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Assoc. Prof. Dr. Ferruh ÖZBUDAK (METU, MATH)
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Abstract

ISOMORPHISM CLASSES OF ELLIPTIC CURVES

OVER FINITE FIELDS OF CHARACTERISTIC TWO

Kırlar, Barış Bülent

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Ersan Akyıldız

August 2005, 58 pages

In this thesis, the work of Menezes on the isomorphism classes of elliptic curves

over finite fields of characteristic two is studied. Basic definitions and some facts

of the elliptic curves required in this context are reviewed and group structure of

elliptic curves are constructed.

A fairly detailed investigation is made for the isomorphism classes of elliptic

curves due to Menezes and Schoof. This work plays an important role in Elliptic

Curve Digital Signature Algorithm. In this context, those isomorphism classes of

elliptic curves recommended by National Institute of Standards and Technology

are listed and their properties are discussed.

Keywords: Finite Fields, Elliptic Curves, Isomorphism Classes, Group Structure,

Elliptic Curve Digital Signature Algorithm.
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Öz

KARAKTERİSTİĞİ İKİ OLAN SONLU CİSİMLER

ÜZERİNDE ELİPTİK EĞRİLERİN İZOMORFİZM

SINIFLARI

Kırlar, Barış Bülent

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Ersan Akyıldız

Ağustos 2005, 58 sayfa

Bu tezde, Menezes’in karakteristiği iki olan sonlu cisimler üzerinde eliptik

eğrilerin izomorfizm sınıflarıyla ilgili yaptığı çalışma incelenmiştir. Eliptik eğriler

ile ilgili konularda gereksinim duyulan temel tanımlar ve bazı gerçekler üzerinde

durularak eliptik eğriler üzerinde grup yapısı oluşturulmuştur.

Eliptik Eğri Sayısal İmza Algoritması’nda önemli bir rolü olan eliptik eğrilerin

izomorfizm sınıfları, Menezes ve Schoof’un çalışmaları temel alınarak derinleme-

sine incelenmiştir. Ayrıca, Ulusal Standartlar ve Teknoloji Enstitüsü tarafından

önerilen eliptik eğrilerin, izomorfizm sınıfları belirtilmiş ve özellikleri tartışılmıştır.

Anahtar Kelimeler: Sonlu Cisimler, Eliptik Eğriler, İzomorfizm Sınıfları, Grup

Yapısı, Eliptik Eğri Sayısal İmza Algoritması.
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Chapter 1

Elliptic Curves

1.1 Introduction to Elliptic Curves

Recently, the theory of elliptic curves over finite fields has been applied to

various problems in cryptography: factorization of integers, primality testing and

construction of cryptosystems. The basic reason for this is that elliptic curves over

finite fields provide a large supply of finite abelian groups which are amenable

to computation because of their rich structure. The use of elliptic curves has

been referred to as the first application of twentieth century mathematics to the

problem of prime factor decomposition [8].

In 1985, Miller showed that elliptic curves have a rich enough structure which

increases their importance in cryptography [6]. The elliptic curve methods are

best as analogous of certain older algorithms which depend on properties of the

multiplicative group of a finite field GF (q). It was the difficulty of solving the

discrete logarithm problem in GF (q) that led to the elliptic curve cryptosystems

using an analogous problem based on the finite abelian group of points on an

elliptic curves. In 1987, Koblitz described analogs of some of the public key

cryptosystems based on the discrete logarithm problem on an elliptic curve E

defined over a finite field GF (q) ([2], [3]). Koblitz and Miller suggested using the

abelian group of an elliptic curve over a finite field to implement the ElGamal

public key cryptosystem [1].

The use for the first time of elliptic curves in factorization was discovered by

H. W. Lenstra who obtained a new factorization method which in many respects

is better than earlier known ones.
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Elliptic curves can also be used in primality testing. Goldwasser and Killian

proved that a probabilistic primality testing algorithm of which the expected

running time is bounded by a constant power of log n where n is the number to

be tested. Atkin developed a variant of the algorithm using special elliptic curves

to simplify counting the number of points. Lenstra showed that elliptic curves

can be applied to primality testing and to factorization giving rise to algorithms

with an excellent performance both in theory and practice [8].

When selecting curves over a given field K, it is useful to know when the

choosen curves are isomorphic, how many choices of non-isomorphic curves there

are and the order of the curve. Having identified the isomorphism classes, we

may then pick a representative that could perhaps result in a more efficient im-

plementation of the group addition. Therefore, we are motivated to study the

isomorphism classes of elliptic curves. Because of practical interest, we will use

elliptic curves over finite fields of characteristic two.

We shall start our discussion by presenting basic definitions and some facts

about elliptic curves.

1.2 Basic Facts

Here, we will give some basic facts to understand the elliptic curves and some

theorems associated with isomorphism of two elliptic curves.

Let K be a field. n-dimensional projective space P n(K) over K is given by

equivalence classes of n-tuples (x0, x1, ..., xn) with x0, x1, ..., xn ∈ K and at least

one of xi nonzero for i = 0, 1, ..., n. Two n-tuples (x0, x1, ..., xn) and (y0, y1, ..., yn)

are said to be equivalent if there exists a nonzero element λ ∈ K such that

(x0, x1, ..., xn) = λ(y0, y1, ..., yn)

We write (x0, x1, ..., xn) ∼ (y0, y1, ..., yn). The equivalence class of (x0, x1, ..., xn)

is denoted by (x0 : x1 : ... : xn), and thus P n(K) = {(x0 : x1 : ... : xn) :
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(x0, x1, ..., xn) ∈ Kn}.

The n-dimensional projective space P n(K) can be also identified naturally by

the set of lines through the origin in Kn+1. Let us have close look at the cases

n = 0, 1, 2: it is clear that P 0(K) = {pt}.

For P 1(K); let (x0 : x1) ∈ P 1(K) be a point with x1 6= 0, then (x0 : x1) =

(x0/x1 : 1). These are the finite points in P 1(K). However, if x1 = 0, then

dividing by x1 should be thought of as giving ∞ in x0 coordinate, and so the

points (x0 : 0) are called the points at infinity in P 1(K).

The one-dimensional affine plane over K is often denoted by

A1(K) = {x0 ∈ K}

We have an inclusion

A1(K) ↪→ P 1(K)

given by

x0 → (x0 : 1)

It is clear that P 1(K) \ A1(K) = (1 : 0) : = ∞ : ∼= P 0(K).

For P 2(K); let (x0 : x1 : x2) ∈ P 2(K) be a point with x2 6= 0, then (x0 : x1 :

x2) = (x0/x2 : x1/x2 : 1). These points correspond bijectively to the affine plane

A2(K). If x2 = 0, the points (x0 : x1 : 0) in P 2(K) are called the points at

infinity and these points correspond bijectively to P 1(K) in P 2(K). Thus, the

affine plane

A2(K) = {(x0, x1) ∈ K ×K}

is imbeded

A2(K) ↪→ P 2(K)

by the map

(x0, x1) → (x0 : x1 : 1)

3



and

H∞ = P 2(K) \ A2(K) = {(x0 : x1 : 0) ∈ P 2(K)}

called hyperplane at ∞ is identified with P 1(K) with the map (x0 : x1 : 0) ↔
(x0 : x1).

Since an elliptic curve is a special subvariety of P n(K), we want to introduce

first, the concept of projective subvarieties. Note that for any homogeneous

polynomial F (x0, x1, . . . , xn) in the variables x0, x1, . . . , xn, it make sense to look

at the zeros of F (x0, x1, . . . , xn) in P n(K).

F (x0, x1, . . . , xn) = 0 =⇒ F (λx0, λx1, . . . , λxn) = λmF (x0, x1, . . . , xn) = 0

By a projective subvariety of P n(K), we mean the common set of solutions

of homogeneous polynomials Fα(x0, x1, . . . , xn), for α ∈ I. This subset of P n(K)

is denoted by X = V (Fα : α ∈ I). It is clear that X = V (Fα : α ∈ I) depends

only on the ideal Ω generated by Fα, α ∈ I, and thus any projective subvariety

of P n(K) is a common set of solution of finitely many homogeneous polynomials

in x0, x1, ..., xn over K.

Subvarieties of P 1(K) are trivial. They are either ∅, P 1(K) or a finite set of

points. In fact, if X 6= ∅ or P 1(K), then #X ≤ degF where X = V (F ) as the

following argument shows:

X = V (Ω) = V
(
F (x0, x1)

)
=

{
V

(
F (
x0

x1

, 1) = 0
)
∪ V

(
F = 0, x1 = 0

)}
.

It is well-known that the subvarieties of P 2(K) are either ∅, finite set of points,

P 2(K) or curves X = V
(
F (x0, x1, x2)

)
associated to a homogeneous polynomial

F (x0, x1, x2) over K. When F is a linear or a quadratic polynomial in x0, x1, x2,

it is also well-known in algebraic geometry that; either X is P 1(K) or the non-

singular model of X is P 1(K). So, the first non-trivial case of a subvariety of

P 2(K) occurs when degree of F is 3. These curves X = V (F ), degF = 3, in

P 2(K) turns out to be very interesting objects and do appear in many different
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areas in mathematics. The cubic curve X = V (F ) (i.e. degF = 3) in P 2(K)

is called an elliptic curve if X is a non-singular (smooth) subvariety in P 2(K).

The elliptic curves carry a very rich geometric properties as we shall discuss some

of them below. The general form of a cubic homogeneous polynomial in X, Y, Z

over K is given by

G(X, Y, Z) =
∑

aijkX
iY jZk, i+ j + k = 3.

By a change of variable, we can transform G into the form

F (X, Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3, (1.2.1)

where a1, a2, a3, a4, a6 ∈ K. Thus, it is enough to study X = V (F ) where F is

in the form (1.2.1). This F is called Weierstrass equation over a field K. The

subvariety X = V (F ) of P 2(K) associated to X is not in general a non-singular.

For X = V (F ) to be an elliptic curve it has to be non-singular and therefore is

necessary and sufficient that the following set is ∅:

X = V (F ) ∩
{
P ∈ P 2(K) : ∇F (P ) =

( ∂F
∂X

(P ),
∂F

∂Y
(P ),

∂F

∂Z
(P )

)
= (0, 0, 0)

}
.

Since F is homogeneous of degree 3, and Z - F , we get

f(x, y) = F (x, y, 1),

and

F (X, Y, Z) = Z3f(
X

Z
,
Y

Z
).

This polynomial f is the affine form of F . The affine points (x, y) ∈ A2(K) on

the original curve correspond to the points (x : y : 1) in the projective plane as

discussed above. To see what points on X = V (F ) lie at infinity, we set Z = 0

in F (X, Y, Z) = 0 and obtain X3 = 0. This gives X = 0, and therefore (0 : 1 : 0)

is the only point at infinity which is denoted by O; namely X ∩H∞ = {(0 : 1 :
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0)}. Now, we write the equation (1.2.1) using the affine coordinates x = X/Z,

y = Y/Z,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.2.2)

Thus, the elliptic curve defined by E is then the set of solutions in A2(K),

together with the extra point at infinity O. Now, we will give the main theorem

associated to the isomorphism of two elliptic curves over K. The proof of this

theorem can be found in [11].

Theorem 1.2.1. Two elliptic curves E1(K) and E2(K) given by

E1 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

E2 : y2 + ā1xy + ā3y = x3 + ā2x
2 + ā4x+ ā6

are isomorphic over K, denoted E1(K) ∼= E2(K), if and only if there exists

u, r, s, t ∈ K, u 6= 0, such that the change of variables, so called admissible

change of variables,

ψ : (x, y) 7−→ (u2x+ r, u3y + u2sx+ t) (1.2.3)

transforms equation E1 to equation E2.

Proof. We refer the reader to the reference [11] to find the existence of ψ in

case E1(K) ∼= E2(K). For the other implementation we note that the change of

variables transforms equation E1 to equation E2, then the change of variables

φ : (x, y) 7−→
(
u−2(x− r), u−3(y − sx− t+ rs)

)
(1.2.4)

associated to map ψ in (1.2.3) transforms equation E2 to equation E1, and φ is

the inverse of the map ψ in the sense that ψ ◦ φ = idE1 , φ ◦ ψ = idE2 .

Since ψ, φ are morphisms of varieties and ψ ◦ φ = id, φ ◦ ψ = id on E1 and

E2, respectively, these affine varieties E1 and E2 are isomorphic over K.
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It can be checked that the existence of an admissible change of variables

ψ : (x, y) 7−→ (u2x+ r, u3y+u2sx+ t) is equivalent to the existence of common

solution to the following equations in u, r, s, t ∈ K, u 6= 0:

uā1 = a1 + 2s

u2ā2 = a2 − sa1 + 3r − s2

u3ā3 = a3 + ra1 + 2t

u4ā4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u6ā6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1


(1.2.5)

For the details we refer the reader to [11]. We state this below:

Theorem 1.2.2. Two elliptic curves E1(K) and E2(K) are isomorphic over K

if and only if there exists u, r, s, t ∈ K, u 6= 0 satisfying the system of equations

(1.2.5).

Example: Let’s consider the elliptic curves E1(F5) and E2(F5) as follows;

E1(F5) : y2 = x3 + 2

E2(F5) : y2 = x3 + 3

It follows from the system of equations (1.2.5) that E1 and E2 are isomorphic

over F ∗5 if and only if 3u6 = 2 has a solution in F ∗5 . Since u = 2 and u = 3 are

solutions of 3u6 = 2 in F ∗5 , these two curves are isomorphic. However, these two

curves are not isomorphic over F ∗7 because the corresponding equation 3u6 = 2

does not have any solution in F ∗7 .

1.3 The Discriminant and j-Invariant

Let E be an elliptic curve over K given by the equation

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

7



The following quantities attached to E plays a crucial role in the theory:

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = d2
2 − 24d4

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6 (1.3.6)

j(E) = c34/∆ (1.3.7)

The quantity ∆ is called the discriminant of E, while j(E) is called the j-

invariant of E. The following two theorems explain the significance of these

quantities. The proofs of these theorems can be found in [11].

Theorem 1.3.1. The elliptic curve E is non-singular if and only if ∆ 6= 0.

Theorem 1.3.2. If two elliptic curves E1(K) and E2(K) are isomorphic over

K, then j(E1) = j(E2). The converse is also true if K is an algebraically closed

field.

1.4 The Group Structure of an Elliptic Curve

Let K be any field and let E be an elliptic curve over K given by the equation

(1.2.2)

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Let P = (x1, y1) and Q = (x2, y2) be the points on E with P,Q 6= O. Let L

be the line connecting P and Q (if P = Q, then L will be taken to be the tanjent

line to E), and R
′
be the third point of intersection of L with E. Let L

′
be the

line connecting R
′
and O. Then, P +Q = R is defined as the unique point which

is symmetric to the point R
′
with respect to the x-axis such that L

′
intersects E

at R
′
, O, and P + Q. This procedure is so called the composition law. Now,
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we will derive an explicit formula for the coordinates of P +Q = R = (x3, y3) in

terms of the coordinates P and Q, where this law can be viewed over the field of

real numbers by the following figure:

Figure 1.1: Geometric addition and doubling of elliptic curve points

If P 6= Q, then it is clear that the line L passing through P and Q intersects

the curve in one and only one third point say R
′
.

Let λ represent the slope of the line passing through P and Q, then

λ =
y2 − y1

x2 − x1

, if x1 6= x2.

We know that the line L passes through P , Q and intersects the curve E at a

third point R
′
= (x3,−y3 − a1x3 − a3). The equation of the line L is y = λx+ β.

The sum of the roots of a monic polynomial is equal minus coefficient of the

second-to-highest power. In our case, we have y = λx + β. Substituting in

equation (1.2.2), we get

(λx+ β)2 + a1x(λx+ β) + a3(λx+ β) = x3 + a2x
2 + a4x+ a6,

9



which gives

x3 + (a2 − a1λ− λ2)x2 + (a4 − a1β − 2λβ − a3λ)x+ (a6 − β2 − a3β) = 0

in which, the coefficient of x2 is a2 − a1λ − λ2 and the leading coefficient is 1.

Thus,

x1 + x2 + x3 = λ2 + a1λ− a2

we conclude that the third root in this case is

x3 = λ2 + a1λ− a2 − x1 − x2

this leads to an expression for x3, and since R
′
= (x3,−y3 − a1x3 − a3) is on the

line L, it satisfies y = λx+ β. Hence, we get

y3 = −(λ+ a1)x3 − β − a3

In the case that x1 = x2 but y1 6= y2, the line L through P and Q is a vertical

line. Therefore, these two points P and Q intersects E in the infinity point O.

Reflecting O across the x-axis yields the same point O. So, in this case P+Q = O.

If P = Q, then we take L to be the tangent line to the curve E at P . Therefore,

λ is simply the derivative ∂y
∂x

at P . Differentiating equation (1.2.2) gives

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

.

Thus, the other point P + P = R = (x3, y3) is as the following:

x3 = λ2 + a1λ− a2 − 2x1

y3 = −(λ+ a1)x3 − β − a3

By using the above procedure, we will give the theorems whose proofs can be

found in [11].
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Theorem 1.4.1. The composition law has the following properties:

(i) If a line L intersects E at any points P,Q,R, then (P +Q) +R = O.

(i) O + P = P and P +O = P for all P ∈ E.

(iii) −O = O.

(iv) If P = (x1, y1) 6= O, then −P = (x1,−y1 − a1x1 − a3).

(v) If Q = −P , then P +Q = O.

(vi) P +Q = Q+ P for all P ∈ E.

(vii) (P +Q) +R = P + (Q+R) for all P,Q,R ∈ E.

Theorem 1.4.2. (E(K),+) is an abelian group with identity element O.

Example: To illustrate the addition law, consider the elliptic curve E on R
given by

E : y2 = x3 − 16x+ 16.

Let P1 = (0, 4), P2 = (1, 1). Then, we will find P1 + P2 and 2P1. Using the

procedure explained above, we have

P1 = (0, 4) ⇒ x1 = 0, y1 = 4

P2 = (1, 1) ⇒ x2 = 1, y2 = 1.

Since P1 6= P2,

λ =
y2 − y1

x2 − x1

=
1− 4

1− 0
= −3.

Then, we get x3 = (−3)2 − 1 = 8 and y3 = (−3)(−8) − 4 = 20. Therefore,

P1 + P2 = (8, 20). Now, we will find 2P1, so we use the other case (i.e. P1 = P2)

λ =
3x2

1 − 16

2y1

=
−16

8
= −2.

Then, we get x3 = (−2)2 = 4 and y3 = (−2)(−4) − 4 = 4. Therefore,

2P1 = (4, 4). Using P1, 2P1, we can find 3P1, 4P1, 5P1,..., and so on applying

11



the same method.

Now if E1(K) and E2(K) are isomorphic elliptic curves, then there exists an

admissible change of variables ψ : (x, y) 7−→ (u2x + r, u3y + u2sx + t) which

transforms equation E1 to equation E2. It can be checked that this map ψ

preserves the + operation, namely ψ(P +Q) = ψ(P ) + ψ(Q), and thus ψ is also

an isomorphism of the groups (E1(K),+) and (E2(K),+). This gives us the next

theorem [11].

Theorem 1.4.3. If the elliptic curves E1(K) and E2(K) are isomorphic as el-

liptic curves, then they are also isomorphic as abelian groups, and therefore as

abelian varieties.

Example: The converse of the statement in Theorem 1.4.3 is not in general

true, and in fact the elliptic curves y2 = x3 + 1 and y2 = x3 + 2 over F5 are

isomorphic as group but not isomorphic as elliptic curves because there is no

admissible change of variables as in (1.2.3) satisfying the set of equations (1.2.5).

1.5 Some Properties over Finite Fields

We list some of the important properties of elliptic curves E over the finite

field K = Fq.

If E is given by a Weierstrass equation (1.2.2), then since this equation has

at most 2 solutions for each choice of x ∈ Fq, we have atmost 2q points in

A2(K) = K × K and one more point at infinity O, thus #E ≤ 2q + 1. The

following theorem improves the above bound on the size of E, whose proof is

given in [11].

Theorem 1.5.1 ( Hasse’s Theorem ). Let n = #E(Fq). Then |(q+ 1)−n| ≤
2
√
q.

If E is an elliptic curve over Fq, then E can also be viewed as an elliptic curve

over any finite extension field Fqm of Fq. We next mention a useful result that

12



enables one to compute #E(Fqm) from #E(Fq). This result, which was proved

by Hasse in 1934, is a specialization to elliptic curves of the Weil Conjecture

concerning the number of points on varieties defined over finite fields. The proof

of below theorem can be found in [11].

Theorem 1.5.2 ( Weil Conjecture ). Let E be an elliptic curve over Fq, and

let Nm = #E(Fqm), m ≥ 1. Define the zeta function Z(T ) = e
∑

m=1
NmTm

m . Then

Z(T ) =
1− tT + qT 2

(1− T )(1− qT )

where t = q+1−N1. Let α, β be the complex numbers such that (1− tT +qT 2) =

(1− αT )(1− βT ). Then Nm = qm + 1− αm − βm, m ≥ 1.

The elliptic curve over Fq, where q = pm is said to be supersingular if p divides

t, where #E(Fq) = q+1− t. Otherwise, it is called non-supersingular. It is well-

known that if p = 2 or if p = 3, then E is supersingular if and only if j(E) = 0.

This is proved in [13].

We have seen that E(Fq) is an abelian group. The next result further describes

the structure of this group. Cm denotes the cyclic group on m elements. Now,

we recall some standard results from abelian group theory. Every finite abelian

group G can be decomposed into a direct sum of cyclic groups

G = Cn1 ⊕ Cn2 ⊕ . . .⊕ Cns ,

where ni+1 | ni for all i = 1, 2, ..., s − 1 and ns ≥ 2. Furthermore, this decom-

position is unique. For the elliptic curves we have the following whose proof can

be found in [11].

Theorem 1.5.3. E(Fq) ∼= Cn1 × Cn2, where n1 and n2 are integers, with n2

dividing n1. Morever, n2 divides q − 1.

13



Chapter 2

Isomorphism Classes of Elliptic

Curves over Finite Fields of

Characteristic Two

In this chapter, we obtain the isomorphism classes of elliptic curves over finite

fields K = F2m and give a representative of each isomorphism class of these

curves. We also determine #E(F2m) for each supersingular curve E defined over

F2m .

2.1 Introduction

In this section , we discuss some of the known results on isomorphism classes

of elliptic curves over finite fields. We begin with a definition. Let
(

a
b

)
denotes

the usual Jacobi symbol, and let

(a
2

)
=


1, if a ≡ ±1 (mod 8)

0, if a ≡ 0 (mod 2)

−1, if a ≡ ±3 (mod 8)

Waterhouse [9] (see also Schoof [5]) counted the number of isomorphism classes

of elliptic curves defined over the finite field Fq by first determining which rings

can occur as the endomorphism ring of some elliptic curve, and then counting

the number of isomorphism classes of elliptic curves with a given endomorphism

ring. He also proceeded to determine the number of isomorphism classes of elliptic
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curves over Fq, denoted by Nq(t), such that #E(Fq) = q + 1 − t. The results

obtained are the following [5]:

Theorem 2.1.1. Let Fq be a finite field. Then, the number of isomorphism

classes of elliptic curves over Fq equals

Nq = 2q + 3 +
(−4

q

)
+ 2

(−3

q

)
.

Theorem 2.1.2. Let p be a prime and q = pm. Let t be an integer with |t| ≤ 2
√
q.

Then,

Nq(t) =



H(t2 − 4q) if t2 < 4q and p - t
H(−4p) if t = 0 and m odd

1 if t2 = 2q, p = 2 and m odd

1 if t2 = 3q, p = 3 and m odd
1
12

(
p+ 6− 4

(
−3
p

)
− 3

(
−4
p

))
if t2 = 4q and m even

1−
(
−3
p

)
if t2 = q and m even

1−
(
−4
p

)
if t = 0 and m even

0 if otherwise.

Here, H(∆) denotes the Kronecker class number of ∆ and it is the number

of SL2(Z)-orbits of positive definite binary quadratic forms of discriminant ∆,

where ∆ is a negative integer congruent to 0 or 1 modulo 4. One method of

computing H(∆) follows from the fact that H(∆) = #B (∆), where

B (∆) =
{
(a, b, c) ∈ Z3 : a > 0, ∆ = b2 − 4ac, |b| ≤ a ≤ c,

and b ≥ 0 whenever a = |b| or a = c
}
.

It is clear that if (a, b, c) ∈ B (∆), then a ≤
√
|∆|/3 and so B (∆) is a finite set.

For more details of binary quadratic forms, their relationship of elliptic curves

and a table of H(∆) for small values of −∆, consult [5].
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A simple proof of Theorem 2.1.2 and also a representative of each isomorphism

class of elliptic curves over F (q), q = 2m has been studied in [12]. Our aim is

to give the details of that work. The only background needed to understand the

proofs will be some elementary results on finite fields. We are able to simplify

the proofs by using Theorem 1.2.2 associated with the definition of isomorphism.

Lenstra [8] used a similar approach to count the isomorphism classes of elliptic

curves over finite fields of characteristic greater than 3.

Now, we will summarize some elementary results on finite fields (for more

details, consult [10]). These results will play very important role classifying the

isomorphism classes of elliptic curves of charecteristic 2.

For α in F2m , the trace function Tr denotes the F2-linear function Tr :

F2m −→ F2 defined by

Tr : α 7−→ α+ α2 + α22

+ . . .+ α2m−1

.

It is clear that the trace function satisfies the following properties:

(i) Tr(α+ β) = Tr(α) + Tr(β) for all α, β ∈ F2m .

(ii) Tr(α2) = Tr(α) for all α ∈ F2m .

For α in F2m where m is even, the half-trace function Te denotes the F4-linear

function Te : F2m −→ F4 defined by

Te : α 7−→ α+ α22

+ α24

+ . . .+ α2m−2

.

Since x2+x+1 is the only irreducible polynomial over F2, F4 = F2[x]/ 〈x2 + x+ 1〉
Let c1, c2 ∈ F4 be roots of the irreducible polynomials x2 + x+ 1 ∈ F2[x]. Then,

the elements of F4 are denoted by 0, 1, c1 and c2. Since x2+x+1 = (x−c1)(x−c2),
we get the identities c21 + c1 + 1 = 0, c22 + c2 + 1 = 0, c1c2 = 1 and c1 + c2 = 1.

We have also Te(c1α) = c1Te(α) and Te(c2α) = c2Te(α) for α ∈ F2m .

Now, we will define the quadratic and quartic equations in F2m and discuss

the conditions that these equations have solutions in F2m . These conditions are

obtained by Menichetti in [7].
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Using the general results in [7] concerning the number of roots of an affine

polynomial over a finite field, we obtain the following special cases:

The quadratic equation over F2m

x2 + ax+ b = 0, a, b ∈ F2m , a 6= 0, (2.1.1)

has a solution in F2m if and only if Tr(a−2b) = 0. If x1 is one solution, then the

other solution is x1 + a.

Consider now the quartic equation over F2m

x4 + ax+ b = 0, a, b ∈ F2m , a 6= 0, (2.1.2)

then, we have the following:

(i) If m is odd, then (2.1.2) has either no solution or exactly two solutions.

(ii) If m is even and a is not a cube, then (2.1.2) has exactly one solution.

(iii) If m is even and a is a cube, then if Te(b/a4/3) = 0, the equation (2.1.2) has

four solutions , and if Te(b/a4/3) 6= 0, the equation (2.1.2) has no solutions.

2.2 Elliptic Curves over F2m

Let K be a field of characteristic 2, and let E(K) be the elliptic curve given

by the Weierstrass equation

E : y2 + ā1xy + ā3y = x3 + ā2x
2 + ā4x+ ā6.

When we specialize (1.3.7) in F2m , we find that j(E) = (ā1)
12/∆. Since E is

non-singular, ∆ 6= 0.

• If j(E) 6= 0, then ā1 6= 0. Therefore, the admissible change of variables

(x, y) −→
(
ā2

1x+
ā3

ā1

, ā3
1y +

ā2
1ā4 + ā2

3

ā3
1

)
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transforms E to the curve

E1 : y2 + xy = x3 + a2x
2 + a6.

For E1, ∆ = a6 6= 0 and j(E1) = 1/a6.

• If j(E) = 0, then ā1 = 0. Therefore, the admissible change of variables

(x, y) −→ (x+ ā2, y)

transforms E to the curve

E2 : y2 + a3y = x3 + a4x+ a6.

For E2, ∆ = a4
3, a3 6= 0 and j(E2) = 0.

Addition Formula when j(E) 6= 0

Let P = (x1, y1) ∈ E1; then it is clear that −P = (x1, y1 + x1). If Q =

(x2, y2) ∈ E1 and Q 6= −P , then P +Q = (x3, y3). Now we will find that x3 and

y3 using the structure in Section (1.4).

If P 6= Q, then the line L passing through P and Q intersects the curve in

one and only one third point R
′
= (x3, y3 + x3). We get

x3 = λ2 + λ+ a2 + x1 + x2, λ =
y1 + y2

x1 + x2

and since R
′
= (x3, y3 + x3) satisfies the line y = λx+ β, we get

y3 = (λ+ 1)x3 + β

As P = (x1, y1) ∈ E1 satisfies the line L, we can write β = λx1 + y1. Therefore,

y3 = λ(x1 + x3) + x3 + y1
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If P = Q, then x1 = x2 and λ is simply the derivative ∂y
∂x

at P . Hence, we get

x3 = λ2 + λ+ a2 + x1 + x2, λ = x1 +
y1

x1

and since R
′
= (x3, y3 + x3) satisfies the line y = λx+ β, we get

y3 = x2
1 + λx3 + x3

If we rewrite the point P +Q = R = (x3, y3), we obtain

x3 =


(
y1 + y2
x1 + x2

)2 +
y1 + y2
x1 + x2

+ x1 + x2 + a2, if P 6= Q

x2
1 + a6

x2
1

, if P = Q

and

y3 =


(
y1 + y2
x1 + x2

)(x1 + x3) + x3 + y1, if P 6= Q

x2
1 + (x1 +

y1
x1

)x3 + x3, if P = Q

Addition Formula when j(E) = 0

Let P = (x1, y1) ∈ E2; then it is clear that −P = (x1, y1 + a3). If Q =

(x2, y2) ∈ E2 and Q 6= −P , then P + Q = R = (x3, y3). We find that x3 and y3

using the structure in Section (1.4) as follows

x3 =


(
y1 + y2
x1 + x2

)2 + x1 + x2, if P 6= Q

x4
1 + a2

4

a2
3

, if P = Q
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and

y3 =


(
y1 + y2
x1 + x2

)(x1 + x3) + y1 + a3, if P 6= Q

(
x2

1 + a4
a3

)(x1 + x3) + y1 + a3, if P = Q

From the addition formula, it is evident that the number of field operations

involved in adding two points is about the same when j(E) = 0 or when j(E) 6= 0.

If we choose a curve of j-invariant equal to 0 with a3 = 1, then the number of

field operation is significantly reduced. This helps explain our special interest in

curves of j-invariant equal to 0.

2.3 Isomorphism Classes of E(F2m), j(E) 6= 0

Let E1(K) and E2(K) be elliptic curves with non-zero j-invariants. It follows

from Section (2.2) that these curves upto isomorphism are given by the equations:

E1 : y2 + xy = x3 + a2x
2 + a6, ∆ = a6 6= 0, j(E1) = 1/a6

E2 : y2 + xy = x3 + ā2x
2 + ā6, ∆ = ā6 6= 0, j(E2) = 1/ā6

Using the theorem (1.2.2), we find that E1(K) ∼= E2(K) if and only if a6 = ā6

and there exists s ∈ K such that ā2 = a2 + s+ s2. We know that from (2.1.1) the

latter condition is equivalent to having Tr(ā2 + a2) = 0, i.e., Tr(ā2) = Tr(a2).

Thus, E1(K) ∼= E2(K) if and only if a6 = ā6 and Tr(ā2) = Tr(a2).

Since Tr(a2) takes 2 values 0 and 1 and there exists q− 1 values for a6 6= 0 in

Fq, where q = 2m, we obtain the following

Theorem 2.3.1. There are 2(q − 1) isomorphism classes of elliptic curves with

non-zero j-invariant over Fq, where q = 2m, m ≥ 1. In fact, the set of represen-

tatives of the isomorphism classes is given by{
y2 + xy = x3 + a2x

2 + a6 | a6 ∈ F ∗2m , a2 ∈ {0, γ}
}
,
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where γ is an element of F2m such that Tr(γ) = 1. Note that, if m is odd, γ can

be taken obviously as 1.

We know that the trace of the half of the elements in F2m are 0 and the others

are 1; so, the q/2 curves isomorphic to E1 are the curves y2 +xy = x3 +αx2 +a6,

where α ranges over the q/2 elements of F2m which satisfy Tr(α) = Tr(a2).

2.4 Isomorphism Classes of E(F2m) when m is

odd and j(E) = 0

If m is odd, then 2m − 1 ≡ 1 (mod 3). This implies that 3 - 2m − 1. Hence,

F ∗2m has no elements of order 3, and so the map f : F ∗2m −→ F ∗2m defined by

f : x 7−→ x3 is 1-1. Infact, if x, y are in F ∗2m such that f(x) = f(y), then we get

x3 = y3 ⇒ (xy−1)3 = 1

This gives xy−1 = 1 and so x = y. In this case we see that x 7→ x3 is a bijective

map on F ∗2m , and therefore we get a unique cube root 3
√
α of any α ∈ F ∗2m .

Let E
′
be the curve given by the equation

E
′

: y2 + a
′

3y = x3 + a
′

4x+ a
′

6 (a
′

3 6= 0).

Let r = 3
√
a
′
3. Then the admissible change of variables (x, y) −→ (r2x, r3y)

transforms E
′
to a curve given by

E : y2 + y = x3 + a4x+ a6. (2.4.3)

Thus, we can assume that any elliptic curve over F2m where m is odd (with

j(E) = 0) has the form (2.4.3). If Ē is the curve given by

Ē : y2 + y = x3 + ā4x+ ā6,
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then, using the theorem (1.2.2), we see that E ∼= Ē over F2m if and only if there

exists s = s1, t = t1 ∈ F2m satisfying the equations

s4 + s+ a4 + ā4 = 0 (2.4.4)

t2 + t+ s6 + a4s
2 + a6 + ā6 = 0 (2.4.5)

The admissible change of variables which tranforms the equation E into the

equation Ē is of the form ψ : (x, y) −→ (x + s2, y + sx + t), where s, t ∈ F2m .

This gives us the isomorphism ψ : E → Ē.

Let E1 be the elliptic curve over F2m given by

E1 : y2 + y = x3,

and let E be any elliptic curve over F2m given by the form (2.4.3)

E : y2 + y = x3 + a4x+ a6,

which is isomorphic to E1. Then, there exists s1, t1 ∈ F2m , satisfying the equations

s4 + s+ a4 = 0 (2.4.6)

t2 + t+ s6 + a6 = 0 (2.4.7)

Now, we proceed to count the number of admissible change of variables which

transform E to E1. We achieve this by counting the total number of solutions

(s, t) to the equation (2.4.6) and (2.4.7). This leads us to the number of elliptic

curves E isomorphic to E1.

Using the quartic equation (2.1.2), we see that the equation (2.4.6) has always

two solutions s = s1 and s = s1 +1 in F2m , because m is odd. On the other hand,

since (s1, t1) is a solution to the quadratic equation (2.4.7), we have Tr(s6
1 +a6) =

0.
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However,

Tr
(
(s1 + 1)6 + a6

)
= Tr

(
s6
1 + s4

1 + s2
1 + 1 + a6

)
= Tr

(
s6
1 + a6

)
+ Tr

(
s4
1 + s2

1 + 1
)

= Tr
(
s4
1

)
+ Tr

(
s2
1

)
+ 1

= 1

because Tr
(
s4
1

)
= Tr

(
s2
1

)
for any s1 ∈ F2m . Therefore, there are exactly two

solutions (s1, t1) and (s1, t1 + 1) to the equations (2.4.6) and (2.4.7).

Since s and t are free in F2m , there are q2 admissible change of variables.

Therefore, there are q2/2 elliptic curves isomorphic to E1. Since both a4 and a6

can take q values, there are q2 elliptic curves over F2m when m is odd. So, the

number of elliptic curves isomorphic to E1 is only half of the total elliptic curve

over F2m when m is odd.

Let E2 be the elliptic curve over F2m given by

E2 : y2 + y = x3 + x.

Note that E2 � E1, because the equation

s2 + s+ 1 = 0

has no solution when m is odd. Now, we are going to count the elliptic curves

E : y2 + y = x3 + a4x+ a6,

which is isomorphic to E2. If E ∼= E2, then there exists s1, t1 ∈ F2m , satisfying

the equations

s4 + s+ 1 + a4 = 0 (2.4.8)

t2 + t+ s6 + s2 + a6 = 0 (2.4.9)

23



The quartic equation (2.4.8) has always two solutions s = s1 and s = s1 + 1

in F2m by (2.1.2). Since t = t1 is a solution of the quadratic equation (2.4.9)

associated to the choice s = s1 in (2.4.9), we get Tr(s6
1 + s2

1 + a6) = 0. This gives

Tr
(
(s1 + 1)6 + (s1 + 1)2 + a6

)
= Tr

(
s6
1 + s4

1 + a6

)
= Tr

(
s4
1

)
+ Tr

(
s2
1

)
= 0

Thus, there are 4 solutions (s1, t1), (s1+1, t1), (s1, t1+1) and (s1+1, t1+1) to the

equations (2.4.8) and (2.4.9). Since there are q2 admissible change of variables, as

mentioned above q2/4 elliptic curves isomorphic to E2. So, the number of elliptic

curves isomorphic to E2 is 1/4 of the total elliptic curve over F2m when m is odd.

It is clear that there are q2/4 elliptic curves left.

Let E3 be the elliptic curve over F2m given by

E3 : y2 + y = x3 + x+ 1.

It is easy to see that E1 � E3 and E2 � E3 by checking that the set of equations

(1.2.5) have no solutions in F2m . Now, we will count the elliptic curves

E : y2 + y = x3 + a4x+ a6,

which is isomorphic to E3. If E ∼= E3, then there exists s = s1, t = t1 ∈ F2m ,

satisfying the equations

s4 + s+ 1 + a4 = 0 (2.4.10)

t2 + t+ s6 + s2 + a6 + 1 = 0 (2.4.11)

The quartic equation (2.4.10) in s has always two solutions s1 and s1 + 1. Since

t = t1 is a solution of the quadratic equation (2.4.11) associated to the choice

s = s1 in (2.4.11), we get Tr(s6
1 + s2

1 + a6 + 1) = 0.

24



This gives

Tr
(
(s1 + 1)6 + (s1 + 1)2 + a6 + 1

)
= Tr

(
s6
1 + s4

1 + a6 + 1
)

= Tr
(
s4
1

)
+ Tr

(
s6
1 + a6 + 1

)
= Tr

(
s4
1

)
+ Tr

(
s2
1

)
= 0

So, the quadratic in t associated to the choice s = s1 + 1 has two solutions as

well. It is clear that there are 4 solutions (s1, t1), (s1 + 1, t1), (s1, t1 + 1) and

(s1 + 1, t1 + 1) to the equations (2.4.10) and (2.4.11). Therefore, from the same

reason as above, there are q2/4 elliptic curves isomorphic to E3.

We have accounted the number of non-isomorphic elliptic curves over F2m

with zero j-invariant, where m is odd. We summarize this result as the next

theorem.

Theorem 2.4.1. There are 3 isomorphism classes of elliptic curves over F2m

with j-invariant equal to 0, where m is odd. A representative from each class is:

(i) y2 + y = x3

(ii) y2 + y = x3 + x

(iii) y2 + y = x3 + x+ 1.

2.5 Isomorphism Classes of E(F2m) when m is

even and j(E) = 0

In this section, we will prove that there are exactly seven isomorphism classes

of elliptic curves over Fq, where q = 2m, m even, with j-invariant equal to 0.

We will also obtain a representative of each of these seven isomorphism classes in

this section.

Recall that F4 = F2[x]/(x
2 + x+ 1) = {0, 1, c1, c2} and the half-trace function
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Te denotes the F4-linear function Te : F2m −→ F4 defined by

Te : α 7−→ α+ α22

+ α24

+ . . .+ α2m−2

.

Now, we will define the cube elements in F2m , where m is even. If there exists

any x in F2m such that x3 = a, then a is said to be a cube in F2m . Since m is

even, it is clear that 3 | 2m − 1. This gives that there exists an element of order

3 in F ∗2m . Therefore, the map f : F ∗2m −→ F ∗2m given by x 7−→ x3 is 3 - 1 map.

In conclusion, when m is even, F ∗2m have (q − 1)/3 cube elements.

Let E be the curve

E : y2 + a3y = x3 + a4x+ a6 (a3 6= 0). (2.5.12)

We will consider the following three types of curves:

Type I: a3 is not a cube.

Type II: a3 is a cube, and Te(a4) 6= 0.

Type III: a3 is a cube, and Te(a4) = 0.

We note the following:

(a) For Type I; there are exactly
(
2(q − 1)q2

)
/3 elliptic curves, because a4,

a6 are free and a3 is not a cube.

(b) For Type II; there are exactly
(
(q − 1)q2

)
/4 elliptic curves, because a6 is

free, a3 is a cube and a4 takes 3q/4 values due to the fact that Te : F2m → F4

and Te(a4) 6= 0.

(c) For Type III; there are exactly
(
(q − 1)q2

)
/12 elliptic curves, because a6

is free, a3 is a cube and a4 takes q/4 values due to the fact that Te : F2m → F4

and Te(a4) = 0.

It follows from these results that
(
2(q − 1)q2

)
/3 +

(
(q − 1)q2

)
/4 +

(
(q −

1)q2
)
/12 = (q − 1)q2 which is the total number of elliptic curves over F2m when

m is even.

Now, we will examine these 3 types of curves, respectively.
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Type I Curves

Let E1 be the Type I curve given by

E1 : y2 + a3y = x3, a3 6= 0 and not a cube.

and let Ē be any elliptic curve over F2m given by

Ē : y2 + ā3y = x3 + ā4x+ ā6, ā3 6= 0

which is isomorphic to E1. Then, by theorem (1.2.2), there exists an admissible

change of variables in the form (x, y) −→ (u2x+s2, u3y+u2sx+ t) and solutions

u = u1, s = s1, t = t1 ∈ F2m of the equations

u3 = a3/ā3 (2.5.13)

s4 + a3s+ u4ā4 = 0 (2.5.14)

t2 + a3t+ s6 + u6ā6 = 0 (2.5.15)

Since ā3 = a3/u
3 and a3 is a non-cube, ā3 is also a non-cube. Hence, Ē is

also a Type I curve. We proceed to count the number of admissible change of

variables which transform Ē to E1. We achieve this by counting the total number

of solutions (u, s, t) to the equations (2.5.13), (2.5.14) and (2.5.15). This leads us

to the number of elliptic curves E isomorphic to E1.

Now, (2.5.13) has exactly 3 solutions. Since F4 ⊂ F2m , we can represent these

solutions as u1, c1u1 and c2u1. Since a3 is a non-cube, (2.5.14) has exactly one

solution for each choice of u by (2.1.2). These unique solutions to (2.5.14) are

(u1, s1), (c1u1, c1s1) and (c2u1, c2s1). For each choice of the pairs (u, s), there are

always 2 solutions t = t1 and t = t1 + a3 to (2.5.15). So, there are 6 solutions of

the equations (2.5.13), (2.5.14) and (2.5.15) in F2m .

Since u 6= 0 and s, t are free in F2m , there are (q − 1)q2 admissible change of

variables. Therefore, the number of elliptic curves isomorphic to E1 is (q−1)q2/6.

Since a3 6= 0 and not a cube takes 2(q − 1)/3 values, a4 and a6 take q values,
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there are 2(q − 1)q2/3 Type I elliptic curves over F2m when m is even. So, the

number of elliptic curves isomorphic to E1 is 1/4 of the total Type I elliptic curve

over F2m when m is even.

Let E2 be the Type I curve given by

E2 : y2 + b3y = x3 + b6, b3 6= 0 and not a cube, Tr
(
b−2
3 b6

)
= 1

Note that E2 � E1, because the equations

u3 = a3/b3

s4 + a3s = 0

t2 + a3t+ s6 + u6b6 = 0

have no solution (u, s, t) in F2m . In fact, the equation s4+a3s = 0 has always only

one solution s = 0, because a3 is a non-cube. This implies the latter equation

has no solution, because Tr(a−2
3 u6b6) = Tr(b−2

3 b6) = 1.

Now, we are going to count the elliptic curves

Ē : y2 + ā3y = x3 + ā4x+ ā6, ā3 6= 0

which is isomorphic to E2. Then, by theorem (1.2.2), there exists u = u1, s =

s1, t = t1 ∈ F2m , satisfying the equations

u3 = b3/ā3 (2.5.16)

s4 + b3s+ u4ā4 = 0 (2.5.17)

t2 + b3t+ s6 + u6ā6 + b6 = 0 (2.5.18)

Now, (2.5.16) has exactly 3 solutions , namely u1, c1u1 and c2u1. Since b3 is a

non-cube, (2.5.17) has exactly one solution for each choice of u by (2.1.2). These

unique solutions to (2.5.17) are (u1, s1), (c1u1, c1s1) and (c2u1, c2s1). For each

choice of the pairs (u, s), there are always 2 solutions t = t1 and t = t1 + b3 to
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(2.5.18). So, there are 6 solutions of the equations (2.5.16), (2.5.17) and (2.5.18)

in F2m .

Since there are (q − 1)q2 admissible change of variables, as mentioned above

(q − 1)q2/6 elliptic curves isomorphic to E2. So, the number of elliptic curves

isomorphic to E2 is 1/4 of Type I elliptic curves over F2m when m is even.

Let E3 be the Type I elliptic curve given by

E3 : y2 + a2
3y = x3, a3 6= 0 and not a cube

Note that E3 � E1, because the equations

u3 = a3/a
2
3

s4 + a3s = 0

t2 + a3t+ s6 = 0

have no solution (u, s, t) in F2m . In fact, the equation u3 = a−1
3 has no solution,

because the inverse of the non-cube element is also non-cube.

Note also that E3 � E2, because the equations

u3 = a2
3/b3

s4 + a2
3s = 0

t2 + a2
3t+ s6 + u6b6 = 0

have no solution (u, s, t) in F2m . In fact, the equation s4+a2
3s = 0 has always only

one solution s = 0, because a3 is a non-cube. This implies the latter equation

has no solution, because Tr(a−4
3 u6b6) = Tr(b−2

3 b6) = 1.

Now, we are going to count the elliptic curves

Ē : y2 + ā3y = x3 + ā4x+ ā6, ā3 6= 0 and not a cube

which is isomorphic to E3. For Ē ∼= E3, there exists u = u1, s = s1, t = t1 ∈ F2m ,
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satisfying the equations

u3 = a2
3/ā3 (2.5.19)

s4 + a2
3s+ u4ā4 = 0 (2.5.20)

t2 + a2
3t+ s6 + u6ā6 = 0 (2.5.21)

Now, (2.5.29) has exactly 3 solutions, namely u1, c1u1 and c2u1. Since a3 is a

non-cube, (2.5.20) has exactly one solution for each choice of u by (2.1.2). These

unique solutions to (2.5.20) are (u1, s1), (c1u1, c1s1) and (c2u1, c2s1). For each

choice of the pairs (u, s), there are always 2 solutions t = t1 and t = t1 + a2
3 to

(2.5.21). So, there are 6 solutions of the equations (2.5.19), (2.5.20) and (2.5.21)

in F2m .

Since there are (q − 1)q2 admissible change of variables, as mentioned above

(q − 1)q2/6 elliptic curves isomorphic to E3. So, the number of elliptic curves

isomorphic to E3 is 1/4 of Type I elliptic curves over F2m when m is even.

Let E4 be the Type I elliptic curve given by

E4 : y2 + b23y = x3 + c6, b3 6= 0 and not a cube, Tr
(
b−4
3 c6

)
= 1

Note that E4 � E1, because the equations

u3 = a3/b
2
3

s4 + a3s = 0

t2 + a3t+ s6 + u6c6 = 0

have no solution (u, s, t) in F2m . In fact, the equation s4+a3s = 0 has always only

one solution s = 0, because a3 is a non-cube. This implies the latter equation

has no solution, because Tr(a−2
3 u6c6) = Tr(b−4

3 c6) = 1.
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Note that E4 � E2, because the equations

u3 = b3/b
2
3

s4 + b3s = 0

t2 + b3t+ s6 + b6 + u6c6 = 0

have no solution (u, s, t) in F2m . In fact, the equation u3 = b−1
3 has no solution,

because the inverse of the non-cube element is also non-cube.

Note also that E4 � E3, because the equations

u3 = a2
3/b

2
3

s4 + a2
3s = 0

t2 + a2
3t+ s6 + u6c6 = 0

have no solution (u, s, t) in F2m . In fact, the equation s4+a2
3s = 0 has always only

one solution s = 0, because a3 is a non-cube. This implies the latter equation

has no solution, because Tr(a−4
3 u6c6) = Tr(b−4

3 c6) = 1.

Now, we are going to count the elliptic curves

Ē : y2 + ā3y = x3 + ā4x+ ā6, ā3 6= 0 and not a cube.

which is isomorphic to E4. For Ē ∼= E4, there exists u = u1, s = s1, t = t1 ∈ F2m ,

satisfying the equations

u3 = b23/ā3 (2.5.22)

s4 + b23s+ u4ā4 = 0 (2.5.23)

t2 + b23t+ s6 + c6 + u6ā6 = 0 (2.5.24)

Now, (2.5.22) has exactly 3 solutions , namely u1, c1u1 and c2u1. Since b3 is a

non-cube, (2.5.23) has exactly one solution for each choice of u by (2.1.2). These

unique solutions to (2.5.23) are (u1, s1), (c1u1, c1s1) and (c2u1, c2s1). For each
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choice of the pairs (u, s), there are always 2 solutions t = t1 and t = t1 + b23 to

(2.5.24). So, there are 6 solutions of the equations (2.5.22), (2.5.23) and (2.5.24)

in F2m .

Since there are (q − 1)q2 admissible change of variables, as mentioned above

(q − 1)q2/6 elliptic curves isomorphic to E4. So, the number of elliptic curves

isomorphic to E4 is 1/4 of Type I elliptic curves over F2m when m is even.

Type II Curves

Let E
′
be the general form of the Type II (and later Type III) curves given

by

E
′

: y2 + a
′

3y = x3 + a
′

4x+ a
′

6, a
′

3 6= 0 and a cube,

Since a
′
3 = u3 is a cube, it can be check that the admissible change of variables

(x, y) → (u2x, u3y) transforms E
′
into the Type II (and Type III) elliptic curves

Ē given by

Ē : y2 + y = x3 + ā4x+ ā6,

From now on, we can assume that the Type II (and later Type III) curves have

the form

Ē : y2 + y = x3 + ā4x+ ā6,

Let E1 be the Type II curve given by

E1 : y2 + y = x3 + a4x, Te(a4) = 1

Suppose that Ē ∼= E1, then there exists u = u1, s = s1, t = t1 ∈ F2m , satisfying

the equations

u3 = 1 (2.5.25)

s4 + s+ a4 + uā4 = 0 (2.5.26)

t2 + t+ s6 + a4s
2 + ā6 = 0 (2.5.27)
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Note that

Te(ā4) = Te
(s4 + s+ a4

u

)
= Te

( s4

u4

)
+ Te

( s
u

)
+ Te

(a4

u

)
= Te

(a4

u

)
.

Since u3 = 1, we have u = 1, c1 or c2. Therefore, Te(a4/u) = 1, c2 or c1,

respectively. Thus, Te(ā4) 6= 0 and Ē is also a Type II curve. We proceed to

count the number of admissible change of variables which transform Ē to E1.

We achieve this by counting the total number of solutions (u, s, t) to (2.5.25),

(2.5.26) and (2.5.27) in F2m . This leads us to the number of the elliptic curves Ē

isomorphic to E1.

For each choice of u, the equation (2.5.26) has exactly 4 distinct solutions or

no solution in F2m , according to whether Te(a4 + uā4) = 0 or Te(a4 + uā4) 6= 0,

respectively. We find that for u = 1, c1, c2, the equation (2.5.26) has 4 solutions

if and only if Te(ā4) = 1, c2, c1, respectively. Without loss of generality, we can

assume that Te(ā4) = 1. Then, the equation

s4 + s+ a4 + ā4 = 0

has 4 distinct solutions, namely s = s1, s1+1, s1+c1 and s1+c2. There are always

2 solutions to (2.5.27) in t. If (s1, t1) and (s1, t1 + 1) are solutions to (2.5.27),

then we have

Tr(s6
1 + a4s

2
1 + ā6) = 0.

Since the trace TrF2m/F2 is the composition of the half trace TeF2m/F4 and the

trace TrF4/F2 , we get

Tr
(
(s1 + 1)6 + a4(s1 + 1)2 + ā6

)
= Tr(a4) = 0,

T r
(
(s1 + c1)

6 + a4(s1 + c1)
2 + ā6

)
= Tr(c2a4) = 1,

T r
(
(s1 + c2)

6 + a4(s1 + c2)
2 + ā6

)
= Tr(c1a4) = 1.
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Thus, the equation (2.5.27) has solutions only when s = s1 and s = s1 + 1.

We conclude that there are 4 solutions (u, s, t) to the equations (2.5.25), (2.5.26)

and (2.5.27).

Since u takes 3 values and s, t are free in F2m , there are 3q2 admissible change

of variables. Therefore, the number of elliptic curves isomorphic to E1 is 3q2/4.

Since a6 takes q values and a4 takes 3q/4 values due to the fact that Te(a4) 6= 0,

there are 3q2/4 Type II elliptic curves over F2m when m is even. Therefore, we

can conclude that the Type II curves form an isomorphism class of elliptic curves.

Type III Curves

Let E1 be the Type III curve given by

E1 : y2 + y = x3,

and let Ē be any elliptic curve given by

Ē : y2 + y = x3 + ā4x+ ā6,

which is isomorphic to E1. Then, by using Theorem (1.2.2), there exists u =

u1, s = s1, t = t1 ∈ F2m , satisfying the equations

u3 = 1 (2.5.28)

s4 + s+ uā4 = 0 (2.5.29)

t2 + t+ s6 + ā6 = 0 (2.5.30)

Note that

Te(ā4) = Te
(s4 + s

u

)
= Te

( s4

u4

)
+ Te

( s
u

)
= 0,

and hence Ē is also a Type III curve. Now, we proceed to count the number

of admissible change of variables which transform Ē to E1. We achieve this by

counting the total number of solutions (u, s, t) to the equation (2.5.28), (2.5.29)
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and (2.5.30). This leads us to the number of the elliptic curves Ē isomorphic to

E1.

Since u3 = 1, we have u = 1, c1 or c2. Since Te(ā4) = 0, we have Te(c1ā4) = 0

and Te(c2ā4) = 0. Therefore, for each choice of u, equation (2.5.29) has exactly

4 distinct solutions in F2m . We find that these 12 solutions (u, s) to (2.5.29) are

as follows:

(1, s1) , (1, s1 + 1) , (1, s1 + c1) , (1, s1 + c2)

(c1, c1s1) , (c1, c1s1 + 1) , (c1, c1s1 + c1) , (c1, c1s1 + c2)

(c2, c2s1) , (c2, c2s1 + 1) , (c2, c2s1 + c1) , (c2, c2s1 + c2)

 (2.5.31)

Since (s1, t1) is a solution to (2.5.30), we have that Tr(s6
1 + ā6) = 0. Using this

fact, we can easily check that Tr(s6 + ā6) = 0 for each of the 12 choices for s in

(2.5.31). So, for each choices of s in (2.5.31), equation (2.5.30) have 2 solutions.

Therefore, there are 24 solutions (u, s, t) to the equations (2.5.28), (2.5.29) and

(2.5.30).

Since there are 3q2 admissible change of variables, as mentioned before the

number of elliptic curves isomorphic to E1 is 3q2/24 = q2/8. Since a6 takes q

values and a4 takes q/4 values due to the fact that Te(a4) = 0, there are q2/4

Type III elliptic curves over F2m when m is even. So, the number of elliptic curves

isomorphic to E1 is 1/2 of Type III elliptic curves over F2m when m is even.

Let E2 be the Type III curve given by the equation

E2 : y2 + y = x3 + a6, T r(a6) = 1, a6 ∈ F2m

Note that, E1 � E2, because the equations

u3 = 1

s4 + s = 0

t2 + t+ s6 + a6 = 0

have no solution (u, s, t) in F2m . In fact, the equation s4 + s = 0 has always
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4 solutions s = 0, s = 1, s = c1 and s = c2 over F2m . This implies the latter

equation has no solution, because Tr(s6 + a6) = 1 for each choice of s.

Now, we are going to count the elliptic curves

Ē : y2 + y = x3 + ā4x+ ā6,

which is isomorphic to E2. Then, there exists u = u1, s = s1, t = t1 ∈ F2m ,

satisfying the equations

u3 = 1 (2.5.32)

s4 + s+ uā4 = 0 (2.5.33)

t2 + t+ s6 + ā6 + a6 = 0 (2.5.34)

Note that

Te(ā4) = Te
(s4 + s

u

)
= Te

( s4

u4

)
+ Te

( s
u

)
= 0,

and hence Ē is also a Type III curve. Now, we proceed to count the number

of admissible change of variables which transform Ē to E2. We achieve this by

counting the total number of solutions (u, s, t) to the equation (2.4.32), (2.4.33)

and (2.4.34). This leads us to the number of the elliptic curves Ē isomorphic to

E2.

Since u3 = 1, we have u = 1, c1 or c2. Since Te(ā4) = 0, we have Te(c1ā4) = 0

and Te(c2ā4) = 0. Therefore, for each choice of u, equation (2.5.33) has exactly

4 distinct solutions in F2m . We find that these 12 solutions (u, s) to (2.5.33) are

as follows:

(1, s1) , (1, s1 + 1) , (1, s1 + c1) , (1, s1 + c2)

(c1, c1s1) , (c1, c1s1 + 1) , (c1, c1s1 + c1) , (c1, c1s1 + c2)

(c2, c2s1) , (c2, c2s1 + 1) , (c2, c2s1 + c1) , (c2, c2s1 + c2)

 (2.5.35)
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Since (s1, t1) is a solution to (2.5.34), we have that Tr(s6
1 + ā6) = 0. Using

this fact, we can easily check that Tr(s6 + ā6) = 0 for each of the 12 choices

for s in (2.5.35). So, for each choices of s in (2.5.35), the equation (2.5.34) have

2 solutions. Therefore, there are 24 solutions (u, s, t) to the equations (2.5.32),

(2.5.33) and (2.5.34).

Since there are 3q2 admissible change of variables, as mentioned before the

number of elliptic curves isomorphic to E2 is 3q2/24 = q2/8. Since a6 takes q

values and a4 takes q/4 values due to the fact that Te(a4) = 0, there are q2/4

Type III elliptic curves over F2m when m is even. So, we can deduce that the

remaining q2/8 Type III curves which is not isomorphic to E1 must lie in an

isomorphism class, that is represented by E2.

Now, we will show that these 3 types of curves are not isomorphic to each

other. Let E1 be a Type I curve given by

E1 : y2 + a3y = x3 + a4x+ a6 a3 6= 0 and not a cube

and let E2 be a Type II curve given by

E2 : y2 + y = x3 + a
′

4x+ a
′

6 a
′

3 6= 0 and a cube, Te(a
′

4) = 1

Since a3 is not a cube, the equation

u3 = a3

has no solution. So, E1 � E2. Let E3 be a Type III curve given by

E3 : y2 + y = x3 + ā4x+ ā6 a3 6= 0 and a cube, Te(ā4) = 0

By using the same reason above, E1 � E3. On the other hand, E2 � E3 because
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the equations

u3 = 1

s4 + s+ uā4 + a
′

4 = 0

t2 + t+ s6 + a
′

4s
2 + a

′

6 + ā6 = 0

have no common solution. In fact, Te(uā4 + a
′
4) 6= 0 for each choice of u in the

second equation above. Therefore, there is no s satisfying the above equations.

In conclusion, these 3 types of curves are not isomorphic to each other. We

summarize these results in the next theorem.

Theorem 2.5.1. There are 7 isomorphism classes of elliptic curves over F2m

with j-invariant equal to 0, where m is even. Let γ be a non-cube in F2m. Let

α, β, δ, ω ∈ F2m be such that Tr(γ−2α) = 1, Tr(γ−4β) = 1, Te(δ) 6= 0 and

Tr(ω) = 1. Then, a representative from each class is:

(i) y2 + γy = x3 (Type I)

(ii) y2 + γy = x3 + α (Type I)

(iii) y2 + γ2y = x3 (Type I)

(iv) y2 + γ2y = x3 + β (Type I)

(v) y2 + y = x3 + δx (Type II)

(vi) y2 + y = x3 (Type III)

(vii) y2 + y = x3 + ω (Type III).

Example: We list a representative of each of the 13 isomorphism classes of

elliptic curves over F4, together with the j-invariant, size and group structure of

each curve. Here, we denote the elements of F4 by 0, 1, c1, c2 as before.

Let us consider the first curve E given by the equation

y2 + xy = x3 + 1,

over F4. Here, a1 = a6 = 1 and a2 = a3 = a4 = 0. We know by Section 2.2 that

j(E) = (a1)
12/∆ and if a1 6= 0, then ∆ = a6 and j(E) = 1/a6. Therefore, for

the given curve E, we find that ∆ = 1 and so j(E) = 1. The total number of 8
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points satisfying the given curve E are as follows:

(0, 1) , (1, 0) , (1, 1) , (c1, 0)

(c2, 0) , (c1, c1) , (c2, c2) , O

It follows from Section 1.5 that E(F4) ∼= C8, where C8 denotes the cyclic

group on 8 elements.

Using similar computations, one compute the j-invariant, size and the group

structure of the 13 isomorphism classes of elliptic curves over F4. We give this

list in the table below:

Table 2.1: Representatives of the isomorphism classes of elliptic curves over F4

Representative j − invariant Number of Group
Curve Points Type

y2 + xy = x3 + 1 1 8 C8

y2 + xy = x3 + c1x
2 + 1 1 2 C2

y2 + xy = x3 + c1 c2 4 C4

y2 + xy = x3 + c1x
2 + c1 c2 6 C6

y2 + xy = x3 + c2 c1 4 C4

y2 + xy = x3 + c1x
2 + c2 c1 6 C6

y2 + c1y = x3(Type I) 0 3 C3

y2 + c1y = x3 + 1(Type I) 0 7 C7

y2 + c2y = x3(Type I) 0 3 C3

y2 + c2y = x3 + 1(Type I) 0 7 C7

y2 + y = x3 + x(Type II) 0 5 C5

y2 + y = x3(Type III) 0 9 C3 × C3

y2 + y = x3 + c1(Type III) 0 1 C1

2.6 Number of Points

In this section, we determine the order of the elliptic curves over F2m having

j-invariant zero. First, we will give some theorems which are very useful de-

termining the orders. For proofs of these theorems and the group type of these

curves, we refer reader to [5].
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Theorem 2.6.1. Let E be defined over Fq. Then, E is supersingular if and only

if t2 = 0, q, 2q, 3q or 4q.

Theorem 2.6.2. Let q = 2m, and let E be an elliptic curve over Fq with

#E(Fq) = q + 1− t.

(i) If t2 = 0, q or 2q, then E(Fq) is cyclic.

(ii) If t = 2
√
q or −2

√
q, then E(Fq) ∼= C√q−1×C√q−1 or E(Fq) ∼= C√q+1×C√q+1,

respectively.

Now, we will obtain the general form of the order of the elliptic curves over

F2m with j(E) = 0.

(i) m odd

In section 2.4, we have obtained 3 isomorphism classes of elliptic curves over

F2m when m is odd. Now, we will find the order of these curves using the Theorem

1.5.2 (Weil Conjecture). First, let us consider the curve

y2 + y = x3 (2.6.36)

It is clear that the number of points satisfying the equation (2.6.36) over F2 is 3.

In fact, #E(F2) = N1 = 3. So, we get t = 0, where t = q + 1 − N1 and q = 2.

When we solve the equation

1 + 2T 2 = (1− αT )(1− βT )

we get α = i
√

2 and β = −i
√

2. Since m is odd, we get

#E(F2m) = 2m + 1− (i
√

2)m − (−i
√

2)m = 2m + 1 = q + 1
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Now, we will consider the curve

y2 + y = x3 + x (2.6.37)

It is easy to see that the 5 points (0, 0), (0, 1), (1, 0), (1, 1) and O satisfy the

equation (2.6.37) over F2. In fact, #E(F2) = 5. So, we get t = q + 1 − N1 =

2 + 1− 5 = −2. When we solve the equation

1 + 2T + 2T 2 = (1− αT )(1− βT ),

we get α = −1 + i and β = −1− i = iα. Therefore,

#E(F2m) = 2m + 1− (−1 + i)m − (−1− i)m

= 2m + 1−
[
(−1 + i)m(1 + im)

]
= 2m + 1−

[
αm(1 + im)

]
Since

im =


1, if m = 4l

i, if m = 4l + 1

−1, if m = 4l + 2

−i, if m = 4l + 3

we get

1 + im =


2, if m = 4l

1 + i, if m = 4l + 1

0, if m = 4l + 2

1− i, if m = 4l + 3
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Now, we will take some power of α to reach the αm:

α = (−1 + i)

α2 = (−1 + i)2 = −2i

α3 = (−1 + i)3 = 2(1 + i) = −2ᾱ

α4 = (−1 + i)4 = −4

α5 = (−1 + i)5 = 4(1− i) = −4α

α6 = (−1 + i)6 = 8i

α7 = (−1 + i)7 = −8(1 + i) = 8ᾱ

α8 = (−1 + i)8 = 16.

So, we get

(−1 + i)m(1 + im) = αm(1 + im) =


2(i− 1)m, if m = 4l

−2(i− 1)m−1, if m = 4l + 1

0, if m = 4l + 2

−(i− 1)m+1, if m = 4l + 3

For m = 4l + 1, m odd

#E(F2m) = 2m + 1 + 2(i− 1)m−1

2(i− 1)m−1 =

{
2

m+1
2 , if m = 1 (mod 8)

−2
m+1

2 , if m = 5 (mod 8)

=

{ √
2q, if m = 1 (mod 8)

−
√

2q, if m = 5 (mod 8)

For m = 4l + 3, m odd

#E(F2m) = 2m + 1 + (i− 1)m+1
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(i− 1)m+1 =

{
−2

m+1
2 , if m = 3 (mod 8)

2
m+1

2 , if m = 7 (mod 8)

=

{
−
√

2q, if m = 3 (mod 8)
√

2q, if m = 7 (mod 8)

Using the procedure as above, we can easily determine the order of the curve

y2 + y = x3 + x+ 1 (2.6.38)

as well. We list these results in the table below:

Table 2.2: Orders of elliptic curves over F2m with j-invariant equal to 0, where
m is odd

Curve m Order Group
Type

y2 + y = x3 odd q + 1 cyclic
y2 + y = x3 + x m ≡ 1, 7 (mod 8) q + 1 +

√
2q cyclic

m ≡ 3, 5 (mod 8) q + 1−
√

2q cyclic
y2 + y = x3 + x+ 1 m ≡ 1, 7 (mod 8) q + 1−

√
2q cyclic

m ≡ 3, 5 (mod 8) q + 1 +
√

2q cyclic

(ii) m even

Let #Ei = q + 1 − ti for 1 ≤ i ≤ 7, where q = 2m, and the curves Ei are

those of Theorem 2.5.1. By Theorem 2.6.1, we obtain that the 7 values of ti are

0, 2
√
q, −2

√
q,
√
q,
√
q, −√q, −√q.

We first observe that #E1 + #E2 = 2q + 2, and so t1 = −t2. This holds

because for each x ∈ Fq, either Tr(γ−2x3) = 0 or Tr(γ−2x3 + γ−2α) = 0, but not

both. We note that, the curves E1, E2 are an example of a twisted pair of elliptic

curves. E3, E4 and E6, E7 are also twisted pairs, and so t3 = −t4 and t6 = −t7.
It follows then that t5 = 0.

Since the coefficients of E6 are in F2, we can apply the Theorem 1.5.2 (Weil

Conjecture) to determine #E6, and so #E7. We find that t6 = 2
√
q or −2

√
q
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according to whether m ≡ 0 or 2 (mod 4), respectively.

Now, we know that t1, t3 =
√
q or −√q. We determine their exact values as

follows. Let γ = g−1, where g is a generator of F2m . Then,

A = {x3 : x ∈ F2m} = {g3i : 0 ≤ i ≤ (2m − 1)/3},

B = {γ−2x3 : x ∈ F2m} = {g3i+2 : 0 ≤ i ≤ (2m − 1)/3},

C = {γ−4x3 : x ∈ F2m} = {g3i+1 : 0 ≤ i ≤ (2m − 1)/3}.

Since (A, B, C) is a partition of F2m , and since the half of the elements of F2m

have trace equal to 0, we deduce that

#E1 + #E3 + #E6 = 3q + 3,

and so t1 + t3 = −t6. Thus, we must have t1 = t3 = −√q if m ≡ 0 (mod 4), and

t1 = t3 =
√
q if m ≡ 2 (mod 4). The orders of the curves Ei, 1 ≤ i ≤ 7, are given

below:

Table 2.3: Orders of elliptic curves over F2m with j-invariant equal to 0, where
m is even

Curve m Order Group
Type

y2 + γy = x3 m ≡ 0 (mod 4) q + 1 +
√
q cyclic

m ≡ 2 (mod 4) q + 1−√q cyclic
y2 + γy = x3 + α m ≡ 0 (mod 4) q + 1−√q cyclic

m ≡ 2 (mod 4) q + 1 +
√
q cyclic

y2 + γ2y = x3 m ≡ 0 (mod 4) q + 1 +
√
q cyclic

m ≡ 2 (mod 4) q + 1−√q cyclic
y2 + γ2y = x3 + β m ≡ 0 (mod 4) q + 1−√q cyclic

m ≡ 2 (mod 4) q + 1 +
√
q cyclic

y2 + y = x3 + δx m even q + 1 cyclic
y2 + y = x3 m ≡ 0 (mod 4) q + 1−

√
2q C√q−1 × C√q−1

m ≡ 2 (mod 4) q + 1 +
√

2q C√q+1 × C√q+1

y2 + y = x3 + ω m ≡ 0 (mod 4) q + 1 +
√

2q C√q+1 × C√q+1

m ≡ 2 (mod 4) q + 1−
√

2q C√q−1 × C√q−1
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Chapter 3

Elliptic Curves over Finite

Fields of Characteristic Two

Used In Ecdsa and Their

Properties

3.1 Introduction

By ECDSA, we mean the Elliptic Curve Digital Signature Algorithm. The

Elliptic Curve Digital Signature Algorithm is the elliptic curve anologue of the

Digital Signature Algorithm (DSA). ECDSA was first proposed in 1992 by Scott

Vanstone [14] in response to National Institute of Standards and Technology’s

(NIST) request for public comments on their first proposal for Digital Signa-

ture Scheme. It was accepted later by International Standards Organization

(ISO 14888-3), American National Standards Institute (ANSI X9.62), Institute

of Electrical and Electronics Engineering (IEEE P1363) and Federal Information

Processing Standard (FIPS 186-2).

In this chapter, we shall discuss ECDSA over a field Fq, and present the

ECDSA signature and verification algorithms. Finally, we will give the list of

those isomorphism classes of elliptic curves over F2m recommended by NIST and

recall their properties discussed in Chapter 2. ([15], [16])
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3.2 Elliptic Curve Discrete Logarithm Problem

Let E be an elliptic curve defined over Fq, P ∈ E(Fq) be a point of order N

and Q be any point in the subgroup 〈P 〉 of E(Fq) generated by P . Finding x,

0 ≤ x ≤ N−1, such that Q = xP is called The Elliptic Curve Discrete Logarithm

Problem (ECDLP).

The ECDSA basically rely on the difficulty of solving the ECDLP. If anyone

is able to solve the ECDLP, then it is easy to break the ECDSA. Therefore, it

is of great importance to understand the methods of dealing with the ECDLP.

There are some known attacks on ECDLP such as Baby Step-Giant Step, Silver-

Pohlig-Hellman, Pollard’s Algorithm, MOV, Frey-Rück, etc. These algorithms

are general exponential time algorithms. We will see later that choosing an ap-

propriate elliptic curve, we should be care of these attacks. The ECDLP has an

application generating digital signatures as we shall discuss, now.

E is an elliptic curve defined over Fq and P is a point of prime order N in

E(Fq) which are public parameters. Throughout this chapter, we shall use Ayşe

and Bilal instead of the users. Ayşe constructs her keys by selecting a random

integer x in the interval [1, N − 1] and computing Q = xP . She obtain that her

public key is Q and her private key is x.

3.3 ECDSA Signature Generation

To sign a message m having hash value H, i.e. SHA-1(m)=H, 0 < H < N ,

Ayşe does the following:

1. She selects a random integer k in the inteval [1, N − 1].

2. She computes kP = (x1, y1) and sets r equal to the least nonnegative residue

of x1 (mod N), where x1 is regarded as an integer between 0 and q − 1. If

r = 0, then she must go back to step 1 and select another k.

3. She computes k−1 (mod N) and sets s equal to the least nonnegative residue
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of k−1(H + xr) (mod N). If s = 0, then she must go back to step 1.

4. The signature for the message m is the pair of integers (r, s).

Recall that The Secure Hash Algorithm (SHA-1) was proposed by the NIST

for certain U.S. Federal Government applications. The SHA-1 produces 160-bit

output called a message digest when a message has input with length < 264

bits. The SHA-1 is called secure because it is computationally infeasible to find

a message which corresponds to a given message digest, or to find two different

messages which produce the same message digest.

3.4 ECDSA Signature Verification

In order to verify Ayşe’s signature (r, s) on the message m, Bilal should do

the following:

1. He obtains an authenticated copy of Ayşe’s public key Q.

2. He verify that r and s are integers in the interval [1, N − 1] and computes

the hash value of the message.

3. He computes u1 = s−1H (mod N) and u2 = s−1r (mod N).

4. He computes u1P + u2Q = (x0, y0) and regarding x0 as an integer between

0 and q−1, he sets v equal to the least nonnegative residue of x0 (mod N).

5. Accept the signature if and ony if v = r.

Notice that if Ayşe generated her signature correctly, then u1P + u2Q =

(u1 + xu2)P = kP because k ≡ s−1(H + xr) (mod N), and so v = r as required.

In order to obtain a security level, the parameter N should have about 160

bits. The advantages of ECDSA are well-known. For example, it gives us a

chance giving an elliptic curve to each user by choosing the parameters over the

same field. At the same time, there are an enormous number of choices of elliptic

curves E over the fixed Fq.
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3.5 Selecting An Appropriate Elliptic Curve

over F2m

By an ”appropriate” elliptic curve, we mean an elliptic curve E defined over

a finite field F2m where the ECDLP in E(F2m) resists all known attacks. In

particular the following conditions should be satisfied:

1. To resist the Pollard-ρ attack #E(F2m) should be divisible by a sufficiently

large prime N (for example, N > 2160).

2. To resist the Weil and Tate pairing attacks, N should not divide qk − 1

for all 1 ≤ k ≤ C, where C is large enough so that it is computationally

infeasible to find discrete logarithms in F ∗qC (C = 20 suffices in practice).

For example, the elliptic curves of j(E) = 0 should be avoided.

3. To resist the GHS (Gaudry, Hess, Smart) attack, the degree of the reduction

polynomial should be choosen prime, constructing the underlying field.

3.6 NIST Recommended Curves over F2m

In this section, we will discuss the 10 elliptic curves over F2m that were recom-

mended by NIST in June 1999 for U.S. Federal Government use. These elliptic

curves are also recommended in the FIPS 186-2 standard. There are two types

of recommended elliptic curves over F2m . These are Koblitz Elliptic Curves and

Randomly Choosing Elliptic Curves [16]. Their equations are in the form

y2 + xy = x3 + a2x
2 + a6,

where a6 6= 0, a2 ∈ F2m and the explicit expression is given in Section 2.2, where

this class belongs to the non-supersingular class. Now, we shall give Koblitz

Elliptic Curves and Randomly Choosing Elliptic Curves, respectively. In the fol-

lowing, we are going to represent the elements of F2m in the hexadecimal form
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to distinguish them from the integers in the decimal form where they are used

to represent the order of an element in the groups. The hexadecimal form is

also useful because it can represent every byte (8 bits) as two consecutive hex-

adecimal digits. It is easier to read hexadecimal numbers than binary numbers.

For example, ‘0111 1011 1010’ is the binary representation of the number 1978

and hexadecimal representation of the integer 1978 is ‘0× 7ba’, where ‘0×’ is

attaching to the beginning of the number to indicate hexadecimal form.

3.6.1 Koblitz Elliptic Curves

The general form of Koblitz Curve is in the form

y2 + xy = x3 + a2x
2 + 1,

where a2 ∈ F2m . xP and yP are the coordinates of the base point P of order N and

these coordinates are represented as the hexadecimal base: {0, 1,. . . , 9,a,b,. . . , f}

Curve K-163

We first fix the underlying field F2163 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x163 + x7 + x6 + x3 + 1. For this class, the elliptic curve

is choosen by taking a2 = 1. Namely, the elliptic curve is given by the form

y2 + xy = x3 + x2 + 1. Now, we choose the base point P = (xP , yP ) as follows:

xP = 0× 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8

and

yP = 0× 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

The order of P turns out to be the prime N is given by

N = 5846006549323611672814741753598448348329118574063,

which is a 163-bit prime integer.
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Curve K-233

We first fix the underlying field F2233 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x233 + x74 + 1. For this class, the elliptic curve is choosen by

taking a2 = 0. Namely, the elliptic curve is given by the form y2 + xy = x3 + 1.

Now, we choose the base point P = (xP , yP ) as follows:

xP = 0× 172 32ba853a 7e731af1 29f22ff4 149563a4 19c26bf5 0a4c9d6e

efad6126

and

yP = 0× 1db 537dece8 19b7f70f 555a67c4 27a8cd9b f18aeb9b 56e0c110

56fae6a3

The order of P turns out to be the prime N is given by

N = 345087317339528189371737793113851276057094098886225212632808

7024741343,

which is a 232-bit prime integer.

Curve K-283

We first fix the underlying field F2283 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x283 + x12 + x7 + x5 + 1. For this class, the elliptic curve

is choosen by taking a2 = 0. Namely, the elliptic curve is given by the form

y2 + xy = x3 + 1. Now, we choose the base point P = (xP , yP ) as follows:

xP = 0× 503213f 78ca4488 3f1a3b81 62f188e5 53cd265f 23c1567a 16876913

b0c2ac24 58492836

and

yP = 0× 1ccda38 0f1c9e31 8d90f95d 07e5426f e87e45c0 e8184698 e4596236

4e341161 77dd2259

The order of P turns out to be the prime N is given by

N = 388533778445145814183892381364703781328481173379306132429587

4997529815829704422603873,

which is a 282-bit prime integer.
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Curve K-409

We first fix the underlying field F2409 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x409 + x87 + 1. For this class, the elliptic curve is choosen by

taking a2 = 0. Namely, the elliptic curve is given by the form y2 + xy = x3 + 1.

Now, we choose the base point P = (xP , yP ) as follows:

xP = 0× 060f05f 658f49c1 ab3ab189 0f718421 0efd0987 e307c84c 27accfb8

f9f67cc2 c460189e b5aaaa62 ee222eb1 b35540cf e9023746

and

yP = 0× 1e36905 0b7c4e42 acba1dac bf04299c 3460782f 918ea247 e6325165

e9ea10e3 da5f6c42 e9c55215 aa9ca27a 5863ec48 d8e0286b

The order of P turns out to be the prime N is given by

N = 33052798439512429947595765401638551991420234148214060964232439

5022880711289249191050673258457777458014096366590617731358671,

which is a 408-bit prime integer.

Curve K-571

We first fix the underlying field F2571 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x571 + x10 + x5 + x2 + 1. For this class, the elliptic curve

is choosen by taking a2 = 0. Namely, the elliptic curve is given by the form

y2 + xy = x3 + 1. Now, we choose the base point P = (xP , yP ) as follows:

xP = 0× 26eb7a8 59923fbc 82189631 f8103fe4 ac9ca297 0012d5d4 60248048

01841ca4 43709584 93b205e6 47da304d b4ceb08c bbd1ba39 494776fb

988b4717 4dca88c7 e2945283 a01c8972

and

yP = 0× 349dc80 7f4fbf37 4f4aeade 3bca9531 4dd58cec 9f307a54 ffc61efc

006d8a2c 9d4979c0 ac44aea7 4fbebbb9 f772aedc b620b01a 7ba7af1b

320430c8 591984f6 01cd4c14 3ef1c7a3
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The order of P turns out to be the prime N is given by

N = 193226876150862917234767594546599367214946366485321749932861762

572575957114478021226813397852270671183470671280082535146127367

4974066617311929682421617092503555733685276673,

which is a 570-bit prime integer.

3.6.2 Random Elliptic Curves

The general form of Random Elliptic Curve is in the form

y2 + xy = x3 + x2 + a6,

where a6 ∈ F2m . xP and yP are the coordinates of the base point P of order N and

these coordinates are represented as the hexadecimal base: {0, 1,. . . , 9,a,b,. . . , f}

Curve B-163

We first fix the underlying field F2163 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x163 + x7 + x6 + x3 + 1. For this class, the elliptic curve is

choosen by taking

a6 = 0× 2 0a601907 b8c953ca 1481eb10 512f7874 4a3205fd

Now, we choose the base point P = (xP , yP ) as follows:

xP = 0× 3 f0eba162 86a2d57e a0991168 d4994637 e8343e36

and

yP = 0× 0 d51fbc6c 71a0094f a2cdd545 b11c5c0c 797324f1

The order of P turns out to be the prime N is given by

N = 5846006549323611672814742442876390689256843201587,

which is a 163-bit prime integer.
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Curve B-233

We first fix the underlying field F2233 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x233 + x74 + 1. For this class, the elliptic curve is choosen by

taking

a6 = 0× 066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42

81fe115f 7d8f90ad

Now, we choose the base point P = (xP , yP ) as follows:

xP = 0× 0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36

f8f8eb73 71fd558b

and

yP = 0× 100 6a08a419 03350678 e58528be bf8a0bef f867a7ca

36716f7e 01f81052

The order of P turns out to be the prime N is given by

N = 690174634679056378743475586227702555583981273734501355537

9383634485463,

which is a 233-bit prime integer.

Curve B-283

We first fix the underlying field F2283 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x283 + x12 + x7 + x5 + 1. For this class, the elliptic curve is

choosen by taking

a6 = 0× 27b680a c8b8596d a5a4af8a 19a0303f ca97fd76 45309fa2

a581485a f6263e31 3b79a2f5 7d8f90ad

Now, we choose the base point P = (xP , yP ) as follows:
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xP = 0× 5f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c

80e2e198 f8cdbecd 86b12053

and

yP = 0× 3676854 fe24141c b98fe6d4 b20d02b4 516ff702 350eddb0

826779c8 13f0df45 be8112f4

The order of P turns out to be the prime N is given by

N = 7770675568902916283677847627294075626569625924376904889

109196526770044277787378692871,

which is a 283-bit prime integer.

Curve B-409

We first fix the underlying field F2409 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x409 + x87 + 1. For this class, the elliptic curve is choosen by

taking

a6 = 0× 021a5c2 c8ee9feb 5c4b9a75 3b7b476b 7fd6422e f1f3dd67 4761fa99

d6ac27c8 a9a197b2 72822f6c d57a55aa 4f50ae31 7b13545f 7d8f90ad

Now, we choose the base point P = (xP , yP ) as follows:

xP = 0× 15d4860 d088ddb3 496b0c60 64756260 441cde4a f1771d4d

b01ffe5b 34e59703 dc255a86 8a118051 5603aeab 60794e54 bb7996a7

and

yP = 0× 061b1cf ab6be5f3 2bbfa783 24ed106a 7636b9c5 a7bd198d

0158aa4f 5488d08f 38514f1f df4b4f40 d2181b36 81c364ba 0273c706

The order of P turns out to be the prime N is given by

N = 661055968790248598951915308032771039828404682964281219284648798

304157774827374805208143723762179110965979867288366567526771,

which is a 409-bit prime integer.
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Curve B-571

We first fix the underlying field F2571 = F2[x]/ 〈f(x)〉 by choosing the reduction

polynomial f(x) = x571 + x10 + x5 + x2 + 1. For this class, the elliptic curve is

choosen by taking

a6 = 0× 2f40e7e 2221f295 de297117 b7f3d62f 5c6a97ff cb8ceff1 cd6ba8ce

4a9a18ad 84ffabbd 8efa5933 2be7ad67 56a66e29 4afd185a 78ff12aa

520e4de7 39baca0c 7ffeff7f 2955727a

Now, we choose the base point P = (xP , yP ) as follows:

xP = 0× 303001d 34b85629 6c16c0d4 0d3cd775 0a93d1d2 955fa80a a5f40fc8

db7b2abd bde53950 f4c0d293 cdb711a3 5b67fb14 99ae6003 8614f139

4abfa3b4 c850d927 e1e7769c 8eec2d19

and

yP = 0× 37bf273 42da639b 6dccfffe b73d69d7 8c6c27a6 009cbbca 1980f853

3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8 b3531d2f 0485c19b

16e2f151 6e23dd3c 1a4827af 1b8ac15b

The order of P turns out to be the prime N is given by

N = 38645375230172583446953518909319873442989273297064349986572352

51451519142289560424536143999389415773083133881121926944486246

872462816813070234528288303332411393191105285703,

which is a 571-bit prime integer.

55



Chapter 4

Conclusions

In this thesis, we studied the isomorphism classes of elliptic curves over finite

fields of characteristic 2. We listed those elliptic curves which are recommended

by National Institute of Standards and Technology and gave all the details to be

used in Elliptic Curve Digital Signature Algorithm. The implementation part of

this work has not been done in this thesis, and we hope to do this as a future

project.

56



References

[1] T. ElGamal, A public key cryptosystems and a signature scheme based on

discrete logarithms, IEEE Transactions on Information Theory, 31, 469-472

(1985)

[2] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computations, 48,

203-209 (1987)

[3] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag,

(1984)

[4] R. Schoof, Elliptic Curves over Finite Fields and The Computation of Square

Roots mod p, Mathematics of Computation, 44, 483-494 (1985)

[5] R. Schoof, Nonsingular Plane Cubic Curves over Finite Fields, Journal of

Combinatorial Theory, A 46, 183-211 (1987)

[6] V. S. Miller, Uses of Elliptic Curves in Cryptography, Advances in Cryptol-

ogy: Proceeding of Crypto ’85, Lecture Notes in Computer Science, Springer-

Verlag, 218, 417-426 (1986)

[7] G. Menichetti, Roots of Affine Polynomials, Annals of Discrete Mathematics,

30, 303-310 (1986)

[8] H. W. Lenstra, Factoring Integers with Elliptic Curves, Annals of Mathe-

matics, 126, 649-673 (1987)

[9] E. Waterhouse, Abelian Varieties over Finite Fields, Ann. Sci. Ecole. Norm.

Sup., 2, 521-560 (1969)

[10] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Appli-

cations, Cambridge University Press, (1986)

[11] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, (1986)

57



[12] A. J. Menezes and S. Vanstone, Isomorphism Classes of Elliptic Curves

over Finite Fields of Characteristic Two, Utilitas Mathematica, 38, 135-153

(1990)

[13] A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic

Publishers, (1993)

[14] S. Vanstone, Responses to NIST’s Proposal, Communications of the ACM,

35, 50-52 (1992)

[15] N. Koblitz and A. J. Menezes, A Survey of Public-Key Cryptosystems, SIAM

Review, 46, 599-634 (2004)

[16] D. Johnson and A. J. Menezes, The Elliptic Curve Digital Signature Algo-

rithm (ECDSA), Univ. of Waterloo, (1999), ”http://cacr.math.waterloo.ca”

58


