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abstract

CREDIT SCORING METHODS AND ACCURACY

RATIO

İs.canoḡlu, Ays.egül

M.Sc., Department of Financial Mathematics

Supervisor: Prof. Dr. Hayri KÖREZLİOĞLU

Co-Advisor: Assist. Prof. Dr. Kasırga YILDIRAK

August 2005, 132 pages

The credit scoring with the help of classification techniques provides to take easy

and quick decisions in lending. However, no definite consensus has been reached

with regard to the best method for credit scoring and in what conditions the meth-

ods performs best. Although a huge range of classification techniques has been

used in this area, the logistic regression has been seen an important tool and used

very widely in studies. This study aims to examine accuracy and bias properties in

parameter estimation of the logistic regression by using Monte Carlo simulations

in four aspect which are dimension of the sets, length, the included percentage

defaults in data and effect of variables on estimation. Moreover, application of

some important statistical and non-statistical methods on Turkish credit default

data is provided and the method accuracies are compared for Turkish market.

Finally, ratings on the results of best method is done by using receiver operating

characteristic curve.

Keywords: Credit Scoring, Discriminant Analysis, Regression, Probit Regression,

Logistic Regression, Classification and Regression Tree, Semiparametric Regres-

sion, Neural Networks, Validation Techniques, Accuracy Ratio.
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öz

KREDİ SKORLAMASI VE DOḠRULUK RASYOSU

İs.canoḡlu, Ays.egül

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hayri KÖREZLİOĞLU

Tez Yönetici Yardımcısı: Yard. Doc.. Dr. Kasırga YILDIRAK

Aḡustos 2005, 132 sayfa

Kredi skorlama, klasifikasyon metodlarının yardımı ile kredi verme is.lemlerinde

kolay ve c.abuk karar verilmesini saḡlamaktadır. Fakat en iyi kredi skorlama

metodlarının hangi kos.ullarda iyi performans gösterdikleri ve bunlardan hangisinin

en iyi olduḡu hakkında kesin bir yargı bulunmamaktadır. Bu alanda bir c.ok

deḡis.ik metot kullanılmasına raḡmen, lojistik regresyon önemli bir arac. olarak

görülmekte ve uygulamalarda yoḡun bir s.ekilde kullanılmaktadır. Bu c.alıs.ma

Monte Karlo simulasyonları kullanılarak lojistik regresyonun parametre tahmininde

ki doḡruluk ve yanlılık özelliklerini verinin boyut, uzunluk, veri ic.indeki temerrütteki

gözlem oranı ve deḡis.kenlerin tahmin üzerindeki etkileri olmak üzere 4 farklı

ac.ıdan incelemeyi amac.lamaktadır. Bu c.aıs.ma buna ek olarak Türkiye temerrüt

verisi üzerinde, önemli bazı istatistiksel ve istatistiksel olmayan metotlar uygulanmıs.

ile kredi skorlama yapılmakta ve bu veri ic.in metotlar kars.ılas.tırılmaktadır. Son

olarak, receiver operating characteristic eḡrisi kullanılarak, en iyi method sonuc.ları

kullanılarak derecelendirilmis.tir.

Anahtar Kelimeler: Kredi Skorlama, Diskriminant Analiz, Regresyon, Probit Re-

gresyon, Logistik Regresyon, Klasifikasyon and Regresyon Aḡac.ları, Yapay Sinir

Aḡları, Gec.erlilik Teknikleri , Doḡruluk Rasyosu
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chapter 1

INTRODUCTION

In a credit granting procedure, a credit company’s main aim is to determine

whether a credit application should be granted or refused. The credit scoring

procedures in fact measure the risk on lending. From the early civilizations this

risk has been assessed by the interest rate on it. However, the studies on the

financial situations of the governments, companies and individuals has demon-

strated that the interest does not diminish the risk. The credit risk should be

assessed separately.

The default of a firm is always very costly for both shareholders and credit

agencies. Because the credit agencies could lose whatever they give and the share-

holders could lose all or nearly all of their value of equity. Here, the problem is

to learn default some time before the default in order to be take some precau-

tions. The empirical studies indicated that classification methods gives signals of

defaults. However, these methods could act differently according to size, shape,

and structure of the data. Therefore, selection of the most suitable method for

available data is a much more complex concern.

In literature, as far as we know, the scoring studies shows only accuracy

comparisons of two or more models. The close examinations of the methods

are gaps in this area. Therefore, this study includes the empirical research on

logistic regression. The logistic regression because of its environment is the most

1



widely used method in studies of credit scoring. However, the conditions in which

the logistic regression performs well is not discussed. This study makes a close

examination of the parameter estimation of logistic regression in different variable

sets and the data sets with different default levels by Monte Carlo simulations.

Moreover, the study presented here also includes the applications of classifi-

cation methods to the real Turkish credit data. The accuracies of all methods

are compared with each other. Furthermore, for Turkish data sets which are very

volatile in companies from the different group of companies, the most appropriate

model is tried to be selected.

The organization of the thesis is as follows. Chapter 2 gives a brief overview

of the development of credit scoring, the related studies and the explanatory vari-

ables in the studies. Chapter 3 provides the fundamentals of statistical methods

used in credit scoring. In Chapter 4, the important neural network learning al-

gorithms and their derivations are given. Chapter 5 presents the Monte Carlo

applications on the parameter estimation and estimation accuracies of logistic

regression. Moreover, Chapter 6 provides the accuracy ratio and validations of

the methods mentioned in Chapter 3 and Chapter 4. Chapter 7 concludes this

thesis.
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chapter 2

FOUNDATIONS OF CREDIT

SCORING: DEVELOPMENT,

RESEARCH AND

EXPLANATORY VARIABLES

The research in the area of credit scoring started in the 1930’s. After that

date, many different works and methods have entered the literature of credit

scoring. According to type of methods, we can split the period 1930-2005 into

4 sub-periods. We call the first period as a primitive age of credit scoring

because this includes very basic applications. In this part, research was based

only on a ratio analysis. In those years, scientists compared ratios of default

and non-default companies and tried to develop an idea of companies’ financial

performances. As it can be guessed, these type of methods had no predictive

power and so they were not very suitable.

The second period of the credit scoring started at 1966 with the application

of discriminant analysis. By this application, research gained predictive power.

However, this method has very strong assumptions on variables and so, the pre-

diction power is not very high. Moreover, this method does not give the idea

3



of relative performances of the variables. We call this period as discriminant

age .

The application of discriminant analysis is a turning point for credit scoring

because it opened the door for computer-based methods. After the 1970’s, the

methods that applied to this area changed rapidly. The main types of meth-

ods were the regression based approaches. Therefore, we can call this period as

regression age of credit scoring . The linear regression was applied firstly,

but it did not give good results. Because the credit default probabilities takes

only values between 0 and 1, but linear regression can give the results between

−∞ and ∞. Then, secondly, probit regression came into play. Since it also has

strong assumptions of normality, the end of the application of this methods came

rapidly. In other words, in the period 1970-1980, the regression type methods

were not gone to the fore of discriminant analysis.

In the 1980’s, the study of logistic regression increased the interest to the

regression since it has no normality assumptions on variables, allows predictions,

and interpretation of coefficients, and it gives the output on the interval [0,1].

Although after the 1980’s many other statistical methods have been also ap-

plied such as k-nearest neighborhood, classification and regression trees, survival

analysis, etc, this method has kept its importance even nowadays as the most

widely-used statistical technique in research.

The year 1990 is an another turning point for credit scoring. In this year, the

statistical methods gave their place to the machine learning type methods with

the application neural networks. Therefore, we name this period as machine

age .
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2.1 Primitive Age Researchers and Explanatory

Variables

The first researchers which we found in the primitive age are Ramser and

Foster with their 1931 paper [BLSW96]. This was followed by Fitzpatrick in

1932 [BLSW96]. Fitzpatrick investigated nineteen pairs of failed and non-failed

companies. He showed a significant difference in the ratios of failed and non-failed

companies at least three years prior to failure. After then, Winekor and Smith

[BLSW96] in 1935, searched the mean ratios of failed firms ten years prior to

failure and detected the breakdown in the mean values when failure was coming

[B66].

In 1942, Merwin [BLSW96] studied mean ratios of the failed and non-failed

companies in the period 1926-1936 and his result was only differing form Winekor

and Smith’ work [BLSW96] in the six year before failure [B66].

In these years, the primary ratio was the current ratio. However, some other

ratios were also used. For example, Ramser and Foster [BLSW96] studied with

equity / (net sales); Fitzpatrick [BLSW96] used equity / fixed-asset and return on

stock ; Winekor and Smith [BLSW96] applied its analysis on (working capital) /

(total assets); and Mervin [BLSW96] beside current ratio, used total debt/equity,

(working capital) / (total assets).
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2.2 Discriminant Age Researchers and Explana-

tory Variables

The researcher who started the discriminant age is Beaver [B66]. In his work,

he applied a univariate type discriminant analysis by using: (cash flow) / (total

debt), ( current assets) / (current liabilities), (net income) / (total assets), (total

debt) / (total assets), (working capital) / (total assets) [B66]. Then, in 1968,

Altman investigated a multivariate discriminant analysis by his famous z-score

with 5 variables that are 1. (MV of equity) / (book value of debt), 2. (net sales

/ total assets), 3. (operating income) / (total assets), 4. (retained earnings) /

(total assets), 5. (working capital) / (total assets) [A68]. Altman obtained 94%

and 97% classification accuracy among default and non-default firms, respectively

and 95% overall accuracy [HM01].

The discriminant analysis applications were also continued after 1970’s. In

1972, Deakin [D72] applied discriminant analysis. In his analysis, he used: cash

/ (current liabilities), (cash flow) / (total debt), cash / (net sales), cash / (total

assets), current ratio, (current assets) / (net sales), (current assets) / (total

assets), (net income) / (total assets), (quick assets) / (current liabilities), (quick

assets) / (net sales), (quick assets) / (total assets), (total debt) / (total assets),

(working capital) / (net sales) and (working capital) / (total assets) and obtained

97% overall accuracy [D72] [HM01].

In 1972, Lane and Awh and then, Waters [RG94] in 1974, used the discrimi-

nant analysis. Moreover, in 1974, Blum with ratios: market rate of return, quick

ratio, (cash flow) / (total debt), fair market value of net worth, (net quick assets)

/ (inventory), (book value of net worth) / (total debt), (standard deviation of
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income), (standard deviation of net quick assets) / inventory, slope of income,

(slope of net quick assets) / (inventory), trend breaks of income, (trend breaks of

net quick assets) / (inventory) applied discriminant analysis [Bl74].

One year later, Sinkey used: (cash+U.S. treasury security) / (assets), (loans)

/ (assets), (provision for loan losses) / (operationg expense), (loans) / (capital +

reserves), (operating expense) / (operating income), (loan revenue) / (total rev-

enue), (U.S. treasury securities’ revenue) / (total revenue), (state and local obli-

gations’ revenue) / (total revenue), (interest paid on deposits) / (total revenue),

(other expenses) / (total revenue) [S75]. Then, Altman and Lorris [BLSW96]

(1976) acquire 90% classification accuracy with the help of five financial ratios

that are

• (net income) / (total assets),

• (total liabilities + subordinate loans) / equity,

• (total assets) / (adjusted net capital),

• (ending capital-capital additions) / (beginning capital)

• scaled age

• composite version of the before mentioned ones.

For closer information, we refer to [AL76] and [HM01].

Another paper with discriminant analysis was published by Altman, Halde-

man and Narayan (1977) [BLSW96]. Here, (retained earnings) / (total assets),

(earnings before interest and taxes) / (total interest payments), (operating in-

come) / (total assets), (market value of equity) / (book value of debt), (current
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assets) / (current liabilities) were their ratios. And their results showed a 93 %

overall accuracy [HM01].

The investigations which I were able to reach were from the last researchers

who made their studies only with discriminant analysis. They are Dambolena

and Khory (1980) [DK80]; their ratios: 1. (working capital) / (total assets), 2.

(retained earnings) / (total assets), 3. earning before interest and taxes to total

assets, 4. (market value of equity) / (book value of debt), 5. sales to total assets,

Altman and Izan (1984) [HM01] and lastly, Pantalone and Platt (1987) [HM01]

with 95% accuracy.

2.3 Regression Age Researchers and Explana-

tory Variables

The first researcher who used regression analysis according to my study was

Orgler (1970) [Org70]. In his analysis, Orgler basically used: current ratio, work-

ing capital, cash / (current liabilities), inventory / (current assets), quick ratio,

(working capital) / (current assets), (net profit) / sales, (net profit) / (net worth),

(net profit) / (total assets), net profit ≶ 0, net profit, (net worth) / (total liabili-

ties), (net worth) / (fixed assets), (net worth) / (long-term debt), net worth ≶ 0,

sales / (fixed assets), sales / (net worth), sales / (total assets), sales / inventory

and sales / receivables. He, in the hold-out sample, was only able to classify 75

% of the bad loans as bad and 35 % of the good loans as good [Org70].

In 1976, Fitzpatrick applied multivarite regression also. This research was fol-

lowed by Olhson (1980) [O80]. In his paper, he investigated a logistic regression

analysis. He collected data from the period 1970-76. Besides the basic ratios,
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that are: (total liabilities) /(total assets), (working capital) / (total assets), (cur-

rent liabilities) / (current assets), (total liabilities-total assets) > 0, it takes one,

otherwise it takes zero, (net income) / (total assets), (funds provided by opera-

tions) / (total liabilities), dummy; One if net income negative for the last two

years, (NIt − NIt−1)/(|NIt| + |NIt−1|), he also used size of the company as an

explanatory variable [O80]. He calculated the type one and type two types of

errors in different cut points and found for his second model better average error

that is 14.4%.

Then, Pantalone and Platt (1987) [HM01] tried logistic regression in their

paper. They obtained 98% accuracy in the classification of failed firms and 92%

accuracy in that of non-failed firms .

In this time period, the recursive partitioning algorithm was gained to the

literature by Altman, Frydman and Kao (1985) [FAK85]. Their explanatory

variables were as follows:

• (net income) / (total assets),

• (current assets)/ (current liabilities),

• log(total assets),

• (market value of equity)/ (total capitilazation),

• (current assets) / (total assets),

• (cash flow) / (total debt),

• (quick assets) / (current liabilities),

• (earning before interest and taxes) / (total assets),
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• log(interest coverage+15 ),

• cash / (total sales),

• (total debt) / (total assets),

• (quick assets) / (total assets) .

For a closer information please look at [FAK85].

2.4 Machine Age Researchers and Explanatory

Variables

Odom and Sharda in 1990 [OS90] made a comparison between the discrimi-

nant analysis and neural networks by using Altman’s (1968) explanatory variables

[A68]. They collected the data set in the period 1975 to 1982. Their training

sample consisted of 74 companies 38 of which were default and hold-out sample

was constituted by 55 companies 27 of which default. They concluded that neu-

ral networks performed better with respect to both training sample and hold-out

sample. Moreover, the study proved that neural networks were more robust than

discriminant analysis even in small sample sizes [OS90].

In 1991, Cadden [BO04] and Coats and Fant [BO04] made a comparison

of discriminant analysis and neural networks also. After that in the following

year, Tam and Kiang [TK92] applied discriminant analysis, logistic regression

and neural networks with eighteen explanatory variables. This was followed by

another study of Coats and Fant [CF93] in 1993. In the study, Coats and Fant

obtained the data from the 1970 to 1989. By using Altman’s (1968) variables,
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they run discriminant analysis and neural networks and get that the discriminant

analysis gave the highest misclassification error that is classifying a default as

non-default.

In 1996, Back, Laitinen, Sere and Wesel [BLSW96] worked with a huge set

of variables that are: 1. cash /(current liabilities), 2. (cash flow) / (current

liabilities), 3. (cash flow) / (total assets), 4. (cash flow) / (total debt), 5. cash /

(net sales) 6. cash / (total assets), 7. (current assets) / (current liabilities), 8.

(current assets) / (net sales), 9. (current assets) / (total assets), 10. (current

liabilities) / equity, 11. equity / (fixed assets), 12. equity / (net sales), 13.

inventory / (net sales), 14. (long term debt) / equity, 15. (market value of

equity) / (book value of debt), 16. (total debt) / equity, 17. (net income) / (total

assets), 18. (net quick assets) / inventory, 19. (net sales) / (total assets), 20.

(operating income) / (total assets) 21. (earnings before interest and faxes) /(total

interest payments), 22. (quick assets) / (current liabilities), 23. (quick assets)

/ (net sales), 24. (quick assets) / (total assets), 25. rate of return to common

stock, 26. (retained earnings) / (total assets), 27. return on stock, 28. (total

debt) / (total assets), 29. (working capital) / (net sales), 30. (working capital) /

equity, and 31. (working capital) / (total assets) [BLSW96].

In 1998, Kiviluoto [K98] tried the discriminant analysis, neural networks by

means of operating margin, net income before depreciation, extraordinary items,

net income before depreciation, extraordinary items of the previous year, equity

ratio. For closer details see [K98].

After that in 1999, Laitinen and Kankaanpaa [LK99] compared discriminant

analysis, logistic regression, recursive partitioning, survival analysis and neural

networks. The study’s ratios were cash to current liabilities, total debt to total
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assets, operating income to total assets. They examined all the methods from

three years prior to failure. Moreover, in the total error, they found neural

networks as best one year prior to failure and recursive partitioning as best two

and three years prior to failure.

In 1999, Muller and Ronz [MR99] showed a different approach to credit default

prediction. They implemented the semi parametric generalized partial linear

models to this area. In the paper, the 24 variables were used but not specified .

In 2000, recursive partitioning, discriminant analysis and neural networks were

attempted by McKee and Greenstein [MG00]. The ratios were as follows:

• (net income) / (total assets),

• (current assets) / (total assets),

• (current assets) / (current liabilities),

• cash / (total assets),

• (current assets) / sales and

• (long-term debt) / (total assets).

In 2001, Atiya [Ati01] used: the 1. (book value) / (total assets), 2. (cash flow)

/ (total assets), 3. price / (cash flow ratio), 4. rate of change of stock price, 5.

rate of change of cash flow per share, 6. stock price volatility and he investigated

neural networks.

The time table of the studies and methods can be found in Table (2.1). For

a close examination please we refer to it, and we abbreviate:
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Method
Year Ra.A. DA RA LA CART SPR NN

Researchers

Ramser, 1931 X
Foster [BLSW96]
Fitzpatrick [BLSW96] 1932 X
Winakor, 1935 X
Smith [BLSW96]
Merwin [BLSW96] 1942 X
Beaver [B66] 1966 X
Mears [M66] 1966 X
Horrigan [H66] 1966 X
Neter [N66] 1966 X
Altman [A68] 1968 X
Orgler [Org70] 1970 X
Wilcox [Wil71] 1971 X
Deakin [D72] 1972 X
Lane [RG94] 1972 X
Wilcox [Wil73] 1973 X
Awh, Waters [RG94] 1974 X
Blum [Bl74] 1974 X
Sinkey [S75] 1975 X
Libby [Lib75] 1975 X
Fitzpatrick [RG94] 1976 X
Altman and 1976 X
Lorris [BLSW96]
Altman, Haldeman, 1977 X
Narayan [BLSW96]
Dambolena, 1980 X
Khoury [DK80]
Olhson [O80] 1980 X
Altman, Izan [BO04] 1984 X
Altman, Friedman, 1985 X
Kao [FAK85]
Pantalone, Platt [BO04] 1987 X
Pantalone, Platt [BO04] 1987 X
Odom, Sharda [BO04] 1990 X X
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Method
Year Ra.A. DA RA LA CART SPR NN

Researchers

Cadden [BO04] 1991 X X
Coats, Fant [BO04] 1991 X X
Tam, Kiang [TK92] 1992 X X X
Coats, Fant [CF93] 1993 X X
Fletcher, Goss [BO04] 1993 X X
Udo [BO04] 1993 X X
Chung, Tam [BO04] 1993 X
Altman, Marco, 1994 X X
Varetto [BO04]
Back, Laitinen, Sere, 1996 X X X
Wesel [BLSW96]
Bardos, Zhu [BO04] 1997 X X X
Pompe, Feelders [PF97] 1997 X X X
Kivilioto [K98] 1998 X X
Laitinen, 1999 X X X X
Kankaanpaa [LK99]
Muller, Ronz [MR99] 1999 X X
Mckee, Greenstein [MG00] 2000 X X X
Pompe, Bilderbeek [BO04] 2000 X X
Yang, Temple [BO04] 2000 X X
Neophytou, 2001 X X
Mar-Molinero [BO04]
Atiya [Ati01] 2001 X

Table 2.1: The methods and scientists.

Ra.A: Ratio analysis,

DA: Discriminant analysis,

RA: Regression analysis,

LA: Logistic regression,

CART: Classification and regression trees,

SPR: Semiparametric regression,

NN: Neural networks.
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chapter 3

STATISTICAL METHODS IN

CREDIT SCORING

3.1 Introduction

A credit institute faces with a prejudgement problem of measuring its cus-

tomer firms’ creditworthiness. For this reason, the credit institute primarily col-

lects information about its customer firms’ measurable features, or; namely, age

of the firm, (current assets) / (current liabilities) ratio, and so on. Let Xi ⊆ <
represents the each feature of the customer firm, e.g., X1 may be the age of the

firm, X2 may be the current assets/current liabilities ratio and so on. Then, each

customer firm can be described by a tuple of p random variables, namely, by the

vector X = (X1, X2, ..., Xp) which indicates a firm’s completely all characteristic

properties and market and internal performance features. Let the actual values

of the variables for a particular customer firm be x = (x1, x2, ..., xp) ∈ X ⊆ <n.

Furthermore, let any different possible value of xi to variable Xi be called an

attribute of that feature.

Let us call the space of X as the input space and denote it by Ω since each

customer is represented as a point in this space.

According to records of the credit institute, in market, there are two types
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of firms: default firms (D) and non-default firms (ND). Here, a default firm is a

customer firm that did not fulfill its obligation in the past, and a non-default firm

is a customer firm that fulfilled its obligation in the past. Moreover, the space of

all possible outcomes that has only two elements: D and ND, is called the output

space Y .

Moreover, let δND be the prior ”non-default firms” category probability, a δD

stands for prior class probability of ”default firms”.

According to our concern, objective is to find best scoring procedure space(X)

−→ space(Y ) which splits the space Ω into two subspaces: ΩND and ΩD, so that

classifying new customer firms whose indicator vector belongs to the set ΩND as

”non-default firm” and whose indicator vector belongs to the set ΩD as ”default

firm” [HKGB99], [CET02].

In here, a brief review of credit scoring methods which are used in literature

most commonly will be given. The above notations are giving to be throughout

this chapter.

3.2 Discriminant Analysis

The discriminant analysis is a standard tool for classification. It is based on

maximizing the between-group variance relative to the within-group variance.

3.2.1 Decision Theory Approach

According to the discrete or continuous character of the probability distribu-

tions, we refer to the discrete or the continuous case in the followings.

16



Discrete Case

Assume the companies which ask for credit feature vector has a finite number

of discrete attributes so that Ω is finite and there is only a finite number of

different attributes x.

Suppose p(x|ND) represent the probability that a non-default firm will has

an attribute x. Similarly, p(x|D) represents the probability that a default firm

will has an attribute x. These conditional probabilities can be shown to be

p(x|ND) =
p(firm is a non-default firm and has an indicator vector x)

p(firm is a non-default firm)
(3.2.1)

and

p(x|D) =
p(firm is a default firm and has an indicator vector x)

p(firm is a default firm)
. (3.2.2)

Since in a market these conditional probabilities can not be observed directly,

they will be obtained by using Bayes rule and directly observable probabilities.

To apply Bayes rule, let us define p(ND|x) as the probability that a company

an attribute vector x as a non-default company and let us define p(D|x) as the

probability that a company an attribute vector x as a default company. Then,

p(ND|x) =
p(firm is a non-default firm and has an indicator vector x)

p(firm has an indicator vector x )
,

(3.2.3)

p(D|x) =
p(company is a default firm and has an indicator vector x)

p(firm has an indicator vector x )
. (3.2.4)

Let γ(x):= p(firm has an indicator vector x), then (3.2.1), (3.2.3), (3.2.2) and
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(3.2.4), respectively, can be put together in the following formulae:

p(firm is a non-default firm and has an indicator vector x)

= p(ND|x)γ(x) = p(x|ND)δND

and

p(firm is a default firm and has an indicator vector x)

= p(D|x)γ(x) = p(x|D)δD.

Then, by Bayes rule,

p(ND|x) =
p(x|ND)δND

γ(x)
(3.2.5)

and

p(D|x) =
p(x|D)δD

γ(x)
. (3.2.6)

Suppose a credit institute loses the amount c(ND|D) of money for each firm

if it classifies a default firm as non-default and loses c(D|ND) amount of money

for per firm if it classifies a non-default firm as default. These misclassification

costs are summarized in Table (3.1).

Classification Result
non-default default

true non-default 0 c(ND|D)
value default c(D|ND) 0

Table 3.1: Misclassification costs.

Furthermore, let us assume the probability that misclassifying a company as
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ΩND be

p(firm is misclassified as non-default) = p(x|D)δD, (3.2.7)

and the probability that misclassifying a non-default firm as ΩD be

p(firm is misclassified as default) = p(x|ND)δND. (3.2.8)

Then, the expected cost of misclassifying firms if the firms with attributes

belonging to the set ΩND are accepted and if the firms with attributes belonging

to the set ΩD are refused is

c(D|ND)
∑
x∈ΩD

p(x|ND)δND + c(ND|D)
∑

x∈ΩND

p(x|D)δD =

c(D|ND)
∑
x∈ΩD

p(ND|x)γ(x) + c(ND|D)
∑

x∈ΩND

p(D|x)γ(x). (3.2.9)

At this point, the decision rule that minimizes this expected cost is clear. Let

us consider cost of classifying a firm with x = (x1, x2, ..., xp). If a firm puts into

ΩND, then the only cost if it is a default is the expected cost C(ND|D)p(x|D)δD.

If a firm puts into ΩD if it is non-default, then the expected cost is

c(D|ND)p(x|ND)δND. (3.2.10)

Therefore, x can be classified into ΩND if

c(ND|D)p(x|D)δD ≤ c(D|ND)p(x|ND)δND (3.2.11)

is satisfied. For this reason, the decision rule that minimizes the expected costs
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is

ΩND = {x|c(ND|D)p(x|D)δD ≤ c(D|ND)p(x|ND)δND}

=

{
x|c(ND|D)

c(D|ND)
≤ p(x|ND)δND

p(x|D)δD

}

=

{
x|c(ND|D)

c(D|ND)
≤ p(ND|x)

p(D|x)

}
. (3.2.12)

That is, we classify a firm as a non-default firm if the above condition is

satisfied. Otherwise, classify the firm as a default firm.

Continuous Case

Let us assume that the indicator vector has a finite number of continuous

type attributes so that Ω is finite and there is only a finite number of different

attributes x. The same procedure from the discrete case is applied to the con-

tinuous case. Here, the only difference is that the conditional probability mass

functions p(x|ND) and p(x|D) are replaced by the continuous probability den-

sity functions. Then, the expected cost of misclassifying firms if the firms with

attributes belonging to set ΩND are accepted and if the firms with attributes

belonging to set ΩD are refused, will become

c(D|ND)

∫

x∈ΩD

f(x|ND)δNDdx + c(ND|D)

∫

x∈ΩND

f(x|D)δDdx (3.2.13)

and the decision rule that minimizing this expected cost will become

ΩND = {x|c(ND|D)f(x|D)δD ≤ c(D|ND)f(x|ND)δND}

=

{
x| c(ND|D)δD

c(D|ND)δND

≤ f(x|ND)

f(x|D)

}
. (3.2.14)
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Figure 3.1: Misclassification errors [JW97].

That is, we classify a firm as a non-default firm if the above condition is

satisfied. Otherwise, we classify the firm as a default Firm.

In literature, normal distribution is the most widely used distribution for

discriminant analysis. When using a normal probability density function, three

cases can be considered:

A. Univariate Normal Feature Variable x

This is the simplest case of discriminant analysis. In this case, firms are tried

to classify with respect to only one feature variable. Let us say X = (current

assets) / (current liabilities) ratio, and let it follow a normal distribution with

mean µND and variance σ2 among the non-default firms, and follow a normal

distribution with mean µD and variance σ2 among the default firms. Then, the

probability distribution functions can be written as follows:

f(x|ND) = (2πσ2)−
1
2 exp(

−(x− µND)2

2σ2
) (3.2.15)
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for non-default firms and

f(x|D) = (2πσ2)−
1
2 exp(

−(x− µD)2

2σ2
) (3.2.16)

for default firms.

Then, according to continuous case results, the decision rule for univariate

normal case of minimizing this expected cost will become

ΩND =

{
x| c(ND|D)δD

c(D|ND)δND

≤ f(x|ND)

f(x|D)

}

=

{
x| c(ND|D)δD

c(D|ND)δND

≤ (2πσ2)−
1
2 exp(−(x−µND)2

2σ2 )

(2πσ2)−
1
2 exp(−(x−µD)2

2σ2 )

}

=

{
x| exp(

−(x− µND)2 +−(x− µD)2

2σ2
) ≥ c(ND|D)δD

c(D|ND)δND

}

=

{
x|x(µND − µD) ≥ µ2

ND + µ2
D

2
+ σ2log

(
c(ND|D)δD

c(D|ND)δND

)}
.(3.2.17)

That means, in our continuous case, we classify a firm as a non-default firm

if the above condition is satisfied. Otherwise, we classify a firm as default firm

[CET02].

B. Multivariate Normal Feature Vector x with Common Covariance

Matrix Σ

In this case, the firms are tried to classify according to p variate feature indices

x = (x1, x2, ..., xp) ∈ X ⊆ <n. It is assumed that x follows a normal distribution

with mean µND and variance-covariance matrix Σ among non-default firms and

follows a normal distribution with mean µD and variance-covariance matrix Σ
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among default firms.The probability density function is

f(x|ND) = (2π)−
p
2 (detΣND)−

1
2 exp(

−(x− µND)T Σ−1
ND(x− µND)

2
). (3.2.18)

Similarly, as we learned it in A, our decision rule will become

ΩND =

{
x| c(ND|D)δD

c(D|ND)δND

≤ f(x|ND)

f(x|D)

}

=

{
x|exp

{− 1

2
((x− µND)ΣND−1(x− µND)T − (x− µD)Σ−1

D (x− µD)T )
}

≥ c(ND|D).δD

c(D|ND)δND

}

=

{
x|x(Σ−1

ND − Σ−1
D )xT + 2x(Σ−1

NDµT
ND − Σ−1

D µT
D)

≥ (µNDΣ−1
NDµT

ND − µDΣ−1
D µT

D) + 2log(
c(ND|D)δD

c(D|ND)δND

)

}
. (3.2.19)

3.2.2 Functional Form Approach

This approach is also known as Fisher’s discriminant function analysis after

Fisher, 1936 [JW97]. In his work, he tried to fit a linear discriminant function

of feature variables that best splits the set into two subsets (see Figure 3.2 for

an impression). The Fisher’s discriminant function consists of combination of

feature variables.

Let Y = w1X1 +w2X2 + . . .+wpXp be any linear combination of credit perfor-

mance measure X = (X1, X2, . . . , Xp). Like analysis of variance (ANOVA), the

Fisher’s discriminant function analysis uses the differences of the mean values of Y

in the two subspaces: the space of default firms and space of non-default firms as

a splitting criteria. In this analysis, therefore, the weights of Xi’s (i = 1, 2, ..., p)

are such that they minimize the distance between the sample means of default
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and non-default firms over the square root of the common sample variance.

x
2



x1


Figure 3.2: Fisher’s linear discriminant analysis.

Fisher’s Principle is an optimization problem which look as follows:

min J(w) = wT (mND −mD)T

(wSwT )1/2
, (3.2.20)

where mND and mD are sample means vectors for non-default and default com-

panies, respectively, and S is the common variance-covariance matrix.

Differentiating (3.2.20) with respect to w and setting it to 0 derives the fol-

lowing equation:

mT
ND −mT

D

(wSwT )1/2
− (w(mND −mD)T )(SwT )

(wSwT )3/2
= 0 (3.2.21)
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(mND −mD)T (wSwT ) = (SwT )(w(mND −mD)T ). (3.2.22)

Since wSwT

w(mND−mD)T is a constant, (3.2.22) results in

wT ∝ (S−1(mND −mD)T ). (3.2.23)

For a closer information please look [CET02] [B04] [JW97].

3.2.3 Advantages and Disadvantages of Discriminant Anal-

ysis

Advantages:

Discriminant analysis has the following advantages:

• dichotomous response variable,

• easy to calculate,

• yields the input needed for an immediate decision, and

• reduced error rates.

Disadvantages:

Discriminant analysis has the following disadvantages:

• normality assumption on variables,

• approximately equal variances in each group,

• assumption on equivalent correlation patterns for groups,
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• problem of multi-collinearity, and

• sensitivity to the outliers.

.

3.3 Linear Regression

3.3.1 Introduction

The linear regression is a statistical technique for investigating and modelling

the linear relationships between variables. The probability of default is defined

by the following form of linear regression:

w0 + w1X1 + w2X2 + . . . + wpXp = w∗X∗T, (3.3.24)

where w∗ = (w0, w1, w2, . . . , wp) and X∗ = (X0, X1, X2, . . . , Xp).

Suppose p(xi) defines the probability of default for the ith individual company,

then,

p(xi) = w0 + w1xi1 + w2xi2 + . . . + wpxip + εi. (3.3.25)

The linear regression has some primary assumptions, namely:

• The relationship between probability of default and explanatory variables

is linear, or at least it is well approximated by a straight line.

• The error term ε has zero mean.

• The error term ε has constant variance.
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• The errors are uncorrelated.

• The errors are normally distributed.

Suppose nD of the training set are default companies and nND ones are non-

default companies. We denote the default and non-default companies by ”1” and

”0”, respectively. That is, p(xi) = 1 when i = 1, 2, ..., nD, and p(xi) = 0 when

i = nD + 1, nD + 2, ..., nD + nND, and n = nD + nND.

Then, our aim is to find the best set of weights, i.e., the one which satisfies

min
w

n∑
i

ε2
i . (3.3.26)

By (3.3.25), this results to minimize

nD∑
i=1

(
1−

p∑
j=0

wjxij

)2

+

nD+nND∑
i=nD+1

( p∑
j=0

wjxij

)2

, (3.3.27)

where xi0 = 1 for i = 1, 2, ..., n.

By matrix notation,




1D XD

1ND XND







w0

wT


 =




1D

0


 (3.3.28)

or

XwT = yT. (3.3.29)

Here,

X :=




1D XD

1ND XND



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being an (nD × (p + 1))-matrix,

XD =




x11 · · · · · · x1p

x21 · · · · · · x2p

...
...

...
...

xnD1 · · · · · · xnDp




being an (nD × p)-matrix,

XND =




xnD+11 · · · · · · xnD+1p

... · · · · · · ...

...
...

...
...

xnD+nND1 · · · · · · xnD+nNDp




is an (nND × p) matrix, and

yT =




1D

0


 .

Moreover, 1D and 1ND are the (1 × nD)- and (1 × nND)-vectors with entries 1,

respectively.

Then, in matrix notation our problem in the equation (3.3.27) become the

following:

min (XwT − yT)T (XwT − yT) (3.3.30)

To treat the problem (3.3.30), we set the derivative of it with respect to w equal

to 0, i.e.,

XT(XwT − yT) = 0 or XTXwT = XTyT. (3.3.31)
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These equations are called normal equations. For solving them we study the

system




1D 1ND

XD XND







1D XD

1ND XND







w0

wT


 =




1D 1ND

XD XND







1D

0


 (3.3.32)

and




n nDµD + nNDµND

nDµT
D + nNDµT

ND XT
DXD + XT

NDXND







w0

wT


 =




nD

nDµD
T


 , (3.3.33)

where µD and µND indicate the mean vectors of explanatory variables for default

and non-default companies, respectively.

Let us think that the learning set expectations as actual expectations and

assumptions hold. Then, we get

XT
DXD + XT

NDXND = nE[XiXj] (3.3.34)

= nCov(XiXj) + nDµDµT
D + nNDµNDµT

ND.

Let C denote the learning sample covariance function. Now, (3.3.34) becomes

XT
DXD + XT

NDXND = nC + nDµDµT
D + nNDµNDµT

ND. (3.3.35)

By using equation (3.3.35) in equation (3.3.33), we obtain

nw0 + (nDµD + nNDµND)wT = nD,(3.3.36)

(nDµD
T + nNDµT

ND)w0 + (nC + nDµDµT
D + nNDµNDµT

ND)wT = nDµT
D.
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Then, substituting the first equation of (3.3.36) into the second one gives

((nDµD
T + nNDµT

ND)(nD − (µD + nNDµND)wT)/n)

+(nDµDµT
D + nNDµNDµT

ND)wT + nCwT = nDµT
D.

Hence,

(
nDnND

n

)
(µD − µND)wT + nCwT =

(
nDnND

n

)
(µD − µND)T ;

thus

CwT = a(µD − µND)T , (3.3.37)

where a is a constant. This relation (3.3.37) gives the optimal vector of weights

w = (w0, w1, w2, . . . , wp).

3.3.2 Advantages and Disadvantages of Regression

Advantages:

As very important advantages of regression, we note:

• The estimates of the unknown parameters obtained from linear least squares

regression are the optimal. Estimates from a broad class of possible param-

eter estimates under the usual assumptions are used for process modelling.

• It uses data very efficiently. Good results can be obtained with relatively

small data sets.

• The theory associated with linear regression is well-understood and allows
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for construction of different types of easily-interpretable statistical intervals

for predictions, calibrations, and optimizations.

Disadvantages:

As the disadvantages of regression we state:

• Outputs of regression can lie outside of the range [0,1].

• It has limitations in the shapes that linear models can assume over long

ranges.

• The extrapolation properties will be possibly poor.

• It is very sensitive to outliers.

• It often gives optimal estimates of the unknown parameters.

.

3.4 Probit Regression

3.4.1 Introduction

Probit regression is a tool for a dichotomous dependent variable. The term

”probit” was used firstly in the 1930’s by Chester Bliss and implies a probability

unit [Probit].

If we denote probability of default as p(xi) = E(Y |xi). Then, probit model is

defined as:

p(xi) = Φ(xiw) = Φ(w0+w1xi1+w2xi2+. . .+wpxip) (i = 1, 2, ..., n), (3.4.38)
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where Φ is the standard cumulative normal probability distribution and w is the

weight vector.

Here, xw has the normal distribution and yi follows a Bernolli distribution.

Then, the estimation of the coefficients of a probit regression model can be made

with the help of the maximum likelihood estimation (MLE). For MLE estimation

we should firstly write the likelihood function of the model. Let us denote the

likelihood function by L, then,

L(w) =
n∏

i=1

p(xi)
yi
(
1− p(xi)

)1−yi . (3.4.39)

By putting (3.4.38) in (3.4.41), the following is obtained:

L(w) :=
n∏

i=1

Φ(xiw)yi
(
1− Φ(xiw)

)1−yi . (3.4.40)

By MLE, the log-version of likelihood function i.e., log-likelihood function will

be used to make calculations easy. Log-likelihood function is denoted by ` and

shown as:

`(w) := l(w) = ln(L(w)) =
n∑

i=1

{
yi ln(Φ(xiw)) + (1− yi) ln(1− Φ(xiw))

}
.

(3.4.41)

The maximum likelihood requires to maximizing the log-likelihood function

by taking derivative of it with respect to w. That results in to solve following
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equations:

∂l(w)

∂w0

=
n∑

i=1

(
yi − Φ(xiw)

)
= 0 (3.4.42)

∂l(w)

∂wj

=
n∑

i=1

xij

(
yi − Φ(xiw)

)
= 0 (j = 1, 2, ..., p). (3.4.43)

3.4.2 Advantages and Disadvantages of Logistic Regres-

sion

Advantages:

• Scores are interpretable.

• Probabilities help for decisions.

• It is easy to compute.

Disadvantages:

• Normality assumption violations can not be hold.

• Over- or under-estimation problems can occur.

3.5 Logistic regression

3.5.1 Introduction

Logistic regression is a form of regression which is used when the dependent

variable is a binary or dichotomous and the independents are of any type. In

any regression analysis, the main feature is to find the expected value of the
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dependent variable under the known explanatory variables, i.e., E(Y |x), where Y

and x denote the dependent and the vector of explanatory variables, respectively

[HL00].

Let us use the notation p(xi) = E(Y |xi) being the probability of default for

the ith individual company. Then, the form of the logistic regression model is

p(xi) = G(xi,w) =
ew0+w1xi1+w2xi2+...+wpxip

1 + ew0+w1xi1+w2xi2+...+wpxip
=

exiw

1 + exiw
. (3.5.44)

The logit transformation of it can be written as

ln

(
p(xi)

1− p(xi)

)
= w0 + w1xi1 + w2xi2 + . . . + wpxip + εi = xiw + εi. (3.5.45)

Here, the estimation of the coefficients of a logistic regression model is done

with the help of the maximum likelihood estimation (MLE). MLE primarily states

that the coefficients are estimated in a way in which the likelihood function is

minimized. In order to obtain a likelihood function, we should firstly introduce

the probability mass function of yi. Since yi follows a Bernolli distribution, the

probability mass function for the ith company can be written as

p(xi)
yi
(
1− p(xi)

)1−yi . (3.5.46)

If we assume that all observations are independently distributed, the likelihood

function expression will be

L(w) :=
n∏

i=1

p(xi)
yi
(
1− p(xi)

)1−yi . (3.5.47)
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However, the computations by using (3.5.47) are difficult, so we use logarith-

mic version of it that is called log-likelihood function and defined as

l(w) := ln(L(w)) =
n∑

i=1

{
yi ln(p(xi)) + (1− yi) ln(1− p(xi))

}
. (3.5.48)

To find the values of coefficients that maximizes (3.5.48) we differentiate (3.5.48)

with respect to w. This gives:

∂l(w)

∂w0

=
n∑

i=1

(
yi − p(xi)

)
= 0, (3.5.49)

∂l(w)

∂wj

=
n∑

i=1

xij

(
yi − p(xi)

)
= 0 (j = 1, 2, ..., p). (3.5.50)

Since these equations are nonlinear in w, it is not possible to solve them di-

rectly. Therefore, the solution of it is usually made with the well-known nonlinear

optimization method called Gauss-Newton algorithm. For a closer information

please see [HL00].

3.5.2 Advantages and Disadvantages of Logistic Regres-

sion

Advantages:

• Scores are interpretable in terms of log odds.

• Constructed probabilities have chance of being meaningful.

• It is modelled as a function directly rather than as ratio of two densities.

• It is a good default tool to use when appropriate, especially, combined with
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feature creation and selection.

Disadvantages:

• It invites to an over-interpretation of some parameters.

For a closer look we refer to [M04].

3.6 Classification and Regression Trees

Classification and regression tree (CART) is a nonparametric pattern recog-

nition based statistical classification technique [FAK85]. CART is a tool for

analyzing both categorical and continuous dependent variables. At this point, we

can split CART methodology into two parts: For categorized dependent variables

it gives the name classification tree and for continuous dependent variables its

name becomes regression tree [YW99]. However, in both cases, it produces a

binary classification tree.

In fact, CART algorithm divides the whole space into rectangular regions and

assigns each rectangular region to one of the classes. The sample organization

chart of CART algorithm can be shown in Figure 3.3.
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Figure 3.3: A Sample organization chart of classification and regression trees
[BFOS84].

In our case, since we have a categorical dependent variable, we will only

explain the classification trees.

A classification tree has three types of nodes. The top node is called the root

node and contains all the observation in the sample. The second type of node

consists of terminal nodes that are the end nodes assigned to one of the classes.

The other nodes are called as non-terminal nodes.

The CART algorithm is a four-step classification procedure:
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Step 1: simple binary questions of CART Algorithm,

Step 2: goodness of split criterion,

Step 3: the class assignment rule to the terminal nodes and resubstitution es-

timates,

Step 4: selecting the correct complexity of a tree.

To understand CART algorithm better, we firstly need to define some proba-

bilities. The works [BFOS84], [YW99], [FAK85] give the following expressions:

Let N be the total learning sample size, and let NND be the number of non-

default firms in our learning sample and ND be the number of default firms.

Suppose CART has t = 1, 2, ..., T nodes. In node t, there are N(t) obser-

vations. Let NND(t) represent the number of non-default firms in node t and

similarly, ND(t) represents the number of default firms.

Let p(ND, t) be the probability of a firm is non-default firm and falls into

node t. Similarly, p(D, t) be the probability of a firm is default firm and falls into

node t. So, we can write these probabilities as

p(ND, t) = δND
NND(t)

NND

, (3.6.51)

p(D, t) = δD
ND(t)

ND

, (3.6.52)

where δND, δD stands for the prior class probabilities.

Moreover, the probability that an observation falls into node t is

p(t) =
D∑

j=ND

p(j, t). (3.6.53)
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By Bayes rule, the probability of a firm in the node t to be a non-default firm

is denoted by p(ND|t) and equal to

p(ND|t) =
p(ND, t)

p(t)
, (3.6.54)

and the probability that a firm in the node t is a default firm is

p(D|t) =
p(D, t)

p(t)
. (3.6.55)

The sum of (3.6.54), (3.6.55) probabilites satisfies the below equality:

D∑
j=ND

p(j|t) = 1. (3.6.56)

With the help of Bayes rule, we can observe the probabilities of p(t|ND) and

p(t|D) from equations (3.6.51) to (3.6.56). Then,

p(t|ND) =
p(ND, t)

δND

=
p(ND|t)p(t)

δND

, (3.6.57)

p(t|D) =
p(D, t)

δD

=
p(D|t)p(t)

δD

. (3.6.58)

3.6.1 Simple Binary Questions of CART Algorithm

The tree-growing procedure of CART algorithm is based on the binary ques-

tions of type {Is xi ≤ c?} for numerical values and {Is xi = d?} for the cate-

gorical values, where xi is any variable in the feature vector x = (x1, x2, ..., xp) ∈
X ⊆ <n . CART algorithm puts all observations into the root node and, then,

with the help of these simple questions, it searches for the best split in order to
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divide root node into binary nodes.

In CART, each split will be desired for only one variable. For this purpose, at

each node, the algorithm tries all the variables x1, x2, . . . , xn. For each variable, it

searches for the best split. Furthermore, selects the best split point and variable

among these best splits for a particular node.

As an example according to [BFOS84],[JW97]; let x5 be a categorical variable

with 6 category form 1, 2, . . . , 6. Then, our set of questions will be Is x5 = 1? ...

Is x5 = 6?. So, the CART should search 26−1−1 = 31 different splits for finding

the best split for this single variable. For a numeric variable, let us say x6 is in

the range [12, 34]. Our possible questions will be Is x5 ≤ 13? ... Is x5 ≤ 34?.

Herewith, if the number of questions is k then, the number of searched splits will

be 2k−1 − 1.

3.6.2 Goodness of Split Criterion

Introduction

The goodness of split criterion is applied to the each split point at a node

in order to select best split point for each variables and then, for node. The

goodness of split criterion is an index based on impurity functions.

Definition 3.1. [BFOS84] An impurity function is a function φ defined on

the set of J classes with prior probability vector δ= (δ1, δ2, ..., δJ) satisfying δj ≥ 0,

(j = 1, 2, ..., J),
∑J

j=1 δj = 1 with the following three properties:

(i) φ has a maximum only at the point δ= ( 1
J
, ..., 1

J
),

(ii) φ achieves its minimum only at the points δ= (1, 0, ..., 0), δ= (0, 1, 0, ..., 0),

..., δ= (0, 0, ..., 0, 1),
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(iii) φ is a symmetric function of δ1, δ2, ..., δj.

Definition 3.2. [BFOS84] Given an impurity function φ, define the impurity

measure i(t) of any node t as

i(t) := φ(p(1|t), p(2|t), ..., p(J |t))

The CART basically for a split point divides sample left (l) and right (r)

nodes, then applies a split criterion and looks the split’s goodness.

In credit scoring literature, there are six most commonly used impurity mea-

sures can be found : basic impurity index, gini index, Kolmogorov-Smirnov statis-

tic, twoing index, entropy index and maximize half-sum of squares index.

Basic Impurity Index

The basic impurity index is only based on the left(l) and right(r) node prob-

abilities: p(tl) and p(tr) see (3.6.53) and impurities: i(tl) and i(tr).

Then, the change in the impurity at node t is defined as follows:

∆i(t, s) = i(t)− p(tl)i(tl)− p(tr)i(tr), (3.6.59)

where s denotes the split and

i(j) = p(ND|j) if p(ND|j) ≤ 0.5, (3.6.60)

i(j) = p(D|j) if p(D|j) < 0.5. (3.6.61)

If this change in the impurity is greater, then the node will be much more pure.

That means we must select the split which maximizes this function [BFOS84],

[CET02].
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Gini Index

The Gini index is a quadratic impurity measure. The change in the impurity

at node t is

∆i(t, s) := i(t)− p(tl)i(tl)− p(tr)i(tr), (3.6.62)

where

i(j) := p(ND|j)p(D|j). (3.6.63)

We refer to the [CET02], [BFOS84].

Kolmogorov-Smirnov Statistics

This impurity measure is based on the idea of maximizing the distance between

probability distributions of non-default firms and default firms for a node.

Kolmogorov-Smirnov statistic is defined by

KS(s) := |p(tl|D)− p(tl|ND)| =
∣∣∣∣
p(D|tl)

δD

− p(ND|tl)
δND

∣∣∣∣. (3.6.64)

This implies that we select the split s which maximized the KS statistics

[CET02].

Twoing Index

According to twoing Index, select the split s which maximizes the following

measure [BFOS84]:

∆i(t, s) :=
p(tl)p(tr)

4

( ND∑
j=D

|p(j|tl)− p(j|tr)|
)2

. (3.6.65)
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Entropy Index

The entropy index like Gini criterion is a nonlinear measure of impurity. The

rule of entropy index is to

max ∆i(t, s) := i(t)− p(tl)i(tl)− p(tr)i(tr), (3.6.66)

where

i(j) := −p(ND|j)ln(p(ND|j))− p(D|j)ln(p(D|j)). (3.6.67)

Here, we refer to [CET02].

Maximize Half-Sum of Squares

Here, the index is

∆i(t, s) := n(tl)n(tr)−
(
p(ND|tl)− p(ND|tr)

)2

n(tl) + n(tr)
, (3.6.68)

where n(tl) and n(tr) are the total numbers of observations in the left and right

nodes [CET02].

3.6.3 The Class Assignment Rule to the Terminal Nodes

and Resubstitution Estimates

After selecting the variables with best splits for each node, a tree (let us say:

Tmax ) will have been constructed. Let T̃ present the terminal nodes.

Definition 3.3. [BFOS84] A class assignment rule assigns a class j ∈
{1, 2, ..., J} to every terminal node t ∈ T̃ . The class assigned to node t ∈ T̃
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is denoted by j(t).

The class assignment rule requires the minimization of cost of misclassification

of a node one of the classes. In CART analysis, the observed expected cost of

misclassification of each assignment is called the resubstitution risk [FAK85]. Let

us denote the resubstitution risk of assigning a terminal node t ∈ T̃ to jth by

Rj(t).

Suppose that the misclassification cost of classifying a default firm as non-

default be c(ND|D) ≥ 0 and the misclassification cost of classifying a non-default

firm as default be c(D|ND) ≥ 0.

Then, the resubstitution risk of classifying the observation which falls into the

terminal node t as a non-default firm can be obtained by

RND(t) = c(ND|D)p(D, t) (3.6.69)

= c(ND|D)p(t|D)δD (3.6.70)

= c(ND|D)δD
ND(t)

ND

(3.6.71)

and, similarly,

RD(t) = c(D|ND)δND
NND(t)

NND

. (3.6.72)

Then, our class assignment rule j(t) will be

j(t) =





ND if RD(t) ≥ RND(t),

D otherwise.

This means, if the resubstitution risk of assigning node t to the class of non-

default firms is greater or equal to that of default firms assign node t to the class

of default firms. Otherwise, we assign node t to the class of non-default firms.
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3.6.4 Selecting the Correct Complexity of a Tree

The initial trees (Tmax) includes more splits and more terminal nodes and so

they are complex trees. Therefore, they have some problems: 1. Their resubsti-

tution risks will always seen to be smaller, but they usually overfit the data. So,

we are faced with poorer results of estimation with new data sets. 2. Another

type of problem is interpretation of the complex trees. The larger the tree is, the

more difficult to interpret it.

In order to faced with these problems, we would try to select the tree with

correct complexity and smaller resubstitution risk.

In this part, we firstly consider all subtrees of the Tmax. The resubstitution

risk of the any tree can be computed by the formula

R(T̃ ) =
∑

t∈eT
R(t). (3.6.73)

Then, for each tree T , we compute the following complexity measure

R(T ) + K × (number of terminal nodes of T ), (3.6.74)

where K is a non-negative constant interpreted as a penalty for complex trees.

Our decision rule is that for a given K, select the optimal tree Topt which mini-

mizes the complexity measure (3.6.74).

If K = 0, then, the optimal tree will be Tmax. If K > 0, the optimal tree will

be any subtree of Tmax. And if K increases, then, the optimal tree’s complexity

will be less, but its resubstitution risk will be greater.
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3.6.5 Advantages and Disadvantages of CART

Advantages:

• CART makes no distributional assumptions of any kind for dependent and

independent variables.

• The explanatory variables can be a mixture of categorical and continuous.

• It is not at all affected by the outliers, collinearities, heteroskedasticity, or

distributional error structures that affect parametric procedures. Outliers

are isolated into a node and thus have no effect on splitting. Contrary to

situations in parametric modeling, CART makes use of collinear variables

in surrogate splits.

• CART has a built-in algorithm to deal with the missing values of a variable

for a case, except when a linear combination of variables is used as a splitting

rule.

• Furthermore, CART has the ability to detect and reveal variable interac-

tions in the data set.

• It deals effectively with large data sets and the issues of higher dimension-

ality.

• It can handle noisy and incomplete data.

• CART is a user friendly method and it gives clear output.

• It is a simple procedure.
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• The probability level or confidence interval associated with predictions de-

rived from a CART tree could help to classify a new set of data.

Disadvantages:

• There can be errors in the specification of prior probabilities and misclassi-

fication costs.

• CART does not vary under a monotone transformation of independent vari-

ables.

• In CART, the relative importance of variables are unknown.

• It is a discrete scoring system.

For a closer information, we refer to [BO04], [YW99].

3.7 Semi-Parametric Binary Classification

Semi-parametric binary classification methods make no necessary assumption

on the model and data sets like non-parametric models. However, at the same

time, in contrast to non-parametric models, they allow extrapolations in some

boundaries. Also they reduce the dimensionality of the parameter space to protect

statistical accuracy of the model from sharp decreases.

Here, in this section, generalized partial linear models will be given.

In semi-parametric models kernel density estimation plays an important role;

therefore, we firstly introduce it.
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3.7.1 Kernel Density Estimation

Univariate Case

Suppose we have a univariate feature random variable X with n entities:

X1,X2,...,Xn with an unknown continuous distribution.

Let h be the bandwidth. Then, the kernel function assigns weights to each

observation Xi whose distance from a given x is not bigger than h.

A kernel function is denoted by K(·) and the density of x can be written as

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (3.7.75)

please see Table 3.2 for some very important kernel functions.

Kernel K(u)
Uniform 1

2
I(|u| ≤ 1)

Triangle (1− |u|)I(|u| ≤ 1)

Epanechnikov 3
4
(1− u2)I(|u| ≤ 1)

Quartic Biweight 15
16

(1− u2)2I(|u| ≤ 1)

Triweight 35
32

(1− u2)3I(|u| ≤ 1)

Gaussian 1√
2π

exp(−1
2
u2)

Cosine π
4

cos(π
2
u)I(|u| ≤ 1)

Table 3.2: Kernel functions [HMSW04].

The general form of the kernel density estimator of a probability density f ,

based on a random sample X1,X2,...,Xn from f , looks as follows [HMSW04]:
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f̂h(x) =
1

n

n∑
i=1

Kh

(
x−Xi

)
, (3.7.76)

where

Kh(·) =
1

n
K(·|h). (3.7.77)

The kernel density estimations of the car prices in the one of the Matlab

data files were made by writing the code of (3.7.76) in Matlab. These density

estimations in different bandwidths are shown in the Figures 3.4, 3.5, 3.6 and

3.7.
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Figure 3.4: Kernel density estimation of car prices by Matlab (h = 100) with
triangle kernel function.
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Figure 3.5: Kernel density estimation of car prices by Matlab (h = 200) with
triangle kernel function.
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Figure 3.6: Kernel Density Estimation of car prices by Matlab (h = 300) with
Triangle kernel function.

Statistical Properties of Kernel Density Functions

Since the kernel functions are usually probability density functions, they have

the following main properties:

∫ ∞

−∞
K(s)ds = 1,

∫ ∞

−∞
sK(s)ds = 0,

50



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
4

0

1

2

x 10
−4

Figure 3.7: Kernel density estimation of car prices by Matlab (h = 400) with
Triangle kernel function.

∫ ∞

−∞
s2K(s)ds < ∞,

and ∫ ∞

−∞
[K(s)]2ds < ∞.

For our investigation, we need some further measures of error and deviation:

A. Bias

Bias f̂h(x) := Ef̂h(x)− f(x) (3.7.78)

=
1

n

n∑
i=1

EKh(x−Xi)− f(x)

= EKh(x−Xi)− f(x)

=

∫
1

h
K

(
x− u

h

)
f(u)du− f(x).

Let us put s := u−x
h

, then, du = hds and, by substitution rule,

Bias f̂h(x) =

∫
K(s)f(u)ds− f(x). (3.7.79)
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By using the Taylor expansion of f(u) around x, the equation is as follows:

Bias f̂h(x) =

∫
K(s)[f(x) + f ′(x)(u− x) + (3.7.80)

1

2
f ′′(x)(u− x)2 + o(h2)]ds− f(x)

= f(x)

∫
K(s)ds + hf ′(x)

∫
sK(s)ds +

h2

2
f ′′(x)

∫
s2K(s)ds− f(x)

=
h2

2
f ′′(x)

∫
s2K(s)ds + o(h2).

Hence as h −→ 0, the bias will be removed. Therefore, we should take h as

small as possible to reduce the bias.

B. Variance

Varf̂h(x) =

{
1
n

∑n
i=1 Kh(x−Xi)

}
(3.7.81)

= Var
1

n2

n∑
i=1

V ar(Kh(x−Xi))

=
1

n
V ar(Kh(x−Xi))

=
1

nh
f(x)

∫
K2(s)ds + o(

1

nh
).

Multivariate Case

Suppose we have a p-dimensional feature random vector X = (X1,X1...,Xp).

Each X have n observations.

Let us represent the ith observation as

Xi =




Xi1

...

Xip




(i = 1, 2, ..., n).
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Then, the multivariate kernel density estimator of the X := (X1, X2, ..., Xp)

will be

f̂h(x) =
1

n

n∑
i=1

1

h1...hp

ℵ
(

x1 −Xi1

h1

, ...,
xp −Xip

hp

)
. (3.7.82)

By using the multiplicative kernel

ℵ(u) = K(u1)K(u2)...K(up), (3.7.83)

the estimator (3.7.82) becomes

f̂h(x) =
1

n

n∑
i=1

p∏
j=1

h−1
j K

(
xj −Xij

hj

)
. (3.7.84)

The kernel density estimations of the car prices with respect to house prices

in the one of the Matlab data files were made by writing the code of (3.7.84)

in Matlab. These density estimations in different bandwidths are shown in the

Figures 3.8, 3.9, 3.10 and 3.11.
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Figure 3.8: Kernel density estimation of car prices and house prices by Matlab
(h1 = 200, h2 = 100) with Gaussian kernel function.

53



0.5
1

1.5
2

2.5

x 10
4

0

2000

4000

6000

8000
0

1

2

3

4

x 10
−7

Figure 3.9: Kernel density estimation of car prices and house prices by Mat-
lab(h1 = 300, h2 = 100) with Gaussian kernel function.
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Figure 3.10: Kernel density estimation of car prices and house prices by Matlab
(h1 = 400, h2 = 200) with Gaussian kernel function.
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Figure 3.11: Kernel density estimation of car prices and house prices by Matlab
(h1 = 500, h2 = 300) with Gaussian kernel function.

3.7.2 Generalized Partial Linear Models

Partial linear models are composed of two parts, a linear and non-parametric

part. With a known link function G(•), a generalized partial linear model

(GPLM) can be represented by

E(Y |U,T) = G(UT β + m(T)), (3.7.85)

where β = (β1, β2, ..., βp)
T is a finite dimensional parameter and m(·) a smooth

function.

The estimation of a generalized partial linear model is an two step procedure.

Firstly, estimate β with an known m(·), then, find an estimator of m(·) with the

help of a known β [Mu00].

To estimate the GPLM by semiparametric maximum likelihood method, the
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following assumptions should be made:

E(Y |U,T) = µ = G(η) = G(UT β + m(T)), (3.7.86)

V ar(Y |U,T) = σ2V (µ). (3.7.87)

Let L(µ, y) be the individual log-likelihood (or let the distribution of Y not

be belong to an exponential family). Then, a quasi-likelihood function can be

written as

L(µ, y) :=
1

σ2

∫ y

µ

(s− y)

V (s)
ds. (3.7.88)

Based on the sample, the estimated scale parameter σ is

σ̂2 :=
1

n

n∑
i=1

(yi − µ̂i)
2

V (µ̂i)
, (3.7.89)

where µ̂i := G(η̂i) and η̂i = xT
i β̂ + m̂(ti).

Profile Likelihood Algorithm

The profile likelihood method is one of the methods to solve generalized partial

linear models. This method distinguishes two parts in the estimation: a paramet-

ric and a nonparametric part. The method fixes the parameter β to estimate the

most probably nonparametric function m(·), then, it uses the estimate m(·) to

construct the profile likelihood for β. As a result of the profile likelihood method,

the estimator β̂ is
√

n-consistent, asymptotically normal and efficient, and the

estimator m̂(·) = m̂bβ(·) is consistent in sup mode.
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Firstly, let L(β) be the parametric profile likelihood function and defined by

L(β) :=
n∑

i=1

L(µi,β, yi), (3.7.90)

where µi,β := G(xT
i β + m(ti)).

This likelihood is optimized to obtain an estimate for β.

Secondly, the local likelihood can be shown to look as follows:

LH(mβ(t)) :=
n∑

i=1

ℵH(t− ti)L(µi,mβ(t)
, yi), (3.7.91)

where µi,mβ(t)
:= G(xT

i β + m(t)) and ℵH(t − ti) is the kernel weight, with ℵH

denoting the multidimensional kernel functions and H denoting the bandwidth

matrix. Moreover, this is also optimized to estimate an estimator for mβ(t) at t.

Then, the individual quasi-likelihood is

`i(η) := L(G(η), yi), (3.7.92)

and the first and second derivative of it with respect to η are denoted by `
′
i `“

i .

For the estimation of the m(·) the maximization of local likelihood can be

obtained by solving
n∑

i=1

ℵH(ti − tj)`
‘
i(x

T
i β + mj) = 0 (3.7.93)

with respect to mj. To obtain the estimator of β the following derivative of the

quasi-likelihood part requires to solve [MR99]

n∑
i=1

`‘
i(x

T
i β + mi)xi + m‘

i = 0 (3.7.94)
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with respect to β.

A further differentiation of (3.7.93) results in [MR99]

m‘
j = −

∑n
i=1 `“

i (x
T
i β + mj)ℵH(ti − tj)xi∑n

i=1 `“
i (x

T
i β + mj)ℵH(ti − tj)

. (3.7.95)

The algorithm solves in an iterative way and basically includes the following

steps [Mu00]:

1. updating step for β

βnew = β −B−1

n∑
i=1

`‘
i(x

T
i β + mi)x̃i (3.7.96)

with a Hessian type matrix

B =
n∑

i=1

`“
i (x

T
i β + mi)x̃ix̃i

T (3.7.97)

and

x̃j = xj + m‘
j = xj −

∑n
i=1 `“

i (x
T
i β + mj)ℵH(ti − tj)xi∑n

i=1 `“
i (x

T
i β + mj)ℵH(ti − tj)

; (3.7.98)

2. updating step for mj

mnew
j = mj −

∑n
i=1 `‘

i(x
T
i β + mj)ℵH(ti − tj)∑n

i=1 `“
i (x

T
i β + mj)ℵH(ti − tj)

. (3.7.99)
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3.7.3 Advantages and Disadvantages of Semi-parametric

Methods

Advantages:

• The semi-parametric method preserves the degrees of freedom.

• It achieves greater precision than nonparametric models but with weaker

assumptions than parametric models.

• By restricting G(x), it reduces the effective dimension of x.

• The risk of the specification error is less than with a parametric model.

Disadvantages:

• The full functional form is not known with confidence.

• The risk of specification error is greater than for the fully nonparametric

model.

For a closer information we refer to [Horrowitz].
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chapter 4

NONSTATISTICAL METHODS

IN CREDIT SCORING

4.1 Neural Networks

4.1.1 Structure of Neural Networks

Like a human brain, neural network has an ability of learning, remembering

and generalizing. The basic element of a neural network is called as a neuron. As

seen in the Figure 4.1 a neuron has five components: inputs, weights, combination

part, activation part and output. In the following, we give closer information

about these components.

Figure 4.1: Structure of neural networks.
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A. Inputs:

Inputs are denoted by xi. The inputs get the information from the environ-

ment of the neuron. This input may be an initial input or an output of prior

neurons. For a company, the initial input is (x1, x2, ..., xp).

B. Weights:

The weights for neuron j are comprised in the vector (wj1, wj2, ..., xjp). The

weights are some constants that determine the effects of inputs on neuron. The

greater the weight of an input is, the greater is the impact of the input on the

neuron.

C. Adder:

In this part, the input values are multiplied with weights and summed with

the threshold level θj and, then, sent to the activation part.

D. Activation Part:

Activation function of a neuron specified the final output of a neuron at some

activity level and denoted by ϕ(·). There are three main types of activity func-

tions:

D.1. Threshold Function: The threshold function for neuron k is simply

ϕ(vk) := yk =

{
0 if vk ≥ 0

1 if vk < 0,
(4.1.1)

where vk =
∑

j wkjxj − θk.
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The threshold function is shown in Figure 4.2.

Figure 4.2: Threshold activation function [H94].

D.2. Piecewise-Linear Function: The piecewise-linear function is defined

by

ϕ(v) :=





1, if v ≥ 1/2

v, if 1/2 > v > −1/2

0, if v ≤ −1/2.

(4.1.2)

Figure 4.3 shows this piecewise-linear function.

Figure 4.3: Piecewise-linear activation function [H94].
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3. Sigmoid Function: The sigmoid function is the most widely used ac-

tivation function in the applications of neural networks. All strictly increasing

functions with smoothness and asymptotic properties can be put into this type.

As an example of a sigmoid function, we can give the logistic function. The

logistic function has the following form:

ϕ(v) =
1

1 + exp(−αv)
, (4.1.3)

where α is the slope parameter.

Another example can be the hyperbolic tangent function given by

ϕ(v) = tanh

(
v

2

)
1− exp(−v)

1 + exp(−v)
. (4.1.4)

In Figure 4.4, the examples of sigmoid functions can be seen.

Figure 4.4: Sigmoid activation functions.
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E. Output:

In this step, the output of the activation part diffused to the outer world or

another neuron. Every neuron has only one output.

4.1.2 Learning Process

Introduction

The significance of neural networks comes from its ability to learn their envi-

ronment and according to it, to improve its performance by means of adjusting

weights and thresholds.

Let us consider the following network given in Figure (4.5):

Figure 4.5: A neural network structure.

In this network, the xj denote the output of neuron j and they are connected

with the internal activity vk of neuron k. Let wkj(t) represent the value of weight

wkj at time t. Then, to obtain the updated weights for time t+1, the adjustment

∆wkj(t) is applied in the following way:

wkj(t + 1) := wkj(t) + ∆wkj(t). (4.1.5)
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Some basic rules of the learning processes are shown in Figure 4.6.

Figure 4.6: Diagram of learning process [H94].

Error Correction Learning

In Figure 4.7, dj denotes the desired response or target output for neuron j.

Furthermore, yj denotes the output of neuron i. In error correction learning, the

algorithm tries to abate the error between desired response and actual output.

The error is simply

ej = dj − yj, (4.1.6)

where

yj :=

p∑
i=1

wjixji. (4.1.7)

As a performance measure, the sum of mean squared error is used, i.e.,

J :=
1

2
E(ej). (4.1.8)

Here, the factor 1/2 is included for convenience. Our problem is to find the

best set of weights (wj1, wj2, ..., wjp) which minimize (4.1.8).

65



Figure 4.7: Error correction learning.

The solution of this problem is known to be represented as Wiener-Hopf equa-

tions. By substituting (4.1.6) and (4.1.7) into (4.1.8), we get

J =
1

2
E(d2

j)− E

( p∑
i=1

wjixjidj

)
+

1

2
E

( p∑

k=1

p∑
i=1

wjkwjixjkxjk

)
(4.1.9)

=
1

2
E(d2

j)−
p∑

i=1

wjiE(xjidj) +
1

2

p∑

k=1

p∑
i=1

wjkwjiE(xjixjk). (4.1.10)

Then, the gradient ∆wkj can be found as

∆wji =
∂J

∂wij

(4.1.11)

= −E(xjidj) +

p∑

k=1

wjkE(xjixjk) (i = 1, 2, ..., p). (4.1.12)

Therefore, the optimality condition is defined by

∆wji = 0 (i = 1, 2, ..., p). (4.1.13)
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Boltzman Learning

This type of learning is a stochastic one. The Boltzman machine has basically

following properties [H94]:

• processing units have binary values (−1 and 1),

• all the connections between units are symmetric,

• the units are picked at random and one at a time or updating,

• it has no self-feedback,

• it permits the use of hidden nodes,

• it uses stochastic neurons with a probabilistic firing mechanism,

• it may also be trained by supervision of a probabilistic form .

The Boltzman machine is described by the following energy function:

E = −1

2

∑
i

∑
j i6=j

wjisjsi, (4.1.14)

where si is the state of neuron i, and wji is the weight connecting neuron i to

neuron j. The relation i 6= j implies that none of the neurons in the machine

has self-feedback. The machine operates by choosing a neuron at random - say,

neuron j - at some step of learning process, and flipping the state of neuron j

from state sj to state −sj at some constant C > 0 with probability

W (sj −→ −sj) =
1

1 + exp(−∆Ej/C)
, (4.1.15)
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Figure 4.8: Boltzman machine [H94].

where ∆Ej is the change in the energy function of the machine.

The Boltzman machine has two types of stochastic neurons as seen in (4.8):

hidden neurons, visible neurons, where the visible neurons work as a connection

between the network and environment and on the other hand, hidden neurons

work as constrains of the input vectors by taking the higher order correlations of

the vectors into account. The machine has two types of operations:

• clamped condition: in this type of operation, the visible neurons are all

clamped onto specific states determined by the environment;

• free-running condition: here, all types of neurons are permitted to operate

freely.

Let the states of visible neurons be α and that of hidden neurons be β. We

assume the network has L hidden neurons and K visible neurons, so α runs from
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1 to 2K and β runs from 1 to 2L. Let P+
α indicate the probability that the

visible neurons are collectively in state α, given that the network is operating in

its clamped condition. Let P−
α denote the probability that these same neurons

are collectively in state α, given that the network is allowed to run freely, but

no environment input. The signs +, − indicate that the network is in clamped

condition and running freely, respectively. Accordingly, the set of properties

{P+
α |α = 1, 2, ..., 2K} (4.1.16)

consists of the desired probabilities which represent the environment, and the set

of properties

{P−
α |α = 1, 2, ..., 2K} (4.1.17)

consists of the actual probabilities which are computed by the network.

Suppose ρ+
ji denotes the correlation between the states of neurons i and j,

conditional on the network being in its clamped condition. Let ρ−ji denote the

unconditional correlation between the states of neurons i and j. The correlations

ρ+
ji and ρ−ji are given by

ρ+
ji :=

∑
α

∑

β

P+
αβsj|αβsi|αβ, (4.1.18)

ρ−ji :=
∑

α

∑

β

P−
αβsj|αβsi|αβ, (4.1.19)

where si|αβ denotes the state of neuron i, given that the visible neurons of the

machine are in state α and the hidden neurons are in state β. Then, according

to the Boltzman learning rule, the change ∆wji applied to the weight wji from
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neuron i to neuron j is defined by

∆wji := η(ρ+
ji − ρ−ji), ∀i 6= j (4.1.20)

where η is a learning-rate parameter.

Hebbian Learning

Hebb’s rule of learning is the most well-known learning algorithm. Hebb

proposed that weights are adjusted in proportional to the correlation between

input and output of the network, respectively [HS95].

Consider the Figure 4.5 again. The weights, inputs and outputs of neuron

k are denoted by wkj, xj, yk, respectively. The Hebb learning has the following

form of adjustment

∆wkj := F (yk(t), xj(t)), (4.1.21)

where F (·, ·) is a function of yk(t), and xj(t). A special case of equation (4.1.21)

is:

∆wkj = ηCov[yk(t), xj(t)] (4.1.22)

= ηE[(yk(t)− yk)(xj(t)− xj)], (4.1.23)

where η is the rate of learning.

Competitive Learning

In competitive learning, output neurons which win the competition are acti-

vated. Competitive learning has three basic properties:
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• A set of neurons that are all the same except for some randomly distributed

weights, and which therefore respond differently to a given set of input

patterns.

• A limit imposed on the ”strength” of each neuron.

• A mechanism which permits the neurons to compete for the right to respond

to a given subset of inputs, such that only one output neuron, or only

one neuron per group, is active at a time. The neuron which wins the

competition is called a winner-takes-all neuron [H94].

Figure 4.9: Single layer competitive network [H94].

Let neuron j be a winning neuron with the largest activity level υj. Then,

the output yj of the winning neuron is set equal to one and the output of other

neurons are set to zero. Furthermore, in competitive learning, a fixed amount of
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weights are assigned to each neuron such that

∑
i

wji = 1 for all j. (4.1.24)

The algorithm of competitive learning adjusts the weights by the way of

∆wji =

{
η(xi − wji) if neuron j wins the competition

0 if neuron j loses the competition,
(4.1.25)

where η is the learning-rate parameter.

Back Propagation Algorithm

The back propagation algorithm is a learning rule for multi-layered neural

networks. The algorithm primarily work for adjusting the synaptic weights in

order to minimize the network system’s output and actual output.

Derivation of Back Propagation Algorithm

Figure 4.10: The feed-forward network [H94].
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The error at the output of neuron j at iteration t can be defined by

ej(t) := dj(t)− yj(t). (4.1.26)

As the sum of squared errors of the network at time t we put

ξ(t) :=
1

2

∑
j∈C

e2
j(t) (4.1.27)

Suppose that the iteration is finished at the T . We try to minimize the average

sum of squared errors of the training set. In other words, the cost function of

the training set learning performance, that is represented as follows and is to be

minimized :

min ξav =
1

T

T∑
t=1

ξ(t). (4.1.28)

In the minimization part, the back propagation algorithm uses the least mean

square algorithm (LMS). Let us define

vj(t) :=

p∑
i=0

wji(t)xi(t), (4.1.29)

where p is the total number inputs applied to neuron j. Furthermore, the output

yj(t) at iteration t is

yj(t) := ϕj(vj(t)). (4.1.30)

The back propagation algorithm improves its weights as proportional to the

instantaneous gradient ∂ξ(t)
∂wji(t)

.

In the algorithm, the gradient ∂ξ(t)
∂wji(t)

refers to a sensitivity factor which de-

termines the direction of the search for weight wji. According to chain rule, the
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gradient may be expressed in the following way:

∂ξ(t)

∂wji(t)
=

∂ξ(t)

∂ej(t)

∂ej(t)

∂yj(t)

∂yj(t)

∂vj(t)

∂vj(t)

∂wji(t)
. (4.1.31)

Let us compute the gradient. Firstly, we differentiate both sides of (4.1.27)

with respect to ej(t), then,

∂ξ(t)

∂ej(t)
= ej(t). (4.1.32)

Differentiating both sides of (4.1.26) with respect to yj(t), then,

∂ej(t)

∂yj(t)
= −1. (4.1.33)

Next, differentiating (4.1.30) with respect to vj(t) gives

∂yj(t)

∂vj(t)
= ϕ′j(vj(t)). (4.1.34)

Finally, differentiating (4.1.29) with respect to wji(t) yields

∂vj(t)

∂wji(t)
= xi(t). (4.1.35)

Furthermore, by putting (4.1.32) to (4.1.35) into (4.1.31), we obtain

∂ξ(t)

∂wji(t)
= −ej(t)ϕ

′
j(vj(t))xi(t). (4.1.36)

Then, the correction ∆wji(t) applied to wji(t) means an improvement process
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which can be defined by the delta-rule

∆wji(t) := −µ
∂ξ(t)

∂wji(t)
, (4.1.37)

where µ is a constant learning rate. Use of (4.1.36) in (4.1.37) yields

∆wji(t) := −µδj(t)(vj(t))xi(t), (4.1.38)

where the local gradient δj(t) is defined by

δj(t) = − ∂ξ(t)

∂ej(t)

∂ej(t)

∂yj(t)

∂yj(t)

∂vj(t)

= ej(t)ϕ
′
j(vj(t)). (4.1.39)

In this step, we are faced with two situation. The first one is given by neuron

j being an output node. The second one is the neuron j being an hidden node.

CASE I. Neuron j is an output neuron:

If neuron j is lying on the output layer of the network, there would exist a

desired response. Furthermore, we may compute the error sum of squares by the

formula (4.1.26) and correct synaptic weights with the help of (4.1.38).

CASE II. Neuron j is a hidden neuron:

If neuron j is lying on the hidden layer of the network, there is no desired

response. So, the error rate may be determined in terms of the error rates of all

neurons connected directly with that hidden neuron. Let us consider the situation

in the below Figure (4.11):

In this figure, the jth neuron represents the hidden node and the kth neuron
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Figure 4.11: Two layer feed-forward network [H94].

represents output neuron, where

vj(t) :=
∑

i

wji(t)xi(t), (4.1.40)

vk(t) :=
∑

j

wkj(t)yj(t) (4.1.41)

and

yj(t) := ϕj(vj(t)), (4.1.42)

yk(t) := ϕk(vk(t)). (4.1.43)

Then, the local gradient δj(t) for the hidden neuron j can be defined as

δj(t) := − ∂ξ(t)

∂yj(t)

∂yj(t)

∂vj(t)

= − ∂ξ(t)

∂yj(t)
ϕ′j(vj(t)). (4.1.44)

In order to obtain this correction factor for the hidden neuron, we must cal-

culate ∂ξ(t)
∂yj(t)

by the following procedure:

For our case, the instantaneous sum of squared error existing in the output
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neuron k can be written as follows:

ξ(t) =
1

2

∑

k∈C

e2
k(t). (4.1.45)

Firstly, we differentiate (4.1.45) with respect to the yj(t):

∂ξ(t)

∂yj(t)
=

∑

k

ek
∂ek(t)

∂yj(t)
. (4.1.46)

Then, by chain rule, (4.1.46) becomes

∂ξ(t)

∂yj(t)
=

∑

k

ek
∂ek(t)

∂vk(t)

∂vk(t)

∂yj(t)
. (4.1.47)

Now, from Figure 4.11, we know that

ek(t) = dk(t)− yk(t) = dk(t)− ϕk(vk(t)), (4.1.48)

vk(t) =
∑

j

wkj(t)yj(t). (4.1.49)

Therefore,

∂ek(t)

∂vk(t)
= −ϕk(vk(t)), (4.1.50)

∂vk(t)

∂yj(t)
= wkj(t) (4.1.51)

and, then,

∂ξ(t)

∂yj(t)
= −

∑

k

ek ϕk(vk(t)) wkj(t). (4.1.52)
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Accordingly, by using (4.1.52) in the equation (4.1.44), we obtain

δj(t) =
∑

k

ek ϕk(vk(t)) wkj(t) ϕ′j(vj(t)). (4.1.53)

From (4.1.31), we learn here:

∂ξ(t)

∂wji(t)
= δj(t)

∂vj(t)

∂wji(t)
. (4.1.54)

Putting

vj(t) =
∑

i

wji(t)xi(t) (4.1.55)

and (4.1.53) into the equation (4.1.54) yields

∂ξ(t)

∂wji(t)
= xi(t) ϕ′j(vj(t))

∑

k

ek ϕ′k(vk(t))wkj(t). (4.1.56)

Then, the correction (4.1.37) for the hidden neuron is obtained in the following

form by using (4.1.54) in it:

∆wji(t) = µ
∂ξ(t)

∂wji(t)

= µ δj(t) xi(t). (4.1.57)

4.1.3 Advantages and Disadvantages of Neural Networks

Advantages:

The neural network

• does not use pre-programmed knowledge base,
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• suited to analyze complex pattern,

• have no restrictive assumptions,

• allows for qualitative data,

• can handle noisy data,

• can overcome autocorrelation,

• user-friendly: clear output, and

• robust and flexible.

Disadvantages:

The neural network

• requires high quality data,

• variables must be carefully selected a priori,

• risk of overfitting,

• requires a definition of architecture,

• long processing time,

• possibility of illogical network behavior, and

• large training sample required.

For a closer explanation we refer to the [BO04].
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chapter 5

Parameter Estimation

Accuracy of Logistic

Regression

5.1 Introduction and Methodology

Since the 1980’s, the logistic regression is the primary tool for research. It is

used for every type and size of data without any consideration on the accuracy of

parameter estimation. Therefore, in this section, we tried to check the conditions

in which logistic regression performs well. In our analysis, we made our analysis

by monte carlo type simulation in Matlab.

As we mention in previous sections, the logistic regression is defined as follows:

p(xi) = G(xi,w) =
ew0+w1xi1+w2xi2+...+wpxip

1 + ew0+w1xi1+w2xi2+...+wpxip
=

exiw

1 + exiw
, (5.1.1)

where wi’s (i = 1, 2, . . . , p) are weights, and xji is the ith independent variable for

the individual j.

For Monte Carlo type simulation, we follows a five step procedure that is:

Step 1 The set of independent variables, x is derived from various sets of dis-
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tributions with three different dimensions.

Step 2 The variables are normalized in order to prevent from scale problems.

Step 3 The variables multiplied by some initial weights wi’s i = 1, 2, . . . , p, and

summed.

Step 4 According to following formulae y scores are obtained,

y∗ = xw + ε, (5.1.2)

where ε ∼ logistic(0, π√
3
) and we assign y as

{
0, if y∗ < 0

1, if y∗ ≥ 0.
.

Step 5 Lastly, by using produced y and derived x, weights are estimated from

logistic distribution and compared with initials.

In Matlab, there is no tool for logistic random variable to produce error terms.

Therefore, we derive it by making an inverse operation in the following way:

If z follows a logistic distribution with parameters α and, β, then,

F (z, α, β) =
exp ((z − α)/β)

1 + exp ((z − α)/β)
. (5.1.3)

This expression is equivalent to

F (z, α, β) = 1− 1

1 + exp ((z − α)/β)
. (5.1.4)

Bringing 1 to the other sides results in

1− F (z, α, β) =
1

1 + exp ((z − α)/β)
. (5.1.5)
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Since the exponential term is always positive, we can take the −1st power of both

sides:

1

1− F (z, α, β)
− 1 = exp ((z − α)/β) (5.1.6)

F (z, α, β)

1− F (z, α, β)
= exp ((z − α)/β). (5.1.7)

Then, by taking logarithms of both sides, we obtain

ln

(
F (z, α, β)

1− F (z, α, β)

)
=

z − α

β
. (5.1.8)

So,

z = α + β ln

(
F (z, α, β)

1− F (z, α, β)

)
. (5.1.9)

In order z to be a logistic random variable and since F (·) only takes values

between 0 and 1, we change it with uniform random variable.Then, we obtain the

following formula:

z = α + β ln

(
Unif(0, 1)

1− Unif(0, 1)

)
. (5.1.10)

In particular, we derive our error term, that is ε ∼ logistic(0, π√
3
), by

ε =
π√
3

ln

(
Unif(0, 1)

1− Unif(0, 1)

)
. (5.1.11)

In our estimations, to check the estimation accuracy of logistic regression in

different dimensions and sizes, we made our estimations by using one, six, and

twelve independent variables for number of 250, 500 and 1000 data cases with

1000 simulations.

To check the parameter accuracy in logistic regression, we took coefficient of
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variation as a measure of bias. The coefficient of variation is

CV =
Standard deviation of ŵ

Mean of ŵ
. (5.1.12)

Moreover, we have tested it by using different set of weights. The testing weight

sets are selected among sequences with a sum of one or smaller (preserving the

mean of the normalized data). For the 6 and 12 variables cases, we selected the

weights in the following manner: the first ones having high variations among

them, the second ones with relatively lower values and the third ones having

relatively higher effects.

5.2 Results

5.2.1 One Variable Case

In this section, to examine the prediction accuracy of logistic regression in

small dimensions of data, we used only a single variable that is generated from

the uniform distribution with parameters 1 and 100. Furthermore, we made our

calculations under the two different weights. One is a smaller and the other is

the higher loading.

Smaller Initial Weight w = 0.2

Firstly, at the second step of the algorithm, we selected the initial weight as

w = 0.2. Figure 5.1 shows the coefficient variation of the estimator. Contrary to

what we expected, this graph figures out the direct relation between the percent-

age default in the data set and the bias. Herewith, according to the figure, if the

data set includes more than 30% defaults in it, the bias will increase sharply.
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Figure 5.1: Coefficient of variation of estimator in different default levels for
w = 0.2.

The coefficient estimate and the initial value w = 0.2 are compared in the

Figure 5.2. Accordingly, a nearly positive linear relationship between the default

level and the accuracy of the estimate can be observed from the graph. Since

the bias rises after the 30% default cut-off, it can be reasonable to include 30%

default in the data sets. Furthermore, the smaller bias and error in the estimation

are observed with the long data sets.
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Figure 5.2: Coefficient estimate and their true value in different default levels for
w = 0.2.

Higher Initial Weight w = 0.6

To see the effect of the variables with higher loadings, we selected initial weight

as w = 0.6. Figures 5.3 and 5.4 are the graphs of coefficient of variation and

coefficient estimations, respectively. Similar result with the above case w = 0.2

can be concluded. The first figure shows an increase in the bias before the 5%

and 30% default cases in the data. From the other figure, positive relation can

be observed between the estimation accuracy and the default level. Therefore, in

fact, we noted for both cases of weights similar results.
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Figure 5.3: Coefficient of variation of estimator in different default levels for
w = 0.6.
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Figure 5.4: Coefficient estimate and their true value in different default levels for
w = 0.6.
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5.2.2 Six Variables Case

The data were generated from a set of random variables from the distributions:

1. x1 ∼ uniform(1,100),

2. x2 ∼ exponential(16),

3. x3 ∼ normal(12,4),

4. x4 ∼ weilbull(0.5,2),

5. x5 ∼ chi(17),

6. x6 ∼ beta(4,3).

First Set of Weights

Our first set of initial weights taken are w1 = 0.8, w2 = −0.9, w3 = 0.4,

w4 = 0.05, w5 = 0.75 and w6 = −0.1.

This set includes high and low weights at the same time. The average coeffi-

cient of variations are shown in Figure 5.5. Accordingly, it is observed that when

the data size is getting higher, the Monte Carlo simulations shows low bias in the

estimation of parameters.
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Figure 5.5: Six variable case: Average coefficient of variation of estimators in
different default levels for the first set of weights.

In Figure 5.6, the true values of parameters and estimates of them for different

sizes of data set are shown for each variable in an order from left to right. The first,

second and fifth ones are drawn for high in the absolute value weights and it can

be seen that the greater the number of defaults are in the data set, the closer are

the estimates to the true values. Furthermore, the others are the smaller weights’

graphs, and these represent nearly perfect estimations on the 30% default level.
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Figure 5.6: Six variable case: Coefficients’ estimates and their true values on
different default levels for the first set of weights.

89



Second Set of Weights

Our second set consists of w1 = 0.02, w2 = 0.05, w3 = 0.03, w4 = 0.01,

w5 = 0.07 and w6 = 0.04.

This set assigns low weights to the variables. The coefficient of variation

estimates of the data sets in different default levels shown in Figure 5.7 indicates

that in the small samples, bias of estimators are much higher if the small number

of defaults occurred in the sample. Moreover, the bias is getting smaller for each

sample sizes after the point of 25% default level.
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0
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Figure 5.7: Six variable case: Average coefficient of variation of estimators in
different default levels for the second set of weights.

Furthermore, Figure 5.8 shows that when the weights are very low the param-

eter estimation accuracy of logistic regression is very perfect, especially, in the

sample with nearly 30% default in it.
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Figure 5.8: Six variable case: Coefficients’ estimates and their true values in
different default levels for the second set of weights.
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Third Set of Weights

The initial weights taken in the analysis are w1 = 1.3, w2 = 0.2, w3 = −0.7,

w4 = −0.9, w5 = 0.6 and w6 = 0.5

The third set of weights gives high loadings to the variables. To preserve the

mean we used negative and positive high values together.

Figure 5.9 represent similar result the when sample size is increased, the bias

of estimation decreased. Moreover, for these three sample sizes, it is valid that

the bias shows nearly no change after the level of % 30 defaults in the sample.
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Figure 5.9: Six variable case: Average coefficient of variation of estimators in
different default levels for the third set of weights.

As shown in Figure 5.10, the estimators are much more different than their

true values. This failure of estimation of logistic regression cannot be eliminated

much even on the high default levels.
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Figure 5.10: Six variable case: Coefficients’ estimates and their true values in
different default levels for the third set of weights.
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5.2.3 Twelve Variables Case

The data were generated from a set of random variables from the distributions:

1. x1 ∼ uniform(1,100),

2. x2 ∼ exponential(16),

3. x3 ∼ normal(12,4),

4. x4 ∼ weilbull(0.5,2),

5. x5 ∼ chi(17),

6. x6 ∼ beta(4,3),

7. x7 ∼ uniform(1,150),

8. x8 ∼ exponential(11),

9. x9 ∼ normal(32,5),

10. x10 ∼ weilbull(3,1),

11. x11 ∼ chi(51),

12. x12 ∼ beta(7,2).

First Set of Weights

Our first set of weights for these twelve variable has the elements w1 = 0.01,

w2 = 0.02, w3 = 0.04, w4 = 0.03, w5 = 0.015, w6 = 0.07, w7 = 0.085, w8 = 0.03,

w9 = 0.1, w10 = 0.24, w11 = 0.06 and w12 = 0.3. These weights are selected to

load low effects to variables and preserve the mean.

For the coefficient of variation Figure 5.11 shows a peak for the 250 observation

data set which includes smaller than 5% default. Furthermore, until the level of

25% the bias of coefficient estimates are especially very high, but after that it is

nearly stable.
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Figure 5.11: Twelve variable case: Average coefficient of variation of estimators
in different default levels for the first set of weights.

Figures 5.12 and 5.13 represent the coefficient estimates with respect to their

true values. Accordingly, it can be observed that for these low weights, the

estimation accuracy for nearly all default levels and data sizes is perfect.
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Figure 5.12: Twelve variable case: First six coefficients’ estimates and their true
values in different default levels for the first set of weights.
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Figure 5.13: Twelve variable case: Second six coefficients’ estimates and their
true values in different default levels for the first set of weights.
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Second Set of Weights

As second set of weights, we took: w1 = 0.9, w2 = 1.2, w3 = −0.7, w4 = 0.85,

w5 = −1.1, w6 = −1.1, w7 = 0.65, w8 = −0.5, w9 = 1.3, w10 = 0.7, w11 = −1.7

and w12 = 0.8. This set includes very high positive and negative weights. The

mean is preserved also.
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Figure 5.14: Twelve variable case: Average coefficient of variation of estimators
in different default levels for the second set of weights.

From Figure 5.14, we observe that if the independent variables have high

effects on dependent variables, the bias is fixed after the 30% default level for

data sets with 500 and 1000 observations, i.e. for the larger data sets, and it is

fixed after the 40% default level for smaller data sets.

Moreover, Figures 5.15 and 5.16 indicate very bad estimations of weights. The

smaller data sets give more accurate estimation results. Furthermore, the best

results are taken around the 30% default level for all variables.
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Figure 5.15: Twelve variable case: First six coefficients’ estimates and their true
values in different default levels for the second set of weights.
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Figure 5.16: Twelve variable case: Second six coefficients’ estimates and their
true values in different default levels for the second set of weights.
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Third Set of Weights

The third set of weights is the following: w1 = 0.1, w2 = 0.2, w3 = 0.4,

w4 = 0.3, w5 = −0.2, w6 = −0.5, w7 = −0.25, w8 = −0.15, w9 = 0.35, w10 =

0.47, w11 = 0.18 and w12 = 0.1. This set of weights is selected for showing the

prediction accuracy in the data sets in which some variables have high, some have

low effects, some variables have negative and some have positive effects.
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Figure 5.17: Twelve variable case: Average coefficient of variation of estimators
in different default levels for the third set of weights.

According to above Figure 5.14, the average coefficient of variation of the

variables has peak for all size of data sets which includes lower than 5% defaults

in it. After the default cut-off point 25%, the bias follows a stable manner.

Figures 5.15 and 5.16 show estimators and their true values. If we made a

comparison between the estimated and true value of all, we can say that the

estimation accuracy of loadings is very good and when the number of default

cases increases in the data set, the coefficient estimates converge to their true

values. However, after the level of nearly 30 %, there are no big changes in the

convergence.
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Figure 5.18: Twelve variable case: First six coefficients’ estimates and their true
values in different default levels for the third set of weights.
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Figure 5.19: Twelve variable case: Second six coefficients’ estimates and their
true values in different default levels for the third set of weights.
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5.3 Summary and Conclusion

As a whole, for all three cases: one variable, six variables and twelve variables,

the results concluded are very similar. The higher loadings destroy the precision

accuracy of logistic regression and precision is getting worse when the number

of variables included increase. The more accurate results are taken with a small

set of weights. Moreover, the larger sized data sets show lower bias and more

convergent estimations of weights. Furthermore, if the data set includes nearly

30% default cases in it, the bias reaches its minimum for some cases or gets its

optimal level. As a result of these, we can conclude that to imply the logistic

regression it is good to select data sets with at least 30 % default cases in it,

with minimum 500 observations and with a small number of variables or smaller

effects on probability of defaults.
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chapter 6

ACCURACY RATIO AND

METHOD VALIDATIONS

6.1 Introduction

In credit scoring, the most important part is the discriminative power of the

methods. Since the methods are used to evaluate the credit worthiness for taking

credit decisions and any classification errors can create damages to the resources of

an credit institute [EHT02]. Therefore, in this chapter we focus on the validation

techniques and validation of the methods which are introduced in the previous

chapters.

6.2 Validation Techniques

In studies, various evaluation techniques can be found. However, the most

popular ones are Cumulative Accuracy Profile and Receiver Operating

Characteristic Curve .

Let a method assign to each applicant a score out of k possible values {s1, s2, ..., sk}
with s1 < s2 < ... < sk. For example, let k = 10, then, s10 = AAA, s9 = AA,...

and s1 = D. AAA is highest rating and D is the lowest.

Let us introduce the random variables, ST , SD and SND as model score dis-

tributions of all, defaulters and non-defaulters, respectively. The probability that

a default has a score si where i = 1, 2, ..., k is denoted by pi
D,

∑k
i=1 pi

D = 1. The

probability that a non-default has a score si (i = 1, 2, ..., k) is pi
ND. Given the

priori default probability π of all applicants, the probability pi
T can be obtained
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by the following way:

pi
T = πpi

D + (1− π)pi
ND. (6.2.1)

Then, the cumulative probabilities are

CDi
D =

i∑
j=1

pj
D (i = 1, 2, ..., k) (6.2.2)

CDi
ND =

i∑
j=1

pj
ND (i = 1, 2, ..., k) (6.2.3)

CDi
T =

i∑
j=1

pj
T (i = 1, 2, ..., k), (6.2.4)

where CDD, CDND and CDT denote the cumulative distribution functions of the

score values of the default, non-default and total applicants, respectively.

Let us understand these probabilities by an example.

Example 6.1. In a market, let 10 different rating classes. s10 = AAA, s9 = AA,

s8 = A, s7 = BBB, s6 = BB, s5 = B, s4 = CCC, s3 = CC, s9 = C and s1 = D.

The number of companies from each rating classes are summarized in Table 6.1.

Rating Class Total Number of default cases Number of non-default cases
AAA 5 0 5
AA 12 1 11
A 20 3 17

BBB 32 9 23
BB 27 7 20
B 34 8 26

CCC 67 17 50
CC 42 20 22
C 17 9 8
D 12 10 2

Total 268 84 184

Table 6.1: The rating classes and total number of observations.

Then,

p1
D = 10/84,
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p2
D = 9/84,

...

p10
D = 0/84

and
10∑
i=1

pi
D = 10/84 + 9/84 + ... + 0 = 1.

Similarly,

p1
ND = 2/184,

p2
ND = 8/184,

...

p10
ND = 5/184

and
10∑
i=1

pi
ND = 2/184 + 8/184 + ... + 5/184 = 1.

Furthermore, if we select the π = 0.4, the total probabilities will be

p1
T = 0.4p1

D + 0.6p1
ND = 0.0541,

p2
T = 0.4p2

D + 0.6p2
ND = 0.0689,

...

p10
T = 0.4p10

D + 0.6p10
ND = 0.0163.

The distribution functions are shown in Table 6.2. We assume CD0
D = CD0

ND =

CD0
T = 0.

6.2.1 Cumulative Accuracy Profile (CAP)

The cumulative accuracy profile is basically defined as the graph of all points

(CDi
T , CDi

D)i=1,2,...,k where the points are connected by linear interpolation [EHT02].
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i CDT CDD CDND

1 0,0541 0,119 0,0109
2 0,123 0,2261 0,0544
3 0,29 0,4642 0,174
4 0,534 0,6666 0,4457
5 0,6569 0,7618 0,587
6 0,7555 0,8451 0,6957
7 0,8734 0,9522 0,8207
8 0,9431 0,9879 0,9131
9 0,9837 0,9998 0,9729
10 1 1 1

Table 6.2: The cumulative probability functions.

The CAP of the Example 6.1 and the random model are shown in the following

Figure (6.1).
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Figure 6.1: Cumulative accuracy profile curve of the Example (6.1).

In the random model of rating, the lowest α percentage of all companies in

the research contains the α percentage of the all defaults.

The assignment of the lowest scores to the actual default companies is a

measure of the quality of rating methods and called the accuracy ratio (AR). The
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accuracy ratio in fact is the monotone transformation of the method’s strength

and weakness to a one dimensional measure [SKSt00]. From the case in Figure

6.2, the accuracy ratio is defined as the ratio of the area αR between the CAP of

the rating model being applied and the CAP of the random model, and the area

αP between the CAP of the perfect rating model and the CAP of the random

model, i.e.,

AR =
αR

αP

. (6.2.5)

Figure 6.2: Cumulative accuracy profile [EHT02].

6.2.2 Receiver Operating Characteristic Curve (ROC)

Let us consider Figure 6.3. This figure depicts the distributions of rating

scores for default and non-default companies. For a perfect rating model the

distributions would not overlap like it instead they would be separate. The grey

areas shows default companies and white areas shows the non-default companies.

Furthermore, C denotes the cut-off point. Usually, the companies which have

scores lower than C are classified as default and the companies with higher scores

than C are classified as non-default.
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Figure 6.3: Distribution of rating scores for defaulting and non-defaulting debtors
[EHT02].

default non-default
rating below C correct prediction (hit) wrong prediction (false alarm)
score above C wrong prediction (miss) correct prediction (correct rejection)

Table 6.3: Decision results given the cut-off value C [EHT02].

Table 6.3 summarizes all possible decision results. Accordingly, if the score

of a company is below the C and the company default in the next period, the

decision was correct and this situation is called an hit. Otherwise, the decision

is wrong and called as a false alarm. Similarly, if the score is beyond C and the

company does not default, the correct prediction is made. Otherwise the decision

is wrong.

To construct the ROC curve let us firstly define the hit rate (HR(C)) at C as

HR(C) = P (SD ≤ C), (6.2.6)

and the false alarm rate (FAR(C)) at C as

FAR(C) = P (SND ≤ C). (6.2.7)
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Then, the ROC curve is defined as a plot of HR(C) with respect to FAR(C) for all

values of C [EHT02]. Figure 6.4 shows an example of a ROC curve. This figure

indicates that the rating model gives the results between the random model and

the perfect model. The nearer the graph of the rating model is to the perfect

one, the better are the predictions of the rating model.

Figure 6.4: Receiver operating characteristic curve [EHT02].

For Example 6.1, let us construct a ROC curve. The distributions for default

and non-default companies are shown in Figure 6.5. Accordingly, we can say

that in our example rating system the perfect discrimination is not possible. the

distributions overlap.
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Figure 6.5: Distribution of rating scores for Example 6.1.

In our construction process, we can take the cut-off values as C1 = 1, C2 = 2,

... and C10 = 10. Then, the hit rate HR(Ci) (i = 1, 2, ..., 10) from Table 6.1is

HR(C1) = 10/84, FAR(C1) = 2/184;

HR(C2) = 19/84, FAR(C2) = 10/184;

...

HR(C10) = 1, FAR(C1) = 1.

Then, we can visualize the receiver operating characteristic curve in Figure 6.6.
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Figure 6.6: Receiver operating characteristic curve for Example 6.1.

6.3 Method Validations

6.3.1 Data and Methodology

Some statistical and non-statistical credit scoring methods with their advan-

tages and disadvantages were mentioned in previous chapters. However, we did

not consider which one is the best in scoring. In this section, the validation of

methods mentioned in Chapter 3 and Chapter 4: discriminant analysis, linear

regression, probit regression, logistic regression, semi-parametric logistic regres-

sion, classification and regression trees and neural networks will be presented

and applied.

The data used in this part were collected from the period of 1995-2005. The

data set includes the financial situations of 1000 companies. Among of them, 247

are defaulters. The data set includes 17 explanatory variables:

I. Liquidity Ratios:

X1: current ratio,

X2: liquidity ratio,

X3: cash ratio.
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II. Activity Ratios:

X4: receivables turnover ratio,

X5: inventory turnover ratio,

X6: fixed-assets turnover ratio,

X7: equidity turnover ratio,

X8: (total liability)/(total assets),

X10: (total liability)/equidity .

III. Profitability Ratios:

X11: gross merchandise margin,

X12: net profit margin,

X13: active profitability ratio,

X14: equidity profitability ratio.

IV. Growth Ratios:

X15: increase in sales,

X16: active growth rate,

X17: equidity growth rate.

To obtain validation results, we follow a type of cross-validation simula-

tions with 1000 simulations for every method. In cross-validation methodology,

we applied the following steps:

Step 1: The random data set of size 1000 are constructed from the actual data

set with the help of the uniform random numbers.

Step 2: The random data sets of size 250 and 500 are selected from the selected

random sample of size 1000.

Step 3: The 80% of the data sets are used as training samples and the other

20% are used as validation samples. The method is applied to the all three

different sized data sets.

Step 4: The mean square errors (MSE) and classification accuracies are observed

for each set.

Step 5: The steps 1, 2, 3 and 4 are repeated 1000 times and the MSE, and the

classification accuracies are averaged.

114



6.3.2 Results

The average MSEs and accuracies of classification techniques are summarized

in Table 6.4. The estimations were done in a way that the significance of coeffi-

cients were not compared. Because we tried to compare models instead of looking

significance of the variables on credit scoring. Moreover, since the discriminant

analysis and classification and regression trees (CART) give the outputs 0 or 1

only, we did not calculate the mean square errors for these methods. Accord-

ing to this table, the discriminant analysis gave nearly 96% accuracy in training

samples and 95% accuracy in validation samples of small sizes, i.e., 250 and 500.

However, its accuracy is dropping 4% for large samples. A similar situation is

also valid for neural network. For small sample sizes, the accuracy of it is much

higher. Furthermore, for neural networks, when sample size is getting larger, the

MSEs are rising sharply.

The most interesting method is CART. It turns out to be a the perfect model

in the sample of size 1000. However, for other sizes its accuracy in scoring is very

low. It is about 60%.

In addition to CART, the semi-parametric regression method with logistic link

is the other method which gave the worst results both in accuracy and MSEs. Its

classification accuracy is between 70% and 80% for all sample sizes.

Moreover, among the all methods the logistic regression is the best scoring

methods. Its accuracy is above the 98% for all sizes. The closer method is the

probit. Its accuracy in estimation is also very high. However, for large samples

its accuracy decreases.

To check the validation of the methods we constructed receiver operating

characteristic curves for each method in sample of 1000. Figures 6.7 and 6.8

show the plotted ROC curves for validation and training samples for our analysis,

respectively.

From these figures, we could not be able to observe any big differences in the

validation and training sample results. The graphs shows us CART is the perfect

scoring method and logistic regression is near to it. The probit is also near to the

perfect model of classification. However, the graphs of semi-parametric regression
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Method data size training sample validation sample
MSE accuracy MSE accuracy

Discriminant Analysis 250 - 96.64% - 95.35%
500 - 96.19% - 95.67%
1000 - 92.53% - 92.00%

Linear Regression 250 11.663 93.20% 4.3522 91.59%
500 24.712 92.56% 6.8408 91.84%
1000 51.107 92.26% 13.419 91.72%

Probit Regression 250 2.8805 98.23% 1.4438 96.56%
500 8.0458 97.42% 2.5722 96.72%
1000 19.4081 96.96% 5.3519 96.62%

Logistic Regression 250 1.1472 99.51% 0.9881 97.99%
500 3.3116 99.31% 1.2670 98.76%
1000 7.6038 99.08% 2.2173 98.82%

CART 250 - 63.48 % - 63.66%
500 - 63.31% - 63.43%
1000 - 100% - 100%

Semi-parametric regression 250 56 72% 10 80%
500 90 78% 18 83%
1000 182 78.13% 45 78.1%

Neural Networks 250 9.3362 98.5% 4.0003 96%
500 52.8 95.42% 17.921 93.2%
1000 101.08 93.5% 32.211 92.5%

Table 6.4: The MSE and accuracy results of methods.

are far from the perfect model so it is the worst model both in validation and

training samples.
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Figure 6.7: Receiver operating characteristic curves for validation sample of size
1000.
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Figure 6.8: Receiver operating characteristic curves for training sample for size
1000.

118



6.3.3 Ratings via Logistic and Probit Regressions

In conclusion, results shows that the logistic regression provides the best ac-

curacy results in validations. Therefore, for our data set, it is good to use it as a

final conclusion and ratings. Moreover, to make a comment and comparison on

its results, we also apply the probit regression.

In here, we also take 20 % of the data set as validation sample and remaining

80% of the set as training sample. Table 6.5 summarizes coefficient estimates

and p-values. Accordingly, p-values of logistic regression show us the variables

x5, x8, x11 and x15 are not significant on estimation. Similarly, the coefficients

of x3, x5, x8 and x14 are not significant at α = 0.05. To make a comparison

of these two regression models, we excluded only the variables x5 and x8 which

are insignificant for both models and we fit the regressions with the remaining

coefficients.

Variables Logistic Regression Probit Regression
coefficients p-value coefficients p-value

x0 -18.3391 0.0001 -7.0792 <0.0001
x1 0.0664 <0.0001 0.0162 0.0045
x2 -0.1272 <0.0001 -0.0327 <0.0001
x3 -0.1031 0.0042 -0.0209 0.1081
x4 0.0485 0.0001 0.0071 0.0251
x5 -0.0710 0.2250 -0.0252 0.1037
x6 -0.1343 <0.0001 -0.0479 0.0016
x7 0.0332 <0.0001 0.0080 0.0005
x8 0.0346 0.1945 0.0138 0.1174
x9 0.0144 <0.0001 0.0061 <0.0001
x10 0.1845 <0.0001 0.0646 <0.0001
x11 0.0091 0.2933 0.0105 0.0251
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Variables Logistic Regression Probit Regression
coefficients p-value coefficients p-value

x12 -0.0432 0.0182 0.0344 <0.0001
x13 -0.1650 <0.0001 -0.0328 <0.0001
x14 0.0455 0.0153 0.0116 0.1512
x15 0.0032 0.1277 0.0015 0.0084
x16 -0.0057 0.0016 -0.0031 0.0049
x17 0.0262 <0.0001 0.0072 <0.0001

Table 6.5: The coefficients and p-values of logistic and probit regression.

Tables 6.6 and 6.7 present the classification errors of both models

for both training and validation samples. Accordingly, the classifi-

cation errors of non-default firms in training and validation samples

are same for logistic and probit regression models. However, for

default firms when logistic regression gives the no error, the probit

regression gives important misclassification errors in both sample

estimates at probability cut-off 0.5. In fact instead of this cut-off,

the optimum cut-off should be used. However, to see some failures

of probit we used 0.5. Furthermore, the results indicate the low

probability assignment problem of probit regression to the default

firms.

Variables Logistic Regression Probit Regression
default non-default default non-default

default 198 0 170 28
non-default 7 595 7 595

Table 6.6: Training sample classification results.

The ratings are given to the responses according to estimated

probabilities of both models. To select the optimum cut-off prob-

abilities of rating categories we implement the following algorithm.
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Variables Logistic Regression Probit Regression
default non-default default non-default

default 49 0 42 7
non-default 2 149 2 149

Table 6.7: Validation sample classification results.

This algorithm firstly observes the repeated probabilities and ac-

cording to them splits the data into several parts and thinks these

probabilities as cut-offs. Then, algorithm tries different combina-

tions of these cut-off probabilities and selects the optimum split in

a way that optimum cut-off is the one which maximizes the area

under the receiver operating characteristic curve. We run algorithm

for 8, 9 and 10 rating categories in our analysis, and also compare

the optimum number of categories.

The optimum cut-off probabilities for logistic and probit regres-

sion for 10 rating classes are summarized in Tables 6.8 and 6.9,

respectively:

Ratings Probability of defaults from logistic regression
validation sample training sample

lower range upper range lower range upper range
AAA 0.000 2.3031*10−10 0.000 6.27*10−12

AA 2.3032*10−10 1.0721110*10−8 6.28*10−12 1.03207*10−8

A 1.072111*10−8 1.4504844*10−7 1.03207*10−8 9.937391*10−6

BBB 1.4504845*10−7 3.86603848*10−6 9.937392*10−6 0.0000014
BB 3.86603849*10−6 0.0006369 0.0000015 0.0000232
B 0.0006369 0.007774 0.0000233 0.000139

CCC 0.007775 0.007806 0.004653 0.0001391
CC 0.0078067 0.073298 0.0001391 0.020088
C 0.073299 0.77553 0.020089 0.60002
D 0.77554 1.000 0.60003 1.000

Table 6.8: Optimum cut-off probability of defaults of logistic regression for 10
rating category.
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From Tables 6.8 and 6.9 we observe that logistic regression is

more sensitive to the probability of default and assigns high ratings

for exactly low probabilities. However, probit regression classifies

only very high probabilities to the low rating classes. Table 6.10

Ratings Probability of defaults from probit regression
validation sample training sample

lower range upper range lower range upper range
AAA 0.000 2.346*10−11 0.000 2.346*10−11

AA 2.346*10−11 5.64459*10−7 2.346*10−11 2,07457*10−7

A 5.64459*10−7 4.20266*10−5 2.07457*10−7 1.21604*10−5

BBB 4.20266*10−5 0.000692 1.21604*10−5 0.000362
BB 0.000692 0.003843 0.000362 0.00231
B 0.0038434 0.013068 0.002317 0.00853

CCC 0.01306 0.158488 0.00853 0.065516
CC 0.15848 0.63818 0.06551 0.28311
C 0.63818 0.99752 0.28311 0.95799
D 0.99752 1.000 0.95799 1.000

Table 6.9: Optimum cut-off probability of defaults of probit regression for 10
rating category.

shows the number of companies in each rating categories and num-

ber of defaults in each category. Accordingly, while logistic regres-

sion assigns most of the defaults in the worst rating category ”D”,

the probit regression assigns default observations in the categories

”CC”, ”C” and ”D”.
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Ratings Logistic Regression Probit Regression
validation training validation training

AAA 20 67 25 69
AA 14 83 20 78
A 18 67 14 66

BBB 13 87 19 79
BB 18 73 18 92
B 14 74 18 73

CCC 17 71 21 60
CC 20 66 21(Def=7) 75
C 20 (Def=4) 15 19(Def=17) 59(Def=49)
D 45(Def=45) 198(Def=198) 25(Def=25) 149(Def=149)

Table 6.10: Ratings of companies for 10 rating classes (Def: number of defaults
in rating categories).

The optimum cut-off probabilities for the cases 9 and 8 rating

categories are given in Appendix.

Accordingly, the results shows that more accurate ratings of com-

panies are obtained for the 10 rating category case. Furthermore,

Table 6.11 demonstrates the areas under the ROC curves. It is seen

that the area is maximized when 10 rating categories are used for

both logistic and probit regression.

Number of rating categories
8 9 10

Logistic validation 0.9270 0.9835 0.9957
Regression training 0.9327 0.9875 0.9958

Probit validation 0.9470 0.9865 0.9899
Regression training 0.9497 0.9917 0.9994

Table 6.11: The areas under the ROC curve for optimum cut-off probabilities.
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chapter 7

CONCLUSION

In this work, we gave an overview about the theoretical aspects

of important statistical and nonstatistical methods and their appli-

cations in credit scoring. In our application part, we firstly focus on

logistic regression which is the most widely used method in stud-

ies. By Monte Carlo simulations, we examined logistic regression

under the aspect of its bias in parameter estimation by using both

different data sets which includes various (%) defaults and different

lengthes of variables. Our results show that the logistic regression

performs well when the data sets include nearly 30% default cases.

Moreover, if the independent variable set is very large and some

variables have high effects on dependent variable, the coefficient es-

timates are much more different from their true values. Secondly,

we checked the prediction accuracies of all methods mentioned in

this work. In this part, cross-validation simulations on real Turkish

credit data were made. The results of analyze show that the logistic

regression is the best classification technique for Turkish credit data

for small, medium and long sizes.
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chapter 8

APPENDIX

Ratings Probability of defaults from logistic regression
validation sample training sample

lower range upper range lower range upper range
AAA 0.000 2.4201*10−10 0.000 1.3673*10−10

AA 2.4201*10−10 2.76115*10−8 1.3673*10−10 1.07211*10−8

A 2.76115*10−8 2.20445*10−5 1.07211*10−8 3.62314*10−7

BBB 2.20445*10−5 0.000139 3.62314*10−7 1.15619*10−5

BB 0.000139 0.007353 1.15619*10−5 8.10605*10−5

B 0.007353 0.007774 8.10605*10−5 0.003895
C 0.007774 0.073298 0.003895 0.02008
D 0.073298038 1.000 0.02008 1.000

Table 8.1: Optimum cut-off probability of defaults of logistic regression for 8
rating category.

Ratings Probability of defaults from probit regression
validation sample training sample

lower range upper range lower range upper range
AAA 0.000 2.346*10−11 0.000 2.346*10−11

AA 2.346*10−11 5.6445*10−7 2.346*10−11 2.0745*10−7

A 5.6445*10−7 4.2026*10−5 2.0745*10−7 1.2160*10−5

BBB 4.2026*10−5 0.000692 1.2160*10−5 0.000362
BB 0.000692 0.00384 0.000362 0.002317
B 0.00384 0.01306 0.002317 0.00853
C 0.01306 0.15848 0.00853 0.06551
D 1.000 0.15848 0.06551 1.000

Table 8.2: Optimum cut-off probability of defaults of probit regression for 8 rating
category.
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Ratings Logistic Regression Probit Regression
validation training validation training

AAA 22 66 25 69
AA 17 83 20 78
A 21 67 14 66

BBB 16 87 19 79
BB 19 73 18 92
B 19 74 18 73
C 21 71 21 60
D 65 279 65 283

Table 8.3: Ratings of companies for 8 rating classes (Def: number of defaults in
rating categories).

Ratings Probability of defaults from logistic regression
validation sample training sample

lower range upper range lower range upper range
AAA 0.000 2.4201*10−10 0.000 1.367*10−10

AA 2.4201*10−10 2.76115*10−8 1.367*10−10 1.072*10−8

A 2.76115*10−8 1.0348*10−6 1.072*10−8 3.623*10−7

BBB 1.0348*10−6 2.33465*10−5 3.623*10−7 1.15619*10−5

BB 2.33465*10−5 0.000279 1.15619*10−5 8.10605*10−5

B 0.000279 0.00777 8.10605*10−5 0.00389
CC 0.00777 0.07329 0.00389 0.02008
C 0.07329 0.79767 0.02008 0.1882
D 0.79767 1.000 0.1882 1.000

Table 8.4: Optimum cut-off probability of defaults of logistic regression for 9
rating category.

133



Ratings Probability of defaults from probit regression
validation sample training sample

lower range upper range lower range upper range
AAA 0.000 2.346*10−11 0.000 2.346*10−11

AA 2.346*10−11 5.644*10−7 2.346*10−11 2.074*10−7

A 5.644*10−7 4.202*10−5 2.074*10−7 1.216*10−5

BBB 4.202*10−5 0.000692 1.216*10−5 0.00036
BB 0.000692 0.00384 0.00036 0.00231
B 0.00384 0.01306 0.00231 0.00853

CC 0.01306 0.15848 0.00853 0.06551
C 0.15848 0.63818 0.06551 0.28311
D 0.63818 1.000 0.28311 1.000

Table 8.5: Optimum cut-off probability of defaults of probit regression for 9 rating
category.

Ratings Logistic Regression Probit Regression
validation training validation training

AAA 22 66 25 69
AA 17 83 20 78
A 21 67 14 66

BBB 16 87 19 79
BB 19 73 18 92
B 19 74 18 73

CC 21 71 21 60
C 22(Def=6) 66 21(Def=7) 75
D 43(Def=43) 213(Def=198) 44(Def=42) 208(Def=198)

Table 8.6: Ratings of companies for 9 rating classes (Def: number of defaults in
rating categories).
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