such that G = ¢ =1.



V=g,V =(-10,v(x),0)=g,,, (2.10)

we get, first of all, that
1
G,; =Ry, _ERg33:8an3V3 -Ag;; = R=2A, (2.11)

where we use the fact that Ry; and V5 are zero. If we use (2.11) and put it into (2.8),

we obtain
R, =8nplV,V,. (2.12)

Then we can easily obtain the rest of the equations

R, =8npV,V, = R, =8mp, (2.13)
R, =8npVV, = R,=0, (2.14)
R, =8npV,V, = R, =8up[x)], (2.15)
Ry, =8npV,V, = R, =R,,=—-8npv(x). (2.17)

From (2.5) and (2.14), we obtain

e
E-y =7, (2.17)

where k=12 +u.

We also find from (2.4) and (2.13) that



)
A%

Y %o, 2.18
Y (2.18)

Combining (2.17) together with (2.18), we get

.
k——— =16rpk . 2.19
oy P (2.19)

Now let us solve (2.19). First note that

d . | o d k>
(kY =—ZF 3/2k — e ey =
dx( ) 2 dx( ) 2k
Then (2.19) becomes
k +kk"? i(k“) =16mpk ,
dx
and multiplying this by £7"?, one finds
k—l/2]‘{' +ki(k—l/2) — 167'Cpk1/2 ,
dx
which can be written as
d -1/271. 1/2
a(k k)y=cik''", (2.20)
where ¢, =16mp >0, Let
K" =p, (2.21)



then (2.20) becomes
2p = cop s

which is easy to handle since it is a second order homogeneous equation with

constant coefficients. The most general solution is given by

Jeo 2

/2x
+cze

p(x)=ce e

where ¢, and c¢, are integration constants. So by using (2.21), we get

k(x) = (c,e’ > 4¢Py (2.22)
From (2.18), we have

v(x)= iﬁ(clemx + czefmx) ,
whose solution is simply

v(x)= iﬁ(clemx - cze_mx) +¢y, (2.23)
where ¢; is another integration constant. Let us define the parameter

Q*=c,/4=4np >0,

then (2.23) becomes

v(x)= iﬁ(cleﬁn" - cze_ﬁgx) +c;. (2.24)



The meaning of Q will become clear in the next section. In fact, with (2.22) and
(2.24), we now have all we need since #(x) can easily be found by using k =v* +u.

The metric functions u#(x)and v(x)satisfy the field equations with no further

constraints on the integration constants.
2.2 The Choice of the Integration Constants
Now we have a solution with three integration constants. We now limit our

considerations to the specific choice of integration constants to get the metric that

Godel presented in his paper. In fact, Raychaudhuri and Thakurta [8] showed that all

the solutions obtained for different values of ¢, ,c, and ¢; can be transformable to
the Godel metric. Since we are after the Godel spacetime, we will choose appropriate
constants so as to get the Godel metric. If we take the negative value of v(x)and

choose integration constants as

then (2.22) and (2.24) become
K= e, = e
Remember that k =v? +u, so u(x) is easily obtained as

u(x)=—;eZﬁQ".

Now we have the metric that Godel used and all the relevant quantities

corresponding to this metric, i.e.

10



rl% = ﬁQ > Floz = gﬂ eﬁm > leo = EQ eﬁm s lez = JEQ ezmx
: 2 =—/20e, r2=o,

R
Q° =4np >0, E=A=—4np<0,

where the second equation in the last line follows immediately from (2.11) and

(2.12) ie.
2A=R=g" R, =8rp g™V, V, =8npV"V, =-8np.

This four dimensional spacetime can be viewed as the sum of a three dimensional

spacetime M, whose metric g, is given by
1
ds’ = —dt* +dx* - Eezﬁmdy2 —Zeﬁmdtdy (2.26)

on the geometry M, = R*® defined by the coordinates (#,x,)), and a one dimensional

spacelike line with a metric g, given by
ds,” = dz*

on the manifold M, =R defined by the coordinate z. The metric on M, does not

depend on zand the z=constant lines are all orthogonal to M,. Since closed

11



timelike lines exist for constant z in the M, we do not need to consider the full four

dimensional spacetime , instead we can restrict ourselves to just M, [6,7]

12



CHAPTER 3
PROPERTIES OF THE GODEL SPACETIME

In this chapter, we investigate some physical properties of the Gddel spacetime and
choose a coordinate system to transform the metric into cylindrical coordinates which

is useful in demonstrating the existence of closed timelike curves.
3.1 Transformation to Cylindrical Coordinates

In his paper Godel made the transformation to his metric to demonstrate the
cylindrical symmetry of the spacetime more explicitly. The existence of closed
timelike curves can easily be shown for the metric written in cylindrical coordinates.

With the transformation

e = Cosh2r + Cosd Sinh2r ,
deﬁQY = Sin¢ Sinh2r,

Tan;((l) +Qt—/ﬁl") = e_eran;(I) ) ‘Qti <£ )

2 2

the metric (2.26) can be transformed to the form (see Appendix B)

ds® =207 (=dt" + dr® = (Sinh*r — Sinh*r)d§* — 2-/2Sinh*r d dt') , (3.1)

where —0o<t' <o, 0<r<ow and 0<¢ <2rn,andp =0is identified with ¢ =27 .
We in fact have written the metric in a form which is explicitly cylindrically
symmetric, since it does not depend on ¢ . Let us use the advantage of this symmetry
condition and take a circle C={(r,¢) »=const., 0<p <2n} in the /'=0 plane to

investigate the characteristic of such a circle; i.e. let us examine under what

circumstances it is timelike, spacelike or null.

13



Figure 3.1: The circle C on the ' =0 plane which has a tangent vector 0, .

We see that the tangent vector Y " =(9,)" to the circle C has the length squared

,Y"Y = (a(]) )2 :gp,vy H,YV :g¢¢ :—Sinhzl’(Sinhzr—l),

Then, if

>1, then Cis timelike
Sinh*r=1, then Cis null
<1, then C isspacelike

(see Figure 3.2). The acceleration vector £ " is given by

CH=y"wy", vy, =-1,

for the timelike unit vector [7]

-1/2

Yv =0" g¢¢‘

An explicit calculation yields

' =38" ‘g¢¢‘_l/zvv "= ‘g¢¢‘_l/zv¢ ") = ‘g¢¢ ‘_I/ZFHWYQ = ‘g¢¢ ‘_1FH¢¢

14

(3.2)



Cu= ‘gdxb‘_lgwrrw :

We then get the magnitude of the acceleration vector defined as
©)*=¢"¢,

to be

G

_ 1 Coshr( 2Sinh2r—lJ 53

2 Sinhr k Sinh’r —1

It is easily seen that C does not vanish for Sinh*r >1 . Thus, with the help of (3.2),

we see that we have closed timelike curves (but not geodesics since its acceleration is

not zero) for > In(1++/2).

3.2 Killing vectors

It is easily seen from the metrics (2.25) and (3.1) that the former admits three
translations along the V, ¢ and z axes, while the latter admits rotation around the ¢

axis. As a matter of fact, by using the Killing equation in Cartesian coordinates
Eop tEpw =0, (3.4)

we can easily obtain four of the Killing vectors as

0
A:ga B:ga C:79
ot oz y
D_g_/ﬁgyg.
ox oy

15



We also have a Killing vector — in cylindrical coordinates. Transforming back to

o)
the Cartesian coordinates;
P ':axula ’ 6¢:gat+@5x+@a”
S N o0 0b op -

we get the fifth Killing vector as

E=0 _ieﬂﬁm 0o y o I(Qyz—le%&hjﬁ

= — = — 4 —
NG ot J2ox 2 Q dy

in Cartesian coordinates.

Now we have five independent Killing vectors with the following Lie algebra.

[4,B]=0, [4,C]=0, [4,D]=0, [4,E]=0,
[B.C]=0, [B,D]=0, [B,E]=0, [c.D]=-/20cC,
[c.E]=- LD, [D,E]=—/2QF .

2

A, B and C are the trivial generators corresponding to the translation invariance of the
metric (2.25) in the 7, z and y directions, respectively.

We see that 4 and B commute with every Killing vector. Another feature is that
the commutator of D with the Killing vectors C and D is proportional to the Killing
vector itself. Since we have five Killing vectors, there is a five dimensional group of
isometries in this spacetime which is also transitive. (Transitive means that no point
remains unchanged by a finite transformation.) Hence Gd&del spacetime is

homogeneous and admits the following four parameter group of transformations:

16



(1) t'=t+a,

(11) yr — ye—«/EQS + B ,

(i) z'=z+e,
(iv) x'=x+96,
where o, 3,0 ande are the parameters of the group.

3.3 Rotation, Shear and Expansion

If V' is the four-velocity of a fluid, then VIV can be decomposed as
Vg =®u 0,4 +;6f;ﬁ —-a,Vy, (3.5)
where a is the “four-acceleration” of the fluid
a, =V, V", (3.6)
0 is the “expansion” of the fluid world lines
0=V-V=V"., (3.7)
O, 1s the “rotation 2-form” of the fluid and G4 is the “shear tensor”
@ = VPP =V PP (3.38)

1 1
Cup EE(Va;MPuﬁ +VB;HPH“)_§eRxB : (3.9)

17



Here P is the projection tensor
Rxﬁ EgaB+VOLVB = P =0%; +VO(VB, (3.10)

which projects a vector onto the 3-surface perpendicular to 7 [10]. Rotation 2-form
and the shear tensor are antisymmetric and symmetric, respectively. Now since we
are co-moving observers sitting on the flow of the fluid, our four-velocity tangent to

the world lines of the fluid has the simplest form given in (2.9) and (2.10):

V* =98"%, V,=8o,.

First, let us examine the acceleration by using (3.6). Straightforward calculations

show that it is zero:
a, =VPV ¥V, =8%0V g,0=V 8., =0.

This means that the flow of the fluid moves on the geodesics. The expansion 6 1is

also easy to calculate with the help of (3.7)

0=V V" =V 5% =0.
So Godel spacetime is not expanding which is different than the observations of our
spacetime. Our spacetime is expanding as it is obvious from the red-shifted light rays
coming towards us from the distant galaxies.

Now a little bit of work is required to find the rotation 2-form of the fluid:

By using the definition of the covariant derivative

Vot;p Ea“Va —Fv(pr/V (3,11)

18



and (2.10), we get
Va;p. :8|.|.g0(1 _Fva“gOV .

From the definition of the Christoffel symbol (2.2), we find
— o 1
rﬁuv zg(xﬁr Ky ZE(ng,p +guﬁ,v _gp.v,ﬁ)' (312)
Multiplication of (3.10) and (3.11) gives

Va;upuﬁ :aBgOu +g0[380g0a _FOO.B _gOBFO(an

where the second term in the right hand side is zero because there is no time

dependency in the metric. Then we have

V(x;p.PuB zaﬁgO(x _FOaB _gOBFO(x07 (313)
VB;uPH“ :aagOB _FOOLB _gO(erBO ) (3.14)

where in the last line we have interchanged the indices @ and B . Now subtract

these two equations and put them into (3.9) to get
1
O :E(aﬁgm _aagOB _gOBFchO-l_gOaFO[SO)' (3.15)
From (3.12) we find

ro;ao:*aﬁgoo:()a (3.17)
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where we use the fact that g,, = constant . Then (3.15) becomes

O = 0y 80 ~0.2).
Now we see that the only component which survives is ®,,
= o’=g"g%w, = J20e
and the magnitude of the rotation 2-form is
»_ 1 b

_ o
O =00

5 =w,0° =Q%.
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a7 take out slice rotating about her
space (not fully spacelike) K[/
"'-...:‘ @
y

0,

Figure 3.2: ¢t'=0plane. Light cones tip over and open out as we proceed away from
A along concentric circles. Initially, such circles are closed spacelike curves like S.
Eventually light cones tip to create closed null curves like N, and then tip further to
create closed timelike curves like 7. Since spacetime is stationary and rotationally
symmetric about each matter world line, all observers see what 4 sees; all see matter

spinning about them.

Now Q can be interpreted as the rotation of the pressureless matter fluid in the
Godel spacetime. In section 4.2 we will show that the central matter world line is a
timelike geodesic, so if we move freely on this world line, we see that the matter
fluid around us is rotating with the angular velocity Q. In fact, all the fluid matter
content is rotating with respect to every point in space, because of the homogeneity
of the Godel spacetime.

Now let us digress here a little bit and think about the meaning of having non-
vanishing rotation. Actually this spacetime is stationary, since it admits a timelike
Killing vector field, but it is not static because in order for this spacetime to be

static, in addition to being stationary, there should exist a hypersurface which is
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orthogonal to the congruence of timelike Killing vector fields. However a

straightforward calculation shows that

if and only if (see Appendix C for the proof)
VieV =0, (3.18)
which is the condition for hypersurface orthogonality.
Hence we can conclude that our world lines are not hypersurface orthogonal, since

we have non-vanishing rotation. Let us now show that the condition (3.18) is

necessary and sufficient for a vector to be orthogonal to a one-parameter
hypersurface. Suppose that there is a one-parameter family f of hypersurfaces given

by f =constant. A normal vector & to a hypersurface can be written as follows;
€ Vf = E.=M,, (3.19)

where /1 is an arbitrary scalar function. Now let us construct from an arbitrary vector

the completely antisymmetric tensor

auw = é; [#E_D vyl

- ;{gp(év;v _‘gv,v)""tav (éy;u _E:u:v )+E-'v (F’W _&W“)}'

This tensor is actually zero for the specific vector given by (3.19), as can be shown as

follows:

&w :h,vf,u +hf,w = gygw :hf,vh,vf,u +h2f,vf,|uw >
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1
Ay = E{hfuhv f,v _hf,v h,y f,u _hf,u h,v f,v +hf,vh,vf,u +hf,v h,uf,v _hf,vh,uf,v
+h2f,uf,vn/ _hzf,uf,w +h2f,v f,y;u _hszfu;Y +h2fﬁfu;\f _hzfyfv;u} =0,

where the first term in the parentheses cancels out with the second, the third term
with the fourth, etc... Thus a necessary condition for a vector field &, to be

everywhere orthogonal to a one-parameter family [ of three dimensional

hypersurfaces is
auvy = & [/1(2 vl = 0.

Hence our world lines are not hypersurface orthogonal, because (3.18) does not hold
for our situation. Therefore we have a stationary but non-static spacetime.

To find the shear tensor, we just add (3.13) and (3.14) up and find

1
Gy = E(Gﬁgmx +aag0[3 _2F0Bq _gOﬁFOLxO _gO(erBO)‘ (3.20)
The last two terms are obviously zero due to (3.17). By using (3.16), we get

1
FOﬁa = E(aﬁ gOon +a(xg[30 _6Og[30c ) .

If we put this equation into (3.20), we find
G =0. (3.21)
None of the components of the shear tensor survives, so its magnitude is zero. (3.21)

represents the fact that, there is no distortion in the shape of our collection of test

particles. That is, suppose some portion of our test particles occupy a volume in
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space in the shape of a sphere, then, as time goes on, the sphere will remain as a
sphere as opposed to the case where there is a non-vanishing shear. In the case of a
non-vanishing shear, the sphere would have become an ellipsoid as time passed by.
Hence, there is only a rotation in Gddel spacetime which actually prevents us from

choosing a cosmic time coordinate to agree on events that are simultaneous.
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CHAPTER 4
GEODESICS

In this chapter geodesic motion in Gddel spacetime is analyzed and the geometrical

picture of the spacetime is given.

4.1 Null Geodesics

To study the null geodesics, we use the variational method for the metric given in
(3.1) and recapitulate the arguments that lead to Figure 4.1 below. (This figure is
reproduced from [6].) In their paper [7] Ozsvath and Schucking drew attention to the
fact that the equations used in drawing Figure 4.1 are not given and stated their belief
that an “intrigue” has been made during the drawing of it. So they calculated the null
geodesics of the Godel spacetime by using the metric conformal to the Godel metric
to reconstruct it again. Since null geodesics are not affected by such a conformal
transformation and since the timelike or null nature of a vector is left invariant under
such a transformation, there is no loss of generality in doing so. Here we find the
parametric equations of the null geodesics by using the original Godel metric and try

to show that they are the ones used in drawing Figure 4.1.

25



r=1

(coordinate axis)

Matter world-line
“" (t, ¢ constant)

1
!
r log(1+:[2) A‘f‘d

(closed timelike y = log (1-42)
curve)

Null cone

. Null cone  tangent to
includes circle j
circle\ X al s
3 i e

Vi
| (closed mull cuwe /-—’

~ngf

p''s future null cone
(refocusses at p°)

23 null cone refocusses at p'

Caugtio on p's

Null geodesics /futuve null cone

]

P~

Null cone
includes cirele

r < Jog {1+442)
(closed spacelike

curve)

7's Tuture \t’ =0

nnll cone

.

Figure 4.1: Godel’s spacetime with the irrelevant coordinate z suppressed. The space is
rotationally symmetric about any point; the diagram represents correctly the rotational
symmetry about the =0 axis, and the time invariance. The light cone opens out and tips
over as r increases (see line L) resulting in closed timelike curves. The diagram does
not correctly represent the fact that al/l points are in fact equivalent.

26



Consider the following extremization related to the three dimensional metric (3.1)

which yields the geodesics:

5 [ Ldi=0,

L=g, i"i" =~ +7* —(Sinh*r — Sinh*r)* = 2:/2(Sinh*r)p  ,
where

=90

_d L _dr
dan’

- s r= s
d\ dh

with the affine parameter A that can be used for null geodesics.
Since the Lagrangian does not depend on ¢ and ¢ , we have from the Euler-Lagrange

equations the two integrals

ZL, ={++/2(Sinh*r)p = a = constant | 4.1)
¢

oL 14 PN o

£ =(Sinh’r — Sinh”r)¢ ++/2(Sinh"r)t =b = constant 4.2)

Here a can be interpreted as the total energy and b is interpreted as the total angular
momentum of the photons.

Since we are trying to find the null geodesics, we also have

L=—i*+7* —(Sinh*r — Sinh*r)§> = 2:J2(Sinh*r)p i =0. (4.3)

If we substitute (4.1) into (4.3), we find

i+ Cosh®r Sinh*r¢* —a* =0. (4.4)
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Moreover from (4.1) and (4.2), we also get

_a+ /ﬁb—a Sinh*r

, 4.5)
Cosh’r
. 12
¢ = —b.+az/ﬁ Smiz r (4.6)
Sinh”r Cosh™r
If we put (4.6) into (4.4), we find the integral
(Coshr)(Sinhr)dr
A=A, = (4.7)

{azCoshzr Sinh*r —(=b + a-/2Sinh*r)? }1 /2
(4.7) gives (see Appendix D)

Sinh*r =-/ASin*(a(h—Ay))+u,,  where

A= 47+4f b +1 , u f 7_£ and A, is an integration constant.

1=

If we put this solution into (4.5) and (4.6), we get the integrals

[t = j{—“ﬁsmz (@(h =2y)) +a(l—u,)+~/2b}dr

JASin? (a(h =) +u, +1 ’ *8)

2d)
db = a
I ¢ I/JKsz(a(x—xo))wl +1

b\
| (JASin (a(h—1y)) +u, + 1 {/ASin>(a(h —)y)) +u,}
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The first one of these two integrals is easier to handle compared to the second one, so
first we find the solution of the first integral and then deal with the second one later.
After some calculations, we get the solution of the first integral as follows (see

Appendix D):

A+, +1
t—t, =—a\+ 2a-+:/2b ArcTan \—lTan(a(k—Xo)) . (4.9)
a-Ju, +1./A +u, +1 u +1

Now we can investigate the geodesic motion for three distinct cases:
b>0, b=0and b <0. However, since we are after Figure 4.1 and since all the null

geodesics drawn in it come from =0, we must choose b=0. Now it is much

simpler to integrate the second equation, because after inserting b =0, the remaining

integration becomes trivial. Notice that if we set b=0, then A=1, u, =0 and (4.12)

becomes

t—t, =—ak + x/EArcTan(ﬁTan(a(K X))

whereas the second integral becomes

Jdd) :J- a’\/idl
Sin® (a(h—hy))+1°

(4.10)
(4.10) gives

d—¢, = ArcTan(ﬁTan(a(k -X)))-

If we write them together, we now have the parametric representation of the null

geodesics parameterized by A :
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Sinhr = +Sin(a(A - 1,)) , (4.11)
t—t, =—ah +-/2ArcTan(-/2Tan(a(h - 1,))), (4.12)

¢ -0, = ArcTan(-/2Tan(a(h—1,))), (4.13)

where f, and ¢, are integration constants. These equations give the correct

representation of the null geodesics drawn in Figure 4.1. For every ¢, value, we have

a different null geodesic. Suppose that one sends out a light signal from point 2 at

some time of 7, in the direction ¢ equals zero, and let the constants ¢, =0and

ty =0 as well. Then as the angle increases, the distance between the light signal and

the world line =0 increases until the light signal reaches its maximum distance

r=In(1++/2) from the world line »=0, in which case the angle is equal to 7 /2.
One can take the time the signal reaches the point » =In(1 + J2 )as t=0. Continuing
on its path, the light signal returns to its starting point at the time 7,,. At point 7,
r=0 and (4.11) gives A =X, whereas (4.12) gives ¢, = —ak,. When the light signal

reaches the point 7 =In(1+ ﬁ) at time t=0, (4.11) gives a(hA—Ay,)=n/2. Then
from (4.12), we find

0=—a7»0 —E-F/\/EE.
2 2

The time f, becomes

T

t, = 2(/\E—l).
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In fact, this is the time for half of the trip. When the light signal returns to its starting

point p' at a later time 7, , (4.11) gives a(A—%,) =n and (4.12) yields

t,=—ak,—T +-/2n
ie.
T
» =E(ﬁ—l).

All the rays sent out simultaneously in different directions of the plane return later

at the same moment. At the critical distance » =In(1+ J2 ) from the world line » =0,
we have circles for #=constant, because every null geodesic touches the
t = constant planes in one point. In their papers, Ozsvath and Schucking [7] and
Malament [1] state that the diagram of the G6del model in [6] is not correct about the
matter lines, since they are drawn as spacelike. However they do not give the

timelike geodesics equations which show that all the timelike geodesics must be in

the circle with radius » = In(1+ J2 ). In the next section we show this property of the

timelike geodesics. Moreover, the structure of the light cones, i.e. what happens to

the light cones as we move away from the world line » =0, is given in section 4.3.
4.2 Timelike Geodesics

Timelike geodesics can be calculated with the same method used in calculating the
null geodesics but this time our Lagrangian must be equal to —1. Obviously, (4.1)
and (4.2) hold also for this situation. However this time the affine parameter A can
be chosen as the proper time T measured by a co-moving observer. Again we set the
value of b to zero because of the same reason used in the previous section. Hence we

have
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a2

) = , (4.14)
¢ Cosh’r
— 1 2
j = A= Sinh’r) (4.15)
Cosh°r
L =—i*+7* = (Sinh*r — Sinh*r)p* = 2-/2(Sinh*r)p i =—1. (4.16)
If we put (4.14) and (4.15) into (4.16), we obtain
Jt Coshr dr il
= , 17
(a2 —azSinhzr—Cosh2r)1/2 @417)
whose solution is (see Appendix D)
Sinhr = ‘I’Sin[x (1: -7, )] , (4.18)
where ¥ = 2 , n=+/a’—1and y =/g*> +1 with the condition a >1.
If we substitute (4.18) into (4.14) and (4.15), we get the integrals
— 2 2 2 pa—
jdrzj{“ @Sl [~ bdr (4.19)
V- Sin [x(r —ro)]+l
\2d
[do = a-/2ds (4.20)

Y28in?[y (x —1t,)]+1°

These are easily evaluated as
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o —d, :ArcTanL/% Tan[m(ﬂ: —TO)H, (4.21)

t—t,=—at + ﬁArcTan{J% Tan[x/ a’+1 (t -7, )H . (4.22)

For every value of a we have a different timelike geodesic.
When a=1,(4.18), (4.21) and (4.22) become

Sinhr =0 = r=0,
¢ —d, :JE('r —Tg)s
t—ty=1-21,,

respectively, which corresponds to the central matter world line. Suppose that at time

t=t,, a particle is released from point 2 in Figure 4.1 in the direction ¢ =¢,. Then

this particle will move on the central matter world line (notice that this particle

moves only in time) and will reach the point O at time =0 when ¢ —¢, :% . At

the end the particle reaches the point p’at time # =7, when ¢ —¢, =7 . Then one can

easily obtain

For all values of @, r is always smaller than In(1+ J2 ). Since @ is interpreted as

the energy per unit mass, then no massive particle — no matter what its energy is —

can reach this critical radius. All the particles released from the point P with

different energies will reach some maximum value of 7 smaller than In(1+ 2 ), and
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then reconverge to p' which shows that all the matter lines must be inside the

cylinder with radius In(1++/2).

4.3 The Structure of the Light Cones

To study the structure of the light cones, we need to find the closed-form solution of
the null geodesics equations. After setting b =0, we now come back to (4.4), (4.5)

and (4.6). Take (4.6)

(I)‘ _ 'ﬁa
Cosh’r

and substitute this expression into (4.4) to obtain

a_ 2 (4.23)
dr  Coshr1- Sinh*r '
(4.23) gives
G Sin@+9,) o
J1+ Cos* (¢ +9¢,)

with the integration constant ¢, .
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Figure 4.2: Path of the photon in the (7,{) plane. For every value of ¢,, there is a

different ellipse passing through the origin. These ellipses form an envelope, which is

a circle with radius 7 = In(1++/2) around the origin.

We have from (4.2) that
dt 1-Sinh’r
=, 4.25
- 2 (42
or using (4.24)
/2

d  2+Tan* @ +d,)

If we integrate (4.26), we get
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t—t,=2 (¢+¢0>—ArcTan<éTan(¢+¢o>>. 427)

We have two equations to think about, which are (4.24) and (4.25). From these two
equations, we can of course obtain Figure 4.1 again. Although all of the comments

made in section 4.1 hold also for these two equations, since there is no distinction

between them, it will be useful to consider the situation again. For every ¢, value,

we have a different null geodesic. Let us see what happens to the light rays
originating from point 2 in Figure 4.1. Let us think of the case where ¢, is zero. We

see that the left hand side of (4.24) is maximum when ¢ =7 /2 the null geodesic
reaches its largest distance »=1In(1++/2); and its distance is zero when ¢ =0 and

¢ =7 . The light ray starts to move from point 7 when ¢ =0 and 7=¢;, and

reaches to its largest distance from the world line » = 0 and then goes to the point p’

. The time taken by the light ray during the first half of its trip is
1(rc /2) —1(0) =%(/ﬁ—1) .

All the light rays originated from point 7 in different directions return later at the
same moment to the point p’. Of course, the time interval between the point? and
pis

1) —1(0) =7 (/2 =1).

At the distance r=In(1++/2)from the world line r=0, we have circles for

t = constant . These circles are null curves as we see from (3.2). However they are
not geodesics. They form a cylinder with an axis at » =0. What happens to the light
cones when we move away from the axis » =07? To answer this question, we need
dr/dt and it is sufficient to consider one radial direction (see line L in Figure 4.1).

From (4.23) and (4.25), we obtain
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dr _dr dy  Coshr(1-Sinh’r)'> 2 Coshr
dt  db dt 2 (1-Sinh*r) (1- Sinh*r)"?*’

At the origin » =0, the slope of 7(?) is equal to one. This means that we have a light
cone with an angle m /4. That is, on the central matter line the cones are upright and

oriented at w/4 to the indicated horizontal plane. The last expression becomes
infinite for » =1In(1+ J2 ). It means, as one moves outward, that the cones open up

and tilt over in a counter-clockwise direction. At a critical radius r = In(1 + 2 ), they

become tangent to the plane.
4.4 Some Remarks About the Godel Spacetime

For a given point P in the Gddel spacetime, there is a cylinder associated with P
which separates the spacetime into two regions in a given coordinate system in which

P rests on the »=01line. All of the points, lying inside this cylinder, have radial

distances from P which is less than In(1++/2). In fact this cylinder is constructed by
the circles with radius 7 = In(1+/2) which are also null curves. Circles with radius

#>1In(1++/2)are closed timelike curves. For any value of energy @, the photons
originating from P are confined inside this cylinder. This result holds also for
massive particles. However massive particles are never able to reach the cylindrical
surface whereas the photons are. Since there are no closed timelike curves within this

cylinder, time ?always increases along every future directed timelike curve. Beyond

r=In(l+ J2 ) the time # runs backward which can be seen from (4.15)

i a(l- Sinh’r)

4.15
Cosh*r (4.15)
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This expression is zero for » =In(1+ J2 ) for which the time 7 changes its sign. For

r> ln(l+ﬁ) , (4.15) becomes negative which means ¢ decreases. This shows that

there can not be a cosmic time coordinate in this spacetime which increases along
every future directed timelike or null curve. Moreover, our observer sitting on the
r =0 line will observe only some part of the spacetime since all of the geodesics are

confined inside the cylinder. That is, you can not send a light signal beyond the

radius 7 =In(1+ J2 ) . Since there is no way to go beyond that cylinder, then there is

no permission for the light rays, coming from distant galaxies, to enter inside the

cylinder either.
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CHAPTER 5
CONCLUSION

We have shown that by using the original Gédel metric in calculating the null
geodesics of Godel spacetime, Figure 4.1 can be obtained very easily. This answers
the question that Ozsvath and Schucking have posed in their paper [7]. Moreover, the
problem of Figure 4.1, that is pointed out by Ozsvath and Schucking [7] and
Malament [1], is corrected with the help of timelike geodesics equations. By
investigating the structure of light cones, we saw how the closed timelike curves are
created in Godel spacetime. Godel spacetime is interesting in two features: Firstly, all
the light rays and the free particles follow the trajectories which are closed in space

(but not in spacetime, of course). This is called the boomerang effect. As it is easily

seen from Figure 4.2 (for the case where ¢, =0), if we stand at the origin and hold a

flashlight pointing to the east, then all the light rays follow a closed path and come
back to the origin from the west. Everything would be quite messy if we were to live
in a Godel spacetime. Secondly, the existence of closed timelike curves was first
shown in Godel spacetime and such curves allow one to travel back in time.

So far we have not referred to the notion of “time travel” even though the
existence of closed timelike curves has been explicitly shown in Gddel spacetime.
Since these closed timelike curves are not geodesics (the acceleration is not zero),
one has to do an accelerated motion to follow these curves. The energy required for a
time traveler to move on a closed timelike curve was calculated by Malament [11].
Since this energy issue is beyond the scope of this thesis, we have not studied
numerical results of his calculations. It is just enough to say that a huge amount of
energy, that is impossible to produce with our present technology, is required for
such an accelerated motion to travel back in time. However the consequences of time
travel would be important. There is no satisfactory answer to the question of what
happens if one can travel backwards in time and meet his/her younger self. The issue
remains obscure even though there are lots of scenarios to eliminate the problem that

such a meeting can cause. There would certainly be a paradox if the person killed
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his/her younger self. Some people tend to leave the Gddel solution aside due to such
a possibility. We can not exclude the Godel spacetime immediately just because it
allows for time travel and the fact that the results of time travel are paradoxical to our
minds. The second reason for the tendency of leaving Gddel spacetime aside is that
it is not expanding while our universe is. This result alone makes it possible to rule
out the Godel spacetime as a possible model for describing our universe. However

the issues that arise by the existence of closed timelike curves is still standing.
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APPENDIX A
THE COMPONENTS OF THE EINSTEIN TENSOR

For the sake of completeness, here we list the nontrivial components of the Einstein

tensor of the Godel spacetime corresponding to the metric (2.1).

BV —uw? =20 +u) +u’ + dvia -4V +uv)v

G

o0 4v* +u)’ ’

200 =ut W+ (=3 +wyuv + Guv—=v )W + 200 + uv)ii —wi’?
G, = 2 2 ?
A4 +u)

R
G - 2(—v —uv? )i+ v + 2007 —uv)uy + (=3uv’ +u ) + 4wy’ + utv)v

22 4(V2 +u)2 s
G - 3uv? + 2ii(v +u)— i’ — 4 + 4 +uv) — vy’

33 T .

A4V +u)’
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APPENDIX B
TRANSFORMATION TO CYLINDRICAL COORDINATES

In this appendix, we show the details of the calculation that transforms the three
dimensional part of the Godel metric (2.26) to its form (3.1) in cylindrical
coordinates. For this purpose let us start with (2.26)

ds? = —df* + di> _;ezﬁﬁxdyz —Ze“/amdl‘dy .

(2.26)
Let us write (2.26) as
1
ds® = —(dt + e dy)’ +dx’ +5e2ﬁmdy2, (B.1)
and then apply the following transformations to (B.1)
e = Cosh2r + Cos Sinh2r (B.2)
deﬁﬂx = Sind Sinh2r, (B.3)
Tanl(¢+Qt—ﬁt'):e_2'Tanl¢ , ‘Qt_ﬁt <t (B.4)
2 2 2 2
Let us first define new coordinates such that
2r=p, d=20.
Then (B.2), (B.3) and (B.4) can simply be written as
e = ¢PCos®S +e " Sin’s » (B.5)
Qye™ = Sind Cosd (e —e™®), (B.6)
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5

Tan(® +£2)t— 5 ——t"y=e"Tand . (B.7)

Now let us differentiate (B.5):
206 ax = (e Cos*d —e?Sin’8)dp —2Sind Cosd (e” —e*)dd ,

ie.

e?Cos*d —e *Sin’8 —e®
dx =( 200 )dp —2Sind C0s8( F ﬁm)dS B.8)
Meanwhile the differentiation of (B.6) gives:
Qeﬁg"dy + \/EQZye“EQde =(Cos*d — Sin*8)(e” —e?)dd (B.9)

+ Sind Cosd(e” +e™")dp.

If we use (B.8) in (B.6), we get

J2Q2ye ¥ dx = %((ep Cos*8 —e " Sin*3)Sind Cosd (e” ¢ )dp)
. (B.10)
- (Sz'n ’8 Cos*S(e” —e™®)’ dB)

Now subtract

(B.10) from (B.9) to obtain

(QXd 2Cosd SmS (epC0s28 —e " Sin’d)(e” -

e ﬁQWc e\/}(bc

s . (B.11)

Taking the square of (B.11) gives
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2 ) p 28 7P Q2 2 P _ P2
ezﬁmdy2:4COSSSln6d 2+(e Cos“d —e PSin“d) (e’ —e )d82

Qzezﬁm p zgzezﬁgx
(B.12)
; P 28 _ o P Q2 P_pP
N 4COS55§QSMS (e"Cos™d —e : SggS)(e e )dES dp.
e Qe ™
In the same manner, taking the square of (B.8) gives
P 28 5P Q2 P _,P
g :(e Cos*b ef Sin S)dez 4SS Cos%(%)zdﬁz
J2Qe A[2Qe ™
(B.13)
) e? Cos’d —e " Sin’d SinS Coss e’ —e?’ 75 d
—2( g )Sind Cos (793‘59‘ ) p

2ﬁ§zxdy2

1
The combination dx’ +5e in the metric (B.1) can easily be calculated as

(notice that the dd dp terms in (B.12) and (B.13) are equal and opposite)

2 l 2:20x 2_$ 2 p P2 s 2
dx +2e dy” = 5 dp~+(e” —e )" dd"|. (B.14)

Now the differentiation of (B.7) gives:

[1+Tan2(8 +£2)t—ft')}(d8 +£22dt—fdt') =—eTand dr+e "Sec’s d5 (B.15)

and by using (B.8), (B.16) can be written as
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P _p P -p 2
a5+ 2a—2 ar - ¢ 7Tand oy TS0 s
2 2 I+e"Tan"d l+e " Tan"d

Next, let us multiply and divide the right hand side of the above equation with
e?Cos’d :

d6+9dt_£dt’: —5;17’18 COS8 . dp+ . l . dS ,
2 2 e’ Cos“d +e *Sin“d e’ Cos™d +e "Sin“d

ie.

df = Ql(_ 285ind Cosd

1 /
i dp +2(ﬁ—1)d6 +-/2dt ) (B.16)

Now add (B.11) and (B.16) up

1
efzgx

~1)d¢ +-/2dt" + =

dt+e™dy =" [2(
e

p 28 P Qi 2 pP_ P
(e?Cos™d —e "Sin“d)(e’ —e )dSJ,

ie.

J20x

p 2¢ P Q2 PP
dz+emdy=9-l[ﬁdt'+((e Cos’d —e "Sin'd)(e” —e )+2—2]d6}
e

and we have,

di+e™ dy =0 [J2dr + (2 ') as . (B.17)
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Taking the square of (B.17) gives
(dt+eﬁmdy)2 :Q—Z [2dtr2 +(ep/2 —e_p/2)4d82 +2\/§(€p/2 —e_p/z)zdt'dfi]. (B]g)

Now let us put (B.14) and (B.18) into (B.1)

2 P, P\2 _ p/2 _ -p/2\4
dszzg{dp (€0 =) (e e

) 452 =22 (e"” — e ) dr'ds —2dt'2}.

If we write the above equation in terms of 7, ¢ and ¢"again, we find

2r _ ,72r\2 _ r_ 4
dszzg{zdru(e ¢ )82(6 ¢’) d¢2—~ﬁ(ef—e’)Zdt'dq)—zdt'z}

It is now straightforward to obtain (3.1)

ds® =207 (=dt" + dr® = (Sinh*r - Sinh*r)d§?* = 2-/2Sinh>r d dt') . (3.1)
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APPENDIX C

PROOF OF (3.18)

In this appendix, we show the proof of the statement that (®,; =0 if and only if V {,

V' ,.q0=0). For this purpose, let us first use (3.11) and then (3.10) to obtain
Viu Pl =V, @5 +VHV}),

ie.
ViuP's =V, +V'VV,.

o asp

Now substituting (C.1) into (3.8)

VB;a _VHVOLVB;H)’

o

1
O, EE(V;;B +VEV Y,
we can obtain

B ma B ma

1
O, EEI/H(VﬁVa;H ViV tViVio ViV tVVis =ViVip) FV 1ap =0,
where we have added and subtracted some terms. (C.2) can be written as
1
Oop =V [aprt EV“ Ve Viwar2Vo Voipt Vo Via= Vo V i)

ie.
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1 1
(Daﬁ = V[a;B]'FVH(VB V[a;u] +V(x V[LL;BJ)"'EVH VB Vu;a_EVuVa Vu;ﬁ-

Notice that the terms in parentheses can be written as follows:

1 1
Oup =V wwp+V* (Vo V (g +3 V[aVu;B])+5V” Vs VW—EV”VQ Vs,

or

1 1
(’0(1[3 = 3VH V[arV wB] +5VH VB Vp.;a_EVHVa VWB' (C3)

Recall that " is timelike, then V“Vu =—1. If we take the covariant derivative of

VRV, , we get

v, (V"7,)=0,
ie.

V.V VY +VEv v =2V V V't =0,
then (C.3) becomes

Oup =3V ViV wp

Thus ®,; =0 ifand only if ¥V oV ,,y=0.
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APPENDIX D
CALCULATIONS OF THE INTEGRALS

D.1 How to Integrate (4.7)

Recall

- (Coshr)(Sinhr)dr
Jd ‘I{z o — 77 @.7)
a~Coshr Sinh“r —(-b+ a-/2Sinh r) }
If we make the substitution
u=Sinh’r, (D.1)

we get

jd%:i du

za 2 1/2
{—u2+(l+2/ﬁb)u—b } '
a

2
a

Now let us find the discriminant of the quadratic equation in the denominator

2 2
A=(1+2ﬁ9)2 —4(—1)(—b—2)=4b—2+4ﬁ9+1.
a a a a
Hence the roots of the denominator are
ulzl_i_,ﬁé_ﬂ’ u2:l+,ﬁé+ﬂ_
2 a 2 2 a
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We now have

[ar= 1 du _ (D.2)

_Z (u_ul)l/2(_u+u2)l/2

Now we need another substitution
u—u, = (u,—u,)Sin’0 . (D.3)
Differentiation of (D.3) gives

du =(u, —u,)Sin20 do

1/2 1/2 (D4)
=2(u,—u) “(u—-u) " "do.

Then by using (D.3) and (D.4), (D.2) can be written as
jdlejde =  A-2,=0.
a

After using the inverses of the substitutions (D.3) and (D.1), respectively, we get the

desired result
Sinh*r =/ ASin* (a(h —hy))+u, .
D.2 How to Integrate (4.8)

Recall

Idz _ I {—a-/ASin’ (@ —1,)) + a(l—u,) +~/2b}d

JASin® (a(h—2,) +u, +1 *8)
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(4.8) can be written as

(2a+-/2b)d\
dt = —ak
Jai=a +IJZSin2(a(x—xo))+ul+1'

After the substitution

q =Tan(a(r-2,)),

(D.4) becomes

[dt = —ar+@a+2b) dq 2
a(1+q2){\/g 9 > tu, +1} ’
I+q
Idt P (2a+ /ﬁb).'- dq .
a (A +u, +1)g* +(u, +1)
Now we need another substitution
u, +1
g= |——" Tan®
\ \/X +u, +1
u +1
dg= |———(1+Tan’®)dd
VAJA +u, +1

which takes (D.7) to
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jdr:—aml (2a-+./2b) dD

a A +u, +1 Ju +1 ’

1 (2a +-/2b)

t—ty=—ak+—

a X/ﬁﬂl/ﬂ+ul +1

@ .

After using the inverses of the substitutions (D.8) and (D.6) respectively, we get

1 (2a+-/2b)

- N AreT /\/JK+ul+1
—ty=—ah+— reTan| ————
a  fu +1-JA+u +1 AJup+1

Tan(a(h—1,)) |.

D.3 How to Integrate (4.17)

(4.17) yields

/2 -

Coshr dr
dt =
'[ ’ I(az —a2Sinh2r—C0sh2r)

The substitution
n = Sinhr (D.9)

yields
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Jdr:j(_ -

(a> +Dn* +a’ —1)”2 ’

which can be written as

J-dT:J- dn

2 /2 _(a2+l) 2 "
(@ -1 ( (az—l)n +1]

Then, after the second substitution

2
n=1% " G, (D.10)
a +1

we have

d
J.dr :J.(aerolt)m,

Now using the inverses of the substitutions (D.10) and (D.9), respectively, we get the

desired result

2
Sinhr = \J% Sin [x/a2 +1(t -1, )]
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