
 
 
 
 
 
 
 

THREE-DIMENSIONAL DESIGN AND ANALYSIS OF A COMPRESSOR 
ROTOR BLADE 

 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 

CUMHUR ÖZGÜR 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

AEROSPACE ENGINEERING 

 
 
 
 
 

JULY 2005 
 



 
 
Approval of the Graduate School Natural and Applied Sciences 
 
 
 
 
 

 
Prof. Dr. Canan ÖZGEN 

   Director 
 

 
I certify that this thesis satisfies all the requirements as a thesis for the 
degree of Master of Science. 
 
 
 
 

 
Prof. Dr. Nafiz ALEMDAROĞLU 

     Head of Department 
 
 
 
 
 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of 
Science. 
 
 
 
Dr. A. Ruhşen ÇETE      Prof. Dr. İ. Sinan AKMANDOR 
     Co-Supervisor              Supervisor 
 
 
Examining Committee Members 
 
Prof. Dr. M. Cevdet ÇELENLİGİL    (METU,AEE) 

Prof. Dr. İ. Sinan AKMANDOR     (METU,AEE) 

Prof. Dr. İsmail Hakkı TUNCER     (METU,AEE) 

Prof. Dr. Ünver KAYNAK      (ETU,ME) 

Dr. A. Ruhşen ÇETE      (TAI) 



 iii 

 

 

 

 

 

 

I hereby declare that all information in this document has been 

obtained and presented in accordance with academic rules and ethical 

conduct. I also declare that, as required by these rules and conduct, I 

have fully cited and referenced all material and results that are not 

original to this work. 

 

 

 

 

 

 

 

      Name, Last name: Cumhur ÖZGÜR 

 

Signature             : 



 iv 

ABSTRACT 

 

 

THREE-DIMENSIONAL DESIGN AND ANALYSIS OF A COMPRESSOR 

ROTOR BLADE 

 

Özgür, Cumhur 

M. Sc., Department of Aerospace Engineering 

Supervisor: Prof. Dr. İ. Sinan AKMANDOR 

Co-Supervisor: Dr. A. Ruhşen ÇETE 

 

 

July 2005, 135 pages 

 

 

 

 

Three-dimensional design and three-dimensional CFD analysis of a 

compressor rotor stage are performed. The design methodology followed is 

based on a mean line analysis and a radial equilibrium phase. The radial 

equilibrium is established at a selected number of radii. NACA 65 series 

airfoils are selected and stacked according to the experimental data 

available. The CFD methodology applied is based on a three-dimensional, 

finite difference, compressible flow Euler solver that includes the source 
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terms belonging to rotational motion. The accuracy of the solver is shown by 

making use of two different test cases. The CFD solution of the designed 

geometry predicts the static pressure rises and flow turning angles to a good 

degree of accuracy. 

 

Keywords: Compressor Rotor Blade Design, 3D Euler Solver, Source Terms 

Due to Rotational Motion, Radial Equilibrium. 
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ÖZ 

 

 

KOMPRESÖR ROTOR PALESİNİN ÜÇ BOYUTLU TASARIMI VE ANALİZİ 

 

Özgür, Cumhur 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. İ. Sinan AKMANDOR 

Ortak Tez Yöneticisi: Dr. A. Ruhşen ÇETE 

 

 

Temmuz 2005, 135 sayfa 

 

 

 

 

Bir kompresör rotor palesinin üç-boyutlu dizaynı ve dizayn edilen bu palenin 

üç-boyutlu HAM (Hesaplamalı Akışkanlar Mekaniği) analizi 

gerçekleştirilmiştir. Dizayn metodu, ortalama çizgi analizi ve radyal denge 

aşamalarından oluşmaktadır. Radyal denge, belirlenen beş yarıçapta 

uygulanmıştır. Bu yarıçaplarda NACA 65 serisi profiler seçilmiş ve daha 

sonra eldeki deneysel sonuçlara göre üst üste yığılmıştır. Uygulanan HAM 

metodu, üç-boyutlu, sonlu farklar yöntemi kullanan, sıkışabilir bir Euler 

çözücüsüne dayanmaktadır. Çözücü, dönme hareketine dayanan kaynak 
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terimlerini de içermektedir. Çözücünün hassasiyeti iki farklı deneme durumu 

ile sınanmıştır. Dizayn edilen geometriye ait HAM çözümü, statik basınç 

artışı ve akış dönme açılarının oldukça hassas şekilde hesaplanabildiğini 

göstermiştir. 

 

Anahtar Kelimeler: Kompresör Rotor Pale Dizaynı, 3B Euler Çözücüsü, 

Dönme Hareketine Dayanan Kaynak Terimleri, Radyal Denge. 
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CHAPTER 1 

INTRODUCTION 

In this chapter, the work done in the present study is summarized.  

First, a motivation is given. Then the historical background of both the 

gas turbine engine and its design methodologies are given. Objectives of the 

present study are given at the end of this chapter. 

1.1 Motivation 

Gas turbine engine is one of the important technological achievements 

of 20th century. It had many major contributions to human life as it is known 

today. Gas turbine has not only given the meaning to transportation, but also 

become one of the most important factors in both energy and defense 

industries.  

In fact, gas turbine has solely evolved into an industry itself. Today, 

some of the largest companies in the world (i.e. General Electric, Rolls – 

Royce, Pratt & Whitney, Siemens, Kawasaki, etc.) are all in the gas turbine 

industry. These companies produce gas turbine engines which are used as 

power plants for power stations, large ships and strategically the most 

important ones, i.e. aircraft. 

A gas turbine engine is a machine that produces mechanical energy 

that is a combination of different components. For most current designs 

these components are; a diffuser, a compressor (usually multi–stage), a 

combustion chamber, a turbine (usually multi–stage) and an exit nozzle. The 

components compressor and turbine are themselves combinations of 
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several rows of rotating and stationary blades. Each pair of one rotating and 

one succeeding stationary blade row is called a “stage”.  

Design of a gas turbine engine consists of the aerodynamic, 

thermodynamic and structural design and integration of these different and 

relatively complex components. 

Up to the end of 70’s, most of the design and optimization process 

relied on an empirical approach, which meant a very large number of tests. 

The all-experimental optimization strategy was very time and cost 

consuming for at least two reasons. Firstly, each iteration implied all the 

phases from design to manufacturing, instrumentation and testing needed to 

be reproduced. Secondly, determining the variables which had to be 

improved in the design required heavy instrumentation on each component, 

in order to identify the critical locations (Vuillez C. et al., 1994). 

So, later CFD started to be used as the flow simulator at different 

levels. Analytical methods followed by potential solutions and then Quasi 3D 

methods. Today, it is possible to use full 3D CFD codes in turbomachinery 

design as in the present study. 

1.2 Historical Background 

1.2.1 Gas Turbine Engines 

The basic development of the jet engine took place during the period of 

World War II, with parallel development being carried out by Whittle in 

England and von Ohain in Germany; because of wartime secrecy neither 

was aware of each other’s work. A Heinkel experimental aircraft powered by 

a von Ohain engine made the first flight of a jet-propelled aircraft on 27 

August 1939. The Gloster-Whittle aircraft powered by a Whittle engine made 

its first flight on 15 May 1941. Since then mainly three companies dominated 

aircraft engine industry. These are Pratt & Whitney from Canada, Rolls-

Royce from England and General Electric from United States. 
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In 1950’s Pratt & Whitney developed the J57 engine. It proved to be a 

revolutionary advance in axial flow turbojet technology. J57 produced 10,000 

pounds of thrust (i.e. 44.5 kN) and twice the fuel efficiency of the best 

German WWII engine. Using the J57 model, Pratt & Whitney incorporated 

more exotic high temperature materials to produce greater thrust. Later, 

Pratt & Whitney modified the J57 with a larger front-end compressor/fan 

leading to a high-efficiency low-bypass turbojet engine which is known as 

TF33. TF33 was able to generate 18000 pounds of thrust (i.e. 80.1 kN). 

During the same period GE developed a successful version of the 

fanjet using the “aft fan” concept. In 1957 they produced CJ-805 and later in 

order to solve compressor stalls, GE made a revolutionary technology 

breakthrough. They developed the variable-geometry compressor stators. 

GE used this new technology to develop the J79 engine producing 17000 

lbs of thrust (i.e. 75.6 kN) and leading the way for the modern very-high-

bypass engine J85. Mach 2 flight was then possible. 

In 1970’s Pratt & Whitney’s introduced F100 engine producing 23800 

pounds of thrust (i.e. 105.9 kN) and powering initially F-15 and later F-16 

aircraft. 

During the same period GE developed F101 engine. It was designed to 

power the North American B-1 bomber and being a possible alternative to 

the Pratt & Whitney F100 engine. 

In the early 1980’s the United States Air Force and Navy formally 

began developing requirements for next generation fighter to replace F-15 

and F-14. GE introduced the F110 engine as an alternate power source for 

F-16 aircraft. GE F110 was to produce 28600 pounds of thrust (later, in 

1990’s the engine performance is increased and the thrust level was raised 

to 29700 pounds, i.e. 132.1 kN). Navy procured the F/A-18E/F aircraft 

powered by the GE F414, a derivative of the F404. Air Force pursued the 

Advance Tactical Fighter. Program matured into the Lockheed Martin F/A-22 
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powered by the Pratt & Whitney F119 engine. Focus for the F119 was to 

improve technology for supersonic cruise and stealthy turbojets. P&W F119 

engine was to produce 22000 pounds of thrust (i.e. 97.9 kN). 

Also in the early 1980’s, the Department of Defense issued the request 

for proposals for the new Cargo Aircraft Program. Boeing, Lockheed, and 

McDonnell Douglas submitted proposals. McDonnell Douglas Corporation, 

(now Boeing) was announced as the winner of the competition in August 

1981. Pratt & Whitney was selected to provide the F117-PW-100 turbofan 

engines. This engine had a maximum thrust level of 41700 pounds (i.e. 

185.5 kN). The commercial PW2040 series is currently used on the Boeing 

757 producing 40440 pounds of thrust (i.e. 179.8 kN).  

1.2.2 Gas Turbine Engine Design Methodologies 

Preliminary design methods tend to be based on elementary one-

dimensional mean-line methods of analysis. These are able to predict the 

performance of a turbomachine from basic design information to an 

accuracy of a few percent. They are thus sufficiently accurate to allow the 

main geometric and aerodynamic parameters to be selected before a refined 

design is attempted. 

However since the early days of turbomachinery, designers were 

always interested in simulating or guessing the flowfield through the blade 

passages of any designed engine. 

First solid work in understanding the flowfield through the blade 

passages came as early as 1952. C. H. Wu recognized the truly three-

dimensional nature of the flow in his classic paper (Wu C. H., 1952) and 

proposed the remarkably sophisticated computational scheme illustrated in 

Figure 1. The fully three-dimensional flow was treated by the superposition 

of a number of two-dimensional flows, located on the so-called .S-1 and S-2 

stream surfaces. S-2 surfaces follow the primary fluid deflection caused by 

the blade profile curvature and its associated aerodynamic loading. Due to 
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the variation of static pressure between the convex surface of blade No. 1 

and the concave surface of the blade No. 2 the curvature of each S-2 stream 

surface will differ, calling for the introduction of several surfaces for 

adequate modeling. The S-1 surfaces are allowed to twist to accommodate 

the fluid movements caused by the variations of S-2 surfaces. The S-1 and 

S-2 surfaces in fact represent a selection of the true stream surfaces 

passing true the blade row. By solving the equations of motion for the fluid 

flows on these surfaces, successively improved estimates of the S-1 and S-

2 surfaces may be obtained, allowing also for the fluid dynamic coupling 

between them. An iterative approach to achieve a good estimate of the fully 

three-dimensional flow was fairly comprehensively laid out by Wu in 1952. 

Usually the flow in any S-2 plane is called “through-flow” and the one in the 

S-1 plane is called “blade-to-blade” flow in the literature since then (Lewis R. 

I., 1996). 

 

Figure 1 Wu’s description of the flowfield 
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This kind of assumption of the true three-dimensional flow as being the 

superposition of two two-dimensional flows is known as “Quasi Three-

Dimensional” (or Q3D) approach and has been widely used in 

turbomachinery area after the work of Wu. 

“Streamline Curvature Method” (Novak R. A., 1967) was successfully 

used on S-1 and S-2 surfaces of Wu. The streamline curvature method 

become instrumental in the development of through-flow codes. (Smith L. 

H., 1966) developed the performance prediction capability using through-

flow analysis code. Later finite difference solutions of through-flow model 

were reported by (Davis W. R., Millar D. A. J., 1975), (Smith D. J. L.,1974) 

and (Bosman C. et al. ,1977). Finite element methods applied during 70’s by 

(Hirsh Ch., Warzee G., 1979). The above listed codes used through-flow 

solutions and a number of correlation factors to simulate real flow effects. 

Solution of Euler equations was initially performed in two dimensions by 

(McDonald P.,1971). 

Later, Euler/boundary layer coupled flow analysis methodology of 

(Giles M. B., Drela M., 1987) is successfully applied to blade-to-blade flows 

by (Uzol O., 1995), (Ekici K., 1997). 

With the increase of computing power, full three-dimensional Euler 

solutions in the blade passages was computed by (Denton J. D., 1982), 

(Holmes D.G., 1989). Later full three-dimensional Navier-Stokes solutions 

are computed and used as a design tool by (Denton J.D., 1990). 

1.3 Objectives of the Present Study 

The present study focuses mainly two major objectives: 

i. Designing a compressor rotor stage. 

ii. 3D CFD analysis of the designed rotor geometry. 

The first objective is achieved by following mostly the method 

described in (Wilson D. G., 1984). It starts with a mean line analysis, 
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continuing with radial equilibrium and hence obtaining the famous “velocity 

triangles” at selected number of radial sections. 

Next, is the selection of the appropriate airfoils for the velocity triangles 

obtained in the previous step. At this point (Horlock J. H., 1958) is followed. 

NACA 65 series airfoils were used because of the availability of the 

information regarding them. 

Next is the determination of the characteristics (like static pressure 

rise, total pressure loss, etc.) of the airfoils selected in the previous step. 

This is done using the above mentioned widespread data. At this point 

(Emery J. C. et al., 1958), (Lieblein S. et al., 1953) and (Cumpsty N. A., 

1989) are followed. 

The first objective is completed by 3D geometry generation using a 

CAD software. 

The second objective needed a 3D CFD code first of all. To do that an 

existing, validated, external flow solver was modified (namely TAINS). The 

modification process is started by deriving the equations of motion suitable 

for the rotational motion in the relative frame of reference of the rotor. At this 

point (Çıray C., 2000), (Batchelor G. K., 1967), (Aksel M. H., 2003) and 

(Grietzer E. M. et al., 2004) are followed. 

After insertion of the rotational terms derived in the previous step, the 

solver was transformed into an internal flow solver by making use of periodic 

boundary condition (which was an existing capability of the code) and by 

generating a characteristic based outflow boundary condition. At this point 

(Hirsch Ch., 1990) is followed. 

By the completion of the previous step, the solver was ready. The next 

step was the validation of the newly generated code. This is done by making 

use of a structured grid generation program. 

The second objective is completed by generating a number of 3D 

structured grids around the geometry created with the CAD geometry 
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before. Each grid had a different size and all were solved using the solver 

generated. All solutions converged. The results are compared and the one 

corresponding to the finest grid is presented. 

Through the achievement of the second objective, general directions 

given by (Denton J. D., 1994) and (Holmes D.G., 1989) were followed 

extensively. 

 



 9 

CHAPTER 2 

DESIGN METHODOLOGY 

2.1 Introduction 

In this chapter the design objectives and methodology are explained. 

Results are tabulated and a flowchart is included. 

2.2 Design Objectives 

The objective of the present study is to design a 1st or 2nd stage 

compressor rotor blade having: 

� An outer diameter of 38 cm and an inner diameter of 22 cm; 

� Rotational speed of 14000 RPM;  

� Total pressure ratio of 1.25 and flow turning of 23° at the mean 

radius. 

2.3 Design Method 

The design of a compressor rotor can be given briefly as follows: 

i. Determining the inlet and exit velocity vectors and their orientation at 

one radial location (namely “the mean radius”). 

ii. Determining the inlet and exit velocity vectors and their orientation at 

other radial locations starting from mean line and using radial 

equilibrium concept. 

iii. Choosing appropriate cascade airfoils after having calculated all the 

velocities and flow turning angles at all radial locations. 
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iv. Determining the appropriate stagger angle in order to place the 

airfoils suitably. 

v. Estimating the static pressure rise of the airfoils at each radial 

location using experimental data regarding the cascade airfoils. 

vi. Estimating the total pressure rise at each radial location once the 

velocity vectors are known. 

vii. Estimating the total pressure loss at each radial location using 

experimental correlations. 

viii. Creating the 3D geometry. 

ix. Simulating the flow field using CFD methodology. 

The details of each step are given in the following sections. 

2.4 Mean Radius 

The aim of this section is to evaluate the inlet and exit absolute and 

relative velocities at the mean radius. Mean radius is usually the geometric 

mean of hub and tip radii. In the present study dimensions like hub and tip 

diameters are chosen to be similar to an already existing engine. 

Velocities are determined as follows: Inlet absolute velocity (both axial 

0,axV  and tangential 0,θV  components) and direction is specified. Also the 

rotational speed rω  is specified. Hence absolute and relative velocities at 

the inlet can be found using:  

2

0,

2

0,0 θVVV ax +=  

( )2

0,

2

0,0 θω VrVW ax −+=  

(2-1) 

Also the absolute and relative flow angles can be found using: 
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









= −

0,

0,1

0 tan
θ

α
V

Vax  












−
= −

0,

0,1

0 tan
θω

β
Vr

Vax  

(2-2) 

Having determined the absolute and relative velocity vectors and flow 

angles, the inlet condition at the mean radius is fixed. 

The next step is to evaluate the velocities and angles at the exit. The 

exit is related to the inlet by the use of “Reaction Number”. The definition of 

Reaction Number is the ratio of the change in static enthalpy in the rotor to 

the total enthalpy rise in the rotor and is given by (Wilson D. G., 1984): 

r

VV
Rn

ω
θθ

2
1

1,0, +
−=  (2-3) 

This definition is used at all radial locations as the choice of reaction 

number variation along the blade span is an important factor in 

compressor/turbine design. 

Once the reaction number (Rn), inlet tangential velocity ( 0,θV ) and 

rotational velocity (ωr) are known one can find exit tangential velocity ( 1,θV ). 

Also by knowing the exit axial velocity ( 1,axV ) one can determine all vectors 

and angles in and out of the rotor. 

It’ll be apparent in the following section that the exit axial and tangential 

velocities will be related to the ones at inlet by the use of radial equilibrium at 

other radial locations. At the mean radius, exit axial velocity ( 1,axV ) is taken to 

be the same as the inlet. This is because the mean line is the input of the 

whole design procedure. 

The velocity vectors at the inlet and exit are called “velocity triangles” 

altogether. An example velocity triangle is given in Figure 2 below. 
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0V 1V
0W 1W

0axV
1axV

rω

0θV

1θV

0α 1β

 

Figure 2 Velocity triangles with velocity and angle definitions 

2.5 Other Radial Locations – Radial Equilibrium 

The aim of this section is to obtain velocity triangles at radial locations 

other than the mean radius. 

For axial flow compressors the flow is fully three dimensional which 

requires the flow at the various sections to be compatible and to satisfy the 

momentum equation in the radial direction. In essence this means that the 

performance of the blades at a given spanwise position is not determined by 

that section alone but by the same blade at other spanwise positions, by the 

annulus shape and by the compressor as a whole. So, the velocity triangles 

at different radial locations must be related to the ones at mean line by 

making use of the laws of nature. Random choice of velocity triangles may 

result in unrealistic designs. It’s important to design the blades so that at 

every radial location the geometry must be compatible with what the flow is 

constrained to do. 
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The physical mechanism for the flow to adjust itself in the radial 

direction in response to the constraints imposed by the blades is the need of 

the flow to approach radial equilibrium. When the fluid flowing through a duct 

or annulus has a tangential component of velocity, a pressure gradient with 

radius is naturally set up. So the velocity vectors at each radius are affected 

by other radial locations through the momentum equation in the radial 

direction. The relation of the radial variation of static pressure, the variation 

of tangential velocity, and the variation of axial velocity is sought. 

This is done by making use of simple radial equilibrium equation. The 

equation is called “simple” because of the assumptions made during the 

derivation (Wilson D. G., 1984): 

( ) 0
1 222

2
=+ axV

dr

d
Vr

dr

d

r
θ

 
(2-4) 

The assumptions made during the derivation of equation (2-4) are (Wilson 

D.G, 1984): 

( )
0=

dr

EnthalpyTotald
, 

( )
0

2

=
dr

cityRadialVelod
 and 

( )
0=

dr

Entropyd
. 

One can relate tangential and axial velocities using equation (2-4). 

Note the θrV  term in the equation. When a tangential velocity distribution 

having θrV  constant is substituted into equation (2-4), it gives a constant 

axial velocity along the span. This configuration is called a “free vortex 

design” because of the tangential velocity distribution is that of a free vortex. 

Free vortex designs were used extensively in the early years of 

turbomachinery. Many different tangential velocity distributions are possible. 

In the present study Carmichael – Lewis tangential velocity distribution is 

used (Wilson D. G., 1984): 
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( )
r

b
raV

n
−=0,θ  

( )
r

b
raV

n
+=1,θ  

(2-5) 

Where a, b and n are constants to be determined below. Equation (2-5) 

is substituted into equation (2-4) and variation of axial velocity in radial 

direction is obtained.  

In (Wilson D. G., 1984) this is done after non-dimentionalisation of the 

variables by mean line values as follows: 

meanr

V
V

ω
θ

θ =′ , 
mean

ax
ax

r

V
V

ω
=′  and 

meanr

r
r =′  

By doing this transformation simple radial equilibrium equation (2-4) 

becomes: 

( )
( ) ( )[ ] ( )[ ] 0

1 222

2
=′

′
+′′

′′
axV

rd

d
Vr

rd

d

r
θ  (2-6) 

Also transforming the aforementioned Carmichael – Lewis tangential 

velocity distribution, equation (2-5) becomes: 

( )
r

b
raV

n

′

′
−′′=′

0,θ  

( )
r

b
raV

n

′

′
+′′=′

1,θ  

(2-7) 

Similarly the definition of reaction number equation (2-3) now becomes:  

( )1,0,
2

1
1 θθ VV

r
Rn

′+′−=′  (2-8) 

Substituting equation (2-7) into equation (2-6) and integrating yields (Wilson 

D. G., 1984): 
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(2-9) 

In equation (2-9), subscript “m” stands for mean radius, φ and ψ are 

two other important variables. They are called “flow coefficient” and “loading 

coefficient” respectively. It is possible to represent velocity triangles by 

making use of flow coefficient, loading coefficient together with reaction 

number. The definitions of flow coefficient and loading coefficient are given 

below: 

r

Vax

ω
φ =  

( )
r

VV

ω
ψ θθ 0,1, −

−=  

(2-10) 

The flow coefficient φ is the ratio of axial velocity to rotational velocity. 

Usually axial velocity changes from inlet to exit of any stage so does the flow 

coefficient. 

The loading coefficient ψ is positive for turbines, negative for 

compressors. A “highly” loaded compressor stage would have a loading 

coefficient of -0.5 and below, whereas a “lowly” loaded one would have a 

loading coefficient of -0.3 and above. These judgments of “high” and “low” 

are relative, and apply best to a stage of high hub to tip ratio. Stages with 

low hub to tip ratio (as in the present case), normally have very high 

loadings at the hub and light loadings at the tip. 

Substituting the flow coefficient, loading coefficient and reaction 

number at mean radius into equation (2-9), axial velocities in and out of the 

stage ( 0,axV  and 1,axV ) at any radius can be found. Also tangential velocities 
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( 0,θV  and 1,θV ) can be found using equation (2-7). So the velocity triangles 

can be found this way at each radius. 

Given below is the result of such a calculation. The velocity triangles 

are given in Figure 3 and the quantitative values of these triangles are given 

in Table 1 below. See Appendix A for detailed example calculations. 
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Figure 3 Velocity triangles at 5 radial locations after radial equilibrium 
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Table 1 Velocity components and angles at five radial locations after radial 

equilibrium 

 

r(m) Vax,0 (m/s) Vθ,0 (m/s) V0 (m/s) W0 (m/s) αααα0 β0 

0.11 182.00 55.38 190.24 210.51 73.07 59.83 

0.125 176.66 60.91 186.87 214.90 70.98 55.29 

0.15 170 61.87 180.91 232.11 70 47.09 

0.175 164.33 62.17 175.70 254.55 69.28 40.21 

0.19 161.71 61.60 173.05 270.59 69.15 36.70 

r(m) Vax,1 (m/s) Vθ,1 (m/s) V1 (m/s) W1 (m/s) αααα1 β1 

0.11 205.12 186.52 277.25 206.68 47.72 97.04 

0.125 187.58 176.31 257.43 187.71 46.77 87.88 

0.15 170 158.04 232.11 180.91 47.09 70 

0.175 155.83 144.6 212.58 191.88 47.14 54.30 

0.19 149.48 137.52 203.12 205.51 47.38 46.67 
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2.6 Cascade Airfoil Selection 

It is possible to specify the blades of an axial compressor in many 

different ways. The traditional way is to base the design on existing families 

of profiles such as, NACA 65-series or double-circular-arc (DCA) series. The 

former is best suitable for subsonic applications while the later is for 

transonic applications (Song B., 2003). 

In the present study NACA 65 series airfoils with 10% thickness are 

used. The reasons why NACA 65 series airfoils are chosen are because 

they are designed especially for turbomachinery applications and they are 

well documented. 

The profile is obtained by adding a thickness distribution on top of a so-

called camber line. The details of airfoil profile generation process are given 

below. 

To choose appropriate airfoil at any radius so as to achieve: 

i. Flow turning by an amount suitable with the velocity triangles. 

ii. A suitable setting angle which will be used in both 3D geometry 

generation and static pressure rise calculations. 

As stated above, NACA 65 series airfoils are subject to numerous 

experiments, hence the performance characteristics are available in many 

forms. One of them is so-called “NACA Mellor Charts” (Horlock J. H., 1958). 

NACA Mellor Charts are plots which give the desired setting angle when 

inlet and exit flow angles are specified for 65 series airfoils. See Figure 4 for 

an example NACA Mellor Chart. 
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Figure 4 Example NACA Mellor Chart for NACA 65-(18)10 airfoil 

To use NACA Mellor charts the necessary inputs are: 

i. Inlet flow angle α0 (measured from axial direction). 

ii. Exit flow angle α1 (measured from axial direction). 

iii. Solidity (
chord

spacing
=σ ) 

Once these are known, one can enter into NACA Mellor Charts to find 

appropriate setting and incidence angles. The use of NACA Mellor Charts is 

illustrated in Figure 5: 
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Figure 5 Illustration of the use of NACA Mellor Charts 

All inlet and exit flow angles are provided in Table 1. However one has 

to be careful because in the velocity triangles given above, all angles are 

measured from tangential direction. 

Another important point to consider is that, the inlet and exit angles are 

β0 and β1 (i.e. relative flow angles) respectively for ROTOR geometries. 

However they must be α0 and α1 (i.e. absolute flow angles) respectively for 

STATOR geometries. 

Taking these into consideration, NACA Mellor charts are used and 

airfoil cascades are selected among suitable ones. 

The results of such a selection procedure are given in Table 2 below. 

In these results, γ  represents setting angle measured from tangential 

direction. So at the end, these must be converted to the present notation in 

which all the angles are measured from the tangential direction. 
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Table 2 Airfoil selection at five radial locations. 

 

 

 

r(m) Airfoil Angle of Attack Setting Angle (γ) ∆∆∆∆β 

0.11 NACA 65 – (18)10 21° 80.81° 37.21° 

0.125 NACA 65 – (15)10 20° 75.29° 32.58° 

0.15 NACA 65 – (15)10 13° 62.09° 22.91° 

0.175 NACA 65 – (12)10 8° 54.21° 14.09° 

0.19 NACA 65 – 810 6° 50.70° 9.97° 
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2.7 Static Pressure Rises 

The next step is to obtain the static pressure rise of the selected 

airfoils. To do that two-dimensional experimental investigation of NACA 65 

Series airfoils is used (Emery J. C. et al., 1958). 

In the experimental results, static pressure distributions are given for 

each of the chosen NACA airfoils for three different inlet flow angles (i.e: 

30°, 45° and 60°) and for four different solidities (i.e: 0.75, 1.0, 1.25 and 1.5). 

In each diagram static pressure distributions are given at five different 

angles of attack. So, linear interpolations are needed.  

In (Emery J. C. et al., 1958), detailed blade-performance data for all 

cascade combinations tested are presented in the form of surface pressure 

distributions. In order to obtain the pressure rise, one needs the following: 

i. NACA 65 Series airfoil name 

ii. Inlet flow angle 0α  (measured from axial direction). 

iii. Solidity (
chord

spacing
=σ ) 

iv. Angle of attack. 

After linear interpolations for inlet flow angle and solidity values, static 

pressure rises between rotor inlet and exit are found. This is nothing but 

reading the static pressure rise of the cascade airfoil at the specified inlet 

flow angle and solidity from the numerous charts given in (Emery J. C. et al., 

1958). 

Once the static pressures are known, total pressure rises are found 

using absolute velocities and the static pressure values found above. Given 

below are the results of such a static pressure rise calculation together with 

the resulting total pressure rises in Table 3: 
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Table 3 Static and total pressure rise calculations at five radial locations. 

 

 

r(m) P0 (Pascal) P1 (Pascal) P1/ P0 Pt,0 (Pal) Pt,1 (Pa) Pt,1/ Pt,0 

0.11 101325 111315.645 1.0986 123492.143 160397.027 1.2898 

0.125 101325 114395.925 1.1290 122713.743 154986.425 1.2630 

0.15 101325 118165.215 1.1662 121371.162 151163.684 1.2455 

0.175 101325 120363.968 1.1879 120233.175 148043.001 1.2313 

0.19 101325 120181.583 1.1861 119667.110 145451.945 1.2155 
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2.8 Total Pressure Loss Calculations 

In this section total pressure losses of the airfoils are estimated.  

According to (Lieblein S. et al., 1953), total pressure losses of NACA 

65 series airfoils are related to diffusion factor for various inlet angles. The 

relation is given in Figure 6. One can estimate the non-dimensional total 

pressure loss coefficient (ω ) knowing the inlet flow angle ( 0β ), solidity (σ) 

and diffusion factor (D). The definitions of non-dimensional total pressure 

loss coefficient (ω ) and diffusion factor (D) are as follows:  

2

0
2

1
W

P
losst

ρ
ω

∆
=  (2-11) 

Diffusion factor: 

0

0,1,

0

1

2
1

W

WW

W

W
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σ
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+







−=  (2-12) 
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Figure 6 Total pressure loss coefficient vs. diffusion factor for NACA 65 Series. 

The first term in equation (2-12) represents the diffusion due to one 

dimensional deceleration of the flow within the cascade diffuser while the 

second term represents the diffusion due to the flow turning around the 

cascade blade. According to (Cumpsty N.A., 1989), values of diffusion factor 

in excess of 0.6 are thought to indicate blade stall and a value of 0.45 would 

be a good design choice. The variables necessary to calculate the diffusion 

factors at five radial locations and the resulting diffusion factors are given in 

Table 4 below. 

Using the diffusion factors (D) and solidities (σ) given in Table 4 and 

inlet flow angles given in Table 1, the non-dimensional total pressure loss 

coefficients (ω ) and hence the total pressure loss at each radial location are 

found from Figure 6. The results are given in Table 5 below. 
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Table 4 Parameters required for loss calculations at five radial locations. 

 

 

 

 

Table 5 Total pressure losses. 

 

 

 

r(m) W1/W0 ∆∆∆∆Wθθθθ (m/s) W0 (m/s) σσσσ D 

0.11 0.9818 131.13 210.51 1.649 0.2078 

0.125 0.8735 115.42 214.90 1.451 0.3121 

0.15 0.7794 96.156 232.11 1.210 0.3922 

0.175 0.7538 82.43 254.55 1.036 0.4023 

0.19 0.7595 75.93 270.59 0.955 0.3879 

r(m) Pt,1 (ideal) ϖϖϖϖ 
losstP∆  

Pt,1 (real) 

0.11 160397.027 0.0244 662.2796 159734.7474 

0.125 154986.425 0.0254 719.0420 154267.3838 

0.15 151163.684 0.0221 726.2963 150437.3877 

0.175 148043.001 0.0191 758.0287 147284.9723 

0.19 145451.945 0.0189 849.8430 144602.1020 
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2.9 3D Geometry Generation 

In the previous sections, suitable 65 series airfoil sections and the 

angles that the profiles to be set were chosen at each radius. As stated 

above, NACA 65 series cascade airfoils are well documented and much of 

these documents are freely available. See (Bogdonoff S. M., Bogdonoff H. 

E., 1945) for detailed information. 

The profiles are generated adding a thickness distribution on top of a 

camber line. The designation of 65 series is best understood by an example: 

65-(12)10. Here 65 designates the airfoil series; the number in the brackets 

is the design lift coefficient of the isolated airfoil at low Mach number 

expressed in tenths (i.e. CL is 1.2 for this example); the final number is 

thickness to chord ratio in hundredths (i.e. t/c is 10% in this example). When 

the design lift coefficient is less then unity, the brackets may be omitted. Any 

desired airfoil may be obtained as follows: 

Camber line and thickness distribution for design CL = 1.0 is given in 

Table 6. The desired camber line is obtained by multiplying the ordinate and 

the slope of camber line of design CL = 1.0 by the design CL of the intended 

airfoil (i.e. 1.2 for the above example). Then using equation (2-13) the 

coordinates of the desired airfoil are obtained (Wallis R.A., 1983). 

φsintu yxx −=  

φcostcu yyy +=  

φsintl yxx +=  

φcostcl yyy −=  









= −

dx

dyc1tanφ  

(2-13) 
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Here subscript “u” denotes upper surface, “l” denotes lower surface, “c” 

denotes camber line and “t” denotes thickness. 

All necessary airfoils that are used in the design were obtained by the 

method described above. Some of the airfoils were already available in the 

literature. These were compared with the data obtained by the above 

procedure. One of the airfoils generated and its corresponding data in the 

literature are compared in Figure 7 below. 

All airfoils used are given in Appendix B. 

After having generated all necessary airfoils, the 3D geometry can now 

be created. This is sometimes called “airfoil stacking” in the literature. In the 

present study airfoil stacking is done using 3D Computer Aided Design 

(CAD) software. Each airfoil is put into the correct radius and the rotated 

around the quarter chord by an amount of the setting angle found above. 

Finally the blade geometry and the flow passage that will be used in the 

CFD analysis are obtained. The rotor stage and flow passage can be seen 

in Figure 8 and Figure 9 respectively below. 

 Airfoil Data for 65-(12)10 
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Figure 7 Airfoil data comparison for NACA 65-(12)10.
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Table 6 NACA 65 Series airfoil data in percentage of chord for design CL = 1.0 

x  cy  dyc/dx ty±  

0 0.000 – 0.000 

0.5 0.250 0.42120 0.772 

0.75 0.350 0.38875 0.932 

1.25 0.535 0.34770 1.169 

2.5 0.930 0.29155 1.574 

5 1.580 0.23430 2.177 

7.5 2.120 0.19995 2.647 

10 2.585 0.17485 3.040 

15 3.365 0.13805 3.666 

20 3.980 0.11030 4.143 

25 4.475 0.08745 4.503 

30 4.860 0.06745 4.760 

35 5.150 0.04925 4.924 

40 5.355 0.03225 4.996 

45 5.475 0.01595 4.963 

50 5.515 0.00000 4.812 

55 5.475 -0.01595 4.530 

60 5.355 -0.03225 4.146 

65 5.150 -0.04925 3.682 

70 4.860 -0.06745 3.156 

75 4.475 -0.08745 2.584 

80 3.980 -0.11030 1.987 

85 3.365 -0.13805 1.385 

90 2.585 -0.17485 0.810 

95 1.580 -0.23430 0.306 

100 0.000 – 0.000 
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Figure 8 Overview of the designed rotor stage. 

 

Figure 9 Flow passage that is going to be analyzed with CFD. 
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Figure 10 Flowchart of the design procedure. 
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CHAPTER 3 

GOVERNING EQUATIONS 

3.1 Introduction 

In this chapter, the equations governing the fluid flow under rotational 

motion are derived. Following the derivation, general curvilinear coordinate 

transformation is explained. 

3.2 Derivation of the Governing Equations  

Fluid flow is governed by three basic laws. These are:  

i. Conservation of Mass 

ii. Conservation of Momentum – Newton’s 2nd law 

iii. Conservation of Energy 

Rotation around a fixed axis creates centrifugal and Coriolis 

accelerations on the fluid element. These forces cannot be neglected and 

must be included in the momentum and energy equations. Conservation of 

mass is not affected by rotational motion and hence its derivation is not 

repeated here. One can find the derivation of conservation of mass in (Aksel 

H., 2003). 

3.3 Conservation of Momentum – Newton’s 2nd Law of 

Motion 

Newton’s second law of motion can in general be stated as follows: 

amF
rr

=  (3-1) 
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Here F
r

 is the resultant of all external forces that is acting on the fluid, 

m is the mass of fluid and a
r

 is the acceleration of the fluid.  

Equation (3-1) is an expression given for the whole volume of fluid. The 

same equation can be written for an infinitesimal element of fluid as shown 

in Figure 11: 

admFd
rr

=  (3-2) 

Here Fd
r

 is the net resultant force acting on the infinitesimal fluid 

element, dm is the mass of the infinitesimal fluid element and a
r

 is the 

acceleration of the infinitesimal fluid element. The aforementioned 

infinitesimal fluid element is shown in Figure 11 below. The mass of the 

element (dm) is equal to ρdxdydz where ρ being the density of the fluid. 

 

Figure 11 Infinitesimal fluid element  
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The external forces acting on the fluid element ( Fd
r

) can be stated as 

follows (Çıray C., 2000):  

linesurfacebody FdFdFdFd
rrrr

++=  (3-3) 

Here bodyFd
r

 is the net body force consisting of gravitational, centrifugal 

and Coriolis forces; surfaceFd
r

 is the net surface force consisting of pressure 

and skin friction forces and finally lineFd
r

 is the net line force like cohesion 

force seen in capillary tubes. Gravitational and line force may be neglected 

for problems having air as the fluid.  

The body and surface forces are investigated in detail below.  

3.3.1  Body Forces 

The aforementioned body forces can be written in more detail as 

follows: 

Corioliscentrifgalnalgravitatiobody FdFdFdFd
rrrr

++=  (3-4) 

Equation (3-4) is written for an element as given in Figure 11. These 

forces are inertial forces and they to the center of the fluid element. Dividing 

both sides of equation (3-4) to the mass of the fluid element (dm), body 

“accelerations” are obtained. 

Coriolislcentrifuganalgravitatiobody fdfdfdfd
rrrr

++=  (3-5) 

The gravitational, centrifugal and Coriolis accelerations given in 

equation (3-5) are stated as follows (Batchelor G.K., 1967):  

( )rVgfd body

rrrrrrr
××−×−= ωωω2  (3-6) 
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Here g
r

 is the gravitational acceleration, V
rr

×− ω2  is the Coriolis 

acceleration and ( )r
rrr

××− ωω  is the centrifugal acceleration where ω
r

 is the 

rotational speed in vectorial form, V
r

 is the velocity vector and r
r

 is the 

position vector between the rotation axis and the center of the element. The 

general vectorial expressions for the Coriolis and centrifugal accelerations 

given above are investigated in more detail below: 

3.3.2 Centrifugal Acceleration 

The centrifugal acceleration ( )r
rrr

××− ωω , given in equation (3-6) is in 

vectorial form and will be expanded in this section. As stated above, ω
r

 is 

the rotational velocity of the system and r
r

 is the position vector between the 

rotation axis and the center of the element. Decomposing both rotational 

velocity (ω
r

) and position ( r
r

) vectors into x, y and z components: 

i
rr

Ω=ω  

( ) ( ) ( )kzzjyyixxr ccc

rrrr
−+−+−=  

(3-7) 

In equation (3-7), ji
rr

,  and k
r

 are the unit vectors in x, y and z 

directions respectively; Ω  is the x component of the rotational velocity; xc, yc 

and zc are the coordinates of the axis of rotation and x, y and z are the 

coordinates of the center of the element. In the present turbomachinery 

problem the rotational axis is coincident with the machine axis and the 

rotational velocity vector is in i
r

+  direction. 

First expanding the ( )r
rr

×ω  in equation (3-7): 

( ) ( ) ( )ccc zzyyxx

kji

r

−−−

Ω=× 00

rrr

rr
ω  

( ) ( )kyyjzzir cc

rrrrr
−Ω+−Ω−=× 0ω  

(3-8) 
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Similarly expanding ( )r
rrr

××− ωω  term in equation (3-7) using the 

expression equation (3-8), the centrifugal acceleration can be found to be: 

 

( )
( ) ( )cc yyzz

kji

r

−Ω−Ω−

Ω−=××−

0

00

rrr

rrr
ωω  

( ) ( ) ( )[ ]kzzjyyir cc

rrrrrr
−Ω−−Ω−−=××− 220ωω  

( ) ( )kzzjyyifd cclcentrifuga

rrrr
−Ω+−Ω+= 220  

(3-9) 

3.3.3 Coriolis Acceleration 

The Coriolis acceleration ( V
rr

×− ω2 ), given in equation (3-6) is in 

vectorial form and will be expanded in this section. As stated above, ω
r

 is 

the rotational velocity of the system and V
r

 is the velocity vector of the 

element. Decomposing both rotational velocity (ω
r

) and velocity (V
r

) vectors 

into x, y and z components: 

i
rr

Ω=ω  

kwjviuV
rrrr

++=  
(3-10) 

In equation (3-10), ji
rr

,  and k
r

are the unit vectors in x, y and z 

directions respectively; Ω  is the x component of the rotational velocity; u, v 

and w are the x, y and z components of the velocity vector (V
r

) respectively. 

Expanding V
rr

×− ω2  term, the Coriolis acceleration can be found to be: 
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wvu

kji

V 0022 Ω−=×−

rrr

rr
ω  

kvjwifd Coriolis

rrrr
Ω−Ω+= 220  

(3-11) 

Substituting the expressions found for the centrifugal acceleration 

(equation (3-9)) and Coriolis acceleration (equation (3-11)) into the 

expression given for the body forces (equation (3-5)), final form of the body 

forces can be found out to be: 

( )[ ] ( )[ ]kvzzgjwyygigfd czcyxbody

rrrr
Ω−−Ω++Ω+−Ω++= 22 22  (3-12) 

In equation (3-12), gx, gy and gz are x, y and z components of 

gravitational acceleration respectively; Ω is the x component of rotational 

velocity; yc and zc are the coordinates of the axis of rotation; and finally x, y 

and z are the coordinates of the fluid element. 

3.3.4  Surface Forces 

Surface forces are divided into two types, i.e.; pressure and friction 

forces. 

frictionpressuresurface FdFdFd
rrr

+=  (3-13) 

These forces are not inertial forces, hence they act on the surfaces of 

the element shown in Figure 11. 

3.3.5 Pressure Forces 

In Figure 12 the pressure forces acting on the very same infinitesimal 

element are shown. It is assumed that the pressure at the center of the 

element is P and pressure values on the 6 faces can be approximated by a 

Taylor series expansion of the value at the center. Since the element is 
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infinitesimally small, second and higher order terms in the Taylor series 

expansion are neglected. 

 

Figure 12 Pressure forces acting on the surfaces of an infinitesimal fluid element 
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Summing up the pressure forces in x, y and z directions: 
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 (3-14) 

Rearranging similar terms in equation (3-14), the final expression for 

the pressure forces is found out to be: 

kdxdydz
z

P
jdxdydz

y

P
idxdydz

x

P
Fd pressure

rrrr

∂

∂
−

∂

∂
−

∂

∂
−=  (3-15) 

3.3.6 Friction Forces 

In Figure 13, the friction forces acting on the 6 faces of the infinitesimal 

fluid element are depicted. It is assumed that the stress tensor at the center 

of the element is 
















zzzyzx

yzyyyx

xzxyxx

τττ

τττ

τττ

 and the stresses acting on the surfaces of 

the element can be determined by using a Taylor series expansion of the 

stresses about the center of the element.  

In order not to have any resultant torque moment around the centroidal 

axes of the fluid element, the off-diagonal terms must be symmetrical. Again 

since the element is infinitesimally small, second and higher order terms in 

the Taylor series expansion are neglected. 

Summing up frictional forces in x, y and z directions: 
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(3-16)
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Figure 13 Friction forces acting on the surfaces of an infinitesimal fluid element 

Rearranging similar terms in equation (3-16): 
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At this stage making Newtonian fluid assumption, the shear and normal 

stresses can be expressed in terms of velocity gradients and fluid properties 

(Aksel M. H., 2003): 
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(3-18) 

In equation (3-18), ∇
r

 is the gradient operator; V
r

 is the velocity vector 

of the fluid element; u, v and w are x, y and z components of velocity vector 

V
r

 respectively; λ and µ are the first and second viscosity constants of the 

fluid respectively. For Newtonian fluids, first and second viscosity constants 

are related as follows (Aksel M. H., 2003): 

µλ
3

2
−=  (3-19) 

Substituting equation (3-19) into equation (3-18) and then substituting 

equation (3-18) back into equation (3-17) one obtains: 
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Expanding the derivative terms in equation (3-20): 
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Rearranging equation (3-21): 
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In equation (3-22) realizing that the term 
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 (3-23) 

For incompressible flows, using equation of continuity, it can be shown 

that 0=⋅∇ V
rr

 (Batchelor G. K., 1967). 

Finally friction forces 
frictionFd
r

 can be expressed as follows: 
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Substituting the expressions found for pressure forces 
pressureFd
r

 and 

friction forces 
frictionFd
r

 (i.e. equations (3-15) and (3-24)) back into the 

expression given above for the surface forces (3-13) one gets the final form 

of the surface forces: 
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(3-25) 

Finally substituting the expressions found for the surface forces surfaceFd
r

 

and body forces 
bodyfd
r

 multiplied by dm (i.e. equations (3-25) and (3-12)) 

back into the expression given above for the net forces acting on the fluid 

element (3-3): 
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Having calculated the net external forces acting on the fluid element 

(3-26), this equation is substituted into the statement of Newton’s 2nd law of 

motion (3-2). 

It’s given above that Newton’s 2nd law of motion for an infinitesimal fluid 

element can be stated by equation (3-2): 

admFd
rr

=  

In equation (3-2), Fd
r

 is the resultant of all external forces applied on 

the element (which is the resultant of body and surface forces and given by 

equation (3-26); dm is the mass of the infinitesimally small fluid element and 

is equal to ρdxdydz; and a
r

 is the acceleration of the fluid element. The 

acceleration a
r

 is the total derivative of the velocity vector V
r

 of the element 

and is given by (Aksel M. H., 2003): 
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Equation (3-27) is obtained by the application of the Reynold’s 

Transport Theorem on the fluid element. The detail of this derivation is given 

in many references (Batchelor G. K., 1967), so it is not repeated here. In 

equation (3-27) V
r

 is the velocity vector of the fluid element and ∇
r

 is the 

gradient operator. Expanding both V
r

 and ∇
r

 to their x, y and z components 

and substituting into equation (3-27): 
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And rearranging: 
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Finally, equations (3-28) and (3-26) can be substituted back into 

equation (3-2) to obtain: 
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After cancellations and rearranging one obtains: 
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Equation (3-29) may be referred to as “Navier-Stokes equation with 

body forces due to rotational motion”. 

3.4 Conservation of Energy 

Conservation of energy principle may be stated simply as follows: the 

change in total energy of a fluid element (∆E) is equal to the sum of the heat 

added to the fluid element (∆Q) and work done on the fluid element (∆W) 

(Çıray C., 2000). 

WQE ∆+∆=∆  (3-30) 

In equation (3-30) ∆E is the change in total energy of the fluid element. 

Total energy is the sum of: 

i. Internal energy (e), 

ii. Potential energy (gh), 

iii. Kinetic energy (
2

2
V

) of the fluid element. 

Since the fluid in the present problem is air, the potential energy term may 

be neglected. 

∆Q is the heat added to the fluid element. Heat added is the sum of: 

i. Heat generated inside the fluid element ( q& ), 

ii. Net heat flux through the faces of the element (q), 

In the present problem there’s no heat generated inside the element. 

∆W is the work done on the fluid element. Work done is the sum of: 

i. Work done by the external forces applied on the element          

(Wexternal forces), 

ii. Shaft work inside the fluid element (Wshaft), 
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In the present problem there’s no shaft work inside the element and the work 

done by the external forces may be found by multiplying each force’s x, y or 

z component with the same component of the velocity vector. 

Equation (3-30) is given for the whole control volume. Applying the 

same relation to the aforementioned infinitesimal element: 

forcesexternalfluxheat WQdxdydz
V

e
dt

D
δδρ +=








+

2

2

 (3-31) 

The heat fluxes through the boundaries and the work done by the body 

and pressure forces on the aforementioned infinitesimal element is given 

below in Figure 14. The work done by the friction forces is not depicted in 

the figure for the sake of understandability of the figure. 
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Figure 14 Heat fluxes and the work done by the body and pressure forces on the 

infinitesimal fluid element 

Summing up heat fluxes: 
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 (3-32) 

Rearranging equation (3-32) one gets: 
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Summing up the work done by the body and pressure forces: 
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Rearranging equation (3-34) by ignoring gravitational terms one gets: 
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Work done by the friction forces may be obtained similar to the ones 

due to pressure forces (Aksel M. H., 2003): 
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Combining work done by the friction forces (3-36) with the work done 

by the body and pressure forces (3-35) and adding the heat fluxes (3-33) 

and finally substituting all back into equation (3-31) one obtains: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )[ ]

dxdydz

wzzvyy

z

w

z

v

z

u

y

w

y

v

y

u

x

w

x

v

x

u

z

Pw

y

Pv

x

Pu

z

q

y

q

x

q

dxdydz
V

e
dt

D

cc

zzzyzx

yzyyyx

xzxyxx

zyx













































−+−Ω+










∂

∂
+

∂

∂
+

∂

∂
+










∂

∂
+

∂

∂
+

∂

∂
+










∂

∂
+

∂

∂
+

∂

∂
+










∂

∂
+

∂

∂
+

∂

∂
−








∂

∂
+

∂

∂
+

∂

∂
−

=







+

2

2

2

ρ

τττ

τττ

τττ

ρ  (3-37) 

Rearranging equation (3-37): 
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Equation (3-38) may be referred to as “Energy equation with terms due to 

rotational motion”. 

Equations (3-29) (Navier-Stokes), (3-38) (Energy) and Continuity 

equations may be put together in non-dimensional and conservative form as 

follows: 
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This vector equation states that the time rate of change in the 

dependent variables Q is equal to the spatial change in the inviscid fluxes, 

E,F and G, and viscous fluxes, Eν, Fν and Gν. A source term, H, is included 

to account for the centrifugal and Coriolis force terms, which appear if the 

coordinate frame is rotating as in the present case. The presence of the 

Reynolds number, 
µ

ρuL
=Re , implies that the governing equations are non-

dimensionalized; with ρ  and u  often chosen as the freestream density and 

velocity, L  chosen as the reference length of the body and µ  evaluated at 

the freestream static temperature. 
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In the present study 3D Euler solver is used. So it may be appropriate at this 

point to drop viscous terms from the governing equations and to see the 

equations in a more compact form. 

H
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 (3-40) 

Where, Q is the vector of dependent variables; E,F and G are inviscid 

fluxes in x,y and z directions respectively and H is the source term that 

comes from centrifugal and Coriolis forces: 
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(3-41) 

The pressure, p, which appears in the inviscid flux terms, is related to 

the dependent variables through an appropriate equation of state. The local 

pressure is expressed in terms of the dependent variables by applying the 

ideal gas law. 
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11 wvuep t ++−−= ργ  (3-42) 

In many CFD applications, it is desirable to solve the governing 

equations in a domain, which has surfaces that conform to the body rather in 

a Cartesian coordinate system. A transformation is applied to the original set 

of equations to obtain a “generalized geometry” form of the governing 
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equations. This allows the irregular shaped physical domain to be 

transformed into a rectangular shaped computational domain that allows the 

numerical methods to be simplified. A more detailed information on 

coordinate transformations is given below. 

3.5 Generalized Curvilinear Coordinate Transformations 

Usually, before solution algorithms are implemented, the governing 

equations of motion have to be transformed from Cartesian domain to the 

computational domain. This is required to enhance the efficiency and 

accuracy of a numerical scheme and to simplify the implementation of 

boundary conditions. 

In order to solve the equations of motion in the computational space, a 

transformation of the equations from physical domain to the computational 

domain is required. This transformation is depicted in Figure 15 below. 

 

Figure 15 Generalized coordinate transformation from physical to computational 

space. 

Typically the physical domain is oriented in such a way that the 

coordinate directions in the computational domain,ξ , η and ζ , correspond to 
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directions relative to the body. In the applications discussed similar to the 

present study, ξ corresponds to the direction along the body (axial direction), 

η corresponds to the circumferential direction and ζ corresponds to the 

outward direction from the body surface (Şen T. S., 2001). 

The equations of motion are transformed from physical space (x, y, z) 

to the computational space (ξ ,η, ζ) by the following relations: 
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Writing the derivatives in both coordinate systems: 
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(3-44) 

Where xξ represents partial derivative of x with respect to ξ. 

Re-writing equation (3-44) in matrix form: 
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Reversing the independent variables: 
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Equation (3-46) can also be written in matrix form: 
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Comparing equations (3-46) and (3-47) one can see that: 
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All partial derivative terms (like ζt, ξx, etc.) are evaluated using equation 

(3-48). These terms are referred to as the metric terms. They are the result 

of the transformation and contain purely geometric information that relates 

the physical space to the computational space. The metric terms and the 

Jacobian of the transformation matrix can be calculated to be: 
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Inside the code used in the present study, the metrics are evaluated 

using second-order, central difference formulas for interior points and three-

point, one-sided formulas at the boundaries. 

Having said that, one can write the Euler equations in computational 

domain as follows: 
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In equation (3-51) the velocities in ξ ,η, ζ coordinates are U, V and W 

respectively. They are referred to as the contravariant velocity components 

and are given by: 
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CHAPTER 4 

NUMERICAL METHOD 

4.1 Introduction 

The flow solver used in the CFD analysis is TAINS_103. TAINS is a 

multi-block structured Euler/Navier-Stokes finite difference compressible 

flow solver developed at TAI. The solution of the three-dimensional 

equations is implemented by an approximate factorization that allows the 

system of equations to be solved in three coupled one-dimensional steps. 

The approximate factorization method used in the solver is Beam and 

Warming’s (Beam R. M., Warming R. F., 1978). The LU-ADI factorization 

(Fujii K., 1986) is one of those schemes that simplify inversion works for the 

left-hand side operators of the Beam and Warming's. Each ADI operator is 

decomposed to the product of the lower and upper bi-diagonal matrices by 

using the flux vector splitting technique (Steger J. L., Warming R.F., 1981). 

Since the time integration is implicit, its solution is accurate and quickly 

obtained.  

4.2 Finite Differences Method, Numerical Algorithm 

In order to develop numerical methods using finite differences to solve 

appearing partial differential equation sets, solution algorithms must be 

selected as either explicit or implicit methods. Explicit methods are in 

general easier to program and apply. Derivation and application are simpler 

when compared to implicit methods. Implicit methods are more-often have 

unconditional stability. So it becomes possible to take large steps through 

time using implicit methods. Although each iteration lasts longer, they 
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converge faster and they use larger time steps in unsteady flows compared 

leading faster solutions compared to explicit ones. They use less memory 

due to data structure and above all solutions are trustworthy since they are 

usually convergent. 

Since small grid intervals are chosen to satisfy numerical sensitivity in 

solutions, using implicit methods, commitment of time step to satisfy stability 

condition in explicit methods is removed. Hence implicit methods are usually 

used in numerical solutions of Euler/thin-layer Navier-Stokes equations. 

Starting point to derivation of used numerical algorithm is the result 

acquired by application of implicit time difference equation with three points 

by Beam & Warming to Euler equations given in equation (3-50) can be 

given as: 
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Where, n is the current time step and: 
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In equation (4-1), H source terms may be assumed to be constant. 

Moreover; E, F and G flux vectors are non-linear functions of Q and can be 

linearized using Taylor series as follows: 
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Where, 
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The terms in equation (4-4) are called the Flux Jacobians. 

Substituting equation (4-4) into equation (4-3) and then substituting the 

resulting expression into equation (4-1), one gets the so-called Delta 

Algorithm as follows: 

[ ] [ ]nnnnnnnn
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~~~~
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~~~~

−∂+∂+∂−=∆∂+∂+∂+ ςηξςηξ  (4-5) 

Where higher order terms in equation (4-5) are neglected. 

Partial derivatives in space are estimated with second-degree central 

differences. Hence the algorithm has first order sensitivity in time and 

second order sensitivity in space. 

Approximate factorization (Beam R. M., Warming R. F., 1978) is 

applied in equation (4-5) to simplify numerical calculations. Afterwards 

numerical algorithm is developed using LU-ADI (Fujii K., 1986). Also to 

satisfy stability during solution of numerical method especially in non-linear 

flows (like flows with shocks), artificial dissipation terms are added to the 

algorithm. 

4.3 Boundary Conditions 

In any CFD analysis, assessment of boundary conditions is as 

important as solving the governing equations because the equations that 

govern the fluid flow are differential equations. Solution of any differential 

equation depends on the boundary conditions imposed at the boundaries. 

Given below are the boundary conditions used and their explanations used 

in the present study. Some of the parameters regarding both the solver and 

boundary conditions are given at the and in Table 8. 
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4.3.1 Wall Boundary Condition 

There are two important operations in this boundary condition which 

are velocity calculation and pressure calculation. In fact pressure calculation 

is not directly as a boundary condition; total energy term is used in boundary 

condition calculations. 

( )222

2

1

1
wvu

p
et +++

−
= ρ

γ
 (4-6) 

Velocity calculation does not pose a problem in Navier-Stokes 

solutions because velocities are directly equated to zero regarding the “no-

slip” condition. But in Euler solutions velocities are imposed on the wall 

according to the “flow tangency” condition. That is, locally the velocity 

components in the normal and perpendicular directions are equated to zero. 

However the tangential components are kept unchanged.  

The velocity vector is first decomposed into local tangential and normal 

components, then the tangential components are distributed to Cartesian 

velocity components and pressure is calculated. The calculations are given 

below. Local normal and tangential directions are given in Figure 16 
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Pp :tangent vector in p direction
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Figure 16 Vector representations on grid surfaces 

First velocities are extrapolated from velocities in P, Q, R directions 

and r is set to zero: 
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Then transformation is applied from P, Q, R tangent velocities to u, v 

and w Cartesian velocities as follows: 
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 (4-8) 

Finally pressure is calculated by solving the normal momentum equation: 
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This equation can be written in simpler form as follows: 
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As a result, formulation is converted to approximate factorization with 

equations below and consecutive closed solution with pressure solutions are 

obtained in two directions. 

RrPDIDI qp
ˆ)()ˆ()ˆ( 21 ≅′⋅−⋅− δδ  (4-11) 

4.3.2 Symmetry Boundary Condition 

Symmetry boundary condition is used when the 3D flow solver is used 

for 2D test cases. The idea of using the symmetry boundary condition is to 

tell the solver that at these types of boundaries, all flow and geometric 

properties are the same from this boundary on. This is just like having 2D 

airfoil experiments in a real 3D wind tunnel. There, one uses the same airfoil 

geometry from one wall to the other. 

Symmetry boundary condition is imposed on a boundary that’s 

depicted in Figure 17. Symmetry condition implies equality in all scalar 

values: 
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313131 ,, PPee === ρρ  (4-12) 

Velocity vectors are evaluated as follows: 
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Figure 17 Symmetry plane 

4.3.3 Periodic (Matching) Boundary Condition 

In analyzing the flow through an entire blade row it is usually assumed 

that the flow fields in all of the passages between the blades are identical. In 

this way one can compute the flow through a single passage, rather then 

through the entire annulus. In computing the flow through only a single 

passage one must apply periodic (matching) boundary condition on those 

portions of the boundary of the grid that lie in the interface between adjacent 

passages. 
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In TAINS-103, periodic boundary condition can be given using a 

special form of the existing matching boundary condition. The variations of 

the matching boundary condition are obtained by the various use of the 

parameters given in Table 7. 

Table 7 Parameters of matching boundary condition 

IEXTRP 

Extrapolation type  0 � Data transfer only 

   1 � Interpolation with both surface inners and one point each 

   2 � Interpolation with both surface inners and 5 points each 

   3 � Interpolation with both surface inners and 9 points each 

Interpolation types are displayed in Figure 18. 

ITKGV 

A parameter that specifies active, passive and data transfer of this boundary condition. 

0 � Declares that this boundary type is fully passive and defines only regions to the cross 
boundary condition. 

1 � Receives data only from region across. 

2 � Receives data from region across and returns calculating cross-value also. 

1st  surface

                      IEXTRP=1

Middle surface

                  IEXTRP=2

2nd surface

          IEXTRP=3

 

Figure 18 Interpolation types 

Inverse distance method is used between these points for interpolation. 

Interpolation formulation of inverse distance method with m points is given 

below: 
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4.3.4 Inlet Boundary Condition 

At the inlet boundary all variables are given. The velocity distribution at 

the inlet is known from design. These variables are kept constant at each 

time step in order the flow field to converge to the given velocity distribution. 

4.3.5 Outlet Boundary Condition 

Generally speaking, the value of the velocity and pressure are not 

known at the outflow boundary. So for most applications, specification of the 

velocity vector is not quite possible. However, for some applications 

(including the present study) where the outlet is known to be subsonic, static 

pressure may be given at the outlet boundary. This must be done regarding 

the physics of the flow. 

In the present study, one-dimensional characteristics are used in the 

normal direction to the outlet boundary. The idea is to extrapolate the 

velocity field from the interior without losing the physics by making use of the 

characteristics of the governing equations and the static pressure 

distribution given externally. 

The method is described below. The outlet boundary is depicted in 

Figure 19. 
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Figure 19 Outlet boundary 

As can be seen in Figure 19 the notation that will be used throughout 

this section is as follows: 

1: interior point 

2: boundary point 

All variables at 1 are known (ρ1, u1, v1, w1, et1).  

From the known variables pressure is calculated: 

( ) ( )[ ]2

1

2

1

2

112
1

1,1 1 wvuep t ++−−= ργ  (4-15) 

Also speed of sound at the interior point is calculated: 

1

1
1

ρ
γ

p
a =  (4-16) 

Next, the Riemann invariants (characteristics) that run from point 1 to 

point 2 are calculated: 
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It is given in detail in (Hirsch Ch., 1990) that R1 and R1
+ are constant 

on their characteristic lines. So,  
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So now one can find ρ2 or p2, by specifying the other and using 

equations (4-17) and (4-18). In the present study static pressure (p2) is 

specified externally. 

Once the density at point 2 is found, speed of sound can be found 

using equation (4-16). 

Then using the definition of speed of sound in terms of Riemann 

invariants at point 2, and using equation (4-18) one can find the third 

Riemann invariant as follows: 
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aRR  (4-19) 

Then the velocity at point 2 can be extracted using the definition of R1
- 

as follows: 
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γ
 (4-20) 

Since one-dimensional characteristics method is used here, the 

velocities in the other two directions are taken to be the same. 
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4.3.6 Boundary Conditions Input File 

Input file is considered to be systematic and flexible suitable again for 

the general purposes. First of all, in account for flexible file location 

definition, a constant name file (“INITIAL”) points out the name and location 

of the main input file. That input file has a higher order language structure so 

that it requires command code definitions. It consists three main parts 

(NAMELIST structure of FORTRAN) in which the first part contains 

definitions of general parameters under title (“GENEL”); the second part 

contains general block parameters (“BLGENEL”). Also physical definitions of 

flow can be given separately for each block. The parameters in this part, can 

be listed as block numbers, flow conditions, parameters of time integration, 

alternative formulae, solution control parameters and grid dimensions. The 

third part (“BOCN”) is the region where boundary conditions are defined one 

by one. In this part, inputs can be classified into the two: general information 

namely, block number, boundary condition number, boundary condition type 

and flow region location; and parameters specialized for that boundary 

conditions. All parameters are displayed in Table 8. Detailed information 

about these parameters are given in the following sections. 
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Table 8 Definitions of input parameters  

GENEL 

TITLE Project name 

NBL, NMAX, NP Block number iteration number and record interval respectively 

IREAD, IWRIT Parameters of reading and writing types 

BLGENEL 

NoBL, MxNBC Block number and maximum boundary condition number 

BLKNM, GRDFNAMES Block name and grid filename 

FSMACH, RE, ALP,BET, PR Free-stream values (Mach, Reynolds, attack angle, side-slip angle, Prandtl 
number). 

INVISC, LAMIN Inviscid or viscous and Laminar or turbulent selections 

CNBR, DT Values related with time integration (Courant number, time step) 

ILHS,IRHS, IROE, ISTD,SMU Alternative solution selection parameters 

JMAX,KMAX,LMAX,CR,SREF Grid dimensions (Max. number of points in J,K,L index directions, reference 
location and area 

BOCN 

IBCTYPE Boundary condition type selection parameter 

LB, NDIR Definition of indexes and position and  

NoBL, NoBC Block number where the boundary condition belongs to and boundary 
condition number 

IBLOPT, IBLTYPE, UINLET Flow input parameters 

UOUTLET Flow output parameters 

UWALL,VWALL,WWALL Velocities at wall 

IEXTRP,ITKGV,NoBLC,NoBCC 

LOCOPT 

Matching boundary condition parameters (Interpolation type, transfer 
definition, block number and boundary condition number of matched 
boundary condition respectively…) 
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Figure 20 An example boundary condition input file 
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4.3.7 Boundary Condition Set Used in the Present Study 

In the present study the boundary condition set used for 3D 

applications includes: 

i. Inlet 

ii. Wall 

iii. Periodic 

iv. Outlet 

Boundary conditions. 

However, for 2D applications, in addition to wall, periodic, inlet and 

outlet boundary conditions; symmetry boundary condition is also applied. 

The boundaries on which wall and periodic boundary conditions 

applied are depicted in Figure 21 below. 
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Figure 21 Regions of the solution domain where periodic boundary condition is 

applied. Top: Forward periodic boundaries. Bottom: Backward periodic boundaries. 
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4.4 Grid Generation 

Before generating a numerical solution to the partial differential 

equations that govern the fluid flow, the physical domain must be 

discretized. That is, a grid should be generated around a body to resolve the 

necessary flow gradients. The discretization may be based on structured or 

unstructured concepts. In a structured grid, points are arranged so that their 

relative positioning in physical space is preserved in their computational 

storage; i.e., points adjacent to a given point in physical space are also 

adjacent in computational space. On the other hand, there is not necessarily 

any correspondence between a points physical and computational neighbors 

in unstructured grids. 

The finite difference method, using discrete points, is associated 

historically with rectangular Cartesian grids, since such a regular lattice 

structure provides easy identification of neighboring points to be used in the 

representation of derivatives. It is not, however, limited to rectangular grids 

and has long been applied on other analytical coordinate systems (i.e. 

cylindrical, spherical, elliptical etc.) that still form a regular lattice. These 

special curvilinear coordinate systems are all orthogonal, as are the 

rectangular Cartesian systems, and they also can exactly cover special 

regions in the same way that a Cartesian grid fills a rectangular region. 

In the present study, a grid generation program is used to generate 

structured grids. The details of the program package and grid generation 

process are given below. 

As stated above, the solver used in the present study is a finite 

difference based one. So the grid used is a structured one. The program is a 

3D, object-based, multi-block, structured, surface and volume grid 

generator. The block topology model is generated directly on the underlying 

CAD geometry. The user has access on two types of entities during the grid 

generation process: block topology and geometry. After creating a 3D block 
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topology model equivalent to the geometry, that block topology may be 

further refined through the splitting of edges, faces and blocks. In addition, 

there are tools for moving the block vertices, individually or in groups, onto 

associated curves or CAD surfaces. One may also associate specific block 

edges with important CAD curves to capture important geometric features in 

the grid. Moreover, for models where the user can take advantage of 

symmetry conditions, topology transformations such as translate, rotate, 

mirror and scaling are available. 

The grid generation program provides a projection based grid 

generation environment where, by default, all block faces between different 

materials are projected to closest CAD surfaces. Block faces within the 

same material may also be associated with specific CAD surfaces to allow 

for definitions of internal walls. 

The grid generation strategy followed in the present study is given 

below: 

1. Import the geometry file created with computer aided design (CAD) 

code, in IGES format. 

2. Group and name related curve and surface families (i.e. like the 

pressure side of the blade). 

3. Run structured grid generation tool. 

4. Interactively define the block model through split, projection, 

edge/face modifications and vertex movements. 

5. Assign edge meshing parameters such as number of elements on 

edges, initial element sizes and expansion ratios. 

6. Generate the mesh with projection parameters specified.  

7. Check mesh quality to ensure that the intended grid quality criteria 

are met. 
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8. If the grid quality to do not meet the intended quality criteria or the 

grid does not capture certain geometry features, then go back and 

manipulate the block via further splitting, projection and/or smoothing. 

9. Repeat step 8 until the grid is good enough. 

10. Perform grid scaling and i, j, k re-ordering if necessary. 

11. Write Output files for the solver. 

Even though it is hard to understand any 3D grid on a 2D paper, an 

example grid that’s used in the present study is given in Figure 22 below. 

 

Figure 22 A perspective view of the solution domain 

Another important feature of the grid structured generation is to apply 

smoothing on the grid. In the present study smoothing is applied on any grid 

that’s used via manipulating the interior edges that are normal to the blade 

surfaces at different radial locations. What is meant can better be 
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understood by an example. In Figure 23, grid generated at one radial 

location is given with and without smoothing applied. 

 

 

 

 

 

Figure 23 The effect of grid smoothing. Top: Grid before smoothing. Bottom: Grid 

after smoothing. Notice the difference in grid quality after the smoothing operation. 
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CHAPTER 5 

NUMERICAL RESULTS 

5.1 Introduction 

The main purposes of this chapter are to present the validity of the 

CFD code used in the present study and to present the 3D CFD analysis 

results of the design made in this study. 

5.2 Validation and Verification Test Cases 

There are three test cases given below. The first one is an external 

flow application. Second is an internal flow application with high flow turning. 

The last one is a rotational external flow application (i.e. flow around a 

rotating cylinder.) 

5.2.1 Test Case I – AGARD AR138 Onera M6 Wing 

This test case is an external flow application. That is to say, an aircraft 

wing with airfoil section ONERA M6 is analyzed using the solver used in the 

present study originally (i.e. TAINS–103). See (Sergen Ş., et. al., 2003) for 

additional information on the computer program TAINS-103. 

In 1972, the ONERA aerodynamics department designed a swept back 

wing to be used as an experimental support for basic studies of three-

dimensional flows at high Reynolds number from low to transonic speeds. 

In (Schmitt V. et al., 1979) experimental data obtained at ONERA 

S2MA wind tunnel at Mach numbers of 0.7, 0.84, 0.88 and 0.92 for angles of 

attack up to 6° and a Reynolds number of about 12 million is presented. 
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In this test case, 3D Euler solution for a flight Mach number of 0.7 and 

angle of attack of 3° is investigated. An C-O type grid is used as shown in 

Figure 24 below. This computational grid has 165x45x31 nodes (i.e. around 

230000). 

 

Figure 24 C-O type computational grid for the test case I. 

The experimental data is given in terms of surface pressure 

distributions at different sections. Numerical results at three sections are 

compared with experimental results in Figure 25, Figure 26 and Figure 27 

below. The convergence history of the solution is also given in Figure 28 at 

the end. 
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Figure 25 Numerical results vs. experiment at y/ytip 0.2. 

 

 

Figure 26 Numerical results vs. experiment at y/ytip 0.65. 
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Figure 27 Numerical results vs. experiment at y/ytip 0.95. 

 

 

Figure 28 Convergence history of test case I. 
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5.2.2 Test Case II – AGARD AR 275 High Subsonic 

Compressor Cascade 

This test case is an internal flow application. The blade geometry that 

is investigated experimentally, as shown in Figure 29, is analyzed by the 

current solver used in the present study. 

The test case concerns the experimental investigation of a 2D 

compressor cascade at two inlet Mach numbers (i.e. 0.7 and 0.85) and four 

values of flow angles, β (i.e. 49°, 51°, 53° and 55°). 

This blade cascade is designed to achieve a flow turning angle larger 

than 50° in a two-dimensional flow. The corresponding diffusion is high and 

the blade shapes were tailored to minimize the suction side over-expansion 

and to ensure a recompression without flow separation at the design 

conditions. 

Moreover, a large number of boundary layer measurements and a few 

but enough static pressure - relative to inlet total pressure - distributions are 

given in (Meauzé G. et al., 1990). Hence, the physics of this problem needs 

a Navier-Stokes analysis. However, at least the static pressure distributions 

are attempted to be solved with the current Euler solver. 

In this test case, 3D Euler solver is used as a 2D solver by making use 

of symmetry boundary condition described in Chapter 3 and the problem of 

inlet Mach number 0.7 and of incidence 49° is investigated. The blade 

geometry is given in Figure 29 and the corresponding computational grid 

used in this test case is given in Figure 30 below. This computational grid 

has 298x50 nodes in 2D (i.e. around 14900). 
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Figure 29 Blade geometry 

 

Figure 30 Computational grid 298x50 
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The velocity vector field and the static pressure contours of the 

converged solution are given in Figure 31 and Figure 32 respectively. The 

comparison of the non-dimensional static pressure distributions on suction 

and pressure sides of the converged solution with experimental data is given 

in Figure 33 below. Convergence history is given at the end. 
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Figure 31 Velocity vector field of the converged solution. 

 

Figure 32 Static pressure contours of the converged solution 
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Figure 33 Comparison of the numerical results with experimental data. 

 

Figure 34 Convergence history of test case II. 
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5.2.3 Test Case III – Flow Around Rotating Cylinder (Magnus 

Effect) 

This test case is a rotational external flow application. Flow over a 

rotating cylinder of radius R may be given as the superposition of a uniform 

flow around the cylinder with a vortex of strength Γ located at the center of it 

as shown in Figure 35 below. 

 

Figure 35 Flow around a rotating cylinder. 

For such a case the exact solution of the flow field is possible and is 

given by the following stream function (Anderson J.D., 1991): 
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be found: 
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Equating both equations (5-2) and (5-3) to zero one can find the 

stagnation points at r=R (i.e. on the surface of the cylinder). By doing so: 
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−

RVπ
θ

4
sin 1  (5-4) 

In the present study, a vortex of strength 0.12π, R=0.5 and V∞=0.1 are 

used. 

The results of the CFD calculation are given below. First the 

computational grid used is given. Then the results are given in terms of 

static pressure contours together with streamline pattern and compared with 

the exact solution. Finally the convergence history is given. 

 

Figure 36 221x221 structured grid used in test case III. 
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Figure 37 Flowfield around the cylinder. Top: Overview. Bottom: Zoomed view. 

As can be seen from this figure, the static pressure difference (hence 

lift) occurs between the upper and lower parts. 
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The stagnation points obtained by this CFD solution can be compared 

by the ones computed with equation (5-4) by doing so: 

Table 9 Comparison of analytical solution with CFD (stagnation points). 

ANALYTICAL COMPUTATIONAL 

θ1=216.869898° θ2=323.130102° θ1=211.6771° θ2=336.4529° 

 

 

Further comparisons may be applied for the analytical and computed 

radial and tangential velocities. To do this the velocities obtained by 

computation are compared by the ones obtained from equations (5-2) and 

(5-3) at one radius (i.e. r=0.8625) and four angles: 

Table 10 Comparison of analytical solution with CFD (velocities). 

 ANALYTICAL COMPUTATIONAL 

θ=0° Vr=0.0663936 Vθ=-0.069565 Vr=0.0140549 Vθ=-0.055988 

θ=90° Vr=0 Vθ=-0.203172 Vr=0.021643 Vθ=-0.191433 

θ=180° Vr=-0.0663936 Vθ=-0.069565 Vr=-0.1 Vθ=-0.069565 

θ=270° Vr=0 Vθ=0.0640412 Vr=0.0105857 Vθ=0.087676 
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The results are mostly in accordance with the exact solution. At some 

places there are relatively large differences however at places like θ=180° 

one component turns out to be exactly the same with the analytical solution. 

The convergence history is given in Figure 38 below. 

 

Figure 38 Convergence history of test case III. 
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5.3 3D CFD Analysis Results of the Present Design 

In this section, the performance prediction of the design described in 

Appendix A and Chapter 2 using 3D Euler solver is given. 

5.3.1 Grid Refinement 

Given below the results of a grid refinement study carried on the grid 

shown in Figure 22. The grid refinement study consists of 6 grids ranging 

from a grid size of 98x24x30 (in x,y and z directions) to 298x60x100. All 6 

grids were solved using TAINS – 103 with exactly the same boundary 

conditions in order to see only the effect of changing the number of grid size. 

This section stands for the small loop depicted in the flowchart given in 

Chapter 2 (Figure 10 – lower left corner). 

The results are compared in two variables, (i.e. Mach number and 

static pressure) at three radial locations (i.e. hub, mean and tip). 

The reader may pay more attention on the last four solutions depicted 

by the colors black, green, purple and pink (i.e. 198x24x60, 198x48x60, 

298x48x60 and 298x60x100 respectively). 

The comments regarding the results are given at the end of each radial 

location (i.e. after giving both the Mach number and static pressure 

comparisons) 
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Figure 39 Effect of grid refinement 1: Comparison of static pressure on suction and 

pressure surfaces at hub location. 
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Figure 40 Effect of grid refinement 2: Comparison of Mach number on suction and 

pressure surfaces at hub location. 

The results in hub region are in good agreement especially on the 

pressure side of the blade. At the suction side, there is slight variation 

among the last four solutions. 
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Figure 41 Effect of grid refinement 3: Comparison of static pressure on suction and 

pressure surfaces at mean line location. 
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Figure 42 Effect of grid refinement 4: Comparison of Mach number on suction and 

pressure surfaces at mean line location. 

The results in mean line region are in very good agreement on both 

pressure and suction sides of the blade. 
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Figure 43 Effect of grid refinement 5: Comparison of static pressure on suction and 

pressure surfaces at tip location. 



 99 

 

Figure 44 Effect of grid refinement 6: Comparison of Mach number on suction and 

pressure surfaces at tip location. 

The results in tip region are also in very good agreement on the 

pressure side of the blade. On the suction side however, one can see the 

importance of this type of grid refinement work. There is a shock forming on 

the suction side at this radial location. However, the first solution can not 

capture the shock formation. Starting with the second solution, the shock 

formation is captured. The last four solutions have quite similar flow-field 

pattern before and after the shock. There is not an exact agreement on the 

location of the shock however. 
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5.3.2 Results 

Having performed a grid refinement study, the results of the best 

solution (namely the solution of 298x60x100 grid) are presented below. 

The results are presented in two parts and at three radial locations as 

before. The first part gives an idea about the velocity vector field by making 

use of Mach contours together with the streamline patterns. 

The second part gives the static pressure and entropy contours. 
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Figure 45 Results 1: Velocity vector field at hub location. 

The flow pattern at hub region is as expected. The flow turning is 

37.07° which is very close to the design value of 37.21°. 
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Figure 46 Results 2: Velocity vector field at mean line location. 

The flow pattern at mean line region is as expected. The flow turning is 

21.92° which is very close to the design value of 22.916°. 
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Figure 47 Result 3: Velocity vector field at tip location. 

The flow pattern at tip region is as expected. The flow turning is 11.5° 

which is close to the design value of 9.97°. 

In general, flow turning angles are estimated quite well. 
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Figure 48 Result 4: Static pressure and entropy contours at hub location. 

The static pressure is rising at hub region as expected. The static 

pressure ratio is around 1.111 which is slightly over the design value of 

1.0986. The entropy field shows that very small amount of entropy is 

generated in the wake region. 
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Figure 49 Result 5: Static pressure and entropy contours at mean line location. 

The static pressure is rising at hub region as expected. The static 

pressure ratio is 1.181 which is slightly over the design value of 1.1662. The 

entropy field shows that relatively small amount of entropy is generated in 

the wake region. 
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Figure 50 Result 6: Static pressure and entropy contours at tip location. 

The static pressure is rising at hub region as expected. The static 

pressure ratio is 1.222 which is moderately over the design value of 1.1861. 

this may be because of the shock forming. It’s known that static pressure 

increases after any normal shock. The entropy field shows that moderate 

amount of entropy is generated after the shock formation and in the wake 

region. 

In general, static pressure rises are estimated slightly over the design 

values. 
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5.3.3 Comparison of Results with Design Conditions 

Given below are the comparisons of the CFD analysis with design 

conditions. Two important parameters are compared in figures 51 and 52. 

These are flow turning (i.e. β1 – β0) and static pressure ratio (P1/P0). 

 

Figure 51 Comparison of flow turning angles. 
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Figure 52 Comparison of static pressure ratio. 

5.3.4 Convergence and Computational Time 

All of the solutions mentioned above are converged ones. 

Convergence meaning that the solution reaching a final state in which the 

values of variables between each time step and one step before are 

minimal. Convergence criterion for the present study was to have the 

average of these differences (i.e. residuals) to be three orders of magnitude 

lower than the initial value. 

The convergence histories of the solutions mentioned above are given 

below in figures 53 to 58. 

The computational time needed for these solutions were given at the 

end in Table 11 including the computer configurations used. 
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Figure 53 Convergence history of the 98x24x30 grid. 

 

Figure 54 Convergence history of the 198x24x30 grid. 
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Figure 55 Convergence history of the 198x24x60 grid. 

 

Figure 56 Convergence history of the 198x48x60 grid. 
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Figure 57 Convergence history of the 298x48x60 grid. 

 

Figure 58 Convergence history of the 298x60x100 grid. 
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Table 11 Computational time of the six solutions mentioned above. 

 

 

 

The first five solutions are obtained on same type of computer 

configuration (i.e. PC with Pentium 4 2.8 Ghz processor, 256 MB RAM). 

However, the last one did not run on the same system, it needed higher 

computer resources (i.e. PC with Pentium 4 3.2 Ghz processor, 1 GB RAM).  

The first five can be combined to see the effect of grid size on 

computational time. The result of such a comparison is given in Figure 59 

below. 

Grid Size Node Number Iteration Comp. Time Processor Memory 

98x24x30 70560 15000 2h 19min P4 – 2.8Ghz 256 MB 

198x24x30 142560 15000 4h 48min P4 – 2.8Ghz 256 MB 

198x24x60 285120 15000 9h 51min P4 – 2.8Ghz 256 MB 

198x48x60 570240 15000 20h 6min P4 – 2.8Ghz 256 MB 

298x48x60 858240 15000 30h 23min P4 – 2.8Ghz 256 MB 

298x60x100 1788000 14300 55h 20min P4 – 3.2Ghz 1024 MB 
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Computational Time vs. Grid Size
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Figure 59 The effect of grid size on computational time. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

Three-dimensional design and CFD analysis of a compressor rotor 

stage are performed. 

This is done by starting with mean line analysis and through flow radial 

equilibrium. Radial equilibrium equation is satisfied at five radial locations. 

Airfoils are selected and positioned using available data regarding the 

specific airfoil cascade family used in the present design. 

Three-dimensional geometry is created by stacking airfoils using a 

three-dimensional computer aided design software. 

Meanwhile, a three-dimensional internal flow solver is developed. This 

is done by modifying an existing three-dimensional solver. The solver is a 

multiblock, finite difference, approximately factored implicit Euler solver. In 

order to modify an external flow solver into an internal flow solver suitable for 

compressor/turbine rotor blades, three major advances were introduced: 

First was making use of the periodic boundary condition, second was 

making use of characteristics based inlet/outlet boundary conditions and the 

last one was the inclusion of the source terms due to rotating motion into 

momentum and energy equations. 

Then, the results of the design study were combined with the results of 

the three-dimensional solver development study. Structured grids were 

generated around the geometry using a three-dimensional structured grid 

generator. 



115 

 

The results are obtained and compared with the design study. All the 

solutions converged and none had separation. The only point that is not 

expected was the shock formation on the suction side of the tip region. This 

can be overcome by changing the airfoil used in the tip region. There are 

other airfoils with less camber and able to provide the same flow turning. 

According to the problems experienced throughout this study, some 

recommendations from a designer’s point of view and possible future 

applications of the present study are stated below. 

Radial equilibrium calculations are performed by hand. This is not 

impossible however it takes a long time to re-iterate on the design 

procedure. In the present study three design iterations are performed. 

Together with airfoil selection and other calculations regarding the airfoils, 

one design cycle takes about 2½ to 3 weeks. A computer program 

performing these calculations would have increased the speed of design 

iterations a lot. 

Another problematic point was the grid generation. In the present study 

the grids are generated using three different computer programs. One to 

generate selected airfoil geometry in two-dimensions; one to create the 

three-dimensional geometry and one to generate the structured grid around 

the geometry created with the CAD software. Performing these required the 

knowledge of both CAD and grid generation programs. After acquiring a 

certain level of knowledge in these two programs, the grid generation may 

be done in one and a half days starting from scratch. 

This could be overcome by writing a three-dimensional structured grid 

generator suitable for turbomachinery applications. Despite it sounds very 

hard, it is not impossible because the suction and pressure surfaces are 

similar in shape and dimensions. Moreover, the periodic boundaries used 

must be exactly the same in shape and dimensions. These make it possible 

to fill the volume lying between the two side boundaries with points.  
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Moreover if his grid generator is made parametric, then three-

dimensional optimizations may be possible. Changing the setting angles of 

the selected airfoils or even changing the geometry of the airfoils and then 

creating the grid would then be very fast. The only limiting factor would then 

be the speed of the solver.  

Even a genetic algorithm optimization would be possible together with 

parallelization of the solver. One of the reasons why an in-house code used 

is that the code is planned to be parallelized in the future. This will enable 

researchers to perform 3D genetic optimization on turbomachinery. 
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APPENDIX A 

EXAMPLE DESIGN CALCULATIONS 

A.1 Introduction 

In this appendix, the detailed calculations of the design method 

described in Chapter 2 are given. In order to avoid duplication not all of the 

equations are re-written here. However, the necessary equations are 

repeated for reminding purposes. 

A.2 Mean Radius 

Mean radius is both the starting point and the input of the design 

process. As stated in Chapter 2 dimensions like hub and tip diameters are 

chosen to be similar to an already existing engine in the present study. Once 

the whirl speed is also chosen, the rotational velocity at each and every 

section is fixed. Selection of the whirl speed depends on the design 

specifications. In the present study, the whirl speed and the dimensions are 

chosen as follows: 

Whirl Speed=14000 RPM (Revolution per Minute) 

rhub=0.11 m, rtip=0.19 m, rmean=0.15 m 

The reason why these values are taken is in order to stay in high-

subsonic regime even at the tip radius. 

Another input is the initial axial and tangential velocities given to the 

flow by an inlet guide vane (IGV) before the flow enters the rotor stage. By 

doing so, the velocities at the inlet are fixed at mean radius. 
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INLET 

Vax,0=170 m/s (input), Vθ,0=61.8749 m/s (20° IGV)  

2

0,

2

0,0 θVVV ax +=  ⇒ V0=180.9102 m/s, 










= −

0,

0,1

0 tan
θ

α
V

Vax  ⇒ α0=70° 

( )2

0,

2

0,0 θω VrVW ax −+=  ⇒ W0=232.1 m/s, 














−
= −

0,

0,1

0 tan
θω

β
Vr

Vax  ⇒ β0=47.1° 

Having determined the absolute and relative velocity vectors and flow 

angles the inlet condition at the mean radius is fixed. 

The next step is to evaluate the velocities and angles at the exit. The 

exit is related to the inlet by the use of “Reaction Number”. At the mean 

radius a reaction number of 0.5 is taken because Rn=0.5 represents 

symmetric velocity triangles and a modern design (Akmandor, 2001). 

EXIT 

Vax,1=170 m/s (input), ωrm=219.9115 m/s 

r

VV
Rn

ω
θθ

2
1

1,0, +
−=  ⇒ Vθ,1=158.0366 m/s (Rn=0.5)  

2

1,

2

1,1 θVVV ax +=  ⇒ V1=232.1111 m/s, 













= −

1,

1,1

1 tan
θ

α
V

Vax  ⇒ α1=47.0886° 

( )2

1,

2

1,1 θω VrVW ax −+=  ⇒ W1=180.91 m/s, 











−
= −

1,

1,1

1 tan
θω

β
Vr

Vax  ⇒ β1=70° 

RESULTS 

∆β=22.9114°, 
0

1

W

W
=0.7794, mψ =-0.4373, mφ =0.7730, Rn=0.5 
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A.3 Radial Equilibrium 

Radial equilibrium is achieved using simple radial equilibrium equation: 

( ) 0
1 222

2
=+ axV

dr

d
Vr

dr

d

r
θ  

Carmichael – Lewis tangential velocity distribution is used (Wilson 

D.G., 1984) in simple radial equilibrium equation: 

( )
r

b
raV

n
−=0,θ , ( )

r

b
raV

n
+=1,θ  

After manipulations described in Chapter 2 are applied, one can get 

the following equations to find tangential and axial velocity at any radial 

location: 

( )
'

'
'''0,

r

b
raV

n
−=θ , ( )

'

'
'''1,

r

b
raV

n
+=θ  

( )[ ] ( )[ ]












−












−









−
+−







 −







 +
+=







 −1

,

2,

2

0,
'1

'11
'1

'11
1

' n

mn

mn

m

mn

m

ax
r

Rn

n
r

R

n

nV ψ

φφ
 

( )[ ] ( )[ ]












−












−









−
−−







 −







 +
+=







 −1

,

2,

2

1,
'1

'11
'1

'11
1

' n

mn

mn

m

mn

m

ax
r

Rn

n
r

R

n

nV ψ

φφ
 

a’ and b’ can be found by applying the primed variables at mean radius: 

( ) 1

, ''1'
−

−=
n

mn raR , '
2

bm =−
ψ

 

Remembering at mean radius Rn=Rn’=0.5, r’=1 and mψ =-0.4373 

⇒ a’=0.5 and b’=0.21865 

 



120 

 

A.3.1 Radial Location 1 (r=0.11 m, r’=0.733) 

ωr=161.1684 m/s 

RADIAL EQUILIBRIUM 

25.0'=nR  ⇒ n=-0.3073 

1563.1
'

2

0, =








m

axV

φ
 ⇒ Vax,0=182.0022 m/s,  

4561.1
'

2

1, =








m

axV

φ
 ⇒ Vax,1=205.1243 m/s 

2518.0'0, =θV  ⇒ Vθ,0=55.3828 m/s,  

8482.0'1, =θV  ⇒ Vθ,1=186.52 m/s 

INLET 

2

0,

2

0,0 θVVV ax +=  ⇒ V0=190.2421 m/s, 










= −

0,

0,1

0 tan
θ

α
V

Vax  ⇒ α0=73.0751°  

( )2

0,

2

0,0 θω VrVW ax −+=  ⇒ W0=210.51 m/s, 














−
= −

0,

0,1

0 tan
θω

β
Vr

Vax  ⇒ β 0=59.8°  

EXIT 

2

1,

2

1,1 θVVV ax +=  ⇒ V1=277.2466 m/s, 













= −

1,

1,1

1 tan
θ

α
V

Vax ⇒ α1=47.7200°  

( )2

1,

2

1,1 θω VrVW ax −+=  ⇒ W1=206.68 m/s, 











−
= −

1,

1,1

1 tan
θω

β
Vr

Vax ⇒ β1=7.04°  

RESULTS 

∆β = 37.2119°, 
0

1

W

W
 = 0.9818, =ψ  -0.4373, 0φ  = 1.1286, Rn = 0.0383 
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A.3.2 Radial Location 2 (r=0.125 m, r’=0.833) 

ωr=183.2596 m/s 

RADIAL EQUILIBRIUM 

3528.0'=nR  ⇒ n=-0.4154 

0800.1
'

2

0, =








m

axV

φ
 ⇒ Vax,0=176.6639 m/s, 

2176.1
'

2

1, =








m

axV

φ
 ⇒ Vax,1=187.5792 m/s 

2769.0'0, =θV  ⇒ Vθ,0=60.9065 m/s, 

8017.0'1, =θV  ⇒ Vθ,1=176.3072 m/s 

INLET 

2

0,

2

0,0 θVVV ax +=  ⇒ V0=186.8682 m/s, 










= −

0,

0,1

0 tan
θ

α
V

Vax  ⇒ α0=70.9779°  

( )2

0,

2

0,0 θω VrVW ax −+=  ⇒ W0=214.89 m/s, 














−
= −

0,

0,1

0 tan
θω

β
Vr

Vax  ⇒ β 0=55.2°  

EXIT 

2

1,

2

1,1 θVVV ax +=  ⇒ V1=257.4300 m/s, 













= −

1,

1,1

1 tan
θ

α
V

Vax  ⇒ α1=46.7743°  

( )2

1,

2

1,1 θω VrVW ax −+=  ⇒ W1=187.70 m/s, 











−
= −

1,

1,1

1 tan
θω

β
Vr

Vax  ⇒ β1=87.8°  

RESULTS 

∆β=32.5829°, 
0

1

W

W
=0.8735, =ψ -0.6297, 0φ =0.964, Rn=0.2588 
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A.3.3 Radial Location 4 (r=0.175 m, r’=1.166) 

ωr=256.5634 m/s 

RADIAL EQUILIBRIUM 

5970.0'=nR  ⇒ n=-0.3997 

9345.0
'

2

0, =








m

axV

φ
 ⇒ Vax,0=164.3309 m/s,  

8403.0
'

2

1, =








m

axV

φ
 ⇒ Vax,1=155.8289 m/s 

2827.0'0, =θV  ⇒ Vθ,0=62.1709 m/s,  

6575.0'1, =θV  ⇒ Vθ,1=144.6000 m/s 

INLET 

2

0,

2

0,0 θVVV ax +=  ⇒ V0=175.6982 m/s, 










= −

0,

0,1

0 tan
θ

α
V

Vax  ⇒ α0=69.2769°  

( )2

0,

2

0,0 θω VrVW ax −+=  ⇒ W0=254.54 m/s, 














−
= −

0,

0,1

0 tan
θω

β
Vr

Vax  ⇒ β 0=40.2°  

EXIT 

2

1,

2

1,1 θVVV ax +=  ⇒ V1=212.5836 m/s, 













= −

1,

1,1

1 tan
θ

α
V

Vax  ⇒ α1=47.1405°  

( )2

1,

2

1,1 θω VrVW ax −+=  ⇒ W1=191.88 m/s, 











−
= −

1,

1,1

1 tan
θω

β
Vr

Vax  ⇒ β1=54.3°  

RESULTS 

∆β=14.0929°, 
0

1

W

W
=0.7538, =ψ -0.3213, 0φ =0.6405, Rn=0.6614 
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A.3.4 Radial Location 5 (r=0.19 m, r’=1.266) 

ωr=278.5546 m/s 

RADIAL EQUILIBRIUM 

6426.0'=nR  ⇒ n=-0.41996 

9050.0
'

2

0, =








m

axV

φ
 ⇒ Vax,0=161.7135 m/s, 

7732.0
'

2

1, =








m

axV

φ
 ⇒ Vax,1=149.4806 m/s 

2801.0'0, =θV  ⇒ Vθ,0=61.6036 m/s, 

6254.0'1, =θV  ⇒ Vθ,1=137.5251 m/s 

INLET 

2

0,

2

0,0 θVVV ax +=  ⇒ V0=173.0498 m/s, 










= −

0,

0,1

0 tan
θ

α
V

Vax  ⇒ α0=69.1460°  

( )2

0,

2

0,0 θω VrVW ax −+=  ⇒ W0=270.59 m/s, 














−
= −

0,

0,1

0 tan
θω

β
Vr

Vax  ⇒ β 0=36.7°  

EXIT 

2

1,

2

1,1 θVVV ax +=  ⇒ V1=203.1197 m/s, 













= −

1,

1,1

1 tan
θ

α
V

Vax  ⇒ α1=47.3853°  

( )2

1,

2

1,1 θω VrVW ax −+=  ⇒ W1=205.50 m/s, 











−
= −

1,

1,1

1 tan
θω

β
Vr

Vax  ⇒ β1=46.6°  

RESULTS 

∆β=9.9658°, 
0

1

W

W
=0.7595, =ψ -0.2725, 0φ =0.5805, Rn=0.7326 
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A.4 All Results Together 

All the results obtained so far are tabulated in Table 12 and Table 13 below: 

Table 12 Velocity components and flow angles at five radial locations. 

r(m) Vax,0 (m/s) Vθ,0 (m/s) V0 (m/s) W0 (m/s) αααα0 (°) β0 (°) 

0.11 182.00 55.38 190.24 210.51 73.07 59.83 

0.125 176.66 60.91 186.87 214.90 70.98 55.29 

0.15 170 61.87 180.91 232.11 70 47.09 

0.175 164.33 62.17 175.70 254.55 69.28 40.21 

0.19 161.71 61.60 173.05 270.59 69.15 36.70 

r(m) Vax,1 (m/s) Vθ,1 (m/s) V1 (m/s) W1 (m/s) αααα1 (°) β 1 (°) 

0.11 205.12 186.52 277.25 206.68 47.72 97.04 

0.125 187.58 176.31 257.43 187.71 46.77 87.88 

0.15 170 158.04 232.11 180.91 47.09 70 

0.175 155.83 144.6 212.58 191.88 47.14 54.30 

0.19 149.48 137.52 203.12 205.51 47.38 46.67 
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Table 13 Other important results at five radial locations. 

r(m) W1/W0 ∆∆∆∆β ψψψψ φφφφ0 φφφφ1 Rn σσσσ DF 

0.11 0.9818 37.21 -0.8132 1.1286 1.2719 0.0383 1.649 0.2078 

0.125 0.8735 32.58 -0.6297 0.9640 1.0236 0.2588 1.451 0.3121 

0.15 0.7794 22.91 -0.4373 0.7730 0.7730 0.5 1.210 0.3922 

0.175 0.7538 14.09 -0.3213 0.6405 0.6074 0.6614 1.036 0.4023 

0.19 0.7595 9.9658 -0.2725 0.5805 0.5366 0.7326 0.955 0.3879 

 

 

 

A.5 Cascade Airfoil Selection 

As stated in Chapter 2, NACA Mellor Charts are used to select 

appropriate airfoil cascades (Horlock J. H., 1958). 

To do that, one needs the following: 

i. Inlet flow angle α1 (measured from axial direction). 

ii. Exit flow angle α2 (measured from axial direction). 

iii. Solidity (
chord

spacing
=σ ) 

All inlet and exit flow angles and solidities are provided in Table 12. 

However one has to be careful because in the velocity triangles given 

above, all angles are measured from tangential direction. 

Another important point to consider is that, the inlet and exit angles are 

β0 and β1 (i.e. relative flow angles) respectively for ROTOR geometries. 
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However are to be α0 and α1 (i.e. absolute flow angles) respectively for 

STATOR geometries. 

Taking into account the two paragraphs above, one has to transform 

the results obtained to the ones in the form of Mellor charts. So: 

i. Inlet flow angle 01 90 βα −=  (for rotor) 

ii. Exit flow angle 12 90 βα −=  (for rotor) 

iii. Solidity (
chord

spacing
=σ ) is the same 

Taking these into consideration, NACA Mellor charts are used and 

airfoil cascades are selected among suitable ones. 

Given below are the results. In these results, γα −1  represents angle 

of attack and γ  represents stagger angle. Both are measured from axial 

direction. So at the end, these must be converted back to present notation. 

 

A.5.1 Radial Location 1 (r=0.11 m) 

649.1=σ , °= 19.301α , °−= 018.72α  

Suitable airfoil cascades: 

65 – 12(10): 5.1=σ , °=− 261 γα  ⇒ °= 19.4γ  

65 – 15(10): 5.1=σ , °=− 231 γα  ⇒ °= 19.7γ  

65 – 18(10): 5.1=σ , °=− 211 γα  ⇒ °= 19.9γ  � This one is chosen. 

A.5.2 Radial Location 2 (r=0.125 m) 

451.1=σ , °= 71.341α , °= 123.22α  

Suitable airfoil cascades: 

65 – 12(10): 5.1=σ , °=− 221 γα  ⇒ °= 71.12γ  
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65 – 15(10): 5.1=σ , °=− 201 γα  ⇒ °= 71.14γ  � This one is chosen. 

65 – 18(10): 5.1=σ , °=− 181 γα  ⇒ °= 71.16γ  

A.5.3 Mean Radius (r=0.15 m) 

21.1=σ , °= 91.421α , °= 202α  

Suitable airfoil cascades: 

65 – 12(10): 25.1=σ , °=− 141 γα  ⇒ °= 91.28γ  

65 – 15(10): 0.1=σ , °=− 141 γα  ⇒ °= 91.28γ  � 

65 – 15(10): 5.1=σ , °=− 121 γα  ⇒ °= 91.26γ  � Linear interpolation on σ.  

               ⇒ °= 91.27γ � This one is chosen. 

65 – 18(10): � Out of range! 

 

A.5.4 Radial Location 4 (r=0.175 m) 

036.1=σ , °= 79.491α , °= 697.352α  

Suitable airfoil cascades: 

65 – 8(10): 0.1=σ , °=− 111 γα  ⇒ °= 79.38γ  

65 – 12(10): 0.1=σ , °=− 81 γα  ⇒ °= 79.35γ  � This one is chosen. 

65 – 15(10): � Out of range! 

A.5.5 Radial Location 5 (r=0.19 m) 

955.0=σ , °= 30.531α , °= 334.432α  

Suitable airfoil cascades: 

65 – 4(10): 0.1=σ , °=− 101 γα  ⇒ °= 30.43γ  

65 – 8(10): 0.1=σ , °=− 61 γα  ⇒ °= 30.39γ  � This one is chosen. 



128 

 

65 – 12(10): � Out of range! 

The results are converted to present notation and tabulated in Table 14 

below: 

Table 14 Cascade airfoil selection results at five radial locations. 

r(m) Airfoil Angle of Attack Stagger Angle (γγγγ) ∆∆∆∆β 

0.11 NACA 65 – 18(10) 21° 80.81° 37.21° 

0.125 NACA 65 – 15(10) 20° 75.29° 32.58° 

0.15 NACA 65 – 15(10) 13° 62.09° 22.91° 

0.175 NACA 65 – 12(10) 8° 54.21° 14.09° 

0.19 NACA 65 – 8(10) 6° 50.70° 9.97° 
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APPENDIX B 

AIRFOILS USED IN THE DESIGN 

B.1 Introduction 

In this appendix, all airfoils used in the present study are given. The 

airfoils are generated using the method described in Chapter 2. The 

accuracy of the generated airfoils are presented in Chapter 2 by a 

comparison on 65-(12)10 airfoil, so not repeated here. Airfoils are given 

directly. 

B.2 Radial Location 1 (r=0.11 m, r’=0.733) 

NACA 65-(18)10
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Figure 60 NACA 65-(18)10 airfoil coordinates. 
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B.3 Radial Location 2 (r=0.125 m, r’=0.833) 

NACA 65-(15)10
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Figure 61 NACA 65-(15)10 airfoil coordinates. 

B.4 Mean Radius (r=0.15 m, r’=1.0) 

This section has the same airfoil with radial location 2. 

B.5 Radial Location 4 (r=0.175 m, r’=1.166) 

NACA 65-(12)10
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Figure 62 NACA 65-(12)10 airfoil coordinates. 
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B.6 Radial Location 5 (r=0.19 m, r’=1.266) 

NACA 65-810
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Figure 63 NACA 65-810 airfoil coordinates. 
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