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ABSTRACT 

 
 

MULTIVIEW 3D RECONSTRUCTION OF A SCENE  

CONTAINING 

 INDEPENDENTLY MOVING OBJECTS 

 

 

Tola, Engin 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Aydın Alatan 

 

August 2005, 156 Pages 

 

In this thesis, the structure from motion problem for calibrated 

scenes containing independently moving objects (IMO) has been 

studied. For this purpose, the overall reconstruction process is 

partitioned into various stages. The first stage deals with the 

fundamental problem of estimating structure and motion by using 

only two views. This process starts with finding some salient 

features using a sub-pixel version of the Harris corner detector. 

The features are matched by the help of a similarity and 

neighborhood-based matcher. In order to reject the outliers and 

estimate the fundamental matrix of the two images, a robust 

estimation is performed via RANSAC and normalized 8-point 

algorithms. Two-view reconstruction is finalized by decomposing 

the fundamental matrix and estimating the 3D-point locations as a 

result of triangulation. The second stage of the reconstruction is 

the generalization of the two-view algorithm for the N-view case. 
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This goal is accomplished by first reconstructing an initial 

framework from the first stage and then relating the additional 

views by finding correspondences between the new view and 

already reconstructed views. In this way, 3D-2D projection pairs 

are determined and the projection matrix of this new view is 

estimated by using a robust procedure. The final section deals 

with scenes containing IMOs. In order to reject the 

correspondences due to moving objects, parallax-based rigidity 

constraint is used. In utilizing this constraint, an automatic 

background pixel selection algorithm is developed and an IMO 

rejection algorithm is also proposed. The results of the proposed 

algorithm are compared against that of a robust outlier rejection 

algorithm and found to be quite promising in terms of execution 

time vs. reconstruction quality. 

 

Keywords: 3D Scene Reconstruction, Independently Moving 

Objects, Robust Estimation. 
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ÖZ 

 

 

BAĞIMSIZ OLARAK HAREKET EDEN NESNELER İÇEREN BİR 

SAHNENİN ÇOKLU RESİMLERDEN 3 BOYUTLU SAHNE YAPISININ 

ÇIKARILMASI 

 

Tola, Engin 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. A. Aydın Alatan 

 

Ağustos 2005, 156 Sayfa 

 

Bu tezde bağımsız hareket eden nesneler içeren kalibre edilmemiş 

sahnelerdeki hareketten yapı problemleri incelenmektedir. Bu 

amaçla geriçatım süreci üç aşamaya bölünmüştür. Birinci kısım, 3-

B yapı ve hareketi sadece iki resim kullanarak tahmin etme 

problemidir. Bu süreç, Harris köşe bulucusunun piksel-altı 

uyarlaması kullanılarak, gürbüz özelliklerin bulunmasıyla başlar. 

Bu özellikler benzerlik ve komşuluk özellikleri temelli bir eşleyiciyle 

ilişkilendirilirler. Aykırı örnekleri atmak ve temel (fundamental) 

matrisi hesaplayabilmek için RANSAC ve normalleştirilmiş 8-nokta 

algoritmaları kullanılarak, gürbüz bir kestirim uygulanır. İki 

görüntüden geriçatma, temel matrisi parçalarına ayırma ve 3B 

noktaların yerlerinin, üçgenleştirme kullanılarak bulunmasıyla 

sonuçlandırılır. Geriçatmanın ikinci aşaması, iki görüntü için elde 

edilmiş olan algoritmanın N-görüntü için genelleştirilmesidir. Bu 

amaca, ilk olarak birinci aşamadaki algoritma kullanılarak 
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başlangıç iskeletinin kurulması ve ilave görüntülerin daha önceden 

iskelete katılmış görüntülerle ilişkisini elde edilmesiyle, ulaşılır. Bu 

şekilde, 3B-2B izdüşüm noktaları elde edilir ve bu noktalardan, 

gürbüz bir işlemle yeni görüntünün izdüşüm matrisi hesaplanır. 

Son bölüm, bağımsız hareket nesneler içeren sahnelerde 

geriçatma ile ilişkilidir. Hareketli nesneleri atmak için paralaks 

temelli katılık sınırı kullanılmaktadır. Bu sınırı kullanmak için, 

otomatik bir arkaplan piksel seçici algoritma geliştirilmiş ve bu 

sınıra dayanan bir bağımsız nesneleri çıkartma algortiması 

önerilmiştir. Önerilen algoritmanın sonuçları gürbüz bir aykırı 

örnek eleme algoritmasıyla kıyaslanmıştır ve sonuçlar işlem 

zamanı-yapılandırma kalitesi açısından oldukça ümit verici 

bulunmuştur. 

 

Anahtar Kelimeler: 3B Sahne yapılandırması, Bağımsız Hareket 

Eden Nesneler, Gürbüz Tahmin 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

In recent years, due to significant amount of devoted resources, 

there had been a lot of progress in 3-D display technologies. 

Publicly unpopular glass-based 3-D visualization solutions are 

currently being replaced with their glass-free counterparts, which 

are auto-stereoscopic displays. It is now possible to purchase an 

auto-stereoscopic display for a reasonable price and hence, the 

manufacturers are producing stereo displays for not only the 

professional applications, but also the consumer market. However, 

the content, which can be viewed by using these devices, is not 

vastly available. Hence, 3-D visualization is still only privileged to 

the researchers and professionals. It should be noted that in order 

to produce content, it is also possible to capture new data, which 

is compatible with these devices, by the help of some extra 

hardware, such as stereo cameras or LIDAR devices. Obviously, it 

will be a waste of resources, if one does not use the 3-D 

information which is available in a typical mono-view camera 

recording. Apart from this fact, it should also be remembered that 

for many years, mankind has already collected images and videos 

via mono-view cameras. Instead of re-capturing new data or 

losing already available content, such information sources should 

be converted into the appropriate format for such 3-D displays.  
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The discipline that relates image formation to 3-D scene structure 

is a very exciting branch of study and it has attracted much 

attention over the years and as a result, a new field of study, 

called as computer vision, has emerged. Vision researchers are 

working on algorithms to estimate 3-D information by using only 

images or single camera shots for the past 20 years. Currently, 

the evolved algorithms are mature enough to give good 

representations of the scenes without requiring much human 

intervention.  

 

1.1 Scope of the Thesis 

 

This thesis is devoted to the problem of developing the 

fundamental building blocks of a complete 3-D scene 

reconstruction system that operates on calibrated image 

sequences, which might also contain independently moving 

objects, as well as the stationary background. After processing of 

the mono-view in a cascaded set of algorithms, the system finally 

produces a 3-D sparse (Virtual Reality Modeling Language, VRML) 

model of the scene for visualization purposes. 

 

In this thesis, as well as a complete 3-D scene reconstruction 

system, different triangulation algorithms, which are quite critical 

while locating the 3D points in space, are also compared and a 

novel algorithm to reject the independently moving objects within 

the scene is proposed. The outputs for two different outlier 

rejection techniques are evaluated and some hypotheses are 

validated through simulations.  
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1.2 Outline of the Thesis  

 

In Chapter 2, some background information is given about camera 

models and the epipolar geometry.  

 

Chapter 3 is devoted to the basic building blocks of the 3D 

reconstruction algorithm from two calibrated images. These blocks 

include correspondence estimation, robust computation of the 

fundamental matrix, computation of the relative pose and 

orientation between the views and triangulation. Different 

methods for triangulation are presented and the chapter ends with 

some simulation results.  

 

Chapter 4 discusses the generalization of the two-view 

reconstruction to the multiple views. The presented algorithm 

starts with an initial framework and each new frame is inserted 

into the system, sequentially. Finally, the whole structure is 

refined through a general bundle adjustment.  

 

Chapter 5 considers the multiple view reconstruction problem with 

independently moving objects within the scene. A novel algorithm 

is presented for this purpose and these results are compared with 

that of the sequential algorithm, given in Chapter 4. 

 
Finally, Chapter 6 gives a summary of the thesis and concluding 

remarks about certain blocks of the algorithm. Some future work 

plan is also suggested in this last chapter. 
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CHAPTER 2 

 

 

2 CAMERA MODEL AND EPIPOLAR GEOMETRY 

 

 

 

In this chapter, some background information, which is necessary 

to better understand the developed procedures and analyze the 

presented material, is discussed briefly. The chapter contains 

some information about the camera models and the epipolar 

geometry. Most of the following definitions follow the text in [1-2] 

and hence, the reader should refer to these resources for more 

detail.  

 

2.1 Camera Model  

 

A camera model is a simple transformation that relates the 3-D 

world coordinate system and a 2-D image plane in order to 

simulate the imaging process of an optical camera. This 

transformation is usually represented in matrix form and when the 

projection is considered over points, the matrix is a 3x4 matrix, 

called Projection Matrix ( P ), which maps homogeneous 3-D world 

coordinates to homogeneous 2-D image plane coordinates. The 

projection matrix encapsulates information about the intrinsic 

parameters of the camera, such as focal length and principal 

point, as well as the extrinsic parameters, rotation and 

transformation.  
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Throughout this thesis, finite projective camera model is assumed 

and hence, in this chapter, basic definitions of this camera model 

will be introduced, starting from a simple model and generalizing 

it by adding degradations. Then, a nonlinear distortion of the 

camera lens will be taken into account and explained, briefly. 

Finally, camera calibration, which is a procedure to estimate the 

parameters of the camera matrix, will be outlined and a popular 

algorithm to easily accomplish this task will be presented. 

 

2.1.1 Finite Camera Model 

 
In this section, the most basic camera model, pinhole camera 

model, is explained and more general models are also introduced 

by considering imperfections for this model. 

 

2.1.1.1 Basic pinhole model 

 
Basic pinhole camera model (see Figure 2.1) assumes that a 3-D 

point in space is projected onto the image plane by drawing a line 

from the 3-D point to the center of projection.  

 

 
Figure 2.1: Basic pinhole camera geometry 
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The intersection of this line with the image plane is the point of 

projection. The projection operation is shown in Figure 2.2. f is the 

focal length, P is the principal point, X is a 3-D point and x is the 

projection of X. The center of the projection is called as the 

camera center and it is also known as the optical center. The ray, 

which is perpendicular to the image plane, passing through the 

camera center, is called principle axis. Lastly, the point of 

intersection of this ray with the image plane is known as principal 

point.  

 

 
Figure 2.2: Side view of the projection of a 3-D point 

 

A 3-D point X is projected to a point x. If the coordinates of the 

point X is taken as ( )TZYX , then the projected coordinates can 

be easily calculated as ( )TfZ
fY

Z
fX  from the similarity of 

triangles. 

 

( )TZYX   ( )TfZ
fY

Z
fX   (2.1.1) 
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By using homogeneous coordinates, this transformation can be 

represented in matrix form.  
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Then,  
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where the P matrix is entitled as the camera projection matrix. 

 

2.1.1.2 Updating the model to include origin shifts 

 

Basic pinhole camera model assumes the center of the image 

plane as the origin. However, in general, the lower left corner is 

utilized as the image origin. The mapping for this case can be 

shown as  

 

( )TZYX   ( )TYX pZ
fYpZ

fX ++  (2.1.4) 

 

and in matrix form  
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[ ] CXIKx 0|=     (2.1.6) 

 
where the K matrix is denoted as the camera calibration matrix. 

This matrix is the most important parameter in 3-D reconstruction 

problems and if it is known beforehand, the frames are referred as 

“calibrated”, otherwise as “uncalibrated”. 

 
The 3-D coordinates are denoted by CX  to notify that they are 

measured with respect to a coordinate system that is embedded 

to the camera coordinate system. The next section presents the 

change in the camera projection matrix, when a different 

coordinate system is used.  

 

2.1.1.3 Updating the model to include coordinate system 

changes 

 
In the current projection matrix, it is assumed that the 3D 

coordinates are measured with respect to the camera coordinate 

system. When the 3D coordinates are measured with respect to 

another coordinate system, the projection matrix has to be 

updated accordingly.  
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Figure 2.3: Transformation between world and camera coordinate systems 

 

In Figure 2.3, the coordinate system, which is used to measure 

the 3D points, is called as the world coordinate system (WCS) 

whereas the other one as the camera coordinate system (CCS). 

Denoting the rotation and translation between the two coordinate 

systems with R and t, the relation between a coordinate that is 

measured with CCS and WCS is written as,  

 

( )C-XRXcam =  with RCt −=    (2.1.6) 

 

Hence, (2.1.6) is updated to,  

 

[ ] camX0|IKx =   [ ][ ]Xt|R0|IKx =   [ ]Xt|RKx =  (2.1.7) 

 

and hence  

 

XPx =  with [ ]t|RKP =    (2.1.8) 
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The parameters that are contained in the K matrix are entitled as 

intrinsic parameters, while the rotation matrix and translation 

vector are denoted as the exterior parameters of a camera. The 

estimation of these parameters is termed as interior calibration 

and exterior calibration, respectively. 

 

2.1.1.4 Updating the model to pixel units 

 

The derived camera projection matrix ignores the fact that a non-

isotropic scaling in x and y-direction might occur. This disorder 

could occur in today’s CCD cameras, when the pixel manufacturing 

results in non-square pixels. In order to avoid introducing unequal 

scale factors in each direction the camera projection matrix is 

multiplied by  

 

diag(mx, my, 1)    (2.1.9) 

 

where mx and my are the number of pixels per unit distance in x 

and y directions. The calibration matrix becomes  

 

⎥
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    (2.1.10) 

 
Xα  and Yα  are the focal lengths in x- and y-directions and (x0,y0) 

is the principal point in terms of pixel dimensions. 
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2.1.1.5 Updating the model to include skew 

 
The skew parameter in the camera calibration matrix is due to the 

tilt of the pixels. When the pixels are not manufactured to have a 

90-degree angle, the skew is non-zero. In today’s cameras, the 

skew may be considered, as zero. However, for the former 

cameras, this degradation has to be considered.  

 

 
Figure 2.4: Skew in pixels 

 

The final camera calibration with skew parameter is obtained as  
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    (2.1.11) 

 

2.1.1.6 Final words 

 

When a camera has a calibration matrix of the form, as in 

(2.1.11), it is called as finite projective camera. It has 11 degrees 

of freedom (5 internal and 6 external parameters), as a 3x4 

homogeneous matrix. The camera center can be obtained as the 

right null vector of the projection matrix. 
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2.1.2 Radial distortion 

 
The imaging operation is assumed to be perfectly linear up to this 

point. However, due to a phenomenon, called lens distortion, the 

process is in fact nonlinear. The degree of lens distortion increases 

as the focal length decreases. In Figure 2.6, a typical example for 

lens distortion is presented.  

 

 
Figure 2.5 Radial distortion [1]: Left image represents the image before 

correction and right image is the corrected linear image. 

The lens of the camera projects the points in the scene 

nonlinearly, according to their distance from the origin of the 

image plane, thus, this distortion is called as radial lens distortion.  

 

 
Figure 2.6: Radial distortion example [1]: Notice the distortion in the linear 

lines in the left image. Right image is the corrected one; lines are straight in 

this image. 
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A solution to this problem is to apply a nonlinear transformation to 

the image pixels in order to remove the effects of distortion. 

However, it is crucial to correct this distortion in the right place. 

The distortion takes place in the projection of world coordinates 

onto the image plane before the application of calibration matrix.  

 

[ ] cam
d

d XIrKL
y
x

0|)(=⎥
⎦

⎤
⎢
⎣

⎡
   (2.1.12) 

 

2.1.2.1 Radial Distortion parameters 

 

As stated before, the radial distortion occurs according to the 

radial distance of a pixel to the optical center. This distortion 

should be compensated for in some of the applications, such as 

reconstruction problems. The un-distortion function is modeled as 

a Taylor series expansion of the radial distance, since it depends 

on this value.  

 

.....1)( 2
21 +++= rKrKrL   (2.1.13) 

 

where 22 )()( CC yyxxr −+−=  and ),( CC yx  being the optical 

center.  

 

))((

))((

CCcap

CCcap

yyrLyy

xxrLxx

−+=

−+=
   (2.1.14) 

 

In the above equation, x and y are the measured pixel coordinates 

and capx  and capy  are the corrected pixel coordinates. L(r) function 
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is only defined for the positive values of r and L(0) = 1. The 

parameters of the radial distortion are also considered among the 

internal parameters of a camera. The estimation of these 

parameters is accomplished by minimizing a cost function, which 

measures the deviation of the model from a linear counterpart. In 

most of the systems, it is sufficient to estimate only the first two 

values of the expansion and furthermore adding more parameters 

to the un-distortion operation is avoided, in order not to cause 

numerical problems. 

 

2.1.3 Camera Calibration 

 

Camera calibration is the process of obtaining camera intrinsic 

parameters [1,2]. It is one of the most important steps in 3D 

computer vision for the extraction of 3D information from the 

captured scene. Structure and motion problems require a high 

level of accuracy of the camera matrix due to the nonlinearity of 

the problem of 3-D scene reconstruction. Moreover, without an 

accurate camera matrix, most of the algorithms are expected to 

fail to converge or converge to a physically meaningless solution. 

This important problem has been studied extensively by the 

researchers over the years [2-9]. Taxonomy of the methods can 

be proposed roughly in 4 categories, according to the dimension of 

the utilized calibration pattern [8]: 

• Calibration with 3-D patterns 

• Calibration with 2-D patterns 

• Calibration with 1-D patterns 

• Calibration with 0-D patterns (self calibration)  
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2.1.3.1 Calibration with 3-D patterns:  

 

In this approach, camera calibration is performed by using a 3D 

pattern (see Figure 2.7), whose structure is known with a very 

high precision in 3-D space.  

 

 
 Figure 2.7: A 3D calibration pattern [11] 

 
For example, the calibration procedure explained in [2] uses a 3D 

calibration pattern and it has been shown that, the calibration can 

be performed very efficiently [8]. Another example of this 

approach is the famous paper, by Tsai [4]. Tsai’s method involves 

a 2D plane undergoing a precisely known translation, which also 

results with an information for the 3rd dimension. Although, the 

results of the Tsai’s method are quite precise, it is a difficult 

procedure to achieve in practice. 

 

2.1.3.2 Calibration with 2-D patterns: 

 

The methods in this part involve observing a planar pattern (see 

Figure 2.8) from a limited number of views [6, 9]. The motion of 

the plane is unspecified, in contrast to the Tsai’s technique [4], 
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and the required calibration pattern can be prepared by anyone 

easily and the results are quite acceptable.  

 

 
 Figure 2.8: 2D Calibration Pattern [6] 

 

In Zhang’s method [6], a coplanar calibration pattern is captured 

a few times with different orientations by moving either the 

camera or the model plane. The world coordinate system is 

assumed to be aligned with the model plane, i.e. calibration 

pattern is on z = 0 plane and the x- and y-axes are parallel to the 

pattern features. The feature points are automatically detected 

from the captured images. As in [4], only this information is used 

in order to extract intrinsic, extrinsic and distortion parameters of 

the camera. 

 

The estimation of the unknown calibration parameters in principle 

is quite similar to the method by Tsai [4]. The major difference is 

the absence of strict motion requirement for the camera to gather 

some depth information. The assumption of coinciding the z=0 

plane with the calibration pattern simplifies the formulation of the 
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procedure. For more details of Zhang’s method, the readers 

should refer to Appendix A. 

 

2.1.3.3 Calibration with 1-D patterns: 

 

Calibration pattern by using 1-D objects (see Figure 2.9) has not 

been studied extensively in comparison to the other classes of 

calibration.  

 

 
Figure 2.9: 1D calibration pattern [8] 

 

The method in [8] involves observing a linear pattern that is 

moved around a fixed point. This method is especially important, 

when multiple cameras are to be calibrated, where the calibration 

objects are required to be observed simultaneously [8]. 

 

2.1.3.4 Calibration with 0-D patterns (Self Calibration): 

 

In self-calibration, no calibration pattern is used and therefore can 

be considered as a 0-D approach, since it only requires point 

matches between different views [1, 2, 3, 5, 6]. The rigidity of the 

scene [2] is used to compute the internal parameters of the 
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camera and if the images are captured by the same camera with 

constant internal parameters, three images are enough to 

compute the camera internal and external parameters, which are 

used to compute 3D structure of the scene [1, 3].  

 

In self-calibration problem, the only available data are the images 

captured from various locations and orientations to estimate the 

camera intrinsic parameters. There are many different methods 

for self-calibration. As pioneers, Maybank and Faugeras [14] 

proposed a method, in which the nonlinear quadratic equations, 

called as Kruppa equations, are constructed by using Fundamental 

matrices and unknown camera matrices. After this pioneering 

work, these equations are attempted to be solved in different 

ways [14, 15, 16, 18, 19]. In another type of self-calibration 

method [22, 23], the camera intrinsic parameters are obtained by 

using the relation between the virtual conic and the camera 

intrinsic parameters. These methods later update the projective 

reconstruction to a metric reconstruction. In a marginally recent 

method by Pollefeys [24], calibration is performed in a stratified 

way. First of all, a projective reconstruction of the scene is formed 

and then, this is updated to affine by using the position of the 

plane of the virtual conic determined by solving a number of 

constraints [25]. Finally, this reconstruction is updated to metric 

by using the estimated camera intrinsic parameters, determined 

by solving the general camera self-calibration equations.  

 

2.2 Epipolar Geometry and the Fundamental matrix 

 

Epipolar geometry is the geometry of two views of a scene 

captured from different locations or orientations. It depends on 
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the camera intrinsic parameters, as well as the relative rotation 

and translation of these views. It is independent of the scene 

structure and can be expressed with a 3x3 matrix, denoted as 

Fundamental matrix. Since the Fundamental matrix encapsulates 

both the intrinsic and the extrinsic relations, it can be used to 

obtain a projective reconstruction of the scene. If the intrinsic 

parameters of the cameras are known, fundamental matrices are 

enough to complete a metric reconstruction of the scene. In fact, 

for the calibrated camera case, fundamental matrices may be 

further reduced to a normalized form, which is called as Essential 

matrix [27]. 

 

In this section, the relationship between two perspective views of 

a scene is to be explained. The concepts, such as epipole, epipolar 

line and epipolar constraint are introduced to the reader and the 

algebraic representation of these geometric concepts – 

Fundamental matrix - will be derived as well a brief explanation of 

its properties.  

 

2.2.1 Epipolar geometry 

 

Epipolar geometry is the study of two perspective views by the 

help of projective geometry tools. It investigates the relations and 

constraints that are imposed on certain geometric elements of the 

structure formed by camera locations and orientations.  

 

In Figure 2.10, the plane formed by the two camera centers and 

the 3D point is called as epipolar plane. For different 3D points, 

there exist various epipolar planes. However, they all pass from 
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the line formed by two camera centers, C and C’, called the 

baseline. The intersections of the baseline with the image planes 

are defined as epipolar points (or epipoles). These points are the 

projections of the camera centers onto the other image plane. 

 

 
Figure 2.10: Epipolar Geometry: C and C’ are camera centers. X is any 3D 

point and x, x’ are its projections on different cameras 

 

The location of the epipole depends both on the extrinsic and 

intrinsic parameters of the cameras. Therefore, changing the 

location and orientation of the image planes also relocates the 

epipole.  

 

An epipolar line is the intersection of an epipolar plane with the 

image plane. Since all epipolar planes contain the baseline, all 

epipolar lines pass from the epipole.  

 

As it can be observed from Figure 2.11, it is not possible to 

determine the exact location of the 3D point given only an image 

of the point in one image plane and the camera centers. In fact, 
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only the line that contains that 3D point can be obtained, since no 

information about the depth of the point exists. However, for 

calibrated cameras, the position of the correspondent point in the 

second image is constrained to a line by the help of epipolar 

geometry.  

 

 
Figure 2.11: Back-projected point ambiguity: For a pair of calibrated cameras 

(C and C’ known), knowing only x will not be sufficient to find the 3D point X. 

 

Since all epipolar lines pass from the epipole, given two epipolar 

lines, the location of the epipole can be computed easily by a 

cross product. Examples for different camera configurations can 

be seen in Figure 2.12 and Figure 2.13.  

 

 
Figure 2.12: Parallel camera case [1] 
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Figure 2.13: Converging camera case [1] 

 

2.2.2 Fundamental matrix 

 

The epipolar geometry describes the relation between two 

perspective images and Fundamental matrix is the algebraic 

relation of this geometry. Fundamental matrix is used to represent 

a geometric mapping between a point and a line in a stereo image 

pair. It encapsulates camera intrinsic and extrinsic information.  

 

It is observed in the previous section that for a given point in the 

first image, there exists a line, l’, which contains the match of the 

first point. This line is in fact the projection of the ray in 3-space 

that emits outward from the camera center to the selected point 

x.  

'lx →     (2.2.1) 

 

This mapping can be represented by a 3x3 matrix (which is in fact 

the Fundamental matrix and the derivation of this matrix is given 
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in the next sections.) and this matrix is a projective mapping of a 

point to a line.  

 

2.2.2.1 Geometric derivation  

 
Let the transformation of a point x in the first image to the second 

image be performed by using a plane.  

 

 
 Figure 2.14: Transformation via a plane. 

 

This transformation can be achieved by using any plane and it is 

called a homographic transformation, H [1]. Therefore, the 

homographic correspondence of x in the second image '~x  can be 

obtained as,  

 
xHx π='~      (2.2.2) 
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The point '~x  has to be on the epipolar line that contains the 

correct match of the point x, since the ray which passes through 

x  and the first camera center is not disturbed. Hence, the 

epipolar line equation can be obtained as,  

 
[ ] [ ] ππ HeFFxxHexel xx ' where ''~'' ===×=   (2.2.3) 

 
F is the fundamental matrix and [ ]x  expression is the cross 

product in the matrix form which is defined for an arbitrary vector 
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It is observed from this derivation that there exists an equivalent 

class of fundamental matrices that can be used to represent the 

same setting of cameras. Furthermore, since [ ]xe'  term has rank 

2, the fundamental matrix is also of rank 2. This is meaningful, 

since the fundamental matrix represents a mapping from a point 

(2D) to a line (1D), thus should have rank 2. 

 

2.2.2.2 Algebraic Derivation 

 

The expression of the fundamental matrix in terms of two 

projection matrices P and P’ is first derived by [26].  

 

The equation for the back-projected ray can be given as:  

 

CxPX λλ += +)(      (2.2.4) 
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where λ is any positive real number, C is the first camera center 

and P+ is the pseudo inverse of the first projection matrix to give 

the relation IPP =+ . Since 0=PC , one gets  

 

xPX =)(λ      (2.2.5) 

 

For any given λ, )(λX  corresponds to a 3-D point on this ray. 

Therefore, the projection of this 3-D point onto the second image 

plane is given as,  

 

'''')(' exPPCPxPPPXx λλλ +=+== ++   (2.2.6) 

 

Finally, the cross product of this point with the epipole will yield 

the epipolar line equation. 

 

[ ] FxxPPeexPPexe x ==+×=× ++ '')''(''' λ   (2.2.7) 

 

Finally, one reaches the following relation for F :  

 

[ ] += PPeF x ''     (2.2.8) 

 

2.2.2.3 Epipolar Constraint 

 

Since the fundamental matrix maps a point in the first image to a 

line in the second image, the correct match of this point should be 

on this line. This relation can be expressed as,  

 

Fxl ='     (2.2.9) 



 26

0''''' =→= Fxxlxxl TTT    (2.2.10) 

 

This expression is called as the epipolar constraint and it is a quite 

important equality, since it enables estimation of the fundamental 

matrix without any necessity for the camera internal or external 

parameters. There exist many algorithms which only use point 

correspondences to estimate the fundamental matrix [1,2]. Once 

the fundamental matrix is computed, it is possible to compute the 

camera calibration matrix and the extrinsic parameters.  

 

2.2.2.4 Properties of the Fundamental matrix 

 
Fundamental matrix, as explained above, is a projective mapping 

from a point to a line (i.e. F is a correlation). Hence, it maps the 

elements of two-dimensional space to the elements of one-

dimensional space. Therefore, it is of rank 2. This result can also 

be observed from the fact that if two lines are corresponding 

epipolar lines, then any point on the first line should be mapped to 

the second line for which there is no inverse mapping and hence, 

F is not of full rank.  

 

It is observed that every epipolar line mapped by the fundamental 

matrix passes through the epipoles. Therefore, it is not surprising 

to find the positions of the epipoles at the right and left null 

spaces of the fundamental matrix. For a brief summary of the 

properties of the fundamental matrix, one should refer to Table 

2.1 
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Table 2.1: Properties of the fundamental matrix 

• F is a rank-2 homogeneous matrix with 7 degrees of 
freedom. 

• Epipolar constraint: If x and x’ are corresponding image 
points then 0' =Fxx T  

• Epipolar lines:  
o Fxl ='  is the epipolar line corresponding to x 
o 'xFl T= is the epipolar line corresponding to x’ 

• Epipoles:  
o 0=Fe  
o 0' =eF T  

• Formulation of F: 
o with projection matrices: [ ] += PPeF x ''  where P+ 

is the pseudo-inverse of P 
o transformation via a plane: [ ] πHeF x' =  where 

πH  is any homographic transformation 

 

2.2.3 Essential Matrix 

 

Essential matrix is the normalized version of the fundamental 

matrix, which is introduced to the literature by Longuet-Higgins 

[27]. It is also sometimes denoted as normalized fundamental 

matrix and includes information only about the rotation and the 

translation of the image planes. It is independent of the camera 

calibration parameters and hence, it is denoted as normalized.  

 

Given two projections of a 3D point X, as PXx =  and XPx '' = , 

the normalized image coordinates can be easily found as 

xKxcap
1−=  and ''' 1 xKx cap

−= . xcap and x’cap are independent of 

their respective calibration matrices and the new projection 

matrices PK 1−  and '' 1 PK −  are called normalized projection 
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matrices. The fundamental matrix between the normalized 

coordinates are called as the essential matrix and it is equal to 

[1], 

 

RtE ×=      (2.2.11) 

 

 
Figure 2.15: Normalized image coordinate system 

 

The epipolar constraint between the image coordinates and the 

fundamental matrix exists between the essential matrix and the 

normalized image coordinates, as well: 

 

0ˆ =cap
T

cap Exx       (2.2.12) 

 

The relationship between the fundamental matrix and the 

essential matrix also exists: 

 

FKKE T'=       (2.2.13) 

 

Since the parameters of the calibration matrices are excluded, 

essential matrix has only 5 degrees of freedom: rotation and 
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translation has each three degrees of freedom, whereas the 

overall scale ambiguity decreases the freedom by one.  
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CHAPTER 3 

 

 

3 3D SCENE RECONSTRUCTION FROM TWO-

VIEWS 

 

 

 

This chapter presents a scene reconstruction algorithm at sparse 

points from two calibrated views. Sparseness is meant in the 

sense that the reconstructed scene does not contain the depth 

information for all the pixels of an image, but only a small subset 

of them can be estimated. On the other hand, calibrated term 

denotes the availability of the internal parameters of the recording 

cameras, a priori.  

 

The chapter is organized as 6 sections. The first one presents the 

outline of a typical 3-D reconstruction algorithm and following four 

sections gives some detailed information about the main blocks of 

this algorithm. Finally, the simulation results are presented in the 

last section to asses the performance of this algorithm. 

 

3.1 Outline of the reconstruction method 

 

Although, there might be different solutions to the 3-D scene 

reconstruction problem, the two-view reconstruction algorithm, 
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which is utilized in this thesis, can be summarized in 4 main steps 

(see Figure 3.1):  

 

 Finding a set of putative correspondence pairs 

 Estimating the fundamental matrix between these views 

 Computing the pose of the views with respect to each other 

and calculating the camera matrices of the views 

 For each pair of correspondence, determining a point in 3-D 

space that project to these points. 

 

In order to estimate the relative geometry between two images, it 

is necessary to find some point matches between these views. The 

first step of the reconstruction algorithm is therefore the 

estimation of a set of putative correspondences. During the 

estimation of correspondences, some differentiable features of the 

images should be obtained. The computation of the salient 

features and the following matching processes are explained in 

Section 3.2.  

 

Given a set of correspondences, it is now possible to estimate the 

geometric relation between these two images by using the 

epipolar constraint. Given at least eight correspondences, it is 

possible to estimate the fundamental matrix in a linear manner. If 

more than eight correspondences are present, then the solution 

can be determined by any least squares method. The estimation, 

however, is not a straightforward process, in case of a set of 

correspondences containing outliers. In such a situation, a robust 

method is required. Section 3.3 discusses the estimation of the 

fundamental matrix in a robust manner.  

 



 32

Once the Fundamental matrix is estimated, Essential matrix is 

calculated as a result of basic matrix operations from the available 

calibration information. The computation of the projection 

matrices, however, requires rotation and translation parameters 

between the two views. Therefore, the decomposition of the 

Essential matrix into rotation and translation parameters is 

necessary. This process is explained in Section 3.4. 

 

Finally, once a set of correspondences and the projection matrices 

of the views are determined, only the estimation of the positions 

of the object points remains. This process is usually denoted as 

triangulation. Some extra constraints should be considered in the 

estimation of 3-space points, such as their invariance to certain 

transformations and their projection errors. Triangulation is 

another important step, since the final output of the system is 

obtained at this stage. In Section 3.5, five different triangulation 

methods are explained and lastly, an optimal one is introduced. 

 

General outline of the reconstruction algorithm is given in Figure 

3.1. 
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Figure 3.1: Outline of the reconstruction method 
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3.2 Finding correspondence pairs 

 

Every image of a scene contains abundant information for the 

problem of estimating the relative geometry between these 

frames. Therefore, it is rational to reduce the processed 

information by using the most distinct properties of the images for 

estimation. For this purpose, features, salient primitives of 

images, are extracted. Although, many other interest points can 

be selected, the usual approach is to use corners on the images, 

as salient primitives. The two-dimensional location of a corner is 

called as a feature point, and the 3-D position of such a corner is 

termed as an object point. 

 

A correspondence pair is a pair of feature points from different 

images to which an object point is projected. The correspondence 

estimation problem is to find the location of a given pixel in a 

different image. In most of the cases, the only input is the 

intensity map of the image and from this map, one would like to 

find the position of the searched pixel. This objective is not a 

trivial operation, since the transformation that a pixel might 

undergo is quite diverse. Some of these transformations are 

rotation, translation, scale changes, affine transformation, 

intensity changes due to illumination and the camera variations.  

 

It is observed in Section 2.2.2 that from a set of correspondence 

pairs, it is possible to estimate the fundamental matrix and hence 

the geometric relations between the inspected image pair. 

Therefore, correspondence estimation is a crucial step in scene 

reconstruction problems. In order to achieve this goal, one should 
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first detect certain features from the frames at hand. In the next 

section, this topic is elaborated, while the following section 

discusses correspondence estimation problem. 

 

3.2.1 Feature point detection 

 

Feature points are discernable, salient elements of an image such 

that it is possible to find a match of the feature in another image 

of the same scene. This definition simply states that the feature 

points should be traceable.  

 

There are many approaches that try to detect feature points in 

different ways [13, 42, 43, 49, 50, 52]. The method by Harris and 

Stephens [13], for example, depends on image gradient 

evaluation. This method is insensitive to illumination changes and 

translation differences. It is one of the most widely used feature 

extractor, which performs quite well for small camera movement, 

where captured images do not change in a large extent. 

Mikolajczyk, et al. [42], on the other hand, present a more 

complex feature detector, whose features are insensitive to affine 

transformations, including scale changes. Their method obtains 

invariant feature points under arbitrary moving conditions for 

various scales. However, this method has a quite high 

computation requirement and it is unnecessary to utilize such an 

approach for an input set from a video sequence which is not very 

arbitrary.  

 

It has been shown that [43] Harris corner detector finds feature 

points in image sequences more consistently than many other 
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feature detectors. Therefore, in this thesis a modified version of 

the Harris corner detector with a subpixel resolution has been 

used. 

 

3.2.1.1 Algorithm Overview:  

 

Harris corner detector examines the gradients of the image 

intensity values and it aims to select the features by choosing 

points that has strong intensity changes in both x- and y-

directions. In this way, the method eliminates the problem of 

selecting edge pixels that are not suited for tracking and matching 

tasks due to their tendency for giving similar matching scores with 

the remaining pixels in an edge (see Figure 3.2). 

 

 

Figure 3.2: Harris corner detector does not prefer the feature in the left image. 

However, due to its high gradient value, the right one will be chosen 

 

An approximation to the intensity dissimilarity between an image 

patch and a slightly shifted patch can be represented as [13]:  
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where xI  and yI  refer to the intensity derivatives in x- and y- 

directions and w(x,y) is a smoothing operator. 

 

The computation of M matrix for discrete valued images should be 

obtained via summation and M matrix will become: 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑∑
∑∑

2

2

ˆˆˆ

ˆˆˆ

yyx

yxx

III

III
M     (3.2.2) 

 

where ...Î  represents the smoothed image intensity gradients. 

 

It is desired to have large eigenvalue terms for the M matrix, since 

it gives a measure of the intensity change around the considered 

pixel. If both of the eigenvalues are large, then this situation 

should indicate a peak shaped change. In order to ensure large 

eigenvalues without calculating them explicitly, Harris proposed to 

use a measure of the form,  

 

)(*)det( 2 CtracekCR −=   (3.2.3) 

 

This measure is called as the Harris cornerness measure [13]. The 

feature points are selected at those pixels which give high 

cornerness values.  

 
Once the corner pixels are detected by the Harris corner detector, 

a subpixel resolution corner is determined by fitting a bi-quadric 

polynomial to the cornerness surface in a window. Details of bi-

quadric polynomial fitting are presented in Appendix B. In this 

implementation, the value of k has been taken as 0.04 (a 
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suggestion also made by Harris [13]) to provide preference 

against high contrast pixel step edges. The feature point 

extraction algorithm is summarized below.  

 

Algorithm 3.2.1: Feature point extraction  

1. Compute the image gradients in the x and y directions 

2. Apply an NxN Gaussian filter to the image gradients.  

3. Compute the M matrix and the R measure for every pixel 

4. By sliding a window of NxN, find the points that are local 

maxima and have R values greater than a threshold 

5. Fit a bi-quadric polynomial to the R surface in the NxN 

neighborhood of selected corners and compute the 

coordinates that give maximum cornerness value (R) from the 

fitted polynomial. 

 

3.2.1.2 Conclusion 

 
The presented algorithm for feature extraction is tested for the 

gain in the error measure. It is observed from the experiments 

performed (Table 3.2) that for a relatively minor computational 

load, subpixel accurate feature-detection increases the 

performance considerably. Moreover, during these experiments, it 

is observed that if the support rectangle size (N) of the fit is 

chosen different from the size of the Gaussian filter, then more 

than one local maximum might be obtained within the support. 

Such a situation should surely disrupt the detection of the true 

maxima due to the inferior approximation of the fit. Therefore, it 

is recommended to use same sized filters and windows throughout 

the process. 
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3.2.2 Finding putative matches 

 

Once the salient features for the two images are extracted, one 

should use a procedure for finding the correspondence of a feature 

in the second image. This problem is denoted as the matching 

(association) problem. There are many proposed algorithms for 

the solution of this problem. The simplest method is the 

correlation-based matching [44]. In this method, the features are 

matched according to their correlation score with each other in a 

predefined pixel neighborhood. Although, this method might be 

used for images with some small disparity, it is not very suitable 

for general views. In order to improve this method, imposing 

some extra constraints on such candidate matches have been 

proposed [36, 45, 46]. Neighborhood constraint is one of such 

limitations to minimize erroneous matches. In this type of 

matching, an extra score is calculated for the goodness of the 

match by considering the neighbor match states and through a 

relaxation procedure, the correspondences are established. These 

methods are, in fact, quite successful for small or medium 

baseline settings [44]. In this thesis work, the aim is to 

reconstruct a scene from video frames and thus, the level of 

success and complexity of the neighborhood-based methods are 

quite sufficient. Therefore, this type of a matching algorithm has 

been selected for the implementation.  

 

3.2.2.1 Matching through correlation 

 

Given a feature point in the first image, a set of candidate 

matches is formed by using a normalized cross correlation 
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measure. The operation is performed in a search area that 

restricts the distance of a pixel that may traverse. This is sensible 

due to the small baseline assumption. The correlation window is 

usually selected as a square window of size NxN (see Figure 3.3)  

 
Figure 3.3: Correlation operation: Correlation patch and the search radius 

 

Normalized cross correlation (NCC) is defined as [1] 
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The measure in (3.2.5) ranges from -1 (for the two 

correspondences totally “mismatch”) till 1 (for the two 

correspondences exactly the same). Utilization of only NCC as a 

matching constraint does not yield good results (See Figure 3.4, 

Figure 3.5, and Table 3.1). From Table 3.1, it can easily be 

observed that for surfaces that contain repetitive textures, NCC 

might return high values for the geometrically incorrect points. 

Therefore, another mechanism is necessary in order to 

disambiguate matches.   

 

 
Figure 3.4: Images with extracted corners by using NCC 

 

 
Figure 3.5: Details for the local regions around the marked pixels in Figure 

3.4. Upper regions are taken from the first image and lower regions are taken 

from the second image. Note the similarities between the patches at the upper 

and lower rows for different columns. 
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Table 3.1: NCC scores for all possible combinations of the image 

patches.  

0.8518 0.4412 -0.0284 -0.1795 -0.1907 0.5583 0.5011 0.5704 

0.2467 0.8817 -0.2159 0.0868 0.0997 0.2214 0.2348 0.2560 

0.0048 -0.2532 0.9446 0.0570 0.4038 0.2000 -0.0198 0.0188 

-0.2527 0.0747 -0.0120 0.7930 0.7012 -0.2370 -0.2892 -0.3637 

-0.2090 0.0459 0.4001 0.2350 0.7642 -0.1993 -0.2322 -0.2122 

0.5947 0.2872 0.1879 -0.1801 -0.2308 0.9645 0.7482 0.7749 

0.7252 0.3607 0.0121 -0.2000 -0.2280 0.7920 0.9228 0.9010 

0.7343 0.3389 0.0378 -0.2996 -0.2591 0.7516 0.8488 0.9554 

 

In the above table, columns are the image patches taken from the 

first image (first row of Figure 3.5) and rows are the image 

patches taken from the second image (second row of Figure 3.5). 

Notice that for some matches NCC still gives “good results” for 

wrong matches (good results: light shaded matches at the off-

diagonals).  

 

3.2.2.2 Disambiguating matches 

 
A point in one image might be matched to more than one point in 

the other image, while yielding high correlation measures (see 

Table 3.1). Such a collection is called as candidate match set.  

 

There are a number of methods proposed to solve these 

uncertainty problems [45, 46, 36]. The procedure that is preferred 

in this system uses the neighborhood constraint [36] together 

with a relaxation process. The inspiration of the algorithm is its 

allowance of the candidate matches to structure themselves by 

propagating some constraints throughout the set, such as 



 43

permanence and uniqueness, by using the neighborhood 

constraint. 

 

3.2.2.2.1 Strength of a candidate match 

 
Let there exist a candidate match ),( 21 ji mm  where im1  is a point 

in the first image and jm2  is a point in the second image. 

Representing the neighbor set of im1  by )( 1imN  and the neighbor 

set of jm2  by )( 2 jmN , which are formed by the feature points that 

are located within a disc of radius R around im1  and jm2 , 

respectively. The essence of the neighboring constraint is that if 

the ),( 21 ji mm  candidate match is a good match, then it is highly 

probable to find more matches in the neighbor set of these two 

points such that the position of these neighbors relative to the 

original points im1  and jm2  are similar. Conversely, if the 

),( 21 ji mm  match is an inferior one, then one should expect to find 

a small number of matches or even not any at all in the 

neighborhood set. 

 
The formal expression of this rationale is called as strength 

measure and it is equal to  
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where ijc  and klc  are the normalized cross correlation scores 

explained in the previous section and ),;,( 2121 lkji nnmmdist  is the 

average distance of the pairing which is calculated as,  
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with ),( nmd  is the Euclidean distance between m and n. The final 

term left is the gain of pairing,  
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where r is the relative distance of the pairing given as  
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and rε  is a threshold on the relative distance difference.  

 

 
Figure 3.6: Strength measure equations 
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The strength measure of (3.2.6) has some preferable properties to 

worth mentioning. Firstly, the idea of finding more matches 

around a good candidate match is included to the measure by the 

summation term which effectively counts the neighbors. Secondly, 

the weighting is carried out according to the relative distance term 

(r). This selection is due to the second part of the assumption that 

the position of the neighbor matches relative to the original points 

to be similar. This approach, in fact, is justified by the premise 

that an affine transformation can be used to approximate the 

change between the neighborhoods of candidate matches, which 

are considered in a small area. Another property of this weighting 

is that it is a strictly monotonous function. This monotony makes 

distant matches less effective on the overall measure, compared 

to the close ones. The overall weighting function has also been 

normalized according to its distance to the match. This 

normalization has a similar influence on the measure, since being 

monotonous for close matches effect the strength compared to the 

distant matches more. Lastly, max expression helps to include 

only the closest match of the neighbor set, if there is more than 

one match.  

 

 
Figure 3.7: Non-symmetricity problem of the strength measure [36] 
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The overall measure has also an important disadvantage: it is not 

symmetric. The strength value will be different for a candidate 

match pair ),( 21 ji mm  if more than one point in the )( 1imN  

neighborhood gives the maximal values with the same point in the 

)( 2 jmN  set (see Figure 3.7).   

 

This problem can be avoided easily with a slight modification in 

the matching algorithm. For this end, before computing the 

summation, if more than one point from the )( 1imN  neighborhood 

scores maximal value with the same point from the )( 2 jmN  

neighborhood, only the point that results with larger point is 

counted. In this way, when the order of the images is reversed, 

the same strength measures will be calculated.  

 

3.2.2.3 Relaxation procedure 

 
The strength measures of all the candidate match pairs formed in 

the correlation phase are calculated in the previous section. At this 

step, establishing correspondences according to these strength 

values should be the next aim. The relaxation method [34] is a 

solution for this problem. In this approach, the best matches 

throughout the whole set are selected and then, the remaining 

points are matched within themselves. Clearly, this is an iterative 

procedure. The formal expression for relaxation can be given as 

follows,  

 
While( !convergence ) 
{ 

• Update matches by looking at the SM values 
• Reduce the set of unmatched points 

} 
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Updating matches can be performed in a number of approaches. 

One method is the winner-take-all, which is introduced by 

Rosenfeld [47]. In this method, for two points to be declared as a 

match, none of them should have a greater SM value with another 

point. For every iteration of the relaxation, the matches, which are 

selected as explained, are immediately stated as correct and due 

to the uniqueness constraint, all the remaining strength measures 

associated with the matched points, are removed from further 

consideration. In the next iterations, this approach should result in 

finding more matches that are not assigned or eliminated before. 

This method works similar to a steepest descent procedure and 

hence, it is relatively quite fast, but sometimes, as in all the 

steepest descent approaches, it may stuck to a local minima.  

 

On the other hand, a slightly modified version of this method is 

more robust to the local minima problem. The name of the 

method is some-winners-take-all [36]. In this method, not all of 

the matches are stated as correct, but only the best α -percent of 

them are selected. The “goodness” is decided by the use of two 

tables. The first table is the list of all matches and their SM values 

sorted in a decreasing order according to the SM values. The 

second table is also a list of matches; but its second column is 

formed by the ambiguity score of the matches. This second table 

is also sorted according to its second column in a decreasing 

order. The ambiguity of a match is defined as the difference of the 

ratio of the highest two SM scores of it with 1 i.e.,  

 
)1()2( /1 MMA SSU −=     (3.2.10) 
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From these two tables, only the matches that are within the first 

α -percent of both of the tables are selected. The rest of the 

method is similar to the first one: SM values associated with the 

matched points are extracted from the overall set and in the next 

iteration new matches are found from the reduced set. Due to its 

more robust structure, some-winners-take-all approach is adopted 

into our system. 

 
Algorithm 3.2.2: Correspondence estimation  

1. Estimate the candidate match set for feature points in the 

first and second image. For every feature point of the 

first image, compute the NCC score with the feature points 

in the second image within a disc of radius R and choose 

the ones that give high scores over some threshold 

(Equation 3.2.4). 

2. Compute SM values for every candidate match according to 

Equation 3.2.6 

3. Relaxation 

      Until convergence 

a. Compute sorted SM and ambiguity tables  

b. Choose candidate matches that are present in the α -

percent of both of the tables and mark them as 

“correct”. 

c. Remove the SM values associated with the selected 

candidate matches 

d. If no other candidates remain or the SM scores of the 

best match in an iteration is below some threshold, 

terminate the loop 

 

3.2.2.4 Conclusion 

 

Feature matching operation by using only the normalized cross 

correlation (NCC) measure has been found out to be insufficient 

for the repetitive textured regions (Table 3.1). For this reason, a 
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neighbor-based matching measure together with NCC, called the 

strength measure (SM), is included to the algorithm. The results 

are improved to be satisfactory (see Figure 3.8).  

 

 
Figure 3.8: Comparison of single NCC vs NCC+SM results. In the left image, 

the results for using only the similarity measure can be observed. In the right 

image NCC is used together with SM. Most of the outliers due to the repetitive 

texture of the scene are eliminated. 

 

3.3 Robust Computation of the fundamental matrix 

 

As explained in the previous chapters, Fundamental matrix is an 

algebraic relation that relates the geometry between two 

perspective images of a scene. It is used to represent a geometric 

mapping between a point and a line in a stereo image pair. This 

relation must hold for all the correspondences of the image pair. 

Therefore, this property might also be utilized as a consistency 

measure for the computed correspondence pairs.  

 

It is known that the fundamental matrix can be estimated from 

the computed correspondences of the scene. In fact, from eight 

given correspondences, it is possible to find a unique solution for F 

defined up to a scale factor. This approach is denoted as the 8-
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Point Algorithm, which is introduced by Longuet-Higgins for the 

computation of the essential matrix for the case of calibrated 

cameras [27]. The method does not impose the rank 2 constraint, 

and hence, it has been found out to be very sensitive to noise [28, 

29, 21]. However, a clear advantage of this algorithm against 

more complex algorithms is its linearity, hence its speed and ease 

in implementation. On the other hand, Hartley [31] has shown 

that after making a slight modification to this algorithm by 

normalizing the correspondences, its performance increases 

significantly and becomes comparable with the best iterative 

methods. The modified version of the 8-point algorithm is called 

as the normalized 8-point algorithm and in this thesis, this 

algorithm is exploited.  

 

3.3.1 8-Point Algorithm  

 

The epipolar constraint   

 

0' =Fxx T      (3.3.1) 

 

can be reformulated to be a linear equation in terms of F 

parameters.  

 

0=fuT      (3.3.2) 

where 
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From all point matches, stacking these equations row by row, a 

set of linear equations in the form of 0=Af  is obtained, where f is 

the column vector containing the elements of the fundamental 

matrix and A is the equation matrix. The fundamental matrix is 

defined up to a scale and therefore the magnitudes of the 

elements in the f vector are not important. Hence, adding an 

additional constraint 1=f  to avoid the trivial solution will not 

change the problem.  

 
For finding a unique solution to (3.3.3), at least eight point 

correspondences are required. If more than eight matches are 

utilized, then the system becomes over-determined. For an over-

determined system to have a non-zero solution, the rank of the A 

matrix must be at most eight. However, in the existence of noise, 

(i.e., for correspondences found from a real stereo pair) A matrix 

might have a rank value of nine. In this case, it will be not 

possible to find a non-zero solution for the 0=Af  relation. 

Instead, the solution to this problem will be the least-squares 

solution of minimizing Af  subject to the 1=f  constraint. It is 

known that the solution to this problem is the unit eigenvector, 

corresponding to the smallest eigenvalue of AAT  [35]. Instead of 

finding the eigenvalues and eigenvectors of AAT , singular value 

decomposition (SVD) can also be used (see [35] for more details 

on SVD). 
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Figure 3.9: Rank of the fundamental matrix [1]: Left image shows the epipolar 

lines for a rank 3 fundamental matrix. Notice that the lines do not converge at a 

single point. In the right image on the other hand, lines coincide at a single 

point. Rank-2 constraint has been forced while obtaining this fundamental 

matrix. 

 

The fundamental matrix is a rank-2 homogeneous matrix and fail 

to enforce this property to the solution might cause problems. If 

this constraint is not enforced, the epipolar lines will not meet at a 

single point and most of the algorithms should fail, since they 

depend on this property of the Fundamental matrix (See Figure 

3.9). The linear solution of the fundamental matrix does not force 

this property and to correct this deficiency, one approach is to find 

another Fundamental matrix that is nearest to the computed 

solution. This problem is stated formally as,  

 

Minimize the Frobenius Norm 'FF −  subject to 2)'( =Frank  

 (3.3.4) 

 

The solution to (3.3.4), F’, is determined as:  
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The last part of the algorithm below is called as the constraint 

enforcement, whereas the first part is the linear solution for the 

fundamental matrix. 

 
Algorithm 3.3.1: 8-Point Algorithm 

Given n ≥ 8 corresponding point pairs, x1, ..., xn, x1′, ..., xn′, 

1. Form the rows of the A matrix from 8 point correspondences 

as  

[ ]Tvuvvvvuuuvuuu  
112212122121  1 ,, , , , , , ,  =  

2. Compute the SVD of the A matrix.  

TUSVA =   f = last column of V where diagonal elements 

of S are in decreasing order. 

3. Reshape the f matrix to its 3x3 form 

4. Compute the SVD of F matrix and set the smallest element of 

the S matrix to zero. Recalculate the F matrix from the 

modified S. 

T

T

VssUdiagF
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3.3.2 Normalized 8-Point algorithm  

 
Although the algorithm presented in the previous section is very 

simple to implement and it is linear, it is very sensitive to noise 

[28, 29, 21]. In order to correct this problem, a simple 

transformation of the utilized data has been shown to be quite 

useful [31]. This version of the algorithm is usually denoted as the 

normalized 8-point algorithm and its performance is shown to be 

quite successful [31]. Apart from the normalization part, the rest 

of the algorithm is same.  
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The performed normalization is a translation and a scaling of each 

image, so that the centroid of the reference points is shifted to the 

origin of the new coordinates and the root-mean-square (RMS) 

distance of the points from the origin is equal to 2 . 

 

Algorithm 3.3.2: Normalized 8-Point Algorithm 
Given n ≥ 8 corresponding point pairs, x1, ..., xn, x1′, ..., xn′, 

1. Normalization: Transform the image coordinates according 

the ii Txx =ˆ  and ii xTx '''̂ = where T and T’ are the 

normalizing matrices consisting of a translation and 

scaling  
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 where (mx , my ) is the mean of the image points and var is 

the    variance of the distances of the points to the 

centroid 

2. Compute the F matrix using the 8-point algorithm and the 

transformed coordinates using Algorithm 3.3.1. Output is 

the F’ matrix 

3. Denormalization: Compute the F matrix for the denormalized 

correspondences as, TFTF T ''=  

 

3.3.3 Outlier rejection 

 

In Section 3.2, it is explained how to find some putative point 

correspondences. Although the results of the algorithm show that 

many correspondences still can be obtained, there also exist many 

outliers. Clearly, a reliable estimation of the fundamental matrix 

can not be achieved by using all of these correspondences. Some 

robust mechanism has to be used in order to get rid of the 



 55

erroneous matches and estimate the fundamental matrix more 

precisely.  

 

There are many algorithms for estimating a model and the 

supporting set that obeys this model in the presence of outliers 

[32, 34, 48]. Random sample consensus (RANSAC) [32] is one of 

the mostly used robust estimator and for reasons to become clear 

in the next subsection; RANSAC is preferred for the scene 

reconstruction algorithm in this thesis.  

 

3.3.3.1 Random sample consensus (RANSAC) 

 

The organization of the RANSAC is simple and potent. In this 

method, some subsets of the data are selected randomly and the 

model is estimated by only using this small subset, recursively. 

The size of the random samples is usually selected as the smallest 

sufficient number that is required to determine the model 

parameters. The goodness of the model is determined by the full 

data set. Usually, goodness measure is the number of data points 

that are “consistent” with the model. The resulting best model is 

saved and the recursion is finished, when the likelihood of finding 

a better model becomes arbitrarily low, or a maximum number of 

iteration is reached.  

 

The strength of RANSAC results from the fact that selecting a 

single random subset that is not contaminated by outliers is 

sufficient to find a good solution. It is noted that RANSAC can 

handle more than 50 % of outlier ratios depending on the 

complexity of the model [33]. 
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While using RANSAC during the estimation of the fundamental 

matrix, an error measure is required to decide whether the points 

are inliers or not. There are different error measures that can be 

used, while one of them is being Sampson error [1]:  
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where (v)m representing the mth entry for a column vector v.  

 

Sampson error is the first order approximation of the reprojection 

error, which has a geometric interpretation, and therefore, it is 

quite reasonable to use this measure. The computation of the 

geometric error is quite complex and involves the estimation of 

both the model and perfect projection points. Sampson error, on 

the other hand, is a good approximation to it and it is easy to 

implement. Due to these reasons, Sampson error is used during 

the robust estimation of the fundamental matrix. 

 

The selection of the random samples is also another crucial 

matter. The samples should be selected randomly; however they 

must not be close to each other. Such a situation will be useless, 

since the estimated model will not represent the general structure 

of the data. As a remedy to this problem, a regular random 

selection approach, based on bucketizing, can be employed [36]. 

In this method, the data set is divided into a regular grid, like nxn, 

and points are assigned to these buckets. In order to avoid 

selecting close points, first, 8 different buckets are selected and 

then one point is selected from each bucket (see Figure 3.10). 
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Figure 3.10: Bucketizing [36] 

 

Some of the buckets may have more points in themselves, 

compared to other buckets. Therefore, their probability of 

selection should be higher than other buckets for the points to 

have equal probabilities to be selected. This can be realized in this 

manner: for a total of k buckets, divide [0-1] unit segment into k 

intervals such that the interval length is equal to the ∑
=

k

i
ii pp

1

/  

where ip  is the number of data points in ith bucket and ∑
=

k

i
ip

1

 is the 

total number of points. While selecting the bucket, a random 

number generator is used to select a number between [0-1] and 

the bucket containing the selected number will be marked as 

chosen (see Figure 3.11). For the implementation in this thesis, 

the grid width is selected as n=8. 
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Figure 3.11: Interval and bucket mapping [36] 

 

Another important point to mention is the number of iterations 

required for the RANSAC; in other words the major question is 

“when should the iterations stop?”. The point of termination can 

be calculated as follows:  

 

 

The number of iterations, N, is chosen sufficiently high 

to ensure with a probability, p, that at least one of the 

random samples of s points is free from outliers. Suppose 

e is the probability that any selected data point is an 

outlier (thus, w=1-e is the probability that it is an 

inlier). Then, N should be equal to: 
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The overall algorithm for the robust computation of the 

fundamental matrix can be summarized as follows: 
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Algorithm 3.3.3: Robust computation of the Fundamental 

Matrix 

Repeat for N times, 

1. Select a random sample of 8 correspondences and compute the 

fundamental matrix, F, by using the normalized 8-point 

algorithm given in Algorithm 3.3.2. 

2. Calculate the error e by using the Sampson error (Equation 

3.3.6) for each putative match for the fundamental matrix 

obtained e.  

3. If they are below a threshold, then count them as inliers, 

otherwise as outliers. 

4. Choose F with the largest number of inliers, and reject 

those pairs which yield e > t for this particular F. 

5. Recalculate the number of iterations N using the Equation 

3.3.7 

6. If number of iterations is larger than N, terminate. 

 

 



 

6
0  

(a) 

 
(b) 
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(c) 

Figure 3.12: Examples for RANSAC (a)BILTEN, (b) Lueven Castle, (c) Church: 

Images on the left show the motion vectors before RANSAC and images on the 

right show the motion vectors after RANSAC. It can be observed that RANSAC 

rejects outliers with a good performance.  

 

3.3.4 Nonlinear optimization of F parameters 

 

In the previous sections, the robust estimation of fundamental 

matrix is explained for a data, which is contaminated with outliers. 

Such a robust estimation also provides a set of data points that 

are consistent with the estimated model. The estimated 

fundamental matrix is the result of a linear algorithm and hence, 

the error due to the consistent data set (inliers) can be decreased 

in a great extent by nonlinear optimization. The Sampson error, 

given in Equation 3.3.6, is used once more as the error measure 

to be consistent with the previous step. However, during 

minimization, Levenberg-Marquardt (LM) algorithm [30, 35] is 

employed. The minimization is performed over the whole set of 



 62

inliers and the estimated fundamental matrix from the previous 

step is considered as the initial point. The minimized cost is the 

total Sampson error given as:  

 

∑
=
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Ni

iSC
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     (3.3.8) 

 

where iS  is calculated as given in (3.3.6) 

 

A detailed explanation on Levenberg-Marquardt algorithm can be 

found in Appendix C.  

 

Table 3.2: Improvements by using subpixel accurate 

correspondence values and a non-linear minimization algorithm. 

 Subpixel Accuracy Pixel Accuracy 

 Before LM After LM Before LM 
After 

LM 

Iteration number 1000 1000 

Average Inlier 

Number 
841 841 

Sampson Error 4.12865 0.82323 6.54395 0.92315

Sampson Error per 

Inlier 
0.00491 0.00098 0.00778 0.00110

Epipolar constraint 

error power 
0.10213 0.04255 0.59159 0.10056

Epipolar constraint 

error power per 

inlier 

0.00012 0.00005 0.00070 0.00012

 

Table 3.2 shows the results of applying the LM algorithm. The 

experiments are performed over 10 different image pairs and the 

average number of inliers obtained by RANSAC after a constant 
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number of 1000 iterations is 841. The procedure is repeated for 

the coordinates both in pixel and subpixel resolution. Two different 

error measures are calculated: Sampson error (Equation 3.3.6) 

and the epipolar error (Equation 3.3.1). It can be easily observed 

from the table that utilization of subpixel resolution coordinates 

over that of pixel resolution decreases the error. Moreover, LM 

improves the error performance for both of them. Therefore, in 

this implementation, nonlinear minimization is applied with 

subpixel resolution coordinates during the estimation of the 

fundamental matrix. 

 

3.3.5 Algorithm for robust Fundamental matrix 

estimation from two images 

 
The resulting algorithm for the automatic estimation of the 

epipolar geometry between two image pairs by using RANSAC is 

obtained as follows:  

 
Algorithm 3.3.4: F matrix computation algorithm starting from a 

pair of images 

1. Find the interest points in each image 

2. Compute a set of putative correspondences based on 

correlation similarity and neighborhood constraints 

3. Robustly estimate the fundamental matrix: 

Repeat N times, where N is estimated according to 

Equation3.3.7 at each iteration 

a. Select a random sample of 8 correspondences and 

compute the fundamental matrix F, using the 

normalized 8-point algorithm given in Algorithm 

3.3.2. 

b. Calculate the error e by using the Sampson error 

(Equation 3.3.6) for each putative match for the 

fundamental matrix obtained e.  
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c. If they are below a threshold count them as inliers, 

otherwise as outliers. 

d. Choose F with the largest number of inliers, and 

reject those pairs which yield e > t for this 

particular F. 

e. If number of iterations is larger than N, terminate. 

4. Nonlinear Estimation: Recalculate the fundamental matrix 

using all correspondences counted as inliers by minimizing 

the cost function given in Equation 3.3.6 by using the 

Levenberg-Marquardt algorithm. 

 

 
Figure 3.13: Displacement vectors between correspondence pairs and the 

estimated epipole of BILTEN image 

 

3.4 Solving for Rotation and Translation 

 

Two different views of a single rigid scene are related by the so-

called epipolar geometry, which is described by a 3x3 singular 

matrix. If the intrinsic parameters of the images are known a 

priori, the image coordinates can be transformed into normalized 

image coordinates [1, 52], and the matrix is known as the 

Essential matrix [27, 52]; otherwise, the matrix is denoted as the 
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Fundamental matrix [1]. Remembering the relationship between 

the fundamental matrix and the essential matrix [12]: 

 

FKKE T=     (3.4.1) 

 

where K is the camera calibration matrix, the normalization for the 

measured correspondences can be determined as:  

 

'' 1mKm E
−=  and mKmE

1−=    (3.4.2) 

 

where m and m’ are the real coordinates on the first and second 

images and Em , Em'  are coordinates of the first and second 

camera matrix projected by normalized camera model.  

 

If the first camera coordinate frame is selected as the world 

coordinate frame, the rotation matrix R and the translation vector 

t both describe the transformation of the second camera 

coordinate frame with respect to the first camera coordinate frame 

(see Figure 3.14) 

 

Figure 3.14 : Relative camera positions 
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Thus, any point [ ]Tzyx MMMM ,,=  with respect to the first camera 

coordinate frame is transformed to the point [ ]Tzyx MMMM ',','' =  

with respect to the second coordinate frame by using the relation 

below: 

 

tRMM +='      (3.4.3) 

 

Then, the points are projected onto the first and second image 

planes by using the normalized camera model. Thus, the image 

points become: 
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Combining (3.4.3) and (3.4.4), one should get,  

 

tRmMmM EZEZ +=''    (3.4.5) 

 

If 0≠t , one should obtain  
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  (3.4.6) 

 

Therefore, the rotation matrix R  can be calculated, if n 

corresponding points )',( ii mm  are given. In addition, if the 

translation vector t  does not vanish, the translational direction, 

represented by a unit vector 0t , can also be estimated. Since only 
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the direction of the translation vector can be determined, the 

absolute 3D coordinates of the corresponding points cannot be 

obtained. This phenomena is called “scaling ambiguity” [52] and it 

means that only the scaled version of the scene can be 

determined after R  and 0t  are estimated. From (3.4.3), note that 

M’, RM and t are coplanar. So, RMt ×  is perpendicular to 'M  and 

hence,  

 

0)(' =× RMtM  where RtE ×≡    (3.4.7) 

 

3.4.1 Linear Algorithm for determining R and t  

 

In (3.4.7), it has been shown that E is the cross product of t and 

R. By modifying this expression slightly, one can get the following 

relation:  

 
[ ] [ ]321321

ˆˆˆ rtkrtkrtkeeeE ×××==   (3.4.8) 

 
where t̂  is a unit vector in the direction of t , k is the unknown 

magnitude of t  and ir ’s are the column vectors of the rotation 

matrix R . From (3.4.8), it can be shown that [52], 
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Finally, after some vector algebra, rotation matrix can be obtained 

as [52]: 

 

( ) ( )te
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⎡ ×=     (3.4.11) 

 
and similar derivations can be achieved for 2r  and 3r . However, 

this approach is known to be extremely susceptible to errors, 

which makes it almost useless in a practical application. 

 

3.4.2 Robust algorithm for determining R and t  

 

It is known that E  matrix is perpendicular to the t  vector due to 

(3.4.9). Hence, the following relation should hold:  

 

0=
∧
tET      (3.4.12) 

 
However, due to the noise present in the estimation of the E  

matrix, it is more realistic trying to find the solution for  

 
∧

∧
tET

t

min  subject to 1=
∧
t    (3.4.13) 

 
instead of trying to solve (3.4.12). 

 

It is known that the solution of the optimization problem Ax
x

min  

subject to 1=x  is the eigenvector associated with the smallest 

eigenvalue [35]. Hence, the solution for 
∧
t  can be determined as 

the unit eigenvector of EET  for smallest eigenvalue. 
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The rotation matrix in the presence of noise can be obtained by 

minimizing [ ] T
xs

T

R
EtR −−min  subject to “R  is a rotation matrix”. 

Instead of performing a minimization, the solution can be found 

using quaternion notation [52]. A matrix B  is defined as,  
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such that [ ]xstC −=  and TED =      (3.4.14) 

 
Then, the eigenvector (q ) associated with the minimum 

eigenvalue of the B  matrix is the optimal quaternion. Using this 

quaternion, R can found as [52],  
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where [ ]Tqqqqq 3210=    (3.4.15)  

 
The linear algorithm, although theoretically correct, does not 

always yield correct estimates of rotation and translation due to 

the noise in the E-matrix estimate. Therefore, the robust 

algorithm is usually preferred in any scene reconstruction 

algorithm. 

 

3.5 Finding the location of 3D points 

 

One of the most important stages in structure estimation is the 

triangulation step, in which the position of a point in 3-D, is tried 

to be estimated from point correspondences. This section 

describes the methods for computing the position of a point in 3-D 
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coordinates, given its projection in two views and the respective 

camera projection matrices. It is assumed that the fundamental 

matrix is estimated up to a good accuracy and there are errors in 

the corresponding images of the points. Under these assumptions, 

the back-projected rays should not meet at a single point in 3-

space in general and therefore, simple triangulation might not give 

good results. It is therefore necessary to employ noise resistant 

techniques to estimate the position of a point in 3-space. Apart 

from noise, the calibration parameters of the camera are not 

always available in the reconstruction step and in order to build up 

the data necessary for the automatic calibration, projective (or 

affine) invariant depth values are also necessary [1, 54]. Hence, it 

is another important property of the triangulation method to be 

projective (or affine, which ever the reconstruction is) invariant. 

 

In the following sections, most common triangulation methods are 

examined and compared. These methods can be classified into 4 

major groups: midpoint method [56], linear methods [2], iterative 

linear methods [55] and finally, polynomial triangulation method 

[55]. 

 

3.5.1 Problem Definition: 

 

It is assumed that the fundamental matrix (F) from which camera 

matrices can be constructed, are known with great accuracy and 

the computed matching points are assumed to be noisy.  
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The epipolar relationship  

 

0' =Fxx T       (3.5.1) 

 

must be satisfied, if there is a point, X, in 3D space, such that 

PXx =  and XPx '' = . Since it is assumed that the measured 

image points are noisy, back-projected rays will not intersect at a 

point in 3-D space in general.  

 

Denoting a triangulation method, which is used to compute a 3-D 

point, by T, X is represented with 

 

)',,',( PPxxTX=     (3.5.2) 

 

A method is said to be invariant under transformation H, if 

 

)',,',()',,',( 111 −−−= HPPHxxTHPPxxT   (3.5.3) 

 

It is desired to have a triangulation method that is invariant under 

the appropriate class of transformations in which the 

reconstruction is to be performed. For example, for the case of 

projective reconstruction, it is not very suitable to minimize 3D 

errors, since distance measures are not preserved in a projective 

coordinate system. The solutions for such minimizations should be 

different for the every projective reconstruction that is considered 

[1]. Instead of dealing with this large set of different 

reconstructions, it is more rational to minimize a geometric cost 

function that is invariant to the desired level of transformations. 

The reprojection error cost function:  
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22 )'̂,'()ˆ,( xxdxxd +=Γ   subject to the constraint 0ˆ'̂ =xFx T  (3.5.4) 

 

In the following sub-sections, major triangulation methods in the 

literature are described and lastly, a projective invariant method is 

also presented. 

 

3.5.2 Midpoint Method: 

 

A popular approach for triangulation is selection of the midpoint of 

the common perpendicular to the back-projected rays of the 

matched points (see Figure 3.15) [56]. This method behaves 

worst under projective and affine transformations, since 

“perpendicularity” is not an affine and “midpoint” is not a 

projective concept [55]. Hence, it should be used only for the 

Euclidean reconstruction problems. 

 

 
Figure 3.15: Midpoint method 
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The back-projection of the points to rays can be calculated from 

the two points that are on the ray: camera center C and the point 

xP + , where +P  is the pseudo-inverse of the projection matrix P . 

The pseudo-inverse is calculated as 1)( −+ = TT PPPP  for which 

IPP =+ . The point xP +  should be on the ray, since it projects to 

the image point x . Then, joining these two points forms the ray:  

 

CxPX λλ += +)(     (3.5.5) 

 

Once, two ray equations are obtained, the midpoint at which the 

lines are closest to each other are taken as the solution. 

 

3.5.3 Linear Triangulation Methods: 

 

Linear triangulation method [1, 54] is the most common method 

due to its ease in implementation. Consider the projection 

equation PMm =  where ( )Tvuwm 1=  with ),( vu  are the 

observed point coordinates and w  is the unknown scale factor. If 

the ith row of the projection matrix is denoted as T
ip , the relation 

PMm =  can be written as,  
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and rearranging 
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The corresponding pixel to m  on the other image will result 

another set of equations similar to (3.5.7). The problem now can 

be stated as, 

 

Find M  such that 0=AM  where 
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A non-zero solution to this problem can be found in various ways. 

 

3.5.3.1 Linear-Eigen Method:  

 

The solution to the “ 0=AM  problem” cannot be found exactly due 

to the noise present in the A  matrix and hence, some cost 

function should be defined. In the Linear-Eigen method, M  is 

determined from the well-known 0=AM  subject to 1=M  

optimization. The solution to this problem is the unit eigenvector 

corresponding to the minimum eigenvalue of the AAT  matrix [35]. 

 

Although, this method is quite easy to implement, it is not suitable 

for projective or affine reconstructions. This case can be observed 

by applying a transformation H  to the camera matrices such that 

P  and 'P  are transformed to 1−PH  and 1' −HP . In this case, A  

becomes 1−AH  and a point M  is then equivalent to a point HM  in 
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the sense that they will give the same errors ( eAM =  and 

eHMAH =−1 ). However, the condition 1=M  is not invariant 

under projective or affine transformations. Hence, linear-eigen 

method is not projective or affine invariant in general. 

 

3.5.3.2 Linear Least Squares Method: 

 
Linear LS method solves the 0=AM  problem by fixing the fourth 

parameter of M  vector to 1. In this approach, 0=AM  relation is 

transformed into a “4 equations, 3 unknowns” problem. A solution 

to this over-determined problem can be obtained by using 

pseudo-inverse or SVD [35]. 

 

This method assumes that the solution is not on the plane at 

infinity by setting the fourth parameter to 1. This assumption 

becomes a problem for the projective reconstruction, where points 

can be on the plane at infinity. Apart from the points on the plane 

at infinity, this method is also not suitable for the projective 

reconstruction, since [ ]Tzyx 1,,,  is not invariant under a projective 

transformation H . On the other hand, since the affine 

transformation does not change the plane at infinity, [ ]Tzyx 1,,,  is 

invariant to affine transformations. Hence, the linear LS method is 

affine invariant. 

 

3.5.4 Iterative Linear Triangulation Methods: 

 
Linear triangulation methods minimize AX  which do not have 

any geometric meaning at all. Due to this fact, some inaccuracies 

might occur in the results. By weighting the rows of the A matrix, 
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however, a better solution can be obtained [55]. Iterative linear 

methods, tries to find the solution by changing the weights of the 

A matrix in (3.5.8) adaptively, so that the adapted A matrix gives 

a measure of a geometric error function.  

 

It can be shown that, by properly weighting the A matrix, the 

iterative procedure will be equal to the minimization of the cost 

function in (3.5.4). In the solution of the BAX = 0, both of the 

linear-eigen and linear LS solutions can be used and the 

corresponding methods are named as Iterative Eigen and Iterative 

LS, respectively. Details for these methods can be found in [55]. 

 

These methods are more easy to implement, as well as do not 

need a separate initialization algorithm and have a simple 

stopping criteria, compared to the other iterative least squares 

minimization algorithms, such as Levenberg-Marquardt [30]. 

However, like most of the algorithms that include iteration, there 

is no guarantee for convergence and these methods fail to 

converge about 5% of the time [55]. Although, these methods are 

not projective invariant, it is stated in [55] that they are quite 

insensitive to projective transformations. 

 

3.5.5 Polynomial Triangulation  

 

The noisy point matches in general will not satisfy the epipolar 

constraint and therefore their back-projected rays will not form a 

single 3-D point in space. However, in [55] it is shown that, by 

defining a cost function, which minimizes the reprojection error, 

an optimal solution can be found. It is also possible to reach this 
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optimal solution by using a nonlinear optimization method, such 

as Levenberg Marquardt for the cost function given in (3.5.4). By 

reformulating the problem, however, polynomial triangulation 

method minimizes this reprojection error in a non-iterative 

manner.  

 

 
Figure 3.16: Polynomial Triangulation (PT): PT finds the closest points on the 

pencil of epipolar lines and estimates the location of the 3D point using these 

points. Midpoint method (MM), on the other hand, minimizes the 3D error by 

selecting the midpoint of the closest point of back-projected rays. 

 
In this method, the problem is reduced to finding the roots of a 6th  

degree polynomial in one variable by parameterizing the pencil of 

epipolar lines. The method then finds the pair of matched epipolar 

lines closest to the given pair of point matches. After the closest 

epipolar lines are determined, the closest points to the matched 

points on these lines are selected and the 3D point in space is 
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calculated by using these matches which satisfy the epipolar 

constraint exactly. Since these points satisfy the epipolar 

constraint, their back-projected rays meet in space at a single 

point.  

 

The method is projective and affine invariant, since it minimizes a 

cost function, which is invariant under projective and affine 

transformations. Moreover, the method is provably optimal in the 

sense that under the assumption of a Gaussian noise model, the 

most probable reconstruction is the one that minimizes the 

reprojection error and polynomial triangulation exactly minimizes 

this cost function [55].  

 

3.5.5.1 Reformulation of the minimization problem: 

 

For a given pair of correspondences 'uu ↔ , one should seek for 

'̂ˆ uu ↔  in order to minimize the reprojection error given in (3.5.4), 

such that 0ˆ'̂ =uFu T . Since the points satisfying the epipolar 

constraint must lie on the epipolar lines, the cost function 

definition may be modified without making any change in the final 

output:  

 

Minimize 22 )','(),( λλ udud +     (3.5.9) 

 

where λ  and 'λ  are chosen from the all possible epipolar lines. If 

the line equations that minimize the above error given in (3.5.9) 

are obtained, then the points '̂ˆ uu ↔  can be found easily by 

projecting the original pair to their respective lines. The algorithm 

is thus obtained as follows:  
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Algorithm 3.5.1: Polynomial triangulation algorithm  

1. Parameterize the pencil of epipolar lines of the first 

image as a function of a single variable, i.e., )(tλ   

2. Find the corresponding epipolar line by using the 

fundamental matrix F, i.e, )(' tλ   

3. Express the distance function 22 ))(','())(,( tudtud λλ +  as a 

function of t.  

4. Find the value of the t which minimizes the cost function. 

 
The above minimization problem can be solved non-iteratively by 

rearranging the terms of the cost function. In the end, the 

minimizer of this cost function can be obtained by solving a 6th  

degree polynomial.  

 

3.5.5.2 Details of minimization  

 
By applying a rigid transformation in order to place the 

correspondences to the origin and shifting the epipoles to Tf ),0,1(  

and Tf )',0,1( , one may simplify the cost equation without 

changing the result. However, the fundamental matrix has to be 

compensated for the rigid transformation (i.e., 

0)',0,1(),0,1( == FffF T ). In order to move the origin to the 

correspondence pixel locations, the pixel is transformed by, 
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where (uo,v0) is the correspondence point location. 
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Similarly, in order to rotate the images such that the epipoles are 

on the respective x-axes, a rotation in the form of 
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is applied. Corresponding rotation angles θ  are found from the 

equality, 

 
TfRLe ),0,1(=     (3.5.12) 

 
By developing the left-hand side, an equation for θ  can be found 

as:  

 
0))(cos())(sin( 232131 =−+− ueeuee θθ   (3.5.13) 

 

 
Figure 3.17: Polynomial triangulation 

 
An overall transformation of RLT =  and ''' LRT =  is applied to the 

correspondence pairs u and u’, respectively. After applying these 
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transformations, however, fundamental matrix has to be adapted 

as well. The transformation applied to the fundamental matrix is 
1

0' −= TFTF  where 0F  denotes the original matrix before carrying 

out transformations T and T’. The final fundamental matrix 

becomes, 
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Consider a point Tt )1,,0( ; the epipolar line passing through this 

point is found by TTT ttffxt ),1,(),0,1()1,,0( −=  and the 

corresponding epipolar line in the second image is obtained by 
TT dctbatdctftF ),),('()1,,0( +++−= . Hence, the cost of this 

point is 
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In order to find the minimum value for this function, one should 

take its derivative and equate it to zero. The derivative of (3.5.15) 

is equal to: 
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Rearranging the terms, 
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The final equation is a sixth degree polynomial of a single variable. 

By solving the roots of this polynomial, one can find up to six 

different real roots. The roots of a polynomial can be obtained by 

calculating the eigenvalues of the companion matrix. The real root 

giving the minimum error according to (3.5.15) is selected as the 

minimizer, 0t . Then, for finding the closest points on these lines to 

the points u and u’, the origin (since the images are transformed 

in order to place the points to the origin) is projected onto the 

epipolar lines )λ(t0  and )λ'(t0 .  

 

The projection of (0,0) onto the line )λ(t0  to find û  is calculated 

by, 

 

T
yx tft)λ(t

tf
t

u
tf

ft
u ),1,( where  

1
ˆ   and   

1
ˆ 0002

0
2

0
2
0

2

2
0 −=

+
=

+
=  (3.5.18) 

 

Next, the projection of (0,0) onto the line )λ'(t0  to find '̂u  is 

calculated by, 
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where (l1, l2, l3) denotes the line parameters.  
 

The resulting point coordinates are obtained, according to the 

transformed coordinate systems. In order to find the actual point 

locations, 1−T  and 1'−T  transformations are applied to the 
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calculated points. Finally, after the û  and '̂u  points are 

determined, linear-eigen triangulation method is applied in order 

to find the 3D object point. Since the '̂ˆ uu ↔ points satisfy the 

epipolar constraint exactly, their back-projected rays must meet in 

space at a single point. This step concludes the polynomial 

triangulation algorithm. 

 

3.5.6 Simulations on Triangulation Algorithms 

 
Among the presented algorithms in the previous sections, four of 

them are tested for evaluating their performance against 

projective and Euclidean reconstructions under additive Gaussian 

noise. The utilized methods are polynomial triangulation, midpoint 

method, linear-eigen and linear least-squares methods. For 

different levels of additive Gaussian noise, median of the 

reprojection error powers are calculated. The results are given in 

Figure 3.18 and Figure 3.19. 

 

 
Figure 3.18: Reprojection error for projective reconstruction 
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The tests are performed over synthetic data and to measure the 

invariance of the method, a projective transformation is applied to 

each camera matrix. The projective transformation is chosen so 

that first camera projection matrix is of the form [ ]0|I . This is a 

significant distortion, since the normal projection matrix is of the 

form [ ]0|K  where K is the calibration matrix. It is observed from 

Figure 3.18 that polynomial triangulation behaves best under 

projective transformation. On the other hand, midpoint method 

gives the worst results and should be avoided. In Figure 3.19, 

almost all of the methods behave equally and can be used 

alternatively for Euclidean reconstruction problems.  

 

 
Figure 3.19: Reprojection error for Euclidean reconstruction 
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3.6 Simulation results 

 
The complete algorithm, which takes two calibrated images as 

input to return 3-D locations for the automatically found 

correspondences, is tested with various types of images for very 

different camera matrices. Some of the results captured from the 

VRML output illustrate the performance of 3-D reconstruction. In 

all the figures below, (a) and (b) present, the input images, 

whereas (c), (d), and (e) are the top, frontal and side views, 

respectively (see Figure 3.20).  

 

 
Figure 3.20: Viewing angles: Triangle prisms denote the camera locations and 

orientations 
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(a)     (b) 

 
(c)    (d)    (e) 

Figure 3.21: 3-D reconstruction results for Bilten data 
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(a)      (b) 

 
(c)          (d)     (e) 

Figure 3.22: 3-D reconstruction results for Cityhall Sequence[58] 
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(a)     (b) 

 
(c)        (d)      (e) 

Figure 3.23: 3-D reconstruction results for Merton College[59] 
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(a)      (b) 

 
(c)         (d)      (e) 

Figure 3.24: 3-D reconstruction results for Leuven Castle [24] 
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CHAPTER 4 

 

 

4 3D RECONSTRUCTION FROM MULTIPLE VIEWS 

 

 

 

The estimation of the 3D model of a scene is an ongoing research 

topic in computer vision. There are many applications of this 

research in robot navigation, visual automation, virtual reality and 

computer graphics. The aim of obtaining accurate models of a 

scene from, not only frame pairs but also a sequence of images 

has always obtained much attention. The method by Tomasi and 

Kanade [39] uses an affine factorization algorithm to extract the 

structure of the scene from image sequences. The most important 

restriction of the algorithm is that it makes an orthographic 

projection assumption. Beardsley et al. [38] and Pollefeys et al. 

[37], on the other hand, employ a sequential algorithm to extract 

and update a projective reconstruction of a scene. In these 

sequential algorithms, for every new frame, the location and 

orientation of the scene with respect to an initial reconstruction is 

re-calculated and some new 3-D points are initialized. In this way, 

the final structure and motion information is built up gradually. 

While the first approach [37] computes a projective 

reconstruction, the latter one [38] upgrades the structure to 

metric.  
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In this chapter, an iterative algorithm [37] to reconstruct a scene 

from several images is presented. The simplest case of this 

problem is the two view case, which is explained in the previous 

chapter. The problem might be defined as the process for 

combining information, which is gathered from images captured at 

different locations, orientations and even different viewing 

parameters. In order to find a solution, the following assumptions 

are made: the camera parameters of the images are known a 

priori in all of the images and the scene is completely stationary.  

 

The algorithm starts with the initial reconstruction of a scene from 

two images in order to obtain a common structure. Next, the 

position and orientation for the further views is computed in this 

setup. At the addition of a new frame, the initial reconstruction is 

refined and upgraded. In this manner, the pose of the views that 

do not have any common features with the initial reconstruction 

can be calculated. After the estimation of motion and structure for 

all of the sequence frames, the estimation is further refined by 

using a procedure entitled, as bundle adjustment [40, 41]. 

 

4.1 Initial structure computation 

 

The initial reconstruction step produces an initial framework that is 

used to build upon all other views. Two frames are chosen from 

the sequence and reconstruction is performed, as it is explained in 

the previous chapter. The reconstruction frames must be general 

enough to be compatible with other views. These frame pairs must 

not be formed of frames, containing dominant planes or rotation-

only-configurations. For such degenerate cases, the reconstruction 
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might fail. The initial 3-D structure computation algorithm is 

already presented in the previous chapter. 

 

4.2 Addition of a new view 

 

In the previous section, the initial reconstruction is briefly 

explained. This section explains how to add a new view to the 

framework. First of all, the pose of the new view is detected and 

then new structure points are initiated to update the 

reconstruction through triangulation.  

 

4.2.1 Pose estimation  

 
The pose of the new frame with respect to the current framework 

can be obtained by utilizing the correspondences of the new view 

with a previous view and the structure points.  
 

 
Figure 4.1: Pose estimation: 3D-2D correspondences are obtained by using the 

relation between the structure and the correspondences estimated from frames 

fi and fi+1. 



 93

 

First of all, the epipolar geometry between the new view and a 

previously inserted view is obtained by using the robust 

technique, which is explained in Section 3.2. As a next step, 2-D 

points, whose 3-D structure points are already calculated, are 

selected from the obtained correspondence set (see Figure 4.1).  

 

From the above figure, it is observed that, during the addition of a 

new frame fi+1, if a correspondence point between fi+1 and fi is also 

matched to a point in the frame fi-1, then one can form a set of 

points composed of 3D–2D projection pairs for fi+1, since the 

location of the structure point associated to this point has already 

been calculated in the previous iteration by the relation between fi-

1 and fi. In this way, the projection information for the new frame 

can be calculated by a number of points with such property. The 

projection matrix of this new frame,fi+1 , is calculated by using a 

robust algorithm, similar to the one used in the computation of 

the fundamental matrix.  

 

4.2.1.1 Computation of the projection matrix from 3D–2D 

correspondences  

 

The relation between the elements of a projection pair ii Xx ↔  

is given by the following relation:  
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By rearranging (4.2.1), one can obtain 
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kP  is the kth  row of the P matrix  (4.2.2) 

 

It is known that image plane coordinates of the m vector is 

obtained by the relations 
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By using the relations given in (4.2.2), one can find easily  
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and modifying the equation above 
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Hence, for a pair of 3D – 2D projection pairs, two homogeneous 

equations are found. Since the projection matrix has eight degrees 

of freedom, four pairs of projection pairs are sufficient to find a 

unique solution for P defined up to scale. Stacking all the 

equations obtained from projection pairs (possibly more than 4), a 

system of linear equations in the form of  

 
0=Ap     (4.2.6) 
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can be obtained, where A is the measurement matrix and 

[ ]TTTT PPPp 321= , projection matrix elements. The solution to this 

problem subject to 1=p  constraint (since scale does not matter) 

is, as indicated before, equal to the eigenvector associated with 

the smallest eigenvalue of the A matrix.    

 
During the estimation of the projection matrix, as in the 

normalized 8-point algorithm, the normalization step is also 

applied to the data points in order to improve the conditioning of 

the problem. The normalization is applied on the 3D points as a 

translation in order to move the centroid to the origin and a 

scaling to make the variance of the distance of 3-D points to the 

origin 3 . A similar normalization is also applied to the 2D points, 

whereas this time the variance is modified to be 2 . 

 

Algorithm 4.1.1: Normalized P-Matrix estimation from 

projection pairs 

   Given n>3 3D-2D correspondence pairs 

1. Compute the mean and variance of the distances to the 

centroid for both 3D and 2D points. 

2. Form matrices DT2  and DT3  such that the mT D2  and MT D3

are the normalized 2D and 3D coordinates, respectively. 

3. Form the A matrix from the projection pairs according to 

Equation 4.2.5.  

4. Find the SVD of the A matrix such that TUSVA =  and the 

solution vector is the column of the V matrix associated 

with the smallest diagonal entry of the S matrix ( i.e., 

smallest singular value of A ) 

5. Compute the projection matrix P’ for the denormalized data 

points as, DDPTTP 3
1

2' −=  
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4.2.1.2 Robust estimation of the projection matrix from 

projection pairs 

 

Similar to the case during the estimation of the fundamental 

matrix, some robustness is required in order to ensure a correct 

computation of the projection matrix, in case of contaminated 

data. For this purpose, RANSAC-based computation of the 

projection matrix is adopted (for details of the RANSAC algorithm, 

refer to Section 3.2.3).  

 

The error measure in order to decide whether a point is an inlier 

or not is decided by using the reprojection error, which is formally 

defined as:  

 
2),(Error  onReprojecti PMmd=    (4.2.7) 

 

where d(m,PM) returns the distance between the 2-D image point 

and the projection of 3-D scene point. 

 

Algorithm 4.2.1: Robust P-Matrix Estimation  

Given n>3 3D-2D correspondence pairs 

Repeat N times 

1. Select 4 pairs of 3D-2D correspondences randomly and 

estimate a projection matrix following the Algorithm 4.1.1 

2. Find the number of pairs consistent with the estimated 

model using the reprojection error (Equation 4.2.7) 

3. Choose P with the largest number of inliers, and reject 

those pairs which yield e > t for this particular P. 

4. Recalculate the number of iterations N using the formula 

given in Equation 3.2.7. 
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4.2.1.3 Refinement of the projection matrix 

 

After the robust estimation of the projection matrix, a nonlinear 

stage also exists in order to refine the projection matrix. 

Levenberg-Marquardt algorithm is used to minimize the 

reprojection error given in (4.2.7) with respect to the parameters 

of the projection matrix. However, direct minimization of the P 

matrix parameters will yield erroneous results, since the elements 

of P matrix are not independent from each other. Therefore, the 

minimization should be carried out on the individual rotation and 

translation parameters. In order to achieve this form, the rotation 

matrix should be represented in quaternion form (see Appendix 

E).  

 

4.3 Initialization of new structure points 

 

For the points, which have not been associated to a 3-D point, 

some new 3-D structure points should be estimated by using the 

calculated projection matrices for the current and the previous 

frames through triangulation (Section 3.4). This approach will 

ensure the estimation of the pose of the views, which do not have 

common features with the initial framework. Moreover, it is 

possible to initiate higher number of 3-D points for the scene for 

obtaining more information. It is observed during the simulations, 

choosing points that are present in at least more than 3 views 

ensures the elimination of spurious matches and improves the 

overall structure in the final reconstruction. 
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4.4 Refining structure and motion 

 

Once the structure and motion has been computed for all of the 

frames in the sequence, a final global refinement is applied. For 

this purpose, bundle adjustment [40] method is used. Bundle 

adjustment is the problem of refining a visual reconstruction to 

produce jointly optimal 3D structure and viewing parameter 

(camera pose and/or calibration) estimates. This procedure is 

optimal in the sense that the parameter estimates are obtained by 

minimizing a model fitting error function. The estimation is also 

joint so that the solution is both optimal with respect the structure 

and camera variations at the same time. “Bundle” refers to the 

light rays joining the 3D points and the camera centers which are 

attuned optimally according to both feature and camera positions. 

In this method, all of the structure and camera parameters are 

adjusted together in one bundle.  

 

The cost function for minimization can be selected as follows:  
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This cost function jointly minimizes the errors due to noise during 

model estimation and locations of the 3D points. Therefore, the 

minimization problem has a vast parameter space. The direct 

minimization of this cost will need quite a long time to converge. 

However, a sparse version of the bundle adjustment should 

improve the execution time considerably. Therefore, a sparse 

variant of the bundle adjustment is preferred [41]. More 
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information about sparse bundle adjustment is given in Appendix 

D. 

 

The minimization over the projection matrix parameters is not 

performed directly, whereas the rotation and translation 

parameters are again utilized separately.  
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4.5 Multiple view reconstruction algorithm  

 
Multiple view reconstruction algorithm is summarized in the below 

diagram. Briefly, the algorithm first estimates an initial 

reconstruction and then inserts each frame with respect to this 

framework. Finally, the overall reconstruction is refined employing 

a global bundle adjustment. In Figure 4.2, the structure of the 

multiple-view reconstruction algorithm is given. 

 

     
 

Figure 4.2: Multiple view reconstruction algorithm 
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4.6 Simulation results 

 

In the figures below, some of the multiple view reconstruction 

results are presented. The results are given in different viewing 

angles (see Figure 3.20). 

 

 
Figure 4.3: Leuven Castle Sequence 
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Figure 4.4: Leuven Castle Sequence results, illustrated from different viewing angles. Each triangle prism represent a camera 

location from which a picture is taken.  
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Figure 4.5: Model House Sequence 
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Figure 4.6: Model house sequence results 
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Figure 4.7: Chapel Sequence Images 
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Figure 4.8: Chapel Sequence Results 
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CHAPTER 5 

 

 

5 3D RECONSTRUCTION FROM MULTIPLE VIEWS 

CONTAINING INDEPENDENTLY MOVING 

OBJECTS 

 

5.1 Introduction 

 

In the previous chapters of this thesis, an algorithm is presented 

in order to estimate the fundamental matrix between two views 

robustly, while rejecting the correspondence outliers (Algorithm 

3.3.4). The implemented algorithm is suitable for static 

environments. In this chapter, the performance of this algorithm 

in sequences which contain independently moving objects (IMO) is 

investigated. Moreover, a novel algorithm in order to improve the 

computation time of the outlier rejection is also proposed. For the 

sake of completeness, some background information is given in 

the following sections about parallax-based rigidity constraint, 

which is the backbone of the proposed algorithm.  

 

5.2 Plane+Parallax Decomposition 

 

3D parallax is the variations in the 2D motion vectors of the 

projected scene points due to changes in the depth of the scene 

structures, when the camera makes a significant translational 

motion [60]. There are single- and multi-layered approaches to 
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handle different situations where the parallax is not very 

significant [60]. However, if the parallax effect starts to increase, 

in case of more complex 3D scenes, then plane+parallax 

decomposition approach should be utilized, as suggested in [60]. 

 

In plane+parallax decomposition, motion vectors of the scene are 

decomposed into two components: plane and parallax. The 2D 

parametric registration process is performed by a single global 2D 

parametric transformation between a pair of images:  

 

⎥
⎦

⎤
⎢
⎣

⎡

+++++
++++

=⎥
⎦

⎤
⎢
⎣

⎡
2

87643

8
2

7521

),(
),(

ypxyppypxp
xypxppypxp

yxv
yxu

 (5.2.1) 

 

where u(x,y) and v(x,y) are the motion vectors at point (x,y). By 

estimating the parameters pi in (5.2.1), the plane registration 

transformation is computed.  

 

The plane registration step removes all the effects of camera 

rotation, zoom and calibration without explicitly calculating them 

[60, 61]. This result can also be understood from the fact that the 

planar motion caused by rotation or zoom does not depend on 

plane depth. In other words, all the planes at different depth 

layers will be registered also, once a plane is registered in terms 

of rotation and zoom of the camera. Therefore, the residual image 

motion after the plane registration should be due only to the 

translational component of the motion of the camera and to the 

deviation of the scene structure from a planar surface. Thus, the 

residual motion field is an epipolar flow field. An epipolar flow field 

is a field of vectors that are structured subject to an epipole [60] 
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(see Figure 5.2). These observations led to the so called 

plane+parallax decomposition of the scene. 

 

 
Figure 5.1: Geometric interpretation of the plane+parallax decomposition [60] 

 

In Figure 5.1, the geometric interpretation of the plane+parallax 

decomposition is illustrated. In this figure, P=(X,Y,Z)T and 

P’=(X’,Y’,Z’)T are the Cartesian coordinates of a scene point with 

respect to two different camera views and p=(x,y) and p’=(x’,y’) 

denote the projections of these points onto the camera planes, 

respectively. In Figure 5.1, Π denotes a real (or a virtual) planar 

surface in the scene, which is registered by a parametric 

registration approach. The 2D image displacement of the point P is 

then calculated as  

 
µπ +=−= uppu '     (5.2.2) 

 
where πu  is the planar part of the image motion and µ is the 

residual planar parallax in 2-D motion. The homography due to Π 

can be modeled as a 2-D parametric transformation, which is in 
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general a projective transformation, and an approximation to this 

transformation can be approximated by  
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where wp  is an image point in the first frame which results from 

warping the corresponding point 'p  in the second image by the 2D 

quadratic transformation of the plane Π. e  denotes the epipole 

and '
πd  denotes the distance of the second camera center from the 

plane. γ  is called as the projective 3D structure of point P [60] 

and it is a measure of 3-D shape of point P. It is equal to the ratio 

of the perpendicular distance of point P to the planar surface Π to 

the depth of the point P with respect to the first camera (γ = H/Z 

see Figure 5.1). The final term T
zyx TTTt ),,(=  is the translation. 

For the derivation of this equation, the readers should refer to 

[60]. 

 

 
Figure 5.2: Epipolar field of the residual parallax displacements [60] 

 
The parallax equation, given in (5.2.3), suggests the existence of 

an epipole, where all residual motion vectors expand from or 

diverge to. Therefore, if the epipole is recovered, all that remains 
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for detecting the moving objects is to identify the vectors, which 

do not obey this common rule. The estimation of the position of 

the epipole, therefore, strictly affects the performance of the 

independent moving object detection problem. However, it will be 

observed in the next section that without calculating the epipole 

explicitly, it is still possible to find a metric to detect IMO’s. 

 

5.3 Parallax-based rigidity constraint 

 

It is explained in Section 5.2 the methodology to compute the 3-D 

projective structure of a point. The relative 3D projective structure 

of two points having 1γ  and 2γ  is defined as:  
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where, as shown in Figure 5.3, p1 and p2 are the image locations 

of two points and 12 www ppp −=∆  is the vector connecting the 

warped coordinates ( ⊥v  denotes a vector perpendicular to v).  

 

 
Figure 5.3: Pair-wise parallax-based shape constraint 
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This constraint (Equation 5.3.1) directly relates the relative 

projective structure of two points without an explicit epipole 

relation.  

 

In [60], it is stated that, relative 3D projective structure of a pair 

of points does not change with respect to the camera motion. 

Therefore, by observing the value of this constraint, it is possible 

to detect independently moving objects. This constraint is defined 

formally as:  
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where 
j

1µ ,
j

2µ  are the parallax displacement vectors of the two 

points between the reference frame and jth frame, 
k

1µ ,
k

2µ  are the 

parallax vectors between the reference frame and kth frame, and 
j

wp )(∆ , k
wp )(∆  are the corresponding distances between the 

warped points.  

 

By using this constraint, it is possible to discriminate between the 

background and IMOs in three frames, given a motion vector that 

must be selected from the background. 

 

5.4 Algorithm to eliminate matches due to IMO’s  

 

As it is observed in the previous section, by the help of parallax-

based rigidity constraint, it might be possible to detect 

independently moving objects in three consecutive frames. 
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However, in order to accomplish this, the constraint strictly 

requires a motion vector pair (one between the first two frames 

and another between the second and third frame), which must 

belong to a background point. In order to achieve this aim, a 

novel algorithm is proposed within the next sections.  

 

5.4.1 Plane Registration 

 
The plane registration process involves the estimation of eight 

parameters from the motion vectors of two images (Equation 

5.2.1). However, all of the motion vectors cannot be used for this 

purpose, since there may be outliers as well as many non-planar 

surface vectors. The dominant plane estimation, therefore, has to 

be completed by using a robust procedure. Similar to the 

procedure for the estimation of the projection matrix in Section 

4.2 (or the estimation of the fundamental matrix in Section 3.3, in 

the plane registration step), RANSAC is employed for the robust 

estimation of the “dominant plane”. Once the parameters for the 

dominant plane are estimated, the residual parallax components 

of the motion vectors are calculated as the next step.  

 

5.4.2 Background seed selection algorithm 

 
Background seed selection is a critical step in removing IMO 

contributions from the correspondence set. Parallax-based rigidity 

constraint should be utilized for this purpose; it constrains 3-D 

structure of all stationary background points. The parallax-based 

rigidity constraint, although, forces the change in the relative 3-D 

structure to remain zero, this does not always hold due to noise. 

Therefore, only choosing a random vector and counting the 
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number of vectors that obey the constraint will not solve the 

problem of the background vector selection. Moreover, the errors 

in the parallax-based rigidity constraint differ, when one changes 

the support (background) vector of the constraint ( 1µ  in Equation 

5.3.2). Therefore, simple thresholding will not be the solution to 

this problem, since the threshold should also be changed 

adaptively for different scenes. 

 
The proposed novel solution to this problem can be explained as 

follows: N different support vectors are chosen and the number of 

vectors that are outside a certain neighborhood around one of the 

support vectors (i.e. candidate background seed point), which 

obey the rigidity constraint within a small threshold, are counted. 

After testing all support vectors in this manner, the candidate 

seed point, yielding the maximum number of supports, is chosen 

as the background seed.  

 
The support vectors are also selected according to the magnitude 

of the residuals. The magnitude range of the residual vectors is 

divided into N equal intervals and a support vector is selected 

from every interval (see Figure 5.4). This selection method is 

adopted due to the fact that the plane registration step usually 

leaves behind vectors with small residual from the dominant 

plane. Therefore, the vectors on this dominant plane must not be 

selected, since their small norm is due to noise. On the other 

hand, the vectors with large residuals are not reliable, since they 

might be outliers. Hence, in order to cover the whole range of 

vectors such a procedure is proposed.  

 
Another important aspect of the proposed selection criteria is 

elimination of the vectors within the neighborhood of the support 
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vector, while calculating the number of vectors that obey the 

rigidity constraint. In this manner, it is possible to eliminate 

possible points belonging to an IMO, which mostly has its support 

vectors within its neighborhood. If this constraint is not used, one 

might find the change in the rigidity constraint still to be a small 

number to erroneously declare an IMO point to become a 

background seed, while, unfortunately, most of the support pixels 

are belonging to the IMO itself. On the other hand, this constraint 

reduces the number of the consistent vectors to an IMO-belonging 

support vector. This situation is not a problem for the background 

vectors, since they are not confined (i.e. localized) to a single 

region.  

 

 
Figure 5.4: Residual motion vectors sorted according to their norms: y axis is 

the norm and x axis is the pixel number 

 

5.4.3 Application of the parallax-based rigidity 

constraint by the background seed 

 

At this stage, all the correspondence vectors are tested by using 

parallax-based rigidity constraint with the previously selected 
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background seed pixel. In order to increase the robustness of the 

algorithm, more than one background pixel can be used to 

discriminate between background and IMO vectors. A vector is 

decided to belong to a background point, if, out of M different 

supports, it is within the first p-percent of the sorted cost 

calculated according to (5.2.2) at least K times. ( K < M and K is 

larger than some threshold). Hence, the following algorithm is 

obtained for rejecting IMO contributions, as well as any kind of 

outliers, in the correspondence set. A summary of the algorithm is 

given below:  

 
Algorithm 5.4.1: Using parallax based rigidity 

constraint to reject IMO’s 

1. Apply plane registration to the motion vectors between the 

first two frames as well as the second and third frames by 

using RANSAC 

2. Find the background seed 

a. Sort the residual motion vectors according to their 

norms 

b. Choose N support vectors with equal distance from 

each other in terms of their norm values  

c. Calculate the number of vectors that obey the 

parallax based rigidity constraint with threshold t1

for each of the support vectors. Do not consider the 

vectors within d1 distance to the support vector. 

d. Choose the vector with the maximum number as the 

background seed 

3. Select M vectors yielding the smallest error with the 

background seed and calculate the parallax based rigidity 

constraint errors for each of these support vectors 

4. Sort the elements of these sets according to their errors 

and select the vectors that are within the first p-percent 

of the sets. 

5. Choose the vectors that are selected more than K times 

(K<M) as background pixels and discard the rest. 
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5.5 Simulation results 

 

In this section, the results of the Algorithm 5.4.1 and the 

comparison tests of this algorithm with the outlier rejection 

technique explained in Section 3.3 (Algorithm 3.3.4), is presented. 

In the figures and table below, Algorithm 3.3.4 is denoted as 

RANSAC and Algorithm 5.4.1 is mentioned as IMOR. Another 

comparison is achieved by using both of the algorithms 

consecutively. This method is also abbreviated as IMOR+RANSAC.  

 

In the implementation of IMOR, the following parameters are 

chosen N = 20, t1 = 1e-5, d1 = 60, p=0.7, M=10 and K = 6. 

During simulations, the following image sets are utilized: Figure 

5.5 and 5.7 contain an artificial IMO, inserted into the scene, 

whereas Figure 5.9 includes a natural case. In these figures, the 

results are presented in the following manner: (a), (b) and (c) 

sub-figures are the input image triplets, where (d) depicts the 

resulting correspondence vectors found by the matching algorithm 

given in Algorithm 3.3.2 for the first two images. Subfigure (e) 

shows the resulting displacement vectors selected by IMOR as 

background and (f) shows the results of the RANSAC algorithm. 

Finally, the rejected vectors by IMOR are shown in (g). 
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(a) image 1 (b) image 2 

 
(c) image 3 

 
(d) input displacement vectors 
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(e) background vectors selected by IMOR 

 
(f) background vectors selected by RANSAC 
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(g) rejected vectors by IMOR 

Figure 5.5 IMO Rejection Example 1 

 

 

Figure 5.6: Reconstruction from images Figure 5.5 (a), (b), and (c) using 

IMOR+RANSAC 
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(a) image 1 (b) image 2 

 

(c) image 3 

 
(d) input displacement vectors 
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(e) background vectors selected by IMOR 

 
(f) background vectors selected by RANSAC 
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(g) rejected vectors by IMOR 

Figure 5.7: IMO Rejection Example 2 

 

 
Figure 5.8: Reconstruction from images Figure 5.7 (a), (b) and (c) using 

IMOR+RANSAC 
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(a) image 1 (b) image 2 

 
(c) image 3 

 
(d) input vectors 
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(e) background vectors selected by IMOR 

 
(f) background vectors selected by RANSAC 
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(g) rejected vectors by IMOR 

Figure 5.9: IMO Rejection Example 2 

 

 
Figure 5.10: Reconstruction from images given in Figure 5.9 a, b and c using 

IMOR+RANSAC algorithm. 

 

As it is observed from these results, IMOR algorithm gives 

comparable results with the RANSAC, although it cannot always 



 127

eliminate all of the outliers. However, IMOR is advantageous 

compared to RANSAC due to its much shorter execution time. It 

should be noted that RANSAC is an iterative algorithm with the 

number of iterations is not fixed, whereas IMOR is a single step 

approach. Hence, it is possible to use IMOR before RANSAC to 

eliminate most of the outliers and then use RANSAC to refine the 

results. In this manner, with a small number of iterations, a 

comparable reconstruction quality may be achieved in less time.  

 

Table 5.1. Comparison Table: RANSAC vs IMOR+RANSAC 

 
Iteration 
Number 

Duration
(msec) 

Wrong 
Rejections

Outliers 
Not 

Detected

Inlier 
Number 

Total Vector 
Number 

RANSAC 1626 4968 11 3 971 1651 
IMOR - 31 156 33 856 1651 

IMOR+ 
RANSAC 

21 112 158 1 824 1651 

 

 

In Table 5.1, the results of aforementioned three algorithms are 

presented. The tests are performed over different data sets (7 

different image triplets) and the results are calculated by simple 

averaging. “Wrong Rejections” column in the table refers to the 

number of true inliers that are labeled as outliers by the 

algorithms, whereas “Inlier Number” column refers to the number 

of correspondences, algorithms declare as inliers. The number of 

correct inliers detected by the algorithm can be found from the 

table by taking the difference of fifth and fourth columns.  

 

It can be inferred from Table 5.1 that the IMOR algorithm cannot 

detect a large number of outliers, and therefore, the fundamental 

matrix estimate computed by using this contaminated set will give 
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inferior results. As expected, the reconstruction by using only the 

IMOR algorithm has been unacceptable during the performed 

simulations. Although, the results of the RANSAC algorithm alone 

yields very accurate reconstruction results, utilization of the IMOR 

algorithm as a preprocessing step before RANSAC decreases the 

execution time of the overall outlier rejection algorithm 

considerable, approximately 40 times. Therefore, it is proposed to 

jointly utilize the outlier rejection algorithms in a cascaded manner 

(IMOR+RANSAC). This combination yields quite improvement for 

execution time without losing much from the reconstruction 

quality.  
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CHAPTER 6 

 

 

6 CONCLUSION 

 

 

6.1 Summary of the thesis 

 

In this thesis, structure from motion problem is addressed for 

calibrated scenes, including the cases containing independently 

moving objects. For this purpose, the reconstruction process is 

divided into sections and each stage is presented separately. The 

first stage is the fundamental problem of estimating the structure 

and motion by using only two views. Then, the method is further 

generalized for more than two view case: the multiple view 

reconstruction. Finally, multiple views containing independently 

moving objects (IMOs) are examined and a novel method is 

proposed by using the parallax based rigidity constraint in order to 

reject IMOs as well as outliers.  

 

The first section is the computation of the scene structure and 

motion parameters from two calibrated images. This process 

starts by finding some point matches between two images. In 

order to match points for different images, it is necessary to 

extract salient features from these images. For this purpose, a 

modified version of the Harris corner detector is utilized. The 

detector is modified such that the results can be obtained in 

subpixel accuracy. After the extraction of salient features, a 
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moderately simple algorithm (in terms of computation complexity) 

is used in order to match these point features. The matching is 

performed by examining two main criteria: normalized cross 

correlation (NCC) and strength measure (SM). NCC is used to 

measure the similarity of image patches around the feature 

positions and SM is used to introduce smoothness to the motion 

vectors by using neighborhood information. Once a set of putative 

correspondences are determined, the next step is the estimation 

of the fundamental matrix, which encapsulates the motion 

parameters of the cameras. For this purpose, normalized eight 

point algorithm is utilized. This algorithm estimates the 

fundamental matrix linearly by using only eight correspondences. 

It is a fast, non-iterative algorithm and its results are comparable 

to other iterative methods. Although, the estimation results are 

satisfactory for a set, which is contaminated with outliers, it is 

necessary to use a robust method to improve its performance.  In 

order to introduce the necessary robustness, a statistical method, 

random sample consensus (RANSAC), is exploited. RANSAC 

operates by estimating the model from small random sets of the 

input and testing the goodness of the model iteratively. The 

iterations are stopped, when the process is guaranteed to yield a 

good estimate statistically. The linear robust estimation of the 

fundamental matrix is followed by a nonlinear minimization 

algorithm in order to improve the estimate. Levenberg-Marquardt 

(LM) minimization algorithm is used over the whole set of points 

labeled as inliers by the RANSAC method. Once the fundamental 

matrix is estimated and refined, it is decomposed into its motion 

parameters. Since the calibration information is known, the 

essential matrix is computed and then, it is decomposed into 

rotation and translation parameters. By utilizing these parameters, 
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projection matrices are computed. Finally, using a triangulation 

algorithm, the positions of the 3D points are calculated. The 

utilized triangulation algorithm is a projective invariant method 

which involves finding the roots of a sixth degree polynomial.  

 

The second section is the generalization of the two view algorithm 

for more than two views. This step is performed by first 

constructing an initial framework and then building-up the 

reconstruction of the remaining frames relative to this framework. 

The initial reconstruction is computed by using the two-view 

reconstruction algorithm. For adding a new view to the 

framework, the relative pose and location of this frame is 

estimated by a robust procedure. A set of projective pairs are 

formed by relating the framework points and matches computed 

with the new frame and a previously inserted frame. The 

projection matrix is then estimated from this projective pairs by 

using RANSAC. Once the projection matrix is found, by the help of 

triangulation, some new 3D points are initialized for the 

framework. Finally, the overall structure is refined via bundle 

adjustment. This adjustment involves the minimization of the total 

reprojection error over the whole camera and point locations.  

 

The last section is devoted to the reconstruction from a sequence 

containing independently moving objects. In order to detect the 

moving objects, the parallax-based rigidity constraint is used. In 

the application of this constraint, a background pixel has to be 

presented to the system as an input with user intervention. For 

avoiding this interaction, a novel method is proposed for an 

automatic background pixel selection algorithm. Moreover, in 
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order to make the system more robust, the results of more than 

one background pixels are fused.  

 

6.2 Discussions  

 

In the feature detection part of the algorithm, it is observed from 

the experiments performed (Table 3.2) that for a relatively minor 

computational load, subpixel accurate feature-detection increases 

the performance considerably. The resolution is increased to 

subpixel level by biquadric polynomial fitting (see Appendix B) to 

the Harris cornerness surface in every local patch. The support 

rectangle size (N) of the fit is chosen as same with the size of the 

Gaussian filter used in the Harris detector (N=3). The fitting is 

tested for different values of the support size (N), and it is 

observed that if a local maximum exists within the support, the 

detection of the true maxima may be disrupted due to the inferior 

approximation of the fit. Therefore, it is recommended to use 

same sized filters and windows throughout the process in order to 

avoid local maximum. 

 

Feature matching operation by using only the normalized cross 

correlation (NCC) measure has been found out to be insufficient, 

especially for the repetitive textured regions. In the performed 

experiments, the patches within the repeating regions still yield 

acceptable results for erroneous matches due to the nature of the 

measure (Table 3.1). For this reason, a neighbor-based matching 

measure together with NCC, called the strength measure (SM), is 

included to the algorithm. The results are improved to be 

satisfactory (see Figure 3.8 for repetitive textured region results). 

Although, the complexity of the matching increases by reducing 
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the number of false matches and increasing correct match 

number, the required number of iteration for the subsequent 

robust fundamental matrix estimation stage is reduced. 

 

During the estimation of the fundamental matrix, it is observed 

that, by a non-linear minimization algorithm, the performance can 

be improved (Table 3.2). The Levenberg-Marquardt (LM) 

algorithm is selected for the minimization purposes. From the test 

results, it is obvious that LM minimization is a crucial part of the 

overall algorithm and it should not be skipped. Moreover, as a 

future study, in the robustification stage while incorporating 

RANSAC algorithm, the goodness of the fundamental matrix may 

be tested over a random set, instead of using all of the putative 

matches. This will surely decrease the computation time, however 

the performance of the system has to be considered.  

 

In order to locate the position of the 3D points from the computed 

correspondences, four algorithms, namely midpoint method, 

linear-eigen method, linear least-square method and polynomial 

triangulation method, are tested. It is observed from Figure 3.18 

that polynomial triangulation behaves best under projective 

transformation. On the other hand, the midpoint method gives the 

inferior results and should be avoided. As it is observed from 

Figure 3.19, almost all of the methods behave equally and can be 

used alternatively for Euclidean reconstruction problems.  

 

Multiple view reconstruction method presented in Chapter 4 

makes use of projection pairs in order to relate new frames with 

the current framework, i.e., projection pairs are used to calculate 

the projection matrix of the new view. However, it is not 
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guaranteed to have an outlier-free set of projection pairs and, 

therefore, it is required to use a robust method in the estimation 

as well. During the simulations involving the direct (non-robust) 

estimation of the projection matrix, the algorithm lost track of the 

cameras in most cases and the reconstructions are unacceptable 

due to the erroneous estimation of the orientation and location 

information.  

 

Finally, a new approach for using parallax-based rigidity 

constraint, in order to reject outliers and also independently 

moving objects, is proposed. In the exploitation of this constraint, 

it is necessary to locate a pixel that is guaranteed to be on the 

background. By calculating the change of the projective 3D 

structure of a point from the residual parallax vectors with respect 

to this selected background point, the point is decided to be an 

inlier or an outlier. In the experiments, it is noticed that the 

selection of this background point is quite critical. It should not be 

selected on the dominant plane due to the fact that the remaining 

residual vectors on the dominant plane are mostly due to noise 

and errors made in the plane registration stage. Moreover, it is 

also noticed that a threshold based system will be inadequate to 

discriminate between background and foreground vectors due to 

the dependency of the errors to input scene conditions. Hence, it 

is proposed to use a selection algorithm for the best consistent 

matches. On the other hand, the main problem of this method is 

its requirement to specify the percentage of the background 

vectors to the overall set. If it is specified less than the correct 

value, some background vectors will be rejected and if it is more, 

some outliers will remain. However, this is not a serious problem 
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for large sets of vectors, since losing some background vectors by 

specifying a modest percent can be still tolerable. 

 

6.3 Future Work 

 

The consecutive frames of a video sequence have very small 

baseline distances. Therefore, the tested system could not 

calculate the rotation and translation parameters reliably for such 

consecutive video frames. In order to adapt the system to take 

video input, some measure to compute the distance between the 

frames might be included. In this manner, during the inclusion of 

a new frame to the system, the new frame might be related to 

more than one frame which are detected to be close. Another 

issue is the uncalibrated camera case. A self-calibration routine 

should be included to the system in order to have more flexibility 

with the input images. Finally, a dense matching and 

reconstruction may be incorporated in order to form more detailed 

reconstructions. 
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APPENDIX A 

 

 

7 ZHANG’S CAMERA CALIBRATION ALGORITHM 

 

 

 

In this relatively recent method, a coplanar calibration pattern is 

captured a few times with different orientations by moving either 

the camera or the model plane. The world coordinate system is 

assumed to be aligned with the model plane, i.e. calibration 

pattern is on z = 0 plane and the x- and y-axes are parallel to the 

pattern features. The feature points are automatically detected 

from the captured images. As in [4], only this information is used 

in order to extract intrinsic, extrinsic and distortion parameters of 

the camera.  

 

The estimation of the unknown calibration parameters in principle 

is quite similar to the method by Tsai [4]. The major difference is 

that no strict motion is defined for the camera to gather some 

depth information. The assumption of coinciding the z=0 plane 

with the calibration pattern simplified the formulation of the 

procedure a lot. A homography between 3D and 2D measured 

image coordinates of the system is defined, as 
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Given an image of the model plane, a homography can be 

estimated easily [1]. An estimate of the H can be determined by 

using nonlinear least square methods, after minimizing,  
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Such a minimization can be performed by using Levenberg-

Marquardt method. However, an initial guess is required, as usual. 

This initial guess is obtained as the right singular vector of L, 

where L is equal to the concatenation of equations obtained by 

rearranging (A.2), i.e., 
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After finding the homography, this matrix is decomposed into A, R 

and t by the following procedure: from Equation A.1, one has,  
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Since columns of the R matrix are orthonormal, one should have 
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It can be shown that 1−−= AAB T  has five distinct parameters [6]. 

Performing the same strategy as it is achieved for the solution of 

H, one can compute the parameters of the B matrix easily. Once B 

is estimated, A matrix parameters are obtained by, 
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Once A is determined, the extrinsic parameters for each image is 

readily computed 
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After the initial estimates are determined, all of the parameters 

including lens distortion are refined using a non-linear 

minimization technique over the cost function: 

 

( )∑∑
= =

∧
−=Γ

n

i

m

j
jiiij MtRAmm

1 1

2

,,,   (A.8) 
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 is the projection of the point Mj in image i, 

according to Equation A.1.
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APPENDIX B 

 

 

8 BIQUADRIC POLYNOMIAL FITTING TO THE 

CORNERNESS SURFACE 

 

 

 

For a given corner pixel we would like to fit a biquadric 

polynomial. For every ),,( Ryx  pair, in the N-neighborhood of the 

pixel, there exist N equations of the form  
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where  ),( ii yx  values are computed taking the ),( yx  as the 

origin. 

 

Stacking these equations in the form of BAX =  where  
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one should get a system of linear equations. Solving for X using 

the pseudo inverse of the A matrix,  

 

BAAAX TT 1)( −=     (B.5) 

 

and computing the peak of the polynomial by taking the derivative 

of (B.1) with respect x and y separately and equating those 

equations to zero, the following relations are obtained   
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Hence, the final corner pixel value is (x+x0, y+y0) 
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APPENDIX C 

 
 

9 LEVENBERG-MARQUARDT MINIMIZATION 

ALGORITHM 

 

 

 

The Levenberg-Marquardt (LM) algorithm is an iterative technique 

that is used to solve non-linear least squares problems. It has 

become a standard technique and used extensively in many 

computer vision problems. LM is a combination of steepest 

descent and the Gauss-Newton method. By changing a single 

parameter, the algorithm swings between these two methods. 

When the current estimate of the solution is away from the correct 

one, algorithm operates in the steepest descent mode and when 

the solution is close to the correct one, it operates in the Gauss-

Newton mode. 

 

Let f  be a functional which maps a parameter vector p  to an 

estimated measurement vector
∧
x , )(ˆ pfx = . An initial parameter 

vector, 0p , and a measurement vector, x , is provided as well, and 

it is desired to find the best result, minimizing the squared 

distance 
2ε  with error capxx −=ε . LM algorithm approximates 

the functional f  with a linear function around the current 

parameter vector p . For a small pδ , the Taylor series expansion 

of f  leads to  
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pp Jpfpf δδ +≈+ )()(     (C.1) 

 
where J  is the Jacobian matrix. LM tries to find the best 

parameter vector 
+p  iteratively. Hence, it is required to find a 

pδ  that minimizes the error  

ppp JJpfxpfx δεδδ −=−−=+− ))()(  

 

The solution to the minimization of problem of pJδε −  is  

 
( ) 0=− p

T JJ δε     (C.2) 

 
εδ T

p
T JJJ =      (C.3) 

 
The matrix JJT  is an approximation to the second order 

derivatives, the Hessian matrix. Instead of solving (C.3), LM 

solves a modified version of this equation, denoted as the 

augmented normal equations:  

 
0  ,)( >=+ λεδλ T

p
T JIJJ     (C.4) 

 
where λ  is called as the damping term. The update of λ  is 

performed according to the change in error term. If the update 

term causes the error to decrease, then the change is accepted 

and λ  term is decreased. On the other hand, if the error 

increases, the damping term is increased and (C.4) is solved again 

with the new λ  without accepting any change until the error is 

reduced. For the practical use of the LM algorithm, the method by 

Laurakis [30] is implemented. The pseudo-code for the algorithm 

is:   
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Algorithm C.1: 

Input: Given a vector function mnRRf nm ≥→  with : , a 

measurement vector nRx ∈ and an initial parameters estimate 
mRp ∈0  

Output: A vector mRp ∈+ minimizing 
2

)(pfx −  

 

( )

endwhile
(stop)or  )0until(     
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;:           
else        

true;:stop           

)  if(        

;IA Solve        
repeat     

;1:     

)( and stop) while(not

);(max:);(:stop

;:);(:;:

;:;2:;0:

3

1

new

22

2

max

,....,11

0

>

==

=−−=

≤=

=−==

=
>

+−−=

+=

=

≤

=+

+=
<

=≤=

=−==

===

∞

=∞

ρ

ρ

ε

εε

ρ

µδδε

δ

δµ

τµε

εε

vvµ*vµ:

vµ*µ:

g

JgpfxJJA:

gpfxρ:

pp

pεδ

g

kk

kk

Ag

JgpfxJJA

ppvk

p
T

p
T

p
T
pnewp

pnew

p

p

iimi

p
T

p
T

 



 149

 
 

APPENDIX D 

 

 

10 SPARSE BUNDLE ADJUSTMENT 

 

 

 

This section shows the development of a sparse bundle 

adjustment algorithm, which is obtained by using the LM 

algorithm presented in Appendix C. The development and the 

notation mostly follow the technical report in [41].  

 

Assume that n 3D points are seen in m views and let ijx  be the 

projection of the ith point on the jth image. Bundle adjustment (BA) 

is the refinement of a set of initial camera and structure 

parameter estimates for finding a set of parameters that 

accurately predict the locations of the observed n points in the set 

of m available images. Representing the jth camera parameters as 

ja  and ith point as ib , the minimized cost function is the total 

reprojection error:  

 

∑∑
= =

n

i

m

j
ijijba

xbaQd
ij 1 1

2

,
)),,((min   (D.1) 

 

where ),( ij baQ  is the predicted projection of the ith point on the jth 

image and ),( yxd  represents the Euclidean distance between 

inhomogeneous points, denoted by x and y. The projection 
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expression ),( ij baQ  is defined general enough to allow any 

camera and structure parameterization. If the dimension of ja  is 

equal to d1 and the dimension of ib  is equal to d2, then the above 

minimization has a total dimension of nd2+md1, which is a quite 

large number, even for a moderate sized BA problem.  

 

The formulation of the BA is given as,  

 

 A parameter vector containing the whole structure and 

motion parameters is represented as:  

 
TT

n
TTT

m
TT bbbaaaP ).....,,,......,( 2121=   (D.2) 

 

and the measurement vector containing all the measured image 

coordinates is represented as:  

 
TT

nm
T
n

T
m

TT
m

T xxxxxxX ),....,......,....,,....( 1221111=  (D.3) 

 

Let the initial parameter vector be P0 and for each parameter 

estimate, the estimated measurement vector be X̂ . The 

relationship between P0 and X̂  is given by  

 

)(ˆ PfX =      (D.4) 

with  

 

TT
nm

T
n

T
m

TT
m

T xxxxxxX )ˆ,....ˆ,......ˆ,....ˆ,ˆ,....ˆ(ˆ
1221111=  (D.5) 

 

where ),(ˆ ijij baQx =  
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Thus, BA is equal to minimizing the squared error εεT  where 

XXε ˆ−=  over P. This minimization problem may be solved using 

the LM algorithm in order to iteratively solve the augmented 

normal equations: 

 
0>=+ ε,  λJλI)δJ(J T

p
T    (D.6) 

 
where J is the Jacobian of f and δ is the sought update to the P 

estimate.  

 
The sparseness of the above problem will be explained by using 

n=3 points and m=2 views without losing any generality to keep 

the demonstration manageable.  

 
The measurement vector is TTTTTTT ),x,x,x,x,x(xX 323122211211=  and the 

parameter vector becomes TTTTTT bbbaaP ),,,,( 32121= . Notice that 

kj,
a

x

k

ij ≠∀=
∂
∂

0
ˆ

and ki,
b

x

k

ij ≠∀=
∂
∂

0
ˆ

. Let Aij and Bij denote 
j

ij

a

x

∂
∂ˆ

 and 

i

ij

b

x

∂
∂ˆ

, respectively. The LM updating vector δ can be partitioned 

into camera and structure parameters as TT
b

T
a ),( δδ  and further as 

TT
b

T
b

T
b

T
a

T
a ),,,,( 32121 δδδδδ . Using the outlined notation, the Jacobian 

can be calculated as  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
∂
∂

3232
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1111

000
000

000
000
000
000

BA
BA

BA
BA

BA
BA

P
X

   (D.7) 
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From (D.7), it is clearly observed that the Jacobian matrix is a 

sparse matrix. Substituting this expression into the JJT  term in 

the left hand side of (D.6), 

 

⎥
⎥
⎥
⎥
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⎥
⎥
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⎥
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⎦
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⎣

⎡
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∑

∑

∑

∑

∑

=

=

=

=

=

2

1
3332323131

2

1
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2

1
1112121111

323222221212

3

1
22

313121211111

3

1
11
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00

0

0

j
j

T
j

TT

j
j

T
j

TT

j
j

T
j

TT

TTT

i
i

T
i

TTT

i
i

T
i

T

BBABAB

BBABAB

BBABAB

BABABAAA

BABABAAA

JJ  (D.8) 

 

Denoting the ∑
=

3

1i
ij

T
ij AA  , ∑

=

2

1
11

j
i

T
iBB , and ij

T
ij BA 1  by jU , iV  and ijW , the 

above matrix is equal to  
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⎥
⎥
⎥
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⎦
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Using (D.7), the right hand side of (D.6) can be expanded as  
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     (D.10) 

 

Denoting ∑
=

3

1i
ij

T
ijA ε  and ∑

=

2

1j
ij

T
ijB ε  by jaε  and ibε  respectively, (D.7) 

can be written as 
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Denoting ⎥
⎦

⎤
⎢
⎣

⎡
=

*
2

*
1*

0
0

U
U

U , 
⎥
⎥
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⎢
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V

V
V  and 

⎥
⎦

⎤
⎢
⎣

⎡
=

322212

312111

WWW
WWW

W  where * denotes the augmentation of the 

diagonal elements, allows the augmented normal equation to be 

further compacted to  
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The solution of the above equation may be found by left 

multiplying the equation with 

 

⎥
⎦

⎤
⎢
⎣

⎡ − −

I
WVI

0

1*

   (D.13) 

 

resulting  
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⎣
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T

T WV
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εε

δ
δ 1*

*

1** 0
       (D.14) 

 

From this equation, the first the update term aδ  is found from the 

upper equality and then substituting for aδ , the value of the bδ  is 

found. 

 

baa
T WVWWVU εεδ 1*1** )( −− −=−   (D.15) 

 

a
T

bb WV δεδ −=*     (D.16) 

 

The rest of the algorithm is same as the LM algorithm outlined in 

Algorithm C.1. The only difference is the calculation of the update 

terms. They are calculated using Equations D.15 and D.16. 
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APPENDIX E 

 

 

11 QUATERNION REPRESENTATION OF THE 

ROTATION MATRIX 

 

 

 

A quaternion represents a three-dimensional rotation as a four-

component row vector of unit length: 

 

[ ] ][)2/cos()2/sin()2/sin()2/sin( svzyx qqnnnq == θθθθ  

(E.1) 

with 12 =+= sv qqq  

 

This definition uses the axis-angle form of rotation information. In 

this form, a rotation is specified by an axis and a rotation angle. 

The axis is ),,( zyx nnn  and the rotation angle is θ. The rotation is 

performed according to the right-hand rule.  

 

The relation between the rotation form and axis angle form is 

given as:  
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)cos1(][sin][)][exp( 2 θθθ −++== xxx nnInR   (E.2) 

 

where  
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