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ABSTRACT 

 

 

3-D HUMANOID GAIT SIMULATION USING 

AN OPTIMAL PREDICTIVE CONTROL 

 

ÖZYURT, Gökhan 

M.S., Department of Mechanical Engineering 

Supervisor : Prof. Dr. M. Kemal ÖZGÖREN 

 

August 2005, 129 pages 

 

In this thesis, the walking of a humanoid system is simulated applying an optimal 

predictive control algorithm. The simulation is built using Matlab and Simulink 

softwares. Four separate physical models are developed to represent the single 

support and the double support phases of a full gait cycle. The models are three 

dimensional and their properties are analogous to the human’s. In this connection, 

the foot models in the double support phases include an additional joint which 

connects the toe to the foot. The kinematic relationships concerning the physical 

models are formulated recursively and the dynamic models are obtained using the 

Newton – Euler formulation. 

The computed torque method is utilized at the level of joints. In the double 

support phase, the redundancy problem is solved by the optimization of the 

actuating torques. The command accelerations required to control the gait are 

obtained by applying an optimal predictive control law. 

The introduced humanoid walker achieves a sustainable gait by tuning the 

optimization and prediction parameters. The control algorithm manages the 
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tracking of the predefined walking pattern with easily realizable joint 

accelerations. The simulation is capable of producing all the reaction forces, 

reaction moments and the values of the other variables. During these 

computations, a three dimensional view of the humanoid walker is animated 

simultaneously. As a result of this study, a suitable simulation structure is 

obtained to test and improve the mechanical systems which perform bipedal 

locomotion. The modular nature of the simulation structure developed in this 

study allows testing the performance of alternative control laws as well. 

 

Keywords: Bipedal locomotion, humanoid walking, gait simulation, optimal 

predictive control. 
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ÖZ 

 

 

EN İYİ ÖNGÖRÜLÜ BİR DENETİM KULLANILARAK 

 ÜÇ BOYUTLU İNSANSI YÜRÜYÜŞ BENZETİMİ 

 

ÖZYURT, Gökhan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal ÖZGÖREN 

 

Ağustos 2005, 129 sayfa 

 

Bu tezde, bir en iyi öngörülü denetim algoritması uygulanarak insansı bir 

sistemin yürüyüş benzetimi yapılmıştır. Benzetim, Matlab ve Simulink 

yazılımları kullanılarak oluşturulmuştur. Tam bir yürüyüş döngüsünün tek destek 

ve çift destek evrelerini temsil etmek amacıyla dört ayrı fiziksel model 

geliştirilmiştir. Modeller üç boyutludur ve özellikleri insanınkilerle benzer 

şekildedir. Bu bağlamda, çift destek evrelerindeki ayak modelleri, ayak 

parmaklarını ayağa bağlayan ilave bir eklem içermektedir. Fiziksel modellerle 

ilgili kinematik ilişkiler yenilemeli olarak ifade edilmiş ve dinamik modeller 

Newton – Euler formülasyonu kullanılarak elde edilmiştir. 

Eklemler düzeyinde, “hesaplanan tork yöntemi” kullanılmıştır. Çift destek 

evresindeki artıksıllık sorunu, eyletim torklarının eniyilenmesi ile çözülmüştür. 

Yürüyüşü denetlemek için gereken komut ivmeleri ise en iyi öngörülü denetim 

uygulanarak oluşturulmuştur. 

Tanıtılan insansı yürüyücü, eniyileme ve öngörme parametreleri ayarlanarak, 

sürdürelebilir bir yürüyüşü başarmıştır. Denetim algoritması, önceden belirlenmiş 
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yürüyüş biçiminin rahatça gerçekleştirilebilir eklem ivmeleri ile izlenmesini 

başarıyla sağlamaktadır. Benzetim, bütün tepki kuvvetlerini, tepki momentlerini 

ve diğer değişkenlerin değerlerini ortaya koyabilmektedir. Bu çalışmanın bir 

sonucu olarak, iki bacaklı hareket gerçekleştiren mekanik sistemlerin sınanması 

ve geliştirilmesi için uygun bir benzetim yapısı elde edilmiştir. Bu çalışmada 

geliştirilen benzetim yapısının birimsel niteliği, başka denetim kurallarının 

başarımlarını da sınamaya izin vermektedir. 

 

Anahtar Kelimeler: İki bacaklı hareket, insansı yürüyüş, yürüyüş benzetimi, en 

iyi öngörülü denetim. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Human gait and bipedal locomotion have been investigated by many scientists for 

decades. Many researchers from different branches of science have carried out 

numerous studies on this challenging subject. Parallel to these studies, in the last 

twenty years, many developments have been realized in the bipedal walking 

machines and several humanoid robots have been manufactured. Both in the 

design and also in the improvement of these robots, simulation has been widely 

used as a powerful technique to answer “what if” questions. Also, the gait 

simulations help us for a better understanding of how humans walk normally or 

pathologically. Another application area of human gait simulation studies comes 

out in the design and pre-test stages of lower limb orthotic and prosthetic devices. 

Since, it is the basic concept of the thesis, the general definition of simulation 

should be stated first of all. According to Robert E. Shannon, simulation is 

defined as the process of designing a model of a real system and conducting 

experiments with this model for the purpose of understanding the behavior of the 

system and /or evaluating various strategies for the operation of the system [1]. 

As expressed in the above definition; a model which resembles the human body 

is designed at the beginning of a gait simulation study. Then, a control algorithm 

is incorporated to imitate the human gait. Later, the control algorithm and the 

model are tested by many simulational experiments. They are modified to 

accomplish the objectives of the simulation study. Finally, the outcomes are 

obtained to use for various purposes. 

Maybe, the most interesting one of these purposes is the humanoid robot projects. 

The advances in technology seem to make humanoid robots a part of every day 
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life. However, it is obvious that the definition of humanoid robots has to be done 

before talking about them. There are two points of view: 

1. The first is to call a robot a ‘humanoid robot’ if he looks humanoid, which 

means that he has a structured body similar to a human being: An upright 

body with two legs (preferable with knee joints and the right proportions) 

and two arms, hands with five fingers and a head on top of all. 

2. The other, more academic point of view is to define a robot as 

‘humanoid’, if he can act like a human being. The emphasis here lays 

more on the possible actions of a robot, and less on his outer appearance 

and structure. If he can achieve typical ‘humanoid’ tasks in a normal 

‘humanoid’ environment, he can be called humanoid, no matter how 

many arm joints he has or how many legs he uses [2]. 

As it is remarked in the second paragraph, a humanoid robot has to act like a 

human being. Probably, the most typical human act is the bipedal locomotion. It 

can be defined as the ability to translate the body by two legs and maintain a 

rhythmic stepping. Bipedal walking in a humanoid style makes humanoid robots 

more advantageous than other mobile robots. 

The world’s infrastructure has been designed to be human-accessible.  Stairways, 

ladders and devices proportional to average human size are all put in place to 

make humans’ lives more comfortable [3]. Especially, wheeled robots are 

helpless in these kinds of situations. For instance, they are unable to step over 

obstacles or move on uneven surfaces contrary to bipedal walkers.  

All these reasons make humanoid gait simulation an attractive and ongoing 

research area. In the future, by the rapidly growing capabilities of computers, 

more complicated models are going to be established and new control strategies 

are going to be performed in these simulations. 

1.2 Description and Phases of Human Gait 

In order to simulate bipedal walking and applying it on a mechanical model; first, 

the normal human gait should be examined and its determinants should be 
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identified. The term, gait, is used as the manner of walking, rather than the 

motion itself. The human gait is a cyclic motion and the basic components of the 

gait cycle are stance and swing.  The entire period during which the foot is on the 

ground is the stance phase. The swing phase begins when the foot is lifted from 

the floor until the heel contacts again with the ground. The normal gait cycle is 

illustrated in Figure 1.1. 

 

 

Figure 1.1 The normal gait cycle [4] 

The elapsed time to complete a gait cycle is divided into 100 equal parts and the 

gait events are designated by this percentage. As seen in the Figure 1.1, the right 

heel contact with the ground is assigned as 0 percent and the next contact of the 

same heel is assigned as 100 percent. Each gait cycle consists of two periods of 

the single support phase and two periods of the double support phase. The gait 

cycle, can be further broken down into eight sub-phases. In Figure 1.2, these sub-

phases are illustrated. 

 

 3



 

 

Phase-1 Phase-2 Phase-3 Phase-4 

Phase-5 Phase-6 Phase-7 Phase-8 

Figure 1.2 The phases of human gait [5] 

Phase-1 Initial Contact: This is the moment when the red foot just touches the 

floor. Normally, the heel is the first part of the foot to touch the ground. The hip 

is flexed, the knee is extended, and the ankle is dorsiflexed to neutral. 

Meanwhile, the blue leg is at the end of terminal stance.  

Phase-2 Loading Response: This is the double stance period which begins when 

the foot contacts the floor and continues until the other foot is lifted for swing. 

Body weight is transferred onto the red leg. The blue leg is in the pre-swing 

phase.  

Phase-3 Mid Stance: This phase is the first half of the single support interval. It 

begins with the lifting of the blue foot and continues until body weight is aligned 

over the supporting foot. The red leg advances over the red foot by ankle 

dorsiflexion while the hip and knee extend. The blue leg advances in its mid-

swing phase. 
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Phase-4 Terminal Stance: This part of the human gait begins when the red heel 

rises and continues until the heel of the blue foot hits the ground. Body weight 

progresses beyond the red foot as increased hip extension puts the leg in a more 

trailing position. 

Phase-5 Pre-Swing: This is the second double stance interval in the gait cycle. It 

begins with the initial contact of the blue foot and ends with red toe-off. Ground 

contact by the blue leg causes the red leg to increase ankle plantar flexion, 

increase knee flexion, and decrease hip extension. Transfer of body weight from 

ipsilateral to opposite limb takes place. 

Phase-6 Initial Swing: It begins when the foot is lifted from the floor and ends 

when the swinging foot is opposite the stance foot. The red leg is advanced by 

increased hip flexion and increased knee flexion. The ankle only partially 

dorsiflexes to ensure ground clearance. The blue leg is in mid-stance. 

Phase-7 Mid Swing: This phase continues from the end point of the initial swing 

and continues until the swinging limb is in front of the body and the tibia is 

vertical. Advancement of the red leg is accomplished by further hip flexion.  The 

knee is allowed to extend in response to gravity while the ankle continues 

dorsiflexion to neutral. The blue leg is in late mid-stance. 

Phase-8 Terminal Swing: It begins when the tibia is vertical and ends when the 

foot touches the floor. Limb advancement is completed by knee extension. The 

hip maintains its flexion and the ankle remains dorsiflexed to neutral [5]. 

1.3 Previous Studies on Humanoid Gait 

In many universities and research centers, scientists have been involved in the 

humanoid gait subject. While, some of them have studied on a specific part of the 

problem, some have introduced full simulations and even produced prototypes of 

humanoid walkers. Therefore, this survey covers not only the humanoid gait 

simulation studies but also the more specific ones which are related or 

contributing to the area of humanoid gait. In addition, some prominent humanoid 

robots which can realize walking in a human like style are also presented. 
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In the literature, the simulations of normal human gait or the simulations of 

bipedal robots differ by many attributes they have. Some of these attributes are 

the models, the methods or the goals of the simulations. The number of segments 

which constitute the simulation model, the degree of freedom and the complexity 

increases according to the resemblance to the ones of a human being. In this 

sense, researchers have tried many alternatives. Skelly and Chizeck presented a 

3-dimensional computer model of sustained bipedal walking. In this study, it is 

intended to be used as a development tool for walking controllers. The direct 

dynamic simulation has 8 segments, 19 degrees of freedom and is driven by 

prescribed joint moment and stiffness trajectories. Limited feedback in the form 

of a proportional-derivative controller provides upper body stability and allows 

walking to be sustained indefinitely. The foot is approximated by an ellipsoid and 

foot-to-floor contact is modeled by a spring and damper activated by the 

penetration of the foot into the floor [6]. 

 

 

Figure 1.3 Simulation of bipedal walking by M.M.Skelly and C.J.Chizeck 

In another study, Gilchrist and Winter used a nine-segment 3-dimensional model, 

including a two part foot. In this computer simulation, the resultant joint moments 

of a gait analysis were used as driving moments. The system description, initial 

conditions and driving moments were taken from an inverse dynamics analysis of 
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a normal walking trial. Torsional, linear springs and dampers were used at the hip 

joints to keep the trunk vertical. The knee and ankle joints were also limited to 

prevent nonphysiological motion. Dampers at other joints were required to ensure 

a smooth and realistic motion [7]. 

In one of the gait simulations, the model was built in ADAMS environment. For 

the gait stabilization, a simple closed loop control algorithm was introduced. The 

net torques (generated in the way that enables realization of the gait patterns) are 

applied to a mechanical system and the direct problem of dynamics is solved [8]. 

 

 

 

Figure 1.4 Superimposed frames from stable walk animation [8] 

In order to reduce the complexity of the biped simulations, 2-dimensional models 

are preferred instead of 3-dimensional ones [9], [10], [11]. In the University of 

New Hampshire a biped simulator, called WALK, was developed incorporating a 

model of this kind. This simulator is designed to facilitate the evaluation of 

bipedal walking algorithms. Also, a neural network algorithm was applied on the 

model [12]. 

In some of the studies, the muscles and the skeleton of human being was included 

in the simulation models. Günther and Ruder proposed a 2-dimensional, eleven-

segment musculoskeletal model of the human body. Human walking was 

synthesized by numerical integration of the coupled muscle-tendon and rigid 

body dynamics [13]. 
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In another study, the body was modeled as a 10-segment, 23 degree-of-freedom 

(dof) articulated linkage. As in the above study, each leg was actuated by 24 

muscles. The head, arms, and torso (HAT), was modeled as a single rigid body 

and actuated by six stomach and back muscles. Each foot was modeled using two 

segments: a hind foot and the toes. The interaction between each foot and the 

ground was modeled by using five spring-damper units distributed under the sole 

of the foot [14]. The foot model and particularly the interaction between the 

ground and the foot are the key features of the gait simulations. The performance 

of the simulations and the closeness of the results to the ideal are directly related 

to these features. Moreover, they determine the shape of transitions between the 

phases of gait. 

As in the present thesis study; some researchers have applied optimal control 

algorithms on the simulations. This is performed in several ways like optimizing 

the gait pattern, energy or stability [15]. In this connection; Granata, Brogan and 

Sheth proposed a bipedal walking control algorithm that simultaneously solves 

for movement trajectory and joint torques. In the technique they used, a 

constraint-based space-time optimization algorithm was utilized to compute the 

optimal movements and torques [16]. 

Another example of this kind of studies was achieved by Denk and Schmidt. In 

this study, corresponding control torques allowing straight ahead walking with 

pre–swing, swing, and heel–contact phases are derived by dynamic optimization 

using a direct collocation approach. The computed torques minimize an energy 

based, mixed performance index. Zero moment point (ZMP) and friction 

conditions at the feet ensuring postural stability of the biped, as well as bounds on 

the joint angles and on the control torques, are treated as constraints. The 

resulting biped motions are dynamically stable and the overall motion behavior is 

remarkably close to that of humans [17]. 

However, some control algorithms were insufficient. In the study of Nicholls, 

various simple control techniques were tried. Proportional control and 

proportional plus integral control systems were implemented to modify the trunk 

motion in order to compensate lower limb movement. Simple control systems 
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allowed the robot to balance sufficiently while standing. However, these control 

systems were insufficient to stabilize the robot while walking [18]. 

 In some other studies, not the full gait cycle but a period of it (e.g. the single 

support phase) or a special case is discussed. The study of Potkonjak and 

Vukobratovic is an example of these studies. They suggest a deductive approach 

that starts by considering a completely general problem. The general 

methodology is explained and the feasibility is supported by applying the general 

model to two illustrative examples: first, a well-known situation, the single-

support phase of a biped motion and second, a completely different problem, 

gymnastic exercise on a horizontal bar [19]. 

Especially, in the last decade, by the financial support of industry, successful 

humanoid walkers were produced after the simulation studies. The first two 

legged robot of practical size was developed by Kato and et al. [20]. Since then, 

much research in this field has improved the performance of walking robots. 

ASIMO (Advanced Step in Innovative MObility) is one of the most sophisticated 

bipedal robots in the world [21]. It is the closest robot yet, to replicate the natural 

walking motion of humans. ASIMO can walk flexibly under real time conditions 

by Honda’s “i-walk” (intelligent walk) technology. The company developed its 

first robot to walk on two legs in 1986.  

 

 

Figure 1.5 ASIMO stepping down the stairs 
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Another humanoid walking robot, which is as talented as ASIMO, is HRP-2. 

Hirukawa and co-workers developed a software platform, called OpenHRP, for 

humanoid robotics which consists of a dynamic simulator and motion control 

library, for humanoid robots. Using OpenHRP and humanoid robots HRP-1S and 

HRP-2P, they showed the comparisons between the simulations and experiments 

at various aspects [22]. 

 

 

Figure 1.6 HRP-2 walking 

In the MIT Leg Laboratory, a seven link planar bipedal robot, called Spring 

Flamingo was controlled to walk using a simple algorithm. In this study, a 

kneecap is used to prevent the leg from inverting and a compliant ankle is used to 

naturally transfer the center of pressure along the foot and help in toe off [23]. 

As an important feature of the present thesis, the addition of toe joints to the 

models extends the capabilities humanoid walkers. Hence, more realistic 

simulations are accomplished. Effectiveness of toe joints is discussed in [24]. 

Feet with toe joints are developed for humanoid H6. An experiment of the whole-

body action in which knees are contacting to the ground is carried out to show the 

usefulness of toe joints for such actions. Then walking pattern generation system 
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is extended to use toe joints. Using this extended system, maximum speed of 

knee joints can be reduced at the same walking speed, and 80% faster walking 

speed is achieved on humanoid H6. 

Both in the humanoid robot studies and in the other research areas related to 

bipedal locomotion, in order to identify the characteristics of the motion and to 

realize a stable walking, several methods are proposed in the last decades. Also, 

these methods serve as benchmarks for gait patterns. One of them is the ZMP 

(Zero Moment Point) method. This point is first named by Borelli in 1680 as the 

ground support point [25]. Vukobratovic and Juricic renamed Borelli’s support 

point, the Zero Moment Point and discussed its applicability for legged machine 

control. They defined the ZMP as the “point of resulting reaction forces at the 

contact surface between the extremity and the ground” [26]. The ZMP may also 

be defined as the point on the ground at which the net moment due to inertial and 

gravitational forces has no component along the horizontal axes [21]. 

Another method is the application of the FRI (Foot Rotation Indicator). The FRI 

point was introduced by Goswami in 1999. It is a point on the foot-ground 

contact surface, within or outside the support base, where the net ground reaction 

force would have to act to achieve a zero moment condition about the foot with 

respect to the FRI point itself [27]. Certainly, these methods are helpful for the 

identification of biomechanical movement strategies. Therefore, the development 

of these methods is going to contribute to the control systems of the legged 

robots. 

1.4 The Objective and Scope of the Thesis 

The aim of the present study is to investigate the bipedal locomotion on a 3-

dimensional mechanical model that imitates the lower limbs of a human being. 

For this reason, a computer simulation is developed which includes a control 

algorithm to achieve a desired sustainable gait. In the control algorithm, mainly, 

two methods are employed. These methods are the optimization and the 

prediction. The simulation covers both the single and the double support phases 

of a full gait cycle. These phases are also divided into two subphases for the left 
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and the right foot. In order to enhance the performance of the simulated 

humanoid walker, the foot is composed of two segments which are connected by 

a toe joint. The ease of modification of the simulation is determined as one of the 

objectives of the study. Therefore, a suitable software environment is selected to 

access each part of the simulation easily. By this way, the progress of the study in 

the future and upgrade of the simulation happen to be possible.  

In chapter 2, four mechanical models, designed to simulate each phase of 

humanoid walking is presented. The dimensions and the inertial properties of the 

links are given. The general conventions used in the study are also declared in 

this chapter. 

Chapter 3 covers all the kinematic and dynamic equations used in the 

simulations. A recursive formulation is used to obtain the position, velocity and 

acceleration expressions of each link. In addition to these expressions, the 

constraint equations correspond to the double support phase models are 

emphasized. The dynamic equations of the models are derived using the Newton 

– Euler formulation. The direct dynamic solution procedure of these equations is 

expressed.  The computed torque control method is utilized to find the necessary 

actuating torques for the realization of desired joint accelerations. Because of the 

redundancy in the double support phase, a special optimization process 

accompanies the computed torque control algorithms of the double support phase 

simulation models. In this simulation study, an optimal predictive control 

algorithm is applied to humanoid gait. Application of this algorithm distinguishes 

the present study from the previous ones. The optimal predictive control 

algorithms for both the double and the single support phase models are also 

presented in chapter 3. 

In chapter 4, the software environment which the simulation is built in and the 

simulation configuration parameters are introduced. Matlab®, which is a very 

useful technical computing software and Simulink® are used throughout the 

simulation study. In this chapter, the subsystems which constitute the simulation 

model and the operation principles of these subsystems are mentioned. Also, 

chapter 4 includes the generation of desired walking paths. 
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In chapter 5, the results of the simulations are presented. The torque values which 

provide the locomotion of the humanoid walker and the optimization weighting 

factors assigned in the optimal predictive control parts are discussed. The 

possible ways of improving the results are also stated in this chapter. 

In chapter 6, the recommendations for future work and the summary of the study 

are given. 
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CHAPTER 2 

PHYSICAL MODELING OF A HUMANOID WALKING SYSTEM 

In this chapter, the physical characteristics of the simulation models are 

presented. Two different linkage systems are proposed demonstrating different 

phases of human gait. One of these systems is designed for the single support 

phase and the other one for the double support phase. Each system is used twice 

during a full gait cycle, once for the right leg and once for the left leg. The 

common features of the models are given below and details of them are explained 

in the consequent sections. 

i. The models are three dimensional. 

Although, it were possible to investigate the motions in three separate 

orthogonal planes and considering these motions independent of each 

other, this method is not appropriated. In the study, the motions are 

examined regarding the true three dimensional space. 

ii. All the joints used in the models are revolute joints and have actuating 

torques. For modeling the toe, one joint; for the ankle, two joints; for the 

knee, one joint and for the hip, two joints are used. 

iii. At the joints, the frictional and damping effects are assumed to be 

negligible.  

iv. The HAT (head + arms + trunk) is assumed to be rigidly connected to 

pelvis and they form a single link (body-1). 

v. Each model consists of 6 rigid bodies: 

Left foot flat single support model: Body-6, 4, 1, 5, 7 and 11. 

Right foot flat single support model: Body-7, 5, 1, 4, 6 and 10. 

Left foot flat double support model: Body-6, 4, 1, 5, 7 and 11. 

Right foot flat double support model: Body-7, 5, 1, 4, 6 and 10.  
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The assignment of these bodies to the limbs is given in Table 2.1. 

 

Table 2.1 The assignment of the model segments 

Body-1: HAT + pelvis  

Body-4: Left thigh Body-5: Right thigh 

Body-6: Left shank Body-7: Right shank 

Body-10: Left foot Body-11: Right foot 

Body-12: Left toe  Body-13: Right toe 

 

vi. The joint angles are defined in such a way that they rotate about either x-

direction or y-direction. Therefore, the popular Denavit – Hartenberg  

convention is not used in this study. Mass centers, body frames and general 

appearance of the model are illustrated in Figure 2.1. In this figure and in 

the other parts of the study, 

1ur

r

r

 is the unit vector along x-axis, 

2u  is the unit vector along y-axis, 

3u  is the unit vector along z-axis. 

vii. The body frames of the models are located at the joints at the proximal end 

of the links and their orientations are the same when the joint angles are 

zero. This assent is shown in Figure 2.2. The proximal means near to the 

mass center of body-1 and the distal means away from the mass center of 

body-1. 
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3ur

2ur
1ur

Figure 2.1 General schematic appearance of the humanoid walker 

As it may have been noticed, the numbers 2, 3, 8 and 9 are not associated with 

body names. Because, the links 2, 3, 8 and 9 have no mass and they are virtual in 

fact. For example, the right hip joint is modeled as a Hooke’s joint composed of 

two perpendicular revolute joints. Proximal one of them is along the x-direction 
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and distal one is along the y-direction. By assuming a virtual link of zero length 

(link-3) between these revolute joints, the kinematic and kinetic relations are 

expressed easily and simply in the analysis. This assumption is illustrated on 

Figure 2.2. 

 

 

G1

O3

Link-3 O1

Body-1O5

Body-5

G5

Figure 2.2 Right hip joint assembly 

Also, throughout the study, odd numbers are employed for the right and even 

numbers are employed for the left leg segments, variables and parameters. 

In order to define the joint variables, it is preferred to use the symbols and indices 

indicated in Table 2.2. Further, the positive sign conventions of these angles 

according to the right hand rule are explained in Table 2.3 and illustrated in 

Figure 2.3a and Figure 2.3b. 
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Table 2.2 The assignment of the joint variables 

2θ  : left hip roll angle 3θ  : right hip roll angle 

4θ  : left hip pitch angle 5θ  : right hip pitch angle 

6θ  : left knee angle 7θ  : right knee angle 

8θ  : left ankle pitch angle 9θ  : right ankle pitch angle 

10θ  : left ankle roll angle 11θ  : right ankle roll angle 

12θ  : left toe angle 13θ  : right toe angle 

 

 

Table 2.3 The joint angle convention 

2θ  ( )1
3u  ( )2

3u  ( ) ( )1 2
1 1u u=  

3θ  ( )1
3u  ( )3

3u  ( ) ( )1 3
1 1u u=  

4θ  ( )2
3u  ( )4

3u  ( ) ( )2 4
2 2u u=  

5θ  ( )3
3u  ( )5

3u  ( ) ( )3 5
2 2u u=  

6θ  ( )4
3u  ( )6

3u  ( ) ( )4 6
2 2u u=  

7θ  ( )5
3u  ( )7

3u  ( ) ( )5 7
2 2u u=  

8θ  ( )6
3u  ( )8

3u  ( ) ( )6 8
2 2u u=  

9θ  ( )7
3u  ( )9

3u  ( ) ( )7 9
2 2u u=  

10θ  ( )8
3u  ( )10

3u  ( ) ( )8 1
1 1u u= 0  

11θ  ( )9
3u  ( )11

3u  ( ) ( )9 1
1 1u u= 1  

12θ  ( )10
3u  ( )12

3u  ( ) ( )10 12
2 2u u=  

13θ  

rotates

( )11
3u  

into

( )13
3u  

about 

( ) ( )11 13
2 2u u=  
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( )1
3u( )2

3u

θ2 

( )2
2u

( )1
2u  θ2 

( ) ( )1 2
1 1u u=

 
Figure 2.3a Positive sign convention for first axis rotations 

 

( )2
3u  

( )4
3u

θ4 

( )2
1u

( )4
1u

( ) ( )2 4
2 2u u=  θ4 

Figure 2.3b Positive sign convention for second axis rotations 

At each joint between two links, there exist a total of three reaction forces, two 

reaction moments and one actuating torque. The actuating torque at a joint has the 

same index number with the joint variable of that joint. In Figure 2.4, the 

actuating torques, directed positively according to the right hand rule, are 

indicated on the proposed model, when the joint angles are zero. 
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T11

T9

T13
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T2

T3

T5

Figure 2.4 The actuating torques 

2.1 Definitions of Model Parameters 

For kinematic and kinetic analyses, some parameters like mass, inertia tensor 

components, link dimensions, etc. are required. These parameters determine the 

dynamic characteristics of a mechanical system. According to anthropometric 

data [29], these parameters are expressed as a fraction of body height and mass. 

In this study, to simulate a humanoid walking in a resemblance as close as 

possible to an actual human being, these fractions which define the aspects of the 
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models are used without any variation. This is provided by modeling the human 

legs in three dimensional space as actually it is. 

The toes are assumed to be massless, because they never move individually. In 

the swing phase, the toe moves together with the foot and in the stance phase, it is 

assumed to be fixed on the ground. Moreover, the toes are too light compared to 

the other segments. So, their  masses are incorporated to their feet. 

In this study, the gait of a humanoid walker that has a mass of 56 kg and a height 

of 1.60 m is simulated. However, by initializing different values for total body 

mass and height at the beginning of simulations, the other parameters can be 

automatically changed. The parameters for the humanoid walker investigated in 

this study are presented in the tables 2.4, 2.5, 2.6  and shown in Figure 2.7. 

 

Table 2.4 The mass of the bodies 

m  = 56 kg 

1 0 678 37 968. .m m= =  kg  

4 0 1 5 6. .m m= =  kg 5 0 1 5 6. .m m= =  kg 

6 0 0465 2 604. .m m= =  kg 7 0 0465 2 604. .m m= =  kg 

10 0 0145 0 812. .m m= =  kg 11 0 0145 0 812. .m m= =  kg 

 

It is possible to consider that these values include the mass of the electric motors, 

batteries and other equipments which constitute a real humanoid walker. 

The inertia tensor components of the bodies were calculated by using a 

commercial CAD software, Solidworks®. The solid models of each body were 

designed keeping their original mass and lengths constant. The solid model of 

body-1 looks like a rectangular box. The legs were modeled as cones and the foot 

has a triangular shape. All the inertia tensors were taken at the center of mass to 

use in Euler equations. In Table 2.5, the inertia tensor components are given. 
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Table 2.5 The inertia tensor components 

Body-1 

1 5139
1 2851

0 3594

.

.

.

xx

yy

zz

I
I

I

=

=

=

 

 

Body-4 

0 07679
0 07679

0 00977

.

.

.

xx

yy

zz

I
I

I

=

=

=

 Body-5 

0 07679
0 07679

0 00977

.

.

.

xx

yy

zz

I
I

I

=

=

=

 

Body-6 

0 03465
0 03465

0 00208

.

.

.

xx

yy

zz

I
I

I

=

=

=

 Body-7 

0 03465
0 03465

0 00208

.

.

.

xx

yy

zz

I
I

I

=

=

=

 

Body-10 

0 00049
0 00361

0 00384

.

.

.

xx

yy

zz

I
I

I

=

=

=

 Body-11 

0 00049
0 00361

0 00384

.

.

.

xx

yy

zz

I
I

I

=

=

=

 

All values are in kg.m2

 

Table 2.6 The lengths of the bodies 

1 60.h =  m 

1 0 191 0 3056. .a h= =  m  

1 10 5 0 1528. .la a= =  m 1 10 5 0 1528. .ra a= =  m 

4 0 245 0 392. .a h= =  m 5 0 245 0 392. .a h= =  m 

6 0 246 0 3936. .a h= =  m 7 0 246 0 3936. .a h= =  m 

1 10 5 0 1528. .c a= =  m  

4 40 5 0 196. .c a= =  m 5 50 5 0 196. .c a= =  m 

6 60 5 0 1968. .c a= =  m 7 70 5 0 1968. .c a= =  m 

 

There are two different foot models used in the simulations. When the foot 

swings in the air during the single support phase, it’s modeled as a single body. 
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On the other hand, during the double support phase, foot model is composed of 

two parts, connected to each other by a revolute joint. In Table 2.7, the 

dimensions related to the foot models are given. 

 

Table 2.7 The lengths associated with the feet 

10 0 039 0 0624. .a h= =  m 11 0 039 0 0624. .a h= =  m 

10 0 152 0 2432. .d h= =  m 11 0 152 0 2432. .d h= =  m 

10 100 333 0 081. .xc d= =  m 11 100 333 0 081. .xc d= =  m 

10 0yc =  m 11 0yc =  m 

10 100 666 0 0415. .zc a= =  m 11 100 666 0 0415. .zc a= =  m 

 

2.2 Single Support Phase 

The first phase of the gait cycle is the single support phase in which the body 

moves forward on one foot while the other foot swings in the air. For the right 

foot flat period, this phase starts with the left toe-off and ends with the left heel 

strike. During this phase, the left foot moves upward by a certain amount for 

ground clearance and it also moves a little sideway to avoid collision with the 

right leg segments. At the end of this phase, the left foot takes back its starting 

position in the y and z directions, but now it is in front of the body. In Figure 2.5, 

the model of this phase is shown when the right foot is on the ground and the left 

foot is moving forward just after the “right foot flat double support phase”. 
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Figure 2.5 The right foot flat single support phase model 

This model is composed of six bodies. These are the right shank, the right thigh, 

the HAT, the left thigh, the left shank and the left foot. The major factor which 

distinguishes this phase from the double support phase is the absence of the toe 

joints. The single support phase model forms an open kinematic chain, starting 

from the right ankle and ending at the heel point of the left foot. 

In the model of this phase, the bodies are actuated by ten joint torques. 
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During the right foot flat single support phase, the right foot sole is flat on the 

ground and it is assumed to be fixed. For this reason, neither body-13 nor body-

11 have any effect on this phase of gait. However, the left foot is important in the 

dynamics of walking. It is modeled as a single body attached to the left shank 

(body-6) by the ankle joint assembly and the toe is neglected. The left foot model 

in the right foot flat single support phase is shown in Figure 2.6. 

 

 

c10x

c10z

d10
O12

O8,O10

A10

a10

x 

z

Figure 2.6 The left foot model in right foot flat single support phase 

2.3 Double Support Phase 

The second phase of the gait cycle is the double support phase. This phase starts 

at the instant when both feet get in contact with the ground flatly. After this 

initiation, while one foot rotates around its toe joint, the collateral one stays at 

rest. Actually, double support phase starts with the heel strike of swinging leg. 

Although, the foot rotates for a short while around the contact point on the heel, 

this period is not modeled. Because, after the heel strike, the foot becomes flat in 

an indeed negligibly short time and modeling the system in this short period 

requires a more complicated third kind of linkage representation, which is not 

worth the effort.  
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In a gait cycle, the double support phase occurs twice, once for the right leg and 

once for the left leg. The right and left legs only exchange their roles but they 

perform the same motions and can be simulated by the same model. In 

accordance with these explanations, the model of “the right foot flat double 

support phase” is illustrated in Figure 2.7. 

 

 

c1

c5 ar
1

al1a5 

c4

a4

c7 c6 a6

a7 

Figure 2.7 The right foot flat double support phase model 
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This model has 6 bodies: the right shank, the right thigh, HAT, the left thigh, the 

left shank, and the left foot. These bodies are driven by eleven torques at the 

joints.  

Since this model is for the “right foot flat double support phase”, the right toe 

joint (with variable θ13) is not used. It’s obvious that if it were the “left-foot flat 

double support phase”, then the left toe joint (with variable θ12) would become 

unnecessary. 

In this model, the left foot is connected to the ground by its toe joint and the right 

foot is fixed to the ground with its whole body. Therefore, the right leg moves on 

the right ankle, while, the left leg moves on the the left toe joint. Figure 2.8 

illustrates the left foot model for the “right foot flat double support phase”. 
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Figure 2.8 The left foot model in right foot flat double support phase 

The system in the double support phase has eleven revolute joints but only five 

degrees of freedom in space. The reason of this deficiency in DOF is the closed 

kinematic chain formed due to both feet being grounded. In the following section, 

this fact is handled in detail. 
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2.3.1 Kinematic Constraints 

During the double support phase, both feet are on the ground. This forms a closed 

linkage system. Since, the DOF of the three-dimensional space is six; there must 

be six scalar constraint equations which cause this loop closure. There are two 

ways to write the position of the origin O1 of the body-1 frame with respect to a 

point on the ground. For instance, during the “right foot flat double support 

phase”, the position of the origin O1 can be first derived by starting from the right 

heel point (A11) and second, from the left toe joint origin (O12). These two points 

are stationary on the ground as it is mentioned before. Moreover, the orientation 

of body-1 with respect to the earth frame must be the same in whichever the way 

it is expressed. Thus, the six scalar constraint equations of the double support 

phase in the position level are obtained as described below. 

In both of the double support phase models, considering the position of the origin 

O1 , the three of the constraints in vector form are: 

1

r
Op p=

1

l
O  (2.1) 

In the “right foot flat double suppport phase”: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 11

1 12

11 7 11 5 11 1
11 3 7 3 5 3 1 2

12 10 12 10 12 6 12 4 12 1
10 3 10 1 6 3 4 3 1 2

, , ,

, , , ,

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

r r
O A

l l
O O

p p a u a C u a C u a C u
,p p a C u d C u a C u a C u a C u

= + + + +

= + + + + +
 

and in the “left foot flat double support phase”: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1 13

1 10

13 11 13 11 13 7 13 5 13 1
11 3 11 1 7 3 5 3 1 2

10 6 10 4 10 1
10 3 6 3 4 3 1 2

, , , ,

, , ,

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

r r
O O

l l
O A

,p p a C u d C u a C u a C u a C u

p p a u a C u a C u a C u

= + + + + +

= + + + +
  

Considering the orientation of body-1, the other three of the constraints can be 

expressed by means of orthonormal matrices* as in Equation (2.2) for the “right 

foot flat double suppport phase” and in Equation (2.3) for the “left foot flat 

double suppport phase”: 

 

* An orthonormal matrix (i.e. whose inverse is equal to its transpose) has 3 independent and 6 
dependent parameters. So, Equation (2.2) leads to 3 scalar constraint equations. 
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11 1 12 1( , ) ( , )ˆ ˆC C=  (2.2) 

10 1 13 1( , ) ( , )ˆ ˆC C=  (2.3) 

These two orientation matrices associated with body-1 are obtained as shown in 

the equations (2.4) through (2.7) by the exponential rotation matrices [28]. 

2 9 7 5 1 31 11111 ( )( , )ˆ uuC e e e uθ θ θ θθ − + + −−= %% %

u

 (2.4) 

1 10 2 8 6 42 12 1 212 1 ( )( , )ˆ u uuC e e e eθ θ θ θθ θ− − + +−= % %% − %  (2.5) 

1 10 2 8 6 4 1 210 1 ( )( , )ˆ u u uC e e eθ θ θ θ θ− − + + −= % % %  (2.6) 

2 13 2 9 7 5 1 31 1113 1 ( )( , )ˆ u uuC e e e e uθ θ θ θ θθ− − + +−= % %% − %  (2.7) 
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CHAPTER 3 

MATHEMATICAL MODELING AND CONTROL STRUCTURE 

This chapter covers the kinematic and dynamic equations of four simulation 

models corresponding to four phases of gait, the control methodology, the 

computed torque control method, the use of optimization and prediction 

algorithms, the nominal paths of swinging feet and other mathematical 

explanations about the simulation study. 

The equations which describe the mathematical modeling are presented for each 

of the four phases. The kinematic and dynamic equations of the right and left 

single support phases or double support phases resemble each other. Only, the 

indices of variables and physical parameters shift in a consistent manner. In this 

connection, presenting the equations of the right and left-foot flat phases one by 

one may be found excessive but it is useful to point out the distinctions clearly. 

In the kinematics part, the position, velocity and acceleration expressions are 

derived recursively. Thus, compact equations are obtained instead of lengthy 

ones. This has also made the error checking operations easier. The positions of 

the body frame origins are calculated to demonstrate the silhouette of the walking 

model, while the mass center locations are computed to be incorporated in the 

dynamic equations. 

The dynamic equations of the models are derived using the Newton - Euler 

formulation. There are several reasons of choosing this method. Firstly, these 

equations exhibit the dynamic relations of a body in an easily realizable way. 

Secondly, the reaction forces and moments at the joints are obtained as the by-

products of this method. These reactions have a great importance both in the 

investigation of humanoid gait and in the design of a possible bipedal walking 

robot. Lastly, the derivation of the Newton-Euler equations of a system of bodies 

in the 3 dimensional space is rather simple, compared to Lagrange formulation. 
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In this chapter, after the kinematic and dynamic equations are presented, the 

application of the computed torque method is discussed and the necessary 

manipulations on the Newton-Euler equations are explained. At the end of the 

chapter, the optimal predictive control (OPC) algorithms for each phase are stated 

and the corresponding equations are attained. 

3.1 Kinematic Equations 

The following sections contain the expressions of the position, velocity and 

acceleration of the body frame origins and the mass centers. In addition, the 

recursive process to get the orientation matrices, angular velocities and angular 

accelerations of the bodies is stated. All of the matrix representations of these 

vectorial kinematic quantities are expressed in the earth fixed frame unless the 

contrary is indicated. Further, these expressions are derived one by one for the 

four separate models. Before that, the commonly used position vectors in all the 

four models ( ) are defined. These vectors are used as moment arms in the 

Euler equations. They are represented in the body fixed frames where they appear 

constant. They are directed from the mass center of the body to the joint origins. 

Two of these position vectors are illustrated in Figure 3.1. 

,i jl
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These position vectors are given below as a complete list: 
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3.1.1 Kinematic Equations of the Left Foot Flat Single Support Phase 

In both of the single support phase models, while one foot swings forward, the 

other foot is assumed to be fixed on the ground.  Thus, for the “left foot flat 

single support” phase, the left foot (body-10) is flat on the ground and the right 

foot (body-11) swings in the air. The models of the single support phases are 

linkages with open kinematic chains. For this reason, there is no constraint on the 

linkage. The recursion process for the derivation of kinematic expressions starts 

with the constant values of the left heel point (A10) and ends at the right heel 

point (A11). This results in quite long expressions especially for the kinematics of 

the links near the end point. The orientation matrices of the model segments with 

respect to the left foot (body-10) which is grounded flatly are as follows: 
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In numerous equations, some combinations of these orientation matrices are 

needed. Some typical examples of such combinations are given below: 
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    then, ( ) ( ) ( ) ( ) ( )10 2 10 8 8 6 6 4 4 2, , , ,ˆ ˆ ˆ ˆ ˆC C C C C= ,  

2)  ( ) 2 66 4,ˆ uC e θ−= %       then,  ( ) ( ) ( ) 1
2 64 6 6 4 6 4, ,ˆ ˆ t

uC e C Cθ
−

= = =% ,ˆ

3)  Since ( ) ( )10 1 13 1,ˆ ˆC C= ,  in the “left foot flat double support phase”, then  

    ( ) ( ) ( )13 1 1 10 13 10, , ,ˆ ˆ ˆ ˆC C C= = I  

     where; Î is the 3x3 identity matrix 

4) ( )cos sin ,iu
j j i je u u u u i jθ θ θ= +% % ≠  

5) ( )cos sin ,i
tut t

j j j iu e u u u i jθ θ θ= +% % ≠  

6)  ne n nθ =%  

7)   n ne n ne nθ θ= ≠% %% % %

8)  u um e n m e ne uβ β β−= ⇒ =% %% % %   
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For more details about the algebra of exponential rotation matrices, see [28]. 

Starting from the left fixed point O10 (the left ankle origin), the position vectors 

of the link origins of this model are given below: 
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The positions of the mass centers are obtained by using the previously found 

positions of the link origins. These are presented with respect to the origin on the 

ground in the next group of equations. 
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The angular velocities of the links are calculated recursively as other kinematic 

elements of the models: 
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The velocities of the link origins are obtained by using the angular velocities: 
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The angular accelerations of the links in the “left foot flat single support phase” 

are listed as shown below: 
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The accelerations of the link origins are as follows: 
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In the equation group (3.9), the accelerations of the mass centers are given: 

6

4

2

1

3

5

7

9

11

8

2 10 6
6 6 6 6

2 10 4
4 4 4 4

2

2 10 1
1 1 1 1 3

3

2 10 5
5 5 5 5

2 10 7
7 7 7 7

9

2
11 11 11

0
( , )

( , )

( , )

( , )

( , )

ˆ

ˆ

ˆ

ˆ

ˆ

O

O

O

O

O

O

O

O

O

a

a a c C u

a a c C u

a a

a a c C u

a a

a a c C u

a a c C u

a a

a a

α ω

α ω

α ω

α ω

α ω

α ω

=

⎡ ⎤= − +⎣ ⎦
⎡ ⎤= − +⎣ ⎦

=

⎡ ⎤= + +⎣ ⎦
=

⎡ ⎤= − +⎣ ⎦
⎡ ⎤= − +⎣ ⎦

=

⎡ ⎤= − +⎣ ⎦

% %

% %

% %

% %

% %

% %

3

3

3

3

10 11
11 7

( , )
,Ĉ l

 (3.9) 

3.1.2 Kinematic Equations of the Right Foot Flat Single Support Phase 

During this phase of gait, only the right foot (body-11) is stationary on the ground 

and the left foot (body-10) swings in the air. This model is just the mirror image 

of the previous single support model. The orientation matrices of both left and 

right leg segments with respect to right foot (body-11) are as follows: 
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The position vectors of the link origins are derived in the equation group (3.11). 
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The position vectors of the mass centers are attained in the following equations: 
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The angular velocities of the links are acquired by the joint velocities. 
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The velocities of the link origins are derived below: 
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The equation group (3.15) denotes the angular accelerations of the links. 
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Next, the accelerations of the link origins are introduced. 
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The accelerations of the mass centers are computed by the following expressions 

during the “right foot flat single support phase”: 
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3.1.3 Kinematic Equations of the Left Foot Flat Double Support Phase 

During this phase, the left foot (body-10) and the right toe (body-13) are 

stationary on the ground. This causes a closed kinematic chain as described in 

Chapter 2. For this reason, the kinematic expressions corresponding to the right 

leg segments are derived starting from the right stationary point and the kinematic 

expressions correspond to the left leg segments are derived starting from the left 

stationary point. In the “left foot flat double support phase”, the origin O13 is the 

right stationary point and the origin O10 is the left stationary point. By writing in 

this way, the kinematic equations become more compact. Actually, it also makes 

the representation of the constraint equations easier. As the first kinematic 

expressions, the orientation matrices of the right leg segments with respect to the 

right toe (body-13) are presented below: 
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Since, the left toe angle ( 12θ ) is zero during the left foot flat double support 

phase,  is equal to the identity matrix and the orientations of the left leg 

segments can be written with respect to the left foot (body-10) instead of the left 

toe (body-12). 
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 (3.19) 

At this point, it must be declared that; 

13 1 10 1( , ) ( , )ˆ ˆC C=  (3.20) 

It was noted in the previous chapter that Equation (3.20) results three scalar 

constraint equations of the “left foot flat double support phase”. 

Starting from the right stationary point O13, the positions of the link origins of 

this model are given below: 
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Starting from the left stationary point O10, the position of the origin of link-1 is 

also obtained same as the version expressed in terms of the right leg variables:  
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 (3.22) 

The constraint equation ties up the two sides as 

1 1
(right) (left)O O 1Op p= = p  (3.23) 

The position vectors of the mass centers with respect to the origin on the ground 

are as follow: 
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 (3.25) 

The angular velocities of the links during the “left foot flat double support phase” 

are arranged in the following order: 
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At this point, the first part of the velocity level kinematic constraints of the 

double support models arises. Of course, the body-1 can have only one angular 

velocity whether the recursion starts from left or right. This implies the following 

angular velocity constraint equation, which embeds three scalar equations: 

( ) ( )1 1right left 1ω ω= ω=  (3.28) 

Below are the velocities of the link origins: 
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Hence, the last three scalar constraint equations at the velocity level of this phase 

arise as 

( ) ( )
1 1

right leftO Ov v= =
1Ov  (3.31) 

 

 44



The angular accelerations of the links in the “left foot flat double support phase” 

are listed as follows: 

( )
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13 11 13 11
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At this point, the first part of the acceleration level kinematic constraints of the 

double support models arises. The following angular acceleration constraint 

equation embeds three scalar equations: 

( ) ( )1 1right left 1α α= α=  (3.34) 

After this, the accelerations of the link origins are derived: 
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Finally, the accelerations of the mass centers are presented: 
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The last three acceleration level constraint equations can be derived either by 

1Oa or by 1a . In the simulations, the acceleration of the origin of body-1 was 

utilized. That is, 

( ) ( )
1 1

right leftO Oa a= =
1Oa  (3.39) 

3.1.4 Kinematic Equations of the Right Foot Flat Double Support Phase 

Through this phase of gait, the right foot (body-11) and the left toe (body-12) are 

attached to the ground rigidly. Hence, a closed kinematic chain similar to the 

“left-foot flat double support phase” occurs and brings six scalar constraint 

equations at each of the position, velocity and acceleration levels. Once more, the 
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double support model is examined kinematically beneath but this time the left 

foot sole is fixed. As happened in the single support phase, the “right foot flat 

double support phase” model is the mirror image of the “left foot flat double 

support phase” model. The derivation of the kinematic equations starts with the 

orientation matrices of the left leg segments with respect to the left toe (body-12). 

These orientation matrices are, 
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Since, the right toe angle ( 13θ ) is zero during the “right foot flat double support 

phase”,  is equal to the identity matrix and the orientations of the right leg 

segments can be written with respect to the right foot (body-11) instead of the 

right toe (body-13). 
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At this point, it must be declared that; 

( ) ( )12 1 11 1,ˆ ˆC C= ,  (3.42) 

It was noted in the previous chapter that Equation (3.40) results three scalar 

constraint equations of the “right foot flat double support phase”. 

Starting from the left motionless point O12, the position vectors of the link origins 

of this model are given below: 
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Starting from the right stationary point O11, the position vector of the origin of 

link-1 is also obtained same as the preceding one: 

( )

( )

( )

7 11

5 7

1 5

11 7
7 3

11 5
5 3

11 1
1 2(right)

,

,

,

ˆ

ˆ

ˆ

O O

O O

r
O O

p p a C u

p p a C u

p p a C

= +

= +

= + u

 (3.44) 

The three constraint equations are represented in column matrix form as 

1 1
(right) (left)O O 1Op p= = p  (3.45) 

The position vectors of the mass centers in the “right foot flat double support 

phase”, with respect to the origin on the ground are as follow: 
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The angular velocities of the links during this phase are listed by the following 

equations: 
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 (3.49) 

 

These angular velocity calculations end up with three scalar velocity constraint 

equations shown below:  

( ) ( )1 1right left 1ω ω= ω=  (3.50) 

 

The velocities of the link origins are presented as follows: 
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The last three scalar constraint equations at the velocity level come arise as 

( ) ( )
1 1

right leftO Ov v= =
1Ov  (3.53) 

The angular accelerations of the links in the “right foot flat double support phase” 

can be obtained in the consequent manner: 
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The next expression carries out three of six scalar constraint equations 

corresponding to acceleration level. 

( ) ( )1 1right left 1α α= α=  (3.56) 
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The, the accelerations of the link origins are obtained. 
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⎡ ⎤= + +⎣ ⎦
⎡ ⎤= + +⎣ ⎦

=

⎡ ⎤= − +⎣ ⎦

% %

% %

% %

% %

 (3.57) 

( )

11 9

7 9

5 7

3 5

1 3

2 11 7
7 7 7 3

2 11 5
5 5 5 3

2 11 1
1 1 1

0

right

( , )

( , )

( , )

ˆ

ˆ

ˆ

O O

O O

O O

O O

r
O O

a a

a a a C u

a a a C u

a a

a a a C

α ω

α ω

α ω

= =

⎡ ⎤= + +⎣ ⎦
⎡ ⎤= + +⎣ ⎦

=

⎡ ⎤= + +⎣ ⎦

% %

% %

% % 2u

 (3.58) 

As the final kinematic expressions, the accelerations of the mass centers are 

presented. 

( )

12

8

8

6

2

12

2 12 10
10 10 10 10 12

8

2 12 6
6 6 6 6 10

2 12 4
4 4 4 4 6

2 12 1
1 1 1

0

left

( , )
,

( , )
,

( , )
,

( , )
,

ˆ

ˆ

ˆ

ˆ

O

O

O

O

O

a

a a C

a a

a a C

a a C

a a C

α ω

α ω

α ω

α ω

=

⎡ ⎤= − +⎣ ⎦
=

⎡ ⎤= − +⎣ ⎦
⎡ ⎤= − +⎣ ⎦

⎡ ⎤= − +⎣ ⎦

% % l

% % l

% % l

% % l1 4

 (3.59) 

( )

9

7

3

11 9

2 11 7
7 7 7 7 11

2 11 5
5 5 5 5 7

2 11 1
1 1 1

0

right

( , )
,

( , )
,

( , )
,

ˆ

ˆ

ˆ

O

O

O

a a

a a C

a a C

a a C

α ω

α ω

α ω

= =

⎡ ⎤= − +⎣ ⎦
⎡ ⎤= − +⎣ ⎦

⎡ ⎤= − +⎣ ⎦

% % l

% % l

% % l1 5

 (3.60) 
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The last three scalar acceleration level constraint equations can be derived using 

the above equation groups. The following expression includes these last three 

scalar constraint equations of the “right foot flat double support phase”. 

( ) ( )
1 1

right leftO Oa a= =
1Oa  (3.61) 

During this simulation study, all the above kinematic equations are converted into 

Matlab® codes and written in m-files. For each of the models, the kinematic 

expressions are collected into one separate m-file. So, a total of four m-files are 

developed for the kinematic expressions. 

3.2 Dynamic Equations 

The dynamic equations are essential mainly in two parts of the simulation. The 

first one of these parts is the plant which demonstrates the state of the model at 

any instant producing the joint accelerations, the reaction forces and the reaction 

moments. This can also be called as the direct dynamics solution. The second part 

comprises the computed torque algorithm which produces the required joint 

torques for the desired motion. 

In this study, the Newton – Euler formulation was used to generate the dynamic 

equations. Therefore, 3 scalar Newton equations correspond to translation and 3 

scalar Euler equations correspond to rotation were derived for each body. The 

body fixed frames were chosen as the resolution frames for every body in these 

equations. For this reason, the velocities and the accelerations found in the 

previous sections must be multiplied by the appropriate transformation matrices 

to alter their resolution frames. 

The reaction forces and moments between the bodies are also obtained by the 

help of Newton – Euler equations. According to the “Newton’s Third Law of 

Motion”, the following relations are used in the dynamic equations: 

, ,i j j iF F= −
uv uv

 

and 

, ,i j j iM M= −
uuv uuv
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The reaction forces and the reaction moments are different at each one of the four 

models. These reactions are considered in the dynamic equations of that model 

and computed by the direct dynamic solution. In Figure 3.2, some sample 

reactions are illustrated. The convention used in the indices can be realized better 

by the reactions between body-5/body-7 and body-7/body-10. 

 

 

 

1 5,M
uuv

1 5,F
uv

G5

5 7,F
uv

7 5,F
uv

5 7,M
uuv

7 5,M
uuv

G7

10 7,M
uuv

7 10,M
uuv

10 7,F
uv

7 10,F
uv

G11

Figure 3.2 Representation of some reaction forces and moments 
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Another key subject about the dynamic equations is the gravitational acceleration 

vector. As any other term of the equations, they are also resolved in the body 

fixed frames. The details of these vectors are given below. 

( )

( )

( )

( )

( )

( )

( )

1 01
1 3

4 04
4 3

5 05
5 3

6 06
6

7 07
7 3

10 010
10 3

11 011
11 3

,( )

,( )

,( )

,( )

,( )

,( )

,( )

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

g gC u

g gC u

g gC u

g gC u

g gC u

g gC

g gC

= −

= −

= −

= −

= −

= −

= −

3

u

u

 (3.62) 

In these expressions, “0” stands for the earth fixed frame and “g” (gravity) is 

taken as 9.81 m/s2.  

Moreover, the Euler equations and the inertia tensors are expressed about the 

mass centers. Hence, there appear no moment terms in the Euler equations due to 

the weights of the bodies. 

In the following sections, the Newton – Euler equations belonging to each phase 

were presented for the aim of plant’s explanation. The solution of these equations 

is discussed for four different simulation models. In advance, the computed 

torque algorithm is clarified by the related modifications of these Newton – Euler 

equations. 

3.2.1 Newton-Euler Equations of the Left Foot Flat Single Support Phase 

In this phase, the model is composed of 6 bodies, which are connected to each 

other by 10 joints. 36 scalar Newton – Euler equations belong to these bodies are 

given in matrix form starting from the left shank (body-6): 

Body-6: 
6 6 6

6 6 10 6 4 6 6
( ) ( ) ( ) ( )

, ,m a F F m g= + + 6  (3.63) 

6 6 6 6 6 6 6 6 6
6 6 6 6 6 10 6 4 6 6 4 4 6 6 10 10 6
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , , ,
ˆ ˆJ J M M Fα ω ω+ = + + +% %% l l ,F  (3.64) 
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Body-4: 
4 4 6 6 4

4 4 4 6 1 4 4
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 4  (3.65) 

4 4 4 4 4 4 6 6 4 4 6 6
4 4 4 4 4 4 6 1 4 4 6 4

4
4 1 1 4

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )
, , /

( )
, ,

ˆ ˆˆ ˆJ J C M M C

F

α ω ω+ = − + −

+

%% l

%l

6,F

 (3.66) 

Body-1: 
1 1 1 4 4

1 1 1 5 1 4 1
( ) ( ) ( , ) ( ) ( )

, ,
ˆm a F C F m g= − − + 1  (3.67) 

1 1 1 1 1 1 1 4 4 1
1 1 1 1 1 1 5 1 4 1 5 1 5

1 4 4
1 4 1 4

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( )
, , ,

( , ) ( )
, ,

ˆˆ ˆ

ˆ
J J M C M

C F

α ω ω+ = − − −

−

%% l

%l

,F
 (3.68) 

Body-5: 
5 5 1 1 5

5 5 1 5 5 7 5
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + 5  (3.69) 

5 5 5 5 5 5 1 1 5 5 1 1
5 5 5 5 5 1 5 5 7 5 1 1

5
5 7 5 7

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )
, , ,

( )
, ,

ˆ ˆˆ ˆJ J C M M C

F

α ω ω+ = − +

−

%% l

%l

5,F
 (3.70) 

Body-7: 
7 7 5 5 7

7 7 5 7 7 11 7
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + 7  (3.71) 

7 7 7 7 7 7 5 5 7 7 5 5
7 7 7 7 7 5 7 7 11 7 5 5

7
7 11 7 11

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )
, , ,

( )
, ,

ˆ ˆˆ ˆJ J C M M C

F

α ω ω+ = − +

−

%% l

%l

7,F
 (3.72) 

Body-11: 
11 11 7 7 11

11 11 7 11 11
( ) ( , ) ( ) ( )

,
ˆm a C F m g= +  (3.73) 

11 11 11 11 11 11 7 7 11 7 7
11 11 11 11 11 7 11 11 7 7 11
( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )

, ,
ˆ ˆˆ ˆJ J C M Cα ω ω+ = + %% l ,F  (3.74) 

There are totally 36 unknowns in these equations for direct dynamics purposes. In 

Table 3.1, these unknowns are shown. 
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Table 3.1 The unknowns in the left foot flat single support phase 

Types of unknowns Names of unknowns 
Number of 

unknowns 

Joint Accelerations 10 8 6 4 2 3 5 7 9 11, , , , , , , , ,θ θ θ θ θ θ θ θ θ θ&& && && && && && && && && &&  10 

Reaction Forces ( ) ( ) ( ) ( ) ( ) ( )6 6 4 1 5
10 6 4 6 1 4 1 5 5 7 7 1, , , , , ,, , , , ,F F F F F F 7

1  18 

Reaction Moments 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

6 6 6 4
10 6 4 6 4 6 1 4

1 5 5 7
1 5 5 7 5 7 7 11

, , , ,

, , , ,

, , , ,

, , ,

z x z

z x z

M M M M

M M M M

z

z
 8 

 

In the “left foot flat single support phase”, the number of dynamic equations is 

equal to the number of unknowns. Hence, the solution is available using the 

Newton – Euler equations. 

The matrix inversion method is used to find these unknowns. For both of the 

single support phase models, a 36 by 36 coefficient matrix ( ) is build. For this 

purpose, the coefficients are detached from the unknowns in each of the 36 scalar 

dynamic equations and they are sorted properly in the matrix, . It is a hard 

process to examine 10 unknown joint accelerations in every acceleration term of 

the dynamic equations and the coefficients of 26 unknown reaction components. 

For a better demonstration, this coefficient matrix is illustrated by a table in the 

Appendices. In the m-files corresponding to the “left foot flat single support 

phase” dynamic equations, these coefficients are written in detail. 

Γ̂

Γ̂

The remaining part of the dynamic equations is the position and velocity relevant 

known terms. For the solution, they are collected into a column matrix. This 

column matrix also includes 10 actuating torque values which come from the 

computed torque control block. 
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As a result, 36 Newton – Euler equations of the “left foot flat single support 

phase” model are represented in the following form. 

( )

( )

(36x36 36x1

36x1

ˆ
q
F K
M

⎡ ⎤
⎢ ⎥Γ =⎢ ⎥
⎢ ⎥⎣ ⎦

&&

)  (3.75) 

where 

Γ̂  is the coefficient matrix 

q
F
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

&&

 is the vector of unknowns 

K  is the vector of knowns 

Thus, the direct dynamics solution is accomplished via the following equation 

unless the coefficient matrix is singular. 

1ˆ
q
F K
M

−

⎡ ⎤
⎢ ⎥ = Γ⎢ ⎥
⎢ ⎥⎣ ⎦

&&

 (3.76) 

At every step of simulation, the elements of Γ̂  and K  matrices are calculated 

again with the new joint variables and actuating torques. Then, the coefficient 

matrix is inverted and 36 unknown parameters are obtained. This process iterates 

until the next simulation phase. 

3.2.2 Newton-Euler Equations of the Right Foot Flat Single Support Phase 

The left foot (body-10) swings in the air through this phase, while the right foot 

(body-11) is stationary on the ground. The dynamic equations are derived using 

the Newton – Euler formulation. Since this model has six bodies, again, 36 scalar 

equations of motion are written to find the unknown joint accelerations and 

reactions. The dynamic equations of the “right foot flat single support phase” are 

given below in matrix form starting from the right shank (body-7): 
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Body-7: 

7 7 7
7 7 11 7 5 7 7

( ) ( ) ( ) ( )
, ,m a F F m g= + + 7  (3.77) 

7 7 7 7 7 7 7 7 7
7 7 7 7 7 11 7 5 7 7 5 5 7 7 11 11 7
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , , ,
ˆ ˆJ J M M Fα ω ω+ = + + +% %% l l ,F  (3.78) 

Body-5: 
5 5 7 7 5

5 5 5 7 1 5 5
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 5  (3.79) 

5 5 5 5 5 5 7 7 5 5 7 7
5 5 5 5 5 5 7 1 5 5 7 5 7

5
5 1 1 5

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )
, , ,

( )
, ,

ˆ ˆˆ ˆJ J C M M C

F

α ω ω+ = − + −

+

%% l

%l

,F
 (3.80) 

Body-1: 
1 1 1 5 5

1 1 1 4 1 5 1
( ) ( ) ( , ) ( ) ( )

, ,
ˆm a F C F m g= − − + 1  (3.81) 

1 1 1 1 1 1 1 5 5 1
1 1 1 1 1 1 4 1 5 1 4 1 4

1 5 5
1 5 1 5

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( )
, , ,

( , ) ( )
, ,

ˆˆ ˆ

ˆ
J J M C M

C F

α ω ω+ = − − −

−

%% l

%l

,F
 (3.82) 

Body-4: 
4 4 1 1 4

4 4 1 4 4 6 4
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + 4  (3.83) 

4 4 4 4 4 4 1 1 4 4 1 1
4 4 4 4 4 1 4 4 6 4 1 1

4
4 6 4 6

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )
, , ,

( )
, ,

ˆ ˆˆ ˆJ J C M M C

F

α ω ω+ = − +

−

%% l

%l

4,F
 (3.84) 

Body-6: 
6 6 4 4 6

6 6 4 6 6 10 6
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + 6  (3.85) 

6 6 6 6 6 6 4 4 6
6 6 6 6 6 4 6 6 10

6 4 4 6
6 4 4 6 6 10 6 10

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( )
, ,

( , ) ( ) ( )
, , ,

ˆˆ ˆ

ˆ
J J C M M

C F F

α ω ω+ = −

+ −

%

% %l l ,

 (3.86) 

Body-10: 
10 10 6 6 10

10 10 6 10 10
( ) ( , ) ( ) ( )

,
ˆm a C F m g= +  (3.87) 

10 10 10 10 10 10 6 6 10 6 6
10 10 10 10 10 6 10 10 6 6 10
( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )

, ,
ˆ ˆˆ ˆJ J C M Cα ω ω+ = + %% l ,F  (3.88) 
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There are 36 unknowns in these equations. These are presented in Table 3.2. 

 

Table 3.2 The unknowns in the right foot flat single support phase 

Types of unknowns Names of unknowns 
Number of 

unknowns 

Joint Accelerations 11 9 7 5 3 2 4 6 8 10, , , , , , , , ,θ θ θ θ θ θ θ θ θ θ&& && && && && && && && && &&  10 

Reaction Forces ( ) ( ) ( ) ( ) ( ) ( )7 7 5 1 4
11 7 5 7 1 5 1 4 4 6 6 10, , , , , ,, , , , ,F F F F F F 6  18 

Reaction Moments 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

7 7 7 5
11 7 5 7 5 7 1 5

1 4 4 6
1 4 4 6 4 6 6 10

, , , ,

, , , ,

, , ,

, , ,

z x z

z x z

M M M M

M M M M

,z

z
 8 

 

The operations are performed in the same way as the previous single support 

phase. After that, in the next part of the simulations, the resulting joint 

accelerations are integrated once to get the joint velocities and once again to get 

the joint angular displacements. 

3.2.3 Newton-Euler Equations of the Left Foot Flat Double Support Phase 

As mentioned in Chapter 2, the “left foot flat double support phase” model 

includes 6 bodies which are connected to each other by 11 joints. Below, 36 

scalar Newton – Euler equations of these bodies in matrix form starting from the 

right foot (body-11) are given: 

Body-11: 
( )11 1311 13 11 11

11 11 1113 7 11 11
,( ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + +  (3.89) 

( )

( )

11 1311 11 11 11 11 13 11
11 11 11 11 11 11 13 7 11

11 13 13 11
11 13 11 13 11 7 7 11

,( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

, ( ) ( )
, , ,

ˆˆ ˆ

ˆ

J J C M M

C F F

α ω ω+ = − +

− +

%

% %l l ,

 (3.90) 
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Body-7: 
( )7 117 11 7

7 7 7 11 5 7 7
,( ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 7  (3.91) 

( )

( )

7 117 7 7 7 7 11 7
7 7 7 7 7 7 11 5 7

7 11 11 7
7 11 7 11 7 5 5 7

,( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

, ( ) ( )
, , ,

ˆˆ ˆ

ˆ

J J C M M

C F F

α ω ω+ = − +

− +

%

% %l l ,

 (3.92) 

Body-5: 
5 5 7 7 5

5 5 5 7 1 5 5
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 5  (3.93) 

5 5 5 5 5 5 7 7 5
5 5 5 5 5 5 7 1 5

5 7 7 5
5 7 5 7 5 1 1 5

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( )
, ,

( , ) ( ) ( )
, , ,

ˆˆ ˆ

ˆ
J J C M M

C F F

α ω ω+ = − +

− +

%

% %l l ,

 (3.94) 

Body-1: 
1 1 1 5 5

1 1 4 1 1 5 1
( ) ( ) ( , ) ( ) ( )

, ,
ˆm a F C F m g= − + 1  (3.95) 

1 1 1 1 1 1 5 5 1 4 4
1 1 1 1 1 1 5 1 4

1 5 5 1
1 5 1 5 1 4 4 1

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )
,

( , ) ( ) ( )
, , ,

ˆ ˆˆ ˆ

ˆ
J J C M C

C F F

α ω ω+ = − −

− +

%

% %l l

,

,

M
 (3.96) 

Body-4: 
4 4 1 1 4

4 4 4 1 6 4 4
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 4  (3.97) 

4 4 4 4 4 4 4 6 6
4 4 4 4 4 1 4 4 6

4 1 1 4
4 1 4 1 4 6 6 4

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( )
, ,

( , ) ( ) ( )
, , ,

ˆˆ ˆ

ˆ
J J M C M

C F F

α ω ω+ = −

− +

%

% %l l ,

 (3.98)  

Body-6: 
6 6 4 4 6

6 6 6 4 10 6 6
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 6  (3.99) 

6 6 6 6 6 6 6 10 10
6 6 6 6 6 4 6 6 10

6 4 4 6
6 4 6 4 6 10 10 6

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( )
, ,

( , ) ( ) ( )
, , ,

ˆˆ ˆ

ˆ
J J M C M

C F F

α ω ω+ = −

− +

%

% %l l ,

 (3.100) 

When the joint angles, the joint velocities and the actuating torques are known, 

totally 42 unknowns remain in these equations. In Table 3.3, these unknown 

variables are shown with their numbers: 
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Table 3.3 The unknowns in the left foot flat double support phase 

Types of unknowns Names of unknowns 
Number of 

unknowns 

Joint Accelerations 13 11 9 7 5 3 2 4 6 8 10, , , , , , , , , ,θ θ θ θ θ θ θ θ θ θ θ&& && && && && && && && && && &&  11 

Reaction Forces ( ) ( ) ( ) ( ) ( ) ( ) ( )13 11 7 5 1 4 6
11 13 7 11 5 7 1 5 4 1 6 4 10 6, , , , , , ,, , , , , ,F F F F F F F ,  21 

Reaction Moments 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

13 13 11 7 7
11 13 11 13 7 11 5 7 5 7

5 1 4 4 6
1 5 4 1 6 4 6 4 10 6

, , , , ,

, , , , ,

, , , ,

, , , ,

,x z z x

z z x z z

M M M M M

M M M M M

z

 10 

 

As it may have been noticed, the number of equations is not sufficient to solve for 

42 unknowns. However, there are several constraint equations for double support 

phases obtained at the kinematics part. The acceleration level constraint equations 

of the “left foot flat double support phase” model can be used in the solution. So, 

adding these 6 scalar constraint equations, a total of 42 equations exist in order to 

find 42 unknowns. These equations are recalled below: 

( ) ( )1 1right left 1α α= α=  (3.101) 

( ) ( )
1 1

right leftO Oa a= =
1Oa  (3.102) 

As in the single support phases, the matrix inversion method is used to find the 

unknowns in the double support phases. Differently, for the double support 

phases, a 42 by 42 matrix is constructed. The elements of this large matrix are the 

coefficients of the unknown variables of this phase. The coefficients of unknown 

accelerations are rather difficult to sort, because there exist so many θ&&  terms in 

six different ia and iα expressions. This coefficient matrix is illustrated by a table 

in the appendices and every coefficient are expressed in the m-files correspond to 

the “left foot flat double support phase” dynamic equations. 
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On the other hand, all the known terms of each equation, which includes θ ’s and 

θ& ’s were gathered and put into column matrix form. This column matrix has also 

the actuating torque values in its rows. The introduced form of dynamic equations 

is shown below: 

42 x1)42 x42)

42 x1)

((

(

ˆ
q
F K
M

⎡ ⎤
⎢ ⎥Γ =⎢ ⎥
⎢ ⎥⎣ ⎦

&&

 (3.103) 

By this way, a linear system of equations, each row representing an independent 

equation, happens to be reached. The solution is obtained via the following 

equation unless  is singular. Γ̂

1ˆ
q
F K
M

−

⎡ ⎤
⎢ ⎥ = Γ⎢ ⎥
⎢ ⎥⎣ ⎦

&&

 (3.104) 

At every step of simulation, these resultant accelerations are integrated 

numerically and are turned back to the plant as the computed joint angles and the 

joint velocities. 

3.2.4 Newton-Euler Equations of Right Foot Flat Double Support Phase 

During the “right foot flat double support phase”, the right foot (body-11) and the 

left toe (body-12) are assumed to be fixed to the ground. The derivation of the 

dynamic equations and the solution method in this phase are similar to the 

previous double support phase. The difference occurs in the indices. There are 36 

scalar Newton – Euler equations, coming from 6 bodies, and 6 scalar constraint 

equations from the kinematics. Totally, 42 scalar equations of motion are 

obtained to be employed both in the plant block and in the computed torque 

control block of the simulations. Below, the Newton – Euler equations in matrix 

form are sorted from body-10 to body-7: 

Body-10: 
( )10 1210 12 10 10

10 10 10 12 6 10 10
,( ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + +  (3.105) 
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( )

( )

10 1210 10 10 10 10 12 10
10 10 10 10 10 10 12 6 10

10 12 12 10
10 12 10 12 10 6 6 10

,( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

, ( ) ( )
, , ,

ˆˆ ˆ

ˆ

J J C M M

C F F

α ω ω+ = − +

− +

%

% %l l ,

 (3.106) 

Body-6: 
( )6 106 10 6

6 6 6 10 4 6 6
,( ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 6  (3.107) 

( )

( )

6 106 6 6 6 6 10 6
6 6 6 6 6 6 10 4 6

6 10 10 6
6 10 6 10 6 4 4 6

,( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

, ( ) ( )
, , ,

ˆˆ ˆ

ˆ

J J C M M

C F F

α ω ω+ = − +

− +

%

% %l l ,

 (3.108) 

Body-4: 
4 4 6 6 4

4 4 4 6 1 4 4
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 4  (3.109) 

4 4 4 4 4 4 6 6 4
4 4 4 4 4 4 6 1 4

4 6 6 4
4 6 4 6 4 1 1 4

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( )
, ,

( , ) ( ) ( )
, , ,

ˆˆ ˆ

ˆ
J J C M M

C F F

α ω ω+ = − +

− +

%

% %l l ,

 (3.110) 

Body-1: 
1 1 1 4 4

1 1 5 1 1 4 1
( ) ( ) ( , ) ( ) ( )

, ,
ˆm a F C F m g= − + 1  (3.111) 

1 1 1 1 1 1 4 4 1 5 5
1 1 1 1 1 1 4 1 5

1 4 4 1
1 4 1 4 1 5 5 1

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )
,

( , ) ( ) ( )
, , ,

ˆ ˆˆ ˆ

ˆ
J J C M C

C F F

α ω ω+ = − −

− +

%

% %l l

,

,

M
 (3.112) 

Body-5: 
5 5 1 1 5

5 5 5 1 7 5 5
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 5  (3.113) 

5 5 5 5 5 5 5 7 7 5 1 1
5 5 5 5 5 1 5 5 7 5 1 5

5
5 7 7 5

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )
, , ,

( )
, ,

ˆ ˆˆ ˆJ J M C M C

F

α ω ω+ = − −

+

%% l

%l

1,F
 (3.114) 

Body-7: 
7 7 5 5 7

7 7 7 5 11 7 7
( ) ( , ) ( ) ( ) ( )

, ,
ˆm a C F F m g= − + + 7  (3.115) 

7 7 7 7 7 7 7 11 11
7 7 7 7 7 5 7 7 11

7 5 5 7
7 5 7 5 7 11 11 7

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( )
, ,

( , ) ( ) ( )
, , ,

ˆˆ ˆ

ˆ
J J M C M

C F F

α ω ω+ = −

− +

%

% %l l ,

 (3.116) 
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The number of unknown variables in this phase is 42. These unknowns are 

tabulated in Table 3.4. 

 

Table 3.4 The unknowns in the right foot flat double support phase 

Types of unknowns Names of unknowns 
Number of 

unknowns 

Joint Accelerations 12 10 8 6 4 2 3 5 7 9 11, , , , , , , , , ,θ θ θ θ θ θ θ θ θ θ θ&& && && && && && && && && && &&  11 

Reaction Forces ( ) ( ) ( ) ( ) ( ) ( ) ( )12 10 6 4 1 5 7
10 12 6 10 4 6 1 4 5 1 7 5 11 7, , , , , , ,, , , , , ,F F F F F F F ,  21 

Reaction Moments 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

12 12 10 6 6
10 12 10 12 6 10 4 6 4 6

4 1 5 5 7
1 4 5 1 7 5 7 5 11 7

, , , , ,

, , , , ,

, , , ,

, , , ,

,x z z x

z z x z z

M M M M M

M M M M M

z

 10 

 

Utilizing these 42 scalar equations, the coefficient matrix is created. The 

coefficient matrix table can be examined in the Appendices. In order to find the 

unknown variables, the 42 by 42 coefficient matrix is inverted and multiplied 

from left by the vector of knowns. Consequently, the joint accelerations, the 

reaction forces and the reaction moments are acquired at the same time by a 

single operation as it happens in each of the four direct dynamics solutions. 

Up to here, the kinematic expressions of the simulation models and the equations 

of motion were developed and shown. The unknown variables of each phase were 

emphasized and the solution method was mentioned. As a part of this study, these 

expressions, equations and matrix representations were converted into Matlab® 

code in m-files. Then, these m-files were embedded in the simulation blocks. 

In the next section, the generation of the required torque values and the control 

algorithm used to achieve bipedal walking are explained for both the double and 

the single support phases. 
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3.3 Computed Torque Control Method 

As a matter of fact, a well-developed control algorithm is required to keep the 

human model in the desired posture (usually upright position), to satisfy some 

gait parameters like stride length, cycle time or speed and also to perform all 

these things in an energy-efficient way. Naturally, as it is observed in human 

beings’ gait, this algorithm must contain feedback of joint states to form an 

operational closed loop. 

The first part of this control algorithm is the computation of the torque values 

which appear in the vector of knowns in direct dynamics solutions. The computed 

torque control method is utilized for this purpose. It is commonly used in robotics 

applications. The primary process of this method is to get the dynamic equations 

in the form shown below. 

( ) ( ) ( )ˆˆ ,M q q B q q A q T+ =&& &  (3.117) 

In this equation, M̂ is the mass matrix, B is the bias vector and Â  is the 

coefficient matrix of the actuating torques. Hence, one can solve this equations 

system for T , taking q&&  as the vector of command accelerations ( q u=&& ). If  

, the solution is obtained as 0ˆdet( )A ≠

(1ˆ ˆT A M u B− )= +  (3.118) 

As it happens at the initial state of simulation, if , then the pelvis 

origin may be moved a negligibly small distance in the y-direction to avoid 

singularity. Although, it is advantageous by some means to use the Newton – 

Euler formulation for deriving equations of motion, some additional operations 

are required to put them into the form expressed in Equation (3.114). In order to 

get this form, the reaction forces and the reaction moments in the dynamic 

equations must be allocated and they must be kept apart. For this purpose, a 

partitioning procedure has been developed. This procedure and the application of 

the computed torque control method to humanoid gait simulation are explained in 

two separate parts for the single and the double support phases.  

0ˆdet( )A =

 65



3.3.1 Computed Torque Control Method for the Single Support Phase 

The single support phase models are open linkage systems. In these models, 

while one foot is stuck on the ground, the other foot moves freely. There are ten 

joints and obviously ten actuating torques in these models. As the result of this 

method, the actuating torques are generated by using the command accelerations 

coming from the controller block. The resultant torques are sent to the plant block 

as an input vector. The application of the computed torque control method 

necessitates the elimination of the reaction forces and the reaction moments in the 

dynamic equations. The following process explains the computed torque control 

method for the single support phases. 

Formerly, the matrix representation of the dynamic equations was in the structure 

seen in Equation (3.116). 

36 x1)36 x36)

36 x1)

((

(

ˆ
q
F K
M

⎡ ⎤
⎢ ⎥Γ =⎢ ⎥
⎢ ⎥⎣ ⎦

&&

 (3.119) 

The matrices in this structure are divided into suitable partitions shown below to 

remove the reaction forces and the reaction moments. 

 

11D̂  12D̂  

21D̂  22D̂  

q&&  

P  

1b  

2b  

1Â  

2Â  
=+

 

T   

 

 

where 

F
P

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
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The coefficient matrix ( ) is divided into sub-matrices:Γ̂ 11D̂ , 12D̂ , 21D̂ , 22D̂ . 11D̂  is 

a 10x10, 12D̂  is a 10x26, 21D̂  is a 26x10 and 22D̂  is a 26x26 sub-matrix. The 

next two equations can be derived easily from the structure shown above. 

11 12 1 1
ˆˆ ˆD q D P b AT+ + =&&

 (3.120)  

21 22 2 2
ˆˆ ˆD q D P b A T+ + =&&  (3.121) 

The vector of the reactions in the second equation can be extracted as 

(1
22 2 21 2

ˆˆ ˆP D A T D q b−= − −&& )  (3.122) 

The following equations are obtained, substituting Equation (3.122) into (3.120). 

( )1
11 12 22 2 21 2 1 1

ˆ ˆˆ ˆ ˆ ˆD q D D A T D q b b AT−+ − − +&& && =  

( ) ( ) ( )1 1
11 12 22 21 1 12 22 2 1 12 22 2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1D D D D q b D D b A D D A T− −− + − = −&& −  

Here, the coefficients can be re-named as 

( )
( )
( )

1
11 12 22 21

1
1 12 22 2

1
1 12 22 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆˆ ˆ

M D D D D

B b D D b

A A D D A

−

−

−

= −

= −

= −

 

Hence, the reaction forces and the reaction moments in the dynamic equations 

have been removed. Besides, the Newton – Euler equations have been re-

organized to suit the computed torque control method. There is a critical point in 

the derivation of these expressions. If the 26x26 sub-matrix “ 22D̂ ” happens to be 

singular, this method is useless. Incidentally, it has been experienced that if the 

partitioning is not made properly, 22D̂  turns out to be singular. Therefore, in 

order to have a non-singular “ 22D̂ ” matrix, some rows of the primary coefficient 

matrix  are interchanged together with consistent changes in Γ̂ K . For this aim, a 

short program was written in Matlab®. This program tries several alternative row 
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interchanges randomly and selects one of the non-singular arrangements. 

3.3.2 Computed Torque Control Method for the Double Support Phase 

For the double support phase models, this method covers the optimization of 

actuating torques in addition to the re-arrangement of the Newton – Euler 

equations. This is because the double support phase models are closed linkage 

systems.  Only, five of the eleven joint variables are independent. There are 

obviously eleven actuating torques in the double support phase models and they 

are redundant. For this reason, the actuating torques of the double support phase 

models are to be determined according to an optimization criterion. This 

optimization procedure and the computation of these eleven actuating torque 

values are summarized below. The optimization problem can be defined as 

follows. 

Minimize 

1
2

ˆtJ T W= T  (3.123) 

subject to 

ˆ ˆAT M u B C= + =  (3.124) 

The solution to this problem can be obtained by augmenting J as 

 ( )1
2

ˆˆt tJ T WT C ATλ= + −  (3.125)  

where 

λ  is the vector of the Lagrange multipliers, 

[ ]diagˆ
kW = w  is the weighting matrix, 

kw  is the weighting factor of the kth actuating torque. 

Moreover, inserting the angular velocities into the weighting matrix makes it not 

only a torque optimization but also a power optimization. The coefficient 

matrices ( Γ̂ ) of the double support phase models had been previously found in 

 68



dynamic equations section. Hence, they are available to generate the mass 

matrices of this method. However, their size was 36 by 42 without the 6 scalar 

constraint equations. In a similar manner described for the single support phase, 

these coefficient matrices must be divided into suitable partitions to eliminate the 

vector of reactions and to obtain the desired structure. As recalled, the dynamic 

equations excluding the constraint equations were in the form shown below. 

36 x1)36 x42)

42 x1)

((

(

ˆ
q
F K
M

⎡ ⎤
⎢ ⎥Γ =⎢ ⎥
⎢ ⎥⎣ ⎦

&&

 

At this stage, it is converted into the form given by Equation (3.114). One can use 

the following procedure for this aim. 

 

11D̂  12D̂  

21D̂  22D̂  

q&&  

P  

1b  

2b  

1Â  

2Â  
=+

 

T   

 

where 

F
P

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

11D̂  is a 5x11, 12D̂  is a 5x31, 21D̂  is a 31x11 and 22D̂  is a 31x31 sub-matrix. The 

expression above can be divided into the next two equations. 

11 12 1 1
ˆˆ ˆD q D P b AT+ + =&&

 (3.126)  

21 22 2 2
ˆˆ ˆD q D P b A T+ + =&&  (3.127) 

Re-arranging Equation (3.127), the vector of reactions is expressed as 

(1
22 2 21 2

ˆˆ ˆP D A T D q b−= − −&& )  (3.128) 

Then, substituting Equation (3.128) into Equation (3.126), the following 
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equations are obtained: 

( )1
11 12 22 2 21 2 1 1

ˆˆ ˆ ˆ ˆ ˆD q D D A T D q b b AT−+ − − +&& && =  (3.129) 

( ) ( ) ( )1 1
11 12 22 21 1 12 22 2 1 12 22 2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1D D D D q b D D b A D D A T− −− + − = −&& −  (3.130) 

Here, the coefficients can be re-named as 

( )
( )
( )

1
11 12 22 21

1
1 12 22 2

1
1 12 22 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆˆ ˆ

M D D D D

B b D D b

A A D D A

−

−

−

= −

= −

= −

 

As a result, the reaction forces and moments in the dynamic equations are thus 

eliminated. Besides, the Newton – Euler equations are transformed into a new 

arrangement that is suitable for computed torque control method. Nevertheless, 

there is a critical point in the derivation of these expressions, similar to the single 

support phase. They are valid while the 31x31 sub-matrix “ 22D̂ ” is not singular. 

In order to satisfy this condition, some rows of the primary coefficient matrices 

( ) are interchanged with consistent changes in Γ̂ K . For this aim, a short 

program, similar to the previous one, was written in Matlab®. 

After this, the optimization procedure continues in the way shown below. 

0J
T
∂

∂
=  (3.131) 

ˆˆ tWT A λ=   1 ˆˆ tT W A λ−⇒ =  (3.132) 

( )1ˆ ˆˆ tA W A Cλ− =  (3.133) 

( ) 11ˆ ˆˆ tAW A Cλ
−−=  (3.134) 

( ) 11 1ˆ ˆ ˆˆ ˆt tT W A AW A C
−− −=  (3.135) 

Finally, according to the given command accelerations, the eleven actuating 
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torques required in the double support phases are ready to be calculated at every 

step of the simulations. 

Throughout the simulation, an optimal predictive control algorithm generates the 

vector of command accelerations ( u ) for the use of computed torque control 

block. This algorithm is explained in the next section. 

3.4 Optimal Predictive Control (OPC) Algorithm 

In this thesis, an optimal predictive control algorithm is proposed to manage the 

desired motion of the humanoid model with minimum control effort as well as 

minimum deviation from the desired motion. The optimization process provides 

the ability to adjust the control stiffness of the system. In other words, the user 

can obtain a simulation which meets his priorities by altering the weighting 

factors in the optimization. For instance, preferring greater weighting factors for 

the angular accelerations results in an increase in the tracking error but rather low 

torque values.  

As the second feature of the control algorithm, the future values of the actual 

state variables are predicted. This prediction is achieved by using the Taylor 

series expansion. Since, the joint accelerations are used as the output of the 

controller, Taylor expansion is made to the second order. 

In the optimal predictive control algorithm, the controlled variables are the errors 

between the desired and the predicted future values of the position and velocity 

of O1, A10, A11 and G1 in the x, y and z-directions. So, the general performance 

measure is constructed as follows with the addition of joint accelerations to avoid 

extreme control effort.  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
2
1 1
2 2

* *

* *

ˆ

ˆˆ

t

t t

J p t t p t t H p t t p t t

v t t v t t R v t t v t t q Sq

⎡ ⎤ ⎡ ⎤= + ∆ − + ∆ + ∆ − + ∆⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ + ∆ − + ∆ + ∆ − + ∆ +⎣ ⎦ ⎣ ⎦
&& &&

 (3.136) 

In the expression of J, 

( )p t t+ ∆  is the predicted position vector at time t t+∆ , 
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( )v t t+ ∆  is the predicted velocity vector at time t t+∆ , 

(*p t t+ ∆ )  is the desired position vector at time t t+∆ , 

( )*v t t+ ∆  is the desired velocity vector at time t t+∆ , 

and 

ˆˆ ˆ, ,H R S  are the position, velocity and acceleration related weighting 

factor matrices, respectively. 

t∆  is the prediction time range that indicates how far the algorithm predicts. As 

 gets longer, the error between the predictions and the real values gets larger 

because of the truncated expansion. On the other hand, smaller  values cause 

larger control effort. This means that 

t∆

t∆

t∆  must be determined carefully to 

accomplish the desired simulation goals in a satisfactory manner. 

The predicted position vector is obtained as shown below: 

( ) ( ) ( ) ( )(1
2

p t t p t v t v t t+ ∆ = + + + ∆ ∆) t  (3.137) 

where 

( ) ( )( ) ( )ˆv t J q t q t= &  (3.138) 

and 

( ) ( )( ) ( ) ( )ˆv t t J q t t q t q t t⎡ ⎤+ ∆ = + ∆ + ∆⎣ ⎦& &&  (3.139) 

Equation (3.139) expresses also the predicted velocity vector. The two different 

Jacobian matrices in the equations (3.138) and (3.139) are defined as 

( )( )
( )

ˆ
q q t

pJ q t J
q
∂

∂ =

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

ˆ=  (3.140) 

( )( ) ( )
( )

ˆ ˆ ˆ
p

q q t q t

pJ q t t J q q t J
q
∂

∂ = + ∆

⎡ ⎤
+ ∆ = + ∆ = =⎢ ⎥

⎣ ⎦ &

&  (3.141) 
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The second Jacobian matrix is designated as ˆ
pJ , because it is calculated by the 

predicted joint angles not by the present joint angles. Then, substituting the 

equations (3.138) and (3.139) into equation (3.137), the predicted position vector 

is obtained as 

( ) ( ) ( ) ( )( )( )1
2

ˆ ˆp t t p t J q q J q q t q q t t+ ∆ = + + + ∆ + ∆ ∆& & & &&  (3.142) 

The aim in the optimal predictive control algorithm is to find the joint 

accelerations which minimize the performance measure given by Equation 

(3.136). The process starts with the equation below: 

0J
q
∂

∂
=

&&
 (3.143) 

The solution is straight forward if one organizes Equation (3.143) in the 

following form: 

0Ĝq K+ =&&  (3.144) 

where 

4 21
4

ˆ ˆ ˆ ˆ ˆ ˆ ˆt t
p p p pG t J HJ t J RJ Ŝ= ∆ + ∆ +  (3.145) 

and 

2
1

1
2

ˆ ˆ ˆ ˆt t
p p 2K t J HL tJ RL= ∆ + ∆  (3.146) 

where 

( ) ( ) ( ) (1
1
2

*ˆ ˆ
p )L p t J J q t t p t t= + + ∆ − + ∆&  (3.147) 

( ) ( ) ( )2
*ˆ

pL J t q t v t t= −& + ∆  (3.148) 

Finally, 

1ˆq G K−= −&&  (3.149) 

Hence, the joint accelerations which minimize the performance measure are 
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obtained and they are sent to the computed torque block as the command 

accelerations. 

Two different types of the aforesaid algorithm are presented in the ongoing 

sections. First type is derived for the double support phase and the second one is 

for the single support phase. Like some other parts of the simulation, in the 

optimal predictive control part, the difference between the left and right foot flat 

models is only the shifting of indices. Therefore, the procedure was not repeated 

for the left and right foot flat models of the same phase.  

3.4.1 Single Support Phase OPC Algorithm 

During the single support phase, the goal is to move the body forward on one foot 

while the other swings in the air. In this phase, the desired position and velocity 

of the origin O1 and the mass center G1 of body-1 and the heel point of the 

swinging foot are taken as the reference values. By controlling both the points O1 

and G1, not only the desired location but also the desired orientation of HAT is 

achieved. Since, the “right foot flat single support phase” model is preferred to 

demonstrate, the positions of O1, G1 and A10 are derived as follows: 

( )

( )

2 9 72 91 11 1 11

1 11

2 9 7 5 1 31 11

11 3 7 3 5 3

1 2

uuu u
O A

u uur

p p a u a e e u a e e u

a e e e u

θ θθθ θ

θ θ θ θθ

− +−− −

− + + −−

= + + +

+

%%% %

% %%
 (3.150) 

( )

( ) ( )
2 9 72 91 11 1 11

1 11

2 9 7 5 1 31 11

11 3 7 3 5 3

1 2 1 3

uuu u
G A

u uu r

p p a u a e e u a e e u

e e e a u c u

θ θθθ θ

θ θ θ θθ

− +−− −

− + + −−

= + + +

+ +

%%% %

% %%
 (3.151) 

( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 9 72 91 11 1 11

10 11

2 9 7 5 2 9 7 5 1 3 21 11 1 11 2 4

2 9 7 5 1 3 2 2 4 61 11

2 9 7 51 11

11 3 7 3 5 3

1 2 4

6 3

10

uuu u
A A

u u uu u

u u uu

u uu

p p a u a e e u a e e u

a e e u a e e e e u

a e e e e u

a e e e

θ θθθ θ

θ θ θ θ θ θ θ θθ θ

θ θ θ θ θ θ θθ

θ θ θθ

− +−− −

− + + − + + − −− −

− + + − − +−

− + + −−

= + + +

+ −

−

−

%%% %

% % %% %

% % %%

% %% ( ) ( )

3
u θ%

1 3 2 2 4 6 8 1 10
3

u ue e uθ θ θ θ θ θ− + +% %

 (3.152) 

The functions that would be optimized at the position level of the single support 

phase are: 
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1

1

1

10

10

10

1

1

1

1

1 2

2
3

3
14

5 2

6 3
7

1
8

29

3

t
O

t
O

t
O

t
A

t
A

t
A

t
G

t
G

t
G

u p

p u p
p

u p
p

u pp
p p u p

p u p
p

u pp
u pp

u p

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎣ ⎦

⎥  (3.153) 

The Jacobian matrix  is represented as Ĵ

1 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10

1 1 1 1 1 1

11 9 7 5 3 2 4 6 8 10

11 9 7 5 3 2 4 6 8 10

11 9 7 5 3 2

ˆ

O O O O O O O O O O

A A A A A A A A A A

G G G G G G

p p p p p p p p p p

p p p p p p p p p p
J

p p p p p p

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

=

1 1 1 1

4 6 8 10

G G G Gp p p p
θ θ θ θ

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 

( ) ( )

( ) ( )

1 2 9 7 2 9 7 52 9 1 31 11 1 11 1 11

1 2 9 7 2 9 7 52 9 1 31 11 1 11 1 11

1

7 1 3 5 1 3 1 1
11

7 2 3 5 2 3 1 2
9

5
7

O u uu uu u ur

O u uu uu u ur

O

p
a e u e u a e u e u a e u e e u

p
a e e u u a e e u u a e e u e u

p
a

θ θ θ θ θθ θθ θ θ

θ θ θ θ θθ θθ θ θ

θ

θ

θ

∂ − + − + +− −− − −

∂

∂ − + − + +− −− − −

∂

∂

∂

= − − −

= − − −

= −

% %% %% % %

% %% %% % %

% % %

% %
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2

2%
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In the single support phase models, the following weighting matrices are used: 

[ ]1 2 3 4 5 6 7 8 9
ˆ , , , , , , , ,H diag h h h h h h h h h=  

[ ]2
1 2 3 4 5 6 7 8 9

ˆ , , , , , , , ,R t diag r r r r r r r r r= ∆  

[ ]4
1 2 3 4 5 6 7 8 9 104ˆ , , , , , , , , ,S t diag s s s s s s s s s s= ∆  

As the result of the proposed algorithm, ten command accelerations are computed 

in an optimal way. These are 11 9 7 5 3 2 4 6 8 10, , , , , , , , ,θ θ θ θ θ θ θ θ θ θ&& && && && && && && && && &&  for both the right 

and the left foot flat single support phases. After this, they are sent to the 

computed torque block.  

 77



3.4.2 Double Support Phase OPC Algorithm 

As mentioned before, during the double support phase, the goal is to move the 

body forward while both feet are attached to the ground. In this phase, the desired 

position and velocity of body-1’s origin O1 and the mass center, G1, of the same 

body are taken as the reference values. Thus, the location and the orientation of 

HAT are controlled. Since the “right foot flat double support phase” model is 

preferred, the position vectors with respect to the earth fixed frame are derived as: 

( )
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1 11
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Functions that would be optimized at the position level are 
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The Jacobian matrix  is represented as Ĵ

1 1 1 1

1 1 1 1

11 9 7 5 3

11 9 7 5 3

ˆ

O O O O O

G G G G G

1

1

p p p p p

J
p p p p p
θ θ θ θ θ

θ θ θ θ θ

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 
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The weighting matrices used in the double support phase models are 

[ ]1 2 3 4 5 6
ˆ , , , , ,H diag h h h h h h=  

[ ]2
1 2 3 4 5 6

ˆ , , , , ,R t diag r r r r r r= ∆  

[ ]4
1 2 3 4 54ˆ , , , ,S t diag s s s s s= ∆  

As the result of the proposed algorithm, five command accelerations, belong to 

the right leg joints, are generated minimizing the performance measure. These 

joint accelerations are 11 9 7 5 3, , , ,θ θ θ θ θ&& && && && &&  for the “right foot flat double support 

phase and 10 8 6 4 2, , , ,θ θ θ θ θ&& && && && &&  for “the left foot flat double support phase”. Different 

than the single support phase, six command accelerations remain unknown. In the 
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double support phase models, the six scalar constraint equations of the 

acceleration level provide these unknown accelerations. At the end, total of 

eleven acceleration commands happen to be computed and available for use in 

the computed torque control block. 

The Matlab® codes, developed for the optimal predictive control algorithm are 

written in four separate m-files for each of the four models. 

3.5 Inverse Kinematics 

As it may have been noticed, there are many distinctions between the single 

support and the double support models. Mainly, the double support model is a 

closed linkage while the single support model is an open linkage. Naturally, the 

motion of the double support model is constrained as a result of the closed 

linkage. This means the double support model may be unable to achieve every 

motion which is possible for the single support model. This causes a major 

difficulty in the transition from the single support phase to the double support 

phase. Neither the joint variables nor the joint velocities of the single support 

model can be carried on as the initial joint variables of the double support model. 

Another reason of this event is the immediate flattening of the landing foot just 

after the heel strike. Because of these two subjects, the initial joint variables of 

the double support model must be determined again. 

Obviously, it is unnatural to define a single posture which is assigned as the 

initial state of every double support phase. In this study, it is aimed to maintain a 

natural gait as far as possible. For this purpose, the deviation of the joint variables 

during the transition is reduced by utilizing an inverse kinematic solution. Since 

two double support models are incorporated in the simulation, there are two 

similar inverse kinematic solutions; one for the left foot flat double support model 

and one for the right foot flat double support model. Only the expressions 

corresponding to one of these solutions are presented because the procedures are 

identical. Hence, the right foot double support model has been selected for the 

presentation of the inverse kinematic analysis. 
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For the inverse position analysis, the position of the origin of body-1 with respect 

to the heel points are taken from the past single support model. However, the 

orientation of body-1 cannot be carried on because the right leg has only 5 joints 

to maintain that orientation. Because of this deficiency, the inverse kinematic 

solution gives inexact results. If there were a joint for yaw motion at the hip, this 

would not be a problem. In order to overcome this problem, the orientation of 

body-1 about y-axis is neglected. Therefore, the orientation matrix is defined as 

( )1 2 10ˆ uC e θ θ+= %  (3.157) 

and the position vector from the point A11 to O1 becomes 

1 11 11 3 1 2
ˆr

O Ar p p a u a Cu= − − −  (3.158) 

Using these known values, the joint angles of the right leg are obtained as 

described below. 

( ) ( )11 7 11 5
7 3 5

,ˆ ˆr a C u a C u= + 3
,  (3.159) 

multiplying both sides by 1 11ue θ  from the left 

( )2 9 72 91 11
7 3 5

uuue r a e u a e uθ θθθ − +−= + %%%
3  (3.160) 

multiplying both sides by 2
tu  from the left 

1 11
2 0utu e rθ =%  (3.161) 

( )2 11 3 11 0cos sint tu u rθ θ− =

r

 (3.162) 

11 2 11 3cos sinrθ θ=  (3.163) 

Hence 

( )11 11 2 11 3 11atan2 1, ,r rθ σ σ σ= m=

C

 (3.164) 

Then, going back to orientation matrix 

( )2 9 7 5 1 3 1 11 ˆ ˆu u ue e e Cθ θ θ θ θ− + + − ∗= =% % %  (3.165) 
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Pre-multiplying by 2
tu  

1 3
2

ˆutu e u Cθ− ∗=%
2
t  (3.166) 

2 3 3 3 2
ˆcos sint tu u uθ θ tC∗+ =  (3.167) 

3 2
ˆcos Cθ ∗= 2

3

)22

9

 (3.168) 

3 2
ˆsin Cθ ∗=  (3.169) 

Hence 

(3 23atan2 ,C Cθ ∗ ∗=  (3.170) 

Since,  

9 7 5θ θ θ φ+ + =  (3.171) 

multiplying Equation (3.165) by 1u  from the right  

2 9
1

ˆue u C uφ− ∗=%
1  (3.172) 

1 9 3 9
ˆcos sinu u Cφ φ 1u∗+ =  (3.173) 

9 1
ˆcos Cφ ∗= 1

1

)11

 (3.174) 

9 3
ˆsin Cφ ∗=  (3.175) 

Hence 

(9 31atan2 ,C Cφ ∗ ∗=  (3.176) 

Going back to Equation (3.160)  

1 11ur e rθ∗ = %  (3.177) 

( )2 9 72 9
7 3 5

uur a e u a e uθ θθ − +−∗ = + %%
3  (3.178) 

( )2 9 72 9
1 7 1 3 5 1

uut tr a u e u a u e uθ θθ − +−∗ = + %%
3  (3.179) 
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( )1 7 9 5 9 7sin sinr a aθ θ θ∗ = − − +  (3.180) 

and 

( )2 9 72 9
3 7 3 3 5 3

uut tr a u e u a u e uθ θθ − +−∗ = + %%
3  (3.181) 

( )3 7 9 5 9 7cos cosr a aθ θ θ∗ = + +  (3.182) 

Square the equations (3.180), (3.182) and adding them 

( ) ( )2 2 2 2 2
1 7 9 5 7 9 9 7 5 92sin sin sin sinr a a a a 7θ θ θ θ θ θ∗ = + + + +  (3.183) 

( ) ( )2 2 2 2 2
3 7 9 5 7 9 9 7 5 9 72cos cos cos cosr a a a aθ θ θ θ θ θ∗ = + + + +  (3.184) 

2 2 2 2
1 3 7 5 5 72 cosr r a a a a 7θ
∗ ∗+ = + +  (3.185) 

2 2 2 2
1 3 7 5

7
5 72

cos r r a a
a a 7θ ξ

∗ ∗+ − −
= =  (3.186) 

2
7 7 7 71sin ,θ σ ξ σ= − = m1 (3.187) 

Hence 

( )2
7 7 7atan2 1 , 7θ σ ξ ξ= −  (3.188) 

Re-arranging the equations (3.180) and (3.182) 

7 9 5 9 7 5 9 7sin sin cos cos sina a aθ θ θ θ θ 1r
∗+ + = −

3r

 (3.189) 

7 9 5 9 7 5 9 7cos cos cos sin sina a aθ θ θ θ θ ∗+ − =  (3.190) 

Treating 9sinθ  & 9cosθ  as if independent and solving as linear equations 

( )
( )

7 5 7 5 7 9 3

5 7 7 5 7 9 1

cos sin cos
sin cos sin

a a a r
a a a r

θ θ θ
θ θ θ

∗

∗

⎡ ⎤⎡ ⎤+ − ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Determinant of the coefficient matrix is 

( ) (2
7 5 7 5 7cos sina a a )2θ θ∆ = + +  (3.191) 
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If ; 0∆ ≠

( )7 5 7 1 5 7 3
9

cos sin
sin

a a r a rθ θ
9θ ξ

∗ ∗− + −
=

∆
=  (3.192) 

( )7 5 7 3 5 7 1
9

cos sin
cos

a a r a rθ θ
9θ η

∗ ∗+ −
=

∆
=

)9

 (3.193) 

Hence 

(9 9atan2 ,θ η ξ=  (3.194) 

and 

(5 9 9 7 )θ φ θ θ= − +  (3.195) 

Thus, the joint angles 11 9 7 5 3, , , ,θ θ θ θ θ  are obtained to maintain a similar posture 

of the past left foot flat single support model. The joint angles of the left leg 

( 10 8 6 4 2, , , ,θ θ θ θ θ ) are obtained using the same procedure. The orientation matrix 

is equal to the one, given in Equation (3.157). However, the position vector is 

from the point A10 to O1. 

 
1 10 11 3 1 2

ˆl
O Ar p p a u a Cu= − − +  (3.196) 

The sign ambiguities in the inverse solution are specified as shown below to 

attain the desired configuration. 

 11 7 10 6 1σ σ σ σ= = = =  

After the joint angles are obtained by the inverse position analysis, the joint 

velocities are to be found. The solution procedure starts with the derivation of the 

Jacobian matrix. It is built to get the right leg joint velocities as described below. 

ˆV Jq= &  (3.197) 

where 

V  is the 6x1 column matrix which includes the components of the linear 

  and angular velocity of body-1, 
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Ĵ  is the 6x5 Jacobian matrix, 

q&  is the column matrix including 11 9 7 5 3, , , ,θ θ θ θ θ& & & & &  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

11
11 09 09 07 11 09 09 05 11 09 09 01

21 7 1 3 5 1 3 1 1 2

31

12
11 07 11 05 11 03 03 01

22 7 1 5 1 1 2 2

32

13
11 05 11 03

23 5 1 1 2

33

, , , , , ,

, , , ,

, ,
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r

r
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J

J
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⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥ = − − −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥ = − −⎢ ⎥
⎢ ⎥⎣ ⎦

% % %

%

% ( )

( ) ( )
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03 01
2

14
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35
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ˆ
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r
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J
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J
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J
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Since, the number of the right leg joints is deficient, equation (3.197) is solved by 

using the pseudo-inverse of the Jacobian matrix. 

1ˆq J V−=&  (3.198) 

Thus; 11 9 7 5 3, , , ,θ θ θ θ θ& & & & &  are obtained. The left leg joint velocities 12 10 8, , ,θ θ θ& & &  

6 4 2, ,θ θ θ& & &  are acquired by the constraint equations (3.48) and (3.51) which have 

been derived in section 3.1.4. 

As a result, the deviation of the joint variables during the transition from the 

single support phase to the double support phase is reduced as far as possible by 

utilizing this inverse kinematic solution. 
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CHAPTER 4 

SIMULATION ENVIRONMENT 

The physical and mathematical models, the resultant expressions of the applied 

methods for both direct and inverse dynamic solutions and also the control 

algorithm used in the simulation were introduced in the previous chapters. After 

this analysis, in order to simulate the gait of a humanoid walker, the mathematical 

expressions are to be translated into a programming code and they must be 

computed effectively. For this purpose, Matlab® software and one of  its add-in 

tools, Simulink® were preferred because of their superior features.  

Matlab® is a high-performance language for technical computing. It integrates 

computation, visualization, and programming in an easy-to-use environment 

where problems and solutions are expressed in familiar mathematical notation. 

Simulink® is a software package for modeling, simulating, and analyzing 

dynamic systems [30]. 

Employing these tools in the thesis study provided many benefits. First of all, 

such a programming environment permits the user to gain full control over the 

simulation. The restrictions which must be admitted are at a minimum number. 

Therefore, the user becomes able to edit every part of the simulation freely. In 

this connection, each part of the presented humanoid gait simulation is accessible 

and re-configurable. For instance, another researcher can upgrade the control 

algorithm partially while keeping the rest of the simulation the same.    

The detailed usage of Matlab® and Simulink® will be described in the following 

sections. Also, in this chapter, the main structure and the subsystems of the 

Simulink® model will be presented. Moreover, the simulation configuration 

parameters will be discussed in a detailed manner. 
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The Simulink® models built for this study are hierarchical. They are organized 

using the bottom-up approach. In this approach, many blocks constitute a 

subsystem and at a higher layer, these subsystems are collected in a larger 

subsystem. At the top layer, the main system model includes all the subsystems 

and the Simulink® blocks. By this way, the organization of the simulation 

becomes comfortable and compact block diagrams are attained. This feature also 

makes the simulation structure more realizable. 

As it happens in every simulation platform, some parameters are to be determined 

before the program runs. These parameters refer to two different types of 

parameters in this study. The first one is the configuration parameters of 

Simulink® software. These are determined according to the characteristics of the 

simulated dynamic system. The second type of parameters is directly related to 

the built model. For this study, the mass and height of the humanoid walker, the 

weighting factors used in the optimization, the prediction time range ( ) and 

similar internal constants like gravitational acceleration are this kind of 

parameters. 

t∆

In the proposed simulation model, “fixed-step” type, “ode1” continuous solver is 

used because the model has continuous states. By this solver, numerical 

integration is performed to compute the values of these continuous states. The 

integration technique preferred is Euler’s method (ode1). The integration 

techniques used by the fixed-step continuous solvers trade accuracy for 

computational effort. Since, the accuracy is satisfied by the effective control 

algorithm, the shortest computation time is aimed in this study. Therefore, the 

least complex integration method was chosen. Furthermore, this “fixed-step” type 

solver computes the simulation's next time by adding a fixed-size time step to the 

current time. The fixed step size was chosen as 0.01 seconds after a lot of trials. 

Although, the computation time increases with smaller step sizes than 0.01, no 

valuable enhancement occurs in the simulation. Besides, the stop time of 

simulation is not critical. It may run forever for the proposed model. Of course, a 

minimum period is needed to complete a full gait cycle. 
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For the simulation presented in the thesis, the mass and height of the humanoid 

walker were taken as 56 kg and 1.60 m. The gravitational acceleration (g) is 

indicated as 9.81 m/s2 in the necessary m-files of the model. The rest of this kind 

of configuration parameters will be mentioned in the relevant sections. 

4.1 The Main System of the Simulink® Model  

As it may have been remembered, the full gait cycle was divided into four 

successive phases. The model of each phase is constructed in a subsystem and the 

integrity of these four models is achieved in the main system. At this top-layer, 

the phase selector subsystem provides the transitions from the model of one phase 

to the model of another phase. In Figure 4.1, the main system and its subsystems 

are illustrated. 

 

3-D HUMANOID GAIT SIMULATION USING 
AN OPTIMAL PREDICTIVE CONTROL ALGORITHM

MAIN SYSTEM

In1

T4

In1

T3

In1

T2

In1

T1

Right Foot-Flat Single Support

Right Foot-Flat Double Support

In1

Out1

Out2

Out3

Out4

Phase Selector

Left Foot-Flat Single Support

Left Foot-Flat Double Support

Jvelocities

p_A10

Jangles

p_O1

p_A11

time4time3time2p_A11 time1Jvelocitiesp_A10 Janglesp_O1

 

Figure 4.1 The main system (top-layer) of the Simulink® model 
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In the main system, the phase selector subsystem has a critical importance for the 

proper operation of the simulation model. It decides the current phase of gait 

comparing the positions of the origin O1 (body-1’s frame origin), A10 and A11 (the 

heel points of the left and the right foot). Internal structure of the phase selector 

subsystem is shown in Figure 4.2. 

 

Figure 4.2 The phase selector subsystem 

In the conditional block (If1), there are four “if expressions” employing 6 inputs. 

These inputs are as defined below: 

u1 is the z component of A10

u2 is the z component of A11

u3 is the x component of A10

u4 is the x component of A11

u5 is u3 minus the x component of O1 

u6 is u4 minus the x component of O1

 90



The four conditional statements are as follows: 

1. If u1 <= 0.001  &  u3 > u4  &  u5 > 0.02 then Out1. 

2. If u5 <= 0.02  &  u2 > 0.001 then Out2. 

3. If u2 <= 0.001  &  u4 > u3  &  u6 > 0.02 then Out3. 

4. If u6 <= 0.02  &  u1 > 0.001 then Out4. 

The explanation of the first statement is that IF the left heel is above the ground 

0.001 m or less AND it is in front of the right heel AND the distance between A10 

and O1 in the x-direction is greater than 0.02 m THEN the “left foot flat double 

support phase” is the current phase. Similarly, in the third expression, it is stated 

that IF the right heel is above the ground 0.001 m or less AND it is in front of the 

left heel AND the distance between A11 and O1 in the x-direction is greater than 

0.02 m THEN the “right foot flat double support phase” is the current phase. The 

second statement expresses that IF the distance between A10 and O1 in the x-

direction is less than or equal to 0.02 m AND the right heel is above the ground 

more than 0.001 m THEN the “left foot flat single support phase” is the current 

phase. Similarly, the fourth expression states that IF the distance between A11 and 

O1 in the x-direction is less than or equal to 0.02 m AND the left heel is above the 

ground more than 0.001 m THEN the “right foot flat single support phase” is the 

current phase. By this way, the transitions from one phase model to another one 

are achieved successfully. As every part of the simulation, these statements can 

also be modified for different desired walking patterns. 

The main system includes four more subsystems. Each one of these subsystems 

includes the blocks of four separate phases. During the simulation process, they 

are enabled one after the other by the phase selector subsystem. These four 

subsystems take the name of the phase which they simulate. These are: 

1. The left foot flat double support subsystem 

2. The left foot flat single support subsystem 

3. The right foot flat double support subsystem 

4. The right foot flat single support subsystem 
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The internal structure, the running procedure and other properties of these 

subsystems will be explained in separate sections. 

Moreover, in the main system, there are nine “data store memory blocks”. They 

are used to store some variables. These are the coordinates of the points O1, A10 

and A11, the joint angles, the joint velocities and the timer data. The “data store 

read blocks”, at any layer, access the “data store memory blocks” and transmit 

data to the relevant block. In a similar manner, the “data store write blocks”, send 

data from any layer to the “data store memory blocks” at the top-layer. Hence, the 

continuity is provided in the simulation. Four timer memory blocks are placed in 

the main system. Each one of them is associated to a single phase model. For 

instance, when the “left foot flat single support phase” subsystem is enabled, 

“time2” memory block starts to store the phase time of this subsystem from zero 

to the end of the phase and at the end, it resets to zero by the subsystem “T2”. 

The internal view of the “T2” subsystem is shown in Figure 4.3. This procedure 

runs independent of the simulation time and it is required to set the initial values 

of the starting phase. 

 

 

Figure 4.3 The “T2” phase time reset subsystem 
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Furthermore, some common subsystems are present both in the double support 

phase subsystems and in the single support phase subsystems. These are the 

integration subsystem, the trigger subsystem and the timer subsystem. 

The integration subsystem contains many integration blocks. The function of this 

subsystem is to compute the joint velocities and the joint angles by integrating the 

joint accelerations at each step due to the specified solver. Also, the initial values 

of these variables are assigned in the integration subsystem by external signals. In 

order to follow the signal lines in this subsystem easily, several multiplexer and 

de-multiplexer blocks are used and the integration blocks belonging to a joint are 

grouped together. In Figure 4.4, the internal structure of these groups can be 

examined. Here the input port 1 is the joint acceleration, 2 is the initial joint 

velocity and 3 is the initial joint angle. The output port 1 is the angular 

displacement and 2 is the angular velocity. Besides, a trigger signal (input port 4) 

is generated to reset the initial values of the integration blocks at the beginning of 

each phase. One of the four integration subsystems is shown in Figure 4.5. 

 

 

Figure 4.4 Internal structure of a joint’s integration subsystem 
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The trigger subsystem, shown in Figure 4.6, generates the trigger signal at the 

beginning of the phase. Hence, the integration process starts with the latest joint 

variables. Without this subsystem, the values at the beginning of the simulation 

would be initialized at every run of a phase model. Therefore, a proper gait could 

not be carried out. In this subsystem, if the phase time (not the simulation time) is 

zero, the output signal is “1”; else it is “0”. 

 

 

Figure 4.6 The trigger subsystem 

The timer subsystem is an essential subsystem. Since, the simulation is performed 

phase by phase; the instants of start and stop of a phase acquire very much 

importance. At the beginning of a phase (i.e. when the phase time is zero), the 

last position values of O1, A10 and A11 points are sent from the previous phase 

model to the current one as the initial values. Also, at the end of the phase, the 

phase time must be reset for a next run. For this reason, a particular timer other 

than the default clock block which shows the simulation time was built. By this 

subsystem, it becomes also possible to operate the trigger subsystem and the 

reference input subsystems of both the double and single support phase models. 

In Figure 4.7, the timer subsystem is illustrated. 

After the explanation of these common subsystems of the simulation, the four 

subsystems of the single and the double support phases are presented in the 

following sections. 
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Figure 4.7 The timer subsystem 

4.2 The Single Support Phase Subsystems 

The main system of the simulation model includes two single support phase 

subsystems. One of them contains the “left foot flat single support phase” model 

and the other one contains the “right foot flat single support phase” model. The 

only difference between these subsystems is in the contents; otherwise their 

structures are the same. In the Figure 4.8 and 4.9, these Simulink subsystems are 

illustrated.  

These subsystems are enabled when the phase selector subsystem sends them a 

signal of “1”. Then, the timer subsystem starts to count the phase time. At the 

first step, when the phase time is zero, the trigger subsystem resets the initial 

values in the integration subsystem and the initials of the model are assigned 

from the data store memory blocks of p_O1, p_A10, p_A11 in the top layer.  

Meanwhile, the reference input subsystem of the single support phase model 

starts running using the phase time data. 

The reference input subsystem contains the position and velocity components of 

point O1 (origin of body-1’s frame) and the heel point of the swinging foot. It is 

possible to change these reference values according to the desired gait. In this 

subsystem, the prediction time range ( t∆ ) is specified and the desired future 

values of the references happen to be obtained in this manner.  The reference 

input subsystem is illustrated in Figure 4.10. 
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Figure 4.10 The reference input subsystem of the single support model 

It may have been noticed in Figure 4.10 that a straight line, 80 cm above the 

ground is described as the desired path of origin O1. The desired velocity is 

specified as 0.2 m/s in this direction and the prediction time range is specified as 

0.02 seconds. The desired paths of the left heel point (A10) in the “right foot flat 

single support phase” and the right heel point (A11) in the “left foot flat single 

support phase” are the same. These paths are determined by the eigth order 

polynomials given by the following equations: 
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 8 91429 8 2 67406 7  0 00039 9

 0 00165 6  4 83

. . .

. . .

. .

xP u e u e u e u

e u e u e u

e u u

= − + −

+ − +

− +

6

3

6

3

 (4.1) 

( ) 8 7

5 4

2

1 39834 11 3 37575 10 3 21689 9

1 51404 8 3 59123 6 4 15695 4

 390 4 43 35 45

. . .

. . .

. .

zP u e u e u e u

e u e u e u

u u

= − + −

+ − +

− + +

 (4.2) 

These polynomials depend on the position of O1 point in the x-direction, not on 

time. Hence, a synchronous motion between the HAT and the swinging foot is 
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achieved. Since, the desired velocity of O1 point is constant during the single 

support phase; it becomes easy to specify the relation between the phase time (t) 

and the independent variable of the polynomials (u). This relation is expressed as: 

1 1

x
O Ou =Χ = v t

4

4

 (4.3) 

The reference paths of the heel points are defined according to some criteria. 

Firstly, the path should be smooth and differentiable. So, the swinging foot 

becomes able to perform a continuous motion. Secondly, the maximum height of 

the foot from the ground is adjusted for a normal gait. In the determination of 

these desired paths, an extra attention was paid to the heel contact of the swinging 

foot. It is aimed to generate the least possible impact during the landing of foot. 

Hence, the desired paths are designed to achieve a soft touch on the ground. In 

the optimal predictive control algorithms of the single support phase models, the 

desired velocity components of the heel points are also required together with the 

desired position components. Therefore, the desired velocity values of the heel 

points are obtained by differentiating the above polynomials once. The 

polynomials representing the velocities are given below: 

( ) 7 6 5

3 2

4 5563 9  1 0456 9 9 6052 7  4 4571 6

0 10696 6  1164 9 3 3059  4 8294

- . . . .

- . . . .
xP u e u e u e u e u

e u u u

′ = + − +

+ − +
 (4.4) 

( ) 7 6 5

3 2

1 1187 9  2 363 8 1 9301 7  7 5702 5

1 4365 4  124 71 0 77474  4 4318

- . . . .

- . . . .
zP u e u e u e u e u

e u u u

′ = + − +

+ − +
 (4.5) 

 

During the simulation, total of twelve desired values enter the optimal predictive 

control (OPC) subsystem, in this phase. This subsystem generates the ten 

command accelerations of the joints. In the OPC subsystem, a Matlab function 

block is placed and an m-file which contains the algorithm described in Chapter 3 

is embedded in this block. The optimization weighting factors used in this 

subsystem have a great influence on the humanoid gait. These factors were 

decided by the trial-and-error procedure. During this procedure, the minimization 

of the heel point position error was kept prior to the minimization of the position 
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error of body-1. Also, having lower actuating torques was another emphasized 

criterion.  

After that, all the command accelerations enter the computed torque subsystem. 

The computation algorithm for the required single support phase actuating 

torques was introduced in Chapter 3. This algorithm is employed by the m-file in 

the Matlab function block of the computed torque subsystem. As the output of 

this subsystem, ten actuating torque values are obtained and they are sent to the 

humanoid model subsystem (the plant). Similar to the previous subsystems, an m-

file is embedded in the Matlab function block of the plant. The m-file 

representing 36 Newton – Euler equations produces the joint accelerations using 

3 input vectors: the actuating torques, the angular displacements and the angular 

velocities. Moreover, the reaction forces and the reaction moments are obtained 

as the other outputs of this subsystem.  

The joint angles and the joint velocities become available, after the integration of 

the joint accelerations. Then, the cascaded loops are closed and the simulation 

runs another step. This cycle continues until the condition of the next phase is 

satisfied. 

The forward kinematics subsystems of the single support phases compute the 

kinematic expressions given in Chapter 3 using the joint variables. Hence, all the 

kinematic information about each link of the humanoid walker comes out. Also, 

this subsystem visualizes the humanoid walker by generating a 3D plot. 

The initial values of the joint variables in the integration subsystem of the single 

support phase models are assigned directly from the memory blocks. Hence, the 

values of the last double support phase joint variables can be used as the initials 

of the new single support phase. This property assures the continuity of the 

humanoid gait when passing from the double support phase to the single support 

phase. 

Up to here, the common features of the two single support phase subsystems are 

explained. However, there are some distinctions between the two. Firstly, 

separate m-files are utilized in the Matlab function blocks of the left foot flat and 
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the right foot flat single support subsystems. For instance, the m-file, 

“Torquer_SS_right.m” is used in the computed torque control subsystem of the 

“right foot flat double support phase”, while; the m-file, “Torquer_SS_left.m” is 

used in the computed torque control subsystem of the “left foot flat double 

support phase”. Secondly, the Goto/From blocks exchange for the left foot flat 

and the right foot flat periods. While; the initial position data of the right heel 

point (A11) are used in the OPC subsystem of the “right foot flat double support 

phase”, in the left foot flat one, the initial position data of the left heel point (A10) 

are used. 

4.3 The Double Support Phase Subsystems 

Two double support phase subsystems are built for the simulation. One of them 

contains the “left foot flat double support phase” model and the other one 

contains the “right foot flat double support phase” model. The structure of these 

subsystems is identical, but their contents are different. The common features of 

these two subsystems are presented over one of them and the distinctions are 

emphasized. The subsystems of the left and the right foot flat double support 

phases can be examined in Figure 4.11 and 4.12. 
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Similar to the single support phase models, these subsystems are enabled by the 

phase selector subsystem. Firstly, the timer subsystem starts to count the phase 

time. The trigger subsystem resets the initial values in the integration subsystem 

at the first step and the initials of the model are assigned.  In the meantime, the 

reference input subsystem of the double support phase model starts running using 

the phase time data. 

These parts of the double support phase subsystems are identical with the single 

support phase subsystems. But, the difference comes to place at the reference 

input subsystem. The reference input subsystems contain only the position and 

velocity components of point O1 (origin of body-1’s frame) in this phase. It is 

possible to change these reference values according to the desired gait. In this 

subsystem, the desired future values of the references are obtained by providing 

the sum of the phase time and the prediction time range ( t∆ ). The reference input 

subsystem of the double support phase subsystems is illustrated in Figure 4.13. 
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Figure 4.13 The reference input subsystem of the double support model 

While, the desired height of the origin O1 from the ground is same as it was in the 

single support phase (80 cm), the desired velocity in the  x-direction is increased 
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to 0.6 m/s. Also, the prediction time range is increased and specified as 0.05 

seconds. The reason of these changes is the desire to have a faster walking. By 

altering these parameters, the walking speed and the control stiffness can be 

adjusted. However, these changes effect the next single support phase and 

certainly the parameters of that phase must be updated together with the 

optimization factors.  

During the simulation, the desired values are handled by the optimal predictive 

control (OPC) subsystem. This subsystem generates the five command 

accelerations of the joints at the flat foot side. In the OPC subsystem, a Matlab 

function block is placed and an m-file (Optimal_DS_left.m or 

Optimal_DS_right.m) which contains the algorithm described in Chapter 3 is 

embedded in that block. After that, the remaining six command accelerations are 

calculated from the six scalar constraint equations and added to the preceding five 

command accelerations. So, total of eleven command accelerations are acquired 

to drive eleven joints. 

 Then, all the command accelerations enter the computed torque subsystem. The 

algorithm of the computation of required double support phase actuating torques 

was introduced in Chapter 3. The weighting factors in the optimization procedure 

of computed torque algorithm are carried out by trial-and-error method. The main 

goal of these trials was to reduce the ankle joint accelerations while keeping the 

tracking error tolerable. However, in order to realize different goals, one can 

select different weightings. This algorithm is employed by the m-file in Matlab 

function block of the computed torque subsystem. As the output of this 

subsystem eleven actuating torque values are obtained and they are sent to the 

humanoid legs model subsystem (the plant). Similar to the previous subsystems, 

an m-file is embedded in the Matlab function block. The m-file representing 36 

Newton – Euler equations and 6 scalar constraint equations produces the joint 

accelerations using the vector of the actuating torque, the angular displacement 

and the angular velocity inputs. Moreover, the reaction forces and the reaction 

moments are obtained as the bi-products of this formulation as in the single 

support phase.  
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After the integration of the joint accelerations, the simulation runs the next step. 

This cycle continues until the condition of the next phase is satisfied. 

The forward kinematics subsystems of the double support phases compute the 

kinematic expressions given in Chapter 3. As a result, the positions, velocities 

and accelerations of each link of the humanoid walker become available. As a 

second task of this subsystem, the humanoid walker is visualized by a 3D plot. 

The last subsystems of the double support phases are the inverse kinematics 

subsystems. In the single support phase subsystems, there is no need for such an 

inverse kinematics effort. However, the transition from the single support phase 

to the double support phase arises a vital problem at the beginning of the new 

phase. Since, the double support models are closed linkage systems; they cannot 

accomplish every motion generated by the single support models. For this reason, 

the last joint variables produced by a single support model cannot be used as the 

initial joint variables in the integration subsystem of a double support model. In 

addition to this, just after the heel of the swinging foot touches the ground at the 

end of a single support phase, the sole of that foot flattens immediately. This also 

makes the initial joint variables of a double support phase different than the last 

values of the ended single support phase. However, this deviation is minimized 

by finding the initial joint variables from the inverse kinematics solution. 

According to the last position and velocity of points O1, A10 and A11, the 

necessary joint variables are computed by both the constraint equations and the 

inverse kinematic equations. This subsystem takes the required inputs directly 

from the relevant top-layer data store memory blocks. By this way, although a 

discontinuity occurs at the joint variables, they deviate a little during the 

transition. 

The differences between the two double support phase subsystems are the same 

as in the single support phase subsystems. The m-files utilized in the Matlab 

function blocks of the left foot flat and the right foot flat double support 

subsystems are different. Also, the Goto/From blocks shift for the left foot flat 

and the right foot flat periods. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

The results of gait simulation using the humanoid model which imitates a subject 

of 56 kg mass and 1.60 m height is presented in this chapter. The initial posture 

of the humanoid walker is specified in such a manner that the simulation starts 

with the left foot flat double support model. Actually, the initial kinematic 

parameters are not so critical. The simulation is able to start from any non-

singular configuration employing the suitable one of four models corresponding 

to four phases of gait. 

The desired gait pattern for the humanoid model is established by defining the 

trajectories of 4 points: O1 (the origin of body-1), G1 (the mass center of body-1), 

A10 (the left heel point) and A11 (the right heel point). In this study, the desired 

trajectories of O1 and G1 are given as two straight lines parallel to each other 

along x-direction. By the optimal control algorithm, the model generates natural 

oscillations about these lines like a human being without any enforcement. Also, 

the desired orientation of HAT is determined as a result of this method. 

In the presented study, body-1 has two different velocities on these lines in the 

single and double support phases. As in ideal gait of human, it is faster during the 

double support phase. The desired velocities of  both O1 and G1 points are 0.6 m/s 

in the double support phase and 0.2 m/s in the single support phase. These 

velocities are specified after so many trials to reach an optimum value with lower 

actuating torques. 

In the single support phases, the desired paths of A10 and A11 points are specified 

by the polynomials presented in chapter 4. Thus, for the swinging foot, it is aimed 

to realize a step of 0.4 m length and a maximum height of 6 cm over the ground. 

These desired  paths are also designed giving serious attention to reduce the 

impact which occurs when the heel strike. 
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These reference values can be modified due to desired humanoid gait. As an 

improvement, instead of the pre-defined paths, it is possible to use a high-level 

controller which generates appropriate paths for walking. 

With these reference values, two successive full gait cycles are simulated. This 

motion takes 1.77 seconds and each of the four phases occurs twice. The 

reference and actual position values of point O1 in x, y and z diections are plotted 

in figure 5.1. Then,  the reference and actual position values of point G1 can be 

investigated in figure 5.2. the oscillations from the desired paths can be reduced 

by tuning the optimization weighting factors. The elapsed time for this run of 

simulation  is 12.67 seconds on a desktop computer with 1.6 MHz processor and 

512 Mb RAM. This value is quite good for such a complicated simulation. In 

figure 5.3, the side view of the humanoid model during the gait is illustrated as 

snapshots. Also, the front view can be examined in figure 5.4. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.2

0

0.2

0.4

0.6

0.8

Trajectory of Point O1

time (s)

di
st

an
ce

 (m
)

pO1xact
pO1yact
pO1zact
pO1yref
pO1zref

 

Figure 5.1 Trajectory of point O1 
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Figure 5.2 Trajectory of point G1 

The resultant joint angles of the simulation are presented in the figures 5.5 and 

5.6. The continuity of the joint angles during the transition from the double 

support phase to the single support phase may be noticed in these figures. 

However, some unavoidable deviations occur at the end of the single support 

phases. This phenomena has been explained in section 3.5.    
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Figure 5.5 Right leg joint angles 

 

Figure 5.6 Left leg joint angles 
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The actuating torques necessary to accomplish the desired gait are presented in 

the figures 5.7 through 5.14. These torques are associated with the second gait 

cycle because in the first gait cycle, the humanoid model is at rest initially. This 

makes the starting torques higher. However, in the second gait cycle, the inertial 

effects are included. Obviously, the joint torques generated in the double support 

phases are smaller than the single support torques. The reason of this is the 

sharing of HAT’s weight between two legs. In the single support phase, whole 

load is on one leg and naturally this requires higher actuating torques at the joints 

of this leg. 
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Figure 5.7 Left leg joint torques in the left foot flat double support phase 
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Figure 5.8 Right leg joint torques in the left foot flat double support phase 
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Figure 5.9 Left leg joint torques in the right foot flat double support phase 
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Figure 5.10 Right leg joint torques in the right foot flat double support phase 
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Figure 5.11 Left leg joint torques in the left foot flat single support phase 
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Figure 5.12 Right leg joint torques in the left foot flat single support phase 
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Figure 5.13 Left leg joint torques in the right foot flat single support phase 
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Figure 5.14 Right leg joint torques in the right foot flat single support phase 

 
These torque values are effected by the desired walking speed, the prediction 

time range and the optimization weighting factors. It is possible to obtain lower 

actuating torques or smaller tracking errors using different values for these 

parameters. Adding structural elements like springs and dampers into the models 

may reduce these actuating torques. Furthermore, specifying the desired paths in 

such a manner that makes use of the inertial effects for the benefit of humanoid 

model, lower torques may be required to sustain the gait.  

Although, the simulation is capable of producing all reactions which occur at the 

joints, only the ground reaction forces are presented. For instance, the knee joint 

or the hip joint of a humanoid walker can easily be designed using the joint 

reactions in the strength analysis. In figures 5.15 through 5.18, the ground 

reaction forces of four models in the second gait cycle of simulation are 

illustrated. 
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Figure 5.15 Ground reaction forces in the left foot flat double support phase 
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Figure 5.16 Ground reaction forces in the left foot flat single support phase 
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Figure 5.17 Ground reaction forces in the right footflat double support phase 
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Figure 5.18 Ground reaction forces in the right foot flat single support phase 
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CHAPTER 6 

SUMMARY AND CONCLUSION 

In this study, a 3-dimensional computer simulation of a humanoid walking 

system was developed and the optimal predictive control algorithm was applied 

on this system. Matlab and Simulink softwares were used for the computations. 

Firstly, the physical models were designed with the aim of imitating a humanoid 

system. Four different models were used in the simulations; two models for the 

single support phase and two models for the double support phase. These phases 

were divided into two as the left foot flat single/double support phase and the 

right foot flat single/double support phase. Each of these models was composed 

of six rigid bodies. The masses and the lengths of these bodies were determined 

according to the anthropometric data. Thus, it was tried to obtain a mechanical 

system which resembles the human being. However, it was well known that a 

realistic simulation of walking of the human being requires more complicated 

models. The inertia tensors of the bodies were calculated by the help of 

Solidworks software. In the double support phase models, the foot was designed 

including a toe joint which enhances the transition from the double support phase 

to the single support phase. However, the transition from the single support phase 

to the double support phase was modeled neglecting the rotation of the landing 

foot around the heel. Also, the foot sole of the stance leg was assumed to be fixed 

on the ground. Ten revolute joints in the single support phase models and eleven 

revolute joints in the double support phase models connected the rigid bodies. 

Secondly, the kinematic equations were derived recursively and the dynamic 

equations of four models were obtained using the Newton – Euler formulation. 

All the coefficients of the unknown terms in these equations were separated and 

arranged in the coefficient matrices due to the solution procedure of the required 

unknowns. 
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The closed loop control system which was used in the simulations was composed 

of two parts: The computed torque control part and the optimal predictive control 

part. Although, the Lagrange formulation is suitable to employ with the computed 

torque control method, using some simple matrix manipulations, the Newton – 

Euler equations were converted into the same suitable form for the computed 

torque control method. Also, in the computed torque algorithm of the double 

support phases, a torque optimization was realized because of the redundancy. As 

the second part of the control system, a novel application of optimal and 

predictive control algorithms on the bipedal locomotion was introduced. By the 

optimal predictive control algorithm, the humanoid gait was sustained in a stable 

and re-configurable manner. Different desired humanoid gaits can be achieved by 

modifying the optimization weighting factors and the prediction time ranges. This 

property of the present study creates many alternatives for future work. 

After that, all the mathematical expressions, solution methods and the control 

algorithms were imposed in user-defined Matlab functions in  m-files. The 

Simulink model of the system was built and the m-files were incorporated in the 

subsystems of this simulation model. As the result of many trials, the 

optimization weighting factors were specified according to the desired gait. 

At the end, the simulated humanoid gait of the proposed mechanical system was 

investigated by the actuating torque curves and other plots. In addition, an 

animation of the gait was generated. 

Although, this study covers quite a lot of problems in the simulation of humanoid 

gait, in order to improve it the following future works are recommended. These 

works can also be considered as the suggestions to achieve a gait which is more 

similar to the gait of a human being. 

1. The hip joint assemblies can be made spherical by adding a revolute joint 

along z-direction to each hip. Thus, the humanoid system attains a 

cornering ability and the yaw motion of the HAT becomes possible.  

2. In the performance measures used in the optimal control parts, some other 

optimization functions corresponding to the mechanical energy can be 
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employed in addition to the present optimization functions. Hence, taking 

the advantage of gravity and inertial effects, an energy efficient 

locomotion can be accomplished. 

3. The desired paths of the pelvis, the left and the right foot can be 

determined by an additional high level controller. This controller can be 

designed using neural networks and fuzzy logic. During the gait, this 

control system can make decisions of correct movements. The knowledge 

base can be built using the gait analysis data of a human being. 

4. The HAT and the pelvis can be connected by an actuated two DOF joint 

at the waist. Thus, the unbalance can be compensated by appropriate 

motions of torso. This can also improve the stability and reduce excessive 

torque values. 

5. A further model can be added to the present ones to examine the short 

interval just after the initial contact of the heel. For this purpose, a foot 

model which can rotates around the contact point under its heel can be 

designed. 

6. Elasticity can be added to the joints in order to increase walking 

efficiency. 
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APPENDIX A 

COEFFICIENT MATRIX OF THE RIGHT FOOT FLAT SINGLE 

SUPPORT PHASE 
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APPENDIX B 

COEFFICIENT MATRIX OF THE RIGHT FOOT FLAT SINGLE 

SUPPORT PHASE (AFTER ROW SHIFTING) 
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APPENDIX C 

COEFFICIENT MATRIX OF THE LEFT FOOT FLAT DOUBLE 

SUPPORT PHASE 
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