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ABSTRACT 
 

A PSEUDOSPECTRAL ANALYSIS OF LAMINAR 

NATURAL CONVECTION FLOW AND HEAT 

TRANSFER BETWEEN TWO INCLINED PARALLEL 

PLATES 

 
Kasapoğlu, Serkan 

MS., Department of Mechanical Engineering 

Supervisor : Asst. Prof. Dr. İlker Tarı 

September 2005, 110 pages  
 
 

Three dimensional laminar natural convection flow of and heat transfer in 

incompressible air between two inclined parallel plates are analyzed with the 

Boussinesq approximation by using spectral methods. The plates are assumed to 

be infinitely long in streamwise and spanwise directions. For these directions, 

periodic boundary conditions are used and for the normal direction constant wall 

temperature and no slip boundary conditions are used. Unsteady Navier-Stokes 

and energy equations are solved using a pseudospectral C code in order to obtain 

velocity and temperature profiles inside the channel. Fourier series are used to 

expand the variables in x and z directions, while Chebyshev polynomials are used 

to expand the variables in y direction. By using the temperature distribution 

between the plates, local and average Nusselt numbers (Nu) are calculated. Nu 

values are correlated with ϕ  ,which is the inclination angle, and with Ra cosϕ   to 

compare the results with the literature. Additionally, non-dimensional velocity 

values and streamlines of the fluid are presented with proper plots.   

 

Keywords:  Natural Convection, Spectral Methods, Inclined Parallel Plates. 
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ÖZ 
 

EĞİK İKİ PARALEL PLAKA ARASINDAKİ LAMİNER 

DOĞAL KONVEKSİYON AKIŞIN VE ISI 

TRANSFERİNİN PSEUDOSPEKTRAL ANALİZİ 

 
Kasapoğlu, Serkan 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. İlker Tarı 

Eylül 2005, 110 sayfa 
 
  

Eğik iki paralel plaka arasındaki sıkıştırılamaz ve Boussinesq varsayımlı havanın 

üç boyutlu laminer doğal konveksiyon akışı ve ısı transferi spektral metodlar 

kullanılarak analiz edildi. Plakalar akış yönünde, ve genişlik yönünde sonsuz 

uzunlukta kabul edildi. Bu yönlerde periyodik sınır şartları kullanıldı, yüzeye dik 

yönde ise sabit duvar sıcaklığı ve kaygan olmayan sınır şartları kullanıldı. Kanal 

içindeki hız ve sıcaklık profillerini elde etmek için zamana bağlı Navier-Stokes ve 

enerji denklemleri pseudospektral C kodu vasıtasıyla çözüldü. Fourier serisi, 

değişkenleri x ve z yönünde açmak için, Chebyshev polinomları ise değişkenleri y 

yönünde seriye açmak için kullanıldı. Plakalar arasındaki sıcaklık dağılımı 

kullanılarak lokal ve ortalama Nusselt sayıları hesaplandı. Literatür çalışmalarıyla 

karşılaştırma yapabilmek için, Nu değerleri ϕ  ve Ra cosϕ  ile ilişkilendirildi. 

Buna ek olarak akışkanın boyutsuz hız değerleri ve akış çizgileri uygun grafiklerle 

sunuldu.    

 

Anahtar Kelimeler: Doğal Konveksiyon, Spektral Metodlar, Eğik Paralel Plakalar. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
Fluid motions that develop related to the action of a body force field such as the 

gravitational field are called natural flows and heat transfer corresponding to such 

flows is known as natural or free convection. These flows can also be called 

buoyancy induced flows because the movement of the fluid results from the 

buoyancy forces that arise from density differences, which stem from the 

instabilities in temperature, fluctuations in concentration of chemical species and 

many other effects [1]. 

 

Natural convection flow in an inclined channel or an inclined tube is especially 

useful to drive the fluid during the heat transfer process. Before pumping, inclined 

tubes and channels were used widely in heat exchangers and steam generators. 

 

1.1. Objective 
 
 
In this study, natural convection flow between two inclined parallel plates is 

simulated numerically. A pseudospectral method based computer code is used in 

order to obtain the velocity and temperature fields by solving Navier-Stokes and 

energy equations. Using the temperature field and from wall temperature, gradient 

local and average Nusselt numbers (Nu) are calculated. The change of Nu with the 

inclination angle from the horizontal is investigated.  

 



Additionally, the critical tilt angle for air is calculated and compared with the 

literature. The previous studies in the literature are either experimental or 

numerical with low order methods such as finite difference and finite element. 

Using a higher order pseudospectral method, better accuracy is expected to be 

obtained. Instead of solving boundary layer equations, Navier-Stokes equations 

are expanded in Fourier series in streamwise and spanwise directions, and 

Chebyshev polynomials in the direction normal to the plates. After the 

discretizations in time and space are performed, the resulting tridiagonal matrix 

equations are solved.  

 

1.2. The Considered Domain 
 
 

 

Ly

  
2 

Figure 1.1. Computational domain of inclined parallel plates  

with an inclination angle ϕ  from the horizontal. 

 

 
Heated Plate φ

y 

Lx

z 

Lz

x 



The domain shown in Figure 1.1 is an inclined channel between two parallel 

plates. 2x zL L π= =  and 2yL = . The plate dimensions are . In both 

streamwise (x) and spanwise (z) directions, velocity and thermal boundary 

conditions are periodical. Therefore the model represents a part of an infinite 

channel far away from the entrance. On plates no-slip conditions exist. The plate 

temperature distribution can be specified and bottom plate temperature is always 

higher than that of the upper plate. Thus the fluid is driven with buoyancy effects. 

xL L× z

 

The channel inclination angle from the horizontal, ϕ  can be selected freely. There 

exist an angle at which the flow mode transition occurs and Nu becomes 

minimum. That angle is called the critical tilt angle. One of the objectives of this 

study is also to determine the critical tilt angle for air with the numerical method.  

 

1.3. The Phenomenon 
 
 
When an inclined channel is heated from below and if the channel is open on both 

ends, the fluid flows due to temperature induced density differences. The main 

flow direction is the x direction but there also form some vortex structures in y-z 

plane carrying fluid between the bottom and the top plate. The phenomenon itself 

is an inherent thermally driven hydrodynamical instability. 

 

A similar event occurs for the single inclined heated plate case. In that case, the 

formed vortex structures are called longitudinal vortices [2]. Their existence and 

their contributions on enhancement of heat transfer is shown in the literature. 

 

Even though, the literature of both the single inclined plate and the inclined 

channel between two inclined plates are investigated, only the latter one is 

numerically examined.  
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Another case may be the enclosure between two plates. In that case, somewhat 

regular convection cells form. The general form of the structure remains the same 

regardless of the inclination angle. 

 

Among all these cases, the buoyancy driven flow between two parallel inclined 

plates is considered as the most appropriate one. Since to analyze each one of 

these phenomena requires a totally different model, the channel case is selected 

for our investigation. 

 

1.4. Organization of the Thesis 
 
 
Following this general introduction, the introduction to the previous literature is 

given in Chapter 2. Chapter 3 presents the general information about the spectral 

methods that are used in this study. In Chapter 4, the solution details of the 

governing equations are presented. The results are given and discussed in Chapter 

5. The thesis concludes with general remarks about the results with the 

Conclusion Chapter. 

 
 
 
 
 

 

     

 

 
 
 
 
 



CHAPTER 2 
 

LITERATURE SURVEY 
 
 
In this chapter, the literature of the inclined buoyancy driven flows for both the 

flat plate case and the channel between the parallel plates are examined. 

 

2.1. Literature for the Natural Convection Flow between Two 

Inclined Parallel Plates 

 

2.1.1. Experimental Studies 
 
 
Ruth, Hollands, and Raithby [3] analyzed experimentally heat transfer and natural 

convective motion in inclined air layers heated from below, for inclination angles 

of 0 ≤ϕ  ≤ 30˚ and the product of Rayleigh number (Ra) with cosine of the tilt 

angle (ϕ ) 100< Ra cosϕ <10000. In this study, it is investigated that as is first 

noted by Hollands et al. [4], the experimental heat transfer values for ϕ  of larger 

than 20˚ are not only dependent on Ra cosϕ  as expected from theoretical analysis. 

The reason for the difference between the theory and the experiment is referred to 

in this study as the secondary transition in the streamwise direction.  

 

Hollands, Unny, Raithby, and Konicek [4] demonstrated experimentally free 

convective heat transfer through inclined air layers of high aspect ratio heated 

from below. The range of Rayleigh numbers was taken between the subcritical 

value and 105.  

 

  
5 



Furthermore, angle of inclination was measured from horizontal between 0 and 70 

deg. In this paper, Ra  in the horizontal air layer Nusselt number (Nu) correlation 

was replaced by Ra cosϕ  to compare the experimental results. But it is 

understood that this modified horizontal case correlation did not give good results 

for the immediate postconductive regime. For this reason, it can be readily said 

that Nu is not only a function of Ra cosϕ  in that regime.  

 

ElSherbiny, Hollands, and Raithby [5] performed an experimental study of heat 

transfer by free convection across vertical and inclined air layers. Two parallel 

isothermal flat plates were used in order to bound the air layer and a wall with low 

thermal conductivity constant was used around the edges. Measurements were 

done for the range of Rayleigh numbers from 103 to 108, the various inclinations 

from horizontal to vertical and an aspect ratio of 5. The effect of emissivity of the 

bounding wall was also investigated with a low and a high value of the wall 

emissivity. This study emphasized the requirement for introducing all the related 

dimensionless groups when presenting results, and helped to elucidate the 

interaction between the boundaries and the fluid flow. 

 

Dropkin and Somerscales [6] presented an experimental investigation of 

buoyancy induced flow in liquids bounded by two parallel plates with an 

inclination at various angles from the horizontal. The ranges for the Ra and Pr 

numbers are given as 5×104–7.17×108, and 0.02-11,560, respectively. The 

measurements were made in rectangular and circular containers with copper plates 

and insulating walls. Water, silicone oil and mercury were chosen in order to take 

into account the properties of the liquids. This paper indicates that Nusselt can be 

correlated as follows: , where C is a constant dependent on 

the angle of inclination and it varies from 0.069 for horizontal case to 0.049 for 

vertical case. 

1 8 0 074 / .Nu C Ra Pr=
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ElSherbiny, Raithby, and Hollands [7] made an experimental analysis of natural 

convection mode of heat transfer across vertical and inclined air layers. Air was 

confined to flat isothermal plates at different temperatures and temperature was 

distributed linearly on the edges because of their high conductivity. Measurements 

were reported for six aspect ratios between 5 and 110. The horizontal aspect ratio 

was chosen sufficiently large in order not to affect the heat transfer results. The 

range of Ra is between 102 and 2×107. This study allowed the role of aspect ratio 

to be clarified and additionally several heat transfer correlations about across 

vertical and inclined air layers were presented. 

 

Ozoe, Sayama, and Churchill [8] studied laminar natural convection in silicone oil 

and air in a long rectangular channel experimentally. The aspect ratio (width/ 

height) of the cross section of the channel was taken as 1, 2, 3, 4.2, 8.4, 15.5 and 

Ra was varied between 3×103 and 105. Moreover, the effect of inclination and of 

the aspect ratio on the rate of heat transfer was analyzed experimentally. It was 

concluded that the tilt angle corresponding to the minimum and maximum rates of 

heat transfer is strongly dependent on the aspect ratio and is weakly dependent on 

Ra. Furthermore, it was observed that at the angle of minimum heat transfer a 

transition starts in the mode of circulation. 

 

Azevedo and Sparrow [9] conducted an experimental heat transfer and 

visualization study in water to examine the effect of the angle of inclination on 

natural convection in a parallel walled channel. Three types of heating modes 

were utilized. They can be classified as follows: (I) both walls heated and 

isothermal, (II) heating from above and (III) heating from below. The discrepancy 

between Nu correlations when the modes (II) and (III) were used was shown 

clearly. Moreover, it was observed that recirculation zones can be seen adjacent to 

the unheated wall of top heated and one sided heated channels. Additionally, 

longitudinal vortices exist above a critical Ra while heating from below. 
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Inaba [10] investigated free convection motion and the heat transfer rate in an 

inclined rectangular air layer experimentally for various tilt angles from 0 to 180 

degrees. Additionally, the measurements were performed for different aspect 

ratios between 5 and 83, and for Rayleigh numbers between 1.2×103 and 2×106. 

Non-dimensional correlations for the heat transfer rate across the air layer were 

proposed in the relationship between Nu, Ra and the inclination angles. 

 

Onur, Sivrioğlu, and Aktaş [11] demonstrated buoyancy induced air flow between 

inclined plates with an experimental study. The lower plate was heated 

isothermally while the upper one was thermally insulated and unheated. The 

experiments were performed for different temperature differences in order to 

understand the effect of the plate spacing and inclination on heat transfer. Angles 

of inclination were taken as 0˚, 30˚ and 45˚ measured from the vertical axis. The 

separation distance, which is the plate spacing measure between the plates, ranged 

from 2 mm to 33 mm. As a result, an increase or decrease in heat transfer rate 

occurs depending on the spacing between plates at any given angle of inclination. 

 

Onur and Aktaş [12] conducted an experimental study in which a hot plate facing 

downwards was heated isothermally; the lower plate was insulated and unheated 

in order to study natural convection between inclined plates. Inclination angles 

were chosen to be 0˚, 30˚ and 45˚ with respect to the vertical. This study was 

conducted to see the effect of the plate spacing and also the inclination on the 

natural flow. It can be stated that the separation distance of plates strongly affects 

the Nu and heat transfer results do not strongly depend on tilt angle. 

 

 

 

 

 

 



2.1.2. Numerical Studies 
 
 
Ozoe, Fujii, Lior, and Churchill [13] computed the three dimensional velocity and 

temperature fields, and the mean Nusselt number of a rectangular enclosure 

heated from below, perfectly insulated on the lateral surfaces and with an 

inclination about the longitudinal direction by using a finite difference method. 

Calculations were restricted to Ra  = 4000,  = 10, and a single finite grid 

spacing. The results of this study can be used for theoretical prediction of heat 

transfer in finite rectangular enclosures, but due to limitations applied in this work, 

it is incomplete and should be revised for other grid spacings, Pr, and Rayleigh 

numbers. 

Pr

 

Ozoe, Yamamoto, and Churchill [14] have carried out a numerical study to 

develop theoretical solutions for an inclined three dimensional square channel. 

Additionally, the critical angle for transition to the two dimensional regime was 

determined. The finite difference method was used to solve the conservation of 

mass, energy and momentum equations. These equations were written in terms of 

the vector potential and the vorticity. It was observed that the average Nu first 

declines as the angle of inclination is given to the channel, and as the inclination is 

further increased, Nu increases due to the improved and developed rate of 

circulation of the single, 2-D roll cell.    

 

Yang and Zhu [15] performed direct numerical simulation of the two dimensional 

governing equations for natural convection in the inclined parallel walled channel 

by using the accurate projection method, Pm III. The results of the numerical 

solution were compared with the experimental data of Azevedo and Sparrow [9]. 

It was confirmed that when water whose Pr is approximately 5, and spacing ratio 

of less than 1/20 during the tilt angle ranges from 45 to 90 deg were used, the 

overall Nu is a monotonic function of the product of the Ra and the ratio of the 

channel width to the length times the sine of the inclination angle from horizontal.  
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Başkaya, Aktaş, and Onur [16] studied the effects of plate spacing and angle of 

inclination on natural convection between asymmetrically heated vertical and 

inclined parallel plates. The upper heated plate is facing downwards; the lower 

plate is passively heated by the upper one. The angles of inclination were taken 

same as taken in Onur et al [11]. The governing equations were solved by using a 

commercial computational code PHOENICS. Computational results were 

compared with experimental data from the literature. It can be concluded from 

this study that, the spacing between the plates affects the overall heat transfer 

from the channel and heat transfer decreases with an increase in the inclination 

angle, moreover it increases with increasing Ra. 

 

2.2. Literature for the Natural Convection Flow over the  

Inclined Flat Plate 
 
 
In addition to the literature review about natural convection in inclined channels, 

gravity induced convection about an inclined flat plate is also investigated in this 

thesis. Moreover the existence of longitudinal vortices and their effect on heat 

transfer are discovered during the survey. For the sake of completeness, papers 

about free convection over an inclined flat plate are also presented as follows: 

 

2.2.1. Experimental Studies 
 
 
Fujii and Imura [17] conducted an experimental study concerning natural 

convection heat transfer from an arbitrarily inclined flat plate. Two plates of 30 

cm height, 15 cm width and 5 cm height, 10 cm width were heated from one side 

of the surface. The results were represented in the relation average Nu versus Ra.  
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For the inclined heated plate facing upwards, it was found that the larger the angle 

of inclination from the vertical becomes, the smaller the transition Ra becomes. In 

addition to that, variation of Nusselt numbers with the inclination was illustrated 

by the change of the flow pattern. 

 
Shaukatullah and Gebhart [18] investigated boundary region flow formed over an 

inclined surface dissipating uniform heat flux by using a thermocouple and two 

hot film anemometer probes in the form of inverted V. In this experiment, 

measurements of temperature, the longitudinal and the transverse components of 

velocity were made. As a result, a single longitudinal vortex system was observed. 

Spanwise variation of temperature, velocity fields and also heat transfer stemmed 

from the aforementioned observation. They also stated that those variations 

started first for the angles of inclinations from vertical greater than 11°. 

 
Cheng and Kim [19] have made a visualization study for vortex instability of 

laminar natural convection flow along inclined isothermal plates that have an 

inclination range of 0 to 20 degrees with 5 degrees increments by using a low 

speed wind tunnel. The temperature difference between the plate surface and 

ambient air was taken from 15.5 to 37.5 °C, and the local Grashof number was 

from 1.02 ×106 to 2.13 ×108. As a consequence of this visualization study, a two-

dimensional laminar flow, a transition regime for developing longitudinal vortices 

and a turbulent regime after the breakdown of longitudinal vortices were observed 

and identified. It was stated that this experiment provides considerable physical 

insight into the structure and nature of the developing longitudinal vortices in the 

transition regime. 

 

Zuercher, Jacobs and Chen [20] conducted experiments to study the longitudinal 

vortices that emerge in the boundary layer on the upper surface of an inclined 

isothermally heated plate in water. The inclination angle from vertical was varied 

from 20 to 60 degrees, and the temperature difference was also chosen from 2 to 

23°C. A double-pass Schlieren system and particle image velocimetry (PIV) were 



utilized in order to visualize the vortices and measure the velocities, respectively. 

With the aid of Schlieren images for Pr = 5.8, the wavelength of the vortices and 

critical modified Reynolds numbers were determined. This study was the first 

experiment in which the growth rate of the vortices has been found using PIV 

measurements. 

 

2.2.2. Analytical and Numerical Studies 
 
 
Kierkus [21] made a perturbation analysis for two-dimensional laminar free 

convection about an inclined isothermal plate, using the classical boundary layer 

solution as the zeroth order approximation. First order perturbation solution has 

been found for the velocity and temperature fields. Pr was taken as 0.7 and 

inclination angles of 0, 15 , 30 , 45± ± ±  were used in order to compare with 

experimental data. Positive and negative inclination angles were measured with 

respect to the vertical axis and mean above the plate and below the plate, 

respectively. Good agreement was found between theoretical and experimental 

results. 

 
Haaland and Sparrow [22] investigated the linear stability of laminar free 

convection flow adjacent to a heated, inclined, upward-facing plate to observe the 

form longitudinal vortices. The problem was formulated in such a manner that 

basic flow and temperature fields depend on the streamwise coordinate. 

According to the linear stability theory, basic flow is treated as a parallel flow, but 

disturbance effects of the transverse velocity of the basic flow can not be ignored. 

This phenomenon gives rise to disturbance vorticity and temperature to be 

contained or bottled within the boundary layer of the basic flow. This is called the 

bottling effect. Two approaches, parallel flow model and non-parallelism of the 

basic flow were compared in this study.  
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It is discovered that the critical Grashof numbers of both models differ from each 

other by several orders of magnitude. It was also shown that when the tilt angle 

from the vertical is increased, vortex-type instability is more likely to occur. 

 

Chen and Tzuoo [23] studied the vortex instability characteristics of laminar free 

convection flow over horizontal and inclined isothermal surfaces analytically by 

using linear stability analysis. The effects of the angle of inclination on the main 

flow and thermal fields were also examined. The results were presented for wall 

shear stress, surface heat transfer, neutral stability curve and critical Grashof 

number for Prandtl numbers of 0.7 and 7 with a wide range of angles of 

inclination from horizontal. It was stated as a consequence that the greater the 

angle of inclination, the lower the susceptibility of the flow to the vortex mode of 

instability. 

 

Lin [24] examined the longitudinal vortex formation in natural convection flow 

over horizontal and inclined plates numerically. The criterion to decide the 

position of the onset of longitudinal vortices was defined in this study. Finite 

difference scheme was used in the purpose of solving the linearized perturbation 

equations of the flow. After performing such a study, it was revealed that an 

increase in the tilt angle from horizontal increases the value of critical Grashof 

number also. Grashof number was found to be also dependent on Prandtl number 

and wave number. Moreover, the flow was more stable to the vortex mode of 

instability as the inclination angle was increased due to the decrease in normal 

buoyancy force. On the other hand, the Prandtl number has been realized to be a 

destabilizing effect on the flow and the critical values of the Grashof number 

decrease with an increase in the Prandtl number. 

 

Jeschke and Beer [25] investigated the linear and nonlinear growth of longitudinal 

vortices and the development of the secondary instabilities in a laminar boundary 

layer numerically and experimentally. A constant heat flux inclined flat plate in 

water was chosen for this purpose.  
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The numerical method was based on a formal perturbation method which leads to 

a set of governing equations for the linear and nonlinear vortex regime. Nonlinear 

effects were seen only after a long period of linear vortex growth. Liquid-crystal 

thermography based on wide-band liquid crystals was used for experimental study 

to provide full-field, highly accurate wall temperature measurements and 

visualizations. After comparing the numerical and experimental results, it was 

clear that vortices cause practically all of the increase of mean heat transfer values 

during the transition process whereas secondary instabilities only have a minor 

effect.  

 

Biertümpfel and Beer [26] studied heat transfer from a liquid to a solid wall in 

natural convection in the regime of transition to turbulent experimentally and 

numerically. It was observed that firstly three dimensional longitudinal vortices 

start to grow in the streamwise direction with a pair wise counter-rotating. That 

means the flow propagates by doing a screw-like motion in x direction. As these 

laminar vortices grow further, transition from laminar to turbulent occurs with the 

onset of unsteady, wavy, sinuous-like motion, i.e. secondary instability. It was 

concluded that the presence of longitudinal vortices lead to an increase in heat 

transfer, especially in the presence of secondary instabilities in transition stage. 

This increase was even higher than that was expected for a turbulent flow. 

Thermochromic liquid crystals were used for experimental measurements and 

FLUENT was used for numerical simulation of the flow. 

 

 

 

 

 

 
 
 
 



CHAPTER 3 
 

SPECTRAL METHODS 
 

3.1. Introduction 
 
 
In this chapter, introductory information about the general characteristics of 

spectral methods is given. The choice of spectral approximation for representation 

of a given function is shown by using the method of weighted residuals [27]. 

Additionally, a comparison of spectral methods with finite element and finite 

difference methods is also given in this section [28]. In the following sections, 

Fourier and Chebyshev methods are introduced, and several specific applications 

of these methods, which are used in this thesis, such as Fast Fourier Transform 

(FFT) and the recurrence relation for differentiation in Chebyshev method, are 

also presented. 

3.1.1. Method of Weighted Residuals 
 
 
In weighted residual methods, functions are approximated in terms of a truncated 

series expansion as follows: 
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k( ) ( ) ( )
0

N

N k
k

f x f x f xϕ
=

≈ =∑                      (3.1) 

where kf  are the expansion coefficients and ( )k xϕ  are basis functions. There is 

also a quantity defined as residual which should be equal to zero in an 

approximate sense by using the following scalar product: 

 

 



( ) ( ) ( ) ( )
b

w
a

f ,g f x g x w x dx= ∫                     (3.2) 

( )f x  and  are defined on [a,b] and ( )g x ( )w x  is the weight function. The 

residual function  can be defined as: ( )NR x

( ) ( ) ( )NR x f x f x= − N                                                (3.3) 

According to the weighted residuals method, ( )NR x  can be vanished 

approximately by setting the following scalar product to zero. 

 

( ) ( ) ( ) ( ) 0
*

b

N i N i * Nw
a

R , R x x w x dx , iψ ψ I= = ∈∫                      (3.4) 

 

where ( )i xψ  are the test functions, ( )*w x  is the weight function. NI  is the 

dimension of the discrete set and it depends on the problem. Weighted residual 

methods can be classified into two types of methods with respect to the choice of 

iψ  and . These are Galerkin-type and collocation method. The Galerkin-type 

method corresponds to that chosen test functions are equal to basis functions in 

Eq. (3.1) and are orthogonal with respect to weight functions; on the other hand 

collocation method can be defined in such a manner that residual function 

*w

( )NR x  

is equal to zero in selected collocation points. In order to do this, weight function 

and test function are defined as 

 

( )  and  1i ix x w*ψ δ= − =                               (3.5) 

 

where δ  is the Dirac-delta function. ix  are selected on [a,b]. In other words, it 

can be said that the residual is exactly zero at certain points when collocation 

method is considered, meanwhile its scalar product is zero in the Galerkin-

method.  
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Spectral methods belong to the family of weighted residual methods and basis 

functions defined in Eq. (3.1) are orthogonal with respect to some weight 

function. In order to get more detailed information about Galerkin and Collocation 

Methods, one can be referred to Peyret [27]. 

3.1.2. Comparison of Spectral Methods with Finite Element and 

Finite Difference Methods 
 
 
Finite element methods differ from spectral methods in a basic way that the 

former ones divide the interval into a number of sub-intervals, and choose local 

functions of fixed degree which are zero except over a couple of sub-intervals. On 

the other hand, the latter one uses a global high degree of basis functions as 

defined in the previous section, e.g. trigonometric polynomials which are non-

zero except at isolated points, i.e. collocation points. 

 

Finite element method uses three different ways to increase the accuracy. They 

can be defined namely as h-refinement, p-refinement and r-refinement. In h- 

refinement, interval size, h is decreased over the whole domain in order to 

improve the resolution. In p-refinement, the degree of the polynomials in each 

subdomain is increased. This is a similar way with the one in spectral methods, in 

which high degree of global basis functions are used. In r-refinement, only the 

interval size of the regions where more resolution is needed is diminished. These 

three types of refinements can be illustrated as in Fig. 3.1. 
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h-refinement 

Figure 3.1.  Illustration of three types of refinements [28] 

 

 

Finite element methods have two advantages over spectral methods. Firstly, 

sparse matrix equations can be constructed since local functions are zero except 

over some sub-intervals. Time-cost is diminished in this way. Secondly, when 

irregularly shaped geometries are considered, in finite element methods small 

various geometries can be used in little subintervals. But lower accuracy of a 

finite element method is the major disadvantage. On the other hand, algebraic 

equations with full matrices are generated by spectral methods, and high accuracy 

can be obtained with high order basis functions. However, time cost is increased 

due to full matrix solvers. Additionally, geometry of the problem should be more 

smooth and regular. 

 

Subdivide only where 
high resolution is needed

Increase  
polynomial  
degree p 

h

Smaller h

p-refinement r-refinement 



Finite difference methods use a sequence of overlapping polynomials to 

approximate the unknown ( )f x  at the grid points, and also derivatives of local 

interpolants are used in order to estimate the derivative of ( )f x . Pseudospectral 

differentiation formulas are neither three point formulas, like second order finite 

differences nor even five point formulas like the fourth order finite differences. 

They are N-point formulas because (N+1) values of desired solution are used to 

compute (N+1) coefficients of the expansions. For this reason, the order of the 

method is not fixed, when N, i.e. number of the collocation points, is increased, 

interval size decreases, and this causes the error to become smaller. Error can be 

defined in pseudospectral method as O(hN). Since h is O(1/N), it can readily be 

seen that error in pseudospectral method becomes O[(1/N)N]. By defining this 

error term, it can be argued that the error is decreasing faster with an increasing 

value of N. For more detailed information about accuracy of pseudospectral 

methods and comparison of them with finite element, and finite difference 

methods, one can be referred to Boyd [28]. 

3.2. Fourier series 
 
 
In this section, the basic properties and some special characteristics of Fourier 

series will be introduced. Calculation of the expansion coefficients is examined by 

using the Galerkin technique and collocation technique [27]. The second 

technique is also called Discrete Fourier series. Moreover, FFT technique that is 

used in this thesis will be discussed [29]. Fourier series have trigonometric basis 

functions, for this reason they are usually adapted to periodic functions. If the 

adapted function is not periodic, the convergence of the associated series will not 

be uniform near the boundaries. 
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3.2.1. Calculation of Fourier coefficients 
 
 
The function ( )f x  can be written in terms of truncated series expansion as in the 

form of Eq. (3.1) and it can be shown like that; 

( )
K

i kx
K k

k K
f x f

=−

= ∑ e ,                     (3.6) 

where 2
i  = -1. There are 2 1K +  complex coefficients to be calculated, however 

since real ( )f x  is assumed, then two expansion coefficients with an opposite 

indices become complex conjugates: 

k kf f− =            (3.7) 

and also 0f  is real. For this reason, in practice kf  are calculated for  

and the other coefficients are found by the help of the Eq. (3.7). The scalar 

product in Eq. (3.2) is valid with respect to unity as the weight function then Eq. 

(3.2) becomes: 

0k , ,K= …

( )
2

0

f ,g f gdx
π

= ∫                    (3.8) 

by the aid of  Eq. (3.8), the orthogonality property of the complex exponential 

functions can be obtained as follows: 
2

0

2    if   
0      if   

i mx i nx m n
e e dx

m n

π π− =⎧
= ⎨ ≠⎩

∫          (3.9) 

After making these necessary calculations, Fourier expansion coefficients can be 

readily obtained by using Galerkin-type technique described in Section 3.1.1. In 

order to do this, the residual function is set equal to zero in the average sense as 

follows: 

( ) 0    i lx
K

K K

R ,e , l K , ,K

R f f

= = −

= −

…
                   (3.10) 
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by using Eqs. (3.6) and (3.8), 

 

( )
2

0

0
K

i k l xi lx
k

k K
fe f e dx

π
−−

=−

⎡ ⎤
− =⎢

⎣ ⎦
∑∫ ⎥                   (3.11) 

Finally, kf  can be obtained from Eqs. (3.9) and (3.11) as the expression given 

below: 
2

0

1    
2

i kx
kf fe dx , k K , ,K

π

π
−= = −∫ …                   (3.12) 

In the following section, Fourier coefficients will be calculated by using 

collocation method, i.e. annulling residual function at the collocation points. 

3.2.2. Discrete Fourier series 
 
 
In this section, apart from the Galerkin-type technique, the general technique of 

collocation is used in order to determine the discrete coefficients of the Fourier 

series. The collocation points in the Fourier series can be written as: 

2   0i
ix , i , ,N

N
π

= = …                    (3.13) 

Again the function ( )f x  is assumed as periodic; therefore the value of the 

function at the first and the last collocation points are equal to each other. The 

function is expanded in a Fourier series as in the Eq. (3.6): 

( )
K

i kx
K k

k K
f x f

=−

= ∑ e                    (3.14) 

Since residual function is equal to zero at collocation points, then by using the 

definition of residual function in Eq. (3.10), one can obtain 

( )    1i
K

i kx
k i

k K
f e f x , i , ,

=−

= =∑ … N.                   (3.15) 
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Expansion coefficients kf  can be determined by utilizing the discrete 

orthogonality relation 

 

( )2

1

    if      0  1  2
0      otherwise.

iN i k l
N

i

N k l mN , m , , ,
e

π
−

=

− = = ± ±⎧
= ⎨
⎩

∑
… ,

         (3.16) 

 

Finally by multiplying both sides of Eq. (3.15) with i lxe− and taking the sum from 

 to . At the last step by using the relation in Eq. (3.16), one can obtain 1i = i N=

( )
1

1   i
N

i kx
k i

i
f f x e , k K , ,K.

N
−

=

= =∑ …−       (3.17) 

3.2.3. Fast Fourier Transform 
 
 
Fast Fourier Transform (FFT) is the basic and general algorithm for evaluating the 

discrete Fourier transform and its reverse. One can find the Fourier coefficients of 

the series by applying Eq. (3.17) and it becomes 

( )
2

1

1          
iN i k

N
k i

i
f f x e , k K , ,K

N

π
−

=

= ∑ …= −                 (3.18) 

 

where 1
2

NK −
=  from the previous section and ( )if x can also be written as  

    ( )
2

        i 1
iK i k

N
i k

k K
f x f e , ,

π
−

=−

= ∑ … ,N=                  (3.19) 

 
In most applications, the direct use of complex FFT is very time-consuming. For 

this reason real transform of the FFT is used to get our results more rapidly. All 

the terms, i.e. real and imaginary terms, are collected as two sets of real data and 

both parts are examined separately. For further detailed information about FFT 

and examples of algorithms, one can refer to Canuto et al. [29]. 
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3.3. Chebyshev Methods 
 
 
In this section, general properties of Chebyshev polynomials [27] are introduced. 

In the previous section, it is stated that because of the non-uniformity at the 

boundaries, Fourier series are adapted to periodic functions, for non-periodic 

functions Chebyshev series expansion is one of the alternatives that can be used. 

They are accepted as cosine Fourier series, for this reason FFT can also be used 

for Chebyshev series. Apart from this similarity, Chebyshev series are exempt 

from the non-uniformity at the boundaries.       

3.3.1. Chebyshev Polynomials 
 
 

( )kT x  is the Chebyshev polynomial of first kind of degree k and it is defined at 

[ ]1 1x ,∈ − . It can also be formulated as follows: 

( ) ( )( )   kT x cos k arccos x , k= ∈Ν                       (3.20) 

since the above equation is a cosine function then ( )kT x  can be defined in [ ]1 1,− . 

By introducing x cos z=  into Eq. (3.20), the following relation can be obtained: 

( )kT x cos kz=                    (3.21) 

Chebyshev polynomials are orthogonal with respect to the weight function of, 

( )
( )

[
2

1  x -1,1
1

w x ,
x

= ∈
−

]                                        (3.22) 

and by using the scalar product defined by Eq. (3.2) the orthogonality property of 

Chebyshev polynomials can be written as follows: 

( ) ( ) ( )
1

1 2k l k l k k ,lw
T ,T T x T x wdx bπ δ

−

= =∫       (3.23) 

where k ,lδ  is the Kronecker delta and one can define  as kb

2     if  0
1      if  1k

k ,
b

k .
=⎧

= ⎨ ≥⎩
        (3.24) 
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3.3.2. Calculation of Chebyshev coefficients 
 
 
Chebyshev approximation of the function ( )f x  can be written in series 

expansion form: 

( ) ( ) [ ]
0

  x -1,1
N

N k k
k

ˆf x f T x ,
=

= ∈∑                   (3.25) 

Similarly, as described in Fourier series section, expansion coefficients kf̂  can be 

determined by using the Galerkin-type technique. The residual function again is 

vanished in the average sense and the final form of the scalar product can be 

written by following the same procedure as in Section 3.2.1. 
1

01

0   0
N

l k k l
k

ˆfT w f T T w dx , l , ,N
=−

⎛ ⎞
− = =⎜ ⎟

⎝ ⎠
∑∫ …                  (3.26) 

By utilizing Eq. (3.23), kf̂  can be found easily as follows: 

1

1

2
k k

k

f̂ fT wdx
bπ −

= ∫                     (3.27) 

3.3.3. Discrete Chebyshev series and Collocation Method 
 
 
In this section, discrete Chebyshev expansion coefficients will be calculated by 

the aid of the collocation technique, i.e. residual function vanishes at collocation 

points that are mentioned in Section 3.2.2. Collocation points considered here are 

the Gauss-Lobatto points defined as: 

  0i
ix cos , i , ,N .

N
π

= = …                    (3.28) 

 

According to the collocation technique let 
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Eq. (3.29) can be rephrased by introducing Eq. (3.20) into Eq. (3.29): 

( ) ( )
0

  0
N

i N i k
k

k iˆf x f x f cos , i , ,
N
π

=

= = =∑ … N                  (3.30) 

At this point, the discrete orthogonality relation based on Gauss-Lobatto points 

should be described. By referring to [27], the following quadrature formula 

applied to any function ( )p x  is used to determine orthogonality relation: 

( ) ( ) ( )1

01

N
i

i i

p x
p x w x dx

N c
π

=−

≅ ∑∫                   (3.31) 

where     

2     if   0
1      if   1 1
2     if   

k

k ,
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                       (3.32) 

 

By taking Eqs. (3.23) and (3.31) into consideration simultaneously, the discrete 

orthogonality relation can be found as follows: 

( ) ( )
0

1
2

N
k

k i l i k ,l
i i

cT x T x N
c

δ
=

=∑                                  (3.33) 

where  0 k ,l N .≤ ≤

Now, by the aid of the above equation and Eq. (3.29), expansion coefficients can 

be obtained. By multiplying each side of Eq. (3.29) by ( )l iT x / ci

N

, and taking the 

summation from , and using Eq. (3.33), the following relations are 

obtained: 

0 to i i= =

( )
0

2 1   0
N

k i k i
ik i

f̂ f T x , k , ,N ,
c N c=

= ∑ …=                   (3.34) 

or 

0

2 1   0
N

k i
ik i

k if̂ f cos , k , ,N
c N c N

π
=

= ∑ …=

i

                (3.35) 

where ( ) ( )i i Nf f x f x= = .  
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Eqs. (3.30) and (3.35) readily show that both the expansion coefficients and the 

approximated function are written in the form of discrete Fourier series in cosine. 

For this reason, FFT algorithm is also used in Chebyshev series to provide the 

connection between the physical space and the spectral space. Finally, the 

recurrence relation is given about the Chebyshev integration that is used in 

Chapter 4. If  denotes the Chebyshev coefficients of the q -th derivative of ( )q
na

( )f x , then  

( ) ( ) ( )1
1 1 1 2  q q

n n n nc a a n a q−
− − +− =                        (3.36) 

where  and  for  [28]. 0 2c = 1nc = 1n ≥
 

3.4. Description of Temporal Discretization Techniques 
 
 
In this section, discretization of a variable with respect to time will be discussed. 

For this purpose, two techniques are used in this study, and both of them are two-

step schemes, i.e. variables in three successive time levels are used to discretize. 

The former technique is Semi-implicit Adams-Bashforth / Crank-Nicolson 

(AB/CN) scheme, the latter one is Semi-implicit Adams-Bashforth /Backward-

Differentiation (AB/BDI2) scheme. The general formulations of those techniques 

are examined in order to give a comprehensible sight to the temporal 

discretization equations in Chapter 4. The formulations in this section all refer to 

[27]. As a reference point, one dimensional advection-diffusion equation is 

analyzed and application of both methods to this equation is shown. One 

dimensional advection-diffusion equation can be written as follows: 

 

( )
2

2
g g ga f
t x x

ν∂ ∂ ∂
+ − =

∂ ∂ ∂
x,t                        (3.37) 

 
 

where  is the coefficient of diffusion or viscosity term, and a  is the advective 

velocity term. Both of them are constant.  

v
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On the other hand, right hand side term ( )f x,t  is the forcing term and changes 

spatially and temporally. ( )g x,t  is the solution of the above equation and can be 

considered as the variables in Eq. (4.35) in Chapter 4. In the following section, 

general time discretization formulae of two-step schemes, the formulations of the 

AB/CN and AB/BDI2 schemes applied for Eq. (3.37) will be given. 

3.4.1. Two-step methods 
 
 
The general two-step scheme for Eq. (3.37) can be presented as follows: 

 

( ) ( )

( )

( )

( )

1 1

1 1
1 2 1 2

1 1
1 2 1 2

1 1
1 2 1 2

1 2 1
2

1

1

1

n n n

n n n
x

n n n
xx

n n n

g g g
t

a g g g

g g g

f f f .

ε ε ε

γ γ γ γ

ν θ θ θ θ

θ θ θ θ

+ −

+ −

+ −

+ −

+ − − −
∆

⎡ ⎤+ ∂ + + − −⎣ ⎦

⎡ ⎤− ∂ + + − −⎣ ⎦

= + + − −

      (3.38) 

 
The parameters ε , 1γ , 2γ , 1θ  and 2θ  are arbitrary constants, according to the 

selected value of them, the type of the method is decided. By using the reference 

[27], second order accuracy of the above equation can be formulated as follows: 

1 2 1 22 1 2
2

1ε γ γ θ θ= + − = + − .                       (3.39) 

 

Both AB/CN and AB/BDI2 schemes have second order accuracy. Moreover, the 

above equation can be adapted to three dimensional cases also. In three 

dimensional case, besides first and second order derivatives with respect to x, 

 and y z,∂ ∂ yy zz,∂ ∂  terms are also taken into account.  
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The general form of the equation for three dimensional cases does not change and 

coefficients of first order and second order derivatives remain the same, too. In 

the following two sub-sections the aforementioned schemes that are used in this 

thesis are introduced. 

 

3.4.1.1. Semi-implicit AB/CN Scheme 
 
 
This scheme is defined by taking: 

 

1 2 1 21  0  3 2  1 2, , / , /ε γ γ θ θ= = = = =  .                  (3.40) 

 

By using these values and Eq. (3.38) simultaneously, the general form of this 

scheme is obtained as: 

 

( ) ( ) (
1

1 1 113
2 2 2

n n
n n n n n n

x xx
g g a g g g g f f

t
ν+

− + +−
+ ∂ − − ∂ + = +

∆
)          (3.41) 

 

3.4.1.2. Semi-implicit AB/BDI2 Scheme 
 
 
Similarly, this scheme is defined by taking: 

 

1 2 1 22  0  2  1  0, , , ,ε γ γ θ θ= = = = =                   (3.42) 

 

Again, by using these values and Eq. (3.38) simultaneously, the general form of 

this scheme is obtained: 

 

( )
1 1

1 13 4 2
2

n n n
n n n n

x xx
g g g a g g g f

t
ν

+ −
1− +− +

+ ∂ − − ∂ =
∆

+ .           (3.43) 
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CHAPTER 4 
 

SPECTRAL METHODS SOLUTION OF  

THE GOVERNING EQUATIONS 
 
 
In this chapter, the formulation of the fluid motion and the solution method of the 

problem will be introduced. The governing equations that help us to understand 

the characteristics of the fluid motion are the Navier-Stokes equations: the 

continuity, momentum and energy equations. Those three equations are coupled, 

and for this reason they are solved simultaneously. The numerical method 

presented in this thesis was first represented by Kim, Moin and Moser [30] and 

developed by Zhang and Tangborn [31]. The details of the formulation and 

solution technique presented in this chapter are mostly the same as introduced in 

Tarı’s thesis [32] with some differences, e.g. the inclination angle and some 

additional terms stemmed from the new temporal discretization technique.    

 

4.1. Geometry, Domain and Assumptions 
 
 
A channel between two inclined, infinitely long parallel walls is considered as the 

main geometry. The infinite walls are modeled as  by  walls with periodic 

boundary conditions at the boundaries in both streamwise and spanwise 

directions. The distance in the normal direction is . In this problem,  and 

changes from  to 

xL zL

yL 2yL =

1y = − 1y = .  
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Since there is a temperature difference between the plates, and also inclination 

angle from horizontal is given to the channel, buoyancy forces in the flow act in 

both normal and streamwise directions. The Boussinesq approximation is applied, 

and for this reason variations of all fluid properties other than the density are 

ignored, and the density variations only change the gravitational force. Moreover, 

flow is considered as incompressible. The geometry of the problem is given in 

Figure 1.1. 

4.2. Formulation of Governing Equations 
 
 
The Navier-Stokes equation, which will be described below, is written in the 

rotational form. Those equations for incompressible flow are: 

 

2p T
t

ω ν∂
+ × = −∇ + ∇ +

∂
U U U βg           (4.1) 

 

0∇⋅ =U              (4.2) 

 

2T T T
t

α∂
+ ⋅∇ = ∇

∂
U            (4.3) 

 

where   is the velocity field at location (u, ,w= υU ) ( , , )x y z=X  and time t , p  is 

pressure, and ν , β  and α  are the kinematic viscosity, the thermal expansion 

coefficient and the thermal diffusivity for the fluid, respectively. T  is the 

temperature of the fluid, ( ,gsin gcos )ϕ ϕ=g  is the gravitational acceleration 

vector, and since there is an inclination from the horizontal, it is written in the 

vector form as shown above, ϕ  is the tilt angle measured from the horizontal axis 

and  ω = ∇×U  is the vorticity. 
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 The boundary conditions for the velocity field are: 

 

( , , , ) 0x y z t =U    at   1y = ±     (No slip condition) 

( , , , ) ( , ,x z , )x mL y z nL t x y z t+ + =U U     (Periodic condition) 

 

0u
x

∂
=

∂
 at 1y = ±  

0w
z

∂
=

∂
 at 1y = ±  

and, from the continuity equation, it is obtained that  

0
y
υ∂
=

∂
 at 1y = ±  

 

Also the boundary conditions for the temperature field are: 

 

( , , , ) ( , ,x zT x mL y z nL t T x y z t+ + = , )   (Periodic Condition) 

1( , , , ) ( , )T x y z t T x z=   at 1y =  

2( , , , ) ( , )T x y z t T x z=   at 1y = −  

 

In order to determine the non-dimensional form of Eqs. (4.1-3), U  and L   are 

used as the characteristic velocity and length scales of the problem, respectively. 

The channel height H is usually used as the length scale. In this case, since Re is 

assumed to be very small due to the quiescent fluid, diffusion time scale as time 

scale and velocity scale is adjusted by taking 1Re / Pr= . Temperature is non-

dimensionalized by using the maximum temperature difference . 

It is also defined that 

max minT T T∆ = −

mT Tθ = − , where  is the mean temperature of the upper 

wall. Non-dimensional parameters are described by the superscript “*” and 

relations between the non-dimensional and the dimensional parameters can be 

shown as below: 

mT
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2

*

*

*

U

X
Ut t
X

T
pp
U

θθ

ρ

=

=

=

=
∆

=

*

*

UU

XX

 

 

When these terms are put into the Eqs. (4.1-3), the equations take the form: 

2
2

1* * Rap
t Re

*

Re Pr
ω θ∂

+ × = −∇ + ∇ +
∂

*
* *U U U            (4.4) 

 

0∇⋅ =*U                (4.5) 

 

21*
*

t Re P
θ *

r
θ θ∂

+ ⋅∇ = ∇
∂

*U           (4.6) 

 

where  
3L TRa

LURe

Pr

β
αν

ν

ν
α

∆
=

=

=

g

 

In the rest of the chapter asterisks are dropped and every variable can be 

considered in non-dimensional form from now on. Moreover, “N-S” abbreviation 

is used to mention the set of governing equations such as Eqs. (4.4-6). 
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4.3. Solution of N-S by Using Spectral Methods 
 

4.3.1. Reformulation of the Problem 
 
 

The non-dimensional form of the governing equations obtained in the previous 

section can be reformulated in the form: 

 

2
1 2

1u p Ra sinh u
t x Re Re Pr

ϕ θ∂ ∂
= − + + ∇ +

∂ ∂
         (4.7) 

2
2 2

1p Rah
t y Re Re Pr

cosυ ϕυ θ∂ ∂
= − + + ∇ +

∂ ∂
         (4.8) 

2
3

1w p h w
t z Re

∂ ∂
= − + + ∇

∂ ∂
           (4.9) 

0u w
x y z

υ∂ ∂ ∂
+ + =

∂ ∂ ∂
                     (4.10) 

21u w
t x y z Re Pr
θ θ θ θυ θ∂ ∂ ∂ ∂
= − + + + ∇

∂ ∂ ∂ ∂
( )                  (4.11) 

 

The h terms that appear in Eqs. (4.7-11) result from the cross product of vorticity 

and the velocity vector which is in the left hand side of Equation 4.4. They can be 

introduced as follows:  

 

1 z yh wυω ω= −                 (4.12-a) 

2 x zh w uω ω= −                 (4.12-b) 

3 y xh uω υω= −                 (4.12-c) 
 

where , ,x y zω ω ω  are vorticity components in , ,x y z  directions which are defined 
as: 
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x
w
y z

υω ∂ ∂
= −
∂ ∂

                (4.13-a) 

y
u w
z x

ω ∂ ∂
= −
∂ ∂

                (4.13-b) 

z
u

x y
υω ∂ ∂

= −
∂ ∂

                (4.13-c) 

 
In addition to those convective h terms, both pressure gradient and non-

dimensional temperature terms can be brought together in the nonlinear terms as: 

1 1 2
p RasinH h
x Re Pr

ϕ θ∂
= − +

∂
    (4.14-a) 

2 2 2
p RacosH h
y Re Pr

ϕ θ∂
= − +

∂
    (4.14-b) 

3 3
pH h
z

∂
= −

∂
     (4.14-c) 

    1 2 3( , ,H H H )=H         (4.15) 

Then the governing equation for the fluid velocity can be written as: 

21
t Re

∂
= + ∇

∂
U H U        (4.16) 

Taking the curl of the equation,  

21( ) ( )
t Re
∂

∇× = ∇× + ∇ ∇×
∂

U H U                   (4.17) 

yields 

21
x y z x y zt Re

ω ω ω ω ω ω∂
+ + = ∇× + ∇ + +

∂
i j k H i j( ) ( )k            (4.18) 

where 

3 32 1 2( ) ( ) (H HH H H H
y z z x x y

1 )∂ ∂∂ ∂ ∂
∇× = − + − + −

∂ ∂ ∂ ∂ ∂ ∂
H i ∂j k        (4.19) 

Second order equation for the normal component of vorticity can be formed as: 

21
gG h G

t Re
∂

= + ∇
∂

                  (4.20) 
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where  

31
g

HHh
z x

∂∂
= −

∂ ∂
                      (4.21) 

and  
yG ω=                     (4.22) 

 

Now, the second derivative of the normal component of velocity in the governing 

equation is taken. 

2
2

1H
t Re
υ υ∂
= + ∇

∂
                       (4.23) 

which yields a fourth order equation with respect to υ  

2 1h
t Rυ

4

e
υ υ∂

∇ = + ∇
∂

( )                        (4.24) 

where  
2

2h Hυ = ∇                     (4.25) 

From the N-S equations and continuity the relation below can be determined. 

31 2HH H
x z y

∂∂ ∂
+ = −

∂ ∂ ∂
                   (4.26) 

Therefore, the non-linear term hυ  can be written as 

2 2
31

22 2( ) ( )HHh H
x z y xυ

∂∂∂ ∂ ∂
= + − +

∂ ∂ ∂ ∂ ∂z
                     (4.27) 

The fourth order equation can be solved by dividing it into two second order 

equations by defining: 
2υ φ∇ =  

The following set of equation is obtained: 

21h
t Reυ
φ φ∂
= + ∇

∂
                            (4.28-a) 

2υ φ∇ =                  (4.28-b) 
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0υ =   at 1y = ±  

0
y
υ∂
=

∂
 at 1y = ±  

In this coupled system the four boundary conditions are satisfied as follows. Let 

1 1 2 2p c cυ υ υ= + + υ  

where the particular solution pυ  and two homogeneous solutions 1υ  and 2υ  

satisfy the following equations. 

 

21p
p h

t Re υ

φ
φ

∂
− ∇ =

∂
                   (4.29) 

0pφ =   at 1y = ±  

 
2

p pυ φ∇ =                      (4.30) 

0pυ =   at 1y = ±  

 

21
1

1 0
t Re
φ φ∂

− ∇ =
∂

                       (4.31) 

1 0φ =  at 1y =  

1 1φ =  at 1y = −  

2
1 1υ φ∇ =                                (4.32) 

1 0υ =  at 1y = ±  

 

22
2

1 0
t Re
φ φ∂

− ∇ =
∂

                        (4.33) 

2 1φ =   at 1y =  

2 0φ =   at 1y = −  
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37 

2
2

2υ φ∇ =                     (4.34) 

2 0υ =   at 1y = ±  

 

After the above equations are solved, the constants and  are chosen to satisfy 

the boundary condition as below. 

1c 2c

 

1 2
1 2 0p c c

y y y y
υ υ υυ ∂ ∂ ∂∂

= + + =
∂ ∂ ∂ ∂

 at  1y = ±

 

As a result, by means of the above equations and the boundary conditions, the 

problem has been reduced to the following set of equations: 

 

 

2

2

2

2

1

1

0

1

g

T

h
t Re

G h G
t Re

f
y

h
t Re Pr

υ
φ φ

υ φ

υ

θ θ

∂
= + ∇

∂

∇ =

∂
= + ∇

∂

∂
+ =
∂

∂
= + ∇

∂

                   (4.35) 

 

 

 

 

 

 

 



where  

 

31

2 2
31

22 2( ) (

( )

g

T

u wf
x z

u wG
z x

HHh
z x

HHh
y x z x z

h u w
x y z

υ

θ θ θυ

∂ ∂
= +
∂ ∂

∂ ∂
= −
∂ ∂

∂∂
= −

∂ ∂

∂∂∂ ∂
= − + + +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
= − + +

∂ ∂ ∂

)H∂

                             (4.36) 

 

with corresponding boundary conditions: 

 

1

2

0        at      1

0     at      1

0       at      1

     at      1

     at      1

y

y
y

G y

y

y

υ

υ

θ θ

θ θ

= = ±

∂
= = ±

∂

= = ±

= =

= = −

                   (4.37) 

 

and periodic boundary conditions in x and z  directions. 
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4.3.2. Series Expansion 
 
 
In this section, velocity and temperature terms of non-dimensionalized rewritten 

set of equations are expanded in Fourier series in the streamwise and spanwise 

directions, and also the Chebyshev polynomials are used in the normal direction. 

Detailed information about these techniques is given in Chapter 3, and for this 

reason the main objective of this section is only to formulate N-S equations in 

terms of Fourier series and Chebyshev polynomials. Therefore, solutions have the 

form: 

0

0

( ) [2 ( )] (

( ) [2 ( )] (

y

x z

y

x z

N

l
j N k N l x z

N

l
j N k N l x z

jx kzû j ,k ,l ,t exp i T y
N N

jx kzˆ j ,k ,l ,t exp i T y
N N

π

θ θ π

< < =

< < =

= +

= +

∑ ∑ ∑

∑ ∑ ∑

U )

)

 

 
where  is the Chebyshev polynomial of degree l  and , 

 and  are the number of intervals in spatial discretization. The symbols 

( ) ( )lT y cos l arccos y=  xN

yN zN ~ 

and ^ are used to denote the variables in Fourier and Chebyshev space, 

respectively. 

4.3.3. Temporal Discretization 
 
 
Discretization for time is done by using two methods. Both of them are two-step 

(i.e. three time level) and semi-implicit methods. Those are Adams-

Bashforth/Crank-Nicolson (AB/CN) scheme and Adams-Bashforth/Backward-

Differentiation (AB/BDI2) scheme. Details of formulation of these schemes are 

given in Chapter 3, and in this section application of them in the N-S equations 

will be given in the ultimate form. 
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4.3.3.1. Semi-implicit AB/CN Scheme 
 
 
By using this scheme, the θ  equation in Eq. (4.35) becomes, 

 
1 2

13 1 1 (
2 2 2

n n n
n n

T Th h
t Re Pr

1 2

)
nθ θ θ+ +

−− ∇
= − +

∆
θ+∇                  (4.38) 

which can be also written as: 

 

2 1 1 1 22 23n n n n n
T T

nRe Pr Re PrRe Pr h Re Pr h
t t

θ θ θ+ + −∇ − = − + −∇ −
∆ ∆

θ  

1

2

     at      1
     at      1

y
y

θ θ
θ θ
= =
= = −

 

Similarly, the  equation takes the form as in below: G

 
1 2

13 1 1 (
2 2 2

n n n
n n

g g
G G G Gh h

t Re

+ +
−− ∇

= − +
∆

1 2

)
n+∇                  (4.39) 

2 1 1 1 22 23n n n n n
g g

nRe RG G Re h Re h G
t t

+ + −∇ − = − + −∇ −
∆ ∆

e G             

0       at      1G y= = ±  

and equation of υ  becomes 

 

2 1 1 1 22 23n n n n n
p p p

n
p

Re RRe h Re h
t tυ υ

eφ φ φ+ + −∇ − = − + −∇ −
∆ ∆

φ         (4.40) 

0       at      1p yφ = = ±  

 
2 1n

p pυ φ 1n+ +∇ =                             (4.41) 

0       at      1p yυ = = ±  
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2 1 1
1 1

2 0n nRe
t

φ φ+ +∇ − =
∆

                    (4.42) 

 
1 0      at       1yφ = =  

1 1       at      1yφ = = −  

 
2 1

1 1
n 1nυ φ+ +∇ =                         (4.43) 

1 0       at      1yυ = = ±  

 
2 1 1

2 2
2 0n nRe

t
φ φ+ +∇ − =

∆
                   (4.44) 

 
2 1      at        1yφ = =  

2 0      at        1yφ = = −  

 
2 1

2 2
n n 1υ φ+ +∇ =                         (4.45) 

2 0       at      1yυ = = ±  

4.3.3.2. Semi-implicit AB/BDI2 Scheme 
 
 
By using this scheme, the θ  equation in Eq.(4.35) becomes, 

 
1 1

13 4 12
2

n n n
n n

T Th h
t R

θ θ θ 2 n+1

e Pr
θ

+ −
−− +

= − + ∇
∆

                       (4.46) 

which can be also written as: 
1

2 1 1 13 2 (
2 2

n
n n n n n

T T
Re Pr Re PrRe Pr h Re Pr h

t t
θθ θ θ

−
+ + −∇ − = − + − −

∆ ∆
2 )  

1

2

     at      1
     at      1

y
y

θ θ
θ θ
= =
= = −
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Similarly, the  equation takes the form as in below: G

 
1 1

1 23 4 12
2

n n n
n n

g g
G G G h h G

t R

+ −
−− +

= − + ∇
∆

n +1

e
                   (4.47) 

1
2 1 1 13 2 (2

2 2

n
n n n n n

g g
Re Re GG G Re h Re h

t t

−
+ + −∇ − = − + − −

∆ ∆
G )  

0       at      1G y= = ±  

and equation of υ  becomes 
1

2 1 1 13 2 (2
2 2

n
pn n n n n

p p p
Re ReRe h Re h

t tυ υ

φ
φ φ φ

−
+ + −∇ − = − + − −

∆ ∆
)              (4.48) 

0       at      1p yφ = = ±  

2 1n
p pυ φ 1n+ +∇ =                                      (4.49) 

0       at      1p yυ = = ±  

 

2 1 1
1 1

3 0
2

n nRe
t

φ φ+ +∇ − =
∆

                  (4.50) 

 
1 0      at       1yφ = =  

1 1       at       1yφ = = −  

2 1
1 1

n 1nυ φ+ +∇ =                        (4.51) 

1 0       at      1yυ = = ±  
 

 
2 1 1

2 2
3 0
2

n nRe
t

φ φ+ +∇ −
∆

=                              (4.52) 

 
2 1      at        1yφ = =  

2 0      at      1yφ = = −  

2 1
2 2

n n 1υ φ+ +∇ =                       (4.53) 

2 0       at      1yυ = = ±  
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4.3.4. Spatial Discretization 
 
 
The expansions in x and z directions are Fourier series and that in y direction is 

Chebyshev polynomial expansion. The grid points in x and z directions are 

defined as  

,   0 1 1

 0 1 1

x
i x

x

z
k z

z

iLx i , , ,N
N
kLz , k , , ,N
N

= = −

= = −

…

…
 

The grid points in y direction are defined as Chebyshev-Gauss-Lobatto points: 

  j 0 1j y
y

jy cos , , , ,N
N
π

= = …  

The system is solved in Fourier-Chebyshev space. It is denoted that Fourier 

coefficients of θ  as θ  and the Chebyshev coefficients as θ̂ . Also,  is used for 

the second derivative with respect to y. Since two methods for temporal 

discretization are used as shown in the previous section, equations are written for 

both methods separately. 

2D

4.3.4.1. Semi-implicit AB/CN Scheme 
 
 
Equation of time discretized θ  in Fourier-Chebyshev space becomes 
 

2 1 2 2 1 1
1 2

2( )n n n
T

Re Prˆ ˆ ˆD R
t

θ α α θ θ+ + +− + − =
∆

1n,nHS −                   (4.54) 

where 
 

1 2 2 2
1 2

23 ( )n n n n
T T T

nRe Prˆ ˆ ˆ ˆRHS Re Pr h Re Pr h D
t

ˆθ α α θ θ−= − + − + + −
∆

 

 
and the boundary conditions are  

1

2

     at      1

     at      1

ˆ ˆ y
ˆ ˆ y

θ θ

θ θ

= =

= = −
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Here 1α  and 2α  are denoted as wavenumbers in x and z directions, respectively. 

It is also defined that  
2 2

1 2
2κ α α= +  

and Eq. (4.54) is rewritten as 

2 1 2 12( )n n
T

Re Prˆ ˆD
t

θ κ θ 1n,nRHS+ +− + =
∆

−                  (4.55) 

which is a second order differential equation in Fourier-Chebyshev space and has 

to be solved with respect to each 1α  and 2α . 

By using the same methodology, time discretized G  and υ  equations can 

be rewritten as follows: 

 

2 1 2 12( )n n
g

Reˆ ˆD G G RHS
t

κ 1n,n+ +− + =
∆

−                  (4.56) 

0       at      1Ĝ y= = ±  

1 2 2 2
1 2

23 ( )n n n n
g g g

nReˆ ˆ ˆ ˆ ˆRHS Re h Re h D G G G
t

α α−= − + − + + −
∆

 

 

2 1 2 1
p

2( )n n
p

Reˆ ˆD
t υφ κ φ 1n,nRHS+ +− + =

∆
−                  (4.57) 

0       at      1p
ˆ yφ = = ±  

1 2 2 2
1 2

23 ( )n n n n
p p

Reˆ ˆ ˆ ˆRHS Re h Re h D
tυ υ υ

n
p

ˆφ α α φ φ−= − + − + + −
∆

1n
p

 

2 1 2 1n n
p p

ˆˆ ˆD υ κ υ φ+ +− = +                                    (4.58) 

0       at      1p
ˆ yυ = = ±  
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2 1 2 1
1

2( )n ReˆD
t

φ κ φ+
1 0nˆ +− +

∆
=                                     (4.59) 

1 0     at       1ˆ yφ = =  

1 1     at       1ˆ yφ = = −  

 

2 1 2 1
1 1

n n ˆˆ ˆD 1
1

nυ κ υ φ+ +− = +                                            (4.60) 

1
1 0       at      1nˆ yυ + = = ±  

 

   2 1 2 1
2

2( )n Reˆ ˆD
t

φ κ φ+
2 0n+− +

∆
=                                    (4.61) 

2 1     at       1ˆ yφ = =  

2 0     at       1ˆ yφ = = −   

 

2 1 2 1
2 2

n n ˆˆ ˆD 1
2

nυ κ υ φ+ +− = +                                    (4.62) 

1
2 0       at      1nˆ yυ + = = ±  

 

4.3.4.2. Semi-implicit AB/BDI2 Scheme 
 
 
By using same procedure as in the previous section, all equations of time 

discretized with AB/BDI2 scheme can be rewritten as follows: 

 

2 1 2 13( )
2

n n
T

Re Prˆ ˆD
t

θ κ θ 1n,nRHS+ +− + =
∆

−                       (4.63) 

where 
 

1
12 (

2

n
n n n

T T T

ˆRe Prˆ ˆ ˆRHS Re Pr h Re Pr h
t

θθ
−

−= − + − −
∆

2 )  
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1

2

     at      1

     at      1

ˆ ˆ y
ˆ ˆ y

θ θ

θ θ

= =

= = −
 

 

2 1 2 13( )
2

n n
g

Reˆ ˆD G G RHS
t

κ 1n,n+ +− + =
∆

−                  (4.64) 

0       at      1Ĝ y= = ±  

1
12 (2

2

n
n n n

g g g

ˆRe Gˆ ˆ ˆRHS Re h Re h G
t

−
−= − + − −

∆
)  

 

2 1 2 1
p

3( )
2

n n
p

Reˆ ˆD
t υφ κ φ 1n,nRHS+ +− + =

∆
−                  (4.65) 

0       at      1p
ˆ yφ = = ±  

1
12 (2

2

n
pn n n

p

ˆ
Reˆ ˆ ˆRHS Re h Re h

tυ υ υ

φ
φ

−
−= − + − −

∆
)

1n
p

 

 

2 1 2 1n n
p p

ˆˆ ˆD υ κ υ φ+ +− = +                              (4.66) 

1 0       at      1n
p

ˆ yυ + = = ±  

 

 
2 1 2 1

1
3( )
2

n ReˆD
t

φ κ φ+
1 0nˆ +− +

∆
=                                     (4.67) 

1 0     at       1ˆ yφ = =  

1 1      at       1ˆ yφ = = −  
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1
1

n2 1 2 1
1 1

n n ˆˆ ˆD υ κ υ φ+ + +− =                        (4.68) 

1
1 0       at      1nˆ yυ + = = ±  

 
 

2 1 2 1
2

3( )
2

n ReˆD
t

φ κ φ+
2 0nˆ +− +

∆
=                                    (4.69) 

2 1     at       1ˆ yφ = =  

2 0     at       1ˆ yφ = = −   

 

2 1 2 1
2 2

n n ˆˆ ˆD 1
2

nυ κ υ φ+ +− = +                                    (4.70) 

1
2 0       at      1nˆ yυ + = = ±  

 

Real FFT (Fast Fourier Transform) is used to transform Fourier-Chebyshev space 

into physical space. The transforms related to Chebyshev space can also use FFT 

because of the Gauss-Lobatto points chosen in y direction, which make the 

discrete Chebyshev expansion become a simple cosine series. 

 

Since all the functions are real and a cosine transform for Chebyshev transform is 

desired, complex FFT would increase the time cost of this study. For this reason, 

real FFT is used. The complex coefficients of a function in Fourier space are split 

into two real sets of data and calculated separately. 



4.3.5. Spectral Integration of N-S 
 
 
In the aforementioned sections, second order differential equations in Fourier-

Chebyshev space are finally derived. In this section, those equations will be 

written in general form, and how the integration of them by using spectral method 

was made will be explained. They can be thought as a second order differential 

with two boundary conditions in y direction as follows:  

 

[ ]

1

2

( )  where 1 1

  at  1
  at  1

f y y

y
y

τ δτ

τ τ
τ τ

′′ − = ∈ −

= = −
= =

,

j y

                             (4.71) 

 

By the aid of the Chebyshev-Tau method, solution such as in the below is 

anticipated. 

0
( ) ( )

y

y

N

N j
j

y a Tτ
=

=∑  

with corresponding boundary conditions 

1
0
( 1)

yN
j

j
j

a τ
=

− =∑                                                   (4.72) 

2
0

yN

j
j

a τ
=

=∑                          (4.73) 

where  is the Chebyshev polynomial of degree . This system is usually 

solved directly for 

( )jT y j

τ  by constructing a spectral differentiation matrix, using the 

recurrence relations of Chebyshev differentiation.  
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Integral equation is constructed in order to solve τ ′′  instead of solving τ  itself. 

This approach was investigated by Greengard [33] and proven to be more accurate 

than the spectral differentiation method as the number of points increases. 

Let 

( )yτ σ′′ =  

( )yσ  and ( )f y  can be written in series form of Chebyshev polynomials, thus it is 

obtained as follows: 

0
( ) ( )

yN

j j
j

y b Tσ
=

=∑ y  

0
( ) ( )

yN

j j
j

f y f T
=

= ∑ y

f=

 

By introducing these terms into Eq. (4.71), 

 

1 0
1 1

( ) ( ) (y)
y t

y d dt C y Cσ δ σ τ τ δ δ
− −

⎡ ⎤
− + +⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫               (4.74) 

where 

2 1 1

( ) ( )
yN y t

j j
j

a T y d dtσ τ τ
= − −

=∑ ∫ ∫  

0 0 0

1 1 1

( )

( )

a T y C

a T y C y

=

=
 

In these relations { }ja  is defined as the coefficients of series expansions of 

τ ,{ }jb as the coefficients representing τ ′′ , { }jd  as the coefficients defining τ ′  

and { }jc  are the constants defined as 0 2c = , 1jc =  for 0j > ,  for 0jc = yj N> . 

By using the relation (3.36), following equations can be written. 
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The recurrence relation of the Chebyshev first integration is 

( 1 1 1 1
1

2j j j jd c b c b
j − − + += − )j                       (4.75) 

Using the same relation, the second integration becomes 

( 1 1 1 1
1

2j j j ja c d c d
j − − + += − )j                        (4.76) 

By substituting Eq. (4.75) into Eq. (4.76), the following relation between ja and 

jb  can be obtained: 

( ) ( ) ( ) (
1 1

2 2 2 2
1

2 2 1 2 1
j j

j j j j j j j j

c c
a c b c b c b c

j j j
− +

− − + +

⎡ ⎤
= − − −⎢ ⎥− +⎣ ⎦

)jb             (4.77) 

When the above relation is introduced into Eq. (4.74), it yields 

( ) ( )
1 2 1 1 1 2

2 22 2 1 2 1 1 2 1
j j j j j j j

j j j

c c c c c c c
b b b b

j j j j j
δ − − − + + +

− +

⎡ ⎤⎛ ⎞
j jf− − + +⎢ ⎥⎜ ⎟− − + +⎝ ⎠⎣ ⎦

=          (4.78)  

which can be rewritten as 

( ) ( )
1 2 1 1 1 2

2 21
4 1 4 1 1 4 1

j j j j j j j
j j j

c c c c c c c
b b

j j j j j j j
δ

δ δ− − − + + +
− +

⎡ ⎤⎛ ⎞
− + + + −⎢ ⎥⎜ ⎟− − + +⎝ ⎠⎣ ⎦

jb f=  

2 3 yj , , ,N= …  

Finally, coefficients are assigned to some variables and general form of the matrix 

for the equations is obtained. 

( )
1 2

4 1
j j

j

c c
p

j j
δ − −= −

−
                        (4.79) 

1 11
4 1

j j j
j

c c c
q

j j j
δ − +⎛ ⎞

= + +⎜ 1⎟− +⎝ ⎠
                                     (4.80) 

( )
1 2

4 1
j j

j

c c
r

j j
δ + += −

+
                           (4.81) 

2 2   2 3j j j j j j j yp b q b r b f , j , , ,N− ++ + = = …                     (4.82) 
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Boundary conditions defined by Eqs. (4.72) and (4.73) can be rewritten by using 

the relations in Eq. (4.74) as follows: 
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t 1( ) 1 0 1
2

1   a   
yN

j
j

j
a C C yτ

=

− − + = = −∑                              (4.83) 

1 0 2
2

 at  1
yN

j
j

a C C yτ
=

+ + = =∑                                         (4.84) 

which can be reformed as  

 

1 2
0

2
 

2

yN

j
j

C a τ τ
=

+
+ =∑   (Even) 

1
2 1

1
2

 
2

yN

j
j

C a τ τ−

=

−
+ =∑  (Odd) 

By using the Eq. (4.77), ja  in the boundary conditions above is replaced with jb , 

and it yields 

 

( ) ( ) ( ) ( )1 1 1 2
0 2 2 2 2

2

1  
2 2 1 2 1 2

yN
j j

j j j j j j j j
j

c c
C c b c b c b c b

j j j
τ τ− +

− − + +
=

⎡ ⎤ +
+ − − −⎢ ⎥− +⎣ ⎦
∑ =  

( ) ( ) ( ) ( )
1

1 1 2 1
1 2 2 2 2

2

1  
2 2 1 2 1 2

yN
j j

j j j j j j j j
j

c c
C c b c b c b c b

j j j
τ τ−

− +
− − + +

=

⎡ ⎤ −
+ − − −⎢ ⎥− +⎣ ⎦
∑ =  

 

These two additional equations from boundary conditions form the top rows in the 

matrices and { }jt is used for the coefficients of { }jb . The problem is split into two 

matrix systems: even and odd. 

 

 

 

 

 

 



The even system is: 
 

( )0 2 4 0 1 2

00 0 0 0

22 2 2 2

2 2 2

1 2

0 0

0 0 0

0 0  

0

0

0 0

y

y y y

yy y y

N

j j

N N N

NN N N

t t t t C /
fp q r b
fp q r b

b f
p q r

fp q b

τ τ

− − −

⎡ ⎤ ⎡ +⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣

… …

… …

…

… … … ⎦

      (4.85) 

 
0 2 4 yj , , , ,N= …  

The odd system is: 
 

( )1 3 5 1 1 2 1

11 1 1 1

3
3 3 3 3

3 3 3

1 1 1 1

1 2

0 0

0 0 0

0 0  

0

0

0 0

y

y y y

y y y y

N

j
j

N N N

N N N N

t t t t C /
fp q r b
fp q r b

b f
p q r

p q b f

τ τ−

− − −

− − − −

−⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ =⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

… …

… …

…

… … …

      (4.86) 

 
1 3 5 1yj , , , ,N= −…  

 
where jt  can be determined by the help of the odd and even boundary condition 

equation derived at the previous page. Besides that, terms jp , jq , and jr  can be 

obtained in Eqs. (4.79) to (4.81). It can readily be seen that jp , jq , and jr  were 

not defined for the cases of  = 0 and  = 1. Method of finding them is to 

compare the above matrix forms (4.85) and (4.86) with Equation (4.74). 

j j
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Expressions that are derived from Eq. (4.74) are as follows: 
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0

1

f
 

0 0

1 1

b C

b C f

δ

δ

− =

− =
                                                  (4.87) 

 
By comparing Eq. (4.87) with the equations stemmed from the ones in matrices 

0p , ,  and 0q 0r 1p , , can be found as in the below. 1q 1r

 

0 0 0

1 1 1

  1    0

  1    0

p , q , r

p , q , r

δ

δ

= − = =

= − = =
 

 

To sum up this procedure, system formed by the spectral integration method has 

 equations and 3yN + 3yN +  unknowns which consists of  1yN + { }jb  

coefficients and 2 integration constants  and . The system is split into odd 

and even matrices, and they are tridiagonal except for the top row derived from 

the boundary conditions. Thomas method is used to solve this matrix system and 

it is solved for {

0C 1C

}jb , which are the coefficients of τ ′′  and two integration 

constants. Finally, the Chebyshev integration is performed twice to get { }ja , 

which are the coefficients of τ . 

 

 
 

 

 

 

 
 
 



4.3.6. Computational Procedure 
 
 
In this section, algorithm of the N-S solver will be examined. At the beginning of 

each time step, the following sets of data can be taken from the previous time 

step: 

         x y zu, , w, , , , , , ,
x y z
θ θ θυ ω ω ω θ ∂ ∂ ∂
∂ ∂ ∂

 

which are in Fourier space. They are transformed back to physical space by using 

inverse FFT. Then the non-linear terms can be calculated. 

1 2z y
p RaSinH w
x Re Pr

ϕυω ω θ∂
= − − +

∂
                             (4.88)

 2 2x z
p RaCosH w u
y Re Pr

ϕω ω θ∂
= − − +

∂
                  (4.89)

 3 y x
pH u
z

ω υω ∂
= − −

∂
                              (4.90) 

(Th u w )
x y z
θ θ θυ∂ ∂ ∂

= − + +
∂ ∂ ∂

                                          (4.91) 

which are then transformed to Fourier space by FFT. For each value of 

 and , 2 2
1κ α α= + 2

2 0κ ≠

2 1 1 3gh i H i Hα α= −                                    (4.92) 

and since  
2 2

31
22 2

HHh H
y x z x yυ
⎛ ⎞ ⎛ ⎞∂∂∂ ∂

= − + + +⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∂
⎟                              (4.93) 

part of hυ  can be rewritten as follows: 

( ) ( 2 2
1 1 2 3 1 2 2h i H i H

yυ α α α α∂
= − + − +

∂
)H                           (4.94) 
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The above data should be transformed to Fourier-Chebyshev space, and 

assembled to construct the RHS for each equation. Since RHS of each equation 

changes due to which method is used for temporal discretization, both cases will 

be examined separately. 

 

G -equation (AB/CN Scheme): 

1 2 2 2
1 2

23 ( )n n n n
g g g

nReˆ ˆ ˆ ˆ ˆRHS Re h Re h D G G G
t

α α−= − + − + + −
∆

n

 

where  are stored from the previous time step. 1 2n n
g

ˆ ˆ ˆh , D G , G−   

 

G -equation (AB/BDI2 Scheme): 

1
12 (2

2

n
n n n

g g g

ˆRe Gˆ ˆ ˆRHS Re h Re h G
t

−
−= − + − −

∆
)

1

 

where 1   and n n n
g

ˆ ˆ ˆh , G , G− −  are provided from the previous time step. 

 

υ -equation (AB/CN Scheme): 

1 2 2 2
1 2

23 ( )n n n n
p p

Reˆ ˆ ˆ ˆRHS Re h Re h D
tυ υ υ

n
p

ˆφ α α φ φ−= − + − + + −
∆

 

After taking the Chebyshev derivative of the first part of hυ  with respect to y, 

other terms are added to assemble hυ . In the above relation, 1 2  and n n
p p

ˆ ˆ ˆh , D ,υ
nφ φ−  

are stored from the previous time step. 

 

υ -equation (AB/BDI2 Scheme): 

1
12 (2

2

n
pn n n

p

ˆ
Reˆ ˆ ˆRHS Re h Re h

tυ υ υ

φ
φ

−
−= − + − −

∆
)  

Same steps as in the AB/CN scheme are made before calculating RHSυ , and in 

the above relation  are taken from the previous time step. 1   and n n n
p

ˆ ˆ ˆh , ,υ φ φ− 1
p

−
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θ -equation (AB/CN Scheme): 

1 2 2 2
1 2

23 ( )n n n n
T T T

nRe Prˆ ˆ ˆ ˆRHS Re Pr h Re Pr h D
t

ˆθ α α θ θ−= − + − + + −
∆

nˆ

 

where 1 2  and n n
T

ˆ ˆh , D ,θ θ− are stored from the previous time step. 

 

θ -equation (AB/BDI2 Scheme): 

1
12 (

2

n
n n n

T T T

ˆRe Prˆ ˆ ˆRHS Re Pr h Re Pr h
t

θθ
−

−= − + − −
∆

2 )

1

 

where 1    and n n n
T

ˆ ˆ ˆh , θ θ− −  are stored from the previous time step. 

 

Next step is to send these variables into vertical solver in order to solve the system 

in Fourier-Chebyshev space. Methodology of vertical solver is spectral integration 

that is described in the previous section. The vertical solver gives the solutions of 

    , , ˆˆ ˆ ˆ ˆ ˆˆ , G, G , f ,υ φ θ θ′ ′ . Prime denotes derivative with respect to y. These are 

converted back to Fourier space and are used to determine other desired variables 

such as: 

    x zu, w, , , ,
x z
θ θω ω ∂ ∂
∂ ∂

 

It is known that from continuity equation, we can write the following equation: 

1 2i u i wα α υ′+ = −                    (4.95) 

and from the definition of  the following equation can be also obtained: G

2 1i u i w Gα α− =                                                  (4.96) 

 

By solving Eqs. (4.95) and (4.96) simultaneously, 

( )

( )

1 22

2 12

iu G

iw G

α υ α
κ

α υ α
κ

′= −

′= +
                                          (4.97) 
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Also using the relations for and  x zw , w , G, φ , the following relations are found: 

( )

( )

1 22

2 12

x

z

iw G

iw G

α α φ
κ

α α φ
κ

′= +

′= −
                       (4.98) 

For the temperature equation, we can get 

1

2

x

z

θ α θ

θ α θ

∂
=

∂
∂

=
∂

                                   (4.99) 

It should be also noticed the separation of real and imaginary parts of coefficients 

in Fourier space. All the data in the form of Fourier coefficients have to be split 

into two sets of real data and the calculations have to be carried out corresponding 

to these two sets of data. For example, when gh  is calculated, following equation 

is used. 

2 1 1 3gh i H i Hα α= −  

but it should be separated into real and imaginary parts in order to get the 

following two equations. 

2 1 1 3gr imh H Hα α= − + im                 (4.100) 

( )2 1 1 3gim r rh i H Hα α= −                 (4.101) 

These two sets of data are then converted to Chebyshev space separately, and the 

vertical solver is called twice to give the solutions for real and imaginary parts.  

 

For =0, everything is real, even in Fourier space. Same procedure is applied for 

this case also. Equations are solved directly and it is known that 

κ

2 1 0G i u i wα α= − =  and 0υ =   

which is from continuity and the boundary conditions at walls for υ . 
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CHAPTER 5 
 

RESULTS AND DISCUSSION 
 

5.1. Introduction 
 
 
In this study, laminar natural convection flow and heat transfer between two 

inclined parallel plates are analyzed numerically by using a pseudospectral 

technique. After following the computational procedure as is discussed in Section 

4.3.6, non-dimensional velocity and temperature fields inside the channel and 

three non-dimensional velocity components at a specified location are obtained. 

By utilizing these data, streamlines and velocity versus time graphs of the data are 

plotted using MATLAB. Additionally, Nu calculations are also performed. To get 

a more detailed view, local Nu values at collocation points in x and z directions 

are calculated. In most of the calculations, 65 collocation points in y direction, and 

32 collocation points in x and z directions are used. Therefore when three 

dimensional runs are performed, 32 x 65 x 32 data for each of the velocity and 

temperature fields are obtained by the program. Additional subroutines in C code 

are written to post-process large amount of data obtained, and also to calculate the 

local and average Nu values.  
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In Chapter 4, it is expressed in detail that AB/CN and AB/BDI2 techniques are 

used for time discretization. Plots of the time change of velocity at a preselected 

point contribute to make the comparison of the results for the same cases with 

different temporal discretizations. After the comparison, the remainder of the  

runs throughout the study are performed with AB/BDI2 discretization technique. 

Moreover grid independence of the computational study is examined by doubling 

collocation points in all directions, i.e. 64 points in x and z directions, 128 points 

in y direction. Then, the common cases for both grid combinations are chosen and 

the comparison is made. For the sake of completeness, two dimensional results of 

the study are also presented. The main motivation was to see whether the critical 

inclination angle can be calculated by performing 2-D runs or not. Since at the 

specified Ra, the program is run for several inclination angles, in order to get our 

results faster two dimensional cases are preferred. Unfortunately, the 2-D runs did 

not give satisfactory results. Nevertheless, these analyses show that natural 

convection between two inclined parallel plates should be considered as three 

dimensional in order to get more accurate results. In the following section, the 

local and average Nu calculations will be examined in detail, after that all the 

results will be presented and evaluated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.2. Calculation of Nusselt Number 
 
 
As mentioned in the previous section, after analyzing the flow and obtaining the 

temperature and velocity fields, in order to evaluate the results and compare them 

with the literature, the average Nu has to be found. In this section, the method of 

calculation of Nu will be introduced in detail. 

 
This study is performed by solving an unsteady Navier-Stokes and energy 

equations. However, calculation of Nu will be done in steady regime of the 

solution. For this reason, the time interval that the solution reaches to steady state 

should be determined. At steady state, the energy balance on the lower plate is: 

 

 (
lower plate

w
Tk h T
y

)T∞
∂

− =
∂

−  (5.1) 

 
where  is the thermal conductivity of the fluid, h  is the local heat transfer 

coefficient of the fluid,  is the local wall temperature of the lower plate, T

k

wT ∞  is 

the mean temperature of the fluid. The temperature gradient term on the left hand 

side is local, and it is calculated for every x and z locations. When the both sides 

of the Eqn. (5.1) are multiplied by yL
k , it becomes: 

 lower plate ,  where  
y

y

w

TL
y hL

Nu Nu
T T k∞

∂−
∂

=
−

=  (5.2) 

 

Nu is defined as local Nusselt number and it is also calculated for every x and z 

location. To get the average Nu, the mean value of the local terms in every x and z 

locations is calculated. Before that, Eqn. (5.2) has to be non-dimensionalized, 

since all the results of the program are non-dimensional, e.g. temperature and 

velocity values.  
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Let 

 

 
lower plate lower platey

T T
y L y

θ ∗

∗

∂ ∆ ∂
=

∂ ∂
 (5.3) 

 
and  
 

 w w

m

T T T

T T T

θ

θ

∗

∗
∞ ∞

m= ∆ +

= ∆ +
 (5.4) 

 
When Eqns. (5.3) and (5.4) are put into Eqn. (5.2) the non-dimensional form of 

the Nu is obtained as follows:  

 

 
( )

lower plate

w

y
Nu

θ

θ θ

∗

∗

∗ ∗
∞

∂
−
∂

=
−

 (5.5) 

 

The temperature gradient term in Eqn. (5.5) can be approximated as, 
 

 
1 1y yy y

θ θ∗ ∗

∗ ∗
=− =

∂ ∆
≅

∂ ∆
−

 (5.6) 

 

where y∗∆  is the distance between the lowermost collocation points. θ ∗
∞  is 

calculated by taking the mean of each θ ∗  value of the fluid in y direction. 

 

For two dimensional cases, by implementing Eqns. (5.5) and (5.6), 32 or 64 local 

Nu values in x direction, depending on how many collocation points are used, are 

calculated. Average Nu values for each time step are found by taking the average 

of 32 or 64 Nu values in x direction. 
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×

On the other hand, when z direction is also taken into account, again by using 

Eqns. (5.5) and (5.6), 32 or 64 local Nu values at all x and z locations are 

calculated. Average Nu values are found at each time step, by taking mean of 

 Nu values depending on the number of collocation points used. 32 32 or 64 64×

 

In the three dimensional case, when calculating 32 or 64 Nu values in x direction, 

averages of Nu values in z direction at the specified x locations are taken; 

similarly when calculating 32 or 64 Nu values in z direction, averages of Nu 

values in x direction at the specified z locations are taken. 

 

In the following sections, interpretation of the results will be made by the aid of 

the figures. In addition to average Nu figures, local Nu with respect to time will 

also be shown. In order to compare the results with the literature studies properly, 

average Nu is plotted with respect to the cosRa ϕ  where ϕ  is the inclination 

angle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.3. The Convergence Criteria 
 
 
In this study, the convergence is defined in two general ways. The results are 

expected either to reach a steady value or to become time periodic. If one or the 

other is obtained, it is considered that the convergence is achieved. In order to 

understand the convergence of the results, plots of dimensionless velocity versus 

dimensionless time are presented. In these graphs, it is understood that at different 

Ra values and inclination angles, the convergence characteristics of the results 

vary. For example, when Ra cosϕ  is equal to 1708, dimensionless velocity values 

reach to a constant value within the specified time interval, however when 

Ra cosϕ  is increased to 10000, for any tilt angle, the results do not converge to a 

steady value, instead the time periodicity of the values are obtained, i.e. during 

oscillations, maximum and minimum values of the dimensionless velocities do 

not change after some t* value. 

 

Additionally, when average Nu graphs are considered, the same convergence 

criteria are applied. If the average Nu value converges to a constant value after 

some t* value, it is taken as the desired average Nu value for the specified 

Ra cosϕ  and ϕ  values. On the other hand, again when Ra cosϕ  and ϕ  are 

increased to higher values, average Nu values fluctuate continuously within the 

specified time interval. If the situation is like that, the time average of Nu values 

is taken in order to obtain the desired average Nu value. Maximum and minimum 

values of average Nu values at different Ra cosϕ  and ϕ  values are tabulated in 

Table 5.1. By using these values, it can be decided that whether the time 

averaging of Nu values can be performed or not.        
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In Table 5.1, Racosφ values at which convergence with constant values can not be 

achieved are tabulated. If the difference between the maximum and minimum 

average Nu values is small, then time average of these Nu values can be 

performed. However, if this difference is considerably large, the time average of 

the results have considerable errors. The average Nu values obtained from Eqns. 

5.8-9 are also given in Table 5.1. As it can easily be seen from Table 5.1, for 

Racosφ = 50000 at φ = 30˚, for Racosφ = 20000 and 50000 at φ = 45˚ and for 

Racosφ = 10000 and 50000  at , the discrepancies between the maximum 

and minimum average Nu values are larger than the other cases. On the other 

hand, the maximum average Nu values of the previously mentioned cases are 

closer to the values in the literature. In order to decide time end of the program, 

again the same convergence criteria is used. If the convergence is achieved within 

the predetermined time, it is considered that the time end is appropriate. 

60ϕ =

 
 

Table 5.1. The Maximum and Minimum Average Nu Values with the Average 

Nu Values obtained by Eqns. 5.8-9 when t* = 2-10 

φ(deg) Racosφ Max. Av. 
Nu 

Min. Av. 
Nu 

Av. Nu 
( Eqn. 5.8 ) 

Av. Nu 
( Eqn. 5.9 ) 

20000 2.772 2.318 2.793 2.825 
15 

50000 3.872 3.179 3.424 3.438 

20000 2.802 2.324 2.745 2.825 
30 

50000 3.675 2.130 3.404 3.438 

10000 2.661 2.051 2.191 2.391 

20000 2.868 1.104 2.715 2.825 45 

50000 3.464 1.664 3.391 3.438 

10000 2.301 0.951 2.203 2.391 
60 

50000 3.967 1.745 3.394 3.438 
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5.4. Comparison of AB/CN and AB/BDI2 Schemes 
 
 
The original time discretization scheme in our Navier Stokes solver is AB/CN, 

however Peyret [27] suggests by saying, 

 
“For Fourier approximation, the AB/BDI2 scheme is unconditionally stable for 

1a
ν ≥ , while the stability of AB/CN scheme requires a condition on the time 

step. AB/CN scheme was found to be unstable when applied to the Navier-
Stokes equations approximated with Chebyshev tau method, so that the 
AB/BDI2 scheme was preferred by Vanel et al.” 

 

In the above quotation, ν  is the kinematic viscosity, a  is the advective velocity 

defined for the advection-diffusion equation introduced in Section 3.4. Since a  is 

very low in this study because of the quiescent fluid, a
ν  is expected to be 

sufficiently large, and moreover Chebyshev tau method is also used in the spectral 

integration. According to the quoted statement, AB/BDI2 scheme is chosen for 

temporal discretization. In order to justify this choice, one sample case is 

considered and the variation of dimensionless streamwise velocities with respect 

to time at [32][16][16] for the both schemes are compared. In this case, 

20000 0 7Ra ,Pr . ,= = −= × approximate value for air,  and inclination 

angle of 15 . The results are shown in Figures 5.1-2.  

41 10dt

 

In Figures 5.1 and 5.2, the dimensionless axial velocity with respect to time is 

plotted for the schemes of AB/BDI2 and AB/CN, respectively. The former one 

shows that after the usual initial setting of the solution at , there is a sharp 

decrease and they do not tend to increase to higher values again. Additionally, 

oscillations of velocity after this point decrease considerably. In the latter figure, a 

sharp decrease occurs again at 

20t∗ ≅

20t∗ ≅ . On the other hand, the values of the 

dimensionless velocity increase after some point and start to oscillate more. Due 

to the smaller oscillations, AB/BDI2 method is considered to be more stable for 

this study. 
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Figure 5.1. Dimensionless u versus t∗  when 20000Ra =  and with 

AB/BDI2 Scheme at [32][16][16] 

15ϕ =
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Figure 5.2. Dimensionless u versus t∗  when 20000Ra =  and with 

AB/CN Scheme at [32][16][16] 

15ϕ =
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In order to show the stability of AB/BDI2 scheme, one of the test cases is also run 

with AB/CN scheme. Figure 5.3 shows the variation of non-dimensional 

streamwise velocity with respect to dimensionless time when 10000Ra cosϕ =  at 

with AB/CN Scheme. When Figure 5.3 is compared with Figure 5.25 

where AB/BDI2 scheme is used, the steady state oscillations are in a larger 

margin in the former one. For this reason, it can be said that the difference 

between the maximum and minimum velocity values in AB/BDI2 scheme is 

smaller within the time interval where the constant periodicity is reached. Besides 

that higher velocity values occurred in AB/CN scheme. Due to that, the steady 

state values are also higher than the ones in AB/BDI2 scheme. 

15ϕ =
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Figure 5.3. Dimensionless u versus t∗  when 10000Ra cosϕ =  and with 

AB/CN Scheme at [2][2][2] 

15ϕ =
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5.5. The Results of 3-D Runs for Air 
 
 
In this section, the results of this study will be compared with the experimental 

results of Hollands et al [4]. They have analyzed inclined air layers in a channel 

with high aspect ratio which corresponds to a similar geometry of our study since 

we have infinite plates. They have also used constant wall temperature boundary 

condition. Hollands et al. [4] started their study by taking the horizontal case as a 

reference point and by introducing cosϕ  into the Ra  term of horizontal channel. 

For this purpose, Ra cosϕ  was taken in the range , and 

inclination angle from horizontal, 

41708 5 10Ra cosϕ≤ ≤ ×

ϕ  was taken in the range 15 . As a 

result, they obtained two empirical correlations between Nu and

60ϕ≤ ≤

Ra cosϕ : 

( )1 6 1 31 8 170817081 1 44 1 1 1
5830

. /sin . Ra cosNu .
Ra cos Ra cos

ϕ ϕ
ϕ ϕ

∗∗ ⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎛ ⎞⎜ ⎟= + − − + −⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦⎝ ⎠
       (5.7) 

1 317081 1 44 1 1
5830

/Ra cosNu .
Ra cos

ϕ
ϕ

∗∗ ⎡ ⎤⎡ ⎤ ⎛ ⎞= + − + −⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦
        (5.8) 

where [ ]∗  is defined as: 

 [ ] ( ) 2X X X /∗ = +  (5.9) 

 
Similarly, in our study, the range of Ra cosϕ  is taken as the same. But since the 

computational time of getting data for 3-D case is too long, only three Ra cosϕ  

values within the specified range are taken into account. These are 1708, 

and . However,410 45 10× ϕ  is taken as the same ϕ  values used in the 

experimental one. Those are15 . Apart from the Hollands’ study, 

local Nu values in streamwise and spanwise directions are also calculated.  The 

comparison is made between the average Nusselt numbers and they are shown 

graphically after presenting the local results. Furthermore, dimensionless velocity 

profiles, streamlines and some additional figures about the fluid flow will be 

shown also for the sake of versatility. 

30 45  and 60, ,
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Figure 5.4 shows the variation of the average Nu value with respect to time for the 

case of 1708Ra cosϕ =  at . In the literature, it is proven by the 

experimental studies that critical 

15ϕ =

Ra cosϕ  for passing to the convective regime 

from conductive regime is 1708. Below this value, flow regime is purely 

conductive i.e. Nu = 1 except at the extreme ends of the plates where the fluid 

turns and there becomes some convective heat transfer. But since the plates are 

infinitely long in streamwise directions, these end effects are readily neglected. 

By using the Eqns. (5.8) and (5.9), the average Nu value should be found unity for 

this case, and Figure 5.4 indicates that after the system reaches to the steady state, 

the expected Nu value is obtained. The initial fluctuations in Figure 5.4 show the 

regime where the solution is not steady yet. Figure 5.5 also clearly shows that 

there is no convective motion at 1708Ra cosϕ = . 
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 Figure 5.4. Average Nu value versus t∗  where 1708Ra cosϕ =  and  15ϕ =
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Figure 5.5. Streamlines in y-z plane when cos 1708Ra ϕ = and  15ϕ =

at 6t∗ =  

 
 
Figure 5.6 demonstrates the variation of the local Nu in the streamwise direction 

for the case of 10000Ra cosϕ =  with  at different times. In order to show 

the oscillations before the steady state, variations at t

15ϕ =

∗  = 2 and 4 are also given. 

Actually, the data are obtained between t∗  = 2 and t∗  = 10. But to present the data 

more properly, only three time steps are chosen, and since t  = 6 is the point 

where the Nu value does not change anymore, thus there is no need to show the 

values after that point. The horizontal axis of the graph is changing from 0 to

∗

2π . 

It can be easily realized that when Ra cosϕ  is increased above 1708, Nu values 

start to differ from unity and for this case Nu converges to an approximate value 

of 2.2.    
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Figure 5.7 illustrates the variation of local Nu along the spanwise direction when 

10000Ra cosϕ =  and  in different time steps. After making different 

wavy motions in different time steps of t

15ϕ =

∗  = 2 and t∗  = 4, the final form of the Nu 

values is reached approximately at t∗  = 6. The horizontal axis of the graph is 

again changing from 0 to 2π . Since the spanwise direction is expanded in Fourier 

series, Fourier collocation points are used as done in x direction, too. The local Nu 

values in z direction vary between 1 and 3. Around z = 3, Nu reaches to a 

minimum and rises to its minimum value around z = 5.5. As can be seen from 

Figure 5.8, the minimum and the maximum points correspond to downwash and 

upwash zones of partially formed convection cells. 
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Figure 5.6. Local Nu value in streamwise direction where 10000Ra cosϕ =  

and  15ϕ =
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Figure 5.7. Local Nu value in spanwise direction where 10000Ra cosϕ =  and 

 15ϕ =
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Figure 5.8. Streamlines in y-z plane when cos 10000Ra ϕ = and  15ϕ =

at 6t∗ =  

 
 
 



The changes in average Nu value with respect to time where 10000Ra cosϕ =  

and  are shown in Figure 5.9. As explained before, both local values of Nu 

reach steady state at t  = 6, similarly and consistently average values converge to 

a constant value near t

15ϕ =

∗

∗  = 6. Until the steady state point, there are some 

oscillations in the average values. These can be explained by the effects of local 

Nu values in the average terms. In addition, it can be argued that apart from 

1708Ra cosϕ = , the convection regime is dominant and Nu values differ from 

unity. Lastly, as in Figure 5.6, average Nu value approaches to the value of 

approximately 2.2.   
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 Figure 5.9. Average Nu value versus t∗  where 10000Ra cosϕ =  and  15ϕ =
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Figure 5.10 shows the variation of the local Nu in x direction when 

50000Ra cosϕ =  and tilt angle from the horizontal is 15 . Again, the horizontal 

axis of the graph varies between 0 and 2π , moreover Nu values are also plotted 

for three different time steps. However, in the later figures, it will be shown that 

for this value of Ra cosϕ  at , the results do not converge, i.e. local Nu 

values at t

15ϕ =

∗  = 10 are not in the final form. The oscillations continue around 

different values at each time step. In order to overcome this problem, the time 

increment of the code should be decreased. 
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 Figure 5.10. Local Nu value in streamwise direction where 50000Ra cosϕ =  

and  15ϕ =
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The variation of local Nu in spanwise direction for the case of 50000Ra cosϕ =  

and  is plotted in Figure 5.11. Three time steps are used to illustrate the 

local Nu values and since values do not converge as in the previous case, the last 

time step is shown also. It can again be stated that because of the magnitude of 

inclination, the oscillations do not differ considerably from each other. It can be 

remarked that the tendency of the graph is a periodic motion which is shifted at 

each time step. Again, it can be stated that because of the convection rolls in the 

spanwise direction as shown in Figure 5.12, inflection points for Nu values in the 

z direction can be seen. Moreover, since there are multiple pairs of convection 

rolls seen in Figure 5.12, more than one inflection points are observed in Figure 

5.11.     

15ϕ =
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Figure 5.11. Local Nu value in spanwise direction where 50000Ra cosϕ =   

and  15ϕ =
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Figure 5.12. Streamlines in y-z plane when cos 50000Ra ϕ =  and  15ϕ =

at 10t∗ =  

 
 
Figure 5.13 shows the time change of average Nu where 50000Ra cosϕ =  at 

. Since the local Nusselt numbers do not converge, average Nu does not 

reach also. The trend of the Figure 5.13 is like in a periodic behavior that the 

mean value of the average values is used for comparison with the average Nu of 

the experimental study [4]. For this reason, an error occurs in these calculations, 

but in order to get more accurate results it can again be advised that time 

increment should be decreased to a level for convergence however time cost 

increases in a great amount. Figure 5.14 indicates the behavior of the average Nu 

with respect to time where 

15ϕ =

1708Ra cosϕ =  at . Nu values are equal to the 

values of the case at . Since 

30ϕ =

15ϕ = 1708Ra cosϕ =  is the critical value for the 

transition from pure conduction to convective regime, convergence of Nu to unity 

verifies the validity of the results. Results between t∗  = 2 and t  = 10 are shown 

in the above figure. It will be shown by using the figures that demonstrate the 

variation of dimensionless velocities due to the time that velocity of the air starts 

to converge to some constant value or to reach steady state case in a periodic 

manner, i.e. repeating oscillations between these time values. For this reason, all 

the graphs related to Nu are plotted between 

∗

t∗  = 2 and t∗  = 10. 
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Figure 5.13. Average Nu value versus t∗  where 50000Ra cosϕ =  and  15ϕ =
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Figure 5.14. Average Nu value versus t∗  where 1708Ra cosϕ =  and  30ϕ =



Figure 5.15 demonstrates the variation of local Nu values in the streamwise 

direction where 10000Ra cosϕ =  at . The steady state time shifted from 

 to   compared to the same case at , and also apart from the 

case at , local Nusselt numbers do not converge to a constant value, at 

steady state, instead a periodic oscillation occurs as shown in Figure 5.15 at 

. When Figure 5.6 and Figure 5.15 are compared, it can easily be seen that 

when the angle of inclination is increased to 30 , the steady state value of local 

Nu value in streamwise direction also increases.  

30ϕ =

6t∗ = 7t∗ = 15ϕ =

15ϕ =

7t∗ =
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 Figure 5.15.  Local Nu value in streamwise direction where 10000Ra cosϕ =  

and  30ϕ =
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Figure 5.16 shows the behavior of local Nu values in the spanwise direction when  

10000Ra cosϕ =  at . One can easily understand from Figure 5.16 that 

when time reaches to 6, the steady state is reached. When the same case at  

is analyzed, only one minimum point corresponding to a single pair of convection 

loop is observed as shown in Figure 5.8 and results change between a larger 

margin, i.e. between the values of approximately 1 and 3. On the other hand, 

when the tilt angle is increased to , two extreme points corresponding to 

multiple pairs of convection loops as shown in Figure 5.17 are observed within 

the same time interval in the steady state. Additionally, changes in the results 

occur in a narrower region. Thus, more periodicity is obtained when the tilt angle 

is increased.  
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Figure 5.16. Local Nu value in spanwise direction where 10000Ra cosϕ =   

and  30ϕ =
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Figure 5.17. Streamlines in y-z plane when cos 10000Ra ϕ =  and  30ϕ =

at 7t∗ =  

 
 
After analyzing local Nu values, the variation of average Nu with respect to time 

where 10000Ra cosϕ =  at  is shown in Figure 5.18. The results make 

oscillations between t  = 2 and 

30ϕ =

∗ t∗  = 6 and then reach to a constant value, which is 

approximately 2.3. This value is slightly larger than the value found when 

10000Ra cosϕ =  at  that is approximately 2.2. More oscillations before 

the steady state are observed in Figure 5.18. This can be stemmed from the more 

periodicity observed especially for the local Nu values in the spanwise direction. 

This is practically the result of the increase in the angle. Figure 5.19 shows the 

variation of the average value of Nu with respect to time when 

15ϕ =

50000Ra cosϕ =  

at . As mentioned before for the case of , when 30ϕ = 15ϕ = Ra cosϕ  term is 

increased to 50000, it is too hard to obtain convergence. The same problem exists 

for the case of , also. In Figure 5.19, more oscillations in a larger region 

than the ones in Figure 5.13 are observed, and the local values of this case also 

change between different values at each time step in a larger region. These results 

have more oscillations on the average values. In addition to that, the same 

convergence problem occurred at  and . Only the average Nu 

results for these cases will be introduced with the figures that are constructed for 

comparison with the literature.  

30ϕ =
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Figure 5.18. Average Nu value versus t∗  where 10000Ra cosϕ =  and  30ϕ =
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Figure 5.19. Average Nu value versus t∗  where 50000Ra cosϕ =  and  30ϕ =
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Figures 5.20-21 show the reasons of the more oscillations occurred when 

50000Ra cosϕ =  and . In Figure 5.20, it can readily be seen that the 

number of convection loop pairs increases in spanwise direction and the more 

remarkable observation is in streamwise direction. In Figure 5.21, it is shown that 

there are longitudinal wavy motions in x direction. This also disturbs the Nu 

values and makes them oscillate more. 
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Figure 5.20. Streamlines in y-z plane when 50000Ra cosϕ =  and  30ϕ =

at 10t∗ =  
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Figure 5.21. Streamlines in x-y plane when 50000Ra cosϕ =  and  30ϕ =

at 10t∗ =  
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Figures 5.22-24 show the variation of the dimensionless velocities with respect to 

time when 1708Ra cosϕ =  and . Those figures clearly demonstrate the 

phenomenon that when 

15ϕ =

1708Ra cosϕ = , fluid is in the conductive regime and 

heat transfer between the inclined plates can only be considered as conduction, 

since magnitude of the velocities are too low and values of dimensionless υ  and 

 converge to zero. Figures 5.22-24 can also help someone to understand 

whether the flow reaches to steady state before the determined time or not. The 

streamwise velocity differs from the other velocities in such a manner that it 

increases with decreasing gradient then damped to the steady state value but the 

other ones reach to constant value by damping with some oscillations. 

w
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Figure 5.22. Dimensionless u  versus t∗  where 1708Ra cosϕ =  and   15ϕ =

at [2][2][2] 
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Figure 5.23. Dimensionless υ  versus t∗  where 1708Ra cosϕ =  and  15ϕ =

at [2][2][2] 
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Figure 5.24. Dimensionless w  versus t∗  where 1708Ra cosϕ =  and  15ϕ =

at [2][2][2] 
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Figures 5.25-27 demonstrate the variation of the dimensionless velocities with 

respect to time where 10000Ra cosϕ =  and . Apart from the previous 15ϕ =

Ra cosϕ , the oscillations become considerable because of the convective motion 

between the plates. When those figures are examined, it can be easily said that all 

the velocities increase but the normal velocity is considerably small when 

compared with the other ones. The steady state characteristics of these figures also 

differ from the Figures 5.22-24. Approximately after t∗  = 5, oscillations start to 

decrease, and velocities do not reach to constant value instead oscillations become 

steady. For this reason, local and average Nu values are calculated in this interval.  
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Figure 5.25. Dimensionless u  versus t∗  where 10000Ra cosϕ =  and  15ϕ =

at [2][2][2] 
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Figure 5.26. Dimensionless υ  versus t∗  where 10000Ra cosϕ =  and  15ϕ =

at [2][2][2] 
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Figure 5.27. Dimensionless w  versus t∗  where 10000Ra cosϕ =  and  15ϕ =

at [2][2][2] 
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Figures 5.25-27 show that when the convective heat transfer is taken into 

consideration, velocities should not be anticipated to reach a constant value, 

oscillations are the ones that are expected to be steady between the determined 

time intervals. When the magnitude of the Ra cosϕ  is increased, the oscillations 

remarkably increase, and considerable increase in Ra cosϕ  shifts the time interval 

where the wavy motions become steady. Figures 5.28-30 directly explain this 

phenomenon. The inclination angle is kept constant, and Ra cosϕ  is increased 

from 10000 to 50000. Results show that steady state is not reached for this case, 

but since the tilt angle is small, the average Nu values change in a smaller margin 

as shown in Figure 5.13.  
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Figure 5.28. Dimensionless u  versus t∗  where 50000Ra cosϕ =  and  15ϕ =

at [2][2][2] 
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Figure 5.29. Dimensionless υ  versus t∗  where 50000Ra cosϕ =  and  15ϕ =

at [2][2][2] 
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Figure 5.30. Dimensionless w  versus t∗  where 50000Ra cosϕ =  and  15ϕ =

at [2][2][2] 
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Apart from the inclination angle, when Ra cosϕ  is taken equal to or smaller than 

1708, only conduction can be observed. For this reason, a greater change in 

velocity profile is not expected when ϕ  is changed. However, Figures 5.31-33 

demonstrate a slight change related to the increase in the tilt angle. For example, 

the magnitude of the streamwise velocity increases, but the trend does not change. 

Again, spanwise and normal velocities are negligible; however a remarkable 

observation can be made about them. This is the rapidness of the  and  values 

reaching to steady state and meanwhile they make less oscillations than they made 

when .  

υ w

15ϕ =
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Figure 5.31. Dimensionless u  versus t∗  where 1708Ra cosϕ =  and  30ϕ =

at [2][2][2] 
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Figure 5.32. Dimensionless υ  versus t∗  where 1708Ra cosϕ =  and   30ϕ =

at [2][2][2] 
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Figure 5.33. Dimensionless w  versus t∗  where 1708Ra cosϕ =  and   30ϕ =

at [2][2][2] 
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Figures 5.34-36 show the variation of the dimensionless velocities inside the 

channel when 10000Ra cosϕ =  and . It can easily be noticed that 

oscillations become steady, but the results of especially the υ   and  oscillate 

between larger margins. These oscillations are the indications of oscillating 

convective loop structures. This is the main effect of increasing the angle of 

inclination. On the other hand, approximately, t

30ϕ =

w

∗  = 6 is the onset of the time 

periodicity of oscillations for both of the tilt angles 15  and . Another 

difference from the case of  is the change in the magnitude of the 

velocities. When the tilt angle increases, they increase also. All changes before t

30

15ϕ =

∗  

= 6, first increasing and then decreasing trend of the graph can be explained by the 

numerical method that is being used. Thus, they try to converge. This is the main 

reason why Nu values oscillate in a similar way before they converge. 

 
 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

di
m

en
si

on
le

ss
 u

t*  
Figure 5.34. Dimensionless u  versus t∗  where 10000Ra cosϕ =  and   30ϕ =

at [2][2][2] 
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Figure 5.35. Dimensionless υ  versus t∗  where 10000Ra cosϕ =  and   30ϕ =

at [2][2][2] 
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Figure 5.36. Dimensionless w  versus t∗  where 10000Ra cosϕ =  and  

at [2][2][2] 

30ϕ =
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Figures 5.37-39 show the variation of the non-dimensional velocities when 

50000Ra cosϕ =  and . It can easily be concluded that when 30ϕ = Ra cosϕ  

reaches to 50000, whatever the angle of inclination, time interval between t∗  = 2 

and  = 10 is not adequate for the flow to reach convergence and the oscillations 

become more often. Another observation is that the orders of magnitude of 

velocity oscillations increase considerably. This problem is the main drawback 

that is encountered in this study and in order to reach convergence for these higher 

values of 

t∗

Ra cosϕ , the time increment should be reduced; at the same time, time 

end should be enlarged. The same problem is also confronted when  and 

. For this reason, the results of these angles are not examined in detail like 

they are done for  and . Moreover, the value of 

45ϕ =

60ϕ =

15ϕ = 30ϕ = Ra cosϕ  for the 

onset of those greater and more frequent oscillations shifts to 10000 when  

and .  

45ϕ =

60ϕ =
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Figure 5.37. Dimensionless u  versus t∗  where 50000Ra cosϕ =  and   30ϕ =

at [2][2][2] 
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Figure 5.38. Dimensionless υ  versus t∗  where 50000Ra cosϕ =  and   30ϕ =

at [2][2][2] 
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Figure 5.39. Dimensionless w  versus t∗  where 50000Ra cosϕ =  and   30ϕ =

at [2][2][2] 
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Figure 5.40 shows the variation of average Nu with respect to Ra cosϕ  when 

. The results are compared with Hollands’ et. al [4] experimental study. As 

it is mentioned before, in the experimental study two correlations are used. The 

results are plotted with the results of these correlations. The values of 

15ϕ =

Ra cosϕ , 

which are 1708 , are compared with the literature work. 

Because, the computational time is too long for each case, the extend of the results 

are somewhat restricted. It can be readily noticed that values of the present study 

are very close to the values of both correlations at the specified 

 10000  20000 and 50000, ,

Ra cosϕ . The 

maximum deviation of the results is approximately eight percent from the results 

of Eqn. 5.9 at 20000Ra cosϕ = . 
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Figure 5.40. Average Nu versus Ra cosϕ  where  15ϕ =
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Figure 5.41 illustrates the variation of average Nu with respect to Ra cosϕ  when 

. The present study value is smaller than both of the correlations’ values at 30ϕ =

10000Ra cosϕ =  at , however in this case result of this study is between 

the results of two correlations. On the other hand, the relative percentage error for 

15ϕ =

20000Ra cosϕ =  at  is greater than the relative percentage error for the 

same 

30ϕ =

Ra cosϕ  at . Additionally, since the convergence is not obtained at 15ϕ =

50000Ra cosϕ =  for the present study, the deviations from the two correlations 

are considerable about 18 percent. On Figure 5.40, for , the result at 15ϕ =

50000Ra cosϕ =  is not a converged value but since the inclination angle is low, 

deviation is not very large. 
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Figure 5.41. Average Nu versus Ra cosϕ  where  30ϕ =
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Figure 5.42 shows the variation of average Nu with respect to Ra cosϕ  when 

. As it can also easily be seen from the figure that when 45ϕ = Ra cosϕ  reaches 

to 20000, and 50000, the values of average Nu deviates considerably from the 

values of Eqns. 5.8-9. The main reason for that is that the results of the program 

do not converge within the specified time interval. For the cases of , 

 and , when 

30ϕ =

45ϕ = 60ϕ = 50000Ra cosϕ =  time increment is decreased within 

the specified interval, the expected improvement in Nu is not achieved. When 

50000Ra cosϕ = , Nu deviates about 32 and 33 percent from the Eqns. 5.8 and 

5.9, respectively. 

 
 

0

1

2

3

4

0 20000 40000 60000
Racosφ

A
ve

ra
ge

 N
u

Present Study
Hollands et al.[4]- Eqn.5.8
Hollands et al.[4]-Eqn.5.9

 
Figure 5.42. Average Nu versus Ra cosϕ  where  45ϕ =
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Figure 5.43 illustrates the trend of the average Nu with respect to Ra cosϕ  when 

. Apart from the inclinations of , , and , 

additionally 

60ϕ = 15ϕ = 30ϕ = 45ϕ =

3500Ra cosϕ =  is analyzed at . The average Nu value for 60ϕ =

3500Ra cosϕ =  is closer to the value of Eqn. 5.9. When Figure 5.43 is compared 

with the Figure 5.42, it can easily be realized that the value of Nu at 

50000Ra cosϕ =  does not deviate in a decreasing trend after the value at 

10000Ra cosϕ = . Moreover it follows the same trend as it does in Eqns. 5.8-9. 

However, convergence is not achieved again for the values of 10000Ra cosϕ =  

and 50000Ra cosϕ =  between 2t∗ =  and 10t∗ = . For this reason, the relative 

error between the correlations and the present study is between 22-28 percent. 
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Figure 5.43. Average Nu versus Ra cosϕ  where  60ϕ =

 

  
98 



Table 5.1 presents the numerical values of Nu and the relative percentage errors in 

a tabular way. All the Nusselt numbers tabulated here are average values and 

percentage errors are calculated with respect to the values of Eqns. 5.8-9. It can 

again easily be seen from Table 5.1 that error values increase considerably for 

50000Ra cosϕ =  at ; on the other hand for , Nu values 

deviate in a large amount also at 

30 60ϕ = − 60ϕ =

10000Ra cosϕ = .  

 
 

Table 5.2. Average Nu Values of Present Study with Eqns. 5.8-9 and Relative 

Percentage Error Values of Present Study with respect to Eqns. 5.8-9 

φ(deg) Racosφ Present 
Study Eqn. 5.8 Eqn. 5.9 Error (%) 

Eqn. 5.8 
Error (%)
Eqn. 5.9 

1708 0.999 1.000 1.000 0 0 

10000 2.205 2.333 2.391 6 8 

20000 2.616 2.793 2.825 6 7 
15 

50000 3.520 3.424 3.438 3 2 

1708 0.999 1.000 1.000 0 0 

10000 2.306 2.246 2.391 3 4 

20000 2.532 2.745 2.825 8 10 
30 

50000 2.811 3.404 3.438 17 18 

1708 0.999 1.000 1.000 0 0 

10000 2.349 2.191 2.391 7 2 

20000 2.061 2.715 2.825 24 27 
45 

50000 2.296 3.391 3.438 32 33 

1708 0.999 1.000 1.000 0 0 

3500 1.678 1.249 1.581 34 6 

10000 1.711 2.203 2.391 22 28 
60 

50000 2.567 3.394 3.438 24 25 
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5.6. Analysis of a Sample Case with a Finer Grid (64 x 128 x 64) 
 
 
In the previous section, local Nusselt numbers at x and z directions and the 

average values of them at four different inclination angles for four Ra cosϕ  

values are illustrated. Besides them, non-dimensional streamwise, normal and 

spanwise velocities for  are also shown. While doing this, 32 x 64 x 

32 grid arrangement is used. In this section, a finer grid is used to understand 

whether the results are grid dependent or not. For this purpose, 64 x 128 x 64 grid 

arrangement and the case of 

15 30ϕ = −

10000Ra cosϕ =  at  are preferred in order to 

reach the steady state and get the results more rapidly. Since the number of 

collocation points are doubled in all three directions, to get the results takes six 

times longer than the coarser grid arrangement case. Also the same case is 

investigated using a coarser 16

15ϕ =

32 16× ×  grid arrangement. The average Nu values 

for three grid arrangements for the specified case are tabulated in Table 5.3. 

 

Table 5.3. Average Nu Values for three grid arrangements 

 Grid Arrangements Average Nu Values 
16 32 16× ×  2.201 
32 64 32× ×  2.205 
64 128 64× ×  2.392 

 
 
 
 
 
 
Figures 5.44-46 show the variations of local Nu in streamwise and spanwise 

directions, and the average Nu values with respect to non-dimensional time when  

10000Ra cosϕ =  and  with 15ϕ = 64 128 64× ×  grid arrangement. In Figure 

5.44, after  steady state is reached and apart from the coarser grid 

arrangement, the results reach a periodic steady state motion. In that motion, Nu 

values make a periodic fluctuation by starting from the expected value and then 

going down to a minimum finally increasing to the starting value. In Figure 5.45, 

steady state point is when 

7t∗ =

6t∗ = . Likewise in 32 64 32× ×  grid arrangement, 

results converge to a steady wave-like motion.  
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The differences between the both grid arrangements are the amplitudes of the 

fluctuations and the steady state values. Figure 5.46 illustrates the variation of the 

average Nu values with respect to dimensionless time. Contrary to the coarser grid 

arrangement results, the results start to oscillate from a higher value and reach a 

higher steady state value. Even though the initial behavior of the graph is in a 

narrower region, a constant value is reached after about same t  value. Average 

Nu values in present study when  

∗

10000Ra cosϕ =  at  for  

and  arrangements are 2.205 and 2.392, respectively. After observing 

this difference between the average Nu values of two grid arrangement, it is 

decided to run the program with grid arrangement of 1

15ϕ = 32 64 32× ×

64 128 64× ×

6 32 16× × . Results are very 

similar with the ones of 32 64 32× ×  grid arrangement as shown in Table 5.2. In 

addition to that, relative percentage errors decrease with finer grids but since 

errors occurred in coarser grids are in an acceptable range, 32  is chosen 

for the calculations. 

64 32× ×
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Figure 5.44. Local Nu value in streamwise direction where 10000Ra cosϕ =  

and  with 6415ϕ = 128 64× ×  grid arrangement 
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Figure 5.45. Local Nu value in spanwise direction where 10000Ra cosϕ =   and 

 with 6415ϕ = 128 64× ×  grid arrangement 
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Figure 5.46. Average Nu value versus t∗  where 10000Ra cosϕ =  and  

with 6

15ϕ =

4 128 64× ×  grid arrangement 

 
 
 



5.7. Critical Tilt Angle Analysis 
 
 
In order to calculate the critical tilt angle, several successive runs for a specified 

case at different angles should be performed. For this reason, to save the run time, 

two dimensional inclined channel case is preferred. The critical tilt angle can be 

defined as the angle where the flow mode transition occurs. According to the 

literature, when the channel is inclined from the horizontal, maximum heat 

transfer occurs at the smaller angles because of the tight alignment of the 

convection rolls. Furthermore, when the tilt angle is increased, spanwise 

convection rolls become dominant and streamwise rolls starts to break down. This 

decreases the heat transfer and at some inclination angle minimum Nu is obtained. 

At this point, spanwise convection rolls start to rotate their axes by 90 degrees to 

the direction of z-axis. Finally, these cells merge themselves to a single two 

dimensional roll with its axis in z-direction. For 2-D runs, Ra  is chosen as 20000 

and  is taken as 0.7 for air. Runs are performed for the inclination angles of 

45˚, 60˚, 65˚ and each angle from 70˚ to 80˚. Figure 5.47 illustrates the variation 

of average Nu with respect to tilt angle for 2-D inclined channel case. The results 

are smaller than unity and decrease with the increasing tilt angle. This observation 

shows that natural convection in an inclined channel cannot be considered as two 

dimensional because Nu cannot be smaller than unity. Nevertheless, the trend of 

decreasing Nu is caught by 2-D runs, but in order to be sure about the critical tilt 

angle 3-D runs should also be performed.  

Pr

 

Figure 5.48 shows the variation of the average Nu values when 3500Ra cosϕ = . 

It is three dimensional analysis and because of the long run times, only the angles 

between 65˚ and  80˚ are analyzed. The continously decreasing trend can not be 

achieved because of the constant Ra cosϕ  term, since when the tilt angle is 

increased Ra is also increased. Nonetheless, a decline of Nu at an angle is reached 

and approximately 76˚ can be accepted as the critical tilt angle where Nu is 

minimum.  
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Figure 5.47. Average Nu value versus tilt angle for 20000Ra =  and  

for two dimensional case  

Pr 0.7=
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Figure 5.48. Average Nu versus tilt angle when 3500Ra cosϕ =  for three 

dimensional case



CHAPTER 6 
 

CONCLUSION 
 
 
Three dimensional natural convection flow and heat transfer between two inclined 

parallel plates are analyzed by using spectral methods. The channel is heated from 

the lower plate and both plates are at different but constant temperatures. Periodic 

boundary conditions are used in streamwise and spanwise directions. No slip and 

incompressibility assumptions together with Boussinesq approximation are also 

used. The fluid is taken as air and since air is quiescent in the medium, it is 

disturbed by using an initial perturbation to its temperature field at a specified 

point in order to initiate the solver. By considering all these assumptions and 

approximations, Navier-Stokes equations together with the thermal energy 

equation are solved using a pseudospectral technique. 

 
In order to compare the results with the literature, average Nu values are 

calculated and they are plotted with respect to Ra cosϕ . Additionally, local Nu 

values, non-dimensional velocities and streamlines are also plotted to understand 

the flow characteristics in streamwise and spanwise directions more clearly. The 

study of Hollands et al. [4] is taken as a benchmark in this area, for this reason, 

the runs are performed for the cases mentioned in their study. Ra cosϕ  is taken as 

1708, 10000, and 50000 for each inclination angle of ϕ  as 15 . 

Additionally,

,30 , 45 ,  and 60

20000Ra cosϕ =  is investigated for ϕ  values of 15  

and 

,30 ,and 45

3500Ra cosϕ =  is chosen to examine for . In the experimental study 

of Hollands et al.[4], 

60ϕ =

Ra cosϕ  was taken within a broader range of values, i.e. 

between 1708 and . However, since the flow is three dimensional and run time 

is accordingly long, only four values of 

510

Ra cosϕ  can be considered in this study. 
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On the other hand, the interval between them is taken somewhat large to see the 

results in a larger margin. 

 
When 1708Ra cosϕ =  is taken into account, it was proven in the literature that 

this number is the critical value for the transition from pure conduction to the 

convective regime. As expected before, the converged Nu value for this case is 

found as unity and from Figure 5.5, it is clearly understood that there are no 

convection rolls between the plates. 

 
When Ra cosϕ  is increased to 10000, convective rolls are examined especially in 

the spanwise direction in a wavy manner. These flow characteristics differ with 

respect to the inclination angle, too. For example, when the tilt angle is 15  for 

this value of Ra cosϕ , local Nu results in x direction reach to a constant steady 

state value; on the other hand, when the tilt angle is increased to 30 , a periodic 

steadiness is observed. As can be seen from Figure 5.15, local Nu values in the 

streamwise direction converge by making periodic fluctuations. From Figure 5.17, 

it can be readily observed that multiple pairs of convective rolls in spanwise 

direction cause local Nu results in z direction to oscillate more compared to 

 results. According to the literature studies, this fact can be presented as 

follows. When the flow propagates in the streamwise direction, because of the 

inclination angle and normal buoyancy force, flow starts to make a wave like 

motion in the spanwise direction. This motion results in upwash and downwash 

zones of heat transfer. This provides Nu values to construct two extreme points 

along the spanwise direction. Figure 5.17 shows these wave like motion clearly.  

15ϕ =

 
When Ra cosϕ  is increased to 50000 for , the streamlines in streamwise 

direction should be examined carefully. After the half length of the channel, 

longitudinal wavy motions are observed, thus the flow becomes more 

complicated. For this reason, convergence becomes very hard to achieve for this 

type of problem and average Nu values start to oscillate more. 

30ϕ =
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According to the observations mentioned above, it can easily be concluded that 

Nu values do not only depend on Ra cosϕ , they also depend on the inclination 

angle. This phenomenon was observed and included to Eqn. 5.8 by adding a 

function related to inclination angle to Eqn. 5.9 in the study of Hollands et al. [4]. 

 
The average Nu values with respect to Ra cosϕ  are plotted and the results are 

compared with Eqns. 5.8-9. In Table 5.1, the results and the relative error 

percentages are tabulated and it can be stated that for the cases that convergence is 

achieved, the results of the present study agree well with the ones of the 

experimental study. However, especially for  when 60ϕ = 10000Ra cosϕ =  and 

50000Ra cosϕ = , the results deviate between 22 and 28 percent from the results 

of the experimental study. 

 
The grid independence is searched by increasing the collocation points by 

doubling them in all three directions. Nu values improved considerably, however 

the run time increases from two days to one week for each case. For this reason, 

collocation points are halved in three directions also, and it is observed that 

 meshes have approximately the same results with 16  grid 

arrangements. Moreover, approximately five or seven percent difference occurs 

between the meshes of 32

32 64 32× × 32 16× ×

64 32× ×  and 64 128 64× × . Since this is an acceptable 

error margin and in order to decrease the run-time, 32 64 32× ×  grid arrangement 

is preferred for the calculations. The critical tilt angle analysis is also done in this 

study and minimum Nu is obtained for the three dimensional case. 

 
Some recommendations can also be made about the present study. Especially, in 

order to achieve convergence for higher Ra cosϕ  and ϕ , the time increments 

should be decreased enough and time end of the program has to be increased. 

Additionally, another time discretization method can be used for this study. The 

other remedy is increasing the numbers of collocation points at least from 

 to . For this purpose, more developed computers should 

be preferred and parallel computations should be made.  

32 64 32× × 64 128 64× ×
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