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ABSTRACT 
 
 

LATERAL BUCKLING OF OVERHANGING BEAMS 
 
 
 
 
 

Özdemir, Kerem Murat 

M.S., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Cem Topkaya 

 

August 2005, 65 pages 
 
 
 
 
 
Lateral torsional buckling should be taken into account during the design of 

overhanging steel beams.  One special type of overhanging beams is the crane trolley 

monorails.  Lateral buckling of overhanging monorails under idealized loading and 

boundary conditions has been studied in the past using classical mathematical 

procedures.  This thesis aims to present a detailed investigation of overhanging 

monorails using finite element analysis.  Effects of different loading and boundary 

conditions were studied in detail.  It was found out that the location of loading and 

supports on the cross section have significant effects on the buckling capacity.  Beams 

having different warping and torsional properties were analyzed.  The effects of cross 

section distortion on buckling capacity were investigated for beams with single and 

double overhangs.  The reduction in capacity due to cross section distortion has been 

quantified.  Based on the analysis results simple design recommendations were 

developed for lateral buckling of overhanging monorails and they are presented herein. 
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ÖZ 
 
 

ÜSTTEN ASILI KİRİŞLERİN YANAL BURKULMASI 
 
 
 
 
 

Özdemir, Kerem Murat 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Cem Topkaya 

 

Ağustos 2005, 65 sayfa 
 
 
 
 
 
Üstten asılı çelik kirişlerin tasarımında yanal burulmalı burkulma hesaba katılmalıdır. 

Üstten asılı kirişlerin bir özel türü de kren kirişleridir. İdeal yükleme ve sınır koşulları 

altındaki üstten asılı kirişlerin yanal burkulması, geçmişte klasik matematiksel 

prosedürler kullanılarak incelenmiştir. Bu tez, sonlu elemanlar metodunu kullanarak 

üstten asılı kirişler hakkında daha detaylı bir araştırma sunmayı amaçlamaktadır. Farklı 

yükleme ve sınır koşulları daha detaylı bir şekilde incelenmektedir. Kesit üzerinde 

yüklemenin yapıldığı noktanın ve desteklerin konumunun, burkulma kapasitesi 

üzerinde kayda değer etkileri olduğu görülmüştür. Farklı burulma ve burkulma 

özellikleri olan kirişler analiz edilmiştir. Tek ve çift çıkıntılı üstten asılı kirişler için 

kesit çarpılmasının burkulma kapasitesi üzerindeki etkileri incelenmiştir. Kesit 

çarpılması yüzünden ortaya çıkan kapasitedeki azalma miktarı nümerik olarak 

saptanmıştır. Analiz sonuçlarına dayanarak, üstten asılı kirişlerin yanal burkulması için 

basit tasarım önerileri oluşturulmuş ve bu tezin içerisinde sunulmuştur. 

 
 
 
 
 
 
 
 
Anahtar Kelimeler: Yanal Burulmalı Burkulma, Üstten Asılı Kirişler, Kren Kirişleri 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 BACKGROUND 

 

Beams are essential components of steel construction. A satisfactory design should 

ensure that the beam is stable and has enough strength and stiffness against the applied 

loads. For steel beams having an I-shaped cross section global buckling and local 

buckling are typical modes of instability. Global instability is in the form of lateral 

torsional buckling (LTB) of the beam as a whole while local instability could be in the 

form of web or flange buckling. Design codes present capacity equations for lateral 

torsional buckling of I-shaped members (AISC-LRFD, 2001). Local buckling is usually 

precluded by limiting the width-thickness ratio of the compression elements (web or 

flange). 

 

 

 
 

Fig. 1.1 – I-shaped beam in buckled configuration. 
 

 

Lateral torsional buckling of I-beams is a complex phenomenon. If a simply supported 

beam is subjected to equal and opposite end moments as shown in Fig.1.1, the 

compression flange of the beam can move sideways when a certain value of applied 

moment is reached. In this undesirable behavior the tension flange tries to restrain the 

flange in compression and the resulting buckling mode is lateral-torsional indicating a 

lateral displacement together with a rotation of the cross section. Closed form solution 

(Eqn.1.1) of the critical buckling moment (Mcr0) has been developed (Timoshenko and 

Gere, 1961) and was adopted by many design codes (AISC-LRFD, 2001; TS-648, 

1980) in different forms. 
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where:  L : unbraced length 

   E : modulus of elasticity 

   Iy : minor axis moment of inertia 

   G : shear modulus 

   J : torsional constant 

   Cw : warping constant 

 

In the derivation of Eqn.1.1 it is assumed that the cross section is prevented from lateral 

movement and twist at the ends of the beam. 

 

Due to the complexity of the problem it is difficult to come up with closed form 

solutions for cases with different loading and boundary conditions. Only a few closed 

form solutions exist for the lateral torsional buckling problem and mostly numerical 

methods are used for the solution of such problems. 

 

For moment variations along the beam due to different loading conditions Eqn.1.1 

needs to be modified to obtain the critical moment (Mcr).  This is usually accomplished 

by multiplying the critical moment obtained from Eqn.1.1 by a moment gradient factor, 

Cb. 

 

      0cr b crM C M= ×  (1.2) 

 

Cb is a modification factor for non-uniform bending moment variation along the 

laterally unsupported beam segment and depends on the shape of the moment diagram 

between lateral braces. Cb is dimensionless and varies between 1.0 and about 2.3 for 

simply supported and continuous beams. 

 

Moment gradient factors have been developed in the past and the ones presented by the 

AISC specifications (AISC-LRFD, 2001) are given as follows: 
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where,  Mmax : absolute value of maximum moment along the span 

   MA, MC: absolute value of quarter point moment values 

   MB  : absolute value of moment at the centre of span B
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where, M1 and M2 are end moments as seen in Fig.1.2. 

 

 

 
 

Fig. 1.2 – Comparison of Cb equations for linear variation of moment over laterally 
unbraced length. 
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Equation 1.3 is capable of representing the moment variation along the unbraced span 

better than Eqn.1.4 which is based on linear moment gradient. The support conditions 

assumed in the derivation of Eqn.1.1 are also valid for the cases with moment gradient. 

 

Apart from simply supported and continuous beams, buckling of cantilevers was 

studied in the past (Timoshenko and Gere, 1961). Due to the differences in boundary 

conditions, cantilevers are treated differently than simply supported beams. In addition, 

overhanging beams which possess the characteristics of both cantilever and simply 

supported beams lend themselves to another special class of problems. In the case of an 

overhanging beam shown in Fig.1.3, there are either one or two cantilevering segments 

connected to a main span. 

 

 
 

Fig. 1.3 – Generic view of a single overhanging beam and a double overhanging beam. 

 

 
Fig. 1.4 – A typical crane trolley monorail. 

 

 

One special type of overhanging beams is the crane trolley monorails shown in Fig.1.4. 

Overhanging monorails are quite frequently encountered in industrial structures. The 

monorail allows the movement of crane trolley through the entire span of the member. 

As in the general case of the overhanging beams monorail can have single or double 

overhangs. The design of crane trolley beams against global buckling is complex due to 

the nature of loading and boundary conditions. The next section presents a literature 

survey on buckling of overhanging beams in general and crane trolley monorails in 

particular. 

 4
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1.2 LITERATURE SURVEY 

 

The Effective Length of Cantilevers as Governed by Lateral Buckling (Nethercot, 

1973): 

 

In this study, Nethercot developed effective length factors for single and two span 

cantilevers. Finite element analysis was performed to study the behavior. Level of load 

application and the restraint conditions at the tip were varied. Effective length factors 

depending on the cross sectional properties and the loading/restraint conditions were 

presented. For two span cantilevers, it was shown that the vertical support condition at 

the root (interior support) had a negligible effect on stability. 

 

Lateral Buckling of Overhanging Beams (Trahair, 1983): 

 

In this paper, Trahair first presented some solutions for the buckling of built-in 

cantilevers subjected to end moment, point load and distributed load. Solutions for 

point loading was given for cases where the loading is at the top flange, shear centre 

and bottom flange. It was found that the bottom flange loading significantly increases 

the buckling capacity of cantilevers. Trahair showed that the built-in cantilever method 

for overhanging beams overestimates the resistance. Therefore, cantilevers with 

supports that allow warping were studied and capacity equations were presented. Based 

on the studies it was found that the results were virtually independent of the warping 

rigidity possessed by the beam. The recommendations presented for the cantilevers 

were used to develop an interaction buckling method for overhanging beams. The 

interaction buckling method takes into account the buckling of the main span and the 

overhanging segment individually. Finally, the effects of elastic torsional end restraints 

were studied and a family of curves was presented for overhanging beams having these 

kinds of restraints. 

 

Elastic Distortional Buckling of Overhanging Beams (M.A. Bradford, 1994): 

 

Bradford studied the elastic distortional buckling of overhanging beams. For this 

purpose a line type finite element was developed based on an earlier formulation by 

Bradford and Trahair (1981). This finite element is capable of representing the cross 
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sectional distortion during buckling. A generic simply supported beam with an 

overhang was studied where the ratio of main span to overhanging span was kept 

constant. In the analysis, top flange, shear centre and bottom flange loading was 

considered. Over the internal support the beam was either laterally supported or 

partially restrained like the beam on seats. The analysis results were presented in a non-

dimensional form and the effects of cross section distortion on buckling capacity was 

displayed. The intent of the study was to shed light on one situation where distortion 

was found to be significant. No emphasis was given on the development of Cb factors. 

 

Design of Cantilever Steel Beams: Refined Approach (Essa, Kennedy, 1994): 

 

The main emphasis of this paper was to present effective length factors for doubly 

symmetric I-section cantilevers. Cantilevers were analyzed under different loading and 

boundary conditions using the finite element method. Based on the analysis results 

some recommendations on effective length of cantilevers were given. In addition, these 

researchers studied the instability of overhanging beams and crane trolley beams. For 

overhanging beams it was reported that the ratio of the cantilever span to backspan, 

loading and restraint conditions of both the cantilever end and the backspan are the 

factors that need to be considered. An interaction buckling model was proposed for the 

overhanging beams. Furthermore, a design procedure was given for estimating the 

elastic critical buckling moments of crane trolley beams. It was pointed out that the 

critical load positions are the tip of the overhang and the middle of the backspan; 

therefore, two separate checks are required for a proper design. In the development of 

design equations and the analysis, it was assumed that the beam is restrained against 

lateral deflection and twist at the support locations. 

 

Allowable Bending Stresses for Overhanging Monorails (Tanner, 1985): 

 

In this paper Tanner presented practical recommendations for design of overhanging 

monorails used for crane trolleys. A generic single overhanging monorail shown in 

Fig.1.5 was considered. 



 
 

Fig. 1.5 – A typical single overhanging monorail. 

 

 

As for the loading, the case where a point load acts at the end of the overhanging 

segment was considered. Due to this loading the entire length of the bottom flange is in 

compression. Therefore, the system can be analyzed as a simple beam with overhang. 

For a location to be considered as an LTB brace point, the cross section needs to be 

braced against twist or lateral displacement of the compression flange. For the case 

shown in Fig.1.5 the cross section is prevented from twisting at the interior support, 

therefore this location can be considered as a brace point. On the other hand, at the 

exterior support location, the displacement of the compression flange and twist are not 

restrained. In addition, it is not possible to restrain the end of the overhanging segment 

in order to have the lifting point clear of obstructions. The overhanging monorail is 

regarded as braced at the interior support only. 

 

The system shown in Fig.1.5 was analyzed by Tanner using the classical mathematical 

procedures adopted for buckling of I-shaped beams. The beam was divided into two 

segments which comprise the main part and the overhanging part. For each part the 

differential equation that represents the equilibrium of the segment in the deformed 

configuration was written in terms of the torsional rotation. Later, the differential 

equations were solved using the Bessel functions and boundary conditions were applied 

to reduce the problem to a system of linear algebraic equations. The critical value of the 
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applied load was found by setting the determinant of the coefficient matrix of the 

system equal to zero. 

 

Several assumptions were made during the solution of the problem which can be listed 

as follows: 

 

- Material behaves linear elastic 

- Transverse loads are applied through the shear centre of the cross section 

- The cross section is doubly-symmetric I-shape 

- Self weight of the beam is neglected 

- The warping stiffness of the beam is negligible in comparison with the 

St.Venant torsional stiffness. Tanner focused on the solution for narrow 

flanged American standard shapes (S-shapes) which are commonly used for 

trolley beams. When the warping stiffness is neglected in Eqn.1.2 the critical 

buckling moment could be written as: 

 

      b
cr y

CM EI GJ
L
π

=  (1.5) 

 

By using the procedure explained above, Tanner obtained a set of Cb values as a 

function of the non-dimensional parameter k which is defined as the ratio of the 

overhanging segment to the total beam length (k=L1/L). The proposed Cb values based 

on the analyses were as follows: 
 

 

Table 1.1 – The variation of Cb with changing k value 

 

k=L1/L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Cb 0.67 0.70 0.73 0.76 0.80 0.84 0.90 0.96 1.05 1.15 1.28 

 

For simply supported and continuous beams laterally supported at the ends it is 

conservative to assume a Cb value equal to 1.0 for cases with moment gradients. The 

solutions given by Tanner showed that Cb values lower than 1.0 should be expected for 

overhanging beams when the total length of the beam (L) is used in Eqn.1.5. This point 
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was one of the most important outcomes of the study. In addition, the results presented 

in Table 1.1 seemed paradoxical because of the fact that lower critical moments occur 

for monorails with shorter relative overhangs. The physical reason behind this 

observation was explained by Tanner considering the two extreme cases. 

 

For k=1; 

 

In this case the system can be viewed as a cantilever under the action of a point load as 

depicted in Fig.1.6. 

 

 
 

Fig. 1.6 – Theoretical solution for k=1 

 

 

For a cantilever with fixed end braced and free end unbraced, the theoretical value of 

the Cb factor is 4.013/π=1.28 (Timoshenko and Gere, 1961). Findings of Tanner are 

conformable with the theoretical derivations. 

 

For k=0; 

 

In this case the system can be viewed as a simply supported beam under the action of 

an end moment as shown in Fig.1.7. 
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Fig. 1.7 – Theoretical solution for k=0 

 

 

The simply supported beam has a brace point at one end and the other end is free to 

twist and displace laterally. By investigating the moment diagram and boundary 

conditions this system can be converted to an equivalent system having a length of 2L 

under the action of a load 2M/L. The theoretical solution for a beam under the action of 

a point load at the midspan gives a Cb value of 17.2/4π =1.37 (Timoshenko and Gere, 

1961). For the case of a simply supported beam with end moment this converts simply 

a Cb value of 1.37/2=0.685 which is also conformable with the findings of Tanner. 

 

According to these observations it was explained that case where k=0 produces an 

unfavorable moment diagram compared to the case where k=1. For the case k=1, the 

maximum disturbing moment occurs at the brace point while for the case where k=0 

the maximum moment occurs at the unbraced location. Therefore, the critical moment 

is less for beams with shorter overhanging portion. 

 

1.3 PROBLEM STATEMENT 

 

As presented before little has been done to quantify the buckling capacity of 

overhanging monorails. The design recommendations presented by Tanner (1985) are 

based on a theoretical solution which only encompasses ideal support conditions. In 
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reality the boundary conditions at the exterior support can vary significantly. In 

addition, bottom flange loading is more commonly encountered in practice compared to 

the shear centre loading. This thesis aims to present a rigorous numerical study on 

buckling of overhanging monorails used for crane trolleys. 

 

Due to the complexity of the problem, the finite element method was adopted as a 

numerical analysis procedure. Using the finite element method, buckling of 

overhanging monorails under different load and boundary conditions has been studied. 

A parametric type of study has been undertaken to understand the important parameters 

that influence the instability response. 

 

In chapter two, the details of the finite element methodology are presented and the 

findings of Tanner (1985) and the numerical analyses are compared. In chapter three, a 

monorail with a single overhanging segment is analyzed under different boundary 

conditions. Different section dimensions are considered to investigate the effect of 

cross section distortion. In chapter four, the analysis results presented in chapter three 

are extended to monorails with double overhangs. Finally, in chapter five, the 

conclusions are given along with the design recommendations. 

 



CHAPTER 2 

 

FINITE ELEMENT MODELING AND VERIFICATION 

 

2.1 FINITE ELEMENT MODELING DETAILS 

 

In this thesis the buckling of overhanging monorails was studied in detail using the 

finite element method. As mentioned before due to the complexity of loading and 

boundary conditions, it is difficult to come up with closed form solutions. Rather 

numerical methods are employed to investigate the instability behavior. Finite element 

analysis could be conducted using either beam or shell elements for this problem. Most 

of the beam elements developed can be used for ideal boundary conditions. On the 

other hand if complex boundary conditions exist such as presence of stiffeners; a global 

three dimensional modeling with shell elements is preferred. 

 

Throughout this study, overhanging monorails were modeled using shell elements with 

8 nodes. Numerical analysis were performed using a commercially available software 

ANSYS (ANSYS, 2003). The cross section of the beam was modeled using the 

centerline distances between the plates and the curved portions were not modeled. The 

beam web and flanges were usually divided into four shell elements. Depending on the 

point of application, the load was placed at the top flange, the bottom flange or at the 

shear centre of the cross section. Different boundary conditions that will be explained 

later in detail were used during the analysis. A representative finite element mesh is 

given in Fig.2.1. 

 

 
Fig. 2.1 – Finite element model of the beam. 
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For each overhanging beam with certain loading and boundary conditions a finite 

element mesh has been prepared. Later, a linear bifurcation buckling analysis has been 

conducted to find the lowest eigenvalue of the system. The eigenvalue obtained from 

the numerical analysis was converted to a critical buckling moment and a Cb value for 

that particular analysis. 

 

2.2 VERIFICATION OF FINITE ELEMENT RESULTS 

 

A generic overhanging monorail was analyzed in order to verify the findings of finite 

element analysis. For this purpose, a narrow flange American S-shape (S12x40.8) 

profile was chosen. The properties of the section are given in Fig.2.2.  

 

 

 
Fig. 2.2 – Section properties of an S12x40.8 American S-shape. 

 

 

The total length of the beam was taken as 6m. The location of the exterior support was 

changed to have a k value that varies between 0.1 and 0.9. As mentioned before, the 

recommended Cb values by Tanner are based on an analysis where the loading is at the 

shear centre. In addition, the beam is supported vertically from the shear centre at the 

exterior support location. In order to be able to make comparisons with Tanner’s (1985) 

findings, same boundary conditions were applied to the finite element model in this 

verification work. The vertical and lateral displacements of the nodes that lie on the 
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line of the web at the interior support were prevented from movement to provide a 

lateral brace at that location. The summary of the loading and boundary conditions are 

given in Fig.2.3. 

 

 
Fig. 2.3 – Boundary conditions and loading for the beam. 

 

 

The eigenvalue of each analysis case has been converted to a buckling moment. Later 

this buckling moment has been converted to a Cb value by normalizing with the critical 

moment obtained from the case with equal and opposite end moments. In this 

conversion, two Cb values were found for each case. For the first one, the warping 

stiffness was included in the critical moment equation while for the second one the 

warping stiffness was neglected. In other words, The Mcr0 expressions used for the 

normalization are as follows: 
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It should be noted that the Tanner’s (1985) solution excluded the warping stiffness 

term. For the S12x40.8 section having a length of 6m, the Mcr0 values are 136.3 kN-m 

and 125.8 kN-m for the warping included and excluded, respectively. 
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C
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Cb Values of Tanner (1985)

Fig. 2.4 – Comparison chart of Tanner’s findings (1985) and analysis results. 

 

 

The variation of Cb as a function of k is given in Fig.2.4. In this figure, the Cb values 

obtained by both normalizing with respect to Eqn. 2.1 and 2.2 are given. In addition, 

the Tanner’s (1985) solution is provided for comparison purposes. As can be seen from 

Fig. 2.4 finite element analysis provides acceptable capacity predictions when 

compared with the closed form solutions. For low k values, finite element analysis 

captured local effects; therefore, Cb values for this range are lower than the ones 

recommended by Tanner (1985). As expected the Cb values should be lowered if the 

warping stiffness terms need to be included in the Mcr0 expression. Next section will 

present a detailed analysis of the effect of boundary and loading conditions. 
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2.3 EFFECTS OF LOADING AND BOUNDARY CONDITIONS 

 

The solution presented by Tanner (1985) is for the ideal case where the loading and 

boundary condition at the exterior support is applied at the shear centre. On the other 

hand, in reality, the loading is usually applied at the bottom flange and vertical exterior 

support is applied at the top flange. In order to enhance the findings of Tanner (1985), a 

detailed investigation on loading and boundary conditions has been conducted. The 

same S12x40.8 beam has been analyzed under the following four loading and boundary 

conditions. 

 

1. The exterior support at the shear center and loading at the shear center (Middle 

support middle loading - MSML) 

2. The exterior support at the shear center and loading at the bottom flange 

(Middle support bottom loading - MSBL) 

3. The exterior support at the top flange and loading at the shear center (Top 

support middle loading - TSML) 

4. The exterior support at the top flange and loading at the bottom flange (Top 

support bottom loading - TSBL) 

 

Case 1 (MSML) is the same as the one of Tanner’s (1985) system whereas Case 4 

(TSBL) is a commonly encountered condition. The Cb values were derived from 

normalizing the buckling moments with the critical moments (Eqn.2.1) obtained 

considering the warping stiffness term. Fig.2.5 presents the variation of Cb values as a 

function of k for the four cases.  
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Fig. 2.5 – Comparison chart of Tanner’s findings (1985) and analysis results for different 

loading and boundary conditions 
 

 

Examination of Fig.2.5 revealed that Cb values change drastically with the changes in 

boundary conditions. It is observed that the Cb values tend to increase as the loading is 

applied at the bottom flange rather than the shear centre. The same conclusion is valid 

when the top flange support is applied rather than the support at shear centre. For most 

commonly used case among all (TSBL) the Cb values are all greater than one and its 

variation with k is different than the ones for other cases. These findings clearly show 

that there is need for a more rigorous numerical analysis on overhanging monorails. 

The following chapter will present in detail the findings of a parametric investigation 

conducted to understand the buckling behavior of overhanging monorail systems. 
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CHAPTER 3 

 

ANALYSIS OF A SINGLE OVERHANGING MONORAIL 

 

3.1 INSTABILITY UNDER DIFFERENT BOUNDARY CONDITIONS AT 

EXTERIOR SUPPORT 

 

As shown in the previous chapter, the critical buckling loads for overhanging monorails 

are greatly influenced by loading and boundary conditions. The design 

recommendations given by Tanner (1985) are based on solutions using shear centre 

loading and idealized boundary conditions. Based on a more refined analysis that was 

presented in Chapter 2, it was observed that Cb values greater than unity could be used 

for more realistic cases. In the case that was analyzed in Chapter 2, it was assumed that 

the exterior support was placed at the top flange. In this idealized boundary condition, 

the vertical moment of the point where the top flange and web meets was prevented. 

This kind of a boundary condition does not prevent the twist of the section. In reality, 

due to the attachment details, certain degree of twist restraint is present at the exterior 

support location. A resistance against twist at this support may significantly increase 

the buckling capacity. In this chapter, more detailed analyses are performed to 

investigate the effects of different boundary conditions that may be present at the 

exterior support location. 

 

For this purpose, 7 different boundary conditions were considered in the analyses. The 

boundary conditions that were considered are given in Fig. 3.1. 

 

 

 18
Fig. 3.1 – Boundary conditions at the exterior support. 
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The details of the boundary conditions are as follows: 

 

1. Single point restraint (SPR): The top flange – web junction is restrained 

against vertical translation and the section is free to rotate. 

2. Top flange restraint (TFR): The vertical translation of the flange is 

restrained. There is certain degree of restraint against twist which is based on 

the web flexibility. 

3. Quarter depth stiffener (QDS): Same boundary conditions as the top flange 

restraint (TFR). In addition, a pair of stiffeners is placed on both sides of the 

web. The stiffeners have a width equal to half the flange width. Stiffeners are 

extended to ¼ depth of the beam from the top. The stiffener thickness is equal 

to the thickness of the top flange. 

4. Half depth stiffener (HDS): Same as case 3 except that the stiffeners are 

extended to the half depth of the beam. 

5. Three quarter depth stiffener (TQDS): Same as case 3 except that the 

stiffeners are extended to the ¾ depth of the beam. 

6. Full depth stiffener (FDS): Same as case 3 except that the stiffeners are 

extended to the full depth of the beam. 

7. Twist restraint (TR): The vertical movement of the top flange and the 

horizontal out of plane movement of the web are prevented. The cross section 

can not twist or distort at the exterior support location. 

 

In order to investigate the effects of these 7 boundary conditions, an S12x40.8 beam 

with 6m length was considered. The exterior support location was changed to have k 

values between 0.1 and 0.9. A point load was placed at the tip of the overhanging 

portion at the junction of web and bottom flange. Twist was restrained at the interior 

support. For each combination of boundary condition and support location an 

eigenvalue buckling analysis was performed. The eigenvalues were documented and 

then used to calculate the critical buckling moment at the exterior support location. 

These critical moment values were normalized by Mcr0 (w-inc) which is previously 

given in Eqn. 2.1. The variation of Cb value as a function of k for different boundary 

conditions is given in Fig. 3.2. Representative buckled shapes for the 7 cases (k=0.5) 

are given in Fig. 3.3. 
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Fig. 3.2 – Comparison of different boundary conditions for S12x40.8 beam with 6m length. 

 

 

Examination of Fig 3.2 reveals that boundary conditions have significant effects on the 

Cb values. For the case where there is single point restraint (SPR), the Cb values stayed 

below 2.0 and there was a decrease with the increase in the k value. Even in this case, 

all Cb values were higher than unity. For the single point restraint (SPR) the cross 

section is allowed to twist and this is clearly observed from the buckled shapes (Fig. 

3.3a). On the other hand, providing vertical restraints to the top flange greatly increases 

the buckling capacity. For the top flange restraint (TFR) case, the variation of Cb with k 

values is different when compared with the single point restraint (SPR) case. For the 

TFR case, Cb values exhibit a parabolic variation with k values. When the movement of 

the top flange is restrained, the cross section is not fully allowed to twist. The degree of 

twist and the amount of lateral movement of the bottom flange is influenced by the 

flexibility of the beam web. For the S12x40.8 beam analyzed, it is observed that Cb 

values could reach to 3.0 (for k=0.5) by restraining the top flange movement. This 

observation suggests that the web stiffness could be relied on in increasing the buckling 

capacity. 
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Fig. 3.3 – Buckled shapes for different boundary conditions for k=0.5. 
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As the depth of the stiffener is increased the stiffness of the web against distortion is 

increased. Any increase in the stiffness of the web is expected to result in an increase in 

the buckling capacity. This fact is clearly observed in Fig 3.2. Placing a ¼ depth 

stiffener increases the Cb values for the k range of interest. For the analyzed beam, it 

seems that placing ½, ¾ and full depth stiffeners virtually give the same capacity. As 

the depth of the stiffener reaches to the depth of the beam, the results for Cb approach 

to the result of the twist restraint case. When compared with Tanner’s (1985) 

recommendations, the Cb values could be increased by 6-7 fold by applying a more 

rigorous analysis. 

 

The results presented in Fig 3.2 could be converted into design recommendations. 

However, the applicability of these findings to different cross sections and beam 

geometries needs further investigation. In the following sections, beams with different 

geometric properties will be explored to find out the ranges of applicability. 

 

3.2 INFLUENCE OF WARPING AND TORSIONAL STIFFNESS 

 

Both warping and torsional stiffness possessed by the beam contributes to the lateral 

buckling capacity. As explained before, Tanner (1985) excluded the warping stiffness 

term in calculating the critical buckling moment. This assumption is valid for narrow 

flanged S-shapes. However, for other sections neglecting the warping stiffness might 

be an overly conservative assumption. 

 

If Eqn. 1.1 for critical buckling moment is examined, it could be seen that the warping 

stiffness contributes to the term in the square root. Usually the ratio of the warping 

stiffness to torsional stiffness could be expressed as a non-dimensional factor, herein 

called as α, where 

      
2

2
wEC

L GJ
πα =  (3.1) 

 

The α factor is compared against unity to decide on the respective contribution of the 

warping stiffness term. For beams having an α value much less than 1.0 the warping 

stiffness could be neglected. For the 6m long S12x40.8 beam, the α factor is equal to 
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0.17. This indicates that neglecting the warping stiffness results in 8 percent less 

capacity than the actual. 

 

In order to understand the effects of the warping contribution term similar analysis 

were performed using three other cases. In the first case, a beam length of 3 meters was 

considered for the same S12x40.8 section. A shorter length results in an α factor of 

0.70. For the two other cases, beams having different cross sectional properties but 6 

meter length were considered. The cross sectional properties of the sections considered 

(SEC1, SEC2) are given in Fig 3.4. The resulting α factors for SEC1 and SEC2 are 

1.04 and 2.09, respectively. The S12x40.8 and SEC1&2 have h/tw values close to 25 

and their bf/2tf values varied between 4 and 6.67. 

 

 

 
Fig. 3.4 – Cross sectional properties of SEC1 and SEC2. 

 

 

For the three cases mentioned above, analyses were conducted by considering 7 

different exterior support conditions and k values ranging from 0.1 to 0.9. In Figs. 3.5 

to 3.7, for these three cases, Cb values for 7 different boundary conditions were 

displayed.  
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Fig. 3.5 – Comparison of different boundary conditions for S12x40.8 beam with 3m length. 
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Fig. 3.6 – Comparison of different boundary conditions for SEC1 beam with 6m length. 

 

 24



SEC2 (L=6m) - h/tw=25

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k=L1/L

C
b

Single Point Restraint Top Flange Restraint Quarter Depth Stiffener
Half Depth Stiffener Three Quarter Depth Stiffener Full Depth Stiffener
Twist Restraint

Local Buckling

 
Fig. 3.7 – Comparison of different boundary conditions for SEC2 beam with 6m length. 

 

 

Also to observe the behavior of the contribution term α for these cases, the Cb values 

obtained for systems having different α values are compared in Figs. 3.8 to 3.14. In 

these figures the variation of Cb value as a function of k is presented for overhanging 

monorails having α values of 0.17, 0.70, 1.04 and 2.09. 
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Fig. 3.8 – Comparison of different sections for single point restraint (SPR) case. 
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Fig. 3.9 – Comparison of different sections for top flange restraint (TFR) case. 
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Quarter Depth Stiffener
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Fig. 3.10 – Comparison of different sections for quarter depth stiffener (QDS) case. 
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Fig. 3.11 – Comparison of different sections for half depth stiffener (HDS) case. 
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Three Quarter Depth Stiffener
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Fig. 3.12 – Comparison of different sections for three quarter depth stiffener (TQDS) case. 
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Fig. 3.13 – Comparison of different sections for full depth stiffener (FDS) case. 
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Twist Restraint
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Fig. 3.14 – Comparison of different sections for twist restraint (TR) case. 

 

 

When the comparison graphs are examined no definite conclusions could be drawn for 

the effect of warping stiffness. For all the boundary conditions the data points for 

sections for different α values fall within a narrow band. Response of various sections 

could be grouped into three depending on the boundary conditions. For the single point 

restraint (SPR) case, Cb values tend to increase with the increase in the α value. For the 

top flange restraint (TFR), quarter depth stiffener (QDS) and half depth stiffener (HDS) 

cases, the behavior is more erratic. Under these boundary conditions, the section having 

an α value of 0.17 produces the highest Cb values. The Cb value decreases as α value is 

increased. The section with an α value of 0.70 gives lower Cb values compared to the 

section with an α value of 1.04. This deviation from the general trend is inconclusive. 

However, it should be pointed out that the deviation occurs for the case where the beam 

length is 3m. If sections with the same beam length (L=6m) are considered, then it is 

observed that the Cb values tend to decrease with an increase in the α value. For the 

three quarter depth stiffener (TQDS), full depth stiffener (FDS) and twist restraint (TR) 

cases, Cb values tend to increase with an increase in the α value. When case of k=0.5 is 

considered, the section with an α value of 2.09 gives smaller Cb values when compared 

 29



 30

to the section with an α value of 1.04. This is attributable to the local buckling effects 

observed during the examination of buckled shapes. 

 

As mentioned before, most of the data points fall within a band. It is possible to 

develop design expressions for different boundary conditions and for sections having 

different warping stiffnesses. Development of such expressions will yield in 

complicated design equations. For practical purposes, conservative lower bound 

equations are developed in this thesis. First of all, due to the differences in the variation 

of Cb values, a separate expression is developed for the single point restraint (SPR) 

case. For this boundary condition, a linear variation with k could be assumed. Based on 

this assumption, the predictory lower bound equation developed is given as follows: 

 

      Cb = -0.5 k + 1.5 (3.2) 

 

The plot of the prediction equation is given in Fig. 3.8. 

 

For all other boundary conditions, the response could be represented by a parabola. By 

using curve fitting and rounding off the coefficients, the following equation was 

developed for the 6 boundary conditions: 

 

      Cb = -1.1 βk2 + βk + 1.25 (3.3) 

 

where β: Constant depending on the boundary condition (see Table 3.1) 

 
Table 3.1 – β table for 6 boundary conditions. 

  TFR QDS HDS TQDS FDS TR 
β 4  5 7 8.8  8.9 9 

 
 

The plots of the predictions are also given in Figs 3.9 through 3.14. 

 

It should be pointed out that the full depth stiffener and the twist restraint cases are 

actually impractical. These can not be implemented because of the trolley that is 

moving along the beam length. However these cases present the theoretical upper 

bounds on the capacity. 



3.3 EFFECTS OF CROSS SECTION DISTORTION 

 

Analysis results presented so far showed that the boundary conditions at the exterior 

support location have significant effects on the buckling capacity. If the vertical 

movement of the top flange is restrained at the exterior support then one has to rely on 

the bending stiffness of the web. In deriving the classical lateral torsional buckling 

moment equation (Eqn. 1.1) it is assumed that the cross section goes through a rigid 

body motion. However, in reality if the web is slender, significant amount of cross 

section distortion can occur and as a result, the buckling capacity may be reduced. 

Typical cross section distortion is depicted in Fig. 3.15. 

 

 

 
 

Fig. 3.15 – Pictorial view of cross section distortion. 

 

 

The effects of cross section distortion on lateral buckling capacity have been studied in 

the past. (Bradford and Trahair, 1981; Bradford, 1992; Pi and Trahair, 2000) For the 

problem at hand, the effects of distortion at the exterior support need to be studied in 

order to extend the recommendations to beams having slender webs. For this purpose, 

the same S12x40.8 beam with 6m length was considered. The analyzed beam has an 

h/tw value of 25 and an α value of 0.17. The web thickness of the beam was reduced to 

get sections with h/tw values of 40, 60 and 80. For this cross section and beam length, a 

reduction in the web thickness does not significantly change the α values (an increase 

from 0.17 to 0.23). On the other hand, a change in the web slenderness, results in a 

reduction in the buckling capacity. First of all, in order to understand the effects of 

distortion, the basic case of equal and opposite end moments was analyzed. The results 

of the analyses are given in Table 3.2. In this table, Mcr0 values were found by Eqn. 1.1 

and these values do not account for cross section distortion. On the other hand, Mcr 
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values obtained from finite element analysis reflects the contribution of the cross 

section distortion. 

 

 
Table 3.2 – Comparison of theoretical and finite element analysis results 

h/tw Mcr0 (w-inc) Mcr0 (FE) % Diff. 
25 136.3 138.1 -1.4% 
40 123.9 119.6 3.5% 
60 121.1 107.3 11.4% 
80 120.5 95.9 20.4% 

 

 

Analysis result showed that the buckling capacity can be reduced by 20 percent by 

increasing the web slenderness value to 80. In order to be able to make comparisons, 

the critical buckling moments found from finite element analysis are normalized by 

Mcr0 (w-inc) without considering the reduction due to web slenderness. The analysis for 

the cases of h/tw=40, h/tw=60 and h/tw=80 are given in Figs. 3.16 to 3.18. 
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Fig. 3.16 – Comparison of different boundary conditions for S12x40.8 beam with h/tw=40. 
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S12x40.8 (L=6m) - h/tw=60
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Fig. 3.17 – Comparison of different boundary conditions for S12x40.8 beam with h/tw=60. 
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Fig. 3.18 – Comparison of different boundary conditions for S12x40.8 beam with h/tw=80. 

 33



In addition, the comparison of sections with different h/tw values is given in Figs. 3.19 

to 3.25 for the seven boundary conditions. 
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Fig. 3.19 – Comparison of different h/tw values for single point restraint (SPR) case. 
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Fig. 3.20 – Comparison of different h/tw values for top flange restraint (TFR) case. 
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Fig. 3.21 – Comparison of different h/tw values for quarter depth stiffener (QDS) case. 
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Fig. 3.22 – Comparison of different h/tw values for half depth stiffener (HDS) case. 
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Three Quarter Depth Stiffener
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Fig. 3.23 – Comparison of different h/tw values for three quarter depth stiffener (TQDS) case. 
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Fig. 3.24 – Comparison of different h/tw values for full depth stiffener (FDS) case. 
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Twist Restraint
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Fig. 3.25 – Comparison of different h/tw values for twist restraint (TR) case. 

 

 

Examination of Figs. 3.19 through 3.25 reveals that the buckling capacity reduces as 

the web gets slender. The percent reduction in capacity is a function of the k value and 

the boundary conditions. For the single point restraint case, the reduction in capacity is 

not much pronounced. This is due to the fact that the cross section is allowed to rotate 

at the exterior support location. For this boundary condition, use of a Cb value equal to 

unity can be recommended for all k ranges and high h/tw values. 

 

In order to examine the amount of reduction in capacity for the other boundary 

conditions, Figs. 3.26 through 3.31 were prepared and local buckling values are 

excluded. In these figures the percent reduction in capacity is displayed for h/tw values 

of 40, 60 and 80. The percent reduction values are computed by considering the 

h/tw=25 as the base case. 
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Top Flange Restraint
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Fig. 3.26 – Percent reduction in capacity for TFR case. 

 

Quarter Depth Stiffener
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Fig. 3.27 – Percent reduction in capacity for QDS case. 
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Half Depth Stiffener
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Fig. 3.28 – Percent reduction in capacity for HDS case. 

 

Three Quarter Depth Stiffener
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Fig. 3.29 – Percent reduction in capacity for TQDS case. 
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Full Depth Stiffener
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Fig. 3.30 – Percent reduction in capacity for FDS case. 

 

Twist Restraint
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Fig. 3.31 – Percent reduction in capacity for TR case. 
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When these figures are examined it can be seen that the behavior is similar for the top 

flange restraint (TFR), quarter depth stiffener (QDS) and half depth stiffener (HDS) 

cases. The three quarter depth stiffener (TQDS) case exhibits a different behavior 

compared to the other mentioned three cases. Full depth stiffener (FDS) and twist 

restraint (TR) cases are not investigated in detail in this section because of the 

impractical nature of these boundary conditions. It should also be noted that the change 

in Cb values stay below 15 percent for these cases. 

 

According to these observations, a reduction factor for Cb needs to be developed for 

sections having high h/tw values. There has to be different reduction factors depending 

on the boundary conditions. Based on the observations, the TFR, QDS and HDS can be 

grouped together. By curve fitting to the data for these three boundary conditions, 

various equations with different complexity could be developed. In this thesis, two 

equations (Eqn. 3.4 and Eqn. 3.5) were derived for the reduction factor for h/tw values 

greater than 25. 

 

For TFR, QDS and HDS and h/tw>25, 

 

      
/ 550.15 0.6
100

wh tRF −⎛= + ⎜
⎝ ⎠

⎞
⎟  (3.4) 
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Fig. 3.32 – Percent reduction values for TFR, QDS and HDS cases. 

 

 

The quality of the developed equation is presented in Fig. 3.32. In this figure, the data 

points that belong to the TFR, QDS and HDS cases are compared against predictions of 

the developed equation. For the TQDS case, similar type of curve fitting was 

performed and the following equation was developed. 

 

For TQDS and h/tw >25, 
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Fig. 3.33 – Percent reduction values for TQDS case. 

 

 

The quality of the developed equation is presented in Fig. 3.33. The developed Eqns. 

3.4, 3.5 and 3.6 can be used together with the Eqn. 3.3 to estimate the Cb value for 

beams with h/tw values greater than 25. 

 

3.4 A CAVEAT ON LOCAL BUCKLING 

 

Analyses presented so far were limited to certain beam geometries due to the 

possibility of local buckling. Even few of the data points presented were influenced by 

local buckling. When the elements of the cross section (web or flange) are subjected to 

compression or shear, local buckling can occur for high slenderness values. Buckling of 

plates under axial and shear stresses has been studied extensively in the past 

(Timoshenko and Gere, 1961). The critical stress is found by the following equation. 

 

      
2

212(1 )( / )cr
K E

b t
πσ
ν

=
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where:  K : plate buckling coefficient 

   ν : Poisson’s ratio 

   b : width of the compression element 

   t : thickness of the compression element 

 

Depending on the slenderness of the web and flange plates, local web buckling due to 

shear and/or bending or local flange buckling may occur. Unfortunately, it is difficult 

to forecast whether local buckling will precede the global lateral buckling. The lateral 

buckling capacity has been known to come up with a decision. Therefore, a trial and 

error procedure is used in selecting the sections appropriate for lateral buckling 

analysis. 

 

Several other sections were tried during the course of the study (S12x40.8 with 

h/tw=100, 120, 140, 160, 180; SEC1 with L=3m; SEC2 with L=3m). Unfortunately, 

their behavior was influenced by local effects. Due to this reason, analysis results 

pertaining to these sections are not presented in the thesis. Representative local 

buckling shapes are given in Fig 3.34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 3.34 – Local buckling effects occurred during analyses.  
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CHAPTER 4 

 

ANALYSIS OF A DOUBLE OVERHANGING MONORAIL 

 

4.1 COMPARISON OF SINGLE AND DOUBLE OVERHANGING BEAMS 

 

In the previous chapter, it is seen that the boundary conditions at the exterior support 

have a significant effect on the capacity of the beam, and except the single point 

restraint case, all other 6 cases acts in the same behavior in the Cb comparison figures. 

Also the effect of warping term is investigated by analyzing sections with greater 

warping contributions. Conservative lower bound equations were developed for 

practical purposes instead of complicated design equations. Furthermore, the effects of 

web distortion were investigated and the percent reduction in capacity for the boundary 

conditions was obtained to give a reduction factor for higher h/tw values than 25. In this 

chapter, a comparison analysis is carried out for single overhanging beams and double 

overhanging beams. 

 

 

 
Fig. 4.1 – Typical single and double overhanging monorails. 
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For double overhanging beam, the system is supposed to be symmetric in structure but 

loading is acted on only one side of the beam for the worst case as shown in Fig. 4.1. 

Same S12x40.8 section is used and for comparison with single overhanging model, the 

length between the load and the last support is taken as 6m. The second overhanging 

part is taken as L1 for symmetry purposes so the length of the second overhang is 

changed with the change in the k value. 

 

Comparison of single and double overhanging beam for different boundary conditions 

is given in Figs. 4.2 through 4.7. In the single point restraint (SPR) case, both supports 

are unrestrained against rotation so the system becomes unstable. For this reason, the 

single point restraint (SPR) case is excluded in analyses due to the instability caused by 

the support condition.   

 

S12x40.8 - Top Flange Restraint
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Fig. 4.2 – Comparison of single and double overhanging beams for TFR case. 
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S12x40.8 - Quarter Depth Stiffener
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Fig. 4.3 – Comparison of single and double overhanging beams for QDS case. 

 

S12x40.8 - Half Depth Stiffener
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Fig. 4.4 – Comparison of single and double overhanging beams for HDS case. 
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S12x40.8 - Three Quarter Depth Stiffener
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Fig. 4.5 – Comparison of single and double overhanging beams for TQDS case. 

 

S12x40.8 - Full Depth Stiffener
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Fig. 4.6 – Comparison of single and double overhanging beams for FDS case. 
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S12x40.8 - Twist Restraint
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Fig. 4.7 – Comparison of single and double overhanging beams for TR case. 

 

 

When the comparison graphs are examined, it is seen that there exists an acceptably 

small difference between single and double overhanging beams. Therefore, the 

conclusions and expressions attained in previous chapter for single overhanging beams 

are also valid for double overhanging beams. 
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CHAPTER 5 

 

SUMMARY AND CONCLUSIONS 

 

5.1 SUMMARY 

 

Lateral torsional buckling of overhanging crane trolley monorails has not been studied 

in detail. Previous research has focused on the solution of buckling capacities of 

overhanging monorails under idealized boundary and loading conditions. In this thesis, 

the buckling of overhanging monorails was studied in detail. First, the effects of load 

position and support location among the cross section were investigated and the results 

were compared with the findings of previous research. Then, a detailed analysis of 

boundary conditions at exterior support was conducted. In addition, the performance of 

beams having different warping and torsional stiffness properties were investigated. 

The influence of cross section distortion on buckling capacity of overhanging 

monorails was explored. Finally, the investigations performed for single overhanging 

beams were extended to double overhanging beams. 

 

5.2 CONCLUSIONS 

 

The following could be concluded from this study: 

 

• Buckling of overhanging monorails are greatly influenced by the location of 

loading and supports on the cross-section. Realistic conditions considering 

bottom flange loading and exterior support at top flange yield in much higher 

buckling capacities as compared to idealized load and boundary conditions 

(support and loading at shear centre). 

 

• When boundary conditions preventing the vertical moment of the top flange at 

exterior support location are considered even higher buckling capacities could 

be attained. Buckling capacity tends to increase with an increase in the depth of 

the stiffener placed at exterior support. 
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• Sections having different torsional and warping properties exhibit different 

responses, however, the Cb values obtained for different sections are close to 

each other. Based on this observation, simple expressions were developed for 

predicting Cb values for different boundary conditions. 

 

• Buckling capacity of overhanging monorails tend to decrease as the web 

slenderness increases. Simple design recommendations were developed for 

predicting the reduction in buckling capacity due to increasing web 

slenderness. 

 

• Conclusions drawn for single overhanging monorails are valid for double 

overhanging monorails. The effect of different boundary conditions at interior 

support has negligible effect on the buckling capacity. 

 

• Future research should extend the findings of this study to different cross 

section geometries. Monosymmetric sections and tapered overhanging beams 

require additional treatment. This study focused on the case where the loading 

is at the tip of the overhanging segment. Additional studies are required to 

investigate the instability of these systems under a point load at the mainspan. 
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APPENDIX A 

 

TABULAR DATA FOR GRAPHS 

 

2.2 VERIFICATION OF FINITE ELEMENT RESULTS 

 
Table A2.4 – The comparison chart of Tanner’s findings (1985) and analysis results. 

 
  Middle Support Middle Loading Case 

L1
(mm) k=L1/L Cb Values 

(w-inc) 
Cb Values 

(w-exc) 

Cb Values 
From Tanner's 

Paper 
6000 1.0   1.28 
5400 0.9 1.05 1.14 1.15 
4800 0.8 0.96 1.04 1.05 
4200 0.7 0.88 0.95 0.96 
3600 0.6 0.81 0.88 0.90 
3000 0.5 0.76 0.82 0.84 
2400 0.4 0.72 0.77 0.80 
1800 0.3 0.67 0.73 0.76 
1200 0.2 0.63 0.68 0.73 
600 0.1 0.53 0.58 0.70 
0 0.0   0.67 

 

2.3 EFFECTS OF LOADING AND BOUNDARY CONDITIONS 

 
Table A2.5 – Comparison chart of Tanner’s findings (1985) and analysis results for different 

loading and boundary conditions 
 

 MSML MSBL TSML TSBL  

k=L1/L Cb (w-inc) Cb (w-inc) Cb (w-inc) Cb (w-inc) 
Cb Values 

From Tanner's 
Paper 

1.0     1.28 
0.9 1.05 1.20 1.15 1.31 1.15 
0.8 0.96 1.09 1.11 1.29 1.05 
0.7 0.88 1.01 1.08 1.26 0.96 
0.6 0.81 0.96 1.05 1.25 0.90 
0.5 0.76 0.93 1.04 1.26 0.84 
0.4 0.72 0.91 1.04 1.29 0.80 
0.3 0.67 0.93 1.08 1.36 0.76 
0.2 0.63 0.99 1.17 1.48 0.73 
0.1 0.53 1.17 1.37 1.62 0.70 
0.0     0.67 
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3.1 INSTABILITY UNDER DIFFERENT BOUNDARY CONDITIONS AT 

EXTERIOR SUPPORT 

 
Table A3.2 – Comparison of different boundary conditions for S12x40.8 beam with 6m length. 

 
 Cb Value [Normalized with Mcr0 (w-inc)] 

k=L1/L SPR TFR QDS HDS TQDS FDS TR 
0.1 1.62 1.93 2.00 2.09 2.17 2.23 2.21 
0.3 1.36 2.56 2.73 2.92 3.03 3.10 3.07 
0.5 1.26 2.90 3.27 3.61 3.70 3.76 3.68 
0.7 1.26 2.09 2.22 2.38 2.49 2.56 2.54 
0.9 1.31 1.54 1.61 1.72 1.83 1.90 1.91 

 

3.2 INFLUENCE OF WARPING AND TORSIONAL STIFFNESS 

 
Table A3.5 – Comparison of different boundary conditions for S12x40.8 beam with 3m length. 

 
 Cb Value [Normalized with Mcr0 (w-inc)] 

k=L1/L SPR TFR QDS HDS TQDS FDS TR 
0.1 1.69 1.77 1.82 1.92 2.10 2.27 2.28 
0.3 1.66 2.23 2.48 2.87 3.27 3.51 3.53 
0.5 1.55 2.36 2.76 3.59 4.42 4.52 4.43 
0.7 1.45 1.93 2.14 2.49 2.86 3.09 3.14 
0.9 1.37 1.48 1.54 1.67 1.93 2.18 2.31 

 
Table A3.6 – Comparison of different boundary conditions for SEC1 beam with 6m length. 

 
 Cb Value [Normalized with Mcr0 (w-inc)] 

k=L1/L SPR TFR QDS HDS TQDS FDS TR 
0.1 1.73 1.80 1.84 1.94 2.13 2.34 2.32 
0.3 1.75 2.31 2.54 2.94 3.40 3.69 3.70 
0.5 1.64 2.46 2.85 3.68 4.66 4.77 4.68 
0.7 1.51 2.00 2.21 2.58 3.02 3.31 3.33 
0.9 1.40 1.50 1.56 1.70 2.00 2.34 2.44 

 
Table A3.7 – Comparison of different boundary conditions for SEC2 beam with 6m length. 

 
 Cb Value [Normalized with Mcr0 (w-inc)] 

k=L1/L SPR TFR QDS HDS TQDS FDS TR 
0.1 1.71 1.74 1.77 1.85 2.02 2.28 2.29 
0.3 1.81 2.13 2.34 2.70 3.19 3.71 3.74 
0.5 1.73 2.26 2.60 3.24 3.86 4.42 3.99 
0.7 1.56 1.88 2.08 2.44 2.96 3.45 3.49 
0.9 1.39 1.45 1.49 1.61 1.90 2.39 2.55 
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Table A3.8 – Comparison of different sections for single point restraint (SPR) case. 
 

k=L1/L 
S12x40.8 
(α=0.17 

& L=6m)

S12x40.8 
(α=0.70 

& L=3m)

SEC1 
(α=1.04 

& L=6m)

SEC2 
(α=2.09 

& L=6m)

Predictory 
Eqn. 

0.1 1.62 1.83 1.73 1.71 1.45 
0.3 1.36 1.75 1.75 1.81 1.35 
0.5 1.26 1.62 1.64 1.73 1.25 
0.7 1.26 1.54 1.51 1.56 1.15 
0.9 1.31 1.48 1.40 1.39 1.05 

 
Table A3.9 – Comparison of different sections for top flange restraint (TFR) case. 

 

k=L1/L 
S12x40.8 
(α=0.17 

& L=6m)

S12x40.8 
(α=0.70 

& L=3m)

SEC1 
(α=1.04 

& L=6m)

SEC2 
(α=2.09 

& L=6m)

Predictory 
Eqn. 

0.1 1.93 1.77 1.80 1.74 1.61 
0.3 2.56 2.23 2.31 2.13 2.05 
0.5 2.90 2.36 2.46 2.26 2.15 
0.7 2.09 1.93 2.00 1.88 1.89 
0.9 1.54 1.48 1.50 1.45 1.29 

 
Table A3.10 – Comparison of different sections for quarter depth stiffener (QDS) case. 

 

k=L1/L 
S12x40.8 
(α=0.17 

& L=6m)

S12x40.8 
(α=0.70 

& L=3m)

SEC1 
(α=1.04 

& L=6m)

SEC2 
(α=2.09 

& L=6m)

Predictory 
Eqn. 

0.1 2.00 1.82 1.84 1.77 1.70 
0.3 2.73 2.48 2.54 2.34 2.26 
0.5 3.27 2.76 2.85 2.60 2.38 
0.7 2.22 2.14 2.21 2.08 2.06 
0.9 1.61 1.54 1.56 1.49 1.30 

 
Table A3.11 – Comparison of different sections for half depth stiffener (HDS) case. 

 

k=L1/L 
S12x40.8 
(α=0.17 

& L=6m)

S12x40.8 
(α=0.70 

& L=3m)

SEC1 
(α=1.04 

& L=6m)

SEC2 
(α=2.09 

& L=6m)

Predictory 
Eqn. 

0.1 2.09 1.92 1.94 1.85 1.87 
0.3 2.92 2.87 2.94 2.70 2.66 
0.5 3.61 3.59 3.68 3.24 2.83 
0.7 2.38 2.49 2.58 2.44 2.38 
0.9 1.72 1.67 1.70 1.61 1.31 
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Table A3.12 – Comparison of different sections for three quarter depth stiffener (TQDS) case. 
 

k=L1/L 
S12x40.8 
(α=0.17 

& L=6m)

S12x40.8 
(α=0.70 

& L=3m)

SEC1 
(α=1.04 

& L=6m)

SEC2 
(α=2.09 

& L=6m)

Predictory 
Eqn. 

0.1 2.17 2.10 2.13 2.02 2.03 
0.3 3.03 3.27 3.40 3.19 3.02 
0.5 3.70 4.42 4.66 3.86 3.23 
0.7 2.49 2.86 3.02 2.96 2.67 
0.9 1.83 1.93 2.00 1.90 1.33 

 
Table A3.13 – Comparison of different sections for full depth stiffener (FDS) case. 

 

k=L1/L 
S12x40.8 
(α=0.17 

& L=6m)

S12x40.8 
(α=0.70 

& L=3m)

SEC1 
(α=1.04 

& L=6m)

SEC2 
(α=2.09 

& L=6m)

Predictory 
Eqn. 

0.1 2.23 2.27 2.34 2.28 2.04 
0.3 3.10 3.51 3.69 3.71 3.04 
0.5 3.76 4.52 4.77 4.42 3.25 
0.7 2.56 3.09 3.31 3.45 2.68 
0.9 1.90 2.18 2.34 2.39 1.33 

 
Table A3.14 – Comparison of different sections for twist restraint (TR) case. 

 

k=L1/L 
S12x40.8 
(α=0.17 

& L=6m)

S12x40.8 
(α=0.70 

& L=3m)

SEC1 
(α=1.04 

& L=6m)

SEC2 
(α=2.09 

& L=6m)

Predictory 
Eqn. 

0.1 2.21 2.28 2.32 2.29 2.05 
0.3 3.07 3.53 3.70 3.74 3.06 
0.5 3.68 4.43 4.68 3.99 3.28 
0.7 2.54 3.14 3.33 3.49 2.70 
0.9 1.91 2.31 2.44 2.55 1.33 
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3.3 EFFECTS OF CROSS SECTION DISTORTION 

 
Table A3.16 – Comparison of different boundary conditions for S12x40.8 beam with h/tw=40. 

 
 Cb Value [Normalized with Mcr0 (w-inc)] 

k=L1/L SPR TFR QDS HDS TQDS FDS TR 
0.1 1.56 1.76 1.81 1.90 2.04 2.18 2.14 
0.3 1.37 2.26 2.42 2.68 2.93 3.08 3.04 
0.5 1.27 2.42 2.71 3.31 3.67 3.78 3.68 
0.7 1.25 1.90 2.02 2.23 2.46 2.60 2.57 
0.9 1.27 1.44 1.49 1.59 1.78 1.93 1.94 

 
Table A3.17 – Comparison of different boundary conditions for S12x40.8 beam with h/tw=60. 

 
 Cb Value [Normalized with Mcr0 (w-inc)] 

k=L1/L SPR TFR QDS HDS TQDS FDS TR 
0.1 1.43 1.54 1.57 1.64 1.78 2.03 1.97 
0.3 1.32 1.87 2.01 2.27 2.64 2.91 2.85 
0.5 1.22 1.94 2.14 2.62 3.43 3.59 3.48 
0.7 1.19 1.65 1.75 1.96 2.28 2.54 2.48 
0.9 1.18 1.30 1.34 1.41 1.61 1.90 1.89 

 
Table A3.18 – Comparison of different boundary conditions for S12x40.8 beam with h/tw=80. 

 
 Cb Value [Normalized with Mcr0 (w-inc)] 

k=L1/L SPR TFR QDS HDS TQDS FDS TR 
0.1 1.23 1.27 1.28 1.32 1.37 1.49 1.53 
0.3 1.23 1.54 1.67 1.90 2.30 2.70 2.62 
0.5 1.15 1.59 1.76 2.13 3.04 3.33 3.22 
0.7 1.11 1.41 1.52 1.71 2.07 2.44 2.36 
0.9 1.04 1.13 1.16 1.22 1.37 1.44 1.60 
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Table A3.19 – Comparison of different h/tw values for single point restraint (SPR) case. 
 

 Single Point Restraint 
k=L1/L h/tw=25 h/tw=40 h/tw=60 h/tw=80 

0.1 1.62 1.56 1.43 1.23 
0.3 1.36 1.37 1.32 1.23 
0.5 1.26 1.27 1.22 1.15 
0.7 1.26 1.25 1.19 1.11 
0.9 1.31 1.27 1.18 1.04 

 
Table A3.20 – Comparison of different h/tw values for top flange restraint (TFR) case. 

 
 Top Flange Restraint 

k=L1/L h/tw=25 h/tw=40 h/tw=60 h/tw=80 
0.1 1.93 1.76 1.54 1.27 
0.3 2.56 2.26 1.87 1.54 
0.5 2.90 2.42 1.94 1.59 
0.7 2.09 1.90 1.65 1.41 
0.9 1.54 1.44 1.30 1.13 

 
Table A3.21 – Comparison of different h/tw values for quarter depth stiffener (QDS) case. 

 
 Quarter Depth Stiffener 

k=L1/L h/tw=25 h/tw=40 h/tw=60 h/tw=80 
0.1 2.00 1.81 1.57 1.28 
0.3 2.73 2.42 2.01 1.67 
0.5 3.27 2.71 2.14 1.76 
0.7 2.22 2.02 1.75 1.52 
0.9 1.61 1.49 1.34 1.16 

 
Table A3.22 – Comparison of different h/tw values for half depth stiffener (HDS) case. 

 
 Half Depth Stiffener 

k=L1/L h/tw=25 h/tw=40 h/tw=60 h/tw=80 
0.1 2.09 1.90 1.64 1.32 
0.3 2.92 2.68 2.27 1.90 
0.5 3.61 3.31 2.62 2.13 
0.7 2.38 2.23 1.96 1.71 
0.9 1.72 1.59 1.41 1.22 
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Table A3.23 – Comparison of different h/tw values for three quarter depth stiffener (TQDS) 
case. 

 
 Three Quarter Depth Stiffener 

k=L1/L h/tw=25 h/tw=40 h/tw=60 h/tw=80 
0.1 2.17 2.04 1.78 1.37 
0.3 3.03 2.93 2.64 2.30 
0.5 3.70 3.67 3.43 3.04 
0.7 2.49 2.46 2.28 2.07 
0.9 1.83 1.78 1.61 1.37 

 
Table A3.24 – Comparison of different h/tw values for full depth stiffener (FDS) case. 

 
 Full Depth Stiffener 

k=L1/L h/tw=25 h/tw=40 h/tw=60 h/tw=80 
0.1 2.23 2.18 2.03 1.49 
0.3 3.10 3.08 2.91 2.70 
0.5 3.76 3.78 3.59 3.33 
0.7 2.56 2.60 2.54 2.44 
0.9 1.90 1.93 1.90 1.44 

 
Table A3.25 – Comparison of different h/tw values for twist restraint (TR) case. 

 
 Twist Restraint 

k=L1/L h/tw=25 h/tw=40 h/tw=60 h/tw=80 
0.1 2.21 2.14 1.97 1.53 
0.3 3.07 3.04 2.85 2.62 
0.5 3.68 3.68 3.48 3.22 
0.7 2.54 2.57 2.48 2.36 
0.9 1.91 1.94 1.89 1.60 
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Table A3.26 – Percent reduction in capacity for TFR case. 
 

 Top Flange Restraint 
 % Reduction 

k=L1/L h/tw=40 h/tw=60 h/tw=80 
0.1 8.93 20.46 34.43 
0.3 11.76 27.09 39.73 
0.5 16.29 32.90 44.96 
0.7 8.84 21.17 32.29 
0.9 6.39 15.41 26.51 

 
Table A3.27 – Percent reduction in capacity for QDS case. 

 
 Quarter Depth Stiffener 
 % Reduction 

k=L1/L h/tw=40 h/tw=60 h/tw=80 
0.1 9.48 21.32 35.86 
0.3 11.43 26.46 38.79 
0.5 17.34 34.51 46.12 
0.7 9.03 21.16 31.69 
0.9 7.63 17.05 28.00 

 
Table A3.28 – Percent reduction in capacity for HDS case. 

 
 Half Depth Stiffener 
 % Reduction 

k=L1/L h/tw=40 h/tw=60 h/tw=80 
0.1 9.00 21.60 37.02 
0.3 8.01 22.12 34.98 
0.5 8.18 27.28 41.02 
0.7 6.34 17.75 28.26 
0.9 7.49 17.93 29.20 

 
Table A3.29 – Percent reduction in capacity for TQDS case. 

 
 Three Quarter Depth Stiffener 
 % Reduction 

k=L1/L h/tw=40 h/tw=60 h/tw=80 
0.1 6.02 18.13 37.10 
0.3 3.29 12.84 24.34 
0.5 0.70 7.23 17.81 
0.7 1.49 8.61 17.13 
0.9 3.11 12.08 25.08 
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Table A3.30 – Percent reduction in capacity for FDS case. 
 

 Full Depth Stiffener 
 % Reduction 

k=L1/L h/tw=40 h/tw=60 h/tw=80 
0.1 2.30 8.73 Loc.Bck.
0.3 0.67 6.04 13.07 
0.5 0.38 4.69 11.51 
0.7 1.64 0.70 4.37 
0.9 1.81 0.39 Loc.Bck.

 
Table A3.31 – Percent reduction in capacity for TR case. 

 
 Twist Restraint 
 % Reduction 

k=L1/L h/tw=40 h/tw=60 h/tw=80 
0.1 3.13 11.07 Loc.Bck.
0.3 1.20 7.21 14.65 
0.5 0.12 5.58 12.62 
0.7 1.01 2.43 7.31 
0.9 1.27 1.31 Loc.Bck.
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Table A3.32 – Percent reduction values for TFR, QDS and HDS cases. 
 

 k=L1/L h/tw=40 h/tw=60 h/tw=80 
0.1 8.93 20.46 34.43 
0.3 11.76 27.09 39.73 
0.5 16.29 32.90 44.96 
0.7 8.84 21.17 32.29 

T
op

 F
la

ng
e 

R
es

tr
ai

nt
 

0.9 6.39 15.41 26.51 
0.1 9.48 21.32 35.86 
0.3 11.43 26.46 38.79 
0.5 17.34 34.51 46.12 
0.7 9.03 21.16 31.69 

Q
ua

rt
er

 D
ep

th
 

St
iff

en
er

 

0.9 7.63 17.05 28.00 
0.1 9.00 21.60 37.02 
0.3 8.01 22.12 34.98 
0.5 8.18 27.28 41.02 
0.7 6.34 17.75 28.26 

H
al

f D
ep

th
 

St
iff

en
er

 

0.9 7.49 17.93 29.20 
0.1 10.20 23.80 37.40 
0.3 12.68 29.58 46.48 
0.5 13.20 30.80 48.40 
0.7 11.78 27.48 43.18 R

ed
uc

tio
n 

Fa
ct

or
 

(E
qn

. 3
.4

) 

0.9 8.40 19.60 30.80 
0.1 17.50 32.50 47.50 
0.3 17.50 32.50 47.50 
0.5 17.50 32.50 47.50 
0.7 17.50 32.50 47.50 R

ed
uc

tio
n 

Fa
ct

or
 

(E
qn

. 3
.5

) 

0.9 17.50 32.50 47.50 
 

Table A3.33 – Percent reduction values for TQDS case. 
 

 k=L1/L h/tw=40 h/tw=60 h/tw=80 
0.1 6.02 18.13 37.10 
0.3 3.29 12.84 24.34 
0.5 0.70 7.23 17.81 
0.7 1.49 8.61 17.13 

T
hr

ee
 Q

ua
rt

er
 

D
ep

th
 S

tif
fe

ne
r 

0.9 3.11 12.08 25.08 
0.1 10.50 24.50 38.50 
0.3 6.86 16.01 25.16 
0.5 5.10 11.90 18.70 
0.7 5.21 12.16 19.11 R

ed
uc

tio
n 

Fa
ct

or
 

(E
qn

. 3
.6

) 

0.9 7.20 16.80 26.40 
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CHAPTER 4 – ANALYSIS OF A DOUBLE OVERHANGING MONORAIL 

 

4.1 COMPARISON OF SINGLE AND DOUBLE OVERHANGING BEAMS 

 
Table A4.2 – Comparison of single and double overhanging beams for TFR case. 

 
 h/tw=25 h/tw=40 h/tw=60 h/tw=80 
 

k=L1/L 
SOH DOH SOH DOH SOH DOH SOH DOH 

0.1 1.93 1.94 1.76 1.74 1.54 1.49 1.27 1.22 
0.3 2.56 2.59 2.26 2.26 1.87 1.83 1.54 1.48 
0.5 2.90 2.90 2.42 2.42 1.94 1.91 1.59 1.53 
0.7 2.09 2.09 1.90 1.91 1.65 1.65 1.41 1.38 

T
op

 F
la

ng
e 

R
es

tr
ai

nt
 

0.9 1.54 1.59 1.44 1.51 1.30 1.32 1.13 0.87 
 

Table A4.3 – Comparison of single and double overhanging beams for QDS case. 
 

 h/tw=25 h/tw=40 h/tw=60 h/tw=80 
 

k=L1/L 
SOH DOH SOH DOH SOH DOH SOH DOH 

0.1 2.00 2.02 1.81 1.80 1.57 1.53 1.28 1.23 
0.3 2.73 2.80 2.42 2.43 2.01 1.97 1.67 1.59 
0.5 3.27 3.27 2.71 2.71 2.14 2.11 1.76 1.68 
0.7 2.22 2.22 2.02 2.03 1.75 1.76 1.52 1.50 

Q
ua

rt
er

 D
ep

th
 

St
iff

en
er

 

0.9 1.61 1.64 1.49 1.56 1.34 1.41 1.16 1.09 
 

Table A4.4 – Comparison of single and double overhanging beams for HDS case. 
 

 h/tw=25 h/tw=40 h/tw=60 h/tw=80 
 

k=L1/L 
SOH DOH SOH DOH SOH DOH SOH DOH 

0.1 2.09 2.14 1.90 1.93 1.64 1.63 1.32 1.29 
0.3 2.92 3.03 2.68 2.76 2.27 2.29 1.90 1.85 
0.5 3.61 3.63 3.31 3.31 2.62 2.61 2.13 2.07 
0.7 2.38 2.38 2.23 2.23 1.96 1.97 1.71 1.73 

H
al

f D
ep

th
 

St
iff

en
er

 

0.9 1.72 1.72 1.59 1.64 1.41 1.52 1.22 1.32 
 

Table A4.5 – Comparison of single and double overhanging beams for TQDS case. 
 

 h/tw=25 h/tw=40 h/tw=60 h/tw=80 
 

k=L1/L 
SOH DOH SOH DOH SOH DOH SOH DOH 

0.1 2.17 2.24 2.04 2.10 1.78 1.82 1.37 1.37 
0.3 3.03 3.19 2.93 3.11 2.64 2.79 2.30 2.40 
0.5 3.70 3.76 3.67 3.73 3.43 3.46 3.04 3.04 
0.7 2.49 2.50 2.46 2.46 2.28 2.28 2.07 2.07 

T
hr

ee
 Q

ua
rt

er
 

D
ep

th
 S

tif
fe

ne
r 

0.9 1.83 1.82 1.78 1.78 1.61 1.66 1.37 1.43 
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Table A4.6 – Comparison of single and double overhanging beams for FDS case. 
 

 h/tw=25 h/tw=40 h/tw=60 h/tw=80 
 

k=L1/L 
SOH DOH SOH DOH SOH DOH SOH DOH 

0.1 2.23 2.32 2.18 2.28 2.03 2.15 1.49 1.50 
0.3 3.10 3.29 3.08 3.32 2.91 3.20 2.70 3.01 
0.5 3.76 3.84 3.78 3.89 3.59 3.74 3.33 3.51 
0.7 2.56 2.57 2.60 2.62 2.54 2.56 2.44 2.47 Fu

ll 
D

ep
th

 
St

iff
en

er
 

0.9 1.90 1.89 1.93 1.93 1.90 1.90 1.44 1.46 
 

Table A4.7 – Comparison of single and double overhanging beams for TR case. 
 

 h/tw=25 h/tw=40 h/tw=60 h/tw=80 
 

k=L1/L 
SOH DOH SOH DOH SOH DOH SOH DOH 

0.1 2.21 2.28 2.14 2.22 1.97 2.05 1.53 1.55 
0.3 3.07 3.24 3.04 3.25 2.85 3.11 2.62 2.90 
0.5 3.68 3.77 3.68 3.79 3.48 3.62 3.22 3.37 
0.7 2.54 2.56 2.57 2.59 2.48 2.50 2.36 2.38 

T
w

is
t R

es
tr

ai
nt

 

0.9 1.91 1.92 1.94 1.94 1.89 1.89 1.60 1.48 
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