

PERFORMANCE METRICS FOR
FUNDAMENTAL ESTIMATION FILTERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KORAY AKÇAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONIC ENGINEERING

SEPTEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN
Director

 ii

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof.Dr. İsmet ERKMEN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Mustafa KUZUOĞLU
 Supervisor

Examining Committee Members

Prof. Dr. Mübeccel DEMİREKLER (METU,EE)

Prof. Dr. Mustafa KUZUOĞLU (METU,EE)

Prof. Dr. Kemal LEBLEBİCİOĞLU (METU,EE)

Prof. Dr. Gönül Turhan SAYAN (METU,EE)

Elif YAVUZTÜRK (MSc.) (ASELSAN)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last Name: Koray AKÇAY

 Signature :

 iv

ABSTRACT

PERFORMANCE METRICS FOR
FUNDAMENTAL ESTIMATION FILTERS

Akçay, Koray

M.Sc., Department of Electrical Electrnoics Engineering

Supervisor : Prof. Dr. Mustafa Kuzuoğlu

September 2005, 86 pages

This thesis analyzes fundamental estimation filters – Alpha-Beta Filter, Alpha-Beta-

Gamma Filter, Constant Velocity (CV) Kalman Filter, Constant Acceleration (CA)

Kalman Filter, Extended Kalman Filter, 2-model Interacting Multiple Model (IMM)

Filter and 3-model IMM with respect to their resource requirements and

performance. In resource requirement part, fundamental estimation filters are

compared according to their CPU usage, memory needs and complexity. The best

fundamental estimation filter which needs very low resources is the Alpha-Beta-

Filter. In performance evaluation part of this thesis, performance metrics used are:

Root-Mean-Square Error (RMSE), Average Euclidean Error (AEE), Geometric

Average Error (GAE) and normalized form of these. The normalized form of

performance metrics makes measure of error independent of range and the length of

trajectory. Fundamental estimation filters and performance metrics are implemented

in MATLAB. MONTE CARLO simulation method and 6 different air trajectories

are used for testing. Test results show that performance of fundamental estimation

filters varies according to trajectory and target dynamics used in constructing the

filter. Consequently, filter performance is application-dependent. Therefore, before

choosing an estimation filter, most probable target dynamics, hardware resources

and acceptable error level should be investigated. An estimation filter which

matches these requirements will be ‘the best estimation filter’.

Keywords: Estimation Filters, Error Analysis, Performance Metrics

 v

ÖZ

TEMEL KESTİRİM SÜZGEÇLERİ İÇİN
PERFORMANS ÖLÇÜTLERİ

Akçay, Koray

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mustafa Kuzuoğlu

Eylül 2005, 86 sayfa

Bu çalışma, temel kestirim süzgeçleri: Alpha-Beta, Alpha-Beta-Gamma, Sabit Hız

Kalman, Sabit İvne Kalman, İleri Kalman Süzgeci (EKF), 2-model Etkileşimli

Çoklu Model ve 3-model Etkileşimli Çoklu Model Süzgeçlerini, kaynak

gereksimleri ve performanslarına göre incelemiştir. Kaynak gereksinim kısmında,

kestirim süzgeçleri işlemci kullanım, hafıza ihtiyacı ve karmaşıklıklarına göre

değerlendirilmiştir. En iyi sonucu veren süzgeç Alpha-Beta Süzgeci olmuştur.

Çalışmanın performans inceleme kısmında Etkin Değer (RMS) Hata, Ortalama

Euclidean Hata, Geometrik Ortalama Hata ve bunların normalize edilmiş halleri

kullanılmıştır. Hata hesaplamalarının normalize edilmesi, hataların menzil ve iz

boyundan bağımsız hale gelmesini sağlamaktadır. Kestirim süzgeçlerinin modelleri

ve hata hesaplamaları MATLAB ortamında gerçeklenmiştir. Testler için MONTE

CARLO yöntemi ve 6 farklı hava hedefi izi kullanılmıştır. Test sonuçlarından,

süzgeç performanslarının, temel kestirim süzgeçlerini oluştururken kullanılan hedef

dinamiği ve hedef izlerine göre değiştiği gözlemlenmiştir. Sonuç olarak, süzgeç

performansı uygulamaya bağımlıdır. Böylelikle bir kestirim süzgeci seçmeden önce,

hedeflerin olası hareket dinamikleri, sistemin kaynakları ve kabul edilebilir hata

payları ile ilgili bir çalışmanın yapılması gerekmektedir. Bu ihtiyaçlara cevap

verecek kestirim süzgeci uygulamaya uygun en iyi süzgeç olacaktır.

Anahtar Kelimeler: Kestirim Süzgeçleri, Hata Analizi, Performans Ölçütleri

To My Wife

 vi

 vii

ACKNOWLEDGMENTS

I would like to thank Prof. Dr. Mustafa Kuzuoğlu for his valuable supervision,

advice and criticism throughout the development and improvement of this thesis.

I would aslo like to express my deepest gratitude to Mr. Ahmet Mumcu for his

understanding and support. I am also grateful to ASELSAN Inc. for facilities

provided for the completition of this thesis.

I would like to extend my special appreciation to my parents for their

encouragement they have given me not only throughout my thesis but also

throughout my life.

Last, but not least I would like to thank my wife for her support. This thesis would

not have been completed without her endless love.

 viii

TABLE OF CONTENTS

PLAGIARISM...iii

ABSTRACT...iv

ÖZ...v

ACKNOWLEDGMENTS..vii

TABLE OF CONTENTS..viii

LIST OF TABLES...ix

LIST OF FIGURES..x

CHAPTER

1 INTRODUCTION... 1
2 ESTIMATION FILTERS.. 4

2.1 Estimation .. 4
2.2 Tracking ... 6
2.3 Filtering .. 8

2.3.1 Alpha-Beta Filter.. 8
2.3.2 Alpha-Beta-Gamma Filter.. 10
2.3.3 Kalman Filter ... 11
2.3.4 Extended Kalman Filter – EKF.. 17
2.3.5 Interacting Multiple Model Filter – IMM Filter 21

3 ERROR ANALYSIS... 24
3.1 Root Mean Square Error - RMSE .. 25
3.2 Average Euclidean Error – AEE.. 25
3.3 Geometric Average Error – GAE... 25
3.4 Normalized Error ... 26
3.5 Error Measures for Video Trackers.. 28

3.5.1 Probability of Detection ... 29
3.5.2 Degree of Vicinity.. 30

4 RESOURCE ANALYSIS ... 31
4.1 Memory Requirement .. 32
4.2 CPU Usage ... 34
4.3 Algorithm Complexity ... 37

5 SIMULATIONS.. 38
5.1 Trajectory Test Data... 39

5.1.1 Trajectory – 1 ... 39
5.1.2 Trajectory – 2 ... 40
5.1.3 Trajectory – 3 ... 41
5.1.4 Trajectory – 4 ... 42

 ix

5.1.5 Trajectory – 5 ... 43
5.1.6 Trajectory – 6 ... 44

5.2 Simulation Results ... 45
5.2.1 Trajectory – 1 ... 46
5.2.2 Trajectory – 2 ... 52
5.2.3 Trajectory – 3 ... 56
5.2.4 Trajectory – 4 ... 61
5.2.5 Trajectory – 5 ... 65
5.2.6 Trajectory – 6 ... 69

5.3 Error vs. Filter Constructers... 72
6 CONCLUSION... 81
7 REFERENCES.. 85

 x

LIST OF TABLES

TABLES

Table 4.1.1 Memory Requirements of Fundamental Estimation Filters…..…….…28

 xi

LIST OF FIGURES

FIGURES

Figure 2.1.1 Founder’s Lifelines of the Probability and Estimation Theory…….5

Figure 2.1.2 Block diagram of State Estimation…………………………………6

Figure 2.2.1 Block diagram of typical Tracking System…………………………8

Figure 2.3.1.1 Block diagram of Alpha-Beta Filter………………………………9

Figure 2.3.2.1 Block diagram of Alpha-Beta-Gamma Filter………………….....11

Figure 2.3.1 Typical Kalman Filter Application………………………………...12

Figure 2.3.1 Summary of Kalman Filter……………………………………… 17

Figure 2.3.4.1 Summary of Extended Kalman Filter……………………………21

Figure 2.3.5.1 Summary of IMM Filter………………………………………….22

Figure 3.1 Estimation Error Vector…………..………………………………….24

Figure 3.4.1 Sensor Measurement Vector……………………………………….26

Figure 3.5.1 Ground Truth and Ground Truth Window…………………………29

Figure 4.1.1 Memory Requirements of Fundamental Estimation Filters………..34

Figure 4.2.1 Making MATLAB a Real-time Application in Windows OS……...35

Figure 4.2.2 CPU Usage of Estimation Filters…………………………………...36

Figure 5.1 Simulation User Interface……………………………………………..38

Figure 5.1.1.1 Trajectory – 1……………………………………………………..40

Figure 5.1.2.1 Trajectory – 2……………………………………………………..41

Figure 5.1.3.1 Trajectory – 3……………………………………………………..42

Figure 5.1.4.1 Trajectory – 4……………………………………………………..43

Figure 5.1.5.1 Trajectory – 5……………………………………………………..44

Figure 5.1.6.1 Trajectory – 6……………………………………………………..45

Figure 5.2.1.1 Simulation Results for Trajectory-1………………………………46

Figure 5.2.1.2 Error Distribution of Alpha-Beta Filter Output…………………...47

Figure 5.2.1.3 Error Distribution of Alpha-Beta-Gamma Filter Output………….48

Figure 5.2.1.4 Error Distribution of CV Kalman Filter Output…………………..48

Figure 5.2.1.5 Error Distribution of CA Kalman Filter Output…………………..49

 xii

Figure 5.2.1.6 Error Distribution of EKF Output………………………………...50

Figure 5.2.1.7 Error Distribution of 2-model IMM Filter Output………………..50

Figure 5.2.1.8 Error Distribution of 3-model IMM Output………………………51

Figure 5.2.2.1 Simulation Results for Trajectory-2………………………………52

Figure 5.2.2.2 Error Distribution of Alpha-Beta Filter Output…………………...53

Figure 5.2.2.3 Error Distribution of Alpha-Beta-Gamma Filter Output………….53

Figure 5.2.2.4 Error Distribution of CV Kalman Filter Output…………………..54

Figure 5.2.2.5 Error Distribution of CA Kalman Filter Output…………………..54

Figure 5.2.2.6 Error Distribution for EKF Output………………………………..55

Figure 5.2.2.7 Error Distribution of 2-model IMM Filter Output………………..55

Figure 5.2.2.8 Error Distribution of 3-model IMM Filter Output………………..56

Figure 5.2.3.1 Simulation Results for Trajectory-3………………………………55

Figure 5.2.3.2 Error Distribution of Alpha-Beta Filter Output…………………...57

Figure 5.2.3.3 Error Distribution of Alpha-Beta-Gamma Filter Output………….58

Figure 5.2.3.4 Error Distribution of CV Kalman Filter Output…………………..58

Figure 5.2.3.5 Error Distribution of CA Kalman Filter Output…………………..59

Figure 5.2.3.6 Error Distribution of EKF Output………………………………...59

Figure 5.2.3.7 Error Distribution of 2-model IMM Filter Output………………..60

Figure 5.2.3.8 Error Distribution of 3-model IMM Output………………………61

Figure 5.2.4.1 Simulation Results for Trajectory-4………………………………61

Figure 5.2.4.2 Error Distribution of Alpha-Beta Filter Output…………………...61

Figure 5.2.4.3 Error Distribution of Alpha-Beta-Gamma Filter Output………….62

Figure 5.2.4.4 Error Distribution of CV Kalman Filter Output…………………..62

Figure 5.2.4.5 Error Distribution of CA Kalman Filter Output…………………..63

Figure 5.2.4.6 Error Distribution of EKF Output………………………………...63

Figure 5.2.4.7 Error Distribution of 2-model IMM Filter Output………………..64

Figure 5.2.4.8 Error Distribution of 3-model IMM Filter Output………………..65

Figure 5.2.5.1 Simulation Results for Trajectory-5………………………………65

Figure 5.2.5.2 Error Distribution of Alpha-Beta Filter Output…………………...66

Figure 5.2.5.3 Error Distribution of Alpha-Beta-Gamma Filter Output………….66

Figure 5.2.5.4 Error Distribution of CV Kalman Filter Output…………………..67

Figure 5.2.5.5 Error Distribution of CA Kalman Filter Output…………………..67

Figure 5.2.5.6 Error Distribution of EKF Output………………………………...68

Figure 5.2.5.7 Error Distribution of 2-model IMM Filter Output………………..68

Figure 5.2.5.8 Error Distribution of 3-model IMM Filter Output………………..68

Figure 5.2.6.1 Simulation Results for Trajectory-6………………………………69 xii
Figure 5.2.6.2 Error Distribution of Alpha-Beta Filter Output…………………...69

Figure 5.2.6.3 Error Distribution of Alpha-Beta-Gamma Filter Output………….70

Figure 5.2.6.4 Error Distribution of CV Kalman Filter Output…………………..70

Figure 5.2.6.5 Error Distribution of CA Kalman Filter Output…………………..70

Figure 5.2.6.6 Error Distribution of EKF Output………………………………...71

Figure 5.2.6.7 Error Distribution of 2-model IMM Filter Output………………..71

Figure 5.2.6.8 Error Distribution of 3-model IMM Filter Output………………..71

Figure 5.3.1 RMSE vs. CV Kalman Filter Meas. Noise Cov. Matrix Coef……...73

Figure 5.3.2 RMSE vs. CA Kalman Filter Meas. Noise Cov. Matrix Coef……...74

Figure 5.3.3 RMSE vs. EKF Meas. Noise Cov. Matrix Coef…………………….75

Figure 5.3.4 RMSE vs. 2-model IMM Filter Meas. Noise Cov. Matrix Coef……76

Figure 5.3.5 RMSE vs. CV Kalman Filter Proc. Noise Cov. Matrix Coef……….77

Figure 5.3.6 RMSE vs. CA Kalman Filter Proc. Noise Cov. Matrix Coef……….78

Figure 5.3.7 RMSE vs. EKF Proc. Noise Cov. Matrix Coef……………………..79

Figure 5.3.8 RMSE vs. 2-model IMM Filter Proc. Noise Cov. Matrix Coef…….80

 xiii

 1

CHAPTER 1

INTRODUCTION

Predicting future has always been an interesting subject to human being for ages.

While some went after fortune tellers, others tried to figure out the future from past.

Certainly, landing on moon was not achieved by clairvoyants; estimation theory

was ready there to put spacecraft into its orbits with some degree of accuracy. In the

world of estimation theory, one must keep in mind the fundamental assumption that

there is always an estimation error. While dealing with our chaotic cosmos, even

keeping the estimation in a considerable neighborhood of true value is enough.

However, what is the measure of accuracy? Which estimation method is better than

others? What is meant by ‘better’? In this thesis, these questions are tried to be

answered.

Before going further it is essential to give some definitions. One of the most popular

application areas of estimation theory is tracking. Tracking is the estimation of the

state of a moving object (target), based on measurements [1]. To simplify the

tracking problem, there are three basic items: measurement, estimation (filters) and

update. Measurement is acquired via sensors by receiving signals from the

environment. There is always a certain degree of measurement error due to sensors

(system) and environment. Depending on this observation, the next measurement is

estimated. Estimation is the process of inferring the value of a quantity of interest

from indirect, inaccurate and uncertain observations [1]. Next state of the target is

estimated with some degree of accuracy, therefore the whole tracking system

parameters must be updated with the true value of estimation. Updating the whole

tracking system (including estimation filters) makes it ready for the next

measurement with lower estimation error, assuming that the dynamics of the target

remain as it has been estimated. However, in a tracking system the dynamics of a

 2

target can only be a model of the real life, as it is in all engineering areas. Therefore,

we must be assured that there is always an estimation error to be taken into account.

Estimation Error is the deviation from the estimatee value of the estimated

quantity. Estimatee is the quantity to be estimated. There are several methods for

error analysis. The aim of this thesis is to define an error term more meaningful and

useful to compare and evaluate estimation filters (or systems with estimation

filters).

In the second chapter, a brief background knowledge about Estimation, Tracking,

and Filtering is given. In Filtering sub-section, fundamental estimation filters (in

simple-to-complex order)

• Alpha-Beta Filter,

• Alpha-Beta-Gamma Filter

• Kalman Filter

• Extended Kalman Filter

• Interacting Multiple Model Filter

are discussed.

In the third chapter, error analysis of estimation filters is discussed. The following

Error measure methods are covered

• Root-mean-square Error

• Average Euclidean Error

• Geometric Average Error

• Normalized Error

Besides, Error Measures for Video Trackers is discussed.

In the fourth chapter, Resource Analysis of Filters: Memory Usage, CPU Usage,

and Complexity of Filters are investigated. When implementing an estimation filter

in an embedded hardware one must consider the requirements of filter despite of

limited resources of hardware.

 3

In the fifth chapter, the results of simulations are discussed. Test trajectories used in

simulations and Error vs. Filter Constructers are demonstrated here.

In the sixth chapter, suggestions and conclusions on filters and error analysis are

given.

 4

CHAPTER 2

ESTIMATION FILTERS

2.1 Estimation
‘Estimation is the process of inferring the value of a quantity of interest from

indirect, inaccurate and uncertain observations’ [1].

As a mathematical concept, the inevitability of measurement errors had been

recognized since the time of Galileo Galilei (1564-1642). The first method dealing

with these errors and forming an optimal estimate from noisy data is the method of

least squares by Carl Freidrich Gauss (1777-1855).

One of the greatest discoveries in the history of statistical estimation theory is

Kalman Filtering by Rudolf Emil Kalman (1930 - …). It has great value of

controlling complex dynamic systems such as aircraft, ships, or spacecraft. For

these applications, it is not always possible to measure every variable that you want

to control. Kalman Filter provides a means of inferring the missing information

from noisy measurements. In the following chapters, details of Kalman Filtering

will be given.

The fundamentals of Kalman Filtering depends on The Theory of Probability, so it

is worth to give brief historical milestones in this branch of mathematics. The

Italian Giroloma Cardano (1501-1576) stated that the accuracies of empirical

statistics tend to improve with the number of trials. Then, general treatments of

probabilities were followed by Blaise Pascal (1623-1662), Pierre De Fermat

(1601-1655), and Christian Huygens (1629-1695). James Bernoulli (1654-1705)

(considered to be the founder of probability by some historians) gave the first

rigorous proof of the law of large numbers. Thomas Bayes (1702-1761) derived the

famous rule for statistical inference. Abraham de Moivre (1667-1754), Pierre Simon

Marquis de Laplace (1749-1827), Adrien Marie Legendre (1752-1833), and Carl

Freidrich Gauss (1777-1855) continued development into the nineteenth century. In

the nineteenth and twentieth century, the probabilities began to take on more

meaning as physically significant attributes. James Clerk Maxwell (1831-1879)

established the probabilistic treatment of natural phenomena as a scientific

discipline. Andrei Nikolaevoich Kolmogorov (1903-1987) and H. Ya Khinchin

worked on the theory of random processes and the foundations of probability theory

on measurement theory. Norbert Wiener (1894-1964) was the first working on the

theory of optimal estimation for systems involving random processes. [2] The

lifelines of important names in the history of probability theory are shown in

Figure-2.1.1

1500 1600 1700 1800 1900 2000

Cardano
Galileo

Fermat
Pascal

Huygens
Newton

Bernoulli
Bayes

Laplace

Legendre
Gauss

Maxwell
Markov
Cholesky

Wiener
Kolmogorov

Kalman
Bierman

1500 1600 1700 1800 1900 2000

Cardano
Galileo

Fermat
Pascal

Huygens
Newton

Bernoulli
Bayes

Laplace

Legendre
Gauss

Maxwell
Markov
Cholesky

Wiener
Kolmogorov

Kalman
Bierman

Figure-2.1.1 Founder’s Lifelines of the Probability and Estimation Theory [2]

When talking about estimation, one of the confusing topics is decision. Decision is

the selection of one (the best choice) of a set of discrete alternatives [1]. Estimation

is interpreted as the possibility of not making a choice but obtaining some

conditional probabilities of the various alternatives.

 5

In an estimation problem, the variable to be predicted can be either a parameter

(target signal-to-noise ratio (SNR), radar cross section (RCS), intensity of target and

so forth) or the state of a dynamic system (position, velocity, acceleration and so

forth). In Figure 2.1.2 a block diagram of state estimation is illustrated. Estimator

only has the knowledge of measurements which are affected by the error sources in

the form of noises. The estimator uses

• The changes in system dynamics

• The probabilistic characterization of the random factors

• The prior information

With this information, the estimator produces next state and state uncertainties.

Next measurement and current state estimate are used to obtain the next prior

information.

Dynamic
System

Measurement
System

State
Estimator

System Error
Source

Measurement
Error Source

Prior
Information

State estimate

State Uncertainties
Dynamic
System

Measurement
System

State
Estimator

System Error
Source

Measurement
Error Source

Prior
Information

State estimate

State Uncertainties

Figure 2.1.2 Block diagram of State Estimation

2.2 Tracking
Tracking is the estimation of the state of a moving object (target) based on

measurements [1]. Measurements can be taken by one or few active or inactive

sensors at fixed locations or on moving platforms.

A Sensor is a device that observes the environment by reception of signals. Active

sensors (such as radars) emit energy into the environment and search for reflected

 6

 7

energy, while passive sensors (such as cameras) search for energy emitted from the

target(s) [3].

Sensors at fixed locations deal only with the dynamics of the target, while sensors

on moving platforms has to take the dynamics of the moving platform into account

which makes the tracking problem more complex.

Tracking is an element of a wider system that performs surveillance, guidance,

obstacle avoidance, etc. Besides using all tools from estimation, tracking requires

extensive use of statistical decision theory. In Figure 2.2.1 a block diagram of a

typical tracking system is illustrated.

A typical multi target tracking system has the following common blocks [4]:

• Tracking Filters: The role of a tracking filter is to carry out recursive target

state estimation. The most common tracking filters are the fixed coefficient

filters (alpha-beta, alpha-beta-gamma), the Kalman Filter and the Extended

Kalman Filter (EKF). In the next section, details of these filters are given.

• Maneuver handling logic: Target motion can change suddenly, and the

tracker must adapt itself to changes in dynamics of target motion. Dynamic

models can be stationary, constant velocity, constant acceleration, etc.

Tracking system has to recognize changes and must choose the most

suitable dynamic model among others.

• Gating and data association: In a multi target environment, the tracking

system has to decide which measurement belongs to which track in order to

identify the origin of measurement.

• Track life management: Track status is typically defined in terms of three

life stages: tentative, confirmed and deleted track. By a tentative target it is

meant that a track has been initiated but not associated with any existing

track. In a confirmed track, measurements are consistent and associated with

an existing track. If for a certain time no track update is performed, than the

track is deleted.

Sensor Signal
Processing

Data
Processing

Target State
Estimates

Estimate
uncertainities

Noise

Environment Sensor Sensor Tracking

Si
gn

al

M
ea

su
re

m
en

t

Sensor Signal
Processing

Data
Processing

Target State
Estimates

Estimate
uncertainities

Noise

Environment Sensor Sensor Tracking

Si
gn

al

M
ea

su
re

m
en

t

Figure 2.2.1 Block diagram of typical Tracking System

2.3 Filtering
Commonly, a filter is a physical device for removing unwanted fractions of

mixtures. In electronics the term “filter” was first applied to analog circuits that

filter (attenuate unwanted frequencies) electronic signals. In Estimation Theory,

filtering is the estimation of the current state of dynamic system. Here, the phrase

‘filtering’ is used for obtaining the ‘best estimate’ from noisy data which amounts

to ‘filtering out’ the noise.

Below, five fundamental filters in practical tracking problems (Alpha-Beta Filter,

Alpha-Beta-Gamma Filter, Kalman Filter, Extended Kalman Filter, and Interacting

Multiple Model – IMM Filtering) are discussed in historical - also simple to

advanced - order.

2.3.1 Alpha-Beta Filter

The Alpha-Beta Filter is the simplest constant-gain tracking algorithm. The tracker

has poor performance, but requires a very low computational load. The Alpha-Beta
 8

Filter is used in tracking systems where position measurement updates are available

and the state vector consists of positions and velocities. The value of the gain is

preset for handling straight-line motion or turning motion. When the gain is set to

compensate for turning motion in a target, the straight-line performance will suffer

somewhat which is the trade-off for most filters below.

The structure of the Alpha-Beta Filter is based on the error estimation of a position

vector measurement. For example, if we suppose that the velocity of the X variable

is constant, we can predict (prediction phase) the position at time sample k+ 1.

)(*)()1(kVTkXkX p +=+ (2.3.1.1)

However, if the target maneuverability is not null we can update (update phase) this

prediction by adding a percentage of the error.

[])1()1()1()1(+−+++=+ kXkzAlphakXkX pp (2.3.1.2)

where,)1(+kz is the position measurement and Alpha is the first tracking

parameter. The same principle is used to attenuate the velocity noise. This new

updated velocity will be used for next prediction.

[])1()1()/()()1(+−++=+ kXkzTBetakVkV p (2.3.1.3)

+ +

Z-1

Filtered
Position

+

+
Filtered
Velocity

Z-1

Predicted
Position

Position

Alpha

Beta/T T

+ +

Z-1

Filtered
Position

+

+
Filtered
Velocity

Z-1

Predicted
Position

Position

Alpha

Beta/T T

Figure 2.3.1.1 Block diagram of Alpha-Beta Filter

 9

2.3.2 Alpha-Beta-Gamma Filter

Alpha-Beta-Gamma Filter is similar to Alpha-Beta Filter but acceleration is

included into the state vector besides position and velocity. Only a few summations

and multiplications are added, so it also requires a very low computational load

similar to the Alpha-Beta Filter. Still only position update is needed.

As in the Alpha-Beta Filter, the structure of Alpha-Beta-Gamma Filter is based on

the error estimation of a position vector measurement. Suppose that the acceleration

of the X variable is constant, we can predict (prediction phase) the position at time

sample . 1+k

2/))(*()(*)()1(2 kATkVTkXkX p ++=+ (2.3.2.1)

However, if there is a maneuver, we can update (update phase) this prediction by

adding a percentage of the error.

[])1()1()1()1(+−+++=+ kXkzAlphakXkX pp (2.3.2.2)

where, is the position measurement. The same principle is used for the

velocity and acceleration noise, these new values are used for the next prediction.

)1(+kz

[])1()1()/()()1(+−++=+ kXkzTBetakVkV p (2.3.2.3)

[]))1()1((*)/)*2(()()1(2 +−++=+ kXkzTGammakAkA p (2.3.2.4)

 10

+ +

Z-1

Filtered
Position

+

+
Filtered
Velocity

Z-1

Predicted
Position

Position

+

Z-1

Filtered
Acceleration

Alpha

Beta/T

(2*Gamma)/T^2

T

(T^2)/2

+ +

Z-1

Filtered
Position

+

+
Filtered
Velocity

Z-1

Predicted
Position

Position

+

Z-1

Filtered
Acceleration

Alpha

Beta/T

(2*Gamma)/T^2

T

(T^2)/2

Figure 2.3.2.1 Block diagram of Alpha-Beta-Gamma Filter

2.3.3 Kalman Filter

R.E. Kalman published his paper on recursive solution to the discrete-data linear

filtering in 1960, which is relatively recent although its root is as far back as C.F.

Gauss (1777-1855). Since that time, Kalman Filter has been applied in many

diverse areas like military, aerospace, nuclear plant, economics (even it is not

successful in economics) etc.

The Kalman filter is a multiple-input, multiple-output digital filter that can

optimally estimate, in real time, the states of a system based on its noisy outputs [7].

Here optimal means an algorithm that minimizes chosen error criteria. Since the

filter is recursive, it does not require all previous data to be kept in storage. This

makes it easier to implement Kalman Filter by hardware. The Kalman Filter

 11

supports estimations of past, present and future states even when the precise nature

of the modeled system is unknown.

The fundamental assumption about the Kalman Filter is that the state is evaluated

with a known linear system equation which means that the filter is not designed to

handle maneuvering targets.

System

Sensors

System error

Measurement error

Controls

Observed Meas. Kalman
Filter

Optimal estimate
of system state

System

Sensors

System error

Measurement error

Controls

Observed Meas. Kalman
Filter

Optimal estimate
of system state

Figure 2.3.1 Typical Kalman Filter Application [9]

In dynamic systems, the state equations are expressed in matrix form. For example,

1+nX = (2.3.3.1) nXH ×

where

⎥
⎦

⎤
⎢
⎣

⎡
=

n

n
n x

x
X

&
 (2.3.3.2)

and

H = (2.3.3.3) ⎥
⎦

⎤
⎢
⎣

⎡
1
T

0
1

represents state transition matrix for the constant velocity target.

It is now simpler to give the random system dynamics model. Specifically, it

becomes

 12

nnn UXHX +×=+1 (2.3.3.4)

where

⎥
⎦

⎤
⎢
⎣

⎡
=

n
n u

U
0

 (2.3.3.5)

is the dynamic model noise vector.

We now express the trivial measurement equation in matrix form. It is given by

nnn NXFY +×= (2.3.3.6)

where

][
[]
[] matrixt measuremen

errorn observatio
matrixn observatio 0 1

nn

nn

yY
vN

F

=
=
=

 (2.3.3.7)

Equation 2.3.3.6 is called the observation system equation. This is because it relates

the quantities being estimated to the parameter being observed, which are not

necessarily to be the same. The parameters and (target range and velocity) are

being estimated (tracked) while only target range is observed. As another example,

one could track a target in rectangular coordinates (x,y,z) and make measurements

on the target in spherical coordinates (R,

nx nx&

θ ,φ). In this case the observation matrix

F would transform from the rectangular coordinates being used by the tracking

filter to the spherical coordinates in which the radar makes its measurements.

nnnn XHX ,,1
~~ ×=+ (2.3.3.8)

where

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

nn

nn

nn x

x
X

,

,

, ~

~
~

& (2.3.3.9)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

+

+

+
nn

nn

nn x

x
X

,1

,1

,1 ~

~
~

& (2.3.3.10)

 13

This is called the prediction equation, because it predicts the position and velocity

of the target at time n+1 based on the position and velocity of the target at time n,

the predicted position and velocity being given by the state vector. Putting into

matrix form yields

)~ - (~~
1,1,, −− ××+= nnnnnnnn XFYKXX (2.3.3.11)

This is called the Kalman Filtering equation because it provides the updated

estimate of the present position and velocity of the target. Since only position and

velocity are involved, this called Constant Velocity Kalman Filter. If acceleration

is added to the dynamic model, then the filter will be a Constant Acceleration

Kalman Filter. In Constant Velocity model, the response of the filter is faster then

Constant Acceleration model. However, although the response of the constant

velocity filter is faster, the rate of overshooting in the changes is much more than

the Acceleration model. In this work, both Constant Velocity and Constant

Acceleration Kalman Filters are implemented.

The matrix is a matrix giving the tracking-filter constants It is

given by

nK . and nn hg

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

T
h
g

K n

n

n for the two-state alpha-beta or Kalman filter equations. This

form does not however tell us how to obtain In Kalman filter

application is obtained from

. and nn hg

nK

[] 1
1,1,

~ ~ −
−− ××+××= T

nnn
T

nnn FPFRFPK (2.3.3.12)

where predictor equation

 ~~
1,1, n

T
nnnn QHPHP +××= −− (2.3.3.13)

and dynamic model noise covariance

[] [] T
nnnn UUEUCOVQ == (2.3.3.14)

[]1,1,1,1,
~~)~(~

−−−− == nn
T

nnnnnn XXEXCOVP (2.3.3.15)

 (2.3.3.16))()(T
nnnn NNENCOVR ==

 14

[])~(~
2,11,11,1 −−−−−− ××−== nnnnnnn PFKIXCOVP (2.3.3.17)

Covariances apply as long as the entries of the column matrices

zero mean. Otherwise they have to be replaced by

nn NU and have

[] []nnnn NENUEU −− and ,

respectively.

Physically, the matrix nnP ,1
~

− is an estimate of our accuracy in predicting the target

position and velocity at time n based on the measurements made at time n-1. Here,

1,
~

−nnP is the covariance matrix of the state vector 1,
~

−nnX . To get a better feeling for

nnP ,1
~

− , let us write it out for our two-state 1,
~

−nnX .

)~~()~(
1,1,1,

T
nnnnnn XXEXCOV
−−− = = E (][1,1,

1,

1, ~ ~
~

~
−−

−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
nnnn

nn

nn
xx

x

x
&

)

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−−

−−

−

)~(

)~~(

)~~(

)~(
2

1,

1,1,

1,1,

2
1,

nn

nnnn

nnnn

nn

xE

xxE

xxE

xE
&

&

&

 = 1,
~

−nnP (2.3.3.18)

[]
[]
[]2

v

2)(

)(

σ=

=

==

n

T
nnnn

vE

vvENCOVR

 (2.3.3.19)

The matrix gives the accuracy of the radar measurements. It is the covariance

matrix of the measurement error vector . For two-state filter, where it is assumed

that

nR

nN

xv σσ and are the root-mean-square of and , the assumption is that the

mean of is zero.

nv nx

nv

 15

The matrix , which gives the magnitude of the target trajectory uncertainty or the

equivalent maneuvering capability, is the covariance matrix of the dynamic model

driving noise vector, that is, the random-velocity component of the target trajectory.

To get a better feeling for , let us evaluate it for our two-state Kalman filter, that

is, for .

nQ

nQ

nU

][

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

==

)(

0

0
0

) 0
0

(

)(

2
n

n
n

T
nnnn

uE

u
u

E

UUECOVUQ

 (2.3.3.20)

The prediction covariance matrix 1,
~

−nnP is obtained from the covariance matrix of

the filtered estimate of the target state vector at time n-1 given by 1,1
~

−− nnP . The

filtered estimate covariance matrix 1,1
~

−− nnP is in turn obtained from the previous

prediction covariance matrix 2,1
~

−− nnP .

Above equations allow us to obtain the filter weights

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

T
h
g

K n

n

n at successive

observation intervals. The observation matrix is given by equation 2.3.3.7 and the

filter coefficient matrix is given by equation 2.3.3.12. The covariance matrix for

the initial a priori estimates of the target position and velocity given by allows

initiation of the tracking equations given by equation 2.3.3.13. First equations

2.3.3.14 and 2.3.3.15 is used to calculate (assuming that n=0 is the time for the

first filter observation).

nK

1,0 −P

0H

 16

In Kalman Filtering, we can simply think that there are two stages: Time Update

and Measurement Update. In Time Update, prediction of the next observation is

calculated. In Measurement Update, the items of Time Update are corrected. In

literature Time Update is called Predictor and Measurement Update is called as

Corrector. Below is the summary of Kalman Filtering in two stage form.

Figure 2.3.1 Summary of Kalman Filter [6]

2.3.4 Extended Kalman Filter – EKF
The fundamental assumption about the Kalman Filter is that it is based on linear

system equations where it expects linear measurements. This assumption makes

Kalman Filter weaker for observations from non-linear target dynamics. In most

cases due to the nature of sensors and target dynamics, the measurements are non-

linear. Extended Kalman Filter (EKF) solves this problem. The aim of EKF is to

estimate the state under the conditions of non-linear measurement processes and/or

non-linear target dynamics. The extended Kalman filter (EKF) is a Kalman filter

that linearizes the dynamic system about the current mean and covariance.

 17

The nonlinear transformation may introduce bias to the solution, the covariance

calculation is not necessarily accurate, and the EKF can diverge if the initial

conditions are inaccurate. So it is crucial to use a coherent filter or take first few

measurements to initialize the EKF.

Linearization of the estimation around the current estimate using the partial

derivatives of the process is just like a Taylor series expansion [6]. Let us begin

with a state vector be defined as the state vector of a non-linear stochastic

difference equation

nRx∈

),,(111 −−−= kkkk wuxfx (2.3.4.1)

Let nRz∈ be the measurement vector

),(kkk vxhz = (2.3.4.2)

where and kw kv are the random variables that represent the process and

measurement noise. Assume and have zero mean. kw kv

To estimate a process with non-linear state and measurement relationships, new

governing equations are obtained via a linearization of equations 2.3.4.1 and

2.3.4.2,

111)~(~
−−− +−+≈ kkkkk WwxxAxx (2.3.4.3)

kkkkk VvxxHzz +−+≈)~(~ (2.3.4.4)

where

 • and are the actual state and measurement vectors, kx kz

• kx~ and kz~ are the approximate state and measurement vectors from

equations 2.3.4.1 and 2.3.4.2,

 • is an a posteriori estimate of the state at step k, kx̂

 • The random variables and represent the process and measurement

noise

kw kv

 • A is the Jacobian matrix of partial derivatives of with respect to x, f

[]
[]

[]
)0,,ˆ(11, −−∂

∂
= kk

j

i
ji ux

x
f

A (2.3.4.5)

 18

 • W is the Jacobian matrix of partial derivatives of with respect to w, f

 []
[]

[]
)0,,ˆ(11, −−∂

∂
= kk

j

i
ji ux

w
f

W (2.3.4.6)

 • H is the Jacobian matrix of partial derivatives of with respect to x, f

 []
[]

[]
)0,~(, k

j

i
ji x

x
h

H
∂

∂
= (2.3.4.7)

 • V is the Jacobian matrix of partial derivatives of with respect to v, f

 []
[]

[]
)0,~(, k

j

i
ji x

v
h

V
∂

∂
= (2.3.4.8)

In the notation, the time step subscript k is not used with the Jacobians A, W, H and

V even though they are in fact different at each time step.

New notations for the prediction error and the measurement residual are as follows:

 kkx xxe
k

~~ −≡ (2.3.4.9)

 (2.3.4.10) kkz zze
k

~~ −≡

Using 2.3.4.9 and 2.3.4.10 we can write governing equations for an error process as

kkkx xxAe
k

ε+−≈ −−)~(~
11 (2.3.4.11)

kxz kk
eHe η+≈ ~~ (2.3.4.12)

where kε and kη represent new independent random variables having zero mean

and covariance matrices and . TWQW TVRV

Let us use the actual measurement residual in equation 2.3.4.10 and a second

(hypothetical) Kalman filter to estimate the prediction error

kze~

kxe~ given by equation

2.3.4.11. This estimate, call it , could then be used along with equation 2.3.4.9 to

obtain the a posteriori state estimates for the original non-linear process as

kê

kkk exx ˆ~ˆ += (2.3.4.13)

The equations 2.3.4.11 and 2.3.4.12 have approximately the following distributions

[]T
xxx kkk

eeENep ~~,0(~)~((2.3.4.14)

 19

),0(~)(T
kk WWQNp ε (2.3.4.15)

),0(~)(T
kk VVRNp η (2.3.4.16)

Given these approximations and letting the predicted value of be zero, the

Kalman filter equation that is used to estimate is

kê

kê

kzkk eKe ~ˆ = (2.3.4.17)

By substituting Equation 2.3.4.15 back into Equation 2.3.4.13 and making use of

Equation 2.3.4.10 we see that we do not actually need the second (hypothetical)

Kalman filter:

)~(~~~ˆ kkkkzkk zzKxeKxx
k

−+=+= (2.3.4.18)

Equation 2.3.4.18 can now be used for the measurement update in the extended

Kalman filter, with kx~ and kz~ coming from equations 2.3.4.1 and 2.3.4.2, and the

Kalman gain coming with the appropriate substitution for measurement error

covariance.

kK

As in the linear Kalman Filter, there two stages of the EK filter: Time Update and

Measurement Update. and are the process Jacobians at step k, and is the

process noise covariance at step k. h comes from Equation 2.3.4.2, and V are the

measurement Jacobians at step k, and

kA kW kQ

kH

kR is the measurement noise covariance at

step k. Below is the summary of Extended Kalman Filter.

 20

Figure 2.3.4.1 Summary of Extended Kalman Filter [3]

2.3.5 Interacting Multiple Model Filter – IMM Filter

The Interacting Multiple Model filter is used to predict the current state of the target

whose behavior pattern changes with time using two or more dynamic models. For

example, if the target is expected to travel with constant velocity for a while and

then with a non-zero acceleration, the type of Kalman Filters (dynamic models) can

be Constant Velocity Kalman Filter and Constant Acceleration Kalman Filter. The

number of dynamic models used is dependent on the application.

In IMM filtering, multiple state equations are used for individual dynamic models.

A Markov transition matrix is used to specify the probability to use one of the target

dynamics. The values of Markov transition matrix are chosen according to target.

For example, if the target is a cargo airplane, then most of time it will travel with

constant velocity, which means that the probability to be in the constant velocity

model will be higher. If the target is a fighting airplane, then the percentage of

maneuvering in time will be higher, which means the probability to be in the turn

model should be taken accordingly.

 21

There are four fundamental steps in IMM Filter algorithm [1]:

• Interaction: In this step the previous cycle mode-conditioned state estimates,

covariance and the mixing probabilities are used to initialize the current cycle of

each mode-conditioned filter

• Mode-conditioned filtering: Calculation of the state estimates and covariance,

conditioned on a mode being in effect, as well as the mode likelihood function

(r parallel filters)

• Probability evaluation: Computation of the mixing and the updated mode

probabilities

• Overall state estimate and covariance (for output only): Combination of the

latest mode-conditioned state estimates and covariance.

Below is IMM filter implemented for two dynamic models [1]:

Figure 2.3.5.1 Summary of IMM Filter [1]

 22

 23

In this thesis, 2-model and 3-model IMM Filters are implemented. In 2-model IMM

Filter, Constant Velocity and Constant Acceleration Kalman Filters are used. In 3-

model IMM Filter, besides filters in 2-model IMM Filter, stationary target model is

added, which can be applicable to land targets.

CHAPTER 3

ERROR ANALYSIS

Error is deviation from the true value of the measured quantity. In this thesis, the

general definition is used in a specific form: Estimation Error is deviation from

the estimatee value of the estimated quantity. Estimatee is the quantity to be

estimated. The n-dimensional estimatee, its estimation, and estimation error are

denoted by X , X̂ , and X~ . Estimation error for each term is

[] ()))ˆ()ˆ(ˆ(~ 222
nnnnnn zzyyxxnX −+−+−= (3.1)

as shown figure below.

),,(zyx

),,(zyx

x

y

z

estimate

estimatee

),,(zyx

),,(zyx

x

y

z

estimate

estimatee

Figure 3.1 Estimation Error Vector

In error analysis, results turn out to be more precise and dependable if a large

amount of data is processed. So it is crucial to repeat tests again and again with

 24

Monte-Carlo simulations. Here the total number of independent Monte-Carlo

simulations is denoted by M.

3.1 Root Mean Square Error - RMSE

∑ ∑
= =

==
M

i

M

i
iii XX

M
X

M
XRMSE

1 1

2
1'2

12

2
)~~1()~1()~((3.1.1)

Root-Mean-Square Error (RMSE) is a widely used measure of estimation accuracy.

The popularity of RMSE comes from the fact that is it is older than the other

methods discussed below. RMSE is finite-sample approximation of the standard

error []XXE ~~ ' , which is closely related with standard deviation. [11] Standard

deviation is an important parameter for probabilistic analysis, so RMSE is.

It is clear that smaller RMSE means a more accurate estimator.

3.2 Average Euclidean Error – AEE

∑ ∑
= =

==
M

i

M

i
iii XX

M
X

M
XAEE

1 1

2
1'

2
)~~(1~1)~((3.2.1)

Average Euclidean Error (AEE) arises from Euclidean distance or Euclidean norm

[11]. AEE is finite-sample approximation of mean error []
2

~XE , which is in other

words mean deviation. Since mean deviation is never larger than standard deviation,

AEE is never larger than RMSE.

Again, smaller AEE means a more accurate estimator.

3.3 Geometric Average Error – GAE

M

ii
M
i XXXGAE

1
2

1'
1)~~()~(⎥⎦

⎤
⎢⎣
⎡∏= = (3.3.1)

It is obvious that geometric average is never larger than arithmetic average, which is

never larger than the RMS value, GAE≤AEE≤RMSE. [11] GAE is useful to see the
 25

existence of instantaneous large error. This is helpful to analyze the behavior of

filter with a maneuvering target. The estimation error increases when a straight

moving target begins to maneuver instantly, since it takes time for filter to update

its parameters.

Smaller GAE means a more accurate estimator.

3.4 Normalized Error
In a radar tracking system, one of the main error sources is measurement error,

stemming from the sensor itself. To simplify the discussion, let us consider a two-

dimensional case of measurement from a sensor where ‘r’ and ‘a’ stands for range

and azimuth angle respectively:

a

r

x

y
target

sensor a

r

x

y
target

sensor

Figure 3.4.1 Sensor Measurement Vector

 In cartesian coordinate;

()arx cos= (3.4.1)

()ary sin= (3.4.2)

assuming there is error both on range and angle measurement (r + Δr) and (a + Δa).

() ()aarrxx Δ+Δ+=Δ+ cos (3.4.3)

 26

() ()aarryy Δ+Δ+=Δ+ sin (3.4.4)

Taking equation 3.4.3 and using trigonometric identities,

()[]aaaarrxx Δ−ΔΔ+=Δ+ sinsincoscos (3.4.5)

for small Δa using Taylor series expansion;

() 1
2

1cos
2

≈
Δ

+≈Δ
aa (3.4.6)

() aaaa Δ≈
Δ

−Δ≈Δ
!3

sin
3

 (3.4.7)

Putting Equations 3.4.6 and 3.4.7 into Equation 3.4.5

()[aaarrxx]Δ−Δ+=Δ+)(sincos (3.4.8)

araraaararxx ΔΔ−Δ+ΔΔ−=Δ+)(sin)(cos)(sincos (3.4.9)

Where

arx cos= (3.4.10)

aarrax ΔΔ−Δ=Δ)(sin)(cos (3.4.11)

0)(sin ≈ΔΔ ara (3.4.12)

As seen in equation 3.4.11, for small aΔ and rΔ , dominant figure in measurement

error is proportional to range. To make error measure independent of trajectory,

each error must be normalized with the range where error is calculated. Normalized

error at sample i in a trajectory is given by

i

i
i r

x
ne

~
= (3.4.15)

NE is n dimensional normalized error of a trajectory. NE is applicable to RMSE,

AEE, and GAE error measures. Instead of X~ , NE can be put into related equations.

∑ ∑
= =

==
M

i

M

i
iii NENE

M
NE

M
XRMSENormalized

1 1

2
1'2

12

2
)1()1()~((3.4.13)

∑ ∑
= =

==
M

i

M

i
iii NENE

M
NE

M
XAEENormalized

1 1

2
1'

2
)(11)~((3.4.14)

M

ii
M
i NENEXGAENormalized

1
2

1'
1)()~(⎥⎦

⎤
⎢⎣
⎡∏= = (3.4.15)

 27

Besides normalizing error measures, it can be helpful to make error analysis

independent of trajectory length. Making error analysis independent of trajectory,

we gain the possibility of using error measure as specification of a tracking system.

For this, each normalized error analysis results can be divided into total number of

samples for each Monte Carlo simulation (let us take number of samples: ‘k’) as

shown below.

kMXRMSENormalizedXSErmalizedRMgthIndepNoTrajectLen /)~()~(= (Eq.3.4.16)

kMXAEENormalizedXErmalizedAEgthIndepNoTrajectLen /)~()~(= (Eq.3.4.17)

kMXGAENormalizedXErmalizedGAgthIndepNoTrajectLen /)~()~(= (Eq.3.4.18)

3.5 Error Measures for Video Trackers
When dealing with video tracking, one will find himself in the 2D world. In most

video tracking systems, there two phases: Detection and Tracking. In detection

period, where image processing methods are used, probable targets are figured out.

In tracking period, where estimation filters are at work, one or few of probable

targets’ next position are estimated. Therefore, in finding error measures for video

trackers, we have to take into account both image processing and estimation filter.

Most of the time, the gravity centre of target’s 2D image is ordered to track. In

minor cases, the edge of a target is the interest of tracking filters. From this point of

view, center of gravity of target image will be used as reference data to find out

estimation error. To find out the center of gravity of the target, one needs the exact

placement of target image in a series of frames, which is called ‘Ground Truth’.

To simplify the problem, it is enough to take the quadrangle window (‘Ground

Truth Window’) frame that each edge touches to the target. Ground truth of the

target is shown in Figure 3.5.1

 28

Target’s center of gravity
(Ground Truth)

Estimation output

Estimation errorGround Truth Window

Target’s center of gravity
(Ground Truth)

Estimation output

Estimation errorGround Truth Window

Fig. 3.5.1 Ground Truth and Ground Truth Window

3.5.1 Probability of Detection

In video tracking systems, it is essential that estimation falls in Ground Truth

Window. Estimation is used to place detection window where target will be found

out in the next frame. If estimation is out of Ground Truth Window, then detection

window should be placed where another irrelevant target takes place. Probability of

estimation being in the Ground Truth Window is called ‘Probability of Detection’.

Sometimes Probability of Detection is used to define how accurate that target is

distinguished from the background in the detection phase of video tracking.

However, taking video tracking -detection and tracking phases- as a whole system,

detection and estimation errors are evaluated together. Probability of detection is

the best when it is 100%. Specification of a video tracking system, can be given in

terms of Probability of Detection.

Probability of = (Number of frames that estimation falls in Ground Truth

Detection Window / number of total frames under test) x 100

 29

3.5.2 Degree of Vicinity

Another essential item in video tracking error analysis is how close estimations are

to Ground Truth, which can be called as ‘Degree of Vicinity’. Here again both

detection and estimation errors are evaluated together. In some cases, it is

acceptable to track a target with a constant deviation. This constant deviation can be

large enough to put estimation out of the Ground Truth Window. In such a case,

system itself can assign a constant to take estimation in Ground Truth Window.

Every system is designed with a limit before braking down, so it is crucial to know

the closeness of estimation to ground truth before giving up track.

Let us call error between estimation and Ground Truth as error and diagonal length

of Ground Truth Window as diagonal. Degree of Vicinity can be formulized as

2
1

2

2 ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= ∑ diagonal

errorDoV (3.5.2.1)

As it can be guessed, smaller DoV means a better video tracker system.

 30

 31

CHAPTER 4

RESOURCE ANALYSIS

When implementing any algorithm into hardware, there are resource requirements

in terms of memory and processing power. One must take these into account, when

choosing the processor platform and amount of memory. Another issue about

hardware implementation is the complexity of algorithm related to the size of

Programmable Logic Cell Arrays.

However, the hardware implementation of an algorithm must be considered as a

part of system itself, not stand alone. For example, in a multi-target tracking system,

the amount of memory requirement increases geometrically as the number of targets

increases. Besides, if there is a real time requirement of the system, then all

resources must be revised again, e.g. parallel processing.

As mentioned before, five fundamental estimation filters and their variations are

investigated in this thesis:

• Alpha-Beta

• Alpha-Beta-Gamma

• Kalman – Constant Velocity

• Kalman – Constant Acceleration

• Extended Kalman Filter

• 2-model IMM Filter

• 3-model IMM Filter

In the next sub-sections; the memory requirement, processing power, and algorithm

complexity of above filters are discussed for single target tracking with one sample

estimation.

 32

4.1 Memory Requirement
The memory requirements of filters are examined in relation to the number of

constant, variable and temporal values used in the algorithms.

• Constants: These values are used without any change during execution of

algorithm

• Variables: These values change from one data set (e.g. estimation) to the

other.

• Temporal: These values are intermediate values which are not directly

related to filter constructers

In the table below, memory requirements are given for estimation filters. When

evaluating filters by their memory requirements, total constants and total variables

are summed up to find out total memory needs. As its is guessed the memory

requirements of filters increase in the following order: Alpha-Beta, Alpha-Beta-

Gamma, Kalman – Constant Velocity, Kalman – Constant Acceleration, Extended

Kalman Filter, 2-model IMM Filter and 3-model IMM Filter.

Table 4.1.1 Memory Requirements of Fundamental Estimation Filters

Estimation

Filter
Constants

Tot.

cons.
Variables

Tot.

var.
Temp.

Alpha-Beta
alpha : 1x1

beta : 1x1

T : 1x1

3
position : 3x (1x1)

velocity : 3x (1x1)
6 12

Alpha-Beta-

Gamma

alpha : 1x1

beta : 1x1

Gamma : 1x1

T : 1x1

T^2 : 1x1

5
position : 3x (1x1)

velocity : 3x (1x1)

acceleration : 3x (1x1)

9 24

 33

Kalman – CV

meas. noise : 1x1

meas. mat. : 2x1

state transition : 2x2

pro. noise cov. : 2x2

11

state predic. :3x (1x2)

state predic.cov. : 3x (2x2)

filter gain : 3x (1x1)

state estimate : 3x (2x1)

state cov. : 3x (2x2)

meas. predic. : 3x (2x1)

45 141

Kalman – CA

meas. noise : 1x1

meas. mat. : 3x1

state transition : 3x3

pro. noise cov. : 3x3

22

state predic. :3x (1x3)

state predic. cov. : 3x (3x3)

filter gain : 3x (1x1)

state estimate : 3x (3x1)

state cov. : 3x (3x3)

Meas. Predic. : 3x (3x1)

84 411

EKF
meas. noise : 1x1

state transition : 3x3

pro. noise cov. : 3x3

19

state predic. : 3x (1x3)

state predic. cov. : 3x (3x3)

filter gain : 3x1

state estimate : 3x (3x1)

state cov. : 3x (3x3)

Meas. Predic. : 3x (3x1)

meas. mat. : 9x9

165 447

IMM – 2-

model

meas. noise : 2x (1x1)

meas. mat. : 2x (3x1)

state transition : 2x (3x3)

pro. noise cov. : 2x (3x3)

trans. prob. : 4x (1x1)

46

state predic. :2x3x (1x3)

state predic.cov:2x3x (3x3)

filter gain : 2x3x (1x1)

state estimate : 2x3x (3x1)

state cov. : 2x3x (3x3)

meas. Predic. : 2x3x (3x1)

mode prob. :2

170 242

IMM – 3-

model

meas. noise : 2x (1x1)

meas. mat. : 2x (3x1)

state transition : 2x (3x3)

pro. noise cov. : 2x (3x3)

trans. prob. : 9x (1x1)

51

state predic. :3x3x (1x3)

state predic.cov:3x3x (3x3)

filter gain : 3x3x (1x1)

state estimate : 3x3x (3x1)

state cov. : 3x3x (3x3)

meas. Predic. : 3x3x (3x1)

mode prob. :3

255 363

0

50

100

150

200

250

300

350

Alph
a-B

eta

Alph
a-B

eta
-G

am
ma

Kalm
an

 - C
V

Kalm
an

 - C
A

EKF

IM
M - 2

 m
od

el

IM
M - 3

 m
od

el

M
em

or
y

R
eq

ui
re

m
en

ts

Figure 4.1.1 Memory Requirements of Fundamental Estimation Filters

4.2 CPU Usage
When implementing any algorithm in hardware with real-time requirement, one of

the primary questions to be answered is ‘Is this hardware fast enough to handle this

algorithm?’ Answer to this question may be found in two ways:

• Each arithmetic operator to be executed in algorithm can be counted,

number of operators gives total CPU usage. In a conventional CPU, each

type of arithmetic operator lasts differently, i.e. division lasts longer than

summation.

• Another method to find out CPU usage is to put algorithm into CPU, and

measure CPU time. In this thesis, this method is used, algorithms are

implemented in MATLAB. Codes below are used to calculate CPU time in

MATLAB [12].

 34
…

 35

cputime;

);

CPU usage of estimation filters investigated in this thesis are examined below. For

The Alpha-Beta filter is taken as basis to compare the CPU usage of estimation

filters. Below is CPU usage of estimation filters discussed in this thesis. The results

are gathered from six different trajectories and several Monte Carlo simulations.

t =

surf(peaks(40)

e = cputime-t

e = 0.4667

…

CPU time calculation, the execution priority of the MATLAB is made ‘Realtime’ to

avoid CPU being blocked by other application. During simulations, the

configuration of PC is Pentium M Centrino 1300MHz CPU and 512MB RAM.

Figure 4.2.1 Making MATLAB a Real-time Application in Windows OS

 36

or

ATLAB to distinguish from each other.

r implementation and again resolution of

ATLAB. While implementing both filters, same filter constructers are used,

odel IMM filter.

Figure 4.2.2 CPU Usage of Estimation Filters

It can be seen that Alpha-Beta and Alpha-Beta-Gamma filters’ CPU usage are close

to each other. The order of CPU usage for these filters is 10-4, which is very low f

M

Constant Velocity and Constant Acceleration Kalman filter’s CPU usage are also

close to each other. This is because of thei

M

except zeros are put into matrices since Constant Velocity Kalman filter does not

use these values. However, it is still acceptable that CPU usage of these two filters

is close to each other.

As expected, the CPU usage of other filters are arranged in ascending order as EKF,

2-model IMM and 3-m

Alph
a-B

eta

Alph
a-B

eta
-G

am
ma

Kalm
an

 - C
V

Kalm
an

 - C
A

EKF

IM
M - 2

 m
od

el

IM
M - 3

 m
od

el

C
PU

 U
sa

ge

 37

les

. When the sizes of matrices increase by r rows and c columns

(i.e.), the number of operations to multiply two matrices will

incre

4.3 Algorithm Complexity
Algorithm Complexity is somehow a qualitative measure which depends on

implementation of the algorithm. In this thesis, Algorithm Complexity is defined

as the density of intermediate calculations and the number of matrices and variab

used in the algorithm.

Let us assume that an algorithm will be implemented on a Programmable Logic

Cell Array (PLCA). As the number of the intermediate calculations increases, the

area used on a PLCA will increase. As an example, we multiply two matrices with

size aa×

)()(cara +×+

ase by crcbcar −++ 222 .However, the number of cells in both matrices

increases by +r

In such a qualitative evaluation, it is bet pare algorithm complexities of

he lowest density of intermediate calculation is

ediate calculation; however the number of matrices and

ariables in CA Kalman filter is larger than matrices in CV Kalman filter. The

ously, 3-mode

 this discussion, th

Alpha-Bet amma, CV Kalman, CA Kalman, EKF, 2-model IMM

nd 3-model IMM.

22 −c . 2

ter to com

filters with each other one by one. T

in Alpha-Beta filter, which is followed by Alpha-Beta-Gamma filter. Since each

parameter and coordinate value is calculated separately, the number of matrices and

variables used in both filters are nearly same. CV and CA Kalman filters have the

same number of interm

v

construction of EKF is nearly the same as the CA Kalman filter, however there are

linearization operations which add extra variables and intermediate calculations. 2-

model IMM filter has more intermediate calculation than EKF. As the number of

models used in IMM filter increases, number of intermediate operations ramp up.

Obvi l IMM filter has much more operations than any of the filters

above. From e filter complexity increases in the following order:

Alpha-Beta, a-G

a

 38

Figure 5.1 Simulation User Interface

CHAPTER 5

SIMULATIONS

MATLAB is chosen as the simulation tool, because of its flexibility in

mathematical environment. In the simulations, estimation filters discussed in

Chapter 2 are implemented. For error analysis, error measures in Chapter 3 (except

section 3.5) are coded. A user interface is designed to change inputs to the filters

and to monitor the outputs. In order to test implemented filters, benchmark

trajectories given in the literature [13] are used.

 39

By the simulation user interface, trajectory data as measurement

ata and the number of Monte Carlo simulations. When the RUN button is pressed,

e chosen trajectory is fed to all estimation filters implemented: Alpha-Beta,

Alpha-Beta-Gamma, CV Kal 2-model IMM and 3-model

M filters. The results collected from filter output and trajectory data are used to

alculate error metrics: RMSE, AEE, GAE and normalized error (trajectory length

.1 Trajectory Test Data
 this thesis 6 different trajectories are used which are taken from Blair,W.D.,

atson,G.A., Kirubarajan, T., and Bar-Shalom,Y., et al, “Benchmark for Radar

 the user can choose

d

th

man, CA Kalman, EKF,

IM

c

independent normalized error). The elapsed time of each filter is displayed

individually. The user can examine the error distribution of each filter separately.

The mean and variance of the error distributions are also displayed. The results of

filters can be displayed together with the trajectory.

5
In

W

Allocation and Tracking in ECM” [13].

5.1.1 Trajectory – 1
The target flies with constant speed of 290 m/s at an altitude of 1.26 km for the first

60 s. Then, it turns with 2 g acceleration and flies with constant speed for another

30 s. Then, it turns with 3 g and flies to its final range. This trajectory simulates a

large aircraft. The trajectory is shown below:

 40

Figure 5.1.1.1 Trajectory – 1

5.1.2 Trajectory – 2
The target flies with constant speed of 305 m/s at an altitude of 4.57 km for the first

60 s. Then, it turns 2/π with 2.5 g acceleration and descends to 3.05 km. Then, it

turns with 4 g and flies to its final range with constant speed of 305 km/s. This

trajectory represents a small maneuverable commercial jet. The trajectory is shown

below:

 41

Figure 5.1.2.1 Trajectory – 2

5.1.3 Trajectory – 3
The target flies with constant speed of 457 m/s for the first 30 s. Then, it turns 4/π

with 4 g acceleration and it flies with a constant speed for another 30 s. Then, it

with 4 g and decreases its speed to 274 m/s. With this speed it flies to its turns 2/π

final range. This trajectory represents a medium bomber. The trajectory is shown

below:

Figure 5.1.3.1 Trajectory – 3

5.1.4 Trajectory – 4
The target flies with constant speed of 251 m/s at an altitude of 2.29 km for the first

30 s. Then, it turns 4/π with 4 g acceleration and flies with constant speed for

another 30 s. Then, it turns with 6 g and ascends to 2.9 km. It flies with constant

speed to its final destination. This trajectory again represents a medium bomber.

The trajectory is shown below:

 42

 43

Figure 5.1.4.1 Trajectory – 4

ectory with acceleration at an altitude of 1.5 km. For the

5.1.5 Trajectory – 5
The target begins its traj

first 30 s it flies with constant acceleration. Then, it turns with 5 g and flies with

constant speed for another 20 s. Then, it turns with 7 g and flies with constant speed

for 30 s. After flying with constant speed, it turns with 6 g. After reaching at

altitude of 4.45 km, it flies with a constant speed horizontally. This trajectory

represents a fighter. The trajectory is shown below:

 44

Figure 5.1.5.1 Trajectory – 5

nal destination. This trajectory

represents a fighter, too. The trajectory is shown below:

5.1.6 Trajectory – 6
The target flies with constant speed of 426 m/s at an altitude of 1.55 km for the first

30 s. Then, it turns with 7 g and flies with constant speed for another 30 s. Then, it

turns with 6 g and descends until altitude of 0.79 km. It flies with a constant speed

for 30 s and then it turns with 6 g. Another constant speed flight is performed until 7

g turn. Then it flies with constant speed to its fi

Figure 5.1.6.1 Trajectory – 6

 45

e of each filter.

One another useful information for error analysis is the distribution of error. The

frequency of each error value is put on plot where y-coordinate is repetition number

of error and x-coordinate is value of error, yielding the Error Distribution. Mean

and variance of Error Distribution are helpful statistical information for error

analysis.

5.2 Simulation Results
Each trajectory is fed to estimation filters as measurement data and estimation

results of estimation filters are collected in separate arrays. From trajectory data and

estimation filter’s results, the error at each sample is calculated. By using error at

each sample, error measures are calculated according to methods discussed in

Chapter 3 (except subsection 3.5). Besides, elapsed time to process a trajectory by

an estimation filter is calculated to find out the CPU usag

 46

In order to make simulation results more trustable, Monte Carlo simulation method

is used. Each trajectory is fed to the estimation filters several times with different

random noise added to the original data. Each result is taken individually to

calculate error measures. There is a trade-off between time consumption and

reliability of tests conducted. Here, the degree of the Monte Carlo is 3, which means

that the trajectory data is fed to estimation filters 3 times with different random

noise each time.

5.2.1 Trajectory – 1

he first trajectory is fed to the filters, and the above results are obtained. As can be

an maneuverable motion. CA Kalman filter is as bad as Alpha-Beta and

lpha-Beta-Gamma filters, because it is sensitive to acceleration but it is not

successful for motion with constant velocity. 2-model IMM is better than CA

 Figure 5.2.1.1 Simulation Results for Trajectory-1

T

seen, EKF gives the best result, where lowest error value means that the estimation

filter output is closest to the measurement data. Actually, this is as expected since

EKF is more sensitive to maneuverable behavior and accelerated turn. CA Kalman

filter is worse than CV Kalman filter, due to the fact that constant velocity motion

is more th

A

 47

IMM filter uses CP Kalman model which causes to increase error

te.

the average elapsed time in ascending order are: Alpha-

e to

Kalman and CV Kalman filters, which is acceptable since 2-model IMM has the

flexibility of both CA Kalman and CV Kalman filters. With this approach, it is

expected that 3-model IMM should give better results than 2-model IMM. Besides

CV Kalman and CA Kalman filters, Constant Position (CP) Kalman filter is used as

third model. Since trajectory-1 is a moving target, in some cases (even the

probability of being in CP Kalman model or change into CP Kalman model is kept

smaller) 3-model

ra

The filters according to

Beta, Alpha-Beta-Gamma, CV Kalman, CA Kalman, EKF, 2-model IMM and 3-

model IMM. The elapsed time for Alpha-Beta filter seems to be zero, this is du

the fact that the minimum sensible resolution is smaller than elapsed time.

Figure 5.2.1.2 Error Distribution of Alpha-Beta Filter Output

Error distribution of Alpha-Beta filter shows that most of error terms are gathered

around 0.0603 with variance 0.0001.

 48

ilter’s,

athered around 0.0604 with variance 0.0001. Variance is a little higher, since

lpha-Beta-Gamma reacts to changes slower than the Alpha-Beta filter, in case of

maneuvering target.

Figure 5.2.1.3 Error Distribution of Alpha-Beta-Gamma Filter Output

Error distribution of Alpha-Beta-Gamma filer is nearly same as Alpha-Beta f

g

A

Figure 5.2.1.4 Error Distribution of CV Kalman Filter Output

 49

rror distribution values of CV Kalman filter are smaller than those of both filters

above. Mean is 0.0448 with variance of 0.0003. While error metric decreases,

variance increases. The estimated results are closer to the exact trajectory, however

the reaction of filter to changes of target maneuver is slower.

he mean of CA Kalman filter error distribution is 0.0563 with variance of 0.0005,

-

sed,

m

E

Figure 5.2.1.5 Error Distribution of CA Kalman Filter Output

T

which is larger than any of the values above. CA Kalman model is assuming that

most of the time target moves with acceleration, which is not the case for trajectory

1. Variance is larger, because of the fact that the degree of the filter is increa

eaning slower reaction to maneuver.

 50

 the

m

measure artesian

and spherical coordinate systems.

Figure 5.2.1.7 Error Distribution of 2-model IMM Filter Output

Figure 5.2.1.6 Error Distribution of EKF Output

The error distribution of EKF output is interesting compared to the others. Mean is

0.0315 with variance 0.00009. It seems that all error terms are close to a single

point. This shows that there is a bias on error, which means that if we subtract

ean value from all error terms, the EKF estimation will be much closer to the

ment data. The source of this bias is the transformation between C

 51

Mean of 2-model IMM filter’s error distribution is 0.0328 with variance 0.00016.

The means of the 2-model IMM filter’s error distribution (0.0315) and EKF’ error

distribution are very close to each other, while error metrics RMSE, AEE and GAE

are slightly different. This shows that it may not be proper to use mean of error

terms directly. It is useful to put them in a meaningful format to examine.

he error distribution of 3-model IMM filter output’s mean is 0.0401 and variance

ial

Figure 5.2.1.8 Error Distribution of 3-model IMM Output

T

is 0.00019. The mean and variance are larger than 2-model IMM filter’s, because

of 3rd model (Constant Position model), which is much applicable to terrestr

targets.

5.2.2 Trajectory – 2

 52

 Figure 5.2.2.1 Simulation Results for Trajectory-2

As in Trajectory-1, the order of filters in terms of error metrics are as follows :

Alpha-Beta,

model IMM and EKF. Also the order of the filter process elapsed time is the same

as above, however time is increased. This is because of the increase in target

 Alpha-Beta-Gamma, CA Kalman, CV Kalman, 3-model IMM, 2-

maneuver.

 53

Figure 5.2.2.2 Error Distribution of Alpha-Beta Filter Output

d 0.00014 of

ariance.

Figure 5.2.2.3 Error Distribution of Alpha-Beta-Gamma Filter Output

The error distribution of Alpha-Beta filter has mean of 0.0632 an

v

 54

The mean and variance of Alpha-Beta-Gamma filter output are very close to Alpha-

Beta filter output error distribution mean and variance values. However, the slower

reaction of Alpha-Beta-Gamma filter is still applicable, variance is slightly larger.

igure 5.2.2.4 Error Distribution of CV Kalman Filter Output

Figure 5.2.2.5 Error Distribution of CA Kalman Filter Output

F

CV Kalman filter output error distribution has smaller mean (0.0460) but larger

variance (0.00033) values.

As in trajectory-1, trajectory-2 has also constant velocity motion most of time,

which decreases performance of the CA Kalman filter. Mean is 0.0574 and variance

 55

 0.00056.

possible to subtract mean (0.0339) from all error terms

to remove biasing.

Figure 5.2.2.7 Error Distribution of 2-model IMM Filter Output

is

Figure 5.2.2.6 Error Distribution for EKF Output

Error distribution of EKF output is the same as before, error terms are collected

around one value. It is still

 56

, respectively.

Figure utput

 – 3

The mean and variance of 2-model IMM filter output error distribution is 0.0336

and 0.00017

 5.2.2.8 Error Distribution of 3-model IMM Filter O

The mean is 0.0418 and the variance is 0.00022, which are larger than above.

5.2.3 Trajectory

 Figure 5.2.3.1 Simulation Results for Trajectory-3

 57

ers form worse to better is: Alpha-Beta, Alpha-Beta-

Gamma, CA Kalman, CV Kalman, 3-model IMM, EKF and 2-model IMM. The

roles of 2-model IMM filter and EKF seems to be changed, however in Figure

5.2.3.6 there is still bias on EKF output error terms. If this biasing is canceled out,

then EKF will give the best result. The value of biasing is related to the coordinate

transformation, and the cancellation value should be defined during this

transformation.

Figure 5.2.3.2 Error Distribution of Alpha-Beta Filter Output

The mean and variance of Alpha-Beta-Gamma filter output error distribution are

0.0927 and 0.00015, respectively.

For this trajectory, 2-model IMM filter gives the best result in terms of error

metrics. The order of filt

 58

Alpha-Beta-Gamma Filter Output

For trajectory-3, the mean and variance values of Alpha-Beta-Gamma are nearly

same as in Alpha-Beta.

ribution of CV Kalman Filter Output

The mean and variance of CV Kalman filter output’s error distribution is 0.0563

and 0.00039, respectively.

Figure 5.2.3.3 Error Distribution of

Figure 5.2.3.4 Error Dist

 59

Figure 5.2.3.5 Error Distribution of CA Kalman Filter Output

 of CV Kalman filter output’s error distribution is 0.0658

nd 0.00067, respectively.

Figure 5.2.3.6 Error Distribution of EKF Output

The mean and variance

a

 60

Bias on error terms is still effective, to cancel biasing mean value can be subtracted

Figure 5.2.3.7 Error Distribution of 2-model IMM Filter Output

he error distribution of 2-model IMM filter has mean of 0.0431 and variance of

.00019.

Figure 5.2.3.8 Error Distribution of 3-model IMM Output

from error terms.

T

0

The error distribution of 3-model IMM filter has mean of 0.0601 and variance of

0.00037.

 61

5.2.4 Trajectory – 4

 Figure 5.2.4.1 Simulation Results for Trajectory-4

For trajectory-4, 2-model IMM gives the best estimate. This time EKF fails to be

the best not because of the biasing, but also because of some big error terms.

Results of other filters are as before. Elapsed time result is also the same as before.

 62

Figure 5.2.4.2 Error Distribution of Alpha-Beta Filter Output

The mean and variance of Alpha-Beta filter output error distribution are 0.0529 and

0.00014, respectively.

Figure 5.2.4.3 Error Distribution of Alpha-Beta-Gamma Filter Output

The mean and variance of Alpha-Beta-Gamma filter output error distribution are

nearly the same as Alpha-Beta results.

 63

Figure 5.2.4.4 Error Distribution of CV Kalman Filter Output

The error distribution of CV Kalman filter has mean of 0.0431 and variance of

0.00019.

Figure 5.2.4.5 Error Distribution of CA Kalman Filter Output

The error distribution of CV Kalman filter output has mean of 0.0431 and variance

of 0.00019.

 64

at there are some big error terms that affect the variance value. Actually,

e mean of EKF output error distribution is 20% larger than the mean of 2-model

M filter output error distribution, while RMSE of EKF is 3.5 times larger than

Figure 5.2.4.7 Error Distribution of 2-model IMM Filter Output

Figure 5.2.4.6 Error Distribution of EKF Output

The mean of the error distribution of EKF output is 0.0518 with variance 0.0167. It

is clear th

th

IM

RMSE of 2-model IMM. RMSE emphasizes big error terms; it prevents big error

terms being canceled by small terms. This shows the benefit of using RMSE instead

of mean.

 65

The error distribution of CV Kalman filter output has mean of 0.0312 and variance

of 0.00016.

istribution of CV Kalman filter output has mean of 0.0361 and variance

5.2.

Figure 5.2.4.8 Error Distribution of 3-model IMM Filter Output

The error d

of 0.00020.

5 Trajectory – 5

 66

 Figure 5.2.5.1 Simulation Results for Trajectory-5

psed time performance of filters stays the same. In EKF, results show

that there is still biasing.

Figure 5.2.5.2 Error Distribution of Alpha-Beta Filter Output

Figure 5.2.5.3 Error Distribution of Alpha-Beta-Gamma Filter Output

For trajectory-5, the most successful filter is again the 2-model IMM, followed by

the EKF. Ela

 67

Figure 5.2.5.4 Error Distribution of CV Kalman Filter Output

Figure 5.2.5.5 Error Distribution of CA Kalman Filter Output

 68

Figure 5.2.5.8 Error Distribution of 3-model IMM Filter Output

Figure 5.2.5.6 Error Distribution of EKF Output

Figure 5.2.5.7 Error Distribution of 2-model IMM Filter Output

 69

5.2.6 Trajectory – 6

 Figure 5.2.6.1 Simulation Results for Trajectory-6

In trajectory-6, the best estimate is given by the 2-model IMM filter, while CV

Kalman is the second best filter. 3-model IMM filter follows CV Kalman filter. If

biasing on EKF results are removed, the ranking can be changed in favor of EKF.

Ranking with respect to filter process elapsed time is the same as above.

Figure 5.2.6.2 Error Distribution of Alpha-Beta Filter Output

Figure 5.2.6.3 Error Distribution of Alpha-Beta-Gamma Filter Output

 70

Figure 5.2.6.4 Error Distribution of CV Kalman Filter Output

t

Figure 5.2.6.5 Error Distribution of CA Kalman Filter Outpu

 71

Figure 5.2.6.6 Error Distribution of EKF Output

Figure 5.2.6.7 Error Distribution of 2-model IMM Filter Output

Figure 5.2.6.8 Error Distribution of 3-model IMM Filter Output

 72

5.3 Er
The selection of measurement noise covariance and process noise covariance

matrices has direct effect on performance of estimation filters: CV Kalman, CA

Kalman, EKF and IMM filters.

However, process noise covariance is adaptive during the filtering operation, until it

finally converges to a constant matrix in CA Kalman, CV Kalman and EKF. It will

be seen from the coming up simulation results that the initial condition of process

noise covariance is important, although it becomes stable regardless of

measurement data. In IMM filtering it stays adaptive during the complete process.

Process noise covariance matrix changes according to the target model used to

construc

The situation for the measurement noise covariance matrix is different. It stays

constant during the whole filtering process, which means that the initial choice is

important.

The four figures given below illustrate the relation between RMSE and

measurement noise covariance matrix coefficient. As the measurement noise

covariance matrix coefficient is changed, trajectory measurement data are fed to

filters for each measurement noise covariance matrix coefficient. The output of the

filter is collected

ror vs. Filter Constructers

t the filter.

 to produce RMSE values individually.

 73

Figure 5.3.1 RMSE vs. CV Kalman Filter Meas. Noise Cov. Matrix Coef.

The main aim is to make the RMSE value as small as possible, so for measurement

noise covariance matrix coefficient, the value around 1 and 3 is suitable for all

trajectories if CV Kalman filter will be used.

 74

For E

value for all trajectories. For some trajectories it is around 2, however for some

trajectories it is around 9.

Figure 5.3.2 RMSE vs. CA Kalman Filter Meas. Noise Cov. Matrix Coef.

 CA Kalman filter, there is no single range of values that decreases the RMS

Figure 5.3.3 RMSE vs. EKF Meas. Noise Cov. Matrix Coef.

 75

variance matrix coefficient according to a single result

will degrade the error performance of the other trajectories.

For EKF, measurement noise covariance matrix coefficient can be chosen between

3.5 and 5. Only one trajectory shows that 1 is suitable to choose, however adjusting

the measurement noise co

 76

Figure Coef.

SE and process noise

ovariance matrix. Trajectories are fed to filters for different process noise

covariance matrix coefficient. Each curve shows the results for a different

trajectory.

5.3.4 RMSE vs. 2-model IMM Filter Meas. Noise Cov. Matrix

For 2-model IMM filter, measurement noise covariance matrix coefficient can be

chosen between 3 and 5.

The four figures given below show the relation between RM

c

Figure 5.3.5 RMSE vs. CV Kalman Filter Proc. Noise Cov. Matrix Coef.

 77

point according to the used target model regardless of

easurement data. Process noise covariance matrix coefficient can be chosen

.

For CV Kalman filter, process noise covariance matrix is adaptive during filtering,

until it reaches a stable

m

between 10 and 20. Since process noise covariance matrix reaches a stable point

regardless of measurement data, its best value can be found without measurement

data and initial condition can be chosen according to this value while filter is

constructed

Figure 5.3.6 RMSE vs. CA Kalman Filter Proc. Noise Cov. Matrix Coef.

For CA Kalman filter, a single process noise covariance matrix coefficient is not

possible, since for each trajectory minimum RMSE value has appeared at different

values. As in the case of measurement process noise covariance matrix, CA Kalman

is not a robust filtering method, which yields different results for different

trajectories.

 78

Figure 5.3.7 RMSE vs. EKF Proc. Noise Cov. Matrix Coef.

For EKF, process noise covariance matrix can be chosen between 3 and 5.

 79

 80

Figure Coef.

uring all

filtering operation. This is because of the adaptive structure of IMM filtering. In

IMM filtering, which model is used with what percentage, is decided according to

the measurement data. The percentage of the model being used, determines process

noise covariance matrix structure. However, still the initial condition is effective on

RMSE value. For this simulation case, process noise covariance matrix coefficient

can be chosen between 2 and 9.

5.3.8 RMSE vs. 2-model IMM Filter Proc. Noise Cov. Matrix

In 2-model IMM filter case, process noise covariance matrix is adaptive d

 81

CHAPTER 6

CONCLUSION

In this thesis, the performance of 7 fundamental estimation filters is examined.

These are:

• Alpha-Beta

• Alpha-Beta-Gamma

• CV Kalman

• CA Kalman

• EKF

• 2-model IMM

Estimation filters are investigated with re ard to performance metrics and resource

e discussed.

RMSE and AEE are finite-sample approximation of standard error and mean error,

respectively [11]. AEE has a physical meaning while RMSE is a statistical term.

The physical meaning of AEE is the average distance between estimation and

measurement. RMSE is directly related to standard deviation. GAE prevents that

small errors are suppressed by large errors. In a radar system case, the order of the

error is related to range or in a video tracker system the order of error is related to

• 3-model IMM

g

requirement.

The aim of defining performance metrics is to put the error information in a more

usable and easily understandable format. In this thesis, four types of performance

metrics (RMSE, AEE, GAE and normalized from these) for general estimation

filters and two types of performance metrics (Probability of Detection and Degree

of Vicinity) for video trackers, ar

 82

the size of the target. Therefore ful to normalize error terms to

ake error metric independent of range or target size.

Implementing an estimation f ssible by either software or

ardware or both. In all cases, it is essential to plan what kind of hardware is needed

 run software or what kind of hardware is to be implemented. If there is real-time

ore crucial.

Res r n estimation filter can be defined in terms of CPU

usa s and complexity. In this thesis, fundamental estimation filters

are im MATLAB environment. In order to make an objective

com implementation the filter part of the MATLAB code is kept as

sim rder to measure the CPU usage of an estimation filter, CPU

tim f er is recorded. However, it is assured that there is no other

task disturbing CPU. Estimation filters arranged in order according to their CPU

alman, CA Kalman, EKF, 2-model IMM and 3-model IMM.

, it is more meaning

m

ilter into a system is po

h

to

requirement and besides other tasks are pending, then managing the resources

becomes m

ou ce requirements of a

ge, memory need

plemented in

parison, during

ple as possible. In o

e o estimation filt

usage is similar to the historical appearance of filters: Alpha-Beta, Alpha-Beta-

Gamma, CV K

In order to understand memory needs; variables, constants and intermediate

variables in MATLAB code of each filter are counted. Each cell of matrices is taken

as an individual memory element. The result again exhibits a parallelism with the

historical picture: Alpha-Beta, Alpha-Beta-Gamma, CV Kalman, CA Kalman, EKF,

2-model IMM and 3-model IMM.

Complexity of an estimation filter is defined as the density of intermediate

calculations and variables. Estimation filters are examined according to their

complexity, and the result is not surprising (from less to more): Alpha-Beta, Alpha-

Beta-Gamma, CV Kalman, CA Kalman, EKF, 2-model IMM and 3-model IMM.

 83

 is needed. However, it is not

fficient to work with a single trajectory, since each filter may be successful for a

e to fit the target trajectory and during this time it swings

round measurement data. Alpha-Beta-Gamma filter behaves in a similar way as

re inaccurate, then EKF will diverge. To reduce

e probability of EKF to diverge, it is recommended to begin with a robust filter

el

M and 3-model IMM filters are implemented. In 2-model IMM filter, CV and

CA Kalman filters are used and its success can be seen from simulation results.

Evaluation of estimation filters according to their performance metrics is quite

subtle. For trustable results, a set of measurement data

su

specific scenario. Alpha-Beta filter is the simplest estimation filter with constant

gains. Because of its simplicity, it is very suitable for real-time applications.

However, as it is seen from the simulation results that Alpha-Beta filter gives the

worst results. Alpha-Beta filter is not fast enough to respond to changes when there

is maneuver. It takes tim

a

the Alpha-Beta filter, except that it responds to acceleration on target motion. This

makes Alpha-Beta-Gamma filter more sensitive to maneuver.

CV Kalman filter is better than both of the filters above. However, it is more

complex and uses more resources. CV Kalman filter is also better than CA Kalman

filter. This is because of the acceleration terms in CA Kalman filter. Acceleration

part of the CA Kalman filter makes it slower to give response to the maneuvering

target. When estimations proceed, it takes longer for CA Kalman filter to fit back to

the trajectory.

All the above filters process each Cartesian coordinate variation individually, which

make these filters weaker in spherical motions. In EKF, this problem is solved by

linearizing measurement function around the measurement. Therefore, in most of

cases, EKF will give the best result, assuming that the divergence problem of EKF

is solved. If the initial estimates a

th

(like Kalman filter), use this period to initialize the EKF then continue with EKF.

The best filter all among the others is IMM filter, which gives flexibility to change

target dynamic model according to the measurement data. In this thesis, 2-mod

IM

 84

error level should be

vestigated. An estimation filter which matches these requirements will be ‘the

Although, 3-model IMM filter has more alternative dynamic models than the 2-

model IMM filter, it gives the worse results. This is because of dynamic models

used in the 3-model IMM: CV Kalman, CA Kalman and Constant Position (CP)

Kalman. Since trajectories are chosen from aircrafts, CP Kalman is not suitable for

this kind of targets. CP Kalman model is chosen consciously to show that increase

in resource requirements or complexity does not always imply the best

performance.

An estimation filter can be called ‘the best estimation filter’ only with respect to a

particular application. Therefore, before choosing an estimation filter, most

probable target dynamics, hardware resources and acceptable

in

best estimation filter’.

 85

, Artech House, Norwood, 1993

] M.S. Grewal, and A.P. Andrews, “Kalman Filtering: Theory and Practice”, 2nd

plications”, Artech House, Boston, 2004

] D.A. Wilson, Analysis Of Tracking and Identification Characteristics Of

iverse Systems and Data Sources For Sensor Fusion, A Master Thesis, California,

001

] G. Welch, and G. Bishop, “An Introduction to Kalman Filter”, Transaction of

epartment of Computer Science University of North Carolina, Chapel Hill, 2002

] L.J. Levy, “The Kalman Filter: Navigation's Integration Workhorse”,

ransaction of Applied Physics Laboratory of the Johns Hopkins University, 1997

] D. Simon, “Kalman Filtering”, Transaction of Innovative Software, 2001

] P.S. Maybeck, “Stochastic Models, Estimation and Control”, Academic Press

Inc., London, 1979

[10] R.E. Kalman, “A New Approach to Linear Filtering and Prediction Problems”,

Baltimore: Transactions of the ASME–Journal of Basic Engineering 82 (Series D):

35-45., 1960

[11] X.R. Li and Z. Zhao, “Practical Measures for Performance Evaluation of

Estimators and Filters”, Proceedings of the Workshop on Estimation, Monterey,

2001

[12] MATLAB User Guide Ver. 6.5 Relase 13, The MathWorks Inc., 2002

REFERENCES

[1] Y. Bar-Shalom, and X.R. Li, “Estimation and Tracking: Principles, Techniques,

and Software”

[2

Wiley Interscience, New York, 2001

[3] Y. Bar-Shalom and X.R. Li, “Multitarget-Multisensor Tracking: Principles and

Techniques”, YBS, Storrs, 1995

[4] B. Ristic, Arulampalam, S. and Gordon, N., “Beyond the Kalman Filter: Particle

Filters for Tracking Ap

[5

D

2

[6

D

[7

T

[8

[9

 86

[13] W.D. Blair, G.A. Watson, T. Kirubarajan, and Bar-Shalom, “Benchmark for

Radar Allocation and Tracking in ECM”, IEEE Transactions on Aerospace and

Electronic Systems, Vol.34, No.4, October 1998

4] D.C. Montgomery, “Design and Analysis of Experiments”, 5th Ed., Wiley &

ons, Inc., New York, 2001

Tracking/Fusion Evaluation”, IEEE

 “Practical Measures and Test for Credibility

-Shalom, Monterey, May 2001

. Brookner, “Tracking and Kalman Filtering Made Easy”, John Wiley & Sons

[1

S

[15] D.Y. Hsu, “Spatial Error Analysis”, IEEE Press, New York, 1999

[16] C.Y Chong, “Problem Characterization in

AESS Systems Magazine, p.12-17, July 2001

[17] X.R. Li, Z. Zhao and V.P. Jilkov,

of an Estimator”, Proceedings of the Workshop on Estimation, Tracking and

Fusion: A Tribute to Yaakov Bar

[18] D.R. Cox and N. Reid, “The Theory of the Design of Experiments”,

Chapman& Hall/CRC, New York, 2000

[19] S. Blackman and R. Popoli, “Design and Analysis of Modern Tracking

Systems”, Artech House, Nordwood, 1999

[20] E

Inc., New York,1998

	
	CHAPTER 1
	INTRODUCTION
	 CHAPTER 2
	ESTIMATION FILTERS
	2.1 Estimation
	2.2 Tracking
	2.3 Filtering
	2.3.1 Alpha-Beta Filter
	2.3.2 Alpha-Beta-Gamma Filter
	2.3.3 Kalman Filter
	2.3.4 Extended Kalman Filter – EKF
	2.3.5 Interacting Multiple Model Filter – IMM Filter

	 CHAPTER 3
	ERROR ANALYSIS
	3.1 Root Mean Square Error - RMSE
	3.2 Average Euclidean Error – AEE
	3.3 Geometric Average Error – GAE
	3.4 Normalized Error
	3.5 Error Measures for Video Trackers
	3.5.1 Probability of Detection
	3.5.2 Degree of Vicinity

	 CHAPTER 4
	RESOURCE ANALYSIS
	4.1 Memory Requirement
	4.2 CPU Usage
	4.3 Algorithm Complexity

	 CHAPTER 5
	SIMULATIONS
	5.1 Trajectory Test Data
	5.1.1 Trajectory – 1
	5.1.2 Trajectory – 2
	5.1.3 Trajectory – 3
	5.1.4 Trajectory – 4
	5.1.5 Trajectory – 5
	5.1.6 Trajectory – 6

	5.2 Simulation Results
	5.2.1 Trajectory – 1
	5.2.2 Trajectory – 2
	5.2.3 Trajectory – 3
	5.2.4 Trajectory – 4
	5.2.5 Trajectory – 5
	5.2.6 Trajectory – 6

	5.3 Error vs. Filter Constructers

	
	
	 CHAPTER 6
	CONCLUSION
	
	REFERENCES

